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ABSTRACT

Atmospheric particles, i.e. ice crystals, dust particles, and black carbon, show

significant complexities like irregular geometries, inhomogeneity, small-scale surface

structures, and play a significant role in the atmosphere by scattering and absorbing

the incident solar radiation and terrestrial thermal emission. Knowledge of aerosol

scattering properties is a fundamental but challenging aspect of radiative transfer

studies and remote sensing applications. This dissertation tries to improve our un-

derstanding on the scattering properties of atmospheric particles by investigating

both the scattering algorithms and the representation of the realistic particles.

One part of this dissertation discusses in details the pseudo-spectral time do-

main algorithm (PSTD) for calculating scattering properties, its advantages and the

elimination of the Gibbs phenomenon. The applicability of the parallelized PSTD

implementation is investigated for both spherical and nonspherical particles over a

wide range of sizes and refractive indices, and the PSTD is applied for spherical par-

ticles with size parameters up to 200, and randomly oriented non-spherical ones with

size parameters up to 100. The relative strengths of the PSTD are also shown by

a systematic comparison with the discrete dipole approximation (DDA). The PSTD

outperforms the DDA for particles with refractive indices larger than 1.4, and ones

with smaller refractive indices by large sizes (e.g. size parameters larger than 60 for

a refractive index of 1.2). The results suggest significant potential of the PSTD for

the numerical investigation of the light scattering and corresponding atmospheric

applications.

The other part of this dissertation investigates the effects of particle complexi-

ties on the light scattering properties of the atmospheric particles, and three aspects
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corresponding to the irregular geometry, inhomogeneity and surface roughness are

studied. To cover the entire particle size range from the Rayleigh to the geometric-

optics regimes, the PSTD (for relatively small particles) is combined with the im-

proved geometric-optics method (IGOM) that is only applicable for large particles.

The Koch-fractal geometry is introduced to model the light scattering properties of

aerosol, and performs an excellent job of reproducing the experimental measurements

of various mineral dust particles. For the inhomogeneous particles, the applicability

of the effective medium approximations (EMA) is tested, and the EMA can be used

to approximate the scattering properties of inhomogeneous particles only when the

particles are uniformly internal mixtures. Furthermore, an irregular rough model

is developed to study the effects of the small-scale surface roughness on the light

scattering properties. In conclusion, the dissertation finds that the complexities of

atmospheric particles have to be fully considered to obtain their scattering properties

accurately.
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NOMENCLATURE

PSTD Pseudo-spectral time domain method

FDTD Finite-difference time domain method

DDA Discretise dipole approximation

IGOM Improved geometric-optics method

P Phase matrix

Qext Extinction efficiency

SSA Single-scattering albedo

g Asymmetry factor

RE Relative error

RMSRE Root-mean-square of relative errors

RMSAE Root-mean-square of absolute errors
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1. INTRODUCTION

The transfer of solar and thermal infrared radiation in the atmosphere involves ab-

sorption, scattering and emission, and has a significant impact on the weather system

and climate of the Earth. To understand and account the radiative characteristics

of the atmosphere, we must begin with the optical properties of the single particles

that are abundant in the atmosphere, e.g. droplets in water clouds, ice crystal in cir-

rus, and airborne aerosol particles. Knowledge of the atmospheric particle scattering

properties is a fundamental but challenging aspect of radiative transfer studies and

remote sensing applications. However, even with narrow focus on single-scattering

properties of atmospheric particles, significant obstacles are still remaining for a com-

prehensive understanding and further applications. This dissertation presents some

numerical investigations on the single-scattering properties of the atmospheric parti-

cles, and encompasses models on both light scattering algorithm and representation

of the realistic particles.

This chapter presents an introduction on light scattering and the motivation of

this study. Section 1.1 briefly discusses the current light scattering models, most

of which will be used in this dissertation, and Section 1.2 demonstrates the com-

plexities of the atmospheric particles. The basic concepts and quantities interested

will be introduced in Section 1.3, and Section 1.4 describes the organization of this

dissertation.

1.1 Light scattering models

Numerical investigation on the light scattering by particles has a history of over

a century [1, 2, 3, 4, 5, 6], and substantial effort has been devoted to improve our

understanding on the single-particle scattering properties, especially those of non-
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spherical particles. The early studies of particulate single-scattering properties were

focused on spheres [7, 8, 9], and results of their work has become known as the

Lorenz-Mie theory, the exact solution or “gold standard” in single scattering by ho-

mogeneous spheres. Based on the Lorenz-Mie theory, various improvement has been

developed to consider more complicated particles with basic spherical geometries,

e.g. the core-mantle Mie theory for stratified spheres [10, 11], and generalized multi-

particle Mie for aggregates of spheres [12, 13]. Optical properties of nonspherical

particles are more difficult to obtain than those of spheres, and will be the focus

of this dissertation. This subsection briefly introduces some well-developed and ac-

cepted models that will be used as references in this study, and show the current

modeling capabilities.

In scattering calculations, what is crucially important is the relation between the

size of the particle and the wavelength of the incident light. For a spherical particle

of radius a and incident wavelength λ, the size parameter x is defined by

x =
2π a

λ
.

In the regime of very large particles, x >> 1, i.e. known as the geometry-optics

regime, ray theories and geometric optics are useful and computationally inexpen-

sive, whereas, in the Rayleigh regime, x << 1, computations are also inexpensive.

In the intermediate case, i.e. the resonant regimes, recourse must be made to nu-

merical solution of some form of Maxwell’s equations. In this case, CPU demands

typically grow rapidly as x increases, especially for refractive indices m that become

significantly larger than 1.

Considering the widely spread sizes of the atmospheric particles (from aerosol

particles of submicron to ice aggregates with thousands of microns), there is still no
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single model that can be applied to cover the complete particle size range from the

Rayleigh to the geometric optics regimes. Given the current computational resources

available to most researchers, the effective bound for all but truly heroic efforts begins

to be felt for particles with x ∼ 100. One of the interests of this dissertation is in

pushing this technology-imposed boundary and we will present results indicating

that the pseudo-spectral time domain method (PSTD) shows promise of helping us

to do so.

In distinguishing various computational methods, the potentially confusing termi-

nology “numerically exact” is sometimes used in electromagnetic scattering studies.

We will use this terminology, and for clarity explain here what we understand by it.

Underlying any computational method is a physical model and a numerical model.

The physical model has mathematical expression in differential or integro-differential

equations that have “exact” solutions; the numerical models are also expressed as

equations, usually in algebraic form, and have “numerical” solutions. The numerical

model is designed so that its numerical solution is an approximation of the exact so-

lution of the corresponding physical model, and the closeness of this approximation

is controlled by one or more key numerical parameters. In principle (that is, ignoring

computational cost and machine-specific issues of round-off error) the numerical pa-

rameters can be adjusted to achieve any desired level of accuracy. In the terminology

of numerical analysis this property of a numerical scheme is called “convergence.”

The term “numerically exact” has come to be reserved in electromagnetic scattering

studies for a computational method in which the numerical scheme is convergent and

the exact model is some form of Maxwell’s equations.

A powerful and popular approach for atmospheric nonspherical particles is the

T-matrix method based on the extended-boundary-condition technique (EBCM)

[14, 15, 16, 17]. The central idea in the approach is to represent the incident and
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scattered fields as expansions in vector spherical harmonic series, with the T-matrix

being a transform matrix mapping the sequences of expansion coefficients for inci-

dent waves to those of scattered waves. Once the T-matrix is given, all the far-field

scattering properties are derived from analytical formulas. The T-matrix itself in-

volves calculation of various integral properties that depend on the particle doing the

scattering. Using extended precision arithmetic, Mischenko and Travis [17] showed

T-matrix results for spheroids or circular cylinders with size parameters over 100.

The calculation of the T-matrix, in principle, is possible for particles of any size or

shape, but can run into numerical difficulties in dealing with particles that have large

aspect ratios or nonsymmetric geometries. Aside from such situations, the approach

is widely regarded as a good source of “reference solutions,” and we will make use of

it as appropriate. Recently, the T-matrix method based on the invariant imbedding

method (IIM) [18, 19] shows to be capable of solving light-scattering problems for

large nonspherical particles where the standard EBCM fails to converge, and reaches

size parameter of 300 for spheroids and circular cylinders.

The discrete dipole approximation (DDA) [20, 21, 22, 23, 24] and the finite-

difference time domain method (FDTD) [25, 26, 27], are two methods which can be

used for scatterers with arbitrary shapes, and have been widely applied to simulate

single-scattering properties of atmospheric particles, e.g. hexagonal columns [26],

droxtals [28], tri-axial ellipsoids [29], and other shapes. Both DDA and FDTD dis-

cretizes the three-dimensional spatial domain, with dipoles or grid cells, and solve

Maxwell’s equations. However, even with parallelized implementations [30, 31] on

multi-processors, they are applicable for only particles with smaller-to-moderate size

parameters, say x a few multiples of 10, and become computationally expensive and

impractical for large ones.

To the best of our knowledge, the maximum size parameter of spheres with re-
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fractive index significantly larger than 1.0 that has been simulated using DDA is

130 (using a refractive index of 1.2) [30]. Furthermore, because of the high require-

ment for the spatial resolution (10 to 20 grid cells per wavelength in the particle)

and numerical dispersion, the FDTD technique is difficult to apply for particles with

size parameter over 100. If results involving averaging over random orientations

are required for non-spherical particles, both methods become prohibitively time-

consuming (given current hardware) for averaging over tens to hundreds particle

orientations.

The T-Matrix, DDA, and FDTD methods, all solve Maxwell’s equations in this

“numerically exact” sense, with the parameter controlling some form of expansion

terms or spatial resolution. The methods can, aside from considerations of the com-

putational cost that grows with particle size, be applied throughout the entire range

of sizes of atmospheric aerosols. The limit on this use is essentially determined by

the state of computational hardware. The various geometric-optics methods (GOM),

on the other hand, are not numerically exact because they involve approximations

whose physical justification limit use to “large” particles (size parameters up to few

hundreds). The conventional GOM (CGOM) [32, 33, 34] and the improved GOM

(IGOM) [35, 36, 37] have been developed to simulate light scattering by moderate-

to-large sized particles. Although significant improvements have been included in

IGOM, the near fields are approximated with the ray-tracing method in these ap-

proaches, making this an inappropriate method for small- to moderate-size particles.

The recently developed physical-geometric optical hybrid method (PGOH) [38] is

suitable for calculating the optical properties of particles with complex refractive

indices and a fixed orientation. By employing a beam-splitting technique instead

of the ray-tracing algorithm, virtually no limitation exists on the maximum particle

size parameter for the PGOH method. However, it becomes greatly compromised
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for particles with size parameters smaller than 50.

1.2 Atmospheric particles

Compared with the limitations on the scattering algorithms, our knowledge on

the microphysical properties of the atmospheric particles poses a greater challenge

on accurate modeling of their single-scattering properties, because the atmospheric

particles are highly complex with irregularly geometries, heterogeneous components,

and small-scale surface roughness [39, 40, 41, 42, 43, 44]. All those complexities

have been considered to some degree in calculating the single-scattering properties

of the ice crystals or aerosol particles, whereas a lot of over-simplified models and

approximations that were not well validated are still widely used. Although in-

situ and laboratory measurements provided some reliable information on both the

microphysical and optical properties of various atmospheric particles, it is extremely

difficult to represent them numerically, and numerical studies on their scattering

properties are still necessary and important for radiative transfer and remote sensing

applications. To validate the previous approximations and develop advanced models

for more accurate representation of the atmospheric particles more accurately come

as important research problems, and this dissertation will focus on the following

three forms of particle complexities.

First, most atmospheric particles show complex irregular geometries. The most

basic and common shape of the ice crystals is hexagonal column or plate, whereas,

due to the complex atmospheric environment during their growth, air bubbles, hollow

structures, aggregation, and surface roughness are present, which make the modeling

quite challenging. The world of aerosol particles is even more complex because of

the irregular geometries and significant variations, and substantial efforts have been

reported to use simple geometry to simulate optical properties of the mineral dust
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or black carbon particles. For dust aerosols, those geometries include the spheroids,

tri-axial ellipsoids, and nor-symmetrical hexahedra [29, 45, 46], but most of them are

based on over simplified convex particles and a combination of multiple geometries

of different particles. However, those models may still underestimate the irregular-

ity of the realistic particles, and different combinations have to be used to match

the laboratory measurements of different kinds of aerosol, or even the same aerosol

particles at two different wavelengths.

Furthermore, a large amount of natural aerosols occur as mixtures of various

components whose optical properties are quite different, and the detailed particle

shapes, sizes, fractions of the components, and mixing states vary significantly under

different atmospheric environments. For simplification, the inhomogeneous particles

are normally treated as homogeneous ones, the light scattering properties of which

can be obtained much more easily, and the effective medium approximation (EMA)

is used to calculate the effective refractive index for a mixture. For both theoreti-

cal and measurement-based studies, the EMAs usually consider only the fraction of

each component, and calculate an effective refractive index, with which the homo-

geneous particle is expected to give similar optical properties to its inhomogeneous

counterpart. Considering the complex mixing states of the atmospheric aerosols, the

applicability of the EMAs for the aerosol particles of different kinds becomes highly

doubtable but was seldom systemically tested. As a results, it becomes important

to know the accuracy of those EMAs under different circumstances of mixing states,

and, thus, to obtain useful guides for the application of the EMAs.

Last, but not the least, the small-scale surface roughness has been widely observed

on atmospheric particles, and considered in modeling their optical properties as well

as remote sensing applications [47, 48]. However, specifying the observed small-scale

structures in quantitative detail is extremely difficult, and considering those surface
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roughness in the light scattering models is even more challenging. Previous studies

were applicable on either small-to-moderate sized particles based on the numerical

exact methods or large ones in geometric optics ranges. For the large particles, the

approximated method based on the GOMs were commonly used without sufficient

validation. Thus, the effect of the surface roughness on the light scattering properties

as well as the more realistic roughness representation is still a wide open question.

All those complexities of realistic particles are widely observed and considered

to some degree in light scattering simulations, whereas, as mentioned above, our

knowledge on these microphysical properties and corresponding optical effects is still

significantly limited. In Chapter 3, we will not only develop new particle models that

are used to reproduce the optical properties of the atmospheric particles, but also

validate and test some widely used approximations related to the light scattering

simulations.

1.3 Scattering properties of interest

The single-scattering properties encompass the entire absorption and scattering

characteristics, the angular distribution and polarization state of the scattered ra-

diation. In this dissertation, the central scattering quantities that will be heavily

discussed are phase matrix (P ), extinction efficiency (Qext), single-scattering albedo

(SSA) and asymmetry factor (g).

Light scattering is the interaction between the electromagnetic field and particles,

and the electric field associated with a monochromatic plane wave can be written as:

~E(~r) = ~E expi(
~k·~r−ωt), (1.1)

and the direction of propagation is given by the unit vector k̂, where ~k = k k̂.

The amplitude k is variously called the wavenumber or propagation constant, and
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is related to the wavelength λ by k = 2π/λ. The constant vector ~E has non-zero

components only in directions orthogonal to the direction of propagation k̂, and is

normally decomposed into two components parallel and perpendicular to a reference

plane:

~E = E‖ê‖ + E⊥ê⊥ (1.2)

The vector ~E is thus specified by two components in ê‖ and ê⊥ directions with complex

magnitudes E‖ and E⊥. (Or we can express E in the form of Aeφ, and the real numbers

A and φ indicate the amplitude and phase, repectively. Note that the phase angles φ‖

and φ⊥ neither are individually measurable nor have intrinsic physical significance.

It is only the difference φ‖ − φ⊥ that has intrinsic physical significance, so there are

in fact only three significant quantities: A‖, A⊥, and φ‖ − φ⊥.)

||ˆse

y

x

z
r̂

Scatterer

Scattering plane

Incident light

Scattered light

θ

||ˆie

ˆse⊥

ˆie⊥

Figure 1.1: The geometry configuration associated with the scattering.

9



Figure 1.1 illustrates the basic geometry configuration associated with a scattering

problem, and the scatterer is the green hexagonal column located in the origin. As

shown in Figure 1.1, the incident wave is assumed to propagate along z direction.

The incident wave interacts with the particle and the outgoing scattering wave will

be excited and propagate over the entire 4π steradian angles. The angle between

the incident and scattered directions is called the scattering angle ( indicated as θ

in the figure). A reference plane, which includes both the incident and scattering

directions, is chosen to decompose the electric field, and the plane is refereed as the

principal-scattering plane, shown in the figure with blue. For the incident wave, the

horizontal component E i‖êi‖ is in the scattering plane, and the vertical component

E i⊥êi⊥ is perpendicular to the plane. Similarly to the incident field, the scattered

wave can be expressed by the two components of Es‖ ês‖ and Es⊥ês⊥. Notice that êi‖ and

ês‖ are the same, whereas êi⊥ · ês⊥ = cosθ.

In the immediate vicinity of the scatterer, the electromagnetic field can have

quite complex structure, but, for an observer at a large distance r from the scatterer

(i.e. r >> λ), the field is well approximated by a simple outgoing wave. With the

interaction being linear, the scattered field can be related to the incident field by a

matrix multiplication. With respect to each scattering plane, the relation between

the incident and the scattered fields can be given by:

Es‖
Es⊥

 =
exp (ikr)

−ikr

A2 A3

A4 A1


E i‖
E i⊥

 (1.3)

where the 2× 2 matrix A is called the complex amplitude scattering matrix. It has

four complex components that transform the incident electric field components to

the scattered ones, and contains all the single-scattering property information of a

10



scatterer. (Considering that only the relative phase is meaningful, there are only

seven independent real variables in the matrix.)

Meanwhile, the wave can also be described in terms of a related set of four real

numbers, called the Stokes parameters, that are measurable:

I =
1

2

√
ε

µ

(
E‖ · E∗‖ + E⊥ · E∗⊥

)
, (1.4)

Q =
1

2

√
ε

µ

(
E‖ · E∗‖ − E⊥ · E∗⊥

)
, (1.5)

U =
1

2

√
ε

µ

(
E‖ · E∗⊥ + E⊥ · E∗‖

)
, (1.6)

V = i · 1

2

√
ε

µ

(
E‖ · E∗⊥ − E⊥ · E∗‖

)
. (1.7)

It should be noticed that each of the components has the units of irradiance, whereas

the constant factor 1
2

√
ε
µ

is normally omitted because the Stokes parameters are often

discussed in relative sense. These numbers are the four components of the Stokes

vector ~S. The component I gives the intensity of the wave; the pair (Q, U) are

related to the linear polarization, and V is determined by the circular polarization

[49].

Instead of the amplitude scattering matrix with complex numbers given in Equa-

tion 1.3, the relation between the incident and scattered waves can also be expressed

in the form of the Stokes parameters that are all real. Using a spherical coordinate

system centered on the particle and considering an observation point at scattering

direction given by zenith and azimuth angles (θ, φ), the linear relation can be written

~Ss(θ, φ) =
1

k2r2
F(θ, φ) ~Si (k r >> 1). (1.8)

This form results in a matrix F whose component F11 has the property [50] that
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integration over all scattering angles produces

σsca =
1

k2

∫ 2π

0

∫ π

0

F11(θ, φ)sinθ dθ dφ,

where σsca is the scattering cross section of the scatterer: the area that if oriented

perpendicular to the incident wave would intercept an amount of energy equal to

that scattered in all directions by the scatterer.

We will use the scattering cross section as part of a normalization of the matrix

F in Equation 1.8, rewriting that equation in terms of the normalized phase matrix

P :

~Ss =
σsca
4πr2

P ~Si, (k r >> 1). (1.9)

The terminology “phase matrix”, i.e. the matrix defined by the relation in Equation

1.9, has nothing to do with the phase of a plane wave. The relation between the

amplitude scattering matrix A and phase matrix P can be easily obtained from

Equation 1.3 and the definition of the Stokes parameters [1, 50, 51], and will not

be listed here. The P11 element of the phase matrix is normally called the phase

function.

For a general scatterer with no geometric symmetries, there are sixteen non-zero

elements Pi j in the matrix P (same as the amplitude scattering matrix, only 7 of

the 16 elements are independent), but for a spherical scatterer the phase matrix is

independent of the azimuthal angle φ and has a particularly simple block diagonal
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form with only four independent non-zero entries:

Psphere =



P11 P12 0 0

P12 P11 0 0

0 0 P33 P34

0 0 −P34 P33


(all quantities functions of θ).

Explicit expressions for these elements can be easily given by the Lorenz-Mie theory

in the case of a homogeneous sphere. In the general case of a scatterer with no special

symmetries, another variable enters the problem: the orientation of the scatterer with

respect to the incident wave field. In many applications in remote sensing, where

scattering is done by an ensemble of aerosols at random orientations, and, with the

aerosols spatially separated by distances considerably greater than a wavelength so

that multiple scattering effects may be neglected, it becomes useful to consider the

phase matrix that results from averaging over “random” orientations (i.e., assuming a

uniform probability distribution over orientation angles and equal number of particles

and their mirror particles). In this case it can be shown by taking advantage of

symmetry arguments that what results is a phase matrix Pavg having a similar block

diagonal form but now six independent non-zero entries:

Pavg =



P11 P12 0 0

P12 P22 0 0

0 0 P33 P34

0 0 −P34 P44


(all quantities functions of θ).

As mentioned above, the scattering cross section σsca is the area oriented per-

pendicular to the incident wave that would intercept an amount of energy equal to
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that scattered in all directions by the scatterer. The scattering efficiency Qsca is the

non-dimensional number that expresses the ratio of this area to the projected area

of the scatterer on a plane normal to the incident wave:

Qsca =
σsca

projected area
.

Similar definitions give the absorption efficiency Qabs and extinction efficiency Qext

using their respective cross sections. According to the optical theorem, the total

extinction cross section of light is given by:

σext =
2π

k2
[A1(0o) +A2(0o)] ,

Energy conservation requires that Qext = Qsca +Qabs, so any two of these efficiencies

determine the third. A related variable is the fraction of extinction due to scattering,

called the single-scattering albedo (SSA):

SSA =
Qsca

Qsca +Qabs

.

As the particle gets less and less absorptive its SSA approaches 1.

Another integral parameter related to the asymmetry in scattering amplitudes

between the forward and backward directions is quantified by the asymmetry factor

g, defined by

g =
1

2

∫ π

0

P11(θ)cosθsinθ dθ.

The extinction efficiency, single-scattering albedo, asymmetry factor are impor-

tant parameters in many climate models, and, together with the phase matrix (es-

pecially the phase function P11), will be the main quantities discussed in this disser-
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tation.

1.4 Organization of the dissertation

The remainder of this dissertation is organized as follows. Chapter 2 discusses

the PSTD method for light scattering simulations, and the spectral method will also

be presented. The accuracy, efficiency and applicability of the parallelized PSTD

implementation will be verified by comparison with the results from the Lorenz-Mie,

T-matrix, core-mantle Mie, DDA and IGOM methods (Section 2.4). The relative

strength of the PSTD is discussed by comparing with the DDA (Section 2.5). With

the wide range of applicability shown by the PSTD, Chapter 3 presents its appli-

cations on considering complexity of atmospheric particles. The effects of particle

irregular geometry (Section 3.1), inhomogeneity (Section 3.2), and surface roughness

(Section 3.3) on the light scattering properties will be discussed, and particular at-

tentions are paid to validation of old approximations for light scattering simulations

and development of new particle models representing realistic atmospheric particles.

In Chapter 4, we conclude the present research.
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2. PSEUDO-SPECTRAL TIME DOMAIN METHOD *

Stemming from the traditional FDTD method, the PSTD solves Maxwell’s curl

equations in the time domain, and the central difference between the PSTD and

FDTD methods is in the treatment of spatial differentiation, i.e. the spectral and

finite difference methods, respectively. In place of a finite difference approximation to

spatial derivatives (commonly second order), the PSTD method uses pairs of Fourier

transforms at each time step and results in a much more accurate approximation,

what is known as “spectral accurate.” Furthermore, the spectral sweeps away the

complexity of cell wall edge representation (Yee cell [25]) for purpose of the finite

difference method, and evaluates variables at the grid points that are the centers of

cells in the FDTD formulation. Furthermore, the spectral method has the nature

of extremely low numerical dispersion, and can be carried out efficiently with the

Fast Fourier Transform (FFT) and inverse FFT (IFFT). All those characters leads

to the significant applicability of the PSTD in light scattering simulations that will

be shown in this chapter.

Before we discuss on previous work with the PSTD in light scattering problems,

it is useful to mention that the spectral methods have a long history starting in fluid

dynamical studies the early 1970’s [52, 53]. They now have achieved considerable

sophistication and have extensive use in numerical studies of many partial differential

* Part of this section is reprinted with permission from “Application of the pseudo-spectral time
domain method to compute particle single-scattering properties for size parameters up to 200” by
C. Liu, R. L. Panetta, and P. Yang, J. Quant. Spectrosc. Radiat. Transfer, 113, 1728-1740, “Com-
parison between the pseudo-spectral time domain method and the discrete dipole approximation
for light scattering simulations” by C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, 2012,
Optics Express, 20, 16763-16776, and a chapter in book “A pseudo-spectral time domain method
for light scattering computations”, by R. L. Panetta, C. Liu and P. Yang, 2013: Chapter 4 in Light
Scattering Reviews Vol. 8: Radiative Transfer and Light Scattering, edited by A. A. Kokhanovsky,
Springer-Praxis.
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equations. Their principle advantage is their ability to approximate derivatives much

more accurately and efficiently than is possible with the finite difference methods.

The terminology “pseudo-spectral” was introduced by Orszag [53] to distinguish the

method from true, or fully spectral, methods in which all calculations are carried out

in wavenumber space. Fully spectral methods are made prohibitively expensive by

the presence of quadratic nonlinearities in the equations of fluid motion. It was the

breakthrough observation of Orszag [53] that a combination of approaches, computa-

tion of derivatives by Fourier transform methods and computation of nonlinear terms

by grid point multiplication, could yield a significant improvement in numerical per-

formance over the finite difference methods, provided that such an efficient Fourier

transform algorithm as the Fast Fourier Transform (FFT) is available. The term

pseudo-spectral has since come to mean any of a class of methods that generalize the

Fourier interpolation method that we outline in Section 2.2.

The use of the PSTD in electromagnetic scattering problems was pioneered by

Liu [54, 55, 56, 57], Yang et al. [58] and Yang and Hesthaven [59, 60], and has been

applied in a number of forms to model the transient electromagnetic field by solving

Maxwell’s equations. The spectral method based on trigonometric polynomials [56]

and Chebyshev polynomials [58] has been used to give a better approximation for

the spatial derivatives, and the multi-domain PSTD method in general curvilinear

coordinates has been developed to solve problems with complex structures in a man-

ner avoiding the Gibbs phenomenon [59, 60, 61]. Chen et al. [62] have successfully

used the PSTD to calculate the single-scattering properties of atmospheric particles,

treating spheres with a maximum size parameter of 80 (refractive index of 1.31), and

have also shown the PSTD to be a robust method for light scattering problems of

non-spherical particles such as hollow hexagonal columns and hexagonal aggregates.

Based on the work of Chen et al. [62] and Chen [63], this study improved and par-
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allelized the PSTD implementation, using spectral filters in wavenumber space to

eliminate the Gibbs phenomenon and stabilize the simulation in a manner that we

explain below. At the stage of this dissertation, the applicability of PSTD has been

demonstrated for spheres with size parameters up to 200, as well randomly oriented

non-spherical particles with size parameters up to 100.

This chapter is organized into six parts. Section 2.2 describes the framework of

the PSTD algorithm, and a detailed discussion on the PS is presented in the sub-

section 2.2.3. The parallelization of the PSTD implementation is given in Section

2.3. Section 2.4 presents the results for validation and shows the applicability of the

current PSTD implementation. The relative strength of the PSTD is discussed by

comparing with the DDA in Section 2.5, and Section 2.6 summaries this part.

2.1 Methodology

The PSTD, solving Maxwell’s curl equations in time domain, is a numerically ex-

act method for light scattering simulations. The PSTD in this study uses the spectral

method to approximate the derivatives in the spatial domain, and the second-order

finite difference method in the temporal domain. The scatterer is specified by the

spatial distribution of the permittivity. The absorbtion boundary condition (ABC)

is used to attenuate the outgoing waves, and a uniaxial perfectly matched layer

(UPML) ABC [64] is used in this study. Figure 2.1 illustrates a two-dimensional

cross-section of the computational domain for the PSTD. The scatterer, the light

gray circle in the figure, is at the center of the computational domain surrounded

by the UPML boundary layer (dark gray boarder). The white region between the

scatterer and the UPML is meant to represent a free space region (i.e. vacuum). It

should be noticed that the relative sizes of areas in the sketch do not correspond to

the relative sizes in our simulations. The incident wave can be sent to the particle
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from any direction, and, because of the presence of the particle, i.e. inhomogeneity

of the optical constant in the space, it will interact with the scatterer and excite the

scattered waves. The PSTD simulation tracks the electromagnetic field components

in the discretized domain, and obtains the field components in frequency domain by

the discrete Fourier transform. Then, the scattering properties, i.e. the far field in-

formation, are calculated by integrating the near field. This sub-section will discuss

each part of the algorithm in detail.

	
  
	
  

Scatterer 

UPML 

Incident 

Figure 2.1: The computational domain for the PSTD simulation, which has three
regions: scatterer, free space, and absorbtion boundary condition layers (i.e. UPML
in this study).

2.1.1 Scattered field formulation

Maxwell’s curl equations written in Gaussian units are

ε(~r)

c

∂ ~E(~r, t)

∂t
= ∇× ~H(~r, t), (2.1)
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µ(~r)

c

~∂H(~r, t)

∂t
= −∇× ~E(~r, t). (2.2)

We will not consider the presence of current densities or free charges in any of the

calculations we present in this dissertation. Here ε is the permittivity of the dielectric

medium, and µ is the permeability (from here on assumed to have the vacuum value

of 1 everywhere). c is the speed of light in vacuum, and ~E and ~H are the electric and

magnetic fields. The permittivity ε in absorptive (sometimes called“lossy”) media is

a complex parameter that is related to the complex refractive index m by

ε = εR + i εI = m2. (2.3)

In a “frequency domain” approach, the time-evolution equations are Fourier

transformed in time to get expressions in terms of temporal frequency ω. That

is, for each ω, complex-valued solutions are sought of the form

~E(~r, t) = ~E(~r)e−i ω t, ~H(~r, t) = ~H(~r)e−i ω t,

where ~E and ~H are complex-valued functions of space. (As usual, physical solutions

are found by taking real parts.) Then Maxwell’s equations transform to

−i ω ε
c
~E = ∇× ~H, (2.4)

−i ω 1

c
~H = −∇× ~E , (2.5)

This system can be easily seen to lead to an elliptic system of partial differential

equations (Helmholtz equations for plane waves), and can be solved using any of a

number of elliptic solvers.

The scattering problem we consider does not directly involve current densities,
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but it does involve dielectric particles with complex refractive indices. This fact

introduces complex numbers into calculations, and effectively doubles the demands

on computer memory, since all field variables must then have both real and imaginary

parts. As discussed in Yang and Liou [26], it is possible to get around this difficulty in

the case of monochromatic incident waves by making an approximation to Maxwell’s

equations that is exact at precisely the frequency of the incident wave. With the

complex permittivity decomposed into real and imaginary parts as in Equation 2.3

above, the frequency-domain Equation 2.4 becomes

−i ω εR
c
~E = ∇× ~H− ω εI

c
~E . (2.6)

Thus the presence of a non-zero imaginary part of the permittivity at a point formally

behaves (at one frequency) as would an “effective current density” there. Equation

2.6 is the Fourier transform of the evolution equation

εR
c

∂ ~E

∂t
= ∇× ~H − ωεI

c
~E, (2.7)

an evolution equation that has only real coefficients. This approximate equation,

equivalent to the one derived in Yang and Liou [26] is used in place of Equation 2.1

in the PSTD calculations discussed. The natural choice ω = k c is made, where k is

the wavenumber of the incident wave.

The new equation has purely real coefficients, so there will be no need to introduce

complex numbers into the numerical simulations and we effectively halve the memory

requirement of computations.

In the time-domain simulations, the total fields that appear in Equations 2.7 and
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2.2 with µ = 1 are decomposed in terms of incident and scattered fields,

~E = ~Einc + ~Esca, ~H = ~Hinc + ~Hsca,

where the incident fields satisfy

1

c

∂ ~Einc
∂t

= ∇× ~Hinc, (2.8)

1

c

∂ ~Hinc

∂t
= −∇× ~Einc. (2.9)

The equations satisfied by the scattered field are then

∂ ~Esca
∂t

=
c

εR
∇× ~Hsca − ω

εI
εR
~Esca +

[(
1− εR
εR

)
∂

∂t
− ω εI

εR

]
~Einc, (2.10)

∂ ~Hsca

∂t
= −c∇× ~Esca, (2.11)

At each time step, the exact values for the expressions involving ~Einc are used, and

the particular form of the incident wave we use will be described in the next sub-

section. So the right-hand sides of the equations involve only spatial derivatives.

The distinguishing feature of the PSTD method is how it evaluates these spatial

derivatives, and will be discussed in the following section. The choice of time-stepping

methods is a separate consideration, and the standard second-order finite difference

method is used.

Using the PSTD, Equations 2.10 and 2.11 are solved in the region of the computa-

tional domain interior to the UPML region (see Figure 2.1), and in the UPML region

the equations are augmented by the UPML expressions that match impedances across

the layer boundary in such a way as to prevent any reflection as the outgoing waves

enter the layer, and furthermore damp the entering waves sufficiently rapidly that

22



they never re-emerge upon reflection at the outer boundary of the computational

domain.

2.1.2 Discrete formulation

The time domain methods solve the scattering problem by tracking the field

components in the discretized domain, and, for convenience, any field component as

a function of space and time will be defined in the form of:

F n(I, J,K) = F (I∆x, J∆y,K∆z, n∆t),

in which ∆x, ∆y, and ∆z are the grid sizes in the x, y, z axes in space, and ∆t is

the time step. The size of the grid cells relative to the wavelength is an important

parameter for the simulation, and we define λ/∆x as the spatial resolution. This

study will use uniform cubes as the grid cells, thus, having ∆x = ∆y = ∆z. In the

discrete domain, the scattered field equations (Equations 2.10 and 2.11) for each grid

point at each time step becomes:

∂ ~En
sca(I, J,K)

∂t
= − ω

εI
εR
~En
sca(I, J,K)

+
c

εR
∇× ~Hn

sca(I, J,K)

+

[(
1− εR
εR

)
∂

∂t
− ω0

εI
εR

]
~En
inc(I, J,K), (2.12)

∂ ~H
n+ 1

2
sca (I, J,K)

∂t
= − c∇× ~E

n+ 1
2

sca (I, J,K), (2.13)

Notice that the derivatives of the electric and magnetic field components are cal-

culated at time steps with difference of 1
2
∆t in Equations 2.12 and 2.13, and this

is designed for the second-order finite difference method, i.e. leap-frog method, in

the discrete time domain. To approximate the two terms in Equation 2.12 including
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~En
sca(I, J,K), we start from the Taylor expansions of ~E

n+ 1
2

sca (I, J,K) and ~E
n− 1

2
sca (I, J,K)

in time domain:

~E
n+ 1

2
sca (I, J,K) = ~En

sca(I, J,K) +
d ~En

sca(I, J,K)

dt

∆t

2
+

1

2

d2 ~En
sca(I, J,K)

d2t
(
∆t

2
)2 +O(∆t3),

~E
n− 1

2
sca (I, J,K) = ~En

sca(I, J,K)− d ~En
sca(I, J,K)

dt

∆t

2
+

1

2

d2 ~En
sca(I, J,K)

d2t
(
∆t

2
)2 +O(∆t3),

and they will give

∂ ~En
sca(I, J,K)

∂t
=

~E
n+ 1

2
sca (I, J,K)− ~E

n− 1
2

sca (I, J,K)

∆t
+O(∆t2), (2.14)

and

~En
sca(I, J,K) =

~E
n+ 1

2
sca (I, J,K) + ~E

n− 1
2

sca (I, J,K)

2
+O(∆t2). (2.15)

Similarly, we can get the equations for the magnetic field, and, substituting Equations

2.14 and 2.15 into Equation 2.12, the field updating equations can be expressed in

the form of:

~Hn+1
sca (I, J,K) = ~Hn

sca(I, J,K)

− c∆t∇× ~E
n+ 1

2
sca (I, J,K), (2.16)

~E
n+ 1

2
sca (I, J,K) = a(I, J,K) ~E

n− 1
2

sca (I, J,K)

+ b(I, J,K)∇× ~Hn
sca(I, J,K)

+ c(I, J,K)
∂ ~En

inc(I, J,K)

∂t

+ d(I, J,K) ~En
inc(I, J,K), (2.17)
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The coefficients in Equation 2.17 are given by:

a(I, J,K) =
2εR(I, J,K)− kc∆tεI(I, J,K)

2εR(I, J,K) + kc∆tεI(I, J,K)

b(I, J,K) =
2c∆t

2εR(I, J,K) + kc∆tεI(I, J,K)

c(I, J,K) =
2(1− εR(I, J,K))∆t

2εR(I, J,K) + kc∆tεI(I, J,K)

d(I, J,K) = − 2kc∆tεR(I, J,K)

2εR(I, J,K) + kc∆tεI(I, J,K)
.

Here, εR(I, J,K) and εI(I, J,K) are spatial distribution of the permittivity, which

can be defined arbitrarily at each grid point. This indicates one of the most powerful

advantage of the time domain method that, theoretically, there is no limitation on the

geometries and components of the scatterers. For each grid cell, it is straightforward

to define the values of εR(I, J,K) and εI(I, J,K) based on the location of its center

(I∆x, J∆y,K∆z) and geometry of the scatterer.

Notice that Equations 2.17 and 2.16 are both for vectors, and can be expressed

independently for each components in the x, y and z directions. Equation 2.17

indicates that four terms are used to update the electric field values: (1). the first

term is the corresponding field value of the previous time step; (2). the second one

involves the curl of the magnetic field, i.e. two spatial derivative terms that will be

given by the spectral method; and, (3). the last two are related to the incident field

and given analytically. Equation 2.16 for the magnetic field includes only the first

two terms.

Also, there is no limitation on the format of the incident wave, and a plane wave
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with a basic Gaussian shape is used:

~Einc(~r, t) = ~Einc(~k · ~r − ωt)

= ~Eocos
(
~k · ~r − ωt

)
exp

−(~k · ~r − ωt− φo
4π

)2
 , (2.18)

The φo is chosen so that the pulse reaches the particle with exponentially small

amplitude at the start. Then, the incident fields as well as their temporal derivatives

in the discrete domain can be easily obtained form this analytical express.

Now, the only undetermined values are the spatial derivatives, and it will be dis-

cussed in details in the next subsection. To keep the simulation stable, the temporal

interval ∆t must satisfy the stability condition that has been given by Liu [54]. This

stability condition for the Fourier-based PSTD method in 3D Cartesian coordinate

is given by:

c∆t ≤ 2

π
√

1
∆x2

+ 1
∆y2

+ 1
∆z2

(2.19)

2.1.3 Spectral method

The essential difference between the FDTD and PSTD methods, which are other-

wise closely related, is in the treatment of spatial differentiation, i.e. the curl terms in

Equations 2.16 and 2.17. This sub-section not only introduces the spectral method,

but also discusses the spectral filters to eliminate the Gibbs phenomenon.

For the purpose of the finite difference method, the FDTD, which is formulated

in terms of grid cells, locates different components of the electric and magnetic fields

at centers of either the edges (along the edge direction) or the walls (normal to the

wall) of the cubic cells, and the complex field representation is widely known as

the “Yee cell” [25], which is illustrated in Figure 2.2. The FDTD usually uses the
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second-order finite difference methods in the form of:

∂F (I, J,K)

∂x
=
F (I + 1

2
, J,K)− F (I − 1

2
, J,K)

∆x
+O(∆x2), (2.20)

where F (I + 1
2
, J,K) and F (I − 1

2
, J,K) are the values of the field at position(

(I + 1
2
)∆x, J∆y,K∆z

)
and

(
(I − 1

2
)∆x, J∆y,K∆z

)
, both of which are offset half

of a grid from the cell center. For each components, the choice of the exact loca-

tion follows Figure 2.2. However, the spectral method not only sweeps away the

complexity but also provides much highter accuracy.

Ex Ex 

Ex Ey 

Ey 

Ey 

Ez 

Ez 

Ez Hy 

Hx 

Hz 

Figure 2.2: The field representation of the FDTD grid cell, i.e. Yee cell.

In the spectral method that we discuss here, a set of highly non-local (concen-

trated at no single grid point) complex exponentials is used as interpolation basis,

and we write the interpolant of a function f(x) (unknown function given by its values
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at the grid points) in the form of:

F (x) =

N/2−1∑
k=−N/2

F̃ke
i k̂ x, (2.21)

where k̂ = 2π
L
k is the wavenumber. The N coefficients F̃k are determined by the

requirement that F (x) be an interpolant of the values of f(x) at grid points , i.e.

F (xj) = f(xj):

f(xj) =

N/2−1∑
k=−N/2

F̃ke
i k̂ xj , j = 1, 2, . . . N. (2.22)

Given the f(xj), this is a system of N equations with N unknowns F̃k. It can

be shown using simple algebra and properties of the complex exponential that the

solution is

F̃k =
1

N

N∑
j=1

f(xj)e
−i k̂ xj , −N

2
≤ k ≤ N

2
− 1 . (2.23)

The association between the sequence of grid point values {f(xj)} and the sequence of

Fourier amplitudes {F̃k} is the one established by the Discrete Fourier Transform and

its inverse, and transforming between the two sequences can be done efficiently using

a Fast Fourier Transform (FFT) algorithm. Notice that this approach associates a

natural maximum wavenumber K = N
2

with a number of grid points, natural on the

assumption of equal spacing of grid points. In terms of wavelengths, the smallest

wavelength included in the interpolant is the “2 ∆x” wave. Conversely, the equally

spaced N-point grid is called the “equivalent spatial grid” for the N/2-wave spectral

representation.

According to the interpolant given by Equation 2.21, the spectral method can
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calculate the derivatives easily:

dF (x)

dx
=

N/2−1∑
k=−N/2

i k̂ F̃ke
i k̂ x

=
1

N

N/2−1∑
k=−N/2

i k̂ ei k̂ x
N∑
j=1

f(xj)e
−i k̂ xj

= IFFT
[
i k̂ FFT (f(xj))

]
. (2.24)

We see that the derivative is easily expressed in terms of the same basis functions

that are used in the interpolant itself. What’s more important is that the basis is

hightly non-local. Approximations to derivatives at grid points may be calculated by

(1) finding the F̃k using an FFT, (2) constructing a new sequence D̃k = i k̂F̃k, and

(3) using an Inverse Fast Fourier Transform (IFFT) to construct the sum indicated

in Equation 2.24 to get the derivative values at gridpoints.

The advantages of the spectral method compared with the finite difference method

have been discussed in details by Panetta et. al. [65]. Three important features of

the spectral method becomes important to calculate the spatial derivatives in the

PSTD. First, the spectral method has much higher accuracy on approximating the

derivatives of smooth functions, which is normally known as the “spectral accuracy.”

Second, the direct and inverse Fast Fourier transform (FFT) can be easily applied to

improve the efficiency of the spectral simulations. Last but not the least, the spec-

tral method shows much weaker numerical dispersion in propagation problem, when

compared with the finite difference method. All of the three features becomes more

and more important as the computational domain increases, because the computa-

tional burden requires small spatial resolution without significant loss of efficiency

and the more propagation times are needed.
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There is of course one difficulty with spectral methods that is well known: they

work well with smoothly varying functions, but works poorly on discontinuous func-

tions, known as the “Gibbs phenomenon.” Spectral methods require inclusion of high

wavenumbers (small scale oscillations) to represent rapidly varying features of func-

tions, i.e. discontinuity, and if a function has variations, even at only one location, on

very small scales, high-wavenumber terms are required in the Fourier representation

and their omission through truncation will have deleterious effects everywhere.

An extreme example is what happens at a simple jump discontinuity, and the

Gibbs phenomenon is shown in Figure 2.3, for the case of a simple “sawtooth”

function f(x) in the from of:

f(x) =

 x 0 < x < 1

x− 2 1 < x < 2
(2.25)

The approximation for f(x) is given in the left panel, and the right panel is for the

derivative of f(x). The figure has f(x) along with approximations using equally

spaced grid points N = 8, 32, and 128. The evident agreement of the partial sums

with each other right at the jump reflects the fact that the Fourier series of a function

with an isolated jump discontinuity converges at the location of the discontinuity to

the average value of the left- and right- hand limits. Notice that while the error for

any choice of N is worst near the jump, and, even at the largest N we used (128),

there are errors evident far from the jump in the form of a small-wavelength signal.

In a time-dependent calculation, the possibility exists for the largest errors, originally

located near the jump, to propagate away from it. In the right panel, we can see

that the performance of the spectral method for the derivative is even worse. The

largest errors show near the discontinuity and increase as N increase. Furthermore,

the errors spread over the entire domain, and converge to the exact value as getting
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away from the discontinuity.
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Figure 2.3: The Gibbs phenomenon at a simple jump discontinuity to approximate
the original function f(x) (left panel) and its derivative df(x)/dx (right panel).

What leads to these errors is the presence of significant amplitudes in the high

wavenumber Fourier components. With “infinite” resolution, these high wavenum-

ber components destructively interfere, but, with any sum involving only finitely

many of them, the destructive interference is incomplete and the result is the oscilla-

tory error behavior away from the jump in Figure 2.3. Since scattering calculations

involve changes that are effectively jump discontinuities in refractive indices at par-

ticle boundaries, and, thus, in the electromagnetic field. The oscillations caused by

the Gibbs phenomenon will accumulate and enlarge with temporal iterations, and

eventually, the PSTD simulation becomes divergent. This significantly limits the

applications of the PSTD for large particles or particles with large refractive indices,

becasue longer integration time are needed or more significant discontinuity is exist-
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ing. It is a priori important to have a way of minimizing errors introduced by the

Gibbs phenomenon.

The “spectral filter” is one of the most popular and simplest methods that can

eliminate the Gibbs phenomenon. A number of “filtering” treatments have been

applied to the high wavenumber modal amplitudes, essentially replacing F̃k with

σ(k) F̃k, where the filter function σ(k) has the properties

σ(k)

 ≈ 1 for small |k|

→ 0 “rapidly” for |k| approaching K.
(2.26)

A choice of σ(k) that has a number of desirable properties is the “exponential

filter” [66, 65] of order p in the form of

σp(k) = exp

{
−γ
(
|k|
K

)p}
,

where γ = −ln(ε), and ε, a small number, is again the machine epsilon. It is clear

that σp(k) equals to 1 at k = 0, and decreases to ε as |k| increase to K. Also,

successively higher powers p give filters that stay near 1 for successively greater

wavenumbers before dropping quickly to ε.

Another simple choice to eliminate the Gibbs phenomenon is to truncate the

high spectral terms directly, and this is referred as the “truncation.” The truncation

method in the sense of the “truncation filter” is expressed as:

σ(k) =

 1 |k|
K
≤ ηc

0 |k|
K
> ηc

(2.27)

where ηc indicates the truncation threshold, the coefficients of wavenumber with

|k|
K

above which is set to be zeros. Figure 2.4 illustrates both the exponential and
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truncation filters with different parameters, and the x-axis is normalized to 1. The

order p of 2, 8 and 32 are used for the exponential filters, and ηc values are 0.2,

0.6 and 0.9. With the decrease of p or ηc, the filters become “stronger”, and more

spectral terms are removed. As shown by Figure 2.4, an exponential filter makes a

smooth attenuation of the high wavenumber terms, whereas, as expected, the change

based on the truncation filter is sharp.
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Figure 2.4: The exponential filters of different order and truncation functions with
different thresholds.

With the spectral filter considered, the interpolant of f(x) can be rewrite as:

Fσ(x) =

N/2−1∑
k=−N/2

σ( k ) F̃ke
i k̂ x. (2.28)
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Thus, Equation 2.24 for the derivative in the PSTD simulations is rewritten as:

dF (x)

dx
=

N/2−1∑
k=−N/2

i k̂ σ( k ) F̃ke
i k̂ x

=
1

N

N/2−1∑
k=−N/2

i k̂ σ( k ) ei k̂ x
N∑
j=1

f(xj)e
−i k̂ xj

= IFFT
(
i k̂ σ( k )FFT (f(xj))

)
. (2.29)

The performance of the exponential filter has been discussed by Panetta et al.

[65], which will not be listed. Figure 2.5 shows the same approximations of f(x) and

df(x)/dx as Figure 2.3 but with the truncation filters. In Figure 2.5, the truncation

filter has ηc values 0.2, 0.6 and 0.9 from the top to the lower panels. A small value of

ηc gives a filtered version which has very few oscillations away from the discontinuity,

especially as the N increases. However, with such a small value of ηc, the jump is

spread over a comparatively wide band around the true jump. It should also be

noticed that, for small N (e.g. N = 8), the truncation filter with ηc = 0.2 is too

strong that almost all spectral coefficients becomes zero. The middle panel shows

what happens when ηc is increased to 0.6. The bottom panel illustrate the results

for the filter using ηc = 0.9. As expected, the oscillations become more significant,

whereas clear improvements over the entire domain are obtained compared with the

unfiltered results in Figure 2.3 even with such a weak filter. Also the effects of the

filters on the approximations of the derivatives are shown in the right panels, and

similar improvements and variations are obtained.
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Figure 2.5: The effects of truncation filters with different thresholds.

The degree of discontinuity in the PSTD is significantly different from case to

case considering different particle geometries and refractive indices, and there is no

way to determine the best filter for each single simulation, even the appropriate

one. Furthermore, our numerical results indicate that both the exponential and

truncation filter can eliminate the Gibbs phenomenon and ensure the convergence

of the simulation, and the scattering properties obtained are not sensitive to the

filter type and parameter. Thus, this study uses the simple truncation filter in the

simulations, and an empirical value of ηc ranging from approximately 0.8 to 1 are

sufficient for most simulations.
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2.1.4 Absorbtion boundary condition

An appropriate absorption boundary condition (ABC) should be included in the

time domain simulation to truncate the outgoing fields and keep the simulation in

finite spatial domain. Care must be taken at the boundary of the computational do-

main so that there is negligibly small reflection of what should be a purely outgoing

scattered signal. For this purpose it is common now in numerical simulations to in-

troduce at computational boundaries what is called a “perfectly matched” boundary

layer [67, 68, 69]. Such a layer is used in both the FDTD and PSTD methods by

proper adjustment of the optical characteristics of the layer, and waves incident on

it from any direction are absorbed without reflection.

The earliest version of the method [67] was developed for use in FDTD simula-

tions and is now known as the perfectly matched layer (PML) method. The PML can

be achieved by specially defined distribution of the permittivity (ε), permeability (µ),

conductivity (σ), and magnetic loss (σ∗), and considering that the PML is directly

connected to the vacuum space containing the scatterer, εPML = εo, µPML = µo, and

σPML

εo
=

σ∗PML

µo
should be satisfied to vanish the reflection from any incident angles.

The layer was constructed in a mathematical manner that made physical interpreta-

tion difficult, and applicability to more general unstructured grid simulations unclear.

These deficiencies were removed in the reformulated “uniaxial” PML, or UPML by

Gedney [64]. We use an implementation of the UPML in our PSTD simulations.

The UPML simplified the numerical algorithm of the ABC [68] by introducing

the unisotropic permittivity and permieability, and is applied in the PSTD algorithm
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by Liu [57]. Maxwell’s curl equation in the UMPL boundary is in the from of:

∇× ~E = iωµoµ
T ~H (2.30)

∇× ~H = −iωεoεT ~E (2.31)

The permittivity and permeability in the UMPL are expressed as diagonal tensors

in the forms of:

εT = µT =


sysz
sx

0 0

0 sxsz
sy

0

0 0 sxsy
sz

 , (2.32)

where the relation σPML

εo
=

σ∗PML

µo
is used for µT . We have:

sx = 1− σx
iωεo

, sy = 1− σy
iωεo

, andsz = 1− σz
iωεo

.

It should be noticed that sx, sy, and sz are associated with the x, y and z-normal

interface, respectively. In the UPML region, the field should attenuate smoothly, and,

thus, the values of the electrical conductivities and magnetic losses are designed to

increase gradually along the outward normal direction of the interface. Furthermore,

sx, sy, and sz are only spatially variant along the x, y and z directions, whereas

invariant along their transverse directions. Take the interface on x = 0 plane as an

example, and the PML is on the x > 0 region. For a boundary layer with a thickness

h, the electric conductivity is given by:

σx(x) = −
(x
h

)m (m+ 1)lnRo

2
√

µo
εo
h

, (2.33)

where Ro, a small number (e.g. 10−12), represents the reflection errors of the layer,
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and m, a real number, is usually chosen within 3 < m < 4.

Considering the vectors:

~D =


Dx

Dy

Dz

 =


sz
sx
Ex

sx
sy
Ey

sy
sz
Ez

 , (2.34)

~B =


Bx

By

Bz

 =


sz
sx
Hx

sx
sy
Hy

sy
sz
Hz

 , (2.35)

we can get:

∇× ~E = − µo
∂ ~B

∂t
−


σy 0 0

0 σz 0

0 0 σx

 ~B, (2.36)

∇× ~H = εo
∂ ~D

∂t
+


σy 0 0

0 σz 0

0 0 σx

 ~D. (2.37)

Then the field updating equations for UPML in the distretized domain can be easily

obtained, and take the components Ex and Hx as example:

E
n+ 1

2
x (I, J,K) =

2εo − σy(I, J,K)∆t

2εo + σy(I, J,K)∆t
E
n− 1

2
x (I, J,K)

+
2∆t

2εo + σy(I, J,K)∆t

sx
sz

[
∂Hn

z (I, J,K)

∂y
−
∂Hn

y (I, J,K)

∂z

]
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Hn+1
x (I, J,K) =

2µo − σy(I, J,K)∆t

2µo + σy(I, J,K)∆t
Hn
x (I, J,K)

− 2∆t

2µo + σy(I, J,K)∆t

sx
sz

[
∂E

n+ 1
2

z (I, J,K)

∂y
− ∂E

n+ 1
2

y (I, J,K)

∂z

]

The equations for other field components following similar format, and we will not

list them here.

2.1.5 Field transformations

So far we have discussed the PSTD algorithm to calculate the electromagnetic

field near the particle in time domain, and, in order to use the near-to-far-field trans-

formation, the single frequency response in the near field time-domain calculations

(PSTD or FDTD) must be extracted. As opposed to using some kind of FFT method,

which would require storing all the temporal data over a long time integration before

doing the FFT, we choose a method much more sparing of memory. The method can

be appreciated by considering a simple example. Suppose f(~r, t) is a time-domain

field component whose frequency transform F(~r, ω) at some frequency ω is desired.

For any finite time interval of length T we can make the estimate

F(~r, ω) ≈ 1

T

∫ T

0

f(~r, t)e−iω t dt, (2.38)

with the estimate improving in accuracy with increasing integration length T . The

time-discrete version of this is

FN(~r, ω) =
1

N

N∑
n=1

fn(~r)e−iωn∆t, (2.39)
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where fn(~r) = f(~r, n∆t) andN ∆t = T . Notice that when n∆t increases to (n+1)∆t,

Fn+1(~r, ω) =

(
n

n+ 1

)
Fn(~r, ω) +

1

n+ 1
fn+1(x)e−iω(n+1)∆t, (2.40)

which allows us to update estimates of F(~r, ω) as we integrate in time. Thus, we need

save only the data required by our time-stepping method, and run that method long

enough for our transforms FN to become constant. This should happen eventually

can be understood by considering Equation 2.40, and remembering that the incident

wave packet has a narrow width in time as it travels in free space. So as N increases,

there comes point beyond which the incremental update becomes exponentially small.

However, when exactly this decay sets in is not easy to estimate a priori, since the full

interaction time of the packet with the particle is not easily approximated, and the

best guide has been experimentation. It has found that the total time of integration

needed for the Fourier transform to converge is between four and five times the

amount of time that the packet would take to cross a distance in free space equal to

one diameter of the particle.

With the near field in the frequency domain obtained, two integral methods can

give the far field based on the surface integral or the volume integral. This study

uses the surface integral method, which is more efficient and more accurate than the

volume integral method [70], and the far field is given in the form of:

~E(~r) =
ik ei k |~r|

4π |~r|

∫∫
S

r̂ × {êS × ~E(~r′)− r̂ × [êS × ~H(~r′)]}e−i k r̂·~r′d~r′, (2.41)

where S is the surface enclosing the scatterer, and r̂ = ~r
|~r| represent the scattering

direction. êS is an outward-pointing unit vector normal to the surface. So the

frequency response of both electric and magnetic field only on the surface S are
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needed. Consider the scattering geometry shown in Figure 1.1, and rewrite Equation

2.41 in the components format:

Es‖ (r̂)

Es⊥ (r̂)

 =
ik ei k |~r|

4π |~r|

∫∫
S

 ês‖ · ~Z
ês⊥ · ~Z

 e−i k r̂·~r′d~r′, (2.42)

where the vector ~Z denotes r̂×{êS× ~E(~r′)− r̂×[êS× ~H(~r′)]}. Take the incident direc-

tion along the z-direction as illustrated in Figure 1.1 as an example, the horizontal

and perpendicular components of the incident field are given by:

E i‖
E i⊥

 =

 ês⊥ · x̂ ês⊥ · ŷ

−ês⊥ · ŷ ês⊥ · x̂


E ix
E iy

 , (2.43)

E ix and E iy indicate the incident electric field components along the x and y directions

in a Cartesian coordinate. The amplitude scattering equation shown in Equation 1.3

is then given by:

A =

A2 A3

A4 A1


=

F‖,x F‖,y

F⊥,x F⊥,y


 ês⊥ · x̂ ês⊥ · ŷ

−ês⊥ · ŷ ês⊥ · x̂

 (2.44)

where F‖,x
F⊥,x

 =
k2

4π

∫∫
S

 ês‖ · ~Z
ês⊥ · ~Z

 e−i k r̂·~r′d~r′|Eix=1,Eiy=0, (2.45)

41



and F‖,y
F⊥,y

 =
k2

4π

∫∫
S

 ês‖ · ~Z
ês⊥ · ~Z

 e−i k r̂·~r′d~r′|Eix=0,Eiy=1. (2.46)

The subscripts E ix = 1, E iy = 0 and E ix = 0, E iy = 1 indicate the polarization of the

incident electric field along the x and y directions, and, to calculate the full scattering

and polarization properties for each particle orientation, the PSTD simulations are

carried out twice independently with the two incident polarization states.

Therefor, the amplitude scattering matrix can be obtained following two trans-

forms (i.e. the time-to-frequency domain transform for the near field and the near-

to-far transform in the frequency domain), and the corresponding phase matrix could

be calculated easily following [1, 50].

In this section, all the major schemes and technologies related to the PSTD sim-

ulations have been discussed. Because of the special features of the spectral method

and the elimination of the Gibbs phenomenon, the PSTD does show significant ap-

plicability on light scattering simulations, and this will be shown in the rest of the

chapter.

2.2 Parallelization of the implementation

The PSTD models light scattering by three-dimensional scatterers on discrete

grid cells, and the number of operations would grow significantly with the increase of

particle size. For large particles with size parameter over 50 or non-spherical particles

with random orientations, it becomes extremely time-consuming and impractical to

carry out the PSTD on single processor. However, by parallelizing the implementa-

tion and dividing the simulations on multiple processors, the computation wall-time

will be greatly shortened, and the applicability of the PSTD will be significantly

enhanced.
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Brock et al. [31] and Yurkin et al. [71] used the MPI to parallelize the FDTD

and DDA implementations. They separate the spatial domain into sub-domains,

and each processor is assigned one. Both parallelized implementations show excel-

lent performances on multiple processors. However, the MPI doesn’t support shared

memories, and the processors communicate with one another by sending and receiv-

ing messages. For each spectral simulation, the FFT requires all values of the field

along the derivative direction, and the IFFT gives the spatial derivatives of all grid

cells in the direction (see Equations 2.24). As a result, significant amount of compu-

tational time would be wasted for communication among the processors if the PSTD

implementation is parallelized based on sub-domains with the MPI. However, for the

atmospheric applications, light scattering by randomly oriented non-spherical parti-

cles is normally considered, which are averaged over results of tens to hundreds of

different particle orientations, and the PSTD simulation for each particle orientation

is independent. Thus, the MPI can be used to parallelize the PSTD implementation

efficiently based on particle orientations: each processor is assigned simulations with

respect to different particle orientations, and only the final scattering properties are

necessary to be communicated among different processors.

Furthermore, the OpenMP supports shared memory multiprocessing program-

ming, whereas can be carried out only on single node (that normally has 2 to 16 pro-

cessors). It is simple and flexible to develop parallel applications using the OpenMP,

and, with shared memory, the values of the field can be used directly by all pro-

cessors without being sent and received. Thus, the PSTD implementation can be

parallelized based on spatial sub-domains without significant loss of efficiency using

the OpenMP. It should be noticed that only limited amount of memory and limited

number of processors on single node can be used for the OpenMP implementation,

whereas the MPI one has no such limitation. However, the OpenMP implementa-
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tion still greatly enhances the applicability of the PSTD simulation, especially for

the large particles that are impractical on single processor.
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Figure 2.6: The speedup of the PSTD implementation parallelized using OpenMP
(left panel) and MPI (right panel) as functions of the number of processors used in
the simulation. NDomain and NOrientation indicates the number of grid cells in the
spatial domain, and the particle orientation simulated.

Figure 2.6 illustrates the speedup of the parallelized PSTD implementation at

different computational domains. All tests were run on the Texas A&M University

supercomputer facility EOS, each single node of which has 8 or 12 64-bit 2.8GHz

processors and shares 24GB memory. The ideal speedup is indicated by the black

line in the figure. The left panel is for the results of the OpenMP implementation,

and a maximum of 12 processors can be used. The light scattering by spheres with

single orientation is carried out, and four computational domain sizes (number of

grid cells in the three-dimension space) of 643, 1283, 2563 and 3843 are used. It is

clearly show that, with the same amount of processors, the speedup given by the
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OpenMP implementation increases as the computational domain increases. With 12

processors, the speedup of almost 7 is achieved for the domain size of 643, and it

reaches to approximately 9 as the domain size increases to 3843. This is because the

fraction of operations that cannot be separated into different processors decreases as

the computational domain increases. The right panel of Figure 2.6 is for the MPI

implementation with up to 256 processors used. The light scattering by randomly

oriented hexagonal columns (with an aspect ratio of 1) is simulated with domain size

of 643, 963, and 1283, and the number of particle orientations simulated are listed in

the figure: 256, 256, and 128, respectively. The number of processors is chosen to

ensure the same number of orientations assigned on each of them. The right panel

indicates that the MPI implementation has very high efficiency with almost ideal

speedup with Norientations/Nprocessors larger than 2.

With the implementation parallelized with both the OpenMP and MPI, the

PSTD can be carried out for simulations involving both single and multiple ori-

entations efficiently, and the applicability of it is greatly enhanced. In the following

section, the accuracy, efficiency and applicability of the PSTD implementation will

be discussed in details.

2.3 Validation and applicability

In this section we show generally two kinds of results. The first kind establishes

the validity of the PSTD method by considering scattering problems for which either

an exact solution or another highly reliable method is available. Both the homoge-

neous and inhomogeneous cases will be considered. In the case of homogeneous

spherical particles the exact solution is the Lorenz-Mie solution, and in the case of

spheroids and circular cylinders the reliable method is the T-matrix method. The

core-mantel Mie theory is the exact solution for the stratified spheres, whereas the
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DDA method will be used for the other mixing states. The second kind of results

involve cases in which neither of these approaches to validation is available. In the

section that follows this one we discuss the relative performance of the PSTD and

DDA methods. All the calculations in this study were performed on at the Texas

A&M Supercomputing Facility. A single node of an IBM iDataplex cluster with

8 2.8GHz processors will be used for the OpenMP implementation considering the

scattering of oriented particles, and the number of processors used by the MPI im-

plementation for randomly oriented non-spherical particles is normally a half of the

number of particle orientations.

2.3.1 Comparison with the Lorenz-Mie theory

To validate the PSTD, we first calculate the light scattering by spheres and com-

pare the results with the exact solutions given by the Lorenz-Mie theory [7, 8]. The

size parameters range from 10 to 200, and three realistic refractive indices of ice at

visible (0.532µm), near infrared (3.78µm), and infrared (12.0µm) wavelengths are

used (1.312 + 1.489× 10−9i, 1.384 + 7.055× 10−3i, and 1.276 + 4.133× 10−1i) [72].

Table 2.1 lists the computational wall-clock times and spatial resolutions used by the

PSTD. For small spheres (size parameters smaller than 40), the spatial resolution

is increased until accurate results are obtained, and the simulations take no more

than 1.5× 104 seconds. For larger size parameters, the computational times increase

significantly as the computational domain increases, and high spatial resolution be-

comes unaffordable. Moreover, in this case, the particle surfaces, represented with

the discrete grid points, become much smoother in terms of surface radii of curvature

relative to particle size; thus, coarser spatial resolutions can be used. A spatial reso-

lution of approximately 12 grid cells per wavelength is sufficient for spheres with size

parameters ranging from 80 to 140; however, for size parameters larger than 140, sim-
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ulations with spatial resolutions of approximately eight grid points per wavelength

almost reaches our limitation of computational resources, especially the memory of

24GB, corresponding to a domain size of 5123 grid cells. From Table 2.1, we see that,

overall, the computational time is a monotonically increasing function of the size pa-

rameter, whereas some exceptions are existing, e.g. a sphere with a size parameter of

60 uses less computational time than that of 40 at visible wavelength. This is because

the spatial resolution used gives a larger computational domain for the sphere with

a size parameter of 40. To have a quantitative sense on the efficiency of the PSTD

implementation, let’s see some examples. With 8 processors, the simulation for a

sphere with a size parameter of 200 and a refractive index of 1.384 + 7.055 × 10−3i

takes 3.4× 105 seconds, i.e., less than 4 day, but the wall-clock time is no more than

1.0× 105 seconds (about 27 hours) when the size parameter is equal to or less than

100.

To quantitatively evaluate the overall accuracy of the PSTD, we use the following

parameters: relative error (RE) of Qext, RE of SSA (only for the two absorptive

cases), RE of g, RE of P11(180o), root-mean-square RE (RMSRE) of P11(θ), and

root mean-square absolute error (RMSAE) of P12(θ)/P11(θ). In this study, the RE,

RMSRE, and RMSAE are defined as:

RE =

∣∣∣∣APSTD − Aexact−methodAexact−method

∣∣∣∣ ,

RMSRE =

[
1

N

N∑
i=1

(
Aθi,PSTD − Aθi,exact−method

Aθi,exact−method

)2
]1/2

,

and

RMSAE =

[
1

N

N∑
i=1

(Aθi,PSTD − Aθi,exact−method)
2

]1/2

,
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where APSTD and Aexact−method are the values of the scattering properties, e.g., Qext,

given by the PSTD and the exact method, respectively, and Aθi indicates the asso-

ciated quantity to be a function of scattering angle.

Table 2.1: Computational time and spatial resolution for numerical simulation of
light scattering by spheres.

Visible Near-IR IR

(m = 1.31 + 1.93× 10−8 i) (m = 1.36 + 1.34× 10−2 i) (m = 1.16 + 3.54× 10−1 i)

x time(s) λ/∆x time(s) λ/∆x time(s) λ/∆x

10 2.9× 102 26.7 1.8× 102 22.9 1.5× 102 22.9

20 2.5× 103 24.6 2.2× 103 26.5 6.5× 102 21.5

30 5.5× 103 18.5 2.6× 103 18.5 1.5× 103 16.4

40 2.0× 104 23.3 1.1× 104 20.8 4.6× 103 17.0

60 1.5× 104 14.5 1.3× 104 14.5 6.8× 103 12.2

80 2.0× 104 10.4 4.2× 104 14.1 2.1× 104 11.7

100 1.1× 105 14.3 5.8× 104 11.3 4.3× 104 10.6

120 1.5× 105 12.0 1.5× 105 12.0 6.5× 104 9.45

140 1.8× 105 11.9 1.9× 105 10.3 1.2× 105 8.46

160 2.2× 105 8.97 1.8× 105 8.03 1.5× 105 8.03

180 2.9× 105 8.53 3.0× 105 8.53 2.6× 105 8.53

200 3.4× 105 7.68 3.5× 105 7.68 3.0× 105 7.68
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Figure 2.7: The REs, RMSREs, and RMSAEs to evaluate the accuracy of the PSTD
for spheres with size parameters from 10 to 200 at visible (0.532 µm, m = 1.312 +
1.489 × 10−9i), near-IR (3.78 µm, m = 1.384 + 7.055 × 10−3i), and IR (12.0 µm,
m = 1.276 + 4.133× 10−1i) wavelengths.

Figure 2.7 illustrates the errors from the PSTD results for different size param-

eters and three refractive indices. In most cases, the REs of Qext, SSA, and g are,

respectively, no more than 2%, 3%, and 1% and are not sensitive to the particle size

or refractive index. Most of the REs for P11(180o) are smaller than 50%. However,

similar to other numerical methods, the PSTD cannot provide accurate P11(180o)

values in all cases over a wide range of particle sizes, and the REs are over 100% for
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spheres with size parameters of 160 and 200 at visible, 120 at near-IR, and 200 at IR

wavelengths. Overall, the RMSREs of P11 are smaller than 50% (except for spheres

with size parameters of 120 and 160 at visible wavelengths), and the RMSAEs of

P12/P11 are all less than 0.3. Both the RMSREs of P11 and RMSAEs of P12/P11

increase slightly with the increase in particle size as a result of the coarser spatial

resolutions and more significant oscillations for the phase matrix elements. Further-

more, the errors for an absorptive case in the IR regime with m = 1.276+4.133×10−1i

are much smaller than those of non-absorptive or weak-absorptive cases. Considering

the errors shown in Figure 2.7, the present PSTD implementation gives quite reliable

solutions for light scattering by spheres with size parameters from 10 up to 200 and

moderate refractive indices.

To illustrate the performance of the PSTD for large particles, Figure 2.8 gives

the non-zero phase matrix elements of a sphere with a size parameter of 200 and a

refractive index of 1.312 + 1.489× 10−9i. The REs of the normalized phase functions

and the absolute errors for the ratios, P12/P11, P33/P11, and P34/P11, are given in

right panels of the figure. Even with such a large size parameter and significant

oscillations for the phase matrix elements, the PSTD results closely agree with the

exact solutions given by the Lorenz-Mie theory in terms of their overall variation

patterns. The REs in the forward direction phase function are generally less than

30%, but become quite significant in the backward direction with the REs at few

scattering angles larger then 100%. Similar results are shown for the other three

phase matrix elements.
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Figure 2.8: The non-zero phase matrix elements computed with the PSTD for a
sphere with a size parameter of 200 and a refractive index ofm = 1.312+1.489×10−9i.
The relative errors of P11 and the absolute errors of P12/P11, P22/P11 and P34/P11

are shown in the right panels.

It seems that the results given by the PSTD have quite significant errors on

the phase matrix of spheres, however, for practical applications, an ensemble of

particles with different sizes, geometries and orientations are considered. Thus, the

oscillations will be smoothed out by averaging, and all those errors will be canceled

out and become much smaller, which will be shown in the next few sub-sections.

51



The real parts of the refractive indices of atmospheric particles are usually under

2 at various wavelengths, but those of either ice or water become very large at

microwave wavelengths. Accurately calculating the optical properties of a particle

with a large refractive index is quite challenging, considering the severe discontinuity

in the permittivity across the particle surface. Yang et al. [73], Sun and Fu [74],

and Zhai et al. [75] successfully employed the FDTD method to simulate the light

scattering of particles with quite large refractive indices. We tested our parallelized

PSTD implementation for water liquid spheres with size parameters up to 40 at the

3.2 cm wavelength and a refractive index of 7.150 + 2.914i [73].

Figure 2.9 illustrates the PSTD calculated Qext, SSA, and g and the exact solu-

tions given by the Lorenz-Mie theory in the left panels, and the REs of the PSTD

results in the right panels. Considering both the computational times and the accu-

racy, the spatial resolutions used decrease from approximately 300 to 30 for spheres

with size parameters from 1 to 40. The REs of the three properties given by the

PSTD are, respectively, no more than 3%, 1%, and 1.5%, and the absolute errors are

smaller than 0.06, 0.006, and 0.01. However, the RE of g for the sphere with a size

parameter of 1, which has a negative value close to zero (−0.0471), is approximately

15%. The PSTD was also found to always overestimate the Qext and underestimate

the SSA for spheres with a large refractive index.
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Figure 2.9: The Qext, SSA, and g of spheres as functions of the size parameter. The
refractive index of the spheres is 7.150 + 2.914i. The relative errors of the simulated
quantities are shown in the right panels.

Figure 2.10 gives the non-zero phase matrix elements of a sphere with a size

parameter of 40 and a refractive index of 7.150 + 2.914i. The REs of the PSTD

solutions for the phase function and the absolute errors of the ratios P12/P11, P33/P11,

and P34/P11 from the PSTD are shown in the right panels. The PSTD approximates

the smooth backward scattering accurately with relative errors less than 5%. The
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errors for the phase function are basically in the forward directions where the REs

are no more than 20%. The errors for the ratios, P12/P11, P33/P11, and P34/P11 are

smaller than 0.4. The agreement between both the integral scattering properties and

the phase matrix elements shown in Figures 2.9 and 2.10 illustrates the PSTD to be

capable of calculating light scattering by particles with large refractive indices.
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Figure 2.10: Same as Figure 2.8 but for a sphere with a size parameter of 40 and a
refractive index of 7.150 + 2.914i.
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2.3.2 Comparison with the T-matrix method

The PSTD is also used to calculate the optical properties of randomly oriented

non-spherical particles, e.g., spheroids and circular cylinders, which have highly re-

liable solutions given by the T-matrix method. The applicability of the T-matrix

method is significantly dependent on the aspect ratio and refractive index of the

particles, and the T-matrix implementation with extended precision is used for

the comparison [17]. For this calculation, we use the refractive index of ice, m =

1.312+1.489×10−9i, at a wavelength of 0.532 µm. Furthermore, the single-scattering

properties of spheroids or cylinders are averaged over 180 scattering planes for 32

particle orientations to account the effect of random orientations in the PSTD sim-

ulations.

Figure 2.11 shows the Qext and g of the spheroids as functions of the size param-

eter. The size parameter x is defined in the form of 2πb/λ, where b is the semi-length

of the symmetric axis. The aspect ratio a/b equals 0.5, and a is the equatorial ra-

dius. The solid lines in the figure are given by the T-matrix theory, and the dots

are the PSTD results with size parameters up to 150. For the spheroids with an

aspect ratio of 0.5 and a refractive index of 1.312 + 1.489 × 10−9i, when the size

parameters are larger than approximately x = 112, we did not obtain convergent

T-matrix solutions. The relative errors of Qext and g are shown in the right panels of

Figure 2.11. Spatial resolutions with more than 100 grid points per wavelength are

used for the small particles, but a spatial resolution of 10 grid points per wavelength

is used for spheroids with size parameters larger than 100. The REs of Qext are less

than 0.8% and those of g less than 0.6%, but the errors generally increase with an

increase in particle size. The absolute errors of Qext and g are smaller than 0.02 and

0.005, respectively.
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Figure 2.11: The Qext and g for randomly oriented spheroids as functions of the size
parameter (left panels), and their relative errors (right panels). The refractive index
used is m = 1.312 + 1.489× 10−9i.

Figure 2.12 gives an example of the non-zero phase matrix elements of randomly

oriented spheroids with a size parameter of 110. The PSTD generally agrees with

the T-matrix theory for all elements, except for some disagreement (with REs about

30%) in P11 at scattering angles from 175o to 180o. The phase matrix results of

the randomly oriented spheroid are much better than those of the spherical case,

because the oscillations of the elements for a single orientation cancel each other,

and relatively smooth values are obtained. For the ratios of other non-zero phase

matrix elements to P11, the absolute errors of the PSTD solutions are smaller than

0.1.
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Figure 2.12: The non-zero phase matrix elements for randomly oriented spheroids
with a size parameter of 110 and a refractive index of m = 1.312 + 1.489 × 10−9i
given by the T-matrix and PSTD methods.

The results from the randomly orientated circular cylinder calculations are given

in Figures 2.13 and 2.14. The size parameter of the circular cylinder is defined in

terms of πL/λ where L is the length of the axis. The diameter-to-length ratio of

the circular cylinders is chosen to be 1, and the maximum size parameter simulated

is 75. The REs of Qext and g are neither more than 2%, and the absolute errors
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are smaller than 0.05 and 0.015, respectively. The phase matrix elements for the

circular cylinder with a size parameter of 75 are shown in Figure 2.14, with only

slight differences in the phase function values at scattering angles from 100o to 180o,

and the REs are less than 20%. The phase function scattering peak at 46o is noticed

in both the PSTD and T-matrix solutions. The ratios of other non-zero phase matrix

elements to P11 computed by the PSTD have absolute errors smaller than 0.15.
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Figure 2.13: Same as Figure 2.11 but for circular cylinders with diameter-to-length
ratio of 1.
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Figure 2.14: Same as Figure 2.12 but for circular cylinders with size parameter of 75
and a diameter-to-length ratio of 1.

2.3.3 Comparison with the IGOM

Considering the validations for spherical and non-spherical particles with wide

ranges of size parameters and refractive indices, the PSTD appears to be a robust

method for calculating light scattering problems with large size parameters of up

to 200. However, the foregoing simulations focus only on the shapes having exact

solutions given by some other methods, i.e., the Lorenz-Mie or T-matrix theories, in
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order for accurate evaluations for the PSTD results to be obtained. In the present

study, the PSTD is also employed to simulate the single-scattering properties of

hexagonal columns, for which there is no exact solution. The size parameter of the

hexagonal column is defined in terms of πL/λ, where L is the length of the column.

The width-to-length ratio 2a/L is chosen to be 1.0, where a is the semi-width of

the hexagonal cross section. The refractive index of 1.312 + 1.489 × 10−9i is used.

The PSTD simulations are averged over 48 different particle orientations. Moreover,

similar to the cases of randomly oriented spheroids or cylinders, the single-scattering

properties of the hexagonal particles are also averaged over 180 scattering planes

for each particle orientation. With this moderate size parameter, the PSTD results

can only be compared with those given by the geometric optics methods. Here, the

solutions based on the IGOM [35, 37] are used for the comparison.

Figure 2.15 shows the non-zero phase matrix elements of randomly oriented

hexagonal columns with a size parameter of 50. The phase function given by the

IGOM shows slight differences from that of the PSTD, particularly, at scattering

angles from 135o to 165o. The ratios of P33/P11 and P44/P11 for the two meth-

ods show similar overall patterns, whereas quite obvious differences are noticed for

P22/P11, P34/P11, and P12/P11. For a size parameter of 50, both the phase functions

from the two methods show weak scattering peaks at scattering angles 22o and 46o,

as evident from the P11 curves shown in Figure 2.15. The differences between the

IGOM and OSTD results indicates that the accuracy of the geometric-optics method

is sitll significantly challenged as the size parameter researches up to 50, whereas,

for applications, they have been used for even smaller sizes, because of lack of an

efficient numerically exact method at this size range. Even with the current PSTD

implementation, it took about 600 CPU hours (that is about one day with 24 pro-

cessors) for the the results in Figure 2.15, whereas the IGOM takes seconds for the
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simulation.
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Figure 2.15: The non-zero phase matrix elements of randomly oriented hexagonal
columns with a size parameter of 50 simulated by the PSTD and IGOM. The
hexagonal column has a diameter-to-length ratio of 1 and a refractive index of
1.312 + 1.489× 10−9i.

We go one step further and apply the PSTD method to randomly oriented hexag-

onal columns with a size parameter of 100. In this case, the comparison between the

PSTD and IGOM solutions are shown in Figure 2.16. A total of approximately 7000

CPU hours are used for the PSTD. Obviously, the IGOM results closely agree with
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their PSTD counterparts. The two methods give almost the same overall variation

patterns, particularly, for P11; however, the PSTD solutions for P12/P11, P22/P11,

P33/P11, P34/P11 and P44/P11 show pronounced variations versus scattering angle,

and the IGOM results are relatively smooth. This occurs because, in the simulation,

the PSTD rigorously takes into account the phase inference of the electromagnetic

waves. Moreover, it is evident from Figure 2.16 that strong scattering peaks at 22o

and 46o are clearly shown in the phase functions from both the PSTD and IGOM

methods for a size parameter of 100.
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Figure 2.16: Same as Figure 2.15 but for randomly oriented hexagonal columns with
a size parameter of 100.
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Furthermore, it should be pointed out that, as mentioned in section 2.2.2, the

PSTD is a straightforward method to simulate light scattering and absorption prop-

erties of other non-spherical particles with complex geometries and components, the

application of which will be shown in the next sub-section and Chapter 3.

2.3.4 Inhomogeneous particles

Previous results show the applicability and performance of the PSTD for homo-

geneous particles, and this section focuses on the validation of some inhomogeneous

cases, which will also show application in the next chapter. Three different inhomo-

geneous particles are considered, and all have the overall geometry of sphere. The

first case is a stratified sphere, or concentric spheres, the exact solution of which can

be given by the core-mantle Mie theory [10, 11]. The other two cases are referred

as the attached and uniformly mixed particles, which will be introduced in details

in Section 3.2.2, and the well-verified numerical method DDA will be used for the

validation. The Amsterdam DDA implementation (ADDA) is used [24].

The PSTD, DDA and core-mantle Mie results of the stratified spheres with size

parameters of 50 are shown in Figure 2.17, and the volume fractions of the spherical

core, i.e. fc, are 0.01, 0.1, 0.5, and 0.9 (from upper to lower panels, respectively).

The refractive index of the core is 1.2 and of the mantle is 1.1. The left panels show

the normalized phase function P11, and the ratios of P12 to P11 are given in the right

panels. The other non-zero phase matrix elements show similar agreement, and will

not be illustrated. For the four volume fractions of the core ranging from 0.01 to

0.9, both the PSTD and DDA results show great agreement with those given by the

core-mantle Mie theory, but slight differences are noticed for the PSTD results with

fc being 0.9 at some scattering angles (the lower left panel). Similar results are found

for the ratios P12/P11. Figure 2.17 indicates both the PSTD and DDA to be robust
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and accurate methods for calculating the scattering properties of inhomogeneous

particles with stratified structures and can be applied over the entire range of the

volume fractions.

10−3

100

103

P 11

 

 

fc=0.01
Core−Mantle Mie
PSTD
DDA

−1.0

−0.5

0.0

0.5

1.0

P 12
/P

1110−3

100

103

fc=0.1

−1.0

−0.5

0.0

0.5

1.0

10−3

100

103

fc=0.5

−1.0

−0.5

0.0

0.5

1.0

0 30 60 90 120 150 180
10−3

100

103

fc=0.9

Scattering Angle ( o )
0 30 60 90 120 150 180

−1.0

−0.5

0.0

0.5

1.0

Scattering Angle ( o )

Figure 2.17: P11 (left panels) and P12/P11 (right panels) for stratified spheres with
size parameters of 50 given by the core-mantle Mie, PSTD and DDA methods, and,
from upper to lower, the volume fractions of the core part, i.e. fc, are 0.01, 0.1, 0.5,
and 0.9. The refractive indices of the core and mantle are 1.2 and 1.1, respectively.
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Figure 2.18: Same as Figure 2.17 but with the refractive indices of the core and
mantle being 1.5 + 0.0001i and 1.3.

The conclusions are a little different if larger refractive indices are used, and

Figure 2.18 is the same as Figure 2.17 but with more realistic refractive indices of

atmospheric components. The refractive index of the core is 1.5 + 0.0001i (a typical

value for mineral dust at visible wavelength [41]) and of the mantle is 1.3 + 0i (water
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or ice at visible wavelength [72]). In Figure 2.18, it is obviously shown that the

PSTD results still agree very well with the analytic solutions, whereas the DDA

does not work as well. Furthermore, when fc reaches 0.9, i.e. the components with

refractive index of 1.5 + 0.0001i becoming the main part, the DDA converges very

slow, and no DDA result is obtained. This indicates that the PSTD simulations and

their accuracy are not sensitive to the refractive indices of the particles, whereas

the DDA runs into trouble as the refractive index increases. This difference on the

performance of the PSTD and DDA will be systematically compared in Section 2.5.

Figures 2.17 and 2.18 show the angular-dependent phase matrix elements of the

inhomogeneous particles, and their integral scattering properties, i.e. Qext and g,

as well as the relative errors are listed in Table 2.2. To show the relative efficiency

of the PSTD and DDA at the two refractive indices groups, Table 2.2 also includes

the ratios of the computational times used by the PSTD to DDA with the same

resources. The performances of both methods are excellent for the coated spheres

with relatively small refractive indices with all relative errors less than 1%, whereas

the relative errors of the DDA results become as large as 6.8% for the large refractive

indices case with fc = 0.1. From the ratios of the computational times used by the

two methods, we can see that the PSTD is more efficient for spheres with large

refractive indices, whereas the DDA outperforms the PSTD for the small refractive

indices.
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Table 2.2: The integral scattering properties as well as their relative errors of the
stratified spheres given by the PSTD and DDA compared with the core-mantle Mie
solutions, and the ratios of the CPU times used for the PSTD to DDA calculations.

fc 0.01 0.1 0.5 0.9

mc = 1.2 + 0.0i Qext core-mantle Mie 2.306 1.778 2.527 1.952

mm = 1.1 + 0.0i PSTD 2.289 1.765 2.551 1.981

(RE [%]) (-0.73) (-0.84) (0.95) (1.4)

DDA 2.306 1.779 2.527 1.946

(RE [%]) (0.0) (0.056) (0.0) (0.36)

g core-mantle Mie 0.9480 0.9202 0.9068 0.8916

PSTD 0.9480 0.9177 0.9068 0.8930

(RE [%]) (-0.28) (-0.27) (-0.18) (0.16)

DDA 0.9493 0.9212 0.9102 0.8986

(RE [%]) (0.14) (0.10) (0.20) (0.79)

TPSTD/TDDA 10.6 12.7 13.3 2.30

mc = 1.5 + 0.0001i Qext core-mantle Mie 2.344 1.957 1.976 2.205

mm = 1.3 + 0.0i PSTD 2.342 1.958 1.978 2.226

(RE [%]) (-0.085) (0.051) (0.10) (0.95)

DDA 2.262 2.091 1.978

(RE [%]) (-3.5) (6.8) (0.10)

g core-mantle Mie 0.8582 0.7831 0.7803 0.8380

PSTD 0.8642 0.7894 0.7796 0.8357

(RE [%]) (0.70) (0.80) (-0.13) (-0.27)

DDA 0.8544 0.7984 0.7805

(RE [%]) (-0.44) (2.0) (0.026)

TPSTD/TDDA 0.4 0.3 0.2
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Figure 2.19: P11 (left panels) and P12/P11 (right panels) of the attached and uniformly
mixed spheres with size parameters of 50 given by the DDA and PSTD. The volume
fractions of the two components with refractive indices of 1.1(light region) and 1.2
(dark region) are both 0.5.

Figure 2.19 shows P11 and P12/P11 of the attached (upper panels) and uniformly

mixed (lower panels) spheres given by the PSTD and DDA. The mixing structures

and the incident direction is briefly illustrated in the figure, and will be detailed

in section 3.2. For these two cases, there is no exact solution existing. The size

parameters of the spheres are 50, and the volume fractions of the two components

are both 0.5. The incident light of the attached particle is in the direction normal to

the interface of the two components, and is illustrated in the figure. The refractive
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index of the dark part is 1.2 and the light part 1.1. The curves calculated by the

PSTD and DDA are almost undistinguishable for P11 in both cases, but the P12/P11

ratio of the uniformly mixed sphere differs slightly at a few scattering angles. Again,

the excellent agreement indicates the applicability of the PSTD for the attached and

uniformly mixed particles. The integral scattering properties for the two cases are

listed in Table 2.3, and the relative differences of the two methods are less than 1%.

Table 2.3: The integral scattering properties of attached and uniformly mixed spheres
given by the PSTD and DDA.

Maxing state Attached Uniformly mixed

Qext PSTD 1.967 1.976

DDA 1.978 1.977

g PSTD 0.7884 0.8983

DDA 0.7932 0.9034

When the volume fractions of the two uniformly mixed components are fixed,

the small elements of each component are arranged randomly to form the overall

inhomogeneous particle geometries uniformly. The realizations of these randomly

generated particles can be very different, but the relationship to the scattering prop-

erties is unknown. We used the Monte-Carle method to generate five uniformly

mixed spheres with a certain volume fraction and size parameters of 50, and Figure

2.20 shows the P11 and P12/P11 of the spheres with different mixing realizations. The

volume fractions of the component having a refractive index of 1.5 + 0.0001i are 0.1

(upper panels) and 0.5 (lower panels) and the other component has the refractive

index of 1.3. The figure clearly shows the five spheres with the same size and volume
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fractions, but different mixing realizations, to have almost the same P11 and the

differences between the ratios P12/P11 to be negligible. The indication is that the

optical properties of the uniformly mixed particles are independent of the mixing

realizations. The computational effort for uniformly mixed particles will be greatly

reduced if the optical properties calculated for one realization of them with a given

volume fraction can be used to represent the entire ensemble with the same volume

fraction.
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Figure 2.20: P11 (left panels) and P12/P11 (right panels) of the uniformly mixed
spheres with different mixing realizations given by the PSTD. The size parameters
of the spheres are 50. The volume fractions of components having a refractive index
of 1.5 + 0.0001i are 0.1 (upper panels) and 0.5 (lower panels), and the remaining
component has a refractive index of 1.3.
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These results indicate that the PSTD is a robust and accurate method to calculate

the light scattering properties of inhomogeneous particles. The three basic mixing

structures modeled in this section will be described in detail in Section 3.2, and used

to study the effects of inhomogeneity on the scattering properties of atmospheric

particles.

2.4 Comparison with the DDA

The DDA, FDTD and PSTD methods share similar domains of applicability and

are numerically rigorous methods based on solving Maxwell’s equations for electro-

magnetic scattering by arbitrarily shaped particles. The DDA and FDTD have been

extensively studied [20, 21, 23, 25, 26, 27, 76] and systematically compared for simu-

lating light scattering by spheres for the size parameters x up to 80 and the real part

of refractive index m up to 2 [71]. The numerical performances of the two methods

are found to strongly depend on the refractive index of the scattering particles; the

DDA is faster for smaller m, and the FDTD is more computationally efficient for

larger values of m. The “cross-over” refractive index between the two methods is at

approximately 1.4 [71]. In comparison with the finite difference method, the spectral

method has shown much higher orders of accuracy and smaller numerical dispersion

errors while using relatively coarse spatial resolution in terms of number of grids per

wavelength [54, 55]. However, the relative strengths of the PSTD in comparison with

other numerical methods are still not clearly known.

The PSTD and DDA methods for the numerical simulation of light scattering

by dielectric particles is compared. Specifically, we focus on spheres and spheroids

because the accuracy of the results can be well quantified by comparison with their

counterparts simulated from the Lorenz-Mie theory and the T-matrix method. The

comparison is performed with the same prescribed accuracy criteria for both meth-
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ods and covers a broad range of size parameters (up to 100 for spheres and 50 for

spheroids) and non-absorbing refractive indices.

Code ADDA, developed by Yurkin and Hoekstra [24], is a widely used DDA

implementation for light scattering simulations. Using a cluster of processors, ADDA

can simulate light scattering by particles much larger than the incident wavelength,

with reported maximum size parameters for spheres with refractive indices of 1.05

and 1.2 were 320 [24] and 130 [30], respectively. We used ADDA v.0.79 with the

default settings for dipole polarizability (lattice dispersion relation) and iterative

method (quasi minimal residual method). The convergence criterion of the iterative

solver was set to be 10−3; larger than the default value (10−5) but sufficient to reach

the accuracy required by this study. These code settings are identical to those used in

[71] and correspond to the mainstream DDA. In particular, it is similar to the default

settings of the DDSCAT [77], another widely used implementation of the DDA. Thus

we focus on practical performance of ADDA (with default settings), instead of the

best theoretically possible one. We also believe that the conclusions will be valid for

the DDA method in general. However, we briefly discuss possible consequences of

using the latest (1.1) version of ADDA in the end of this section. Both spheres and

spheroids have symmetry, which is used by ADDA to halve the computational time

compared to nonsymmetric shapes.

We simulated the single-scattering properties of spheres and spheroids with dif-

ferent sets of x and m by using the PSTD and DDA, comparing with the exact

solutions to quantify the accuracies of the two numerical methods. Considering the

axially rotational symmetry of the scattering particles, only one simulation of linearly

polarized incident wave was sufficient to yield the 4 by 4 phase matrix P . The phase

matrix in one scattering plane was calculated with the scattering angle varying from

0o to 180o in steps of 0.25o. The extinction efficiency Qext and the normalized phase
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function P11(θ) are the two major quantities in the estimation of the accuracy of the

two methods, but the asymmetry factor g and phase matrix element P12(θ) will also

be compared with the analytic solutions. With specified accuracy criteria for the

Qext and P11(θ) the computational time required to achieve the criteria became the

most meaningful parameter to describe the overall performance of the methods.

The PSTD and DDA discretize the scattering particles with grid cells (PSTD) and

dipoles (DDA), but their computational times are dependent not only on the number

of grid points or dipoles in the computational domain, but also on the number of time

steps for the PSTD or iterations of the iterative solver of a large linear system for

the DDA. For a particle with a fixed size, the computational domain scales cubically

with the spatial resolution, i.e. number of grid intervals or dipoles per wavelength.

The accuracy of each method increases with an increase in the spatial resolution.

We increase the spatial resolution until the required accuracy criteria are achieved,

namely that the RE of Qext is less than 1%, and the RMSRE of P11(θ) is less than 25%

(same as in [71]). This procedure should not be considered as one-fits-all solution,

since it is not suitable for certain applications. In particular, it may result in over

50% relative errors in backscattering intensity. However, both methods can produce

smaller errors at the expense of extra computational resources, and used procedure

does describe the general trends.

The DDA is the preferred method for optically soft particles (particles with re-

fractive indices near 1) [71, 23], which has also been shown in the previous section for

inhomogeneous particles. It may even outperform specialized methods, like discrete

sources method, for axisymmetric particles [78]. Therefore, our comparison focused

on refractive indices larger than 1.2. For spheres, we used real m ranging from 1.2 to

2.0 in steps of 0.2. The minimum size parameter for the comparison was 10. To keep

the computational time manageable and achieve the accuracy criteria, especially for
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the DDA simulations, the upper limit of x we considered decreased from 100 to 40 as

m increased from 1.2 to 2.0. The exact sets of x and m involved in the computation

are shown in Tables 2.4 and 2.5. Moreover, the comparison was extended to spheroids

with realistic refractive indices of ice (m = 1.312 + 1.489 × 10−9i at 0.532µm [72])

and mineral dust (approximate m = 1.55 + 0.001i at the visible wavelength [79]).

The size parameter of a spheroid was specified in terms of its equivalent-volume

sphere. Aspect ratio values of 0.5 (corresponding to oblate spheroids) and 2 (pro-

late spheroids) were used. The size parameters of the spheroids ranging from 10 to

50 in steps of 10 were chosen for the simulation. The propagation direction of the

incident field coincided with the symmetry axis. Again, all simulations were carried

out using a single node containing 8 64-bit 2.8 GHz processors. It should be noted

that for such shared-memory configuration parallelization scheme of ADDA (MPI)

is less efficient than OpenMP used in PSTD, because MPI is originally designed for

distributed-memory (multi-node) hardware. However, we estimate that the effect

due to difference in parallelization scheme should not exceed 20% in computational

times and, hence, does not influence the final conclusions.

Table 2.4 lists both the computational parameters and the simulation results

and illustrates the numerical performance of the PSTD and DDA. In addition to m

and x, Table 2.4 includes the spatial resolution, computational time, RE of Qext,

and RMSRE of P11. Indicated within parentheses are the results of cases in which

the PSTD or DDA failed to reach the prescribed accuracy even with a very fine

spatial resolution. Computations too time-consuming (taking more than 4 days) to

reach the prescribed accuracy for the DDA are marked as “NR” (i.e. “no results”)

in the table. The PSTD simulations covered all sets of x and m chosen for study

and achieved the prescribed accuracy in 24 of the 28 total pairs. To achieve the

prescribed accuracy criteria, the spatial resolutions used by the PSTD varied from
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10 to 30 without systematic dependence on x or m. The accuracy values for the DDA

do show significant sensitivity to m. The DDA used spatial resolutions smaller than

10 for a refractive index of 1.2 and increased monotonically to 40 for m = 2.0. As an

extra verification of the DDA results, we note that they agree well with those of [71],

where an earlier version of the ADDA code (version 0.76) was used. In particular,

we obtained almost identical values of spatial resolution and simulation error for the

two ADDA versions when using the same x and m (x ≤ 60, 40, and 10 for m = 1.2,

1.4, and 2.0 respectively).

With the same accuracy criteria achieved by the PSTD and DDA simulations, the

behavior of both with respect to the computational time show substantial variations

for different x and m. With size parameters up to 100, the PSTD simulations were

finished within 9.0 × 104 seconds (i.e. 25 hours), and the most time-consuming

simulation was for a sphere with x = 100 and m = 1.4. Furthermore, neither the

efficiency nor the accuracy of the PSTD was significantly influenced by an increase

of m. However, the computational time used by the DDA simulations increases

dramatically with both particle size and refractive index due to the simultaneous

increases of the spatial resolution, computational domain, and iteration number. For

example, for m = 1.2, only a few seconds were required for spheres with x = 10 and

20; whereas, a sphere with x = 80 took 7.3×104 seconds (over 20 hours). When m is

larger than 1.4, the DDA encounters difficulties with respect to both efficiency and

accuracy. A sphere with a size parameter of 30 and m = 2.0 took 5.1× 105 seconds

(almost 6 days, the only case that takes over 4 days) and obtained Qext with RE

of 2.0% and P11 with RMSRE of 55%. The DDA achieved the prescribed accuracy

criteria for spheres at a size parameter of 30 for m = 1.6 and only 10 for larger

m. The DDA did not achieve convergence for most large (spheres with x > 60 and

m = 1.4 or 1.6 and x > 40 and m = 1.8 or 2.0) cases (7 spheres out of 28).
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Table 2.4: Parameters and performance results for the comparison of
PSTD and DDA for spheres with different x and m.

time (s) λ/∆x RE(Qext) (%) RMSRE(P11) (%)

m x PSTD DDA PSTD DDA PSTD DDA PSTD DDA

1.2 10 2.1× 101 1.0× 100 13 10 0.34 0.071 5.6 0.74

20 4.4× 101 2.0× 100 7.7 7.5 0.0083 0.54 8.5 13

30 3.0× 103 1.2× 101 20 6.7 0.83 0.25 4.2 16

40 3.9× 104 1.2× 102 30 7.5 1.0 0.43 25 19

60 2.5× 104 2.3× 103 18 8.4 0.91 0.20 15 13

80 1.0× 104 7.3× 104 9.2 9.4 0.26 0.62 19 19

100∗ 2.3× 104 2.7× 104 9.3 10 0.050 0.25 18 13

1.4 10 2.3× 102 2.0× 100 22 15 0.30 0.69 6.1 12

20 3.3× 103 1.1× 103 22 25 0.78 0.98 10 22

30 3.8× 102 9.8× 103 11 17 0.87 0.74 19 25

40 6.7× 103 1.8× 104 18 18 0.99 0.68 18 15

60 2.9× 103 NR∗∗ 18 NR 1.0 NR 21 NR

80 (1.2× 104) NR (9.2) NR (0.32) NR (38) NR

100 8.9× 104 NR 13 NR 0.47 NR 23 NR

1.6 10 4.9× 101 5.4× 101 12 25 0.85 0.76 14 7.1

20 (1.1× 103) (3.2× 104) (20) (40) (5.4) (5.7) (44) (45)

30 8.3× 102 4.4× 104 13 30 0.78 0.75 25 15

40 2.7× 103 (2.4× 105) 14 (20) 0.23 (1.5) 24 (33)

60 (3.2× 104) NR (18) NR (0.035) NR (29) NR

1.8 10 2.7× 102 6.4× 102 26 35 0.92 0.88 10 8.8

20 1.5× 103 (3.0× 103) 23 (40) 0.85 (2.7) 10 (19)

30 3.0× 103 (9.5× 104) 19 (25) 0.70 (5.4) 15 (52)

40 1.5× 104 NR 21 NR 0.63 NR 19 NR

60 1.7× 104 NR 15 NR 0.28 NR 22 NR

2.0 10 5.1× 101 2.0× 103 13 40 0.90 0.45 16 16

20 5.6× 102 (5.0× 104) 16 (35) 0.58 (8.9) 13 (35)

30 1.3× 103 (5.1× 105) 14 (25) 0.21 (2.0) 21 (55)

40 (3.4× 103) NR (14) NR (2.3) NR (26) NR

Note:
∗ the DDA for a sphere with x = 100 and m = 1.2 did not converge with the default iteration method
(quasi minimal residual), and the bi-conjugate stabilized method was used instead.
∗∗ “NR” means no result (see text).
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On contrary, the DDA was very efficient for spheres with small m and x and was

one-two orders of magnitude faster than the PSTD. However, a critical size parameter

existed above which the PSTD outperformed the DDA for small refractive indices

(1.2 or 1.4) and as the value of x decreased from 80 to 30 as the refractive index

increased from 1.2 to 1.4. For m larger than 1.4, the PSTD became more efficient

for all size parameters in the range from 10 to 60 and was almost two orders of

magnitude faster than the DDA for spheres with x larger than 30.

In the (x, m) domain, Figure 2.21 clearly illustrates the strengths of the two

methods, and summarizes the data in Table 2.4 with a “regime diagram.” It is a

representation of the (x,m) plane, and the value entered at a location in the diagram

is the time ratio ρ of PSTD to DDA CPU time required for the scattering calculation.

Cases in which the PSTD produced results meeting the accuracy criteria but the DDA

did not are indicated by open rather than solid circles. The green symbols at the

lower left of the plane indicate parameter choices (x,m) for which the DDA seems

to be the preferable method, based on CPU time needed to meet accuracy criteria,

and red symbols at the top right indicate choices for which the PSTD was preferable

(ratio ρ larger than 1). This is the same as the one based on the inhomogeneous

particles, which is shown in the validation section. Furthermore, comparing Figure

2.21 with results of [71], we can conclude that the PSTD is similar to the FDTD when

compared with the DDA, except for an increase in the relative relative performance

of the PSTD with an increase in size parameter, even for m = 1.2.
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Figure 2.21: The relative performance of the PSTD and DDA for spherical particles
with different x and m. Numbers in the figure are the ratios ρ of PSTD to DDA CPU
time required for the scattering calculation at indicated (x,m). Open circles indicate
that a PSTD result was calculated, but the DDA calculation failed to converge.

Table 2.5 lists some other optical property errors with which to compare the

performances of the two methods, but no separate accuracy criterion was prescribed

for these quantities. The table includes RE of g, maximum RE of P11, RE of P11

at 180o (i.e., backscatter), and RMSAE of P12/P11. Both the PSTD and DDA show

similar accuracy on those scattering properties, when the prescribed accuracy criteria

for Qext and P11 are achieved. Overall, the differences between the four errors given

by the PSTD and DDA are relatively small and dependent on x or m in the following

manner:

(1). When the prescribed accuracy was achieved, both methods gave the asym-
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metry factors with REs smaller than 2%. The DDA was more accurate for spheres

with a refractive index of 1.2, whereas the PSTD was more reliable for the refractive

indices of 1.8 and 2.0.

(2). The maximum REs of P11 of the PSTD and DDA results were of the same

order and either could reach over 100%, especially for cases with large size or re-

fractive index. This is caused by the significant oscillations in the phase functions,

and these maximum errors generally occurred at the scattering angles with a sharp

trough or peak for P11. Large values of the maximum REs indicate that neither

method could track P11 accurately for all sizes and refractive indices over all scatter-

ing angles. However, those errors will be canceled out when the scattering properties

are averaged over particles orientations or an ensemble of particles of different sizes.

(3). The PSTD gave relatively more accurate backscatter for spheres with large m

( > 1.6) and for those with small x and small m. However, similar to other numerical

models, both methods worked poorly in some cases, i.e. the RE of P11(180o) was

80% for a sphere with m = 1.4 and x = 100 by the PSTD and 240% for m = 1.6

and x = 40 by the DDA.

(4). The PSTD and DDA both approximated P12/P11 accurately with the RM-

SAEs smaller than 0.25, when the prescribed accuracy criteria are achieved, and the

values of RMSAE (P12/P11) are significantly correlated to those of the RMSREs of

P11 in Table 2.4.
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Table 2.5: Same as Table 2.4 but for some accuracy results (all values have the unit
of %)

RE of g Maximum RE of P11 RE of P11(180o) RMSAE of P12/P11

m x PSTD DDA PSTD DDA PSTD DDA PSTD DDA

1.2 10 0.11 0.063 21 33 9.4 33 5.2 5.9

20 0.18 0.036 28 84 15 18 6.9 11

30 0.079 0.028 19 66 17 24 3.2 14

40 1.7 0.11 3.5× 102 87 12 34 25 15

60 0.060 0.084 79 70 79 8.4 15 12

80 0.88 0.71 1.3× 102 1.2× 102 44 54 16 17

100 0.42 0.083 1.0× 102 79 53 42 14 14

1.4 10 1.5 0.83 29 65 28 60 1.9 5.9

20 0.25 1.3 36 1.8× 102 5.1 18 8.4 9.5

30 0.14 0.38 84 1.4× 102 48 30 17 23

40 0.091 0.030 1.1× 102 1.4× 102 20 1.3× 102 13 13

60 1.3 NR 1.6× 102 NR 28 NR 16 NR

80 (1.9) NR (2.9× 102) NR (10) NR (36) NR

100 0.050 NR 1.3× 102 NR 80 NR 18 NR

1.6 10 1.3 0.55 51 23 16 8.5 7.4 6.9

20 (6.0) (6.5) (1.5× 102) (1.8× 102) (78) (77) (44) (41)

30 1.3 0.69 2.2× 102 68 32 61 16 9.8

40 1.2 (1.6) 1.2× 102 (2.4× 102) 22 (2.4× 102) 17 (24)

60 0.060 NR (1.5× 102) NR (30) NR (22) NR

1.8 10 0.78 1.2 32 21 1.6 21 12 5.5

20 0.41 (1.5) 30 (1.1× 102) 8.8 (26) 6.7 (15)

30 0.17 (5.2) 49 (2.1× 102) 6.2 (17) 13 (36)

40 1.1 NR 83 NR 3.3 NR 14 NR

60 0.15 NR (1.2× 102) NR 2.6 NR 19 NR

2.0 10 2.3 0.44 46 40 1.1 24 17 11

20 0.56 (3.2) 51 (1.3× 102) 4.4 (47) 7.7 (35)

30 0.042 (1.6) 85 (2.4× 102) 20 (43) 13 (49)

40 (2.3) NR (1.2× 102) NR (37) NR (18) NR

A further comparison of the numerical accuracy of the two methods, the P11

of spheres with the same size parameter of 30 and different refractive indices, is
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illustrated in the left panels of Figure 2.22. The time ratio is also included in the

figure. From the upper to the lower panel, the refractive index is increased from 1.2

to 2.0 in steps of 0.2. Shown in the figure are the exact solutions given by Lorenz-Mie

theory (blue lines) and the results of the PSTD (red lines) and DDA (green lines)

simulations. The relative errors of P11 are shown in the right panels of Figure 2.22.

The RMSREs of P11 for the spheres, as given by the PSTD and DDA, range from

4.2% (m = 1.2 for the PSTD) to 55% (m = 2.0 for the DDA). For spheres with

x = 30, the DDA simulation achieves the prescribed accuracy only for refractive

indices from 1.2 to 1.6. However, the PSTD results achieved the 25% criterion for

all five refractive indices. With small values of m (from 1.2 to 1.6), the relative

errors of the PSTD and DDA (right panels) are smaller than 30% at most scattering

angles, but became significant, even as large as 100%, near the angles where sharp

troughs or peaks occurred in the phase function. In comparison, the REs of the

phase functions given by the PSTD and DDA were of the same order for spheres with

refractive indices of 1.2 and 1.4. At a refractive index of 1.6, the REs, simulated by

the DDA, of the backward scattering at scattering angles larger than 140o became

50% or larger. As m increase to 1.8 and 2.0, the REs are then comparable to those

with small m and indicate the weak influence of m on the PSTD simulation accuracy,

whereas the performance of the DDA becomes very poor with the RMSRE reach over

50% even with large dpl and large amount of computational times. When particle

size distributions or different orientations of non-spherical particles are taken into

consideration in practical applications, the strong oscillations in the phase function

are smoothed. Thus, both methods will provide much more accurate and reliable

phase matrix elements. The comparison shown in Figure 2.22 indicate the results for

forward scattering are apparently more accurate than those of backward scattering.
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Figure 2.22: Comparison of P11 given by the PSTD and DDA with the exact solutions
for spheres with x = 30 and refractive indices ranging from 1.2 to 2.0 from the upper
to the lower panels. The parameter ρ indicates the ratio of PSTD to DDA CPU
times. The relative errors of the two numerical methods are in the right panels.

For the same spheres with size parameters of 30 and refractive indices ranging

from 1.2 to 2.0, the left panels of Figure 2.23 show the ratios of P12/P11 as functions

of scattering angles and the right panels the absolute errors. The RMSAEs of the

ratios given by both the PSTD and DDA are approximately between 0.03 and 0.5
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(from Table 2.5), and the absolute errors at most scattering angles are less than

0.2. Again, the results given by the PSTD and DDA for m=1.2, 1.4 and 1.6 are

comparable. For refractive indices up to 1.8 and 2.0, the PSTD simulations give

results with similar accuracy to those with small m, whereas the results given by the

DDA becomes quite significant, reaching even over 1.0 at some scattering angles.
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Figure 2.23: Same as Figure 2.22, but for P12/P11 (left panels) and their absolute
errors (right panels)
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Similar to Table 2.4, Table 2.6 shows the comparison between the PSTD and

DDA for spheroids, and the results compared with the solutions given by the T-

matrix method. With the refractive index of ice, both the PSTD and DDA fail only

at a spheroid with x = 50 and a/b = 2. When the spheroids had the refractive index

of mineral dust, the PSTD achieved the accuracy criteria for all sizes and aspect

ratios except the one with x = 50 and a/b = 0.5. However, the DDA simulations

could only be carried out for x smaller than 30 and achieved the criteria for sizes less

than or equal to 20. As expected, the PSTD outperforms the DDA for large spheroids

with x = 50 when m = 1.3117 + 1.489 × 10−9i, and was the preferable method for

all spheroids with m = 1.55 + 0.001i, except the one with a/b = 2 and x = 10.

The relative performance of the two methods shows no dependence on the spheroid

aspect ratio. Generally, the refractive indices of ice at different wavelengths have

a real part of approximately 1.3, and those of aerosol particles, i.e. dust and back

carbon, are 1.5 or larger. Thus, our comparison suggests the DDA to be suitable for

numerical simulations of ice crystals with size parameters smaller than 50, whereas

the PSTD is more efficient and more accurate for ice crystals with size parameters

larger than 50 and aerosol particles of all sizes. The PSTD and DDA results with

respect to the REs of g, maximum REs of P11, REs of P11(180o) and RMSAEs of

P12/P11 for spheroids are similar to those of spheres and will not be included here.
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Table 2.6: Same as Table 2.4 but for spheroids with size parameters from 10 to 50,
aspect ratios of 0.5 and 2.0, and refractive indices of m1 = 1.31 + 1.489× 10−9i and
m2 = 1.55 + 0.001i.

time (s) λ/∆x RE(Qext) (%) RMSRE(P11) (%)

m a/b x PSTD DDA PSTD DDA PSTD DDA PSTD DDA

m1 0.5 10 6.0× 101 4.0× 100 15 18 0.51 0.58 6.9 4.4

20 9.9× 102 9.9× 101 21 16 1.0 0.62 3.4 7.3

30 2.8× 103 9.1× 102 19 15 0.95 0.16 8.1 16

40 1.3× 104 5.2× 103 21 15 0.64 0.40 8.3 20

50 8.4× 103 1.3× 104 15 15 0.54 0.89 23 20

2.0 10 7.2× 101 1.0× 100 18 9.5 0.29 0.65 8.1 20

20 8.3× 101 1.0× 101 10 7.2 0.86 0.43 9.9 25

30 1.4× 103 2.1× 102 16 8.1 0.83 0.67 8.7 22

40 2.9× 103 2.9× 103 12 12 0.57 0.052 22 21

50 (1.3× 104) (3.5× 104) (19) (15) (1.3) (1.7) (27) (88)

m2 0.5 10 6.7× 101 3.3× 100 15 51 0.28 0.89 5.3 2.4

20 2.6× 103 (4.1× 100) 27 (60) 0.95 (5.2) 11 (3.5)

30 4.6× 103 (1.8× 105) 21 (35) 0.87 (2.5) 7.6 (10)

40 3.1× 103 NA 14 NA 0.57 NA 19 NA

50 (3.5× 104) NA (18) NA (1.3) NA (10) 1NA

2.0 10 1.3× 102 6.6× 101 20 30 0.73 0.42 0.39 8.7

20 6.8× 102 9.5× 102 15 20 0.27 0.75 13 19

30 8.1× 103 (1.1× 105) 18 (35) 0.89 (1.6) 24 (31)

40 8.9× 103 NA 21 NA 0.19 NA 21 NA

50 2.0× 104 NA 17 NA 0.77 NA 12 NA

The left panels of Figure 2.24 show P11 of the spheroids with x = 30 and the

right panels the relative errors of the PSTD and DDA results compared with the

T-matrix solutions. The aspect ratios and refractive indices are labeled in the figure.

In general, the PSTD and DDA results both had excellent agreement with the T-

matrix results, although the relative errors became significant at a few scattering

angles around the troughs or peaks in P11. For the spheroid with x = 1.55 + 0.001i

and a/b = 2.0, the DDA gave the RMSREs of P11 to be 31%, which is larger than
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the criterion, but Figure 2.24 shows the relative errors to be larger than 50% only at

the scattering angles around 80o and the ones larger than 130o.
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Figure 2.24: Same as Figure 2.22, but for spheroids with aspect ratios of 0.5 and 2.0,
and refractive indices of 1.312 + 1.489× 10−9i and 1.55 + 0.001i.

The ratios of P12/P11 for the spheroids with the same size parameters and the

absolute errors are illustrated in Figure 2.25. The absolute errors of P12/P11 are
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no more than 0.2 at most scattering angles. For the spheroid with a/b = 2.0 and

m = 1.55 + 0.001i simulated by the DDA (lower panels), the errors became larger

than 0.5 at the scattering angles that had relative errors of P11 larger than 50%.

From Figures 2.24 and 2.25, we notice that, for spheroids, the PSTD results of P11

and P12/P11 are slightly more accurate than those of the DDA.
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Figure 2.25: Same as Figure 2.24, but for P12/P11 (left panels) and their absolute
errors (right panels)
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Before drawing our final conclusions, we reflect once more on the parameters

of the DDA simulations. As noted before, the comparison is based on an older

version of the ADDA and (almost) default settings, but we performed a limited

set of simulations (for two spheres) with the current development version of ADDA

(1.1b6 as of May 1, 2012), trying different DDA formulations and iterative solvers to

maximize performance.

For the sphere with x = 10 and m = 2.0 the best result was obtained with

the filtered coupled dipoles (FCD) formulation of the DDA [80, 81]. The version

decreased the number of iterations by 25% and largely improved the accuracy such

that a spatial resolution of 20 was sufficient for a prescribed accuracy threshold. The

resulting computational time was 140 seconds: 14 times faster than the DDA with

the default settings, but still 3 times slower than the PSTD. For the sphere with

x = 80 and m = 1.2, the FCD formulation halves the number of iterations but has

little effect on the accuracy. The best performance, however, was achieved by using

a CSYM iterative solver [82], which resulted in an almost four times smaller number

of iterations, and a computational time of 2.0 × 104 seconds, only two times larger

than that of PSTD.

A systematic comparison between the PSTD and DDA for light scattering com-

putations was made by using the parallelized implementations of the two methods on

the same multi-processor hardware, although we have no reason to believe that the

relative performance is significantly affected by the hardware used. For spheres, size

parameters up to 100 and refractive indices up to 2.0 were used, and for spheroids,

two aspect ratios and two realistic refractive indices of ice and dust were used with

equivalent-volume size parameters up to 50. The same prescribed accuracy criteria

were required for the extinction efficiency and the phase function, and the computa-

tional time was used as the key parameter to evaluate and compare the two methods.
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The DDA was more economical for numerical simulations of spheres with small re-

fractive indices and small size parameters; whereas, the PSTD was more economical

for large x and m. The critical size parameter, above which the PSTD outperformed

the DDA, decreased from 80 to 30 as the refractive index increased from 1.2 to

1.4. The PSTD was more CPU-efficient and applicable to a wider range of x when

the refractive index was larger than 1.4. Similar conclusions were obtained for the

spheroids. Furthermore, the overall accuracy of the asymmetry factor, backscatter,

and linear polarization given by the PSTD and DDA were comparable.

The implementation of each of the two compared methods has been substantially

enhanced through our recent effort. For instance, we showed that most recent for-

mulations of the DDA can decrease the required computational time by an order

of magnitude. However, this is expected only to shift the boundary between the

methods in (x,m) plane but not to principally affect the conclusion of this compar-

ison. Moreover, potential users are advised to test (and fine-tune) these and other

light-scattering methods for their particular applications before performing large-

scale simulations. Finally, we note that the comparison was performed only for real

refractive indices or those with negligible imaginary part. Significant absorption is

known to largely improve the convergence of the iterative solver in the DDA [83].

Therefore, comparison of the PSTD and DDA for absorbing, including metallic, re-

fractive indices is an interesting topic for future research.

2.5 Summary

This section discussed the theoretical development and numerical performance

of the PSTD algorithm to calculate the single-scattering properties of idealized par-

ticles in detail. The advantages of using the spectral method instead of the finite

difference method for the spatial derivatives were shown in the discussion, and the
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spectral filters to eliminate the Gibbs phenomenon in the spectral simulations were

introduced. With the parallelized implementation, the applicability of the current

PSTD has be significantly enhanced, and validations are carried out by comparing

with results from various scattering models at scatterers of different sizes, shapes

and refractive indices. The PSTD has shown capability to calculate the scattering

properties of spheres with size parameters up to 200, and randomly oriented non-

spherical particles with size parameters over 100. The performance of the PSTD on

the scatterers with large refractive indices and inhomogeneous components is also

tested. A systematical comparison between the PSTD and DDA has been carried

out for spherical and spheroidal particles over wide ranges of size parameters and

refractive indices, and the PSTD outperforms the DDA not only for particles with

larger refractive indices (real part lager than 1.4), but also for ones with small re-

fractive indices but large size parameters (e.g. size parameters larger than 80 for

refractive index of 1.2 ).

Because of the lack of an efficient and accurate numerical model for light scat-

tering properties of particles in the resonant range, our understanding on the single-

scattering properties of the atmospheric particles is still limited, and various nu-

merical approximations were involved for scattering simulations. The significant

applicability provided by the current PSTD implementation shows great potentials

on the atmospheric application. The following section of this dissertation will show

some studies on accounting the effects of complexities of the realistic particles for

the scattering properties, and, as we will see, the PSTD implementation provides to

be a robust and powerful method for our approach.

90



3. COMPLEXITY OF THE ATMOSPHERIC PARTICLES *

Compared with the limitation on the scattering methods, our knowledge on the

microphysical properties of the atmospheric particles poses even greater challenge

on accurate modeling of their single-scattering properties, because the atmospheric

particles are highly complex with irregularly nonspherical geometries, heterogeneous

components, and small-scale surface roughness. All those complexities have been

considered to some degree in calculating the single-scattering properties of the ice

crystals or aerosol particles, whereas a lot of approximations were involved due to the

lack of an accurate and efficient light scattering model and quantitative knowledge

on the atmospheric particles.

In this section, the effects of three factors related to the realistic atmospheric

particles on the single- and bulk-scattering properties will be investigated, and each

of the following sub-sections discusses one of them, i.e. irregularity (Section 3.1),

inhomogeneity (Section 3.2) and surface roughness (Section 3.3). A state-of-art com-

bination of the PSTD and IGOM will be used to cover the entire particle size range

from the Rayleigh to the geometric-optics regimes.

3.1 Irregularity

Mineral dust, one of the major components of atmospheric aerosols, is distributed

over a large area of the globe, especially in desert and semi-arid regions, and consid-

erable theoretical and experimental effort has been expended to quantify its radiative

impact [84, 85, 86, 87, 88, 89]. Because of the significant differences in the single and

* Part of this chapter is reprinted with permission from “Modeling the scattering properties of
mineral aerosols using concave and fractal polyhedral” by C. Liu, R. L. Panetta, P. Yang, A. Macke
and A. J. Baran., Appl. Opt., 52, 640-652, and “The effects of surface roughness on the scattering
properties of hexagonal columns with sizes from the Rayleigh to the geometric-optics regimes” by
C. Liu, R. L. Panetta, and P. Yang, in press, J. Quant. Spectrosc. Radiat. Transfer.
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bulk scattering properties between spherical and non-spherical particles, the irregu-

lar geometry of the mineral aerosols becomes an important issue in aerosol retrieval

and climate modeling [84, 88, 89, 90]. (Here we adopt conventional terminology: a

“bulk” property is one obtained by averaging over some specified ensemble, e.g. size

distribution.) Scanning electron microscope (SEM) images show mineral aerosols

to have very irregular and non-spherical morphologies [41], and the complexity of

the morphologies greatly limits the theoretical understanding of aerosol scattering

properties.

It is extremely difficult, and perhaps beyond our current mathematical under-

standing, to describe the exact geometries of naturally occurring dust particles. In

view of these realities, a reasonable approach to the study of scattering in such a

situation is to construct a simple model to represent the complex aerosols of interest,

a model that embodies features that appear to be important differences from sym-

metrical particles, yet are simple enough that they can be handled with numerical

scattering codes that are available. Comparison of numerical results with laboratory

measurements may then be used to assess the degree to which the simple models

can reproduce the scattering properties of aerosols actually observed. Among the

various scattering properties, the full scattering phase matrix is widely accepted as

a focus for studying dust scattering properties, and it will be the focus in this sec-

tion. The laboratory results that will be used are taken from the Amsterdam Light

Scattering Database (ALSD), which provides the phase matrices of mineral aerosols

over broad ranges of sample sizes, kinds, and shapes [85, 41]. In that database, the

measured scattering matrices show similar featureless patterns, even though the size

distributions, shapes, and refractive indices of the aerosol samples are quite differ-

ent. Comparing mineral aerosol samples of known components and size distribution,

the particle shape emerges as one of the most important and uncertain factors in
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determining the overall light scattering behavior of dust aerosols.

Laboratory measurements alone are not enough to establish a complete knowledge

of the size, shape, and wavelength-dependent aerosol optical properties. However,

the measurements serve as the best reference for numerical approximations and mod-

els. A number of simplified and quasi-realistic shapes have been used to model the

optical properties of mineral aerosols, e.g., Gaussian random particles [91], spheroids

[92, 93], triaxial ellipsoids [29], non-symmetric hexahedra [46], polyhedral prisms

[93], agglomerate debris particles [94]. Each study attempted to represent the min-

eral aerosols and their optical properties more realistically and accurately, but used

relatively regular convex geometries that was quite different from the actual parti-

cles. Interactions with incident radiation becomes substantially more intricate when

concave surfaces are present, with rays being “trapped” near the particle surface

and forced to undergo multiple reflections and refractions. Furthermore, most of

those studies used a combination of multiple geometries and considered the scatter-

ing properties at single wavelength, or different geometry fractions are used to match

the scattering properties from measurement at different wavelengths.

Considering the extremely irregular shapes and small-scale structure of the min-

eral aerosols, we attempt to define the particles as complicated and disordered con-

cave polyhedra in order to obtain similar optical properties to those of the aerosols.

Fractal geometries are widely applied to model the irregular and complicated struc-

tures in nature [95, 96]. As described below, it is based on a method using tetrahe-

dron elements, with both the overall and small-scale structures of the particle being

constructed iteratively by tetrahedra of different sizes and shapes.

In order to obtain some understanding on the light scattering characteristics of

irregularly shaped particles, Macke and Tzschichholz [97] and Macke et al. [34] first

simulated light scattering by two-dimensional and three-dimensional fractal particles.
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Mishchenko et al. [4] and Kokhanovsky [98, 99] used fractal particles to model the

scattering properties of irregular atmospheric particles. However, the previous work

used the CGOM, focused only on large particles in the geometric-optics regime, and

resulted in limited results and conclusions. Osborne et al. [88] used the method

of ray tracing diffraction on facets (RTDF) [100, 101] to model the light scattering

properties of fractal mineral dust aerosol, although the RTDF method does not

include phase information or treatment of the inhomogeneity condition for highly

absorbing mineral dust particles.

This section investigates the single-scattering properties of randomly oriented

fractal particles with size ranges from the Rayleigh to geometric-optics regimes. Frac-

tal particles will be used to reproduce the bulk-scattering properties of the mineral

aerosols, and the results will be compared with laboratory measurements from the

ALSD. The bulk-scattering properties of multiple mineral dust particles (feldspar,

red clay, quartz and volcanic ash) at two wavelengths (0.6328 µm and 0.4416 µm)

will be used for the comparison. A detailed discussion on the fractal particle model

and two parameters to specify what we call “irregular fractal particles” is presented

in the next sub-section. The single-scattering properties of the fractal particles will

be discussed in Section 3.1.2, and their applicabilities to represent the scattering

properties of mineral dust particles will be verified in Section 3.1.3.

3.1.1 Fractal particles

Fractal particles, also called Koch-fractal particles, were used to model atmo-

spheric particles by Macke et al. [33], and their scattering properties were expected

to give some insight into the typical scattering features of highly complicated parti-

cles. Two kinds of fractal particles were used: “deterministic” and “random.” Each

kind of fractal is constructed by an iterative method that is based on a single funda-
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mental sequence {Tn} of successively smaller regular tetrahedra that are constructed

from an initial regular tetrahedron T0. T0 has four faces, each an equilateral triangle

with sides of length so. In Figure 3.1 (a), T0 is shown with vertices labeled AoBoCoDo

and altitude OoDo =
√

6so/3, as is easily verified by elementary trigonometry. The

sequence of regular tetrahedra is constructed by successively halving the lengths of

the sides of faces: if sn is the length of a side of Tn, then sn+1 = sn/2. The sequence

{Tn} is used in different ways, depending on whether the fractal particle being con-

structed is deterministic or random, to construct successive “generations” of fractal

particles.

D0 

O0 

C0 

B0 

A0 

B1 A1 

C1 

D1 

(a) (b) 

C0 

B0 

A0 

ρ2 

ρ3 

 ρ1 =A1 

C1 

D1 

B1 

Figure 3.1: Constructions of (a) regular and (b) irregular fractal particles.

Figure 3.1(a) illustrates the geometry of the procedure used in constructing a first-

generation regular (or deterministic) fractal particle. To each face of the starting (or

“zeroth-generation”) fractal F0 = T0, a copy of T1 is attached, with the vertices of

the T1 copy placed at the midpoints of the sides of the given face of T0: in Figure

3.1(a), the attachment shown is to the bottom face. The same procedure is used for

each of the remaining three faces, and the result is a “first-generation deterministic
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fractal” F1. This first-generation fractal has faces that are all equilateral triangles,

and to each of these faces a copy of T2 can be attached in an analogous manner

to produce a second-generation deterministic fractal F2: this construction can be

further iterated as often as desired. The nth generation fractal Fn has 4× 6n faces,

each of which is an equilateral triangle with sides of length sn = s0 × 2−n. Figures

3.2 (a)-(d) show deterministic fractals of generations zero to three.

Figure 3.2: The regular fractal particles from the zero to the third generations ((a) -
(d)), and the second generation irregular particles (the irregularity parameter of (e),
(f), (g) and (h) are 0.1, 0.2, 0.3 and 0.3, and the aspect ratio of (h) is 1.7).

Two important features of this construction should be noted. First, while F0 = T0

is convex (any two points in T0, including points on the surface, can be connected by
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a straight line segment lying within T0 or on its surface), all succeeding generations

are concave: for n larger than 0 there exist points within Fn for which the connecting

line segment lies all or in part outside Fn. The second point is that, in the particle

construction, the height of the fractal particle never exceeds the sum of the altitudes

of T0 and T1, i.e. D0D1 in the figure (i.e., D0D1 = OD0 +OD1 =
√

6
3
s0 +

√
6

6
s0 =

√
6

2
s0

).

The aspect ratio of the fractal particle, intuitively the “Height” divided by the

“Width,” may be defined as follows. Consider the orientation of T0 in Figure 3.1(a)

as determining the vertical and horizontal directions. For successive generations, the

height H will be the maximum length of a vertical line segment that lies entirely

within the particle, and the width W will denote the diameter of a circle that cir-

cumscribes the area of the particle’s projection on a horizontal plane. The aspect

ratio is then defined to be

AspectRatio =
H

W
=
Height

Width

Simple geometrical arguments establish the fact that the aspect ratio of a first or

higher generation regular tetrahedron is

AspectRatio(F1) =
3
√

2

4
≈ 1.06

The construction of regular fractal particles is deterministic, and results in con-

cave particles whose surfaces may be complicated but have symmetries inherent in

the use of regular tetrahedra. Naturally occurring mineral particles are much more

complicated and irregular. Following Macke et al. [33], we eliminate the symmetries

in fractal particle construction by at each successive generation using irregular tetra-

hedra constructed by making random displacements of attachment points on a face,
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and random determinations of the position of the apex of the attached tetrahedron.

The process involves an irregularity parameter β, a real number in the interval [0,

0.5), where to attach a successor generation tetrahedron, and how to determine the

position of its apex. In this generation process, T0 is used as a starting point, but the

successor Tn are only used as guides, in a manner that is now described (illustrated

in Figure 3.1 (b)).

As in the case of the regular fractal the starting point is the regular tetrahedron

T0. In the case of a regular fractal, the first generation particle is constructed by

attaching a copy of the tetrahedron T1 to each face: the attachment points were the

midpoints of the edges of a face. Now, instead, attachment points (ρ1, ρ2, ρ3 ) are

chosen (independently) at random to be in intervals of length 2βs0 that are centered

on each of these midpoints. The ρi define the base of the irregular tetrahedron

to be attached to the face. What remains is determination of the apex ρ4 of this

tetrahedron. For the determination we make temporary use of an auxiliary copy T ′1,

with vertices (A1, B1, C1, D1) of the regular tetrahedron T1. The face of T ′1 with

vertices (A1, B1, C1) is brought in contact with the bottom face of T0, as in the

beginning of the regular construction, so that the bottom face of T0 and the face (A1

, B1 , C1 ) of T ′1 are in the same plane. One of the ρi is chosen at random (say ρ1 on

edge B0C0) to be an attachment point for a vertex (say A1) of T ′1 (see Figure 3.1(b)).

We then rotate T ′1, keeping it in contact with the bottom face of T0, as needed until

the edge B1C1 of T ′1 opposite this vertex becomes parallel to the edge B1C1 of T0

on which the point ρ1 lies (the two edges referred to are indicated with dashed lines

in Figure 3.1(b)). During this rotation about the point ρ1 the vertex D1 changes its

position. Given this position at the completion of the rotation, the apex ρ4 being

sought is a point chosen at random in a cube of side βs1/4 centered at the position

and oriented parallel to the faces of T0 and T ′1 that are in contact. The tetrahedron T ′1
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is then discarded, and the next generation (irregular) tetrahedron that is being added

to the fractal particle under construction is constructed to have vertices (ρ1, ρ2, ρ3,

ρ4). This process is repeated on the other three faces to produce the first generation

irregular fractal particle. It should be clear how the construction can proceed to

higher generations, with copies of Tn used as auxiliary guides at generation n.

Previous studies using fractal particles have chosen aspect ratios near unity. We

would like to consider particles with aspect ratios departing significantly from 1.

However, as mentioned above the aspect ratio of the regular fractal particle is ap-

proximately 1.06. Moreover, the aspect ratio of the irregular fractal particles con-

structed in the manner just described does not depart significantly from this value,

essentially due to the constraint on the aspect ratio of the irregular fractal particle

construction imposed by the fact that T0 is a regular tetrahedron. To weaken this

constraint, we introduce another degree of freedom in the construction of irregular

fractal particles by including a compression/stretching transformation governed by

a parameter that we call the “aspect ratio for a fractal particle,” or AR for short. In

terms of this parameter, we stretch or compress the particle in the vertical direction

by changing the vertical distance z of each point in the particle from the base plane

of T0 according to the linear mapping:

z′ =
AR

1.06
z.

Depending on whether AR is larger or smaller than 1.06 this is a vertical stretching

(giving a “prolate” particle), or compression (giving an “oblate” particle).

In Figure 3.2, panels (e) to (h) show examples of second generation irregular

particles: in panels (e)-(g) the choices of β are 0.1, 0.2, 0.3 and AR = 1.06, while in

panel (h) the result is shown of applying the stretching transformation to the fractal

99



in Figure 3.2 (g), with AR = 1.7.

3.1.2 Single-scattering properties of fractal particles

With the fractal geometry constructed, we will consider the scattering properties

of the fractal using both the IGOM and PSTD. The single scattering properties

shown in this section include the following three parts. First, the IGOM is used to

simulate the scattering properties of the large particles, which may much larger than

the mineral dust particles. The second part shows the PSTD results for particles

with relatively small particles sizes, and the combination of the PSTD and IGOM

results are given at the end of this section. The size of fractal particle is specified by

the length of the initial tetrahedron side, or by the size parameter x = 2πr/λ, where

r is the radius of a sphere with the same projected area as that of the fractal particle

(averaged over random orientations). In what follows we will show some results with

fractals of different generations, but our main focus will be on second-generation

fractal particles, each of which has 144 triangular surfaces.

Figure 3.3 shows how the phase matrix elements, as calculated using the IGOM,

change with particle generation for the first 5 generations in a regular (deterministic)

construction. The length of the initial tetrahedron side is fixed at 100 µm. The

incident wavelength and refractive index are 0.6328 µm and a.5 + 0.001i (, which

are used in this section). The figure shows that the phase matrix elements of the

zero generation fractal particle, a regular tetrahedron, differ significantly from those

of higher generations, especially for backward scattering. The phase functions of

all the generations greater than zero have a peak around the scattering angle of

50o from the initial tetrahedron surfaces. A second peak that is not present for

the zeroth generation particle occurs around 160o, caused by the surfaces of the first

generation tetrahedra. With an increase in the fractal generation, the peak at around
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50o becomes weaker, whereas the phase functions with scattering angles larger than

60o become higher, as do the 160o peaks. The fractal particle backscatter increases

significantly with the growth of the fractal generation. However, for the ratios of

the non-zero elements to the phase function, the differences between the zero and

first generations are significant, while the higher generations (second to fourth) show

similar ratios to those of the first generation.
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Figure 3.3: Comparison of the non-zero phase matrix elements of the zero to fourth
generation regular fractal particles given by the IGOM. The length of the initial
tetrahedron’s side is 100 µm.
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Figure 3.4: Comparison of the non-zero phase matrix elements of the second genera-
tion regular and irregular fractal particles having different values of the irregularity
parameter β. Computations use the IGOM and the length of the initial tetrahedron’s
side is 100 µm.

Figure 3.4 compares the phase matrix elements of the second generation regular

and irregular fractal particles, with the length of the initial tetrahedron side still

taken to be 100 µm. (A fractal particle with β = 0 indicates a regular particle, and

values with β > 0 are “irregular” particles.) The initial aspect ratio 1.06 is kept for

all fractal particles. With an increase of β, random displacements for the vertices

of the fractal particles can become greater and the angles between the triangular
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surfaces show more variation. The effects of this are that the scattering peaks at

50o and 160o are smoothed, and the ratios of the non-zero elements to the phase

functions become considerably more even. This is because the scattering peaks are

due to special surface symmetries and relations between face intersection angles, and

these symmetries and angle relations are increasingly disrupted as increases of β

bring increasing displacement of vertices.

For each value of β used in Figure 3.4 a particular sequence of random-number

calls as indicated in the previous paragraph was made, the result being a single “re-

alization” of the fractal construction. It may be expected that different realizations

may produce particles with different phase matrix elements. Figure 3.5 shows results

from five different realizations of construction of second generation particles using

β = 0.3: while differences among realizations all having the same shape parame-

ters are noticeable, the differences are much less than the differences seen in Figure

3.4 when results with different values of β are compared. This indicates that, for

fractal particles with specified shape parameters, the individual realizations result in

differences in geometrical features that have relatively little influence on the scatter-

ing properties. The implication is that the scattering properties of a single particle

realization is enough to represent that of fractals with the same shape parameters,

a finding of considerable importance when computations of individual realizations

become costly due to large particle size.
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Figure 3.5: Comparison of results for the non-zero phase matrix elements of the sec-
ond generation irregular fractal particles, with different realizations of fractal parti-
cles all having β = 0.3 and AR = 1.06. Computations use the IGOM and the length
of the initial tetrahedron’s side is 100 µm.

Figure 3.6 illustrates the phase matrix elements of second generation fractal par-

ticles with different aspect ratios but the same size as in the calculations shown in

Figures 3.4 and 3.5. Two oblate fractals with aspect ratios of 1/3 and 1/2, and two

prolate fractals with aspect ratios of 2 and 3, as well as the regular one (AR = 1.06),

are used for the simulations. Regular fractals with β = 0 are used; without random

displacements of the vertices, the fractal surfaces can retain some of the regularity
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in facial intersection angles that can give the scattering peaks. The most significant

differences for the regular fractals with different aspect ratios are the scattering an-

gles at which the various peaks occur. This is presumably due to differences in the

angles between the fractal faces. As the AR departs from 1.06, either increasing or

decreasing, the peak at scattering angle near 50o moves to the forward direction.

There also appears to be an enhancement of backscattering at about 170o as AR

decreases from 3 to 1/3, but the enhancement is not entirely systematic.
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Figure 3.6: Comparison of the non-zero phase matrix elements of second generation
regular particles with different aspect ratios. Computations use the IGOM and the
length of the initial tetrahedron’s side is 100 µm.
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The previous results were calculated by the IGOM for particles much larger than

the wavelength. Figures 3.7 and 3.8 show the phase matrix elements given by the

PSTD for relatives small particles, and the equivalent-projected-area size parameter

of the fractal particles is 30. Figure 3.7 illustrates the effects of the irregularity

parameter with fixed aspect ratio of 1.0, and Figure 3.8 shows the influences of

the aspect ratios on the irregular fractals with second generation and irregularity

parameter 0.3. Different from the IGOM results, the irregularity parameter shows

little influence on the phase matrices in Figure 3.7, especially the phase functions,

because, for the small particles, the detailed fractal structures are comparable or

even smaller than the incident wavelength. The small differences on the particle

geometries are all smoothed out by average over particle orientations. However,

the aspect ratios of the fractal particles are still important on determining scattering

properties of irregular fractal particles as shown by Figure 3.8. The black cures in the

figure indicates the results of a fractal particle with an aspect ratio of 1, and, as the

aspect ratio departs 1, P11 at scattering angles lager then 50o decrease. The other

non-zero phase matrix elements also show some sensitivities on the aspect ratios,

whereas similar trends are obtained for all aspect ratios. Furthermore, the prolate

(AR larger than 1) or oblate (AR smaller than 1) particle has the same effects on the

phase matrix elements, and this is clearly shown by the close scattering properties

for the fractal particles with aspect ratios of 0.6 and 1.7.
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Figure 3.7: Comparison of the non-zero phase matrix elements of second generation
fractal particles with different irregular ratios given by the PSTD. The aspect ratio
of the particle is set to be 1, and the equivalent-projected-area size parameter is 30.
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Figure 3.8: Same as Figure 3.7 but for fractal particles with different aspect ratios.
The irregular ratio of the particles is set to be 0.3.

In Figure 3.9, a combination of the PSTD and IGOM was used to calculate

the integral scattering properties of particles within the entire size range from the

Rayleigh to geometric-optics regimes. Both IGOM results with and without the edge

effects included are shown. Figure 3.9 illustrates the Qext, Qabs, SSA, and g of second

generation irregular fractal particles, with size parameters from approximately 0.4

to over 4000. The values of β and aspect ratio of the fractal particle are 0.3 and 1.7,

respectively, and the size parameter is defined in terms of the equivalent-projected-
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area sphere. To cover the whole size range, the PSTD is employed for particles with

size parameters less than 25, and the scattering properties of the larger particles

are calculated by the IGOM. An exact solution for the edge effect in the case of

complicated geometries is not available, so a semi-empirical method is used to bridge

the gap between the results given by the numerically exact methods and those of the

IGOM [38]. For size parameter x, the edge effect contributions are:

Qext,edge =
fext
x2/3

,

Qabs,edge =
fabs
x2/3

.

The factors fext and fabs are the differences between the values of the extinction

and absorption efficiencies, calculated by the twomethods, according to the phase

matrices they determine. The total extinction and absorption efficiencies are then

the sum of the IGOM results and the contributions from the edge effects, Qext,edge and

Qabs,edge. Comparing the IGOM results with and without the edge effect, we see that

small inconsistencies between the efficiencies given by the PSTD and IGOM results

are removed by considering the edge effects. As expected, the extinction efficiency

converges to 2 for the large particles. The absorption efficiency is close to zero for

small particles, because of the relatively small imaginary part of the refractive index

used, and increases to over 0.9 for large size parameters. The asymmetry factors

of the fractal particles oscillate slightly for size parameters from 5 to 30, but the

oscillations decrease with increasing size parameter x, and results merge smoothly

with those of IGOM calculations at about x = 25. A combination of the PSTD and

IGOM can evidently provide accurate single-scattering properties of fractal particles

over the entire range of size parameters. Similar results were obtained for triaxial
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ellipsoids and nonsymmetric hexahedra by Bi et al. [29, 46].
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Figure 3.9: The integral scattering properties of fractal particles given by the PSTD
and IGOM. The irregularity parameter and aspect ratio of the fractal particles are
0.3 and 1.7.

To validate the IGOM results, a calculation was done using both IGOM and

PSTD. Figure 3.10 illustrates the phase matrix elements of the irregular second

generation fractal particle calculated by each of the two methods. The same fractal

realization as that used for Figure 3.9 was chosen, and the size parameter based

on the equivalent-projected-area sphere is 25, which appears to be the critical size

parameter for the two methods, and above which the PSTD and IGOM results agree

quite well. Here, for x = 25, the phase functions given by the PSTD and IGOM show

excellent agreement, except for the backward scattering around 180o. Differences for
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the other phase matrix elements are noticeable, but the same patterns are obtained.

The agreement indicates the safety of applying the IGOM for fractal particles with

size parameters larger than 25, even though the fractal particles have numerous

small-scale structures.
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Figure 3.10: Comparison of the non-zero phase matrix elements of irregular second
generation fractal particles given by the PSTD and IGOM. The same particle real-
ization as that of Figure 3.9 is used, and the equivalent-projected-area size parameter
of the particle is 25.
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3.1.3 Comparison with the measurements

The ALSD [41, 85] provided measured bulk phase matrices of various mineral

dust particles, and this section compares the calculated scattering properties with

those measurements to show the applicability of the fractal particles. Based on the

results shown in the previous section, we use the second-generation irregular fractal

particles, and, to match the scattering properties of different mineral dust samples at

two different wavelengths, fractal particles with different aspect ratios are used. The

refractive index of 1.55 + 0.0001i and irregularity parameter β = 0.3 are used for the

fractal particles. Figure 3.11 shows the integral scattering properties Qext, SSA and

g as functions of particle size parameter, and the PSTD and IGOM are used for the

simulations. The size parameter is defined based on the equivalent-projected-area

sphere. Four fractal geometries with aspect ratios of 0.6, 1.0, 1.7 and 2.5 are used

for the simulation, and the results are similar to those in Figure 3.9. It is show that

Qext of the four fractal geometries all converge to 2 as the size increases, whereas

shows different oscillations and peaks. The SSA and g of the fractal particles with

aspect ratio of 1 show smaller values than those with aspect ratios larger or smaller

than 1. It should be noticed that, similar to the phase matrix elements of single-size

fractal particle in Figure 3.8, the integral scattering properties of fractal geometries

with the aspect ratios of 0.6 and 1.7 are also coincident. Thus, this study uses the

scattering properties of only three fractal geometries with aspect ratios of 1.0, 1.7

and 2.5 to match the laboratory measurements.
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Figure 3.11: The integral scattering properties of randomly oriented second genera-
tion fractal particles with four different aspect ratios given by the PSTD and IGOM.
The irregularity parameter of the fractal particles are 0.3.

The phase matrix elements from four kinds of mineral dusts at two wavelengths

(0.4416 µm and 0.6328 µm) are modeled, and we change the habit fractions of the

three fractal particles to get the best agreement of the phase functions at the two

wavelengths. Table 3.1 lists the size parameters for the mineral dusts and habit

fractions “F” of fractal particles. The feldspar, red clay, quartz and volcanic ash

(Pinatubo) have effective radii from 1.0 to 3.0 µm, and variances up to 12.3, and

the details of those measurement can be found from [41]. We use no more than two

particle geometries for each sample. Similar comparisons have been obtained using
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model shapes that are simpler than the fractal particle, e.g. spheroids [92, 93], triaxial

ellipsoids [29], non-symmetric hexahedra [46], polyhedral prims [93], agglomerate

debris [94]. It is important to note that in these studies a combination of multiple

geometries was needed to match the experimental data (more than two), or different

habit fractions were used for the phase matrix elements at two different wavelengths.

Dubovik et al. [102] indicated that the most widely used spheroid model cannot

reproduce the spectral-dependence of the feldspar particles. Zubko et. al. [94]

used the agglomerate debris of same habits to achieve acceptable agreement with

the measurement at two wavelengths, whereas only the feldspar particles that have

a relatively small effective radius are used for the comparison. As we will show

later, the scattering properties based on the fractal geometries cannot only match

the phase matrix elements of all those four mineral dusts much better but also show

good performance at both wavelengths with the same habit fraction.

Table 3.1: The size parameters of the mineral dusts and habit fractions of fractal
particles with different aspect ratios to reproduce the phase matrix elements of the
mineral dust.

Mineral Dust reff (µm) veff F(AR=1.0) F(AR=1.7) F(AR=2.5)

Feldspar 1.0 1.0 0.0 0.3 0.7

Red clay 1.5 1.6 0.0 1.0 0.0

Quartz 2.3 2.3 0.3 0.7 0.0

Volcanic ash (Pinatubo) 3.0 12.3 0.6 0.4 0.0
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Figure 3.12: Comparison between results of the bulk phase matrix elements of nu-
merically simulated fractal particles and the laboratory measurements for feldspar
particles at the 0.4416 µm and 0.6328 µm wavelengths. The particles have an effec-
tive radius of reff = 1.0 µm and effective variance of veff = 1.0.

Figure 3.12 shows a comparison between the bulk phase matrix elements of nu-

merical simulations based on the fractal particles and laboratory measurements for

sampled feldspar. The results at wavelength 0.4416 µm are indicated by blue, and

the red are for 0.6328 µm. The measurements are shown by the circles (as “M” in

the figure), and the curves are those from the fractal models (as “F”). It should be

noticed that not only the phase functions, but also P12/P11 and P33/P11 given by

the fractal particle fit almost exactly with the measurements at both wavelengths,
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and only slight differences at the scattering angles from 120o to 150o are shown for

P44/P11. However, the agreements for P22/P11 and P43/P11 are not as well as the

others, and the differences reach as larger as 0.2 and 0.05 at scattering angles from

50o to 150o, respectively.
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Figure 3.13: Same as Figure 3.12 but for red clay (reff = 1.5 µm and veff = 1.6).

Figures 3.13, 3.14 and 3.15 are the same as Figure 3.12, but for different dust

particles: red clay, quartz, and volcanic ash (Pinatubo), respectively. The worst

agreements are for the red clay with only P11 and P12/P11 achieve good agreement,
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and the deviations for other four elements are quite significant. Similar deviations

for the red clay comparison were also obtained for spheroids models [92]. For quartz,

only the fractal particle with an aspect ratio of 1.7 is used, and all elements show close

agreement with the measurements (expect in the case of P43/P11). The computed

results (a combination of fractal particles with aspect ratios of 1.0 and 1.7) for the

volcanic ash are similar to those for the quartz with significant disagreement only

for the P43/P11 elements.
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Figure 3.14: Same as Figure 3.12 but for quartz (reff = 2.3 µm and veff = 2.3).
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Figure 3.15: Same as Figure 3.12 but for volcanic ash (Pinatubo, reff = 3.0 µm and
veff = 12.3).

Overall, with only three geometries, the fractal particles modeled the phase ma-

trices of four mineral dusts at two wavelengths. All results show accurate agreements

for the phase functions and linear polarization ratios (−P12/P11) that are two most

widely used elements in current applications. Meanwhile, the fractal model gives rel-

atively poor performances for P43/P11 of all mineral dusts. The measured P22/P11,

P33/P11 and P44/P11 of the red clay have slightly different trends from those of other

samples, and, similar to the spheroid models, the calculated results from the fractal

model give a poor representation of them. This may be caused by uncertainties in
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the refractive indices or some special geometric characteristic of the samples.

3.1.4 Conclusion

This section investigates the single-scattering properties of complicated concave

polyhedra, regular and irregular fractal particles, with sizes ranging from the Rayleigh

to geometric-optics regimes. To compute the single-scattering properties of fractals

across this range, a combination of the PSTD method and the IGOM has been ap-

plied. The PSTD method is used to calculate the scattering properties of particles

with small-to-moderate size parameters, and the IGOM is employed for particles

with moderate-to-large size parameters. The scattering properties of the fractal par-

ticles of different generations have been investigated, and the effect of the irregularity

parameter β and aspect ratio used to define the irregular fractal particles has been

illustrated. The phase functions, given by the PSTD method and the IGOM, show

acceptable agreement for randomly oriented fractal particles with size parameters

starting approximately 25 to 30. A smooth transition for the integral scattering

properties as particle size increases given by the PSTD method to those given by the

IGOM has been demonstrated.

The fractal geometry shows significant applicability in modeling the scattering

properties of mineral dust. The numerically simulated bulk phase matrices are com-

pared with the laboratory measurements for feldspar, red clay, quartz, volcanic ash

at wavelengths of 0.4416µm and 0.6328µm. Different from the pervious studies

that use multiple geometries and different habit fractions at different wavelengths,

a single or two irregular second-generation fractal particles can accurately represent

the laboratory-measured bulk optical properties of mineral dust aerosols of different

kinds at two wavelengths, even with most of the polarization states of the scattered

light considered. However, the polarization properties of some dust particles are sig-
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nificantly different, and the performance of the fractal particles is also challenged for

some other mineral dusts with larger effective diameters.

In reality, of course, mineral aerosols are more complicated than even the irreg-

ular fractals considered here. Nevertheless, this study shows success in using to a

simplified fractal model to capture the main optical properties of irregular particles

in the atmosphere, without significant loss of accuracy. Compared with the previous

approaches [91, 92, 29, 46, 93], more complicated concave particle morphologies are

represented by the fractal particles. The comparison between the numerical simula-

tions and laboratory measurements suggests the irregular fractal particles might be

used to model the scattering properties of the mineral aerosols and have a promising

future for aerosol retrieval applications and climate research.

3.2 Inhomogeneity

In general, the natural aerosols occur as mixtures with various components whose

optical properties vary significantly, and the quantitative particle shapes, sizes, num-

bers of components, and mixing states are unknown [103, 104, 105]. However, in

radiative transfer and remote sensing simulations, the atmospheric particles are usu-

ally treated as homogenous ones, the optical properties of which are easier to be

estimated [90, 102]. The effective medium approximations (EMAs) are used to cal-

culate an effective refractive index for a mixture, with which the homogeneous one is

expected to have similar optical properties to its inhomogeneous counterparts, and

a variety of EMAs have be developed and used for atmospheric aerosols [106, 107].

The first developed EMA, the Maxwell-Garnett (MG) theory [108, 109], was

used on dust aerosols by Longtin et al. [110] in 1988. The Bruggeman (BR) theory

[111, 112], another popular EMA, has also been widely used to study the radia-

tive properties of the mineral aerosols [113, 114]. In addition to the MG and BR
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theories, Sokolik and Toon [113] chose the simple volume average approximation

to calculate the effective refractive indices of aerosols. The performances of nine

EMAs, developed for a variety of different shapes, size distributions, physical prop-

erties, and inhomogeneous internal structures, have been reviewed by Kolokolova

and Gustafsonm [107].

The EMAs and the homogenous approximations are widely used in atmospheric

research [90, 102, 107, 113, 114], whereas the applicability and accuracy of them are

still limited and not well tested. Chylek et al. [115] and Kolokolova and Gustafsonm

[107] compared the EMA results with experiments for spheres with small inclusion

amounts, and both found acceptable agreement between the calculated and measured

values. From numerical computations, Perrin and Lamy [116] found the application

of the EMAs to the study of the interaction of light with the inhomogeneous dust

particles to be limited. However, Voshchinnikov et al. [117] indicated the EMAs

could be used to simplify the computation of the optical properties of aggregates

containing only Rayleigh inclusions. Both studies [116, 117] used the sphere as the

particle shape. The EMAs have also been applied to some specific cases, e.g., water

coated soot aggregates by Liu et al. [118], and the MG was found to provide more

accurate approximations for the scattering properties of coated aggregates than the

BR. However, each of the studies used the EMAs with significant limitations on

particle size, shape, mixing structure, or volume fraction of the components, and

drew substantially different conclusions.

This section provides a systematic insight on the applicability of the EMAs in

solving problems of light scattering by the inhomogeneous atmospheric aerosols. Four

EMAs, three mixing states, and two particle shapes will be considered. The details

of the four EMAs, i.e. MG, BR, VA1, and VA2, are discussed in Section 3.2.1. We

consider mixtures containing only two components with the volume fractions of each
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varying from 0 to 1. For each inhomogeneous particle, an approximated and an

exact method are used to calculate their scattering properties. The approximated

method treads the inhomogeneous particles as homogeneous one with the EMA,

and the Lorenz-Mie theory or the T-matrix theory is then used to calculate the

scattering properties of the equivalent homogeneous particles. It should be noticed

that the Lorenz-Mie and T-matrix results are understood as the approximations,

because they are used for the equivalent homogeneous particles, not the original

inhomogeneous one. Meanwhile, as references, the PSTD method and the core-

mantle Mie [10, 11] theory are used to give the exact scattering properties of the

inhomogeneous particles. Thus, the applicability and accuracy of the EMAs can be

evaluated by comparing the results from the PSTD/core-mantle Mie methods with

the results from a combination of the EMAs and Lorenz-Mie/T-matrix theories.

3.2.1 Effective medium approximation

Models using the EMAs try to replace an inhomogeneous particle, i.e. particles

having internal variations of refractive indices, with a homogeneous particle, having

a single “effective” refractive index, which yields approximately the same scattering

properties. The MG [108, 109], whose history dates back to 1904, was one of the first

attempts to approximate the optical properties of inhomogeneous materials. The MG

considers a mixture of two components as the medium and the inclusion with small

volume fractions; whereas the BR describes two components of an inhomogeneous

particle symmetrically [111, 112]. The MG and BR are two of the most popular

EMAs, and the effective permittivities εeff in the two approaches are defined to

satisfy the following relations:

The MG:

εeff − ε1
εeff + 2ε1

= f1
ε1 − ε2
ε1 + 2ε2

, (3.1)
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and the BR:

f1
ε1 − εeff

εeff + s(ε1 − εeff )
+ f2

ε2 − εeff
εeff + s(ε2 − εeff )

= 1, (3.2)

where ε1 and ε2 are the permittivities of the two components, and f1 and f2 are their

volume fractions. In Equation 3.2, s is a geometric factor depending on the shape of

the inclusion, and, for three-dimensional spherical inclusions, s is 1/3. In the frame

of the MG, the volume fraction of the inclusion (ε2 in Equation 3.1) is assumed to

be “small” [119], but this limitation will not be considered in our study. However,

the BR is designed to give a symmetric description for the effective permittivity

of the two components without limitation on the volume fraction of the constituent

materials. For atmospheric aerosols, the complex refractive index m is generally used

to specify different materials, and is related to the complex permittivity ε by m2 = ε

. The real and imaginary parts of the refractive index m are expressed as n and k,

i.e., m = n+ ki.

In this study, we also employ the most straightforward method to obtain the

effective refractive indices based on the volume averages (VA). The VA can be per-

formed with respect to linear average of either the permittivities or refractive indices,

and εeff are given by the following equations:

the VA1:

εeff = m2
eff = (f1m1 + f2m2)2 = (f1

√
ε1 + f2

√
ε2)

2
(3.3)

and the VA2:

εeff = f1ε1 + f2ε2 (3.4)

The VA based on a linear combination of refractive indices (Equation 3.3) will, there-

after, be referred to as VA1, and the average based on the permittivities (Equations

3.4) will be mentioned as VA2.
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Besides the four EMAs mentioned above, there are a couple of more complex

and specified approaches, and an extensive review of the existing mixing rules can

be found in [107]. However, most of them give relatively close effective refractive

indices, and this study will focus on only those four simple and popular EMAs, i.e.

MG, BR, VA1, and VA2 represented by Equations 3.1 to 3.4.

Figure 3.16: The real (upper panels) and imaginary (lower panels) parts of the
effective refractive indices calculated by the four EMAs as functions of the volume
fractions (f1) and real part n2 of refractive index m2. m1 is fixed to be 1.5 + 0.0001i
and k2 = 0.

Before comparing the optical properties of the inhomogeneous and equivalent

homogeneous particles, we directly compare the effective refractive indices given

by the four EMAs. Figure 3.16 illustrates and compares the real parts neff (top
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panels) and imaginary parts keff (lower panels) of the effective refractive indices

meff calculated by the four EMAs. In Figure 3.16, the refractive index of one

component is fixed, m1 = 1.5 + 0.0001i, but the volume fraction f1 and the real part

n2 of the other refractive index are changing as the x- and y-axes, respectively. The

imaginary part of m2 is set to be 0. The left most panels of Figure 3.16 show neff,BR

and keff,BR, and the subscript BR indicates that values are calculated by the BR.

With the volume fraction f1 increasing from 0 to 1, neff,BR gradually changes to 1.5,

and, for different n2, the changes of neff,BR are significantly different. However, with

k1 and k2 fixed at 0.0001 and 0, the keff,BR shows little variance for a different n2

at a given volume fraction f1. In Figure 3.16, to illustrate the relative difference of

the four methods, the neff and keff calculated by the MG, VA1, and VA2 are shown

as ratios to the corresponding values from the BR. When n2 is close to n1 (1.5),

i.e., with |n2 − n1| < 0.1, the three ratios are all approximately 1, and this indicates

that the four EMAs are equivalent on calculating effective refractive index of two

components with their differences between the real parts of the refractive indices

less than 0.1. When |n2 − n1| > 0.1, the differences of neff given by the different

EMAs become more noticeable and increase with an increase of |n2 − n1|. However,

the magnitude of the relative differences between the MG or VA1 results and those

given by the BR is no more than 0.8%. Both neff,V A1 and neff,V A2 are larger than

those given by the BR, and neff,V A2 can be over 2% larger than those given by the

BR. With both fixed and relatively small (0.0001 and 0) imaginary parts for the two

components, the keff,BR is almost independent on n2. keff given by the BR, MG

and VA1 are relatively close, and the differences increase as |n1−n2| increases. Both

the VA1 and VA2 give larger keff than those from the BR when f1 and n2 are small,

and the ratios of keff,V A2 to keff,BR even reach 2. To limit the number of variables,

we will not consider the absorption in this study, and only very small imaginary
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parts are used. However, some of the atmospheric particles are highly absorptive,

and the influences of the EMAs on the scattering properties of absorptive particles

are interesting topics for further studies.

Figure 3.17: Same as Figure 3.16 but as functions of the imaginary part k2 of refrac-
tive index m2. m1 is fixed to be 1.5 + 0.0001i and n2 = 1.3.

Similar to Figure 3.16, Figure 3.17 illustrates the real and imaginary parts of the

effective refractive indices as functions of volume fraction f1, but the y-axis is for k2.

m1 is 1.5 + 0.0001i, and n2 is fixed to be 1.3. The figure shows the influence of the

imaginary part of the refractive indices on the EMA results, and is organized the same

as Figure 3.16. Although n1 and n2 are fixed, the neff,BR shows slight differences

with an increase of k2 at fixed volume fraction f1, and the variance becomes larger

126



when k2 becomes close to 1. With the small imaginary part for the component 1,

keff,BR decreases as an increase of the volume faction f1, and show totally different

rates with a different k2. When k2 is smaller than 0.2, all four EMAs give almost the

same neff . The differences become obvious when k2 is larger than 0.4. The MG may

give either smaller or larger n2 values than the BR, but the VAs’ results are always

smaller. However, the relative differences between the BR and the MG (or VA1) are

no more than 1%, except for the neff given by VA1 with k2 larger than 0.9. The

neff,V A2 may be over 5% smaller than the BR results with k2 larger than 0.7 and f1

around 0.5. For keff , the values given by the four EMAs differ significantly, and the

difference increases with increases of k2 and f1.

3.2.2 Inhomogeneous particles

As discussed in the previous section, the application of the four EMAs depends

only on the volume fractions of the components, and is independent of the particle

shape or mixing state. However, the scattering properties of inhomogeneous particles

with different shapes or mixing states may be substantially different. In current

remote sensing and global climate models [90, 102], the aerosol particles are widely

treated as either homogeneous spheres or spheroids, and this study specifies the

particle overall shapes as both spheres and non-spherical (i.e. spheroids with an

aspect ratio of 0.5 as an example).

Another important factor that is widely investigated is the mixing state of the

atmospheric aerosols. The attached and uniform mixtures are the most widely used

structures to model inhomogeneous aerosols [104, 120], e.g. attached mineral dust

and black carbon [121], the uniformly mixed sulfate and organic particles [122], and

sea salt and silicate mineral component [123]. The stratified particles are also very

common in the atmosphere, e.g., aerosol particles surrounded by condensed water
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vapor [124] and black carbon coated by sulfate [125]. Based on the reality of the

atmospheric aerosol particles, three mixing states are considered:

1) Stratified particles: one component coated by the other. The core and mantle

parts are concentric, and the spheroids have the same aspect ratios;

2) Attached: a combination of two attached parts with different components to

form the overall shape of a sphere or spheroid. The connecting surface is assumed

to be planar and is perpendicular to the symmetric axis of the spheroids; and,

3) Uniformly mixed: the two components mixed uniformly throughout the entire

particle. The spherical or spheroidal particle is formed by randomly arranged small

cubical elements of the two components, and the single elements are small enough

to be treated as Rayleigh scatterers (x << 1). The PSTD or DDA simulations,

in which the particles are described in discrete domain ( using either grid cells or

dipoles), are straightforward to consider this case, and each single grid cell or dipole

is randomly defined as one of the components with given overall volume fraction.

Figure 3.18 illustrates the inhomogeneous spheres (upper panels) and spheroids

(lower panels) with the three mixing states. The dark and light regions represent

components that have different refractive indices m1 and m2. For the stratified

particles, one component can be either the core or the mantle, and the scattering

properties of both cases will be studied.
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a). Stratified Mixed b). Externally Mixed c). Internally Mixed
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1
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2

(a) Stra(fied                    (b) A.ached                (c) Uniformly 

Figure 3.18: Three mixing states to model the inhomogeneous particles: (a) Strati-
fied; (b) Attached; and, (c) Uniformly mixed, with overall geometries of sphere and
spheroid.

The two components with the refractive indices of m1 = 1.5 + 0.0001i and m2 =

1.3 are used in this study. In what follows, when we refer to the volume fraction, we

mean the fraction of m1, i.e., f1 (and f2 = 1−f1). The size parameter x of a spheroid

is defined in the form of x = 2πb/λ, where b is the semi-length of the symmetry

axis. The aspect ratio a/b equals 0.5, and a is the equatorial radius. For stratified

particles, the “stratified 1” refers to the case with the component m1 being the core,

and “stratified 2” with m1 being the mantle. As we have discussed in Section 2.4.4,
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the applicability and accuracy of the PSTD on those inhomogeneous particles have

been well verified by comparing with the exact or highly-reliable results, and their

results will be used to validate the EMAs. Meanwhile, the core-mantle Mie will be

used for the spheres with stratified structures. All scattering properties considered

are for randomly oriented particles. To account for the effect of random orientations

in the PSTD simulations, the single-scattering properties of spheroids with three

mixing states and the attached spheres are averaged over 180 scattering planes for

16 particle orientations.

3.2.3 Applicability of the EMA

This sub-section compares scattering properties of inhomogeneous and corre-

sponding equivalent homogeneous particles. Both single- and bulk-scattering prop-

erties will be considered, and the integral scattering properties as well as the phase

matrix elements will be discussed. The comparison will draw conclusion on two ar-

eas: (1) the relative performance of the four EMAs, and (2) the performance the

EMAs to approximate the scattering properties of the inhomogeneous particles.

Figure 3.19 shows Qext (upper panels) and g (lower panels) of inhomogeneous

spheres (left panels) and spheroids (right panels) with size parameters of 30 as func-

tions of the volume fraction. The markers in the figure indicate the core-mantle Mie

and PSTD results of inhomogeneous particles with the three mixing states: the hol-

low circles for “stratified 1”; the solid circles for “stratified 2”; the solid triangles for

attached particles; and the solid squares for uniformly mixed particles. The values

of Qext and g vary dramatically with the change in volume fraction. Particles with

various mixing states have significantly different integral scattering properties, espe-

cially the two stratified cases. The four curves in Figure 3.19 are the results given

by the EMAs for equivalent homogenous particles (combined with the Lorenz-Mie
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theory for spheres and the T-matrix theory for spheroids). Of the four EMAs, the

MG, BR, and VA1 have almost the same Qext and g for all volume fractions from 0 to

1. However, when the volume fraction is between 0.1 and 0.9, the Qext and g based

on the VA2 are significantly different from those given by the other three, especially

for spheres. The discrepancy can be explained by the relatively large differences in

the effective refractive indices between VA2 and the other three methods, which are

illustrated in Figures 3.16 and 3.17. Comparing the results of the inhomogeneous

and equivalent homogeneous particles, we notice that the results from the equivalent

homogeneous cases (based on the BR, MG, and VA1) only agree accurately with

those given by the uniformly mixed spheres and spheroids, and the values are con-

sistent over the entire range of volume fractions. However, the Qext and g of the two

stratified and attached particles are very different from those of the homogeneous

particles, and may be over 30% larger or smaller at some volume fractions. Thus,

the EMAs can give accurate approximations for only the uniformly mixed particles,

but are very poor for the stratified and attached particles. Because the same results

are obtained for both the spheres and spheroids over the entire volume fractions, we

conclude that the applicability of the EMAs is independent of the overall particle

shape and mixing fractions.
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Figure 3.19: The integral scattering properties of inhomogeneous spheres (left pan-
els) and spheroids (right panels) with size parameters of 30 as functions of volume
fractions.

Figure 3.20 illustrates the angular-dependent P11 (left panels) and P12/P11 (right

panels) of inhomogeneous and equivalent homogeneous spheres with volume fractions

of 0.5 and size parameters of 30. For a clearer comparison, the results are shown in

three panels: 1) the upper panels are the approximations of equivalent homogenous

spheres given by a combination of the four EMAs and the Lorenz-Mie method; 2) the

middle panels are the results from the two stratified spheres and the homogenous

sphere based on the effective refractive index given by the BR; and, 3) the lower

panels are the same as the middle ones but for attached and uniformly mixed spheres.
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Figure 3.20: P11 (left panels) and P12/P11 (right panels) of the inhomogeneous spheres
with size parameters of 30. The results for the homogeneous spheres are given by a
combination of the EMAs and Lorenz-Mie theory, and the results for the inhomoge-
neous spheres are from the core-mantle Mie theory and the PSTD.

The upper panels of Figure 3.19 indicate the BR, MG, and VA1 give quite simi-

lar approximations for both phase matrix elements, but the VA2 results are slightly

different from the other three around some peaks. The middle and the lower panels

compare the P11 and ratio P12/P11 of the equivalent homogeneous and inhomoge-
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neous particles. The inhomogeneous stratified spheres (middle panels) give totally

different phase matrix elements from the equivalent homogeneous spheres for both

the oscillations and the overall trends. Similar to the integral scattering properties,

the results from a combination of the BR and Lorenz-Mie theory agree very well with

those of the uniformly mixed sphere, except slight differences for P12/P11 existing at

some scattering angles. The phase function of the attached sphere follows the same

overall trend as the homogeneous sphere, but shows much weaker oscillations, and

the P12/P11 ratio appears very different. The comparison for other non-zero phase

matrix elements are similar to those of P12/P11, and will not be shown. From Fig-

ure 3.20, we see the EMAs provide an accurate approximation for the phase matrix

elements P11 and P12/P11 of the uniformly mixed spheres, but cannot be applied to

the stratified or attached spheres.

Similar to Figure 3.20, the P11 and P12/P11 of randomly oriented spheroids with

a size parameter of 30 and volume fractions of 0.5 are given in Figure 3.21. Here,

the effective refractive indices from the EMAs are used by the T-matrix method.

The agreement between the four EMAs becomes much better for spheroids, and the

P11 given by the VA2 shows a little differences from the other three at scattering

angles about 175o. Furthermore, Figure 3.21 indicates that EMA applicability for

calculating the phase matrix of non-spherical particles is also limited to the uniformly

mixed ones, and both P11 and P12/P11 of the stratified and attached particles are

significantly different from the ones given by the EMAs.
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Figure 3.21: Same as Figure 3.20 but for the spheroids. The homogeneous results
are given by a combination of the EMAs and the T-matrix theory.

The previous results are for particles with the same size parameter and varying

volume fractions, and Figure 3.22 shows the Qext and g of the inhomogeneous spheres

(left panels) and spheroids (right panels) as functions of the particle size parameter.

The size parameter increases from 1 to 100, and the volume fraction is fixed at 0.5.

Same as Figure 3.19, Figure 3.22 illustrates the EMA results by the curves, and the

markers indicate those of the two stratified, attached, and uniformly mixed particles.
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When the size parameter is small (x < 5), the Qext and g of inhomogeneous particles

in the three mixing states are quite similar, and the homogeneous approximations

based on the EMAs are close to those of the inhomogeneous ones. However, the dif-

ferences become significant for particles with larger size parameters except for those

of uniformly mixed particles. For particles with x > 5, the EMAs can give accurate

approximations for only the uniformly mixed particles. However, for the stratified

or attached cases, their scattering properties can agree with the homogeneous coun-

terpart only at some size parameters. Again, the conclusion is independent of the

particle overall shape, and the applicability of the EMAs is independent of the size

parameter.
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Figure 3.22: The integral scattering properties of the inhomogeneous spheres (left
panels) and spheroids (right panels) as functions of the particle size parameters. The
volume fractions are both 0.5.
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Figure 3.23: The bulk P11 and P12/P11 of an ensemble of spheres with effective radius
of 1 µm and variance of 1.

The results indicate the EMAs cannot be used to approximate the single-scattering

properties of the stratified and attached particles, and Figure 3.23 shows the EMA

performance for the bulk phase matrix elements of spheres. As an ensemble of par-

ticles with different sizes, their scattering properites are averaged based on the given

size distribution, and becomes more smooth and relatively featureless. The incident
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wavelength is 0.6328 µm and the volume fraction is 0.5. The size distribution of

feldspar given by the ALSD [41] is used, and the ensemble particles have an effective

radius of 1.0 µm and a variance of 1.0. Figure 3.23 is organized similar to Figures

3.20 and 3.21. For the bulk phase matrix elements P11 and P12/P11, the four EMAs

are equivalent. However, the results of the homogeneous particles are dramatically

different from the two stratified cases. For attached particles, the EMA results are

quite close to the exact solutions given by the PSTD, but some differences are no-

ticed at scattering angles from 90o to 150o. As expected, the P11 given by the EMAs

and Lorenz-Mie theory agree very well with those for the uniformly mixed particles,

but the agreement becomes relatively poor for the ratio P12/P11.

Figure 3.24 is the same as Figure 3.23, but the overall particle shape is a spheroid

with an aspect ratio of 0.5. The same incident wavelength and particle size distribu-

tion are used to give the bulk phase matrix. The upper panels of Figure 3.24 show

the consistency of the four EMAs to approximate the bulk scattering properties of

the inhomogeneous spheroids. From the middle panels, neither stratified results for

the P11 or P12/P11 agrees with those given by the combination of the EMAs and

T-matrix method, whereas similar overall trends are achieved and the results are

much more close than those of spherical cases. In the lower left panel, the bulk P11

of attached spheroids and the homogeneous results show accurate agreements for

the forward scattering, but significantly underestimate the backward scattering, and

similar results was observed at the phase function of the single spheroid with size

parameter of 30 (see Figure 3.21). Considering the exact solutions of the inhomoge-

neous particles with the three mixing states, only the uniformly mixed results, both

P11 and P12/P11, coincide with the ones given by the homogeneous approximations,

and the choice of the EMAs is not essential.
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Figure 3.24: Same as Figure 3.23 but for the spheroids.

Figures 3.19 to 3.24 compare the scattering properties of the inhomogeneous and

equivalent homogeneous particles. The scattering properties of particles with the

three different mixing states show significant variations. The homogeneous approxi-

mations based on the EMAs are not accurate enough for the stratified and attached

particles, and the detailed mixing states should be considered when studying light

scattering by inhomogeneous atmospheric aerosols.
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3.2.4 Conclusion

This section systematically investigates the applicability of EMAs for calculating

the scattering properties of inhomogeneous atmospheric particles, and four EMAs,

three mixing states, and two overall particle shapes are considered. The EMAs are

combined with the Lorenz-Mie or T-matrix theories to approximate the scattering

properties of the equivalent homogeneous particles, and the results are verified by

comparing with the standards given by the core-mantle Mie theory or the PSTD,

which consider the exact inhomogeneous mixing structures of the particles. Al-

though the four EMAs give effective refractive indices with only slight differences,

the Maxwell-Garnett theory, Bruggeman theory, and volume-average method based

on refractive indices are almost equivalent to approximate the scattering properties

of the inhomogeneous particles, but single scattering properties given by the volume-

average method based on the permittivity differ slightly from those based on the

other three EMAs. The applicability of the EMAs is independent of the volume

fractions of the components and the overall shape and size of the particles, but is

determined by the mixing state. The scattering properties of the equivalent homo-

geneous particles are significantly different from those of the stratified or attached

inhomogeneous particles, but agree accurately with those of the uniformly mixed

particles.

Considering the significant irregularity of the atmospheric particles, this section

shows some extremely idealized models for both the mixing states and particle overall

geometries. If the EMAs is used as an approximation for the bulk scattering proper-

ties, the particular choice of the EMAs will show little differences. To achieve more

accurate scattering properties of atmospheric particles, the detailed mixing states

and overall geometries have to be considered.
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3.3 Surface roughness

Laboratory and aircraft-based observations [40, 41, 42, 126, 127] indicate that

atmospheric particles are almost exclusively nonspherical and have some degree of

surface roughness. Numerical studies indicate the surface roughness to be important

in determining the single-scattering properties of the particles [127, 128, 129, 130],

and to have significant impact in radiative transfer models and remote sensing. The

effect of surface roughness on light scattering depends on the particle size, refractive

index, and surface structure [45, 130, 131, 132]. Small-scale surface roughness has

significant influence on the backward scattering and single-scattering albedo of small

spheres, and the effects are sensitive to the surface structures [132]. For large non-

spherical ice crystals, surface roughness smooths out the peaks in the phase functions

as well as other elements of the phase matrix [128, 47]. In ice cloud retrievals, Yang

et al. [48] found the surface roughness to decrease the retrieved optical thickness

and to increase the retrieved effective particle size in comparison with the smooth

counterparts. When the polarization properties are considered, a number of stud-

ies found simulations of the polarized reflectance using the scattering properties of

smooth particles to produce a poor fit with the satellite measurements. Meanwhile,

simulations based on particles with inhomogeneity, distortions or rough surfaces to

give much better agreement [133, 134, 135], because relatively featureless and smooth

phase matrix elements are obtained.

In spite of considerable research effort, our knowledge on microphysical proper-

ties and related optical effects of surface roughness remains limited. Previous studies

have considered the effect of surface roughness by using either the numerically exact

methods, e.g. the FDTD [129], DDA [130], or T-matrix methods [131] for relatively

small particles, or the GOMs for particles much larger than the incident wavelength.
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In the GOM studies no attempts were made to construct a rigorous particle ge-

ometry for the scattering calculations, but the approximated method named as the

tilted-facet (TF) method is employed. In the TF approximation, each individual ray

reaching a point on the particle surface has an interaction with a surface element

with orientation that is chosen at random and hence is unique to that ray. While

the GOM methods have had some successes for application, the fact that they in-

volve no well-defined surface of the particle makes it challenging to relate results to

any particular kind of surface roughness observed in naturally occurring atmospheric

particles or ones used in the more sophisticated light scattering models.

This section focuses on the effects of surface roughness on the scattering proper-

ties, and we will employ a numerical model that considers roughness to be “essentially

random deviations from smoothness at small spatial scales.” The model enables us

to characterize the roughness in terms of a key parameter, the variance of surface

slopes, which is widely used for previous approximations based on the TF. The sur-

faces we construct are not intended to reflect the operation of some known physical

process of crystal aging or crystal growth, but instead are intended to give a sense

of “generic” optical effects of random small scale surface variations. Although we

confine our attention in this study to roughened hexagonal columns, there is noth-

ing in our methods of representing surface roughness or scattering simulation that

requires restriction to roughening of that particular shape. We instead focus on the

effects, given the particle geometry, of size parameter and roughening on the scatter-

ing properties over the entire size range from the Rayleigh to the geometric-optics

regimes. The same combination of the PSTD and IGOM will be used to calculate

their scattering properties over the entire size range. Considering the significant

drawbacks for the TF approximation in the GOMs, the ray-tracing algorithm will

improved to consider the roughness more rigorously in the simulation.
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Section 3.3.1 reviews the roughness models used for the atmospheric particles

and discusses a new irregular roughness model used in the PSTD and IGOM in this

study, and the limitation of the TF approximation will be discussed in section 3.3.2.

The light scattering properties of roughened particles with the entire size range will

be presented in Section 3.3.3, and Section 3.3.4 concludes this part.

3.3.1 Roughness model

Surface roughness is commonly observed on atmospheric particles, for examples

ice crystals in cirrus clouds [40] and mineral dust [41], but specifying the observed

small-scale structures in quantitative detail is extremely difficult. This subsection

will review some of the previous models used to represent rough surfaces of ice

crystals or aerosol particles, and will introduce a model that we have developed that

was motivated by a more complicated one used in studies of the optical properties

of “random” sea surface wave fields.

In a 2-D study, Sun et al. [136] used the FDTD and discretized a circular surface

into sub-elements. A roughened surface was created by a method that involved

independent tilting of these sub-elements. In three dimensions, Gaussian-random

spheres have been the most widely used geometric shapes for studying the effects of

surface roughness, and their single-scattering properties have been calculated using

the GOM [137, 138, 139], DDA [140], and T-matrix method [130, 131]. Models

based on regular or stochastic surface perturbations show substantial applicability

and flexibility in defining rough particles, and are widely used for particles in the

resonant size-parameter region (i.e., the particle size is on the order of the incident

wavelength). Li et al. [129] introduced random 2-D “Gaussian spikes” on spherical

surfaces,

r(θ, φ) = R0

[
1 + αe−∆θ2/(2σ2)

]
(3.5)
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and used the FDTD to calculate the scattering properties of roughened spheres with

size parameters from 5 to 20. They found the effects of surface roughness to be

significantly dependent on the parameter α, which they called the “size” of the

roughness. Kahnert et al. [130] compared the effects of four different rough surfaces

on the absorption and scattering properties of spheres with size parameters of 5 and

50 by using the DDA and T-matrix methods. The models they used applied a form

of structured roughness to spherical particles that could have very small scales while

retaining enough symmetry to make T-matrix methods feasible, at least up to size

parameter 50. Our approach is aimed at removing all symmetries at small scales,

and in doing so presenting an ostensibly more realistic-looking form of roughness,

while expanding the particle size well into the geometric optics range.

To rigorously define surface perturbations in the framework of the GOMs is chal-

lenging. Yang and Liou [141] investigated the effect of surface roughness on the single

scattering properties of particles in the geometric-optics regime (i.e., the scatterer

size is much larger than the incident wavelength) using the TF approximation. In

this method, the surface roughness is modeled by assuming that, at each reflection

and refraction event, the local normal direction of a “facet” on a particle surface is

randomly tilted from its smooth counterpart. To specify the degree of the surface

roughness and the magnitude of individual facet slopes, Yang and Liou [141] intro-

duced a first order Gram-Charlier density, i.e., a Gaussian density, motivated by sea

surface observations [142]. In their approach, slopes sx and sy of individual facets

in directions x, y, in local coordinate systems with facet-normal direction the local

z axis, are randomly determined to follow

P (sx, sy) =
1

πσ2
exp

[
−
s2
x + s2

y

σ2

]
, (3.6)
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where P (sx, sy) is the joint probability density for the local slopes.

The more general Weibull distribution was introduced by Shcherbakov et. al.

[143] to the TF approximation and applied for retrieval of ice crystal parameters

from the measured phase function [143]. The Weibull distribution is given by:

P (sx, sy) =
η

πσ2

(
s2
x + s2

y

σ2

)η−1

exp

[
−
(
s2
x + s2

y

σ2

)η]
, (3.7)

The additional shape parameter η in the Weribull distribution provides flexibility in

the construction of a distribution. Notice that when η = 1, Equation 3.7 reduces to

the 2D Gaussian distribution given by Equation 3.6.

Various drawbacks and uncertainties inherent in the TF method will be dis-

cussed more in the next section, but for now we simply mention the fact that the

method does not involve specification of a single definite particle. This fact raises

the questions of how to compare results obtained using the method with results from

a numerically exact approach that requires such a specification, and how to compare

the numerical particles with the naturally occurring ones .

As mentioned above, for a comparison using the PSTD method we want to spec-

ify a particle geometry in a way that embodies the notion of random, small scale

roughness. The geometry should be applicable in a natural way for comparisons

with results from the TF method and the GOMs. We are not aware of any explicit

expressions for naturally occurring rough surfaces of ice crystals or aerosol particles

that could serve as a guide. What we instead use as a guide is a model for sea sur-

face roughness constructed by Schwenger and Repasi [144]. They modeled surface

roughness as a combination of representations of pure linear gravity waves, swells

and choppy waves. The same model has been applied in a study of radiative transfer

in an ocean with a dynamic surface [145]. We consider only a generalized linear grav-
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ity wave, and the model represents the surface as a superposition of Fourier modes

with random phases, and spectral amplitudes determined by a spectral theory that

includes functional dependence on parameters special to the physics of surface grav-

ity wave. We omit these special parameters which have no meaning in the context

of atmospheric particles, and retain the essential shape-determining features of the

approach, as well as the crucial feature of random phases in the Fourier modes.

One way to describe our approach of roughening is to imagine that an initially

smooth particle is covered by “wrinkled wrapping paper” with identical optical prop-

erties to those of the particle. For each smooth face of the particle we cut a piece

from this paper to replace that face. (We describe below the manner in which we

join the pieces at edges of the particle.) The wrapping paper comes in sheets that

are squares with sides of length L, where L is the greatest linear dimension of the

faces of the particle. In the geometric case that we use as an example in this study,

namely the hexagonal column, a sheet would be a square A having sides of length

L = max(D,H), (3.8)

where the diameter D of the circumscribing circle for the hexagonal end-plate is

twice an edge-length of the plate, and H is the height of the column. We take then

a coordinate system (x, y, z) with z = 0 corresponding to points on A. Denoting by

~r = (x, y) the horizontal position vector of such points, we define the “elevation” z

of the wrinkle at that point by

z (~r) =
∑
~k∈K

Z
(
~k
)
exp

[
i(~k · ~r 2π

L
+ φ(~k))

]
, (3.9)

where Z(~k) is a real number to be defined and φ(~k) is a random phase. The index
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set K of wave numbers retained in the sum is defined by

K = {~k |min(kx, ky) > 1}. (3.10)

(This is to explicitly exclude very “long-wave” components.) The phases are chosen

independently from a uniform distribution on [0, 2π) for each wavevector ~k ∈ K with

positive kx, and are defined by φ(−~k) = −φ(~k) for the remaining wavenumbers. This

constraint on phase choices ensures that z(~r) is in fact a real number.

To explain our definition of the spectral amplitude Z(~k), we first note that our

numerical implementation of Equation 3.9, as well as the implementation of the

IGOM, will involve discretization with N gridpoints in each horizontal direction,

with isotropic gridpoint separation ∆x = L
N

. Then at the gridpoint (xm, yn) we have

for the term appearing in the exponential

~k · (xm, yn)
2π

L
= ~k · (m∆x, n∆x)

2π

L
=

2π

N
~k · (m, n) (3.11)

This explains the appearance of the combination 2π
N
~k in the following definition of

Z(~k):

Z
(
~k
)

= aS(k) = a
1

kb
e−

c
k with k =

∣∣∣∣2πN ~k

∣∣∣∣ , (3.12)

where a, b, and c are constants. The function S(k) of positive real numbers k, a

product of an exponential term and a negative power term, is known as the 1-D

semi-empirical Pierson-Neumann density function. It goes to zero at both large and

small k, having a maximum at wavenumber kmax = c/b.
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Figure 3.25: Solid curves show the effects of parameters b and c. The dashed curves
in the upper panel show the two terms whose product gives the b = 2.5 solid curve
in that panel.

Figure 3.25 graphically illustrates the effects of b and c variation on the shape

of S(k). The function S(k) goes to zero at small k because the rate at which the

exponential term goes to zero is so rapid that it dominates the rate at which any

positive power of k−1 increases. For large k the exponential term, shown by the

dashed curve in Figure 3.25, asymptotes to 1, so in the limit of large k the product
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S(k) goes to zero essentially like k−b (shown by the dash-dot curve in Figure 3.25).

(These features are what we above referred to as the essential shape-determining ones

in the distribution used in Schwenger and Repasi [144].) The rate at which S(k) goes

to zero in turn controls the smoothness of the function z(~r), and b ≥ 2 is more than

sufficient for the existence of the first partial derivatives needed for our study. For

fixed b, the parameter c has the effect of postponing the decay of S(k) as can be seen

in the lower panel of Figure 3.25. For the figure the constant a, which determines

the overall amplitude of z(~r), has been chosen to make qualitative comparison easy,

while in our numerical experiments the constant a is chosen in a manner explained

next.

As mentioned above, the key parameter in the TF method is the variance σ2 of

slopes of the imagined tilted facets, and the amplitude parameter a in Equation 3.12

is chosen to adjust the variance in slopes in z(~k). The distributions of slopes sx and

sy are found numerically to very nearly follow a Gaussian, with the same variance

σ2 in each direction. If we consider just the slope in one direction, we calculate from

Equations 3.9 and 3.12 that

sx =
∂z

∂x
=
∑
~k∈K

(
ikx2π

L

)
aS(k̂)exp

[
i(~k · ~r 2π

L
+ φ(~k))

]
,

=
a

L

∑
~k∈K

2πikxS(k̂)eiφ(~k)ei(
~k·~r 2π

L
)

≡ a

L

∑
~k∈K

B(k)ei(
~k·~r 2π

L
) (3.13)
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It is clear that sx has zero mean, so the variance of sx is just

var(sx) =
1

L2

∫ ∫  a

L

∑
~k∈K

B(k)ei(
~k·~r 2π

L
)

2

dxdy (3.14)

=
( a
L

)2∑
~k∈K

|B(k)|2 (3.15)

≡
( a
L

)2

B, (3.16)

where we have used Parseval’s relation in Equality 3.15, and B does not involve L.

An identical argument applies for the variance of sy. So if we want to obtain a

specified variance σ2
0, we must take

a2 =
L2σ2

0

2B
. (3.17)

(the factor of two in the denominator comes from the addition of two equal model

variances). With this choice of a, we see an important feature of our definition of z,

namely that

z (~r) =
σ0L√

2B

∑
~k∈K

S(k̂)exp

[
i(~k · ~r 2 π

L
+ φ(~k))

]
. (3.18)

As pointed out above, B does not depend on L, so as we change the size of the

particle considered, the surface roughness amplitude scales exactly with L.

The TF method assumes that the slopes of the tilted facets follow a Gaussian

distribution. We will demonstrate computationally the claim mentioned above that

the slopes in our roughness model are approximately Gaussian. To sample the slopes,

we first discretize the surface into triangular sub-elements. For a roughened surface

given as in Equation 3.9, we use as vertices of the triangular elements the points

Pi,j = (xi, yj, z(xi, yi)), where (i, j) runs over indices of nodes on a triangulated grid
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on the smooth (z = 0) surface. The forms of this triangulation used for the sides

and ends of the smooth hexagonal column are indicated in Figure 3.26. We then

take advantage of the computational observation we mentioned above, namely that,

for a wide range of parameters b and c, once a choice (a, b, c) has been made for

S(k), the sets of grid point values Dx = {(sx)i,j} and Dy = {(sy)i,j} with (sx)i,j =

∂z
∂x

(xi, yj), (sy)i,j = ∂z
∂x

(xi, yj), have very nearly Gaussian distributions with the same

variance (examples are shown in Figure 3.28). With this observation, we can then

use the parameter a to adjust the common variance to have any desired value.

6s
6s

Figure 3.26: The triangulation of smooth sides (left) and ends (right) of the hexagonal
column. Vertices of the triangles are the points referred to in the text as (xi, yj).
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Figure 3.27 shows two images of a model surface (a) and (b) constructed with

σ2 = 0.2, together with three images (c) to (e) of ice crystal surfaces (after Figures

3, 1, 13 at pages 83, 84 and 90 of [40], respectively). As indicated in the figure, the

image in Figure 3.27 (b) is a magnification of a region of (a), and provided for visual

comparison with the photographic image in panel (e). The image in (e) is also a

magnified image of part of a much larger particle (see [40]). The reason no specific

length is indicated in panels (a) and (b) of the modeled surface because this length

can differ according to the overall size of the model particle being constructed. A

choice of a specific value L for this overall size then immediately determines, given

the value of σ2 chosen for the roughness, the actual size of the amplitude variations

shown in panels (a) and hence (b).

(a) (b) 

(c) (d) (e) 

     (~550 µm)               (~13 µm)                (~150 µm) 

Figure 3.27: (a) A rough surface generated with σ2 = 0.2; (b) a magnified view of
a region in (a). (c)-(e) surface images of ice crystals (after Figures 3, 1, 13 at pages
83, 84 and 90 of [40], respectively). The lengths (approximately) in the horizontal
direction of the images are given under the images.
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We can see that the images of the ice crystals show a variety of complex struc-

tures of different scales, and it appears to be a truly daunting task to create a single

model with a few simple scaling parameters that represent all ice crystals or aerosol

particles. In fact, the focus in recent studies has been on the overall size and geom-

etry of particles, with relatively little quantitative information being made available

concerning roughness features like those shown in (c)-(e). Having said this, it is clear

from the comparison of Figure 3.27 (b) and (e) that our numerical model has some

plausibility as a representation of naturally occurring roughness.

The left panel of Figure 3.28 presents in a more quantitative way the roughness

shown in Figure 3.27 (a). To understand the proper interpretation of the horizontal

and vertical scales in the left panel of Figure 3.28, note that the total extents of the

“X” and “Y ” axes being expressed in non-dimensional form (size parameter of 100)

mean that the model is being applied to a case in which the overall size of the particle

is, in dimensional units, 100λ/π. In terms of the definition that we give below, the

particle has size parameter x = 100. In addition to the choice σ2 = 0.2, the surface

in the figure has b = 2.5 and c = 0.5, which will be the values we mainly use in

our model of rough surfaces. (We will give the context for this choice in Section

3.3.3, where we demonstrate the dependence of scattering properties on values of

b and c.) The scale on the colorbar in Figure 3.28 indicates that these choices of

b, c, and σ2 lead in our model to a maximum dimensional amplitude of roughness of

about 1.5λ/π: put differently, they lead to a maximum amplitude of the roughness

that is about 1.5% of the overall size of the particle. Crude estimates based on

visual inspection of the image in Figure 3.27 (e) and an image of the whole particle

presented in [40] suggest that this value of roughness amplitude is not unreasonable.

(An even closer match could be easily obtained by changing the value of σ2 slightly,

but such fine-tuning toward a particular case is not our intent here.) The right panels
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of the figure show the distribution of the slopes along the x and y-directions as well

as the Gaussian shape with σ2 = 0.2, and we can see clearly that the slopes fit the

Gaussian distribution very well.
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Figure 3.28: The non-dimensional perturbation πz/λ of a roughened surface with
non-dimensional size of 100× 100 (left panel) and the distributions of the slopes in
the x (upper right panel) and y (lower right panel) directions.

We turn now to the matter of handling the edges along sections whose planar

structure is given by Equation 3.9 are joined. The roughening provided independently

according to the equation on two adjacent faces will in general disconnect the faces

along the edge that joined the previously smooth faces. To remove this problem, we

consider not the surfaces themselves but the points Pi,j of the mesh that is used in

the corresponding discretization. Figure 3.29 shows an end-on view of the juncture
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of two faces at some point along an edge different from a corner (i.e. from a three-

way intersection of faces). The end mesh points A and A′ from the discretized

roughening of the side and top faces are each discarded and replaced by the point B

on the midpoint of a line segment joining the positions of A and A′ (AA′), i.e. the

point whose position vector is the average of the position vector of A and A′. In the

case of a corner, there are three edge points that are dropped and replaced by the

point having the vector average of the position vectors of these dropped points. The

result of such a construction, with all the mesh points joined by triangular faces,

is shown in Figure 3.30. Illustrated in the figure are three hexagonal particles with

aspect ratios of 0.2 (oblate plate), 1.0, and 5.0 (prolate column), all of them having

surfaces with σ2 = 0.2.

A

A’
B

Figure 3.29: An edge-on view for the process of joining surface meshes at an edge.
The straight long-dashed lines indicate positions of the un-roughened surfaces and
the solid curves the position of the roughened surfaces which no longer meet. The
filled circles indicate mesh points in the discretization of the roughened surfaces. The
open circles represent mesh points A and A’ that are discarded, each being replaced
by the point B.
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(a) 

(b) 

(c) 

Figure 3.30: The roughened hexagonal columns with the aspect ratios of (a) 0.2, (b)
1.0, and (c) 5.0.

3.3.2 Roughness in the GOM

Even with the parallelized implementation and state-of-the-art supercomputing

facilities, as particle sizes increase the PSTD eventually becomes too time-consuming

to be practical and recourse must be made to another method based on geometric
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optics. Taking the particle size parameter 100 as a threshold size for computational

methods in our study, we use the PSTD for hexagonal columns with size parameters

up to 100 and the IGOM for columns with larger size parameters.

The IGOM method, original developed by Yang and Liou [35], was systematically

improved by Bi et al. [37], and has been tested and applied to various typical ice

crystals [146]. The IGOM considers the light scattering by particles to have three

independent components: 1) reflection and refraction; 2) diffraction; and, 3) edge

effects. The contribution from the reflected and refracted rays is obtained by a ray-

tracing technique based on geometric optics theories (i.e., Snell’s law and Fresnel

formulae). With the near field given by the ray-tracing technique, the scattered far

field is calculated by mapping the near field to its radiation zone counterpart on the

basis of the electromagnetic equivalence theorem [35]. Meanwhile, the Fraunhofer

diffraction theory can be used to give the contribution from the diffraction by line

integration over the closed polygon of the particle projections [141]. For each particle

orientation, it is straightforward to evaluate the diffraction with the shadow boundary

expressed as a polygon. In addition to the reflection, refraction, and diffraction, a

nonzero edge effect [29, 46] caused by the penumbra region between the illuminated

and non-illuminated areas of the particles also contributes to the extinction and

absorption of light. A semi-empirical method is used to bridge the gap between the

results given by the numerically exact PSTD method and the IGOM results [29, 46].

As mentioned above, the surface roughness is commonly treated using IGOM

combined with an approximation to the ray-tracing at surfaces based on the TF

treatment [141, 128]. We consider the implications of the approximation in more de-

tail now. In a geometric optics calculation, the outcome of a reflection or refraction

event at a point on a surface is determined by the orientation of the local surface

element on which the point lies. For each such event, the TF method imagines that
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the actual local surface element is replaced for that event alone with another (“tilted

facet”) that has an orientation randomly obtained from the Gaussian distribution

given by Equation 3.6, and calculates the event outcome accordingly. No change

is made to the actual particle surface, and the orientations chosen in two events

occurring at the same point but at different times can (and in fact most probably

will) be different. Thus, there is no single roughened particle that is constructed for

the scattering calculations, but only an algorithm for computing surface interactions

using geometric optics given the single parameter σ2 that characterizes the Gaussian

distribution. This presents an obvious difficulty if comparison is desired with scat-

tering results obtained by a numerically exact method like the PSTD, which requires

a geometrically specified particle.

The TF method has shown wide applications, but also drawbacks due to the

nature of its ray-tracing procedure. Figure 3.31 illustrates an entirely plausible se-

quence of events that might occur when an incident beam encounters a roughened

surface element that has no obvious counterpart in any calculation using the TF

method. The figure shows a beam incident from the left, an actual roughened sur-

face (indicated by solid curve), and the non-roughened surface (dashed line). In the

TF method, the beam would not encounter the particle until it reaches O’, and there

it would interact with a tilted facet. But what is indicated in the figure instead is

that the point O’ is in the “shadow” of the surface-roughening prominence on which

O sits. The interaction shown in the figure involves a reflection/refraction event at

O, followed by a reflection/refraction event at point A, and another event of the same

kind after re-entering the particle at point B. Nothing like this physically plausible

sequence of events occurs in calculations based on the TF method.
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Figure 3.31: The geometry of the ray-tracing cases that cannot be considered by the
TF approximation.

Yang et al. [47, 48] investigated the accuracy of the TF approximations in two

dimensions by using ray-tracing with well-defined rough surfaces, and found that the

simplified TF can only approximately account for the effects of surface roughness on

particle single-scattering properties. However, both definition of the rough surface

and ray-tracing algorithm in the three dimensions are much more challenging and

complex. In the large size parameter part of our study, we will use IGOM but con-

struct geometrically definite rough surfaces and carry out the “rigorous” ray-tracing

algorithm on the rough surface. Thus, it will be able to extend the examination of

the accuracy of the TF approach to the case of three dimensional simulations. In

what follows, when we refer to the IGOM, we mean the version that involves rig-

orous ray-tracing with a geometrically defined roughened surface. We will refer to
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the version of the IGOM that uses instead the tilted facet approximation simply as

“TF.”

In our version of the IGOM, a given specification of a particle’s roughened surface

is discretized into a number of triangular sub-elements (see Figure 3.30). Ray-tracing

algorithms are applied to the geometry described with thousands of the sub-elements,

and all the complex cases indicated in Figure 3.31 that cannot be calculated in the TF

can be considered. The initial reflection and refraction for the incident beam occurs

at the first encountered triangle. After the event, the internal and external beams

continue to be traced among the triangular elements. Beams that remain internal are

traced until their amplitude becomes weak enough that we regard it to be negligible

(< 10−6 of the incident amplitude). Outgoing beams that emerge from the particle

with non-negligible amplitude are traced until (perhaps after encounter and reenter

another part of the particle) they become truly free and contribute to the scattered

field. Given the growth of the number of surface triangles as the particle size gets

large, the ray-tracing calculation does become demanding in terms of CPU time, but

the increases of CPU time required are from seconds to minutes, nothing like the

much greater CPU-time (several hours to days) required by the PSTD method in

the large particle regime.

3.3.3 Effects of the surface roughness

Figure 3.32 compares the phase functions of the smooth and roughened hexagonal

columns with fixed (left three columns) or random orientations (right column) given

by the PSTD. The hexagonal columns have size parameters of 10 (upper panels),

20 (middle panels), and 50 (lower panels), and the value of σ2 for the rough surface

is 0.1. The angles between the incident direction and the axis of the fixed oriented

hexagonal column are 0o, 45o, and 90o. We verified that the spatial resolution in
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the PSTD simulations are sufficiently fine to define the small-scale structures of the

rough surfaces by checking that the same results are obtained when finer spatial

resolutions are used. At size parameter 10, the phase functions of the smooth and

roughened particles show substantial differences at scattering angles from 80o to

140o when the incident direction is perpendicular to the hexagonal surfaces, and

approximately the same results are obtained for the other two incident directions.

As the particle size increases, the phase functions of smooth particles with fixed

orientations show more oscillations, and become obviously different from those of

roughened particles, especially x = 50. When the results are averaged over hexagonal

column orientations, the phase functions of the smooth and rough particles coincide

at size parameter 10, and show only slight difference at size parameter 20. This

indicates that the differences of the phase functions obtained with fixed orientations

cancel out. As the size parameter of the hexagonal column increases to 50, weak

scattering peaks at scattering angles 22o and 46o appear in the phase function of

the smooth hexagonal columns. However the particles with surface roughness have

a smooth phase function, one obviously different from that of the smooth particles.

Figure 3.32 indicates that, for the form of roughness and degree we have chosen,

the influence of roughness on the phase functions of randomly oriented non-spherical

particles becomes noticeable as the size approaches approximately 20.
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Figure 3.32: The phase functions of fixed and randomly oriented hexagonal columns
with different sizes given by the PSTD. The hexagonal columns have size parameters
of 10 (upper panels), 20 (middle panels), and 50 (lower panels).

Figure 3.33 illustrates the non-zero phase matrix elements of roughened hexagonal

columns with a size parameter of 100. The asymmetry factors g are also listed in

the figure. The calculations are performed using the IGOM, for two different surface

roughness parameters σ2 = 0.05 and σ2 = 0.2. As mentioned above, in the IGOM-

based calculation the roughened surfaces are discretized into a mesh formed by small

triangular sub-elements, and the size of these triangular elements becomes the spatial

resolution parameter of the simulation. We define the computational size parameter
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of the mesh triangle as

S = 2π∆s/λ,

where ∆s is the minimum length of the triangular sides (see Figure 3.26). Figure 3.33

shows results with choices S = 5 and S = 2: for the entire surface of the hexagonal

column, the first choice corresponds to a total number of triangular subelements

equal to 14, 400, and the second to a total of 90, 000 (different surface realizations

are used to reach the same σ2). The figure also shows comparisons between the

IGOM results and those obtained with the TF approximations. As illustrated in the

figure, for rough surfaces with the same value of σ2, the IGOM gives approximately

the same phase matrix elements for the two triangular sizes, which means that a

grid size parameter of S = 5, i.e. 14, 400 total sub-elements, is sufficient for the

IGOM simulation to track the effect of surface roughness. In addition, the roughened

particles with different surface configurations but the same σ2 apparently have the

same scattering properties. In Figure 3.36, the three curves in the left two panels are

overlapping each other. However, only the blue and red curves in the right two panels

are coincide with each other, and both are separated from the green ones. When

σ2 = 0.05, which corresponds to what we consider a moderately rough surface, the

TF method that gives almost the same results for phase function as the IGOM also

shows only small differences for the other five polarization elements. However, when

the σ2 value becomes as large as 0.2, the differences between the IGOM and TF

simulations become noticeable: the TF method overestimates the phase function at

scattering angles around 50o but underestimates the backward scattering. Differences

for the other phase matrix elements are also noticeable.
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Figure 3.33: The non-zero phase matrix elements of roughened hexagonal columns
given by the TF and IGOM methods with (a) σ2 = 0.05 (two panels in the left) and
(b) σ2 = 0.2 (two panels in the right). Two sub-elements sizes for the triangles are
used: S = 5 and S = 2. The hexagonal columns have a size parameter of 100.

As we have explained in Section 2, with the flexibility of adjusting the amplitude

parameter a as needed, for a fixed value of σ2 (all that the TF method uses) we may

regard parameters b and c as being independent. But, as we will show shortly, dif-

ferent choices of b and c certainly appear to determine qualitatively different surface

roughness. To illustrate the influence of the two parameters on the surface structure

and the optical properties of the roughened particles, perturbations of the rough sur-
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faces with the same σ2 but different spectral densities are illustrated in Figure 3.34.

Although the surfaces in the figure visually present substantially different patterns

and structures, the slopes of all these surfaces follow the same Gaussian distribution

very well, which will not be shown (their distributions appear much like those in the

right panels of Figure 3.28).

The left panels of Figure 3.34 show effects of b variation: from the top to bottom

the values of b are 2.0, 2.5 and 3.0, all with c = 0.5. The right panels are for

different values of c (0.1, 0.5 and 1.0), again from the top to bottom and now with

same b = 2.5. (For this and the following discussion it is useful to look back at

Figure 3.25.) Figure 3.34 indicates that, for the different values of b we used, the

roughness features have comparable overall magnitudes, all being approximately 1.5

in non-dimensional units of size (see the colorbar in the figure). However, as b

increases, the rough surface becomes more dominated by the low wavenumber terms,

i.e. perturbations with longer wavelengths. Much more significant differences are

seen for surfaces with different values of c. At c = 0.1, the surface shows significant

overall variation with perturbations between the high and the low areas becoming

over 8 in non-dimensional units, whereas little in the way of differences in small-scale

structure are observed. However, as c increases to 1.0, the surface becomes totally

different, with the entire surface being made up of disordered small-scale variations

with very small perturbation amplitude (the magnitudes are about 20% of the ones

with c = 0.1). This effect, a change in the value of c bringing out the prominence

of small scale features, can be easily understood by considering the lower panel of

Figure 3.25.
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Figure 3.34: Same as the left panel of Figure 3.28 but for surfaces with different
spectral density parameters.

The non-zero phase matrix elements of the hexagonal columns with roughened

surfaces as shown in Figure 3.34 are given in Figure 3.35. All the roughened columns

have σ2 of 0.2, whereas the left panels are for surfaces with different b, and the right

ones are for different c. For both cases, the phase functions given by the hexagonal

columns with the same σ2 but different types of rough surfaces are almost the same,
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and there are only small differences for the other non-zero elements (P22, P34, and

P44) in the backward directions. This indicates that, at least according to IGOM,

once the overall distribution of the slopes is determined (through σ2), the detailed

rough structure does not significantly affect the scattering properties of the particles.
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Figure 3.35: The non-zero phase matrix elements of roughened hexagonal columns
with a size parameter of 100 given by the IGOM. The rough surfaces with different
spectral density parameters but the same value of σ2 are used. The left and right
panels are for (a) different values of b and (b) different values of c in Equation 3.12,
respectively.

167



Figure 3.36 illustrates the phase matrix elements of randomly oriented hexagonal

particles with different aspect ratios given by the IGOM, and the asymmetry factors

for all cases are also shown in the parentheses of the top panels. The geometries of

the particles were given in Figure 3.30. The figure shows the results of particles with

different surface structures with σ2 = 0.05, and σ2 = 0.2. The hexagonal particle

with aspect ratio of 1.0 has a size parameter of 100, and the volume of the three

hexagonal column is kept the same. The roughened particles all give very smooth

phase functions, and the values of the P12/P11 for the roughened particles become

close to zero. The rough surfaces also smooth out the peaks and oscillations in the

other phase matrix elements of the smooth particles, and only slight differences for

the results given by the particles with weakly and moderately roughened surfaces are

obtained. The hexagonal particles with aspect ratio 1 have the smallest asymmetry

factors, and both the columns and plates has lager values. We also notice that the

asymmetry factors becomes smaller as the surface becomes rougher, i.e. larger values

of σ2 for this study. These features for the variation of the asymmetry factors have

also been reported by previous studies [47, 34].
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Figure 3.36: The non-zero phase matrix elements given by the IGOM for randomly
oriented hexagonal particles with different aspect ratios and surface roughness. The
aspect ratios of the three hexagonal particle are: (a) 0.2 (left column); (b) 1.0 (middle
column); and (c) 5.0 (right column). The size parameter of the hexagonal particle
with aspect ratio of 1 is 100, and the volume of the three particles are kept the same.

Figure 3.37 compares the non-zero phase matrix elements of the smooth (left

column) and roughened hexagonal columns given by the PSTD and the two geometric
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optics methods, TF and IGOM. The relative errors of phase functions given by the

IGOM and TF compared with the PSTD results are also illustrated in the figure. The

hexagonal columns have size parameters of 100, and the values of σ2 for the roughened

particles are 0.02 (middle column) and 0.1 (right column). The strong scattering

peaks at 22o and 46o are clearly shown in the phase functions of the smooth particle

in both the PSTD and IGOM results. The other non-zero phase matrix elements

given by the PSTD show slight oscillations that occur because, in the PSTD method

the phase interference of the electromagnetic waves is rigorously considered. The

IGOM results are much smoother and have almost the same overall variation patterns

as those given by the PSTD. With moderately roughened surfaces, σ2 = 0.02, the

backward scattering of the phase function as well as the region of what was a 46o

peak in the smooth case become featureless; whereas the peak at scattering angle

22o is only weakened but still obtained by both the PSTD and IGOM. Moreover, the

oscillations appearing in the polarization properties of the smooth particles given by

the PSTD are no longer obtained, and excellent agreement between the PSTD and

IGOM results are achieved. When the surface becomes severely rough (σ2 = 0.1),

the phase function peaks disappear and all three methods provide very smooth phase

matrix elements. At the three different surfaces: smooth, moderately rough, and

severely rough, results with both the TF and the IGOM agree very well with those

from the PSTD.
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Figure 3.37: The non-zero phase matrix elements given by the TF, IGOM and PSTD
for randomly oriented hexagonal columns with surfaces of different degrees. The
hexagonal columns have a size parameter of 100, and σ2 of the rough surfaces are:
(a) 0 (left column); (b) 0.02 (middle column); and (c) 0.1 (right column) .
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Figure 3.38: The Qext and g of randomly oriented hexagonal columns with size
parameter ranging from 1 to 10,000. The σ2 of the roughened hexagonal column is
0.1.

Two integral scattering properties, the extinction efficiencies and asymmetry fac-

tors, of the smooth and roughened hexagonal columns as functions of the size pa-

rameter are shown in Figure 3.38. In the roughened hexagonal columns σ2 = 0.1. A

combination of the PSTD and IGOM are used to cover the size parameters from 1 to

10,000: with the edge effects being included in the IGOM, the extinction efficiencies

given by the PSTD merge smoothly with the corresponding IGOM efficiencies. The

extinction efficiencies and asymmetry factors of the smooth and roughened hexagonal

columns with size parameters less than 20 are almost the same, but the extinction

efficiencies show slight differences as the size parameter becomes larger. The asym-

metry factors of the smooth and roughened particles differ until the size parameter

reaches approximately 40. For particles with size parameters larger than 100, the
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extinction efficiencies of both the smooth and roughened hexagonal columns con-

verge at 2. However, the roughened particles have smaller asymmetry factors (values

approximately 0.75) than the smooth ones (values approximately 0.77). Figure 3.32

and Figure 3.38 indicate that the surface roughness should be fully considered for

particles with size parameters approximately 20 and larger for the surface defined

here with (σ2 = 0.1).

3.3.4 Conclusion

This section investigated the effect of surface roughness on the scattering proper-

ties of atmospheric particles with size parameters ranging from the Rayleigh to the

geometric-optics regimes. A superposition of simple waves with prescribed spectral

structure that involves parametric descriptions of roughness was used to represent

the roughened surface of ice crystals, and a combination of the numerically exact

PSTD method and the IGOM were used to calculate the light scattering properties

of both smooth and roughened hexagonal columns over the wide size range.

We find using our idealized model that the influence of a given degree of roughness

(σ2) on the single-scattering properties of non-spherical particles becomes noticeable

when the size parameters of the particles exceed a critical value. For our model

with σ2 = 0.1, this critical size parameter is 20. The scattering properties (both

the phase matrix elements and integral scattering properties) for both smooth and

roughened particles given by the IGOM agree very well with the PSTD results for

hexagonal columns with size parameters of 100. We found that for IGOM, the

detailed surface structure in our model is relatively unimportant in determining the

optical scattering properties of particles once the degree of roughness, which we take

to be the variance σ2 of surface slopes, is determined. The PSTD and IGOM results

are used to examine the validity of those given by the TF method. Considering just
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the comparison between TF and IGOM results, the two methods agreed quite well

for mild degrees of roughening. But as the degree of roughness increases, details of

the phase matrix element results obtained by the two geometric optics methods begin

to differ from each other, suggesting weakness in the TF method at large roughness

amplitude. This result is essentially the same as that for 2-D case studied in [47].

These results have been obtained using a highly idealized model of surface rough-

ness, and must be considered with that fact in mind. However idealized the model

may appear in comparison with any one particular instance of a rough particle, it

does seem to show at least qualitative similarity to some reported images. We have

made no systematic attempt to determine the effects of changes in the value of the

σ2; this is a definite possible use of the model, but we are not aware of observational

data currently available that could help suggest the useful variations to consider.

Furthermore, the approach to surface roughening we have described, like the IGOM

and PSTD methods that we used in the investigation of the associated scattering

properties, has a great deal of flexibility in terms of basic particle geometry to which

it can be applied. We considered here only hexagonal columns because variation in

overall particle geometry was not our focus. But exactly the same roughening model

could be applied in the case of particles of all sorts with flat faces. Furthermore, it

is easy to see that extension to, for example, spherical particles could be easily made

by replacing planar harmonics with spherical harmonics.

3.4 Summary

This section investigated the effects of particle complexities on the light scattering

properties of atmospheric particles, and discussed three independent parts: irregu-

larity, inhomogeneity, and roughness. By either introducing new models to represent

the realistic atmospheric particles (i.e. fractal model for dust particles, and irregular
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roughness model) or testing the accuracy of the widely-used approximations (i.e. the

EMA, and TF), we try to conclude more accurate and reliable scattering properties of

the atmospheric particles. Our numerical results indicate the importance of particle

complexities on the scattering properties and the limitation of the current approx-

imations, and, with the improvement of the scattering model and supercomputer

facility, all those aspects should be fully included in the light scattering simulations

as well as the further applications.

However, considering the irregularity and diversity of the atmospheric particles,

none of those numerical models are supposed to be general and realistic enough for

all aerosol particles or ice crystals, and the fundamental motivation of these inves-

tigations is to capture the important effects of those complexity on the scattering

properties, which are important for the radiative transfer and remote sensing appli-

cations. Besides the investigation on the scattering model, significant researches are

still needed to build more realistic particle models, e.g. size, shape, and components,

which can better represents the atmospheric particles.
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4. SUMMARY AND CONCLUSION

This dissertation investigated a new parallelized PSTD implementation for sim-

ulating the single-scattering properties of particles with arbitrary shapes and com-

ponents. A scheme of spectral filter that is introduced to eliminate the Gibbs phe-

nomenon significantly enhances the applicability of the PSTD. To demonstrate the

applicability, efficiency, and accuracy of the PSTD, comparisons are carried out for

both spherical and non-spherical particles with relatively large size parameters and

several refractive indices. The resultant PSTD simulations show close agreement

with both the rigorous Lorenz-Mie solutions and the highly reliable T-matrix re-

sults. The PSTD is shown to be applicable to spheres with size parameters up to

200 in conjunction with moderate refractive indices, and size parameters up to 100

for randomly oriented nonspherical particles. The performance of the PSTD on inho-

mogeneous particles is also validated. On the basis of results shown here, we believe

that the PSTD method shows real promise for pushing the boundary of what is fea-

sible in the wide regime of particle sizes, refractive indices and complex geometries,

and broad range of applicability for atmospheric particles, i.e. ice crystal and aerosol

particles.

Furthermore, a systematic comparison between the PSTD and DDA that share

similar areas of applicability was carried out by requiring the same prescribed ac-

curacy criteria on the same multi-processor hardware, and the computational time

was used as the key parameter to evaluate and compare the two methods for both

spheres and spheroids. The DDA was more economical for numerical simulations of

spheres with small refractive indices and small size parameters; whereas, the PSTD

was more economical for large x and m. The critical size parameter, above which
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the PSTD outperformed the DDA, decreased from 80 to 30 as the refractive index

increased from 1.2 to 1.4. The PSTD was more CPU-efficient and applicable to a

wider range of x when the refractive index was larger than 1.4. Similar conclusions

were obtained for the spheroids. Furthermore, the overall accuracy of the asymme-

try factor, backscatter, and linear polarization given by the PSTD and DDA were in

agreement

With the enhancement on the light scattering simulations provided by the PSTD,

the effects of atmospheric particle complexities on the light scattering properties are

investigated. Three topics corresponding to the irregular geometry, inhomogeneous

components and surface roughness are considered:

(1). We proposed the fractal model to model the single-scattering properties of

various mineral dust aerosols at two wavelengths, and the highly irregular concave

geometry shows significantly applicability and reliability to reproduce phase matrix

elements from the laboratory measurements;

(2). With respect to the inhomogeneity of atmospheric particles, we found that

the mixing state should be fully considered to simulate their scattering properties,

and the effective medium approximations can be used only when the materials are

uniformly mixed;

(3). An irregular rough model that can be considered in both PSTD and IGOM

algorithms are used to cover the roughened particle with size range extending from

the Rayleigh to the geometric optics regimes is developed, and the effects of those

small-scale surface roughness on the scattering properties of atmospheric particles

are systematically investigated.

In conclusion, to consider the scattering properties of realistic atmospheric par-

ticles, their complexities should be fully considered, and extreme caution should be

exercised if approximations are performed.
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By developing numerical models on both light scattering algorithm and repre-

sentation of realistic particles, this doctoral study represents an effort to improve

our understanding on the single scattering properties of the atmospheric particles

and to provide more accurate optical properties for applications related to the radia-

tive transfer and remote sensing. The investigation and improvement on the PSTD

method substantially enhanced the capability of numerically exact methods for the

single-scattering simulations, and, with the wide range of applicability provided by

the PSTD, this dissertation accounts the effects of the complexities, e.g. irregularity,

inhomogeneity and surface roughness, of the ice crystal and aerosol particles more

accurately. In the perspective of applications, the more accurate simulations of the

single-scattering properties will serve as the essential interpretation for the in-situ

or laboratory measurements, satellite retrieval algorithm, and provide fundamental

parameters for the radiative and climate studies.
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