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ABSTRACT

During the past two decades, techniques and devices were developed to transmit

and receive signals with a phased array instead of a single coil in the MRI (Magnetic

Resonance Imaging) system. The two techniques to simultaneously transmit and

receive RF signals using phased arrays are called parallel excitation (pTx) and parallel

imaging (PI), respectively. These two techniques lead to shorter transmit pulses for

higher imaging quality and faster data acquisition correspondingly.

This dissertation focuses on improving the efficiency of the pTx pulse design and

the PI reconstruction in MRI. Both PI and pTx benefit from the increased number

of elements of the array. However, efficiency concerns may arise which include: (1)

In PI, the computation cost of the reconstructions and the achievable acceleration

factors and (2) in pTx, the pulse design speed and memory cost. The work presented

in this dissertation addresses these issues.

First, a correlation based channel reduction algorithm is developed to reduce

the computation cost of PI reconstruction. In conventional k-domain methods, the

individual channel data is reconstructed via linear interpolation of the neighbourhood

data from all channels. In this proposed algorithm, we choose only a subset of

the channels based on the spatial correlation. The results have shown that the

computation cost can be significantly reduced with similar or higher reconstruction

accuracy.

Then, a new parallel imaging method named parallel imaging using localized

receive arrays with Sinc interpolation(PILARS) is proposed to improve the actual

acceleration factor and to reduce the computation cost. It employs the local support

of individual coils and pre-determines the magnitude of the reconstruction coeffi-
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cients. Thus, it requires much less auto-calibration signals (ACS) data and achieves

higher acceleration factors. The results show that this method can increase the

acceleration factor and the reconstruction speed while achieving the same level of

reconstruction quality.

Finally, a fast pTx pulse design method is proposed to accelerate the design speed.

This method is based on the spatial domain pulse design method and can be used to

accelerate similar methods. We substitute the two computational expensive matrix-

vector multiplications in the conjugate gradient (CG) solver with gridding and fast

Fourier transform (FFT). Theoretical and simulation results have shown that the

design speed can be improved by 10 times. Meanwhile, the memory cost is reduced

by 103 times. This breaks the memory burden of implementing pulse designs on

GPU which enables further accelerations.
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NOMENCLATURE

2D Two Dimensional

3D Three Dimensional

ACS Auto Calibration Signals

CG Conjugate Gradient

FE Frequency Encoding

FFT Fast Fourier Transform

FID Free Induction Decay

FOV Field of View

FOX Field of Excitation

GPGPU General-purpose Graphics Processing Unit

GPU Graphics Processing Unit

GRE Gradient Echo

GRAPPA Generalized Autocalibrating Partially Parallel

Acquisitions

MCMLI Multicolumn Multiline Interpolation

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

NRMSE Normalized Root Mean Square Error

PE Phase Encoding

PI Parallel Imaging

PILARS Parallel Magnetic Resonance Imaging using Localized

Receive Arrays with Sinc Interpolation
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PILS Partially Parallel Imaging with Localized Sensitivities

pTx Prallel Excitation

RF Radio Frequency

ROI Region of Interest

SAR Specific Absorption Rate

SE Spin Echo

SEA Single Echo Acquisition

SENSE Sensitivity Encoding

SMASH Simultaneous Acquisition of Spatial Harmonics

SNR Signal to Noise Ratio

STA Small Tip-angle Approximation

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Array for Excitation and Reception . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Outline and Contributions . . . . . . . . . . . . . . . . . 4

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Magnetic Resonance Imaging Basics . . . . . . . . . . . . . . . . . . . 6
2.2 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 SENSE: Sensitivity Encoding . . . . . . . . . . . . . . . . . . 10
2.2.2 PILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 SMASH: Simultaneous Acquisition of Spatial Harmonics . . . 14
2.2.4 AUTO-SMASH and VD-AUTO-SMASH . . . . . . . . . . . . 16
2.2.5 GRAPPA and MCMLI . . . . . . . . . . . . . . . . . . . . . . 17
2.2.6 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 Efficiency Concerns in Parallel Imaging . . . . . . . . . . . . . 20

2.3 Parallel Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Spatial Tailored Pulse Design Using the Spatial Domain Method 22
2.3.2 Pulse Design Validations via Bloch Simulator . . . . . . . . . 23
2.3.3 Pulse Design Validations via Experiments . . . . . . . . . . . 25
2.3.4 Efficiency Concerns in Parallel Excitation . . . . . . . . . . . 30

vii



3. K-DOMAIN PARALLEL MRI USING CHANNEL-BY-CHANNEL AR-
RAY REDUCTION * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 K-domain PI Reconstruction with Channel Reduction . . . . . 35
3.2.2 Channel Selection Using the Correlation Information . . . . . 37

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 2D Phantom and In-vivo Experiments . . . . . . . . . . . . . 39
3.3.3 In-vivo Experiment . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 44

4. PARALLEL MRI USING LOCALIZED RECEIVE ARRAYS WITH SINC
INTERPOLATION (PILARS) * . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 PILARS Reconstruction . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Two-Stage Phase Calibration . . . . . . . . . . . . . . . . . . 56
4.2.3 Reconstruction Procedure . . . . . . . . . . . . . . . . . . . . 57

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 62

5. FAST PULSE DESIGN USING GRIDDING CG . . . . . . . . . . . . . . 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 RF Pulse Design with Gridding CG . . . . . . . . . . . . . . . 68
5.2.2 Off-resonance Incorporated RF Pulse Design with Gridding

CG under a Piece-wise Linear Model . . . . . . . . . . . . . . 72
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 2D Pulse Design with Gridding CG . . . . . . . . . . . . . . . 75
5.3.2 Pulse Design in Presence of Off-resonance . . . . . . . . . . . 77
5.3.3 Design Stability to Inaccurate B+

1 Maps . . . . . . . . . . . . 78
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

APPENDIX A. CONJUGATE GRADIENT SOLVER . . . . . . . . . . . . . 92

APPENDIX B. GRIDDING: RECONSTRUCTION OF NON-CARTESIAN
K-SPACE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

APPENDIX C. INTENSITY CORRECTION FOR GRIDDING . . . . . . . . 96

ix



LIST OF FIGURES

FIGURE Page

1.1 The SEA linear array built in Texas A&M University with 64 channels 2

1.2 The 128 channel body array built in Massachusetts General Hospital 2

1.3 32 channel lattice transmission line array [1] . . . . . . . . . . . . . . 3

1.4 The 64 channel tranceive array built in MRSL, TAMU . . . . . . . . 3

2.1 Larmor frequency and signal formation . . . . . . . . . . . . . . . . . 7

2.2 Constant slice selection gradient in the main field direction and the
Sinc excitation RF pulse . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 A typical MRI scanner with gradient coils and RF coils . . . . . . . . 10

2.4 Example of SENSE reconstruction . . . . . . . . . . . . . . . . . . . . 12

2.5 The sampling schemes of the SMASH method, the AUTO-SMASH
method and the VD-AUTO-SMASH method . . . . . . . . . . . . . 17

2.6 (a) The sampling scheme of GRAPPA, central k-space is not down-
sampled and used as ACS (b) the two reconstruction steps: calibrate
interpolation coefficients and interpolate the whole k-space . . . . . . 19

2.7 (a) The target excitation logo pattern (b) the spiral-in trajectory and
(c) the designed pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Excitation pattern from the Bloch simulator on a 20cm grid . . . . . 26

2.9 Excitation pattern from the Bloch simulator on a 40cm grid . . . . . 26

2.10 Water phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 The complex target patterns . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 The excitation patterns from the Bloch simulator . . . . . . . . . . . 30

x



2.13 The acquired images from the experiments: magnitude image (1st
column) is used to mask the phase image (2nd column) to get the
masked phase image (3rd column) . . . . . . . . . . . . . . . . . . . . 31

3.1 One-dimensional profile of coil sensitivities in a large coil array with
localized sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Illustration of 64-ch data simulation. (a) The physical layout of the
coil array with localized sensitivity and (b) 1-D profile of 3 sets of coil
sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Individual channel images acquired using the 8-channel linear array . 41

3.4 Reconstructions from the simulated 64-ch data with different number
of selected channels in MCMLI method. Fully sampled image is shown
for reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Error images using 3 sets of simulated data sets (with narrow, medium
and wide sensitivities) with different number of selected channels. Er-
ror images of set 1, 2 and 3 are shown in the 1st, 2nd and 3rd rows
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Correlation coefficient matrix of a 64-ch receiver system. Significant
correlation exists between neighbor channels. Threshold is set at 0.7 . 48

3.7 Reconstruction results in the 64-channel phantom experiment. Re-
constructions (first row) and their corresponding error images (second
row) with different selected number of channels (Nc = 7, 15, 31 and
61) are shown. A single line (dashed) in each reconstruction is pro-
vided to compare resolution. SNR is computed using selected regions
shown in the first image . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Reconstruction time cost versus number of selected channels at differ-
ent reduction factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Reconstructions of the data acquired using the circular array with
different Nc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Reconstructions of 32-ch in-vivo body images with Nc =4, 8, 16 and
32. Only one slice of the 3D image is shown . . . . . . . . . . . . . . 52

xi



4.1 Profile of the channel image and localization of optimal center region
(shadowed). The profile is obtained from a central k-space line along
the horizontal dimension. The maximum of the profile is taken as an
initial estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Reconstruction process of a single channel in the proposed PILARS
method. Eq. (4) is used to recover the k-space data after the phase
term is estimated based on ACS . . . . . . . . . . . . . . . . . . . . . 58

4.3 The image object and representative coil sensitivities in the computer
simulation. Sensitivity maps of the first 24 channels are shown with lo-
calization in both directions. Optimal window centers of each channel
obtained from the two-stage calibration are shown as dots . . . . . . 59

4.4 Reconstructions from simulated k-space data (D1 = D2 = 2) using dif-
ferent methods. The bottom row shows the corresponding error images
and the quantitative normalized root-mean-square reconstruction error 61

4.5 Reconstructions using the proposed PILARS method . . . . . . . . . 62

4.6 Reconstructions using the the MCMLI method . . . . . . . . . . . . . 63

4.7 Reconstructions using the PILS method . . . . . . . . . . . . . . . . 64

5.1 Flow chart of the two matrix-vector multiplications substituted by the
two operators G1 and G2 . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 (a) The target pattern for the pulse design and (b) the excitation
k-space trajectory with acceleration of R = 2 . . . . . . . . . . . . . . 76

5.3 The off-resonance map that contains three different blocks, linear
within each block, the range of ∆B0 over the entire FOX is 280Hz . . 77

5.4 Relative residuals (a) of the pulse design using the spatial domain
method versus design time and the relative residuals (b) of the pulse
design using the gridding CG method. 100 iterations are performed
for both. (c) The excitation patterns of the two methods . . . . . . . 80

5.5 The excitation patterns of pulse designed using the conventional de-
sign method: (a) the magnitude pattern and (b) the phase error pat-
tern in presence of off-resonance . . . . . . . . . . . . . . . . . . . . . 81

5.6 The excitation patterns of pulse designed using the proposed design
method: (a) the magnitude pattern and (b) the phase pattern in pres-
ence of off-resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



5.7 Excitation error versus the SNR of the B1+ sensitivities . . . . . . . 82

xiii



LIST OF TABLES

TABLE Page

3.1 SNR vs. different number of selected channels Nc . . . . . . . . . . . 42

4.1 NRMSE verses size of ACS in the real 64-ch MRI experiment with an
outer acceleration factor of D2 = 3 . . . . . . . . . . . . . . . . . . . 65

4.2 Reconstruction time(sec) of the three methods in the 64-ch experiment 65

5.1 Computation costs of Afullb with operator G1 and the direct matrix
multiplication (Number of complex multiplications) . . . . . . . . . . 72

xiv



1. INTRODUCTION

1.1 Array for Excitation and Reception

RF coils play a key role in MRI as to transmit the excitation RF signal and

receive the free induction decay (FID) RF signal. Conventionally, single birdcage

coil is used for both the signal transmission and reception. Hitherto, phased arrays,

especially the large arrays with large number of element coils, have been used to

replace or supplement the single birdcage coil in MRI.

The application of phased array in MRI for signal reception initially arose to

increase the the signal-to-noise ratio (SNR) [39]. The sum of squares algorithm

for combinating individual channel images is proposed to be optimal in term of

SNR. Sonn after, the spatial encoding provided by the spatial receive sensitivity of

multiple coils had been explored and used to accelerate the data acquisition process.

This technique is called parallel imaging (pMRI). Less data is acquired and the

image is reconstructed using the spatial sensitivity information. Scan time is reduced

proportional to the amount of skipped data in acquisition but the SNR is lost at the

same time. However, the other technique development from the increase of main field

strength to the improved low noise hardware offered MRI with higher SNR. And it

becomes acceptable to trade the SNR for faster imaging speed.

Due to the fact that the acceleration is benefited from the additional spatial

information, the increased number of elements in array promise higher potential

accelerations for parallel imaging. Two phase arrays with a large number of channels

are given in Fig. 1.1 and Fig. 1.2. The single echo acquisition (SEA)[31] method

even goes to the extremity of completely eliminating the phase encoding and the

maximum acceleration is achieved.
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Figure 1.1: The SEA linear array built in Texas A&M University with 64 channels

Figure 1.2: The 128 channel body array built in Massachusetts General Hospital

Phased arrays are also used for signal transmission in MRI to perform RF shim-

ming [30, 45]. The goal is to compensate the main field inhomogeneity by controlling

the transmit power of each shimming coil. Parallel excitation (pTx) has been pro-

posed and proven to be the more effective in correcting field inhomogeneity issues

more accurately and with lower specific absorption rate (SAR). More channels for
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parallel transmission array also increase the degree of freedom of parallel excita-

tion pulse design and provides improved performance. Transmit array examples are

shown in Fig. 1.3 and Fig. 1.4.

Figure 1.3: 32 channel lattice transmission line array [1]

Figure 1.4: The 64 channel tranceive array built in MRSL, TAMU

Thus, it is the developing tendency that the number of channels in the phased

3



array will increase for both parallel imaging and parallel excitation.

1.2 Motivations

Although parallel excitation and parallel imaging are intrinsically benefited from

more elements in the coil arrays, new challenges arise as well.

The first challenge is the increased computation cost for the reconstruction using

parallel imaging methods. The amount of data to be processed increase linearly with

the number of channels in the array and the actual computation cost can increase

quadratically for certain parallel imaging methods.

The second challenge is the degraded acceleration provided by the k-domain par-

allel imaging methods. Interpolation coefficients in k-domain pMRI methods require

additional calibration data which will reduced the actual achieved acceleration.

Finally, parallel excitation pulse design is time consuming comparing to the real

time design goal.The design computation load increases linearly with the increased

number of channels.

All these new challenges arose with large arrays are in the category of efficiency

concerns. This dissertation is motivated by solving these efficiency concerns so that

the benefit of using large arrays in MRI can be most enjoyed.

1.3 Dissertation Outline and Contributions

In Section 2, the background of MRI, parallel imaging and parallel excitation are

introduced. Then, three major contribution work are introduced consecutively.

The contribution of this dissertation includes three major parts:

First, we propose a correlation based channel reduction algorithm to reduce the

computation cost of PI reconstruction. In conventional k-domain methods, the indi-

vidual channel data is reconstructed via linear interpolation of neighbourhood data

from all channels. In this proposed algorithm, we choose only a subset of the channels

4



based on the spatial correlation. The computation cost can be significantly reduced

with similar or higher reconstruction accuracy. This is described in Section 3.

Then, a new parallel imaging method named PILARS is proposed to improve

the actual acceleration factor and reduce the computation cost. It employs the local

support of individual coils and pre-determines the magnitude of the reconstruction

coefficients. Thus, it requires much less auto-calibration signals (ACS) data to esti-

mate the parameters and keeps the acceleration factor higher than the conventional

k-domain methods. The proposed method can increase the actual acceleration factor

and the reconstruction speed with the same level of reconstruction error comparing

to the several conventional methods. This is described in Section 4.

Finally, a fast pulse design method is proposed to accelerate the design speed.

This method is based on the spatial domain pulse design method and can be used

to accelerate the designs of any methods related to it. We substitute the two com-

putational expensive matrix-vector multiplications in the conjugate gradient (CG)

solver with gridding and fast Fourier transform (FFT). Theoretical and simulation

results have shown that the design speed can be improved by 10 times. Meanwhile,

the memory cost is reduced by 103 times. This breaks the memory burden of imple-

menting pulse designs on GPU and promises another 10× design acceleration. This

is described in Section 5.
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2. BACKGROUND

2.1 Magnetic Resonance Imaging Basics

In this section, we provide an overview of Magnetic resonance imaging (MRI).

Only the signal transmission and the signal detection part is explained with mathe-

matical description while the other parts in MRI are briefly discussed.

MRI is a non-invasive imaging methodology comparing to computed tomography

(CT) and X-ray imaging. It provides good contrast between the different soft tissues

such as brain, heart and cancer. The fundamental physical phenomenon in MRI is

given below. When a subject is placed in a strong magnetic field, a portion of the

nuclear spins will become aligned with the main field of strength B0 and precess

along it at Larmor freqency ω0 = γB0, where γ is the gyromagnetic ratio. The spins

are able to absorb electromagnetic signal at the same frequency to jump into higher

energy state and then release electromagnetic signal out when jumping back to the

original energy level as shown in Fig. 2.1. The Larmor frequency of hydrogen proton

is in the range of radio frequency (RF). A MRI imaging period starts from transmit

RF signal to excite the spins and ends when the released RF signal is detected. RF

coils are used for the signal transmission and detection.

During the signal transmission process, Bloch equation describes the relation be-

tween the excited transverse magnetization, the excitation RF signal and the applied

excitation gradient. Assume that the main field is in the z-direction and a reference

frame rotating about z at Larmor frequency ω0 = γB0 is used. The following Bloch

6



Figure 2.1: Larmor frequency and signal formation

equation is given without consideration of the relaxation effect,

d

dt


Mx(~r, t)

My(~r, t)

Mz(~r, t)

 = λ


0 ~G(t) · ~r −B1,y(t)

−~G(t) · ~r 0 B1,x(t)

B1,y(t) −B1,x(t) 0




Mx(~r, t)

My(~r, t)

Mz(~r, t)

 (2.1)

where ~M(~r, t) = Mx(~r, t)i + My(~r, t)j + Mz(~r, t)k is the magnetization at spatial

location ~r, ~G(t) is the applied time varying gradient, ~G(t) · ~r is the z-direction field

generated by the gradient and B1,x and B1,y are the x-component and y-component

of the applied RF pulse. Traditionally, a Sinc RF pulse will be used along with

a constant z-direction gradient to excite a thin slice as shown in Fig. 2.2. This

ability to do selective imaging is a key advantage of MRI comparing to other imaging

modalities.

In order to do imaging, the spatial information of the object is encoded into the

received RF signal. This is done by using gradient coils to generate gradient field.

Gradient field is a spatially varying magnetic field which is in the same direction as

the main field. With the gradient, spins at different spatial locations are processing
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Figure 2.2: Constant slice selection gradient in the main field direction and the Sinc
excitation RF pulse

at a unique Larmor frequency and the received RF signal are composed of frequency

components representing the signal strength from a particular spatial location. The

gradient applied during the data acquisition is named frequency encoding (FE) gra-

dient and the gradent that generates similar encoding in the perpendicular direction

is called phase encoding (PE) gradient. The relationship between the proton density

and the received RF signal is described as,

S(tf ) =
∫ ∞
−∞

∫ ∞
−∞

I(x, y)e+jkyy+jkxxdxdy (2.2)
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where

I(x, y) represents the proton density of the underlining object

ky = γGyTp

kx = γGxtf

Tp = the phase encoding pulse length

Gy = the amplitude of the phase encoding gradient

Gx = the amplitude of the frequency encoding gradient

Tp = the duration of the phase encoding gradient

tf = the time since the beginning of the frequency encoding gradient pulse

As can be seen, the received RF signal and the underlining desired image form a

Fourier pair. The inverse Fourier transform to reconstruct the image from acquired

data. We call the frequency space in which the data is acquired the k-space. For each

phase encoding, we read out one line of the k-space. To perform a two dimensional

(2D) imaging, different PE steps need to be applied till the whole 2D data is acquired.

A illustrative image of the MRI scanner is shown in Fig. 2.3 with gradient coils and

Rf coils.

2.2 Parallel Imaging

Parallel imaging methods can be categorized by the domain in which the recon-

struction is formulated: the spatial domain method, the k-domain method and the

hybrid method. In the following sections, two spatial domain methods SENSE and

PILS will be introduced first. Then, several k-domain methods will be are explained

in detail along with the validation method. In the end, the efficiency concerns in

k-domain parallel imaging is discussed.
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Figure 2.3: A typical MRI scanner with gradient coils and RF coils

2.2.1 SENSE: Sensitivity Encoding

The idea of SENSE [36] is that the imaging speed can be accelerated by sampling

a sparser k-space compared to the Nyquist rate, e.g. less phase encoding (PE) steps.

And on the Cartesian sampling grid, the lower sampling rate will lead to a predictable

aliasing in the spatial domain (image folding). The additional information of array’s

reception sensitivity is encoded in the aliased individual channel image. With the

receive sensitivity of each channel as prior-knowledge, a set of linear equations can

be built that relate the underlining true image and each of the aliased channel image.

Then, the true image can be reconstructed by solving the linear equations.

For simplicity concern, the SENSE method on Cartesian grid will be formulated

here. Suppose the full size of the image to be reconstructed I(xi, yj) are Np and Nf

in the PE and FE direction respectively. With an accelerated acquisition by a factor

of R in the PE direction, the FOV is reduced to the size of Np

R
by Nf . Assume there
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are a total number of L reception channels and the coil sensitivity Sl(x, y) is known

for each channel for the l-th channel. Then, the SENSE equation for a single pixel

at (xi, yj) in aliased image can be formulated as,



I1(xi, yj)

I2(xi, yj)
...

IL(xi, yj)


L×1

=



S1(xi, yj) S1(xi, yj + Np

R
) · · · S1(xi, yj +Np)

S2(xi, yj) S2(xi, yj + Np

R
) · · · S2(xi, yj +Np)

... ... ... ...

SL(xi, yj) SL(xi, yj + Np

R
) · · · SL(xi, yj +Np)


L×R

·



I(xi, yj + 0
R
Np)

I(xi, yj + 1
R
Np)

...

I(xi, yj + R
R
Np)


R×1

(2.3)

where Il(xi, yj) is the pixel value at (xi, yj) in the acquired aliasing image of the

l-th channel and I is the image to be solved. x denotes the coordinates in the FE

direction and denotes the coordinates in the PE direction with index i = 1, 2, · · · , Nf

and j = 1, 2, · · · , Np

R
respectively. So generally, for each pixel in the aliased images

from all channels, a set of R pixels of the underlying image can be solved from the

above equation. The entire image can be solved by forming a similar equation at all

spatial locations in the aliased image.

An example is given in Fig. 2.4. Here the receive sensitivities of the two-channel

array are given in (a). The underlying image to be reconstructed is shown in (b).

The sensitivity modulated received channel images are given in (c) and the aliased

channel images are in (d).
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Figure 2.4: Example of SENSE reconstruction

The SENSE formula for a position x in the aliased images can be written as,

 I1(x)

I2(x)

 =

S1(x1) S1(x2)

S2(x1) S2(x2)


 I(x1)

I(x2)

 (2.4)

then the value of the underlying image I at location x1, x2 can be solved. To solve

the entire image I, a large equation of this kind that contains all pixel values in the

aliased images can be set up and the solution is I.

This SENSE formula is for 2D imaging on Cartesian grid with accelerated acqui-

sition in the phase encoding direction. And it can be simply extended into multi-

dimensions with more accelerated phase encodings.

SENSE as other parallel imaging method, is applicable on MRI scanners with re-
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ceive arrays when reducing imaging time is more critical and the degradation of SNR

can be tolerated. Generally, SNR will reduce by the square root of the acceleration

factor.

Unlike conventional MRI, the receive sensitivity maps B−1 of the coils are nec-

essary in SENSE reconstruction process. Some methods to acquire sensitivity such

as simulation using Biot-Savart law, measurement of uniform phantom image at the

same position are not accurate due to the loading effect. Or a combination of coil

array and body coil can be used and sensitivity is obtained by image division. In the

proposed method, full FOV image at the target slice is obtained and sensitivity is

obtained by division of individual image by sum-of-square reconstruction. But this

requires additional imaging time which may dispel the benefit of parallel imaging.

So how to rapidly obtain accurate sensitivity information is of great concern for the

SENSE method.

Also, although the SENSE method is not restricted to Cartesian sampling pat-

tern, the computation cost for solving a non-Cartesian SENSE problem may be

tremendous as fast Fourier transform cannot be used. Usually, it will be solved using

iterative methods such as conjugate gradient with griddings as in [35]. The SENSE

method has been implemented on Philips Commercial scanners. And this method

can be fitted into already installed system without changes in system hardware.

2.2.2 PILS

The PILS method [18] can be used for partial parallel imaging when the sensitivity

coverage of the coils in the array are localized. This is equivalent to reduced FOV for

individual channels. After the under sampling, aliasing will not cause the individual

image content to overlap each other. Thus, the image can be recovered by cutting

out the proper part of each channel and combine them together.
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The drawback of PILS is that the acceleration depends on the geometry of the

coils and the sampling scheme is limited on the Cartesian. Another problem of the

PILS method is that the cutting location is selected as the peak of the sensitivity map

which is not optimal. This is discussed in Section 4. Also, the final reconstruction

is a spatial combination of individual cut images with low SNR similar the SMASH

method.

2.2.3 SMASH: Simultaneous Acquisition of Spatial Harmonics

The SMASH method [43] is the first proposed k-domain parallel imaging method.

It manipulates the receive sensitivities of coils in array to synthesize spatial harmonics

and therefore some Fourier encodings steps can be skipped to save data acquisition

time.

Suppose all the coils in a linear array have spatially varying receive sensitivities

along the array direction y and are uniform in the other direction x. Let the coil

sensitivity is denoted by Cj(x, y) for the j-th channel. The assumption is that by

linear combinations, coil sensitivities can form a Fourier harmonic of spatial frequency

m∆kx using complex valued weight as given in Eq. 2.5,

∑
j

njCj(x, y) = Ccomp(x, y) = exp (i ·m∆ky · y) (2.5)

From the data acquisition in MRI, we know that given a phase encoding at ky,

the acquired data by the j-th channel is,

Sj(kx, ky) =
∫∫

Cj(x, y)I(x, y) exp (−i(kxx+ kyy)) dxdy (2.6)

where I(x, y) is the underlining image determined by proton density and imaging

parameters. If we form a linear combination of the acquired data from multiple coils
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using the same coefficients as in Eq. 2.5, the synthesized data is

Scomp(kx, ky)

=
∑
j

nj

∫∫
Cj(x, y)I(x, y) exp [−i(kxx+ kyy)] dxdy

=
∫∫

I(x, y)
∑

j

njCj(x, y)
 exp [−i(kxx+ kyy)] dxdy

=
∫∫

I(x, y)Ccomp(x, y) exp [−i(kxx+ kyy)] dxdy

(2.7)

Plug Eq. 2.5 into Eq. 2.7, we have

Scomp(kx, ky) =
∫∫

I(x, y) exp {−i [kxx+ (ky −m∆ky) y]} dxdy (2.8)

This is equivalent to the data acquired with a phase encoding at ky − m∆ky.

Thus, by linearly combining the data acquired at ky from all channels, we can obtain

the data at ky − m∆ky. Suppose we can synthesize a total number of M spatial

harmonics as in Eq. 2.5, then by applying these coefficients as in Eq. 2.7, we will

get all the data at ky −m∆ky for m = 1, · · · ,M by linear combination of data from

all channels at location ky. And we can acquire one set of data instead of M steps

of phase encodings which leads to a factor of M reduction in data acquisition time.

To implement the SMASH method, there are additional requirements and limi-

tations on scanners equipped with receive arrays as listed below.

First, to implement the SMASH method, a linear array is required to generate

spatially varying sensitivity in the array direction and uniform in the other direction.

This is the only way to provide universal coefficients which will be used to linearly

combine the data from multiple channels to form spatial harmonics. Thus, circular
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receive arrays may not be used to implement the SMASH method.

Second, although there are no strict limitations on that sampling must be done on

the Cartesian grid, the generation of additional spatial harmonics from sensitivities

is available only in the array direction. Thus, the accelerated must be performed

along the array direction no matter which original full sampling scheme is used.

This makes it difficult to be used in trajectories such as spiral and radial.

Finally, similar to the SENSE method, the receive sensitivities of the receive array

are required as pre-knowledge for the SMASH method in order to obtain the optimal

combination coefficients. The performance greatly depends on the accuracy of coil

sensitivity measurement. Errors in sensitivity estimation will lead to severe aliasing

artifact due to the incorrectly synthesized spatial harmonics.

2.2.4 AUTO-SMASH and VD-AUTO-SMASH

The SMASH method requires the information of the coil receive sensitivity B+
1 to

calibrate the weighting coefficients. There are two following up methods that do not

need the B+
1 receive sensitivity: the AUTO-SMASH method [24] and the VD-AUTO-

SMASH [21]. The idea is similar to the training process in pattern recognition.

These methods introduce the concept of auto-calibration signals (ACS) which are just

some additional data acquired comparing to the original SMASH sampling scheme at

central k-space. And the weighting coefficients can be estimated using these signals

without measuring the reception sensitivities. ACS are usually acquired in the central

k-space for higher SNR. They are also included in the final reconstruction to further

reducing the aliasing artifacts. The only drawback is that the actual acceleration

benefit of pMRI is degraded because of these additional acquired data.

The sampling schemes of these three methods are shown in Fig. 2.5. Note that

all these three methods are combining down-sampled date from multiple channels to
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obtain a single fully sample data. The k-space data are combined by direct sum for

these three methods in most cases in the calibration step and in the final combination

of acquired data. This can lead to phase error and lower SNR comparing to sum of

square image combination.

Figure 2.5: The sampling schemes of the SMASH method, the AUTO-SMASH
method and the VD-AUTO-SMASH method

2.2.5 GRAPPA and MCMLI

The k-domain parallel MRI reconstruction methods such as Generalized Auto-

calibrating Partially Parallel Acquisition (GRAPPA) or (Multicolumn Multi-line In-

terpolation (MCMLI) are developed based on the above methods. The difference is

that the k-space missing data of each individual channel are reconstructed instead

of a single composite one. Similar ACS data is acquired and used for calibrating the

interpolation weights. GRAPPA employs a reconstruction kernel that covers only

the FE direction while the MCMLI method uses a kenerl covering both the FE and
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PE directions.

Here is the formulation of the MCMLI method. Let S(ky, kx) be the acquired

k-space data where y is in the PE dimension, and ∆ky,∆kx be the sampling intervals

along kx and ky axis, respectively. The proposed reconstruction algorithm can be

represented as,

Sj (ky + r∆ky, kx)

=
C∑
l=1

Nb∑
b=−Nb

Hr∑
h=−Hl

Wj,r (l, b, h)× Sl (ky + br∆ky, kx + h∆kx)

(2.9)

where j and l are the channel indices, C is the total number of channels, R is the

acceleration factor, and r = 1, ..., R− 1 is the relative location of current data point

being interpolated. Nb is the number of neighbour blocks along the PE dimension

and Hl, Hr are number of neighbour columns used on left and right side, respectively.

Wj,r is the interpolation coefficients of the r-th net coefficients to target channel j.

Here the interpolation kernel is rectangular with varying size. This interpolation

formula for arbitrary channel is written in matrix form as,

Starget = SsourceWr, r = 1, ..., R− 1 (2.10)

where Wr is the coefficient vector of length C×2Nb×(Hl+Hr), Starget represents the

data to be reconstruced or the ACS data and Ssource represents the acquired data. In

the first step, in the fully sampled ACS area, Wr is obtained as Wr = S−1
sourceStarget

when the Starget is known as the ACS data. Then, the obtained weights is can be

used to reconstruct the missing k-space data for this channel at the r-th relative

location when Starget is the unknown missing data using Eq. 2.10. The sampling
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scheme and the reconstruction procedure is shown in Fig. 2.6.

Figure 2.6: (a) The sampling scheme of GRAPPA, central k-space is not down-
sampled and used as ACS (b) the two reconstruction steps: calibrate interpolation
coefficients and interpolate the whole k-space

Comparing to the SMASH kind of methods, GRAPPA and MCMLI enjoy the

SNR benefit from serveral perspectives. First, the ACS works only as training data

in the SMASH method. But in GRAPPA and MCMLI, the ACS data from each

individual channel are also kept in the final reconstruction. So the ACS are always

chosen at the central k-space to achieve minimal aliasing power in the reconstruction

and highest SNR for coefficients calibration. Also, instead of reconstruct a single

set of final k-space data as in the SMASH method, the GRAPPA and MCMLI

reconstruct all the individual channel data and the final image is obtained by sum

of squares combination with increased SNR.
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2.2.6 Validations

In all simulation of parallel imaging methods, we had acquired the fully sampled

data set. The data is pseudo-sampled to mimic the accelerated sampling of parallel

imaging and reconstruction is performed. The sum of squares of the fully sampled

data is taken as a ground true reference to evaluate the reconstruction results.

The limitation of pseudo-sampling is that only Cartesian sampling scheme is

allowed and the acceleration factor has to be an integer.

2.2.7 Efficiency Concerns in Parallel Imaging

PI methods can accelerate data acquisition by collecting less data. The k-domain

method is an important and most popular class of PI methods. Unlike most of spatial

domain methods, the reception coil sensitivities B−1 (which may require additional

scans) are not required in k-domain methods and the reconstruction is more stable.

However, there are other efficiency concerns in k-domain methods.

The first concern is the reconstruction computation cost for k-domain PI meth-

ods. The k-domain methods interpolates missing k-space data with a kernel. The

kernel usually covers both the imaging dimensions (frequency encoding and phase

encodings) and the coil dimension. Coefficients of the kernel are estimated from

additional acquired ACS data. When the number of elements in an array increases,

computation cost of image reconstruction can increase dramatically. This problem

can be even challenging when large arrays with a huge number of element coils are

used.

The other concern is the actually acceleration achieved by the k-domain method.

Although more ACS data can increase the calibration accuracy of the interpolation

coefficients and provide reconstructions with lower aliasing power, it also degrades

the actual achieved acceleration factor which defines the ratio of the amount of actual
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acquired data to the size of full data. It is always desirable to minimize the size of

ACS with similar reconstruction quality.

While trying to address these efficiency concerns, we want the other reconstruc-

tion performance related factors to be kept at the same level if not improved. For

example, the reconstruction accuracy and SNR in reconstructions.

2.3 Parallel Excitation

The field strength of the current clinical scanners are advancing to 3 Tesla or even

7 Tesla which can tremendously improve the imaging quality. However, many high

field related problems remain unsolved, for example, the B1 inhomogeneity and the

high specific absorption rate. The implementation of spatial tailored pulses in com-

bination with parallel excitation provides a promising way to solve these problems.

Unlike traditional Sinc pulses which are generally used for slice selection, spatial

tailored pulses with time varying excitation gradient are able to selectively excite

arbitrary 2D or 3D spatial shapes, for example, to counter the inhomogeneous B1

field. The spatial tailored pulses are generally longer than traditional slice selection

pulses.

As a signal transmission analogy of parallel imaging, parallel excitation employs

the extra degree of freedom offered by multiple transmit channels and curtails the

length of pulses. Thus, parallel excitation can be used to reduce the length of spatial

tailored pulses to acceptable length or reduce the RF deposition power. Many parallel

excitation pulse design techniques had be proposed during the past decade [26, 48,

16].

In this section, the spatial domain method is introduced first in detail. An exam-

ple of a single channel spatial tailored pulse design is given using the spatial domain

method. And the simulation validations and experimental validations are provided.
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The computation efficient of this pulse design method is then discussed.

2.3.1 Spatial Tailored Pulse Design Using the Spatial Domain Method

We will first briefly review the conventional spatial domain method [16] for spatial

tailored pulse design with parallel excitation.

Under small tip angle assumption (STA) [33], the excitation pattern of transverse

magnetization and the complex RF pulse are Fourier pairs defined on the chosen k-

space trajectory. Parallel excitation pattern of a multi-channel transmit system is the

linear sum of the excitation patterns from all the channels weighted by the transmit

sensitivity of each individual coil,

M (~x) = iγM0
∑
l

Sl (~x)
∫ T

0
bl(t)ei~x

~k(t,T )dt (2.11)

where M (~x) is the specified spatial target patter, Sl is the B+
1 map of the l−th

channel and the excitation trajectory is defined as integral of gradient ~k (t, T ) =

−γ
∫ T
t G(s)ds . To solve the RF pulse bl(t), Eq. 2.11 is discretized in time and in

space as shown in Eq. 2.12 and its matrix form as in Eq. 2.13,

M [~xi] = iγM0
∑
l

Sl [~xi]
∑

j

bl [tj] ei~xi
~k[tj ]

 (2.12)

m =
∑
l

SlAbl (2.13)

where m is the vector form target pattern, Sl is the sensitivity matrix of the l-th

channel with the constant iγM0, A is the inverse Fourier encoding matrix defined on

the k-space trajectory ~k, and bl is the sampled driving RF waveform vector of the

l-th channel to be solved. Bold variables denote the matrices and vectors.
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Then the pulse design problem can be formulated as a minimization problem,

min ‖m− SAfullb‖2 (2.14)

where the system matrix is defined as Afull = ∑
l SlA and the b vector is a stack

of bl from all the channels. Then numerical methods such as conjugate gradient

method (CG) can be used to solve the problem.

2.3.2 Pulse Design Validations via Bloch Simulator

As the spatial domain method is based on the small tip angle approximation, the

actual excited pattern would be different from the target pattern. In simulations,

we use the so called Bloch simulator to evaluate the excitation pattern of a given

pulse. In the Bloch simulator, the RF pulse and gradient are approximated by a

serial of hard pulse which is constant valued during the dwell time interval δt. In

real experiments, both the RF pulse and the gradient are sampled as a serial of

hard pulses. Thus, the Bloch simulator provides a very accurate match between the

simulation and the experiment. In the Bloch simulator, all the B1 fields including the

gradient field and the RF pulses (can be multi-channel) are combined by vector sum.

Each hard pulse produces a nutation and procession on the magnetization vector and

this rotation can be represented by a unitary rotation matrix in SU(2) form using

the forward SLR transform[32]. The rotation angle for the j-th hard pulse is given

by

φj (~x, tj) = −γ∆t
√
|B1,x(tj)|2 + |B1,y(tj)|2 +

(
~G(tj) · ~x

)2
(2.15)

and the rotation axis for the j-th hard pulse is given by

~nj (~x, tj) = γ∆t
|φj|

(
B1,x(tj), B1,y(tj), ~G(tj) · ~x

)
(2.16)
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where ∆t is the dwell time, B1,x and B1,y are the x-direction and y-direction compo-

nent of the RF pulse, ~G is the gradient vector and ~x is the spatial location vector.

After aggregating all the rotations from the entire pulse via multiplication of

each individual rotation matrix, the net effect of the pulse on the magnetization

vector comes out as a total rotation. And the excitation pattern can be obtained

by calculating the projection of the final magnetization vector onto the transverse

plane.

In case that there is spatial varying off-resonance ∆B0(~x) during the excitation

and Eq. 2.15 and Eq. 2.16 are modified by replacing the z-component of the total

field ~G(tj) ·~x with ~G(tj) ·~x+∆B0(~x). In some experiments, pulses are designed with

consideration of the off-resonance and this off-resonance should be included in the

Bloch simulator.

An pulse design and Bloch simulation example is given here. The spatial domain

method is used to design a spatial tailored pulse that targets to excite the Texas

A&M University logo pattern as shown in Fig. 2.7(a) with a 20cm FOX. The pulse

is designed for a single channel birdcage coil with uniform B+
1 map using Eq. 2.14

while the S is a Identity matrix. A spiral-in trajectory as in Fig. 2.7(b) is used. The

designed pulse is given in Fig. 2.7(c).

Given the gradient and this designed pulse, the Bloch simulator can be used to

evaluate the excitation pattern at arbitrary spatial range and resolution by specifying

the desired spatial vector ~x. Two patterns obtained using the Bloch simulation with

different observing scales are provided in Fig. 2.8 and Fig. 2.9. Since the FOX is

set to 20cm in the pulse design, the outer region is taken as ‘don’t care’ region with

serious excitation artifact.
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Figure 2.7: (a) The target excitation logo pattern (b) the spiral-in trajectory and (c)
the designed pulse

2.3.3 Pulse Design Validations via Experiments

In the previous section, the Bloch simulator has been introduced. It had been

used to evaluate the excitation pattern of a single channel RF pulse or multiple

channel RF pulses in all the simulations.

In this section, we will prove the reliability of the Bloch simulator by scanner

experiments. A single channel RF pulse aiming to achieve a complex valued target

25



Figure 2.8: Excitation pattern from the Bloch simulator on a 20cm grid

Figure 2.9: Excitation pattern from the Bloch simulator on a 40cm grid

pattern is designed using the spatial domain method. The excitation pattern is

evaluated with the Bloch simulator and the experimental scans. The results are
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then compared to check if they match. Although this is a single channel test, the

excitation magnetic field generated by multiple channel pulses is the linear vector

sum of individual pulses. So is the multiple channel excitation pattern which equals

to the linear summation of individual patterns. Thus, the demonstration of the

effectiveness of the Bloch simulator for the single channel case can be sufficiently

generalized to multiple channel cases. Meanwhile, the target pattern to be achieved

is complex valued and the reliability of the Bloch simulator can be generalized to

multiple channel cases with arbitrary complex valued B+
1 maps.

The experiments are performed in the Magnetic Resonance System Lab (MRSL)

at Texas A&M University on a 4.7 Tesla small core MRI scanner. A cylinder phantom

with diameter of 7cm is filled with water and used for imaging. A single birdcage coil

tight to the cylinder surface is used for both the RF excitation and signal reception.

Typical spin-echo (SE) pulse sequence is used to acquire the phantom image as

shown in Fig. 2.10.The following imaging parameters are used through out all the

experiments: 35/2000 msec TE/TR, 80mm×80mm FOV, 256×64 (FE×PE) readout

matrix. The acquired image is expected to be the complex valued excitation pattern

since a uniform water phantom is used for imaging.

To implement the designed spatial tailored pulse, a modified SE sequence is used.

The first 90◦ pulse is replaced by the designed spatial tailored RF pulse. At the same

time, the gradient for spiral trajectory is applied in the in-slice plane without slice

selection gradient.

Two complex target patterns are specified with square magnitude (1 inside and 0

outside) and linear phase as shown in Fig. 2.11. The linear phase directions of these

two target patterns are flipped in the horizontal direction. Two pulses are designed

using the spatial domain method with a disk region of interest (ROI) mask. Spiral-in

k-space trajectory is used without acceleration and the pulse length is about 10 msec.
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Figure 2.10: Water phantom

The Bloch simulator results for these two pulses are shown in Fig. 2.12. Both the

magnitude patterns and the phase patterns are the same as specified in the design.

Then, the pulses are tested on the scanner with the same setup as stated above. The

acquired image are shown in Fig. 2.13. Since the water phantom is uniform, the

contrast in the acquired images are purely from the RF excitation and the acquired

images can be taken as excitation patterns. The magnitude image is used as a

mask on the phase image (rectangular marked line). As shown, both the magnitude

patterns and the phase patterns are consistent with the simulation results except

for the slight clockwise rotation and the size is a little larger than the simulation

pattern. The rotation is led by a relative delay between the gradient and the RF

pulse in the hardware and can be corrected with calibration scans. The relative size

difference between the simulation pattern and the experiment image is the result of

the mismatch between the FOX in pulse design (10cm) and the FOV in acquisition
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Figure 2.11: The complex target patterns

(8cm).

In this section, the simulation results have been proved to be consistent with

the experimental results. Although this validation is for single channel pulse design,

in multi-channel case, both the RF pulses and the excitation patterns follow the

linear rule and are summations of individual ones. In multiple channel pTx pulse

designs, individual excitation pattern are usually complex due to the complex B+
1

map. The target patterns used in this section are complex valued and provide a

general example. In the other pulse design sections in this dissertation, only the

Bloch simulation results are provided to evaluate the performance of the designed

pulses.
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Figure 2.12: The excitation patterns from the Bloch simulator

2.3.4 Efficiency Concerns in Parallel Excitation

The spatial domain method discretizes the Bloch equation under STA and trans-

forms the pulse design problem into a minimization problem of a linear equation.

Conjugate gradient method provides a relative fast way to solve this problem. How-

ever, the computation cost can be high depending the size of design grid and the

amount of iterations.

For example, in a typical 2D pulse design with 8-ch transmit array, designing a 9

msec pulse to excite a target pattern specified on a 50×50 grid will take around 40

sec using CG for 100 iterations. And the computation load increases linearly with

the number of channels, the resolution of the target pattern, the number of iterations
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Figure 2.13: The acquired images from the experiments: magnitude image (1st col-
umn) is used to mask the phase image (2nd column) to get the masked phase image
(3rd column)

and the length of pulse length. This hinders the real time application of pulse designs

in clinical usage. Meanwhile, to storage the system matrix Afull, the above example

requires around 500 MB memory space. This matrix may have multiple copies in

the CG such as its complex transpose. So the required memory can easily exceed

the available memory of a PC when the design problem increases to a larger scale.

General-purpose graphics processing unit (GPGPU) has been used to accelerate

the pulse design process [7]. In this work, the complex matrix-vector multiplication

which is the most computation expensive part in CG is splited as 4 real matrix-

vector multiplications and distributed to 4 GPUs for parallel computation. 20 fold
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acceleration has been proved comparing to the CPU of similar price range. However,

the available memory on GPUs is 1G to 2G at acceptable price. A pulse design on

large scale can be hard to be implemented with GPU.

In a word, the efficiency concerns in pulse design using the spatial domain method

includes the computation speed and the memory cost.
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3. K-DOMAIN PARALLEL MRI USING CHANNEL-BY-CHANNEL ARRAY

REDUCTION *

3.1 Introduction

In the past two decades, parallel imaging (PI) using array coils and multi-channel

receiver has experienced rapid advance from basic technological development to a

range of clinical applications. Although conventional receiver arrays are usually

limited to less than 16 channels, a particular exciting trend in this area is the devel-

opment and application of massive receive arrays with 32 or more parallel channels

[31, 28, 19]. By virtue of using a high number of parallel channels, massive array has

enormous potential to provide highly parallel high-speed MRI.

One pressing problem in this exciting area is data processing efficiency. Because

both the data volume and processing complexity increase with the number of chan-

nels, computational burden becomes very significant as the massive array system is

used to acquire data [47]. This is particularly challenging for real-time applications

such as in cardiac MRI.

Interestingly, most literatures on massive array PI use SENSE reconstruction

[28, 19, 36] or SEA reconstruction [3]. Autocalibrating k-domain parallel MRI such as

the GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) methods,

which are widely used in PI with conventional arrays, are rarely applied to large array

systems [21, 17]. Because k-domain PI involves channel-by-channel calibration and

reconstruction, the computation time generally increases nonlinearly and at a rate

*Reprinted with permission from “Efficient large-array k-domain parallel MRI using channel-by-
channel array reduction” by Shuo Feng, 2011. Magnetic Resonance Imaging, Volume 29, Issue 2,
209-215, Copyright [2011] by Elsevier
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faster than image-domain methods. Specifically, because the interpolation model in

GRAPPA uses a multi-dimensional kernel that spans across phase encoding direction,

frequency encoding direction, and the coil direction, model calibration in GRAPPA

involves pseudo inversion of very large matrices whose complexity is on the order of

O (N3). Therefore, improving the efficiency of k-domain reconstruction for massive

array can lead to wider applications of the k-domain methods and utilize the full

potential of massive arrays.

To achieve improved data processing efficiency in the large array systems, soft-

ware compression (linear combination of channel data prior to reconstruction) or

channel reduction (selecting a small set of most important channels) have been pro-

posed [8, 5, 22]. For SENSE, the sensitivity matrix can be truncated, or the coil

set can be reduced to a smaller size using singular value decomposition [8]. How-

ever, with these methods the efficiency has to be achieved with somewhat reduced

reconstruction quality, for example, reduced SNR. Some existing methods could also

in principle be applied to large array k-domain PI, for example, the method that

obtains the optimal kernel by decomposing a larger kernel using the singular vectors

[37]. However, computing the singular vectors is not trivial computationally. For

massive arrays with large number of elements, an important insight is that as the

size of coil element trends to be small, its sensitivity is quite localized. Therefore

in interpolating the missing k-space data for a particular channel, only a subset of

“neighbouring” channels in the whole array system is necessary. This fact can be

used to reduce the interpolation kernel size and consequently the computation cost in

k-domain PI with massive arrays, as originally proposed in [44] and recently further

reported in [13, 20, 40, 9].

In this work, an efficient reconstruction method is proposed for k-domain paral-

lel MRI with large arrays using array reduction. The process of selecting reduced
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channel set for GRAPPA kernel is based on the cross-channel correlation using the

calibration data inherent in GRAPPA reconstructions. The proposed algorithm was

tested using both computer simulations and real MRI data acquired from phantoms

and in-vivo studies using a 64-channel and 32-channel system, respectively. The ef-

fect of array and signal reduction is studied in terms of efficiency, artifact, and SNR.

The experimental results show that the proposed method using reduced kernel can

achieve a reconstruction quality almost the same as that of a kernel which contains

all channels, but with significantly reduced reconstruction time.

3.2 Theory

3.2.1 K-domain PI Reconstruction with Channel Reduction

With massive arrays, the sensitivity of an individual channel is localized compared

to FOV. Therefore, data from each channel contains information of only a small part

of the FOV. Two channels that are spatially distant may provide little information

of each other and interpolating one with the data from the other has no benefit.

An example of massive array of linear distributed coils with localized sensitivity is

given in Fig.3.1. The figure shows the 1-D profiles of the channel sensitivities. As

shown, in order to interpolate the channel in the center (bold solid line), only the

neighbour channels (bold dashed lines) are needed. Other channels provide no or

little relevant information. Because the coefficient vector has a length proportional

to the number of total channels, using all channels in reconstruction may lead to

large computation cost for massive array. Hence, channel reduction is necessary to

reduce reconstruction errors and accelerate computation. This can be achieved by

utilizing the locality of channel sensitivity.

The idea is to keep only a small set of neighbour channels which are correlated

with the channel being reconstructed. All irrelevant channels with little desired infor-
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Figure 3.1: One-dimensional profile of coil sensitivities in a large coil array with
localized sensitivity

mation are dropped from the interpolation model for the channel. The reconstruction

using this reduced set of channels is expected to achieve the same or improved quality

as using all channels. The MCMLI reconstruction formula is modifed from Eq. 2.9

as below.

Sj (ky + r∆ky, kx)

=
∑
l∈Ci

Nb∑
b=−Nb

Hr∑
h=−Hl

Wj,r (l, b, h)× Sl (ky + br∆ky, kx + h∆kx)

(3.1)

where j and l are the channel indices, R is the acceleration factor, and r = 1, ..., R−1

is the relative location of current data point being interpolated. Nb is the number

of neighbour blocks along the PE dimension and Hl, Hr are number of neighbour

columns used on left and right side, respectively. Wj,r is the interpolation coeffi-

cients of the r-th net coefficients to target channel j. In the proposed algorithm,

Cj represents the set of channels that will be used to interpolate the data in the

jth channel. Note that due to the localized element sensitivity in large arrays, Cj
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only includes a subset of all channels which contains relevant information for the jth

channel.

Obviously, efficiency gain is expected to be achieved using the proposed method.

Assume that on average Nc channels were selected for each channel after channel

reduction, the total computation and memory complexity will be reduced by a fac-

tor of O
((

Nc

C

)p)
where C is the total number of channels and P is a power number

depending on whether direct matrix inversion or conjugate gradient method is used

to calculate the interpolation coefficients. The Nc selected channels should be de-

termined by channel sensitivity on the image plane. For example, in Fig.3.1 the

selection can be made by simply choosing neighbour channels of a target channel

based on sensitivity overlap. In more general cases such as non-linear arrays, a more

rigorous method is required to make selection automatically.

3.2.2 Channel Selection Using the Correlation Information

In this paper, channel correlation is used for this purpose. Correlation is a met-

ric that measures the relevance of two signals. Stronger correlation between two

channels generously indicates more overlap of their sensitivity coverage and carrying

more similar spatial information of each other. Specifically, channel correlation co-

efficient, as a special case of Eq.12-2-8 in [14], between the mth and the nth channels

is computed using,

ρ (m,n) = cov(|Im|, |In|)
τmτn

(3.2)

where |Im| and |In| are the two individual channel magnitude image vectors obtained

from the ACS data in the central k-space, τm and τn are standard deviations of the

images. For example, to reconstruct the m-th channel, the reconstructio kernel only
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spans the subset of channels given by

∪{n|ρ(n,m) > α}

The two images are in low-resolution but not aliased. In case of using the aliased

image, there can be relative large correlations between the true image from one

channel and the aliasing artifact from the other.

In all the studies in this paper, such images provide sufficient correlation infor-

mation. Note that the metric in Eq. 3.2 is insensitive to channel image intensity or

gain. For example, two channels cover the overlapped regions with different gains

can be recognized as highly correlated. Therefore, it is superior to the conventional

difference metric such as l1 or l2 norm. Once a correlation coefficients matrix is

obtained, the reconstruction of each channel can be performed using the selected

subset of most correlated channels whose are above certain threshold instead of all

channels.

This entire reconstruction procedure will be performed off-line using a homemade

MATLAB toolbox [25].

3.3 Methods

3.3.1 Computer Simulations

Simulated data was generated using a 64-element linear array of planar pair coils

as shown in Fig. 3.2(a). The setup of coil parameters follows a real 64-channel linear

array [25]. The slice being imaged is parallel to coil array plane. Channel sensitivity

of each channel was calculated according to Biot-Savart equation. K-space data was

then obtained from individual coil image which is a standard Shepp-Logan phantom

modulated by the generated array sensitivities. Matrix size of sensitivity and the
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Shepp-Logan phantom was 256 × 256. Complex, white Gaussian noise is added to

the k-space data.

Three sets of different coil sensitivity were employed as shown in Fig. 3.2(b) to

explore the impact of channel selection on the quality of reconstruction results.

Acceleration was simulated by dropping certain lines and filling with zeros along

the PE direction which was aligned with array distribution. Thirty-two central PE

lines were kept fully sampled as ACS. Channel selection was performed based on

correlation matrix before reconstruction. K-space data of each channel was recon-

structed using a selected number of Nc = 3 to 64 channels. All results were compared

with corresponding fully sampled reference.

To measure the signal-to-noise ratio (SNR) of the reconstruction, 30 sets of k-

space data were generated for each of the three possible coil sensitivity distributions.

After reconstruction, the average of the 30 magnitude reconstructions was taken as

signals, and the variance of them was used to measure the noise. Then a 256 ×

256 SNR map was obtained and the average of the SNR map is calculated. In

order to measure the reconstruction error associated with different choices of channel

numbers, normalized root mean square error (NRMSE) was computed. The sum-of-

squares reconstructions from fully-encoded data were taken as ground truth.

3.3.2 2D Phantom and In-vivo Experiments

Fully sampled phantom data with matrix size of 256× 256 was acquired using a

system of 64-channel linear array on a 4.7 Tesla system [1]. Data along PE direction

was decimated by a factor of 2 to simulate GRAPPA data acquisition. Reconstruc-

tion of fully sample data was used a reference. A 2-D GRAPPA reconstruction kernel

contains 3 neighbor FE points and 2 neighbor blocks were adopted. The ACS size

was 40 × 28 (FE× PE). It was used for channel correlation computation. Channel
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Figure 3.2: Illustration of 64-ch data simulation. (a) The physical layout of the coil
array with localized sensitivity and (b) 1-D profile of 3 sets of coil sensitivities

reduction with different numbers was performed at reduction factors of R = 2, 4 and

8. Computation time for each reconstruction was recorded to compare computation

efficiency. The NRMSE is calculated in a similar way as in the computer simulation

using the sum-of-squares reconstruction as a ground truth.
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To test the proposed channel reduction theory in case of circular arrays are used,

the channel reduction method is implemented on another set of phantom data. The

data is acquired using 8-channel circular array. The individual fully sampled image

is shown in Fig. 3.3. As can be seen, the channel sensitivity in this array covers a

large region within the FOV and all channels have some shared spatial content with

the other channels. The channel reduction k-domain method is used to reconstruct

the data downsampled at acceleration factor of R = 2.

Figure 3.3: Individual channel images acquired using the 8-channel linear array

3.3.3 In-vivo Experiment

Subsampled 3-D in-vivo data was acquired from a healthy volunteer using a 32-

channel system on a 1.5 Tesla scanner. Reduction factors in both PE directions were

3, resulting in an overall acceleration factor of R = 9. ACS size was 28 × 28 which

gives an effective acceleration factor of R = 6.7. Reconstruction using the proposed

41



method was performed with subset of Nc=4, 8, 16 and 32 channels.

3.4 Results

Reconstructions of all 30 sets of simulated data are obtained. One set of results

are shown in Fig. 3.4. SNR map is calculated through image series pixel-by-pixel

and then average SNR of the SNR map is provided in Table. 3.1. Error image is

obtained referring to corresponding fully sampled data and then average NRMSE is

given. It shows that using a smaller set of channels, e.g. Nc = 3, reconstruction is

visually the same as using all channels, i.e. Nc = 64, at a reduction factor R = 2.

Average SNR is at the same level with different number of selected coils. Using all

channels is not providing a reconstruction with minimum error.

Table 3.1: SNR vs. different number of selected channels Nc

Number of selected channels 3 31 64
SNR (dB) 33.7 33.4 32.7

Fig.3.5 shows the reconstruction error images from 3 simulated data sets. As

shown, as the number of selected channels Nc increases the error reduces rapidly in

the beginning. However, above a certain number of Nc, error does not further reduce.

This shows that only a small set of selected channels are required in the reconstruc-

tion. It also shows that for the cases with wider channel sensitivity, e.g., the 3rd

dataset, reconstruction requires more selected channels to arrive at a minimum error

level which is lower than cases of sensitivity with smaller coverage. This is expected

because the neighbor channels are more correlated as the channel sensitivity becomes

less localized.

Results from the phantom data from linear array are shown in Fig.3.6 and 3.7.

42



Correlation coefficient matrix of the 64-channel images from the acquired ACS data

is shown in Fig.3.6. Acceleration factor of R = 3 is used and two additional large

correlations due to the relative large correlation to aliasing artifact can be observed.

For this linear array configuration, significant correlation exists only between close

neighbor channels. Therefore, the correlation matrix shows a clear diagonal struc-

ture. Reconstructions and error images using Nc = 7, 15, 31 and 61 are shown in

Fig.3.7. Although adopting some more channels shows a tendency of reduced error,

NRMSE is not varying too much in these cases. Reconstruction artifact using all 64

channels is more obvious than other choices as pointed by arrows. To compare the

resolution of the reconstructed images with different Nc, 1-D profiles corresponding

to a line in the 2-D images along the acceleration direction are shown at the bottom

of Fig.3.7. Note that using a small number of selected channels does not lose details

in the 1-D profiles.

Computation cost of the reconstruction using different Nc is shown in Fig.3.8.

The computation time increases significantly as Nc increases from 3 to 61. For the

same Nc, the computation time also increases as reduction factor becomes larger.

By performing channel reduction, computational efficiency can be dramatically im-

proved. For example, with R = 8 the computation time for in vivo and Nc = 61 are

1 minute and 17 minutes, respectively.

The reconstruction results of the data acquired using the circular array is shown

in Fig. 3.9. This array has only 8 channels and the individual channel coverage

is not that localized in FOV. So as expected, the channel reduction will lead to

reconstruction errors and is now feasible in this case.

Reconstructions of in vivo data using Nc = 4, 8, 16 and 32 are shown in Fig.

3.10. The reconstruction using Nc = 8 shows some overall non-uniform intensity,

which may indicate that using Nc = 4 and 8 are not sufficient. Compared with
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reconstruction of Nc = 16, reconstruction of Nc = 32 shows better contrast but the

overall qualities are almost the same. This indicates that using Nc = 16 can provide

sufficient reconstruction quality with much improved computation efficiency.

3.5 Conclusion and Discussion

In this work, the cross-channel correlation is computed using the low-resolution

images from the ACS lines. Alternatively, one can use all the acquired data (ACS +

under sampled lines) to obtain channel images for computing correlations. However,

it has been observed that this introduced “false” correlation as channel images contain

high frequency aliasing which overlaps on other channel’s coverage area. The channel

selection method proposed in this paper can be viewed as part of a more general

optimal kernel selection problem in k-domain parallel imaging. However, this paper

focuses on channel reduction only, though in practice the selected blocks, FE columns,

channels, acceleration factor, and size of ACS are all important factors that need to

be balanced.

An additional benefit of the proposed method is the numerical stability. In

GRAPPA and MCMLI, the interpolation coefficients are estimated from ACS us-

ing least squares fit solution. Normally, this requires the number of ACS to be larger

than the number of unknown coefficients. Note that by performing channel reduc-

tion, the number of coefficients is reduced by a factor of Nc

C
and thus the required

number of samples in ACS is also reduced by the same factor. Therefore choosing

ACS size according to size of coefficients can further improve the efficiency with

channel reduction.

In conclusion, a method for reducing the computation burden in the k-domain

parallel imaging with large receive arrays was presented. By utilizing localized sensi-

tivity, the method adaptively selects a small set of channels in the GRAPPA/MCMLI
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interpolation models for each individual channel. Computer simulations and the

phantom and in vivo studies show that the proposed method can significantly re-

duce the computational burden while providing comparable reconstruction quality.

This offers an additional degree of freedom in k-domain parallel imaging to improve

efficiency and quality, which is expected to make these methods more applicable to

systems with large receive arrays.
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Figure 3.4: Reconstructions from the simulated 64-ch data with different number of
selected channels in MCMLI method. Fully sampled image is shown for reference
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Figure 3.5: Error images using 3 sets of simulated data sets (with narrow, medium
and wide sensitivities) with different number of selected channels. Error images of
set 1, 2 and 3 are shown in the 1st, 2nd and 3rd rows respectively
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Figure 3.6: Correlation coefficient matrix of a 64-ch receiver system. Significant
correlation exists between neighbor channels. Threshold is set at 0.7
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Figure 3.7: Reconstruction results in the 64-channel phantom experiment. Recon-
structions (first row) and their corresponding error images (second row) with different
selected number of channels (Nc = 7, 15, 31 and 61) are shown. A single line (dashed)
in each reconstruction is provided to compare resolution. SNR is computed using
selected regions shown in the first image
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Figure 3.8: Reconstruction time cost versus number of selected channels at different
reduction factors
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Figure 3.9: Reconstructions of the data acquired using the circular array with dif-
ferent Nc

51



Figure 3.10: Reconstructions of 32-ch in-vivo body images with Nc =4, 8, 16 and 32.
Only one slice of the 3D image is shown
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4. PARALLEL MRI USING LOCALIZED RECEIVE ARRAYS WITH SINC

INTERPOLATION (PILARS) *

4.1 Introduction

Parallel imaging (PI) is a technique that can significantly accelerate data acqui-

sition speed with the help of an array of coils, each of which has a unique spatial

sensitivity. The underlying sensitivity encoding can help to recover missing data in

an accelerated data acquisition process (e.g. skipped phase encoding steps). Some of

the PI methods utilize sensitivity directly like SENSE [36], SMASH [43] , SPACE-RIP

[27], and PILS [18]. Those methods require a measurement or estimate of receive coil

sensitivities to solve an inverse problem. The other methods indirectly employ the

effect of spatial encoding by coil sensitivity in a system model. It is assumed that the

k-space data are correlated and the missing k-space data can be recovered, for exam-

ple, by interpolation. Methods of this kind include GRAPPA [17], MCMLI [46, 13],

and SPIRiT [29], and are categorized as the k-domain reconstruction methods [4].

The k-space data correlation in these methods come from two sources: (1) inner-

channel correlation mainly from the localized coil sensitivity which corresponds to a

wide k-space spreading, and (2) inter-channel correlation due to the shared spatial

information between receiver coils covering overlapped areas.

As a tendency in MRI coil development, number of coil elements keeps growing

and the individual elements become smaller with more localized sensitivities [31, 19,

28]. Thus, optimized reconstruction kernel should be chosen based on sensitivity, as

*Reprinted with permission from “Parallel magnetic resonance imaging using localized receive arrays
with sinc interpolation (PILARS)” by Shuo Feng, 2011. Magnetic Resonance in Medicine, Volume
67, Issue 4, 1114-1119, Copyright [2011] by Wiley
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has been discussed in [37, 40, 8]. A unique characteristic of large arrays is that the

coil sensitivity is highly localized. As a result, the inner-channel data correlation

is strong and the inter-channel data correlation is relative weak, as compared to

the conventional coil arrays. Therefore the image reconstruction will rely more on

inner-channel than inter-channel correlation in larger arrays. In the k-domain PI,

this means that the interpolation kernels need to cover a larger k-space area and

span fewer overlapped channels [13]. In the image-domain method PILS [18], the

inter-channel correlation is completely ignored.

Large arrays, by virtue of the large number of parallel receive channels, are po-

tential to achieve high acceleration factors in the aforementioned methods. However,

in practice, the actual achieved acceleration factor is limited by the need for auto

calibration signals (ACS) which require additional acquisition time. The size of ACS

is proportional to both the acceleration factor and the kernel size. When a large

number of ACS has to acquired, the actual acceleration factor is reduced. In this

paper, a novel method PILARS that uses pre-determined real Sinc coefficients with

complex phase term is proposed. The method uses Sinc kernels for k-space data

interpolation that only requires one phase parameter to be estimated using a very

small size of ACS. Simulations based on synthetic data and phantom experiments

show that the new method can achieve higher actual acceleration factors with im-

proved reconstruction quality comparing to existing k-domain methods. This work

is partly developed from previous work [12].

4.2 Theory

4.2.1 PILARS Reconstruction

The basic idea of the method is that for data acquired in PI with large arrays,

the skipped phase encoding data can be recovered using a Sinc interpolation. Then
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a final reconstruction can be achieved by combining the images from all channels.

Following the Nyquist sampling requirement, k-space sampling interval is deter-

mined by desired overall field of view (FOV). Down sampling with an interval larger

than the Nyquist interval can lead to aliasing image artifact. In PI, this limit is

overcome by the parallel acquisition from channels with different spatial sensitivi-

ties. Specifically, it is assumed that individual coil’s maximum field of view FOVc

is much smaller than the overall FOV due to its localized sensitivity. Then larger

sampling intervals are acceptable in the shrunk direction of FOVc. Consider a 3D

PI case where data is acquired on a Cartesian grid with accelerations in two phase

encoding dimensions. In the proposed method, k-space data of a single channel can

be recovered by [34],

ŝ (m,n) =
∑
p

∑
q

s(p, q) · sinc
(
π

D1
(m− p)

)

· sinc
(
π

D2
(n− q)

)
· ej2π(x0

(m−p)
M

+y0
(n−q)

N )
(4.1)

where m = 1, 2, ...,M , n = 1, 2, ..., N are the indices of the recovered signal ŝ;

p = D1, 2D1, ...,M and q = D2, 2D2, ..., N are the indices of the acquired data s,

with acceleration factors D1 and D2 along the two dimensions. (x0, y0) is the center

of a reconstruction rectangular window of size
(
FOV1
D1

, FOV2
D2

)
that covers the area of

individual channel image content. This formula employs all acquired k-space data

and only one phase term is unknown. Eq. 4.1 is for 3D imaging with two accelerated

phase encoding directions where signals along both dimensions are down-sampled.

For 2D imaging, or coils with localized sensitivity in only one direction, Eq. 4.1 can

be simplified to a 1D Sinc interpolation.

An accurate recovery based on this formula requires an estimate of (x0, y0). Note

that this center is equivalent to the center of optimal PILARS reconstruction window
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rather than coil center. The estimation cannot be obtained from the k-space data

acquired with accelerations alone. To find an optimal (x0, y0), a few ACS data are

acquired. In principle, the number of ACS data points can be as small as two,

which are sufficient for estimating the parameters in Eq. 4.1. In this paper, a two-

stage phase calibration method is introduced to estimate the parameters, which is

described next.

4.2.2 Two-Stage Phase Calibration

To estimate unknown parameter (x0, y0), the algorithm first finds an approximate

center (x̂0, ŷ0). Afterward (x0, y0) is searched in the vicinity of (x̂0, ŷ0). In practice,

the approximate coil center is located from a profile of the channel image, which is

obtained by inverse Fourier transform of the zero-padded k-space data with ACS.

Because the higher energy contained in these low frequency harmonics in ACS are

not folded, the corresponding channel profile will not be folded and the coil location

can be identified directly. A 1-D example is shown in Fig. 4.1. The approximate

center (x̂0, ŷ0) is found at the maximal intensity location along each dimension. Note

that in this stage only a rough guess is required.

In the second stage, the optimal window center is chosen by minimizing the error

metric based on the ACS, i.e.

min
(x0,y0)

‖ŝ− sACS‖2 (4.2)

where (x0, y0) ∈
([
x̂0 − M

D1
, x̂0 + M

D1

]
,
[
ŷ0 − N

D2
, ŷ0 + N

D2

])
, sACS is the acquired ACS

data and ŝ is the interpolated ACS data at the same location using Eq. 4.1 with

parameter (x0, y0). The minimization is done by exhaustive search. The computation

load is low because both the size of ACS and the amount of parameters are small.
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Figure 4.1: Profile of the channel image and localization of optimal center region
(shadowed). The profile is obtained from a central k-space line along the horizontal
dimension. The maximum of the profile is taken as an initial estimate

4.2.3 Reconstruction Procedure

After the two-stage phase calibration is performed for each channel, Eq. 4.1 is

used to interpolate missing k-space data from the acquired data. Channel image

is then obtained through inverse Fourier transforming the whole k-space data that

includes both the acquired and the interpolated data. A complete single channel re-

construction process is shown in Fig. 4.2. After all channel images are reconstructed,

the final image is obtained using the root of sum-of-squares (SOS) method.

4.3 Methods

The proposed method was tested and characterized using computer simulations

with both synthetic and real MR data. The simulated data set is from a 36-ch

receive array with 2D localized coil sensitivity. Two-dimensional Gaussian function

was used to generate coil sensitivity and a ‘Shepp-Logan’ phantom of size 128× 128

was adopted as the target imaging object, which is shown in Fig. 4.3. Accelerated

acquisition was simulated by decimation along both directions with a factor of D1 =
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Figure 4.2: Reconstruction process of a single channel in the proposed PILARS
method. Eq. (4) is used to recover the k-space data after the phase term is estimated
based on ACS

D2 = 2.

Reconstruction from the down-sampled data was performed using the proposed

PILARS method, the MCMLI reconstruction, and the conventional PILS method.

ACS data in the central k-space with a size of 5× 5, 28× 28 were used for PILARS

and MCMLI, respectively. The PILS method requires an estimate of coil center

which should be the maximum amplitude location of the Gaussian function in this

case. The PULSAR [25] toolbox was used to perform the PILS reconstruction.

The MCMLI method used a reconstruction kernel of size 2 × 2 × 36 (FE-PE-Coil).

Reconstruction of the fully sampled data using the SOS method was used as standard

reference. Reconstruction errors were calculated as normalized root mean square

error (NRMSE). The actual acceleration factor is defined as the ratio of size of fully

sampled data to size of actual acquired data:

Dactual = MN
MN−NACS

D1D2
+NACS

(4.3)

where NACS is the size of ACS, and M,N are the Nyquist number of two phase
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Figure 4.3: The image object and representative coil sensitivities in the computer
simulation. Sensitivity maps of the first 24 channels are shown with localization in
both directions. Optimal window centers of each channel obtained from the two-stage
calibration are shown as dots

encodings. For a more robust calibration, ACS of larger size can be used at the cost

of a lower actual acceleration factor.

In addition, a set of fully sampled 256× 256 data was acquired on a 4.7T small-

bore system using a 64-channel receive coil array. Accelerations were simulated by

retrospective decimation of the full dataset. Because the array coils were localized

only along the horizontal dimension, acceleration was applied only along that dimen-

sion (D1 = 1). Reconstructions using the proposed PILARS method, the MCMLI

method and the PILS method with various acceleration factors were performed and

compared. A reconstruction kernel of 2× 3× 3 [13] was used in the MCMLI recon-

struction. And 32 PE lines were used as ACS because it is around the minimum

number required for an outer acceleration factor of D2 = 10 with the given kernel

size. For the PILARS method, ACS sizes from 2 to 16 were tested. Reconstruction

errors were measured using the SOS of full size data as a reference. The actual

acceleration factors, reconstruction errors as well as the reconstruction time were
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compared for different methods.

All the simulations were performed on a 2.6GHz Dual-core CPU with 2 GB

memory in Matlab (Math Works, Natick, MA).

4.4 Results

Coil sensitivities of the first 24 channels in the 36-ch simulated system are shown

on the right side of Fig. 4.3. For PILARS method, the optimal window center

from the two-stage estimation was obtained for each channel and shown as dots on

corresponding sensitivity map. Note that the PILARS optimal center differs from

the true coil center which is the position with maximum amplitude of the Gaussian

sensitivity. The reconstructed images and the corresponding error images are shown

in Fig. 4.4. From the error images and the NRMSE, one can see that the PILARS

method yielded minimal reconstruction error. In the MCMLI reconstruction, the

errors appear to be more diffused but its actual acceleration factor is smaller. The

actual acceleration factors of the three methods are shown on corresponding recon-

structions. As shown, the PILARS method achieved an actual acceleration factor

very close to D1D2 as in the PILS method. The MCMLI method resulted in a smaller

actual acceleration factors because it requires a larger ACS size.

Reconstruction results with an outer acceleration factor of 3, 5 and 10 from the

real 64-ch data with 1D acceleration are shown in Fig. 4.5 to Fig. 4.7. Acceleration

is performed only along the horizontal dimension. Different rows correspond to outer

acceleration factors of 3, 5 and 10. The normalized root-mean-square error (NRMSE)

is listed in each reconstruction. The actual acceleration factor on corresponding

reconstructions. The PILARS method can achieve a similar error level with less

acquired data comparing to the MCMLI method. The PILS method presents the

largest reconstruction error. The PILARS method and the MCMLI method are also
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Figure 4.4: Reconstructions from simulated k-space data (D1 = D2 = 2) using dif-
ferent methods. The bottom row shows the corresponding error images and the
quantitative normalized root-mean-square reconstruction error

implemented with an outer acceleration factor of 3 but with different ACS size. The

results are shown in Table. 4.1. The NRMSE of PILARS decreases with larger ACS

as expected and is much lower than that of the MCMLI method with the same ACS

size. Also, the PILARS method can is stable with a small ACS size comparing to

the unacceptable reconstruction error of the MCMLI method when ACS is 4 or 8.

The reconstruction time is shown in Table. 4.2. Reconstruction time for the

proposed PILARS method is shorter than that of the MCMLI method. As can be

seen in Fig. 4.5 to Fig. 4.7 and Table. 4.1, the new method can reach a factor

of 6 acceleration with good reconstruction quality. Overall, the proposed PILARS

method can reconstruct image with smaller error or provide higher actual acceleration
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Figure 4.5: Reconstructions using the proposed PILARS method

factors.

4.5 Conclusion and Discussion

The PILS method is a well-known PI reconstruction method for highly localized

arrays, which is essentially a “cut-and-paste” technique after coil centers are deter-

mined. The proposed PILARS method is different from the PILS method in several

aspects. First, PILARS does not require the knowledge of the accurate location of
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Figure 4.6: Reconstructions using the the MCMLI method

the coil element (coil sensitivity) in order to reconstruct image correctly. As shown

in the simulated study, the Sinc windowing center can differ from the true coil center

as it is determined by both channel sensitivity and object being imaged. Secondly,

as in GRAPPA or MCMLI, PILARS can incorporate the ACS in the final recon-

struction, which results in improved image quality. Finally, since the final step in

the reconstruction involves sum-of-squares of all channel images and each channel

has fully reconstructed data, some SNR benefit can be expected similar to GRAPPA
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Figure 4.7: Reconstructions using the PILS method

and MCMLI.

An interesting observation of the results is that the optimal PILARS truncation

window center (x0, y0) (in the sense of minimum error) differs from the coil sensitivity

center as suggested by PILS. In both methods, the center is used to define a location

of the truncation window. In PILS, it is the coil sensitivity center. In PILARS,

it is estimated from acquired data, which embeds both the coil sensitivity and the

underlying image object. For example, Fig. 4.3 shows that the estimated centers
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Table 4.1: NRMSE verses size of ACS in the real 64-ch MRI experiment with an
outer acceleration factor of D2 = 3

Num. of ACS Dact
NRMSE(%)

PILARS MCMLI
4 2.87 7.6 19.2
8 2.74 7.3 23.4
16 2.53 6.6 10
32 2.1 5.9 8.7

Table 4.2: Reconstruction time(sec) of the three methods in the 64-ch experiment

D2 PILARS MCMLI PILS
3 14 19 0.5
5 9 30 0.5
10 5 78 0.5

are shifted toward the center of the phantom image. And this leads to less power

of folded artifact in the reduced FOV. As a result, PILARS yields more accurate

reconstructions.

We also inspected the phase map of reconstructions. Our general observation is

that when the coil image is localized, the PILARS can reconstruct phase information

faithfully. Otherwise, the phase map of PILARS reconstruction is less accurate than

the MCMLI, even though magnitude reconstructions are better in the sense of less

NRMSE. Also, NRMSE may not be the single measurement of reconstruction quality

as it only describes the total energy of artifact without error structure.

Several limitations exist for the proposed method. As in many other interpolation

methods, errors can be higher at the boundary in the k-space because only partial

Sinc function coefficients are available in the boundary areas. In addition, the method
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is limited to arrays with highly localized elements in the imaging plane relative to

the acceleration factors. A potential quantitative measure of coil locality can be

defined as the ratio between the coil sensitivity energy within the reduced FOV

(corresponding to the given acceleration factor) and the total coil sensitivity energy.

A user-defined threshold can be applied on the ratio to determine whether the coils

are localized enough for a given acceleration factor.

This paper introduced a new parallel imaging reconstruction method, which is

termed as PILARS. The method is useful for parallel imaging with highly localized

coil sensitivities, such as the large arrays. The reconstruction formula in the proposed

method uses a Sinc kernel with predetermined interpolation coefficients and employs

all acquired k-space data. A two-stage algorithm is described to determine the phase

parameter needed in the interpolation. Computer simulations on both synthetic data

and real MRI experiment data set showed that the new method could achieve higher

actual acceleration factors with improved reconstruction quality.
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5. FAST PULSE DESIGN USING GRIDDING CG

5.1 Introduction

Spatially tailored RF (TRF) pulses have contributed Magnetic Resonance Imag-

ing (MRI) in exciting arbitrary valued spatial patterns. Parallel excitation (pTx)

[26, 48, 16] techniques exploit the additional degree of freedom provided by the mul-

tiple transmit channels to shorten the RF pulse duration and reduce the specific

absorption rate (SAR) [15, 6]. The combination of TRF and pTx is taken as the

promising method to address challenges in the high field MRI, such as field inhomo-

geneity and high SAR [2].

One widely used method under the small-tip-angle approximation [33] is the

spatial domain method [16]. In this method, a specified target pattern and a k-space

trajectory are specified and a set of linear system equations is built. The pulses can

be designed by solving the linear system using various numerical methods such as

CG. One major problem of such a pulse design is the high computation cost since

each iteration will require two matrix-vector multiplications. And. Generally, it can

take 2−5 minutes [41] to design a 3-D pulse, which can prevent the parallel excitation

technique from being used in real-time applications. Meanwhile, the large system

matrix has to be clearly specified before design which will require memory allocations

on the level of several gigabyte. The entire design will require several times of that.

Currently, some methods have been reported to accelerate the spatial domain

pulse design method. For example, by employing the sparsity in the excitation pat-

tern, the design equation can be transformed into the sparse domain and truncated

to reduce the computation load [11, 10]. However, the method with sparse transform

can only speedup the design for up to 10 times depending on the sparsity of the tar-
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get pattern. Another method [7] is reported in that the design of parallel excitation

pulses can be significantly accelerated by using the CUDA enabled GPU. However,

the design using GPU is limited in size due to the limit available memory on GPU

(no more than 2 GB for a single GPU).

In this paper, we propose a very fast pulse design method with gridding. The two

computational expensive matrix-vector multiplications are substituted by two oper-

ators, which carry out the same physical functions as the multiplications. However,

the computation cost and memory cost are significantly reduced. This can be un-

derstood as the transmit version of [35]. Also, to incorporate the off-resonance term,

a piece-wise linear model is adopted. By doing so, the off-resonance is incorporated

into the gridding functions by shifting of the excitation trajectory and additional

phase modulations. Simulation results of the proposed method shows that the de-

sign speed is improved for 8 times and the memory cost is reduced by 103 times with

the same excitation error and convergence rate.

5.2 Theory

To solve the conventional spatial domain method, conjugate gradient method is

used as described in Appendix. In each iteration of CG, the major computations

(more than 90%) are consumed by two matrix-vector multiplications: Afull× and

AH
full×. Each of these two requires nmnrfnc complex scalar multiplications, where

nm, nrf and nc are the number of pixels in the target pattern, the number of sampled

points of the RF pulse for a single channel and the number of coils respectively.

5.2.1 RF Pulse Design with Gridding CG

In this section, two operators G1 and G2 are introduced to substitute the matrix-

vector multiplications without specifying the large system matrix. The operators

combine the gridding of k-space data, FFT and the sensitivity modulation. So they
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are physically equivalent to the matrix-vector multiplications in the process of pulse

design.

The forward operator G1 on bl[t] will carry out the same function as the matrix-

vector multiplication of the pulse of the l-th channel,

SlAbl = G1{bl[t], Sl[x], ~k[t]} (5.1)

The A matrix is an inverse Fourier encoding matrix that maps bl[t] from on the

non-Cartesian excitation trajectory ~k (e.g. spiral trajectory) to a spatial domain

pattern on the Cartesian grid. Thus, it can be replaced by gridding, as in [12], fol-

lowed by an inverse FFT. In the process of the gridding, the pulse (k-space data) bl[t]

is first convolved with the Kaiser-Bessel kernel and then sampled on the Cartesian

grid with doubled resolution corresponding to 2×FOX. The reason of sampling on a

grid with finer resolution is to reduce the aliasing artifact caused by the convolution

kernel in spatial domain. Then, an inverse FFT of the Cartesian data generates a

spatial pattern of size 2×FOX. Then, the pattern is trimmed from the center to size

of FOX and divided pixel-by-pixel by the inverse Fourier transform of the convolu-

tion kernel to compensate the convolution. After gridding, the pattern is modulated

by the transmit sensitivity Sl(x) and reshaped into vector form. The details of the

gridding principles and procedures are given in Appendix B.

From Eq. 2.13 and Eq. 5.1, the final pattern vector is the linear sum of the

pattern vectors from all channels,

m =
∑
l

SlAbl =
∑
l

G1{bl[t], Sl[x], ~k[t]} (5.2)

Similarly, the backward operator G2 performed on the spatial pattern M[x] will
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play the same role as the Hermitian transposed matrix-vector multiplication for the

l-th channel,

(SlA)H m = AHSHl = G2{M [x], Sl[x], ~k[t]} (5.3)

In this backward operator, the spatial pattern is first modulated by the Hermi-

tian transposed transmit sensitivity of the l-th channel as SHl m. Then, the Fourier

encoding matrix AH , which maps the spatial domain Cartesian pattern to data on

the non-Cartesian k-space trajectory ~k, is substituted by gridding. In this gridding

process, the sensitivity modulated pattern SHl m is first divided pixel-by-pixel by the

inverse Fourier transform of the convolution kernel and zero-padded to the size of

2×FOX. The k-space data on the Cartesian grid is then obtained by the FFT of the

spatial pattern. Finally, the k-space data is convolved with the convolution kernel

and sampled along the desired trajectory ~k.

The result of the Hermitian transpose multiplication of the system matrix is a

stack of vectors from individual channel results obtained from Eq. 5.3 as,

AH
fullm =

[
(S1A)H · · · (SLA)H

]
m

=
[
G2{M [x], S1[x], ~k[t]} . . . G2{M [x], SL[x], ~k[t]}

] (5.4)

The flow charts of these two matrix-vector multiplications with gridding operators

are given in Fig. 5.1. Finally, the same CGmethod as in the conventional method will

be used to solve the pulse design problem. In the steps of CG, the two multiplications

are substituted by Eq. 5.2 and Eq. 5.4.

The approximate computation cost (number of complex scalar multiplications)

of the operator G1 and the direct matrix multiplication are compared in Table 5.1.

Parameter ε = 2 denotes the factor of oversampling/zero-padding and w = 6 is

the size of convolution kernel. In the general design setup, the magnitude of ns
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Figure 5.1: Flow chart of the two matrix-vector multiplications substituted by the
two operators G1 and G2

and nm are on the similar level in order to satisfy the Nyquist rate without pTx

acceleration. So the computation cost is approximately reduced by the factor of
ns

w2 + ε2 log2(ε2nm) + 2. Note that only the amount of multiplications is counted

here.

For a pulse with ns = 1024 to excite a target pattern defined on a grid with
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nm = 1024 points, the computation cost of Afullb with operator G1 for nc = 8

channels is about 12 times less than the direct multiplication. As a dual pair, the

computation of AH
fullm with operator G2 shares the same computation gain versus

the direction corresponding matrix multiplication.

The savings in memory cost is much more significant. In the pulse design gridding

CG, only several matrices of size nmnc need to be saved. In the direction matrix

multiplication, the system matrix Afull of size nsnmnc need to be stored. In the above

example, the memory cost is reduced by about 3 magnitudes using the gridding CG

method.

Table 5.1: Computation costs of Afullb with operator G1 and the direct matrix
multiplication (Number of complex multiplications)

Afullb with operator G1 Afullb
⊗ FFT × , ÷

w2nsnc ε2 log2(ε2nm)nmnc 2nmnc nsnmnc

5.2.2 Off-resonance Incorporated RF Pulse Design with Gridding CG under a

Piece-wise Linear Model

Unlike the typical hard pulses, the artifact caused by main field inhomogeneity is

more severe for spatial tailored pulses due to the longer pulse duration. In presence

of a spatial varying off-resonance fieldmap ∆B0(~x), the gradient and off-resonance

induced a net phase equals to,

−γ
∫ T

t

(
~x · ~G(s) + ∆B0

)
ds

= ~x · ~k(t) + γ∆B0(~x) (t− T )
(5.5)
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As proposed in [16], with knowledge of ∆B0(~x), the STA based pulse design with

consideration of off-resonance is given by

M (~x) = iγM0
∑
l

Sl (~x)
∫ T

0
bl(t)ei~x

~k(t,T )eiγ∆B0(~x)(t−T )dt (5.6)

In the conventional design, this additional off-resonance term only changes the

value of elements in the encoding matrix A. However, for the pulse design with

gridding CG, this term cannot be easily incorporated into the gridding process since

the new added term is both spatial varying and temporal varying.

To solve this problem, we can adopt a piecewise linear model [42] of ∆B0(~x), the

fieldmap within each block can be expressed in linear form as

∆B0(~x) = f0 + ~f1 · ~x (5.7)

where f0 is the baseline of the fieldmap and ~f1 is a constant vector with the same

dimension as ~k which describes the direction of the linear off-resonance map. By

plugging Eq. 5.7 into Eq. 5.6, we get a STA Bloch equation with the off-resonance

term incorporated into other existing terms,

M (~x) = iγM0
∑
l

S ′l (~x)
∫ T

0
b′l(t)ei~x

~kshift(t,T )dt (5.8)

where s′l(~x) = sl(~x)eiφ1(~x), b′l = bl(t)eiφ2(t), φ1(~x) = −γ∆B0(~x)T , φ2(t) = γf0t and
~kshift(t) = ~k(t, T ) + γt~f1.

This indicates that to incorporate the off-resonance term into the proposed grid-

ding CG method, three terms need to be modified. The first term is a spatial domain

phase modulation eiφ1 which contains the original fieldmap without approximation.

It is modulated to the spatial transmit sensitivity sl(~x). The second term is a time
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domain phase modulation eiφ2 which is induced by the 0th order component of the

fieldmap ∆B0(~x). It is modulated to the pulse bl(t). The last modification is caused

by the 1st order component of the fieldmap. It is equivalent to encoding gradient and

leads to a time-varying shift of the original excitation trajectory by γt~f1. The end

of the excitation trajectory is shifted most by the amount of γT ~f1 from the origin.

All of these three modifications are universally applied to all channels in both the

operator G1 and G2.

Assume that the entire FOX can be partitioned into multiple blocks and this

linear off-resonance model as described by Eq. 5.7 stands well within all blocks. Let

the off-resonance map of the q-th block be ∆Bq
0(~x) = f q0 + ~f q1 · ~x for ~x ∈ q, we can

have a discrete version of Eq. 5.8 for this block with three modified terms as,

mq =
∑
l

SqlAqbql (5.9)

where Sql is the modulated sensitivity for the q-th block of the l-th chanel, Aq is the

Fourier encoding matrix defined on the shifted trajectory for the q-th block and bql

is the phase modulated pulse for the q-the block of the l-th channel. mq is set to

zero for locations outside the q-th block.

By employing the two operators G1 and G2, the matrix-vector multiplications

can be substituted by the operators similar to Eq. 5.2 and Eq. 5.4 as

mq =
∑
l

SqlAqbql =
∑
l

G1{bql [t], S
q
l [x], ~kqshift[t]} (5.10)

and the final pattern is a combination of the pattern from all blocks

m = Afullb =
∑
q

mq (5.11)
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Similarly, the substitute of the Hermitian transposed matrix-vector multiplication

with gridding for the q-th block is given by

AH
fullmq =

[
(Sq1Aq)H · · · (SqLAq)H

]
mq

=
[
G2{M q[x], Sq1 [x], ~kqshift[t]} . . . G2{M q[x], SqL[x], ~kqshift[t]}

] (5.12)

where M q[x] = M [x] for x ∈ q and 0 elsewhere is the q-th block of the partitioned

pattern, Sql is the modified transmit sensitivity for the l-th channel and the q-th block

and ~kqshift is the shifted excitation trajectory for the q-the block. The final Hermitian

transposed matrix-vector multiplication is the sum of results from all blocks,

AH
fullm =

∑
q

AH
fullmq (5.13)

With these modified operator substitutes, the proposed pulse design method with

gridding CG is able to incorporate the off-resonance under a piecewise linear model.

Three terms need to be modified for each block according to the linear coefficient

of the off-resonance map. The phase modulation on the transmit sensitivities are

universal for all channels and all CG iterations and is done for only once. The shift

of the k-space trajectory need to be done once for each block. But the second phase

modulation on pulse is performed twice in each iteration and for each block. Thus,

the computation cost of pulse design with gridding CG is linearly proportional to

the number of blocks in presence of off-resonance.

5.3 Methods

5.3.1 2D Pulse Design with Gridding CG

To evaluate the performance of the proposed design method, a 2-D tailored pulse

will be designed to excite a 2-D pattern as in Fig. 5.2(a) over a 20 × 20cm2 FOX.
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An 8-ch linear transmit array and a spiral trajectory as in Fig. 5.2(b) with 2× pTx

acceleration are used for the design using the proposed method and the conventional

spatial domain method. The total pulse length is 5.3msec with a dwell time of

0.0026msec.

Figure 5.2: (a) The target pattern for the pulse design and (b) the excitation k-space
trajectory with acceleration of R = 2

It is assumed that there is no off-resonance effect in this experiment. And both

methods are performed with exactly the same setup, including parameters, transmit

sensitivities and the target pattern. The residual of each CG iteration is measured

by the l2 norm of the current residual vector which can show the convergence. And

the quantitative difference between the two methods in term of designed pulse, ex-

citation error, design time and memory cost are compared. The excitation patterns

for excitation error measurement are obtained from the Bloch simulator.

The gridding part in operator G1 is implemented using an online NUFFT toolbox.

And the gridding part in operator G2 is implemented with the‘interp2’ function
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provided by the interpolation toolbox in Matlab. Proper modifications including

phase correction, zero-padding and intensity correction are made.

5.3.2 Pulse Design in Presence of Off-resonance

To evaluate the proposed method in presence of off-resonance, a 2D pulse design

experiment with a simple off-resonance map is performed. The off-resonance map

is partitioned into three linear blocks. The linear off-resonance coefficients in each

block are f0 = -70 Hz, 30 Hz and 20 Hz and ~f1 = [−15, 5]T Hz/cm, [−10, 0]T Hz/cm

and [15,−5]T Hz/cm respectively. All the other parameters including the target

pattern and excitation trajectory follow the setup from the previous experiment.

This off-resonance map is shown in Fig. 5.3.

Figure 5.3: The off-resonance map that contains three different blocks, linear within
each block, the range of ∆B0 over the entire FOX is 280Hz
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The proposed pulse design method with gridding CG is used to design pTx pulses

with the off-resonance information incorporated. The conventional spatial domain

method is also used to design pulses for comparison. The time cost of the pulse

designs are recorded and the final excitation patterns of the designed pulses are

evaluated using the Bloch simulator.

5.3.3 Design Stability to Inaccurate B+
1 Maps

In this simulation, the stability to inaccurateB+
1 sensitivities of the proposed

method is tested and compared with the conventional method. Complex Gaussian

noise is added to the trueB+
1 sensitivities. The SNR of the B+

1 sensitivity is defined

as SNR = 10 log10

(
Ps

Pn

)
, where Ps is the average power of true B+

1 sensitivity of all

the channels and Pn is the power of the added Gaussian noise.

The pulses are designed with the noise corrupted B+
1 sensitivities with different

SNR using the conventional method and the proposed method. A pTx acceleration

of 2 is used in all designs. The spiral-in trajectory and transmit sensitivity are the

same as that in previous experiments. The excitation patterns are obtained using

the Bloch simulator with the true B+
1 sensitivity without noise. In this experiment,

it is assumed that there is no off-resonance effect.

All simulations are performed in Matlab 2011b (Math Works, Natick, MA) on a

desktop with 2.67GHz i-7 CPU and 9 GB memory.

5.4 Results

The pulse design result of the experiment on designing 2D ptx in the absence

of off-resonance is given in Fig. 5.4. The residual curve of the proposed method

is shown in Fig. 5.4(a). And its relative difference in residuals comparing to the

conventional design is shown in Fig. 5.4(b). As can be seen, the CG in the proposed

method converges towards zero at the same rate as the conventional method and the
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relative difference is within 0.5%. The excitation patterns from the Bloch simulator

are shown in Fig. 5.4(c). Both the methods lead to an normalized root mean square

error of 5.65% as expected, because the maximum error of a single gridding step is

controlled below 0.1%. Thus, the proposed method can achieve the same accuracy

as the conventional method.

The time consumed by the matrix-vector multiplication with operator G1 and the

direct multiplication in the conventional design are 2.3 sec and 18 sec respectively in

100 times of iteration. Similar gain is observed for the Hermitian transposed matrix-

vector multiplication with G2. And the total design time is reduced by about 10 fold

using the proposed method.

The system matrix Afull alone requires 1012 MB memory in the conventional

method. In the pulse design with gridding CG, it requires no more than 5 MB

memory in total. Thus, the memory cost of the proposed method is improved by

about 3 magnitudes.

The excitation patterns of the proposed method are shown in Fig. 5.6. The

excitation error of the magnitude pattern is 9.5% comparing to the 9.4% in the

conventional method as in Fig. 5.5. The phase error pattern of both methods as in

Fig. 5.5(b) and Fig. 5.6(b). They are both zero in the excited region in FOX. Thus

the off-resonance effect has been correctly countered during the excitation using both

methods.

The excitation errors are very close. However, the design time of the proposed

method is 16.5 sec comparing to the 41.3 sec of the conventional method. Note

that the computation gain has been reduced by about 3 times which is due to the 2

additional blocks. The benefit of memory saving using the proposed method is still

about the magnitude of 3 in this case.

Excitation errors of the pulses designed using the conventional method and the
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Figure 5.4: Relative residuals (a) of the pulse design using the spatial domain method
versus design time and the relative residuals (b) of the pulse design using the gridding
CG method. 100 iterations are performed for both. (c) The excitation patterns of
the two methods
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Figure 5.5: The excitation patterns of pulse designed using the conventional design
method: (a) the magnitude pattern and (b) the phase error pattern in presence of
off-resonance

Figure 5.6: The excitation patterns of pulse designed using the proposed design
method: (a) the magnitude pattern and (b) the phase pattern in presence of off-
resonance
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proposed method are shown in Fig. 5.7. As the SNR of the B+
1 sensitivities increases,

the error decreases for both the methods. The error curves of these two methods are

almost the same. Thus, the proposed method has the same stability to inaccurate

B+
1 measurement as the conventional method. But the design speed of the proposed

method is 10 times faster than the conventional method on average.

Figure 5.7: Excitation error versus the SNR of the B1+ sensitivities

5.5 Conclusion

In this work, we proposed a very fast pulse design method based on the spa-

tial domain method with gridding CG. The matrix-vector multiplications, which are

computational expensive in the conventional method, are substituted by two op-

erators which include data gridding, sensitivity modulation and multiple channel

combinations. The design speed can be improved by about 10 times theoretically

and validated in the experiment. To incorporate off-resonance into the proposed

method, a piecewise linear model is adopted. FOX is partitioned into blocks with

linear off-resonance. Then, three terms are modified to incorporate the off-resonance
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information into the pulse design gridding CG. Simulation results show that the pro-

posed pulse can achieve the same design accuracy as the conventional method in

both absence and presence of off-resonance. The computation cost of the proposed

method increases linearly with the number of blocks.

The memory cost can be reduced by 103 times by using the proposed method.

This eases the memory burden of designing longer pTx pulses with more transmit

channels or exciting a pattern defined on a grid with finer resolution. Meanwhile, the

memory bottleneck of implementing the pulse designs on GPU is completely broken.

The proposed operators are implemented on a channel by channel base and can be

easily paralleled. All these promise a further speedup of 20 times of the proposed

method.

5.6 Discussion

To the best knowledge of author, this pulse design method using gridding CG can

be used to accelerate the pulse designs in any existing pulse design methods based

on the spatial domain method. Pulse design with regularization terms such as to

control the average SAR or maximum SAR can be simply added to the pulse design

with gridding CG with little change of total computation costs.

In the experiment of pulse design in presence of off-resonance, 3 linear off-

resonance blocks were manually setup. This should be replaced by some partition

algorithms to minimize the model error in practical implementation which will be

included in our future work.
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6. SUMMARY

This dissertation focuses on the parallel imaging and parallel excitation tech-

niques in MRI. Three major contributions are made. All these proposed work are

designed for large arrays with a large number of elements.

First, a correlation based channel reduction algorithm is developed to reduce

the computation cost of PI reconstructions. With the same level of reconstruc-

tion quality, the reconstruction speed is enhanced. Second, a new parallel imaging

method named PILARS is proposed to either improve the actual acceleration factor

for shorter imaging time or and reduce the computation cost with the similar or

improved reconstruction quality comparing to existing methods.Finally, a fast pTx

pulse design method is proposed to accelerate the pulse design speed in pTx. These

contributions can tremendously improve the efficiency of PI and pTx using large

arrays.
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APPENDIX A

CONJUGATE GRADIENT SOLVER

The conjugate gradient method that has been using the to solve the pulse design

problem is explain below.

Initial: z0 = m

r0 = AT z0

p0 = r0

x0 = 0

φ0 = ||r0||2

Iterate:j cj−1 = Apj−1

p0 = r0

αj−1 = φj−1

||c2
j−1||+ λ||pj−1||2

xj = xj−1 + αj−1pj−1

zj = zj−1 − αj−1pj−1

rj = AT − λxj

φj = ||rj||2

βj−1 = φj
φj−1

pj = rj + βj−1pj−1

The computation cost hotspot is two matrix-vector multiplications within the

iteration. All the other multiplications are scalar-vector, scalor-vector or vector

inner product multiplications which are computationally neglectable comparing to

the hotspot.
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APPENDIX B

GRIDDING: RECONSTRUCTION OF NON-CARTESIAN K-SPACE DATA

The gridding process maps the non-Cartesian k-space pulse b(t) to a Cartesian

pattern in spatial domain m(~x). It employs the fast Fourier transform to reduced

the computation cost of the Fourier encoding and can be understood as a data re-

sampling process after convolution interpolation [38]. In this section, we start with

the general formula that all functions are defined continuously. The spatial domain

functions are denoted in lower case and the k-space functions in capital case.

Let B(~k) be the signal in k-space which is the continuous RF pulse in our case. Let

OSpr(~k) be the sampling function on arbitrary trajectory such as the spiral trajectory

and OCart(~k) be the sampling function on the Cartesian grid. Thus, the goal is to

calculate the spaital pattern

m = FT −1 (B ·OSpr) (B.1)

from acquired non-Cartesion data B ·OSpr .

In order to take advantage of the computation speed of the Fast Fourier transform,

we need map the non-Cartesian k-space data onto Cartesion grid first. And this goal

is achieved by convolution interpolation.

Let C(~k) be a convolution function and c(~x) is its Fourier pair. A continuous

k-space function is obtained by convolving the data we have B · OSpr with the con-

volution function C as

(B ·OSpr)⊗ C (B.2)
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Then, the Cartesian k-space data is obtained by sampling with OCart as,

(B ·OSpr)⊗ C ·OCart (B.3)

of which the corresponding spatial pattern can be calculated as,

FFT −1 [(B ·OSpr)⊗ C ·OCart]

=FT −1 (B ·OSpr) · c⊗FT −1(OCart)

=FT −1 (B ·OSpr) · c

(B.4)

Here both the operator FT and FFT represents the same Fourier transform but

the second one is implemented using the fast Fourier transform. The inverse Fourier

transform of the Cartesian sampling function FT −1(OCart) equals to one and omitted

with proper sampling rate.

Thus, we have the reconstructed spatial domain pattern,

m = FT −1 (B ·OSpr)

= FFT
−1 [(B ·OSpr)⊗ C ·OCart]

c

(B.5)

and FFT can be used to carry out the inverse Fourier transform for optimal speed.

The gridding process to map non-Cartesian k-space data to Cartesian spatial

domain pattern has been pointed out by Eq. B.5. First, the k-space data is convolved

with some convolution kernel function C. Then, it is sampled on the Cartesian grid.

A spatial domain pattern is then obtained using inverse FFT. Finally, the pattern is

divided pixel-by-pixel by the inverse Fourier transform of the kernel function c.

Till now, the gridding formular is derived for the continuous case. In practical

implementation, the spiral sampling function OSpr is in discrete form and the integral
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of convolution turns into summations. Thus, the integral interval changed from

uniformly spaced d~k to non-uniform interval ∆~kj. And a sampling density function

W which is equivalent to ∆~kj need to be added.

In addition, there are three more concerns in the implementation of gridding.

First, a convolution kernel function need to be chosen. Functions such as Sinc func-

tion and Gaussian are potential choices. But it had been shown that the Kaiser-Bessel

function can achieve minimum gridding error [23]. Second, since the convolution ker-

nel can not be of finite support in the spatial domain, it will lead to aliasing artifact.

The aliasing can be reduced by increasing the resolution of the Cartesian grid OCart.

In the experiment of this work, we use an oversampling factor ε = 2 and the spatial

pattern is twice the size of FOX. Thus, truncation from the center of the pattern

is need. Finally, this oversampling in k-space will uniformly scale up the intensity

of the spatial domain pattern, an intensity correction step is necessary following the

truncation of pattern. The scaling method is described in Appendix C.
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APPENDIX C

INTENSITY CORRECTION FOR GRIDDING

The intensity correction is required in the last step of the gridding process to

substitute the matrix-vector multiplication. The intensity scale is caused by the

oversampling in k-space and it is uniform over the entire FOX. So suppose we can

find a reference value at any spatial location, we can estimate the scaling factor.

Recall that the matrix-vector multiplication is given by,

m = Afullb =
∑
l

SlAbl (C.1)

where A is the Fourier encoding matrix with elements equal to ei~x~k. So A = I is the

Identity matrix when ~x = 0. Thus, the value of the pattern m at ~x = 0 can be easily

evaluated as

m(0) =
∑
l

Sl(0)
∑
j

bl(tj) (C.2)

Then, the Cartesian pattern obtained from gridding operator G1 is given by

m′(0) = G1{bl[t], Sl[0], ~k[t]} (C.3)

So the intensity correction scalor is found as m(0)
m′(0). The intensity correction is

not needed for the Hermitian transposed matrix-vector multiplication AH
fullm using

operator G2 since zero padding will not change the amplitude of the k-space data.
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