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ABSTRACT 

 

This study compares four recently developed decline curve methods and the 

traditional Arps or Fetkovich approach. The four methods which are empirically 

formulated for shale and tight gas wells are: 

1. Power Law Exponential Decline (PLE). 

2. Stretched Exponential Decline (SEPD). 

3. Duong Method. 

4. Logistic Growth Model (LGM). 

Each method has different tuning parameters and equation forms. The main objective of 

this work is to determine the best method(s) in terms of Estimated Ultimate Recovery 

(EUR) accuracy, goodness of fit, and ease of matching. In addition, these methods are 

compared against each other at different production times in order to understand the 

effect of production time on forecasts. As a part of validation process, all methods are 

benchmarked against simulation. 

 This study compares the decline methods to four simulation cases which 

represent the common shale declines observed in the field. Shale wells, which are 

completed with horizontal wells and multiple traverse highly-conductive hydraulic 

fractures, exhibit long transient linear flow. Based on certain models, linear flow is 

preceded by bilinear flow if natural fractures are present. In addition to this, linear flow 

is succeeded by Boundary Dominated Flow (BDF) decline when pressure wave reaches 
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boundary. This means four declines are possible, hence four simulation cases are 

required for comparison. 

To facilitate automatic data fitting, a non-linear regression program was 

developed using excel VBA. The program optimizes the Least-Square (LS) objective 

function to find the best fit. The used optimization algorithm is the Levenberg-

Marquardt Algorithm (LMA) and it is used because of its robustness and ease of use. 

This work shows that all methods forecast different EURs and some fit certain 

simulation cases better than others. In addition, no method can forecast EUR accurately 

without reaching BDF. Using this work, engineers can choose the best method to 

forecast EUR after identifying the simulation case that is most analogous to their field 

wells. The VBA program and the matching procedure presented here can help engineers 

automate these methods into their forecasting sheets. 
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NOMENCLATURE 

 

  Duong or LGM constant. 

  Area perpendicular to flow, sq-ft 

  Derivative of loss-ratio (Arps’ decline exponent), dimensionless 

   Total compressibility, psi-1 

  Loss-ratio (Arps’ decline constant), Days-1 

   Initial loss-ratio, Days-1 

   Loss-ratio at (   ), Days-1 

   Loss-ratio at (   ), Days-1 

   Cumulative gas production. Mscf 

  Permeability, md 

  Carrying capacity of LGM method. 

   Hydraulic fracture spacing, ft 

  Time exponent (hyperbolic exponent). 

  Pressure, psi 

  Flow rate, STB/Day or Mscf/Day 

   Flow rate at (   ), STB/Day or Mscf/Day 

   Flow rate at (   ), STB/Day or Mscf/Day 

   Flow rate at (   ), STB/Day or Mscf/Day 

   Critical flow rate 

  Cumulative production, Mscf or STB 
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     First calculated cumulative 

   Coefficient of determination, fraction 

      Error of sum of squares 

      Residual of sum of squares 

  Time, Days 

   First day of production (usually 1), Days 

     Time of end of square-root or time of end of linear flow 

      Last input time, Days 

 (   ) Duong’s time function based on Eqn. 2.12 

  Characteristic time parameter for SEPD model, Days 

  Temperature, Rankin 

   Critical velocity 

   Weighting factor at time=i. 

 ̅ Mean of data 

   Data at row i 

  Gas deviation factor, dimensionless 
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Abbreviations 

BDF Boundary dominated flow 

EUR Estimated ultimate recovery, Bscf or MMSTB 

LGM Logistic growth model 

LMA Levenberg-Marquardt Algorithm 

PLE Power law exponential decline 

SEPD Stretched exponential decline 

SRV Simulated reservoir volume 

 

Greek Symbols 

  Porosity, fraction 

  Viscoity, cp 
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CHAPTER I  

INTRODUCTION 

 

Historically, the decline curve analysis method by Arps (1945) has been the most 

popular tool for forecasting Estimated Ultimate Recovery (EUR) and reserves because of 

its reliability and simplicity. In recent years, the industry started producing shale plays 

and production forecast analysis for shale wells is problematic using this traditional 

method. The reason is that Arps’ equations only work during Boundary Dominated Flow 

(BDF) decline. Unlike in conventional reservoirs, such decline is not observed in shale 

wells during early production life when financial forecast is important (Figure 1-Figure 

2). Arps’ method match shale wells with b values greater than what Arps specified 

(Figure 3). To eliminate this problem and improve shale production forecast, researchers 

developed new empirical methods. However, the new methods have different equation 

forms and often result in dissimilar forecasts.  
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Figure 1. A conceptual vertical well in a conventional oil reservoir was simulated 

and production is shown by the green curve. Transient flow is relatively short and 

BDF is reached quickly. Arps exponential decline (marked in red) results in an 

excellent fit even at an early production time of 3 days. 
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Figure 2. A conceptual horizontal shale-well with multiple traverse hydraulic 

fractures was simulated and production is shown by the green curve. Arps’ method 

(marked in red) can only fit BDF decline which does not occur until after 700 days 

of production. 
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Figure 3. Arps' method matches a Fayetteville shale well with a b value greater 

than 1. 

 

1.1 Objective 

The main purpose of this work is to identify the most accurate method(s) by 

comparing it/them to analytical and conceptual simulation models. Analytical and 

simulation models are used for benchmarking because they are applied, validated, and 

well established in literature (Ahmadi et al. 2010; Bello and Wattenbarger 2008; Bello 

and Wattenbarger 2010; Samandarli et al. 2011). Other objectives of this work include 

identifying of strengths and weaknesses of each empirical method and establishing a 

workflow to automatically match methods to data using non-linear regression. The 

methods are compared in terms of: 
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1. Ultimate recovery accuracy 

2. Goodness of fit 

3. Ease of matching 

1.2 Thesis Organization 

This thesis is divided into seven chapters. The organization of these chapters is as 

follows: 

Chapter I is an introduction to the subject of this research, its motivations and 

objectives. 

Chapter II is a literature review including history of empirical decline curve 

analysis and the traditional decline curve methods of Arps and Fetkovich. The chapter 

also reviews recent empirical decline methods that are developed specifically for tight 

gas and shale wells.  

Chapter III investigates the advantages and shortcomings of the new methods. It 

also shows problems that engineers might encounter while applying the methods as well 

as procedures to mitigate such problems. 

Chapter IV describes the proposed procedure for matching and forecasting.  

Chapter V compares the new decline methods and the traditional methods against 

conceptual simulation models. The methods which best fit simulation cases and predict 

their EUR are determined. 

Chapter VI shows field examples and applications of the proposed methodology. 

Chapter VII presents discussion and conclusions. 
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CHAPTER II 

LITERATURE REVIEW 

 

The fundamental idea of decline curve analysis is to forecast production based on 

rates from previous production. The first reference to such method is by Arnold and 

Anderson (1908). Later, Johnson and Bollen (1927) introduces the concept of loss-ratio 

which represents the slope of rat versus time on a semi-log plot and Pirson (1935) 

concludes that some wells have constant loss-ratio while others have constant derivative 

of loss-ratio. 

The loss-ratio is defined as, 

 

 
  

 

    ⁄
                                                                                                        (   ) 

Loss-ratio derivative is defined as, 
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2.1 Traditional Decline Curve Methods 

Arps’ decline curve analysis is based on graphically extrapolating production on 

a semi-log plot (log q vs. t) to abandonment. Arps identifies three types of production 

rate decline during BDF: Exponential, Hyperbolic or Harmonic. Arps introduces 

equations for each type and used the concept of loss-ratio and its derivative to derive the 

equations. The three declines have b values ranging from 0 to 1. Where b = 0 represents 

the exponential decline, 0 < b < 1 represents the hyperbolic decline, and b = 1 represents 

the harmonic decline (Figure 4). Equations for forecasting cumulative production or 

EUR is shown in Table 1. 

 

 
Figure 4. Arps' three types of decline and their formulas on a semi-log plot after 

Arps (1945). 
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Fetkovich (1980) supports Arps’ exponential decline formula with physical 

theory. In his work, Fetkovich combines transient radial flow solutions with Arps’ BDF 

decline formulas to form log-log type curves. Because the end of radial flow and start of 

BDF can vary based on distance to boundary, Fetkovich uses special dimensionless rate 

and time plotting functions to collapse all solutions at a single end of radial flow time. 

Fetkovich type curves and his special dimensionless plotting functions are shown in 

Figure 5. 

 

Table 1 – Arps equations for rate and cumulative (1945). 

Exponential 

(b = 0) 

 

Hyperbolic 

(0 < b < 1) 

 

Harmonic 

(b = 1) 

 

D = constant D = changing D = changing 
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Figure 5. Fetkovich Type Curves (1980): A log-log plot with combined radial and 

BDF declines for various reservoir boundaries. Fetkovich equations for his special 

dimensionless parameters are also shown. 

 

The Arps or Fetkovich approach usually limits the value of b to (0 ≤   ≤ 1). 

However, for shale wells it is often observed that values of b > 1 seem to match field 

data. Lee and Sidle (2010) showed that b > 1 gives physically impossible results when 

Arps’ cumulative production equation is evaluated at infinite time. Therefore, new 

methods to overcome these challenges are developed. 

 

 

 



 

10 

 

2.2 Shale Wells Decline Curve Methods 

2.2.1 Power Law Exponential Decline (PLE) 

Ilk et al. (2008) introduces the Power Law Exponential (PLE) decline method to 

better fit and forecast tight gas and shale production. The PLE models the loss-ratio 

uniquely by assuming that the loss-ratio follows a power law function at early time and 

becomes constant at late time (Figure 6). This formulation of loss-ratio can be 

substituted into the original definition of the loss-ratio and integrated to give the PLE 

rate-time relation. The derivation is the PLE is demonstrated in Appendix A. 

PLE loss-ratio, 

        
 (   )                                                                                            (   ) 

PLE derivative of loss-ratio, 

   
   (   ) 

 

(        ) 
                                                                                            (   ) 

PLE rate-time relation, 

       (     
  
 
  )                                                                               (   ) 
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Figure 6. PLE schematic after Ilk et al. (2008). Loss-ratio is modeled uniquely by 

assuming it follows a power law function at early times and becomes constant at 

late time. 

 

2.2.2 Stretched Exponential Decline (SEPD) 

Valko (2009) independently proposes the Stretched Exponential Decline (SEPD) 

which is similar to the PLE method. Valko uses this method to evaluate the effect of 

stimulation (re-stimulation) treatment in Barnett shale by analyzing monthly production 

from public databases. Later, Valko and Lee (2010) use this method for forecasting. 
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SEPD rate-time relation, 

       [ (
 

 
)
 

]                                                                                             (   ) 

SEPD cumulative-time relation, 

  
   

 
{ [

 

 
]   [

 

 
  (
 

 
)
 

]}                                                                           (   ) 

The SEPD equation differs from the PLE model in not considering the behavior 

at late times (the    term). In the SEPD method,    is always considered to be zero and 

  is equivalent to (   ⁄ )  ⁄ . One advantage of SEPD over PLE is the provided 

cumulative-time relation. This relation adds the option of fitting data to cumulative 

production, which is smoother and easier to regress on than the usually scattered 

production rate trends. In the cumulative equation, the first term inside the brackets is 

the complete gamma function and the second term is the incomplete gamma function.  

2.2.3 Duong’s Method 

Duong’s method (2011) is developed on the basis that production rate and time 

have a power law relation or form a straight line when plotted on a log-log scale. 

Integrating this relation with respect to time from (0 to t) gives a relationship between 

time and material balance time (equation 3.8). 

Duong’s time/material-balance-time relation, 

 

  
                                                                                                                   (   ) 
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Using this relation, the variable a is 1/2 for linear flow and 3/4 for bilinear flow. 

Duong made the above equation more flexible to match field data by substituting m for 

the time exponent. Differentiating this equation with respect to time and integrating 

(from 1 to t) give Duong’s rate-time relation. Duong’s equations are shown below. 

Duong’s modified time/material-balance-time relation, 

 

  
                                                                                                                  (   ) 

Duong’s rate-time relation,  

     (   )                                                                                               (    ) 

Duong’s cumulative-time relation, 

   
   (   )

    
                                                                                                   (    ) 

where, 

 (   )        (
 

   
(      ) )                                                         (    ) 

Duong adapts the concept of expanding Stimulated Reservoir Volume (SRV) 

which means that production never reaches BDF. This concept is based on reactivating 

existing faults and fractures caused by local stress changes during depletion(Warpinski 

and Branagan 1989). Nonetheless, Duong adds the term    to the rate-time equation to 

better fit field data. Duong’s method is the only method that models fracture fluid clean-

up as shown by Duong’s type curves (Figure 7). In Duong’s type curves, the variable a 

and m are correlated by analyzing various gas plays (Figure 8). 



 

14 

 

 
Figure 7. Duong's Type Curves (2011). Curves with different m values are shown. 

The variable a and m are related by a correlation defined by Duong. 
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Figure 8. A correlation between a and m for various gas plays (Duong 2011). 
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2.2.4 Logistic Growth Model (LGM) 

Logistic Growth Models (LGM) are based on the concept that growth is possible 

only to a certain size. The maximum growth size possible is referred to as the carrying 

capacity (K). LGMs are used to model population growth and its first adaptation in the 

petroleum industry is by Hubbert’s (1956). The Hubbert’s model is used to model 

production of a field or region. Clark et al. (2011) develops a similar model but to 

forecast production from a single well. The model is adapted from another LGM that 

models liver regrowth hyperbolically. The rate and cumulative equations are the defined 

below. 

LGM rate-time relation, 

  
       

(    ) 
                                                                                                     (    ) 

LGM cumulative-time relation, 

  
   

    
                                                                                                          (    ) 
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CHAPTER III 

INVESTIGATION OF METHODS 

 

The previous chapter provided an overview of both traditional and new empirical 

decline methods. This chapter shows the drawback and advantages of each method and 

provides simple solutions to mitigate difficulties which might be encountered while 

applying the methods. 

3.1 Arps’ Unbounded Reserves Problem and Improvements 

Arps’ equations are designed for BDF decline and the reason shale wells have b 

values greater than 1 is the fact that shale wells are generally in transient flow. Shale has 

low permeability and is usually produced from hydraulically fracture wells. This results 

in a long transient linear or bilinear flow which can be fitted using Arps’ hyperbolic 

equation and b values of 2 or 4 respectively (Figure 9). However, these values are 

outside the range that Arps’ specified (     ) and result in two problems. The first 

problem is that extrapolation on transient flow overestimates reserves. The second 

problem is that the hyperbolic equation with b values greater than one never goes to zero 

and therefore reserves is unbounded. Lee and Sidle (2010) demonstrated the second 

problem with the following: 
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Arps’ hyperbolic cumulative equation, 

  
  
 

  (   )
(  

        )                                                                                         (   ) 

At infinite time, rate should be zero and therefore, substituting a rate of zero and b value 

greater than 1 give undefined results, 

   
   

  
  
 

   
(
 

  
 
 

  
)                                                                                    (   ) 

 

 
Figure 9. Modified Fetkovich type curve which includes transient linear (b=2) and 

bilinear flow (b=4). 
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3.1.1 Composite Arps’ Method 

This study proposes a methodology to mitigate both aforementioned problems by 

using a composite Arps’ forecast. We recommend using Arps’ hyperbolic equation with 

b values of 2 for linear flow or 4 for bilinear flow until start of BDF decline. Afterwards, 

a b value of 1 or less should be used to match the BDF decline. If start of BDF is not 

known, it can be calculated using equation 3.3. The methodology is illustrated in Figure 

10. In same cases when rates and pressure are variable, a perfect match with (b=2 or 

b=4) is no possible unless rate is normalized with pressure. 

Time to start of BDF decline, 

     
    

       
(    ) 

  
 

  
                                                                                              (   ) 
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Figure 10. A simulated shale gas well fitted using the composite Arps method. Arps’ 

equation with     is used until the start of BDF (    ) while        is used 

afterwards. 

 

3.2 PLE Iteration Blow-up 

The PLE method requires fitting on two different plots. The first plot is a log-log 

plot of loss-ratio versus time (Figure 11). The parameters  ,   , and    are obtained 

from this plot. The parameter n is the slope, the parameter    is the intercept, and the 

parameter    is the value of loss-ratio at infinite time. The second plot is either a semi-

log or log-log plot of rate verses time and it is used to find the parameter    (Figure 12). 

We fitted various cases using the PLE model using non-linear regression. In many cases, 

the best match for    is very large and exceeds the range that excel can handle. The 

reason    is very large is that parameter n is small. This can be illustrated by rearranging 

the rate-time relation (equation 2.5) to equation 3.4. If parameter n is small, the solution 

   becomes too large because of the exponential function. The range for positive values 
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for a double variable in Microsoft Excel is from 4.94065645841247E-324 to 

1.79769313486232E308.  

   
 

   (     
  
  

 )
                                                                                                (   ) 

 

 
Figure 11. The first matching plot for the PLE method. In this plot, the parameters 

    , and    are found through iteration. 
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Figure 12. The second matching plot of the PLE method. In this plot, iterations find 

qi. 
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3.3 SEPD Equation Form and Iteration Time Problem 

As mentioned in the method review chapter, the SEPD method is mathematically 

similar to the PLE method. The relationship between the parameter   and parameters 

from the PLE method is shown in equation 3.5. However, both methods result in two 

different matches when non-linear regression is used (Figure 13). This is because of two 

reasons. The first reason is that the same match can be achieved with a very small-in-

magnitude   which is difficult to find using regression. This is because each iteration 

step improves on the previous step by a fraction and this process takes a very long time 

to find the required small-in-magnitude solution. 

 

 
Figure 13. The PLE and SEPD methods with the best match found using iteration. 

Even though both methods are mathematically similar, iteration finds a better 

match for the PLE method. 

1

10

100

1,000

10,000

1 10 100 1,000 10,000

q
g

, 
M

S
C

F
/
D

a
y

Time, Days

LGM

SEPD

Duong

PLE

Arps

LGM

SEPD

Duong

PLE

Arps



 

24 

 

 The second reason is that the PLE method finds most parameters by fitting a 

straight-line in loss-ratio plot. Fitting a straight line is faster than fitting the complicated 

power-law equation of the SEPD method. 

  (
 

  
)

 
 
                                                                                                                           (   ) 

3.3.1 The SEPD Method and Long Iteration Convergence Time 

To overcome the long iteration problem we use the Levenberg-Marquardt 

Algorithm (LMA) which is faster than Excel Solver. Figure 14 shows a comparison 

between Excel Solver and LMA. Both methods find similar solutions however the LMA 

method takes less than half the time Solver takes. The SEPD method is the slowest 

method to converge compared to the other four methods. A comparison of the 

convergence time is shown in Figure 15. 
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Figure 14. A comparison between Excel Solver and LMA. LMA takes less than half 

the time Excel Solver takes to find the same solution. 

 

 
Figure 15. A comparison of convergence time between all five methods. The 

comparison case is infinite acting linear flow lasting for 30 years. 
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3.4 Doung’s Method Precautions 

Duong started deriving his equations from analytical solutions which are based 

on physical theory. However midway through derivations he changed the analytical 

equations to empirical ones by adding a fiddle factor (m). The derivation details are 

shown in Duong’s paper and are also derived in Appendix B. Another fiddle factor that 

Duong used in the final form of the rate-time equation is (  ). This term was added to 

better fit field data. The term, however, might cause problems because Duong explicitly 

stated in his paper that    can either be positive or negative. 

3.4.1 Duong’s    Error and Improvements 

If the term    is positive, the rate forecast at late production times might actually 

increase which is not physically possible. Even if a good match is achieved using   , 

Duong’s cumulative equation does not account for    and results in wrong cumulatives. 

Therefore, in this study we recommend using Duong’s cumulative equation only when 

   is zero. If it is not zero, cumulative should be calculated discretely. 

3.4.2 Error in Linear or Bilinear Flow 

Duong’s method cannot rigorously model linear or bilinear flow. This is because 

Duong used the fiddle factor (m) which is supposed to be equivalent to 1 for linear or 

bilinear flow. This can be proven using the relationship between time and material 

balance time as shown in Figure 16. The problem is that Duong’s final form equations 

are not define at m=1. Therefore, a value bigger but as close as possible to 1 should be 

used instead.  
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Figure 16. Duong's relationship is actual a relationship between time and material-

balance time. Analytical solutions show that m in Duong's equation should be 1. 

However, substituting m=1 in the rate-time relation equation gives an undefined 

result. 

 

3.4.3 Material-balance Time Error Results in Recovery Underestimation 

Material-balance time is defined as the cumulative divided by the last rate 

(equation 3.6). The cumulative is usually discreetly calculated by either using a 

trapezoidal or a stair-step approximation. This approximation causes errors in     for 

linear or bilinear flow if data is from simulation or analytical solutions. Calculation of 

the correct material-balance time is significant because Duong’s method requires finding 

the parameter a and m from a plot of time and     (Figure 17). In analytical solutions, 

the calculated rate is an instantaneous rate which changes rapidly in linear or bilinear 

flow. The first step cumulative in both trapezoidal and stair-step approximation assumes 
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that rate is constant leading to a wrong material-balance time. Similarly, simulation 

usually reports rate on a geometric time scale and has an error similar to that of 

analytical solutions during early times. This study proposes a method to eliminate errors 

in material-balance time calculations by correcting the first step cumulative (Figure 18). 

The corrections for cumulative in both linear and bilinear flows are shown below and the 

effect of     error is illustrated in figures (Figure 19). Derivation of the time and 

material balance time relation is shown in Appendix C. 

First step cumulative correction for linear flow, 

    
 

 
                                                                                                                               (   ) 

First step cumulative correction for linear flow, 

                                                                                                                                  (   ) 

First step cumulative correction for bilinear flow, 

     
 

   
                                                                                                                          (   ) 
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Figure 17. Duong’s method requires finding the parameter a and m from a plot of 

time and t_MB. The error in t_MB leads to obtaining wrong values for m. 

 

 
Figure 18. Correction for the first step cumulative eliminates the error in material-

balance time. 
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Figure 19. Material-balance time error results in a bad match. Correction for the 

first step cumulative results in a better match for data. The term    was 

constrained to zero for comparison purposes. 
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CHAPTER IV 

MATCHING AND CALCULATION PROCEDURE 

 

This chapter discusses the matching and calculation procedure used in the 

Decline program which is developed for this study. The procedure has three main parts: 

filtering, matching, and EUR calculations. 

4.1 Liquid Loading Filter 

Field data may have noise due to liquid loading or partial shut-ins. This noise can 

be filtered out using Turner’s methods (Turner et al. 1969). The method calculates the 

critical rate by suing fluid properties at the well head. Any gas flow rate that is less than 

critical flow rate is filtered out. This filtering process prevents the iteration to be biased 

by liquid loading data. 

Critical velocity for water, 

  (     )  
     (           )    

(        )   
                                                                         (   ) 

Critical velocity for condensate, 

  (          )  
     (           )    

(        )   
                                                              (   ) 

Critical flow rate in terms of cortical velocity 

  (
    

 
)  

           

   
                                                                                                 (   ) 
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4.2 Matching Data to Model 

The objective function is the sum of squares. The errors are calculated in terms of 

logarithms. This is because data are usually plotted on semi-log or log-log plots which 

have rates plotted on a log scale y-axis. This allows the regression to find a match that 

engineers find with simple eyeballing and type curve matching. A weighting factor is 

also included in the log-log plot to account for the log-scale on the x-axis. The objective 

function and coefficient of determination for both semi-log and log-log plot is shown 

below. The objective function is minimized using the Levenberg-Marquardt Algorithm 

(LMA) which is discussed in Appendix D. 

Objective function for a semi-log plot. 

      ∑[          (    )]
 

 

   

                                                                                 (   ) 

Objective function for a log-log plot. 

      ∑  [          (    )]
 

 

   

                                                                            (   ) 

Where the weighting factor is defined as, 

   
   
    
  

   
     
  

                                                                                                                      (   ) 

The coefficient of determination is defined as, 

     
     
     

                                                                                                                   (   ) 
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Where the residual for a semi-log plot is defined as, 

      ∑[       ̅]
 

 

   

                                                                                                   (   ) 

And the residual for a log-log plot is defined as, 

      ∑  [       ̅]
 

 

   

                                                                                             (   ) 

The mean of data is for a semi-log plot is, 

 ̅  
 

 
∑  

 

   

                                                                                                                       (    ) 

The mean of data is for a log-log plot is, 

 ̅  
 

 
∑    

 

   

                                                                                                                  (    ) 

 

4.3 EUR Calculations 

The EUR is determined using the following procedure. First, the cumulative at 

the last reported field data is calculated. Second, the methods are matching to field data. 

Third, the methods are extrapolated to an economic limit of either rate or time. Forth, 

reserves are calculated by integrating the area under the extrapolated curves from the last 

reported field data until abandonment. Finally, the EUR is calculated by adding the last 

reported cumulative to the reserves (Figure 20). 
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Figure 20. Illustration of procedure to calculate EUR. 
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CHAPTER V 

COMPARISON WITH SIMULATION 

 

5.1 Model Description 

Shale wells with multiple traverse hydraulic fractures can be described with two 

main models: a homogenous model and a naturally fractured model (Figure 21). The 

former model assumes that fluid flows directly from matrix to hydraulic fractures. The 

latter model assumes that fluid flows from matrix to hydraulic fractures through natural 

fractures. Both models have parallel hydraulic fractures and drain a constant stimulated 

reservoir volume (SRV). In addition to this, natural fractures in the second model are 

parallel to wells (Ahmadi et al. 2010; Tivayanonda et al. 2012). 

There are several ways to visualize fracture distribution in shale wells. The 

above-mentioned homogenous and naturally fractured models are two possible ways to 

visualize fractures; however, other models are also possible. Ye et al. (2013) suggested a 

model in which each hydraulic fracture creates a network (or SRV) that is isolated from 

others (Figure 22). A model in which hydraulic fractures create an interconnected 

network is a variation of the model by Ye et al. (Figure 22). All these models result in 

linear flow which is observed in shale wells, however, this study focus on the 

homogenous model and naturally fractured model. 
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Figure 21. Schematic of the Homogenous Model and Naturally Fractured Model. 

Both models have parallel hydraulic fractures and assume a constant reservoir 

volume. The naturally fracture models has also parallel naturally fractures that are 

perpendicular to hydraulic fractures (Tivayanonda et al. 2012). 

 

 

Figure 22. Different ways to visualize fractures in shale wells. 
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5.2 Simulation and Model Simplifications 

The homogenous model and especially the naturally fractured model can be 

complex. To simplify these models, we adapt two assumptions. The first assumption is 

that hydraulic fractures have an effectively infinite conductivity. This assumption is 

reasonable considering that matrix permeability is low compared to hydraulic fracture 

permeability and would result in four possible declines.  

1. Strictly linear flow for the whole production life of the well (Linear). 

2. Linear flow followed by BDF (Linear-BDF). 

3. Bilinear flow followed by linear flow for the remaining production life 

(Bilinear-Linear). 

4. Bilinear flow followed by linear flow and ending with BDF (Bilinear-

Linear-BDF). 

Linear flow can occur in both simplified models and is preceded by bilinear flow 

if natural fractures are present. Linear flow can also be followed by BDF decline if the 

boundary was reached. However, the BDF might not occur during the economic 

production life if matrix permeability is too low. 

The second assumption that we make is that wells have equally spaced hydraulic 

fractures and natural fractures. This assumption results in symmetry. Because of that, it 

is possible to use data tricks and simulate one segment only which makes simulation 

faster and easier. A detailed schematics showing the symmetry of the models and the 

simulated segments is shown in (Figure 23) and the resulted four declines are shown in 

(Figure 24-Figure 27). Simulations are run for 30 years and results are reported in days. 
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Figure 23. Detailed schematics showing the homogenous and naturally fractured 

model as well as the simulated segments. 
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Figure 24. Case 1: infinite acting linear flow until abandonment. 

 

 
Figure 25. Case 2: linear flow following by boundary dominated flow at around 

1000 days. 
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Figure 26. Case 3: Bilinear flow followed by linear flow which lasts until 

abandonment. 

 

 
Figure 27. Case 4: The case has all three flow regimes. Bilinear then linear then 

BDF. 
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5.3 Matching Methods to Simulation: A Decline Fit Comparison  

The objective of this section is to evaluate whether the different decline curve 

methods can match simulation. The four simulated cases shown in the previous section 

are used as test cases.  

5.3.1 Case 1 – Linear Flow 

Figure 24 shows the simulated production for case 1. A linear flow half-slope is 

observed until abandonment at 30 years. The best fit for each of the methods is shown in 

Figure 28 to Figure 32. All methods can be reasonably shaped into straight-lines to 

model case 1 except for the SEPD method which tends to curve. Nonetheless, forcing 

the SEPD model into a straight line is possible since it is mathematically identical to the 

PLE model. For case 1, the equivalent τ that makes the SEPD model identical to the PLE 

is (         ). This value is very small and outside the iteration sensitivity range 

and therefore this solution was not found. The Arps model was shaped into a straight 

line using a relatively large D and b value of (   ). 

5.3.2 Case 2 – Linear-BDF 

This case is similar to case 1 except it shows BDF in the last log cycle (Figure 25). 

The method comparison (Figure 28 - Figure 32) shows that most methods cannot model 

case 2 except for the PLE method. Arps’ and Duong’s methods are not flexible to match 

both linear and BDF. The LGM and SEPD methods accomplish a reasonable fit for the 

early part of data but not for late data. The PLE method is the best by reasonably fitting 

linear and BDF. The PLE method captures the decline shape but it is matching slightly 
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over the linear flow line. The Duong’s method accomplishes a fair match to the BDF 

period by compromising on early match. Duong’s method shows a shape similar to 

fracture fluid clean up. This is because the m value is higher than 1 and Duong’s method 

curves as m increases (see Duong’s type curves.) 

5.3.3 Case 3 – Bilinear-Linear Flow 

Case 3 shows bilinear flow prior to a long linear flow extending to abandonment 

(Figure 26). The method comparison (Figure 28 - Figure 32) shows that all methods can 

reasonably fit this case. The best fit is by the SEPD method. The other methods 

accomplish reasonable fits by compromising on early or late portion of data. 

5.3.4 Case 4 – Bilinear-Linear-BDF 

This case is similar to case 3 except it shows BDF in the last log cycle. The 

simulated production (Figure 27) shows a quarter slope bilinear flow followed by a half 

slope linear flow and then BDF. Figure 28 to Figure 32 show the method comparison. 

This case is difficult to match because it has three distinct flow regimes. The best fit is 

accomplished by the PLE method. The Duong method behaves in a fashion similar to 

case 2. 
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Figure 28. The final iteration match for the Arps Method. Arps Fit Case 1 

Perfectly. Arps' method does not fit the other cases accurately because it cannot 

model multiple flow regimes. 

 

 

 

 

 

 

 



 

44 

 

 
Figure 29. The final iteration match for the PLE method. The PLE method fits 

Case 1 perfectly and fairly fits Case 2 and 4. Case 3, however, is fitted by 

coincidence here and might not fit other scenarios similar to case 3 as accurately. 
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Figure 30. The final iteration match for the SEPD method. The sped method fits 

gives a good coefficient of determination in most cases however it does not capture 

the shape. Case 2 is the only case where the method captures the shape. 
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Figure 31. The final iteration match for the Duong method. Does method fairly 

captures the shape of Case 1 and 3. The other cases are poorly matched. 
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Figure 32. The final iteration match for the LGM method. The method goods good 

fit and curve shapes however it does not capture the shape of BDF. 
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5.4 Effect of Production Time on Forecast 

The objective of this section is to evaluate the effect of production time on the methods. 

Data from the four simulated declines are cut at different production times and 

forecasted using all methods.  

5.4.1 Case 1 – Linear Flow 

In this case at only 100 days of production (Figure 33), Arps’ LGM and PLE 

method extrapolate linearly and forecast the correct recovery. The SEPD and Duong’s 

methods curve down and forecast the wrong recovery. As production time increases the 

methods gradually improve until they converge at 9000 days of production (Figure 34-

Figure 35). The curving in Duong’s method is due to   . If the term    is constrained to 

zero, a straight-line forecast is obtained.   

5.4.2 Case 2 – Linear-BDF 

For case 2 at times prior to BDF decline the methods behave in a similar fashion 

to Case 1 (Figure 36). However, in this case none of the methods forecast the correct 

production because the start of BDF decline is unknown from production data alone. At 

3000 days, when BDF decline starts, the PLE method is the only method which forecast 

the correct recovery (Figure 37). At 9000 days the other methods improve in their 

forecast however they still over estimate recovery (Figure 38). 
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5.4.3 Case 3 – Bilinear-Linear Flow 

At early production times none of the methods forecast the correct recovery of 

case 3 (Figure 39). However, at 1000 days of production when bilinear flow has ended 

and linear flow is well established the forecast improves and the true recovery is given 

by the PLE, SEPD, and Duong’s methods (Figure 40). The LGM method still 

underestimates while the Arps’ method still overestimates recovery. At 9000 days of 

production all methods converge (Figure 41). 

5.4.4 Case 4 – Bilinear-Linear-BDF 

For case 4 at times prior to BDF decline the methods behave in a similar fashion 

to Case 3. However, in this case none of the methods forecast the true production even 

when linear flow is established at 1000 days because the start of BDF decline is 

unknown from production data alone (Figure 42). At 3000 days, when BDF decline 

starts, the PLE method is the only method which forecast the true recovery (Figure 43). 

At 9000 days the other methods improve in their forecast however they still over 

estimate recovery (Figure 44). 
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Figure 33. Case 1 forecast comparison with 100 days of production data. 
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Figure 34. Case 1 forecast comparison with 1000 days of production data. 
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Figure 35. Case 1 forecast comparison with 9000 days for production data. 
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Figure 36. Case 2 forecasts comparison with 1000 days of production data. All 

methods forecast the wrong production because during transient flow the time of 

BDF decline cannot be determined with production data alone. 
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Figure 37. Case 2 forecast comparison with 3000 days of production data. The PLE 

method is the only method that captures the decline and forecast a correct 

recovery. 
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Figure 38. Case 2 forecast comparison with 9000 days of production data.  
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Figure 39. Case 3 forecast comparison with 100 days of production data. None of 

the methods can forecast the correct production at such early production time. 
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Figure 40. Case 3 forecast comparison with 1000 days of production data. The Arps 

method overestimates recovery while the LGM Method underestimates. The other 

three methods forecast production accurately. 
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Figure 41. Case 3 forecast comparison with 9000 days of production data. All 

methods converge at the true match except Arps which is slightly overestimating. 
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Figure 42. Case 4 forecast comparison with 1000 days of production data. None of 

the methods forecast the true production because the time of BDF decline cannot be 

determined with production data alone. 
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Figure 43. Case 4 forecast comparison with 3000 days of production. The PLE and 

LGM methods capture the true profile. 
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Figure 44. Case 4 forecast comparison with 9000 days of production. The PLE and 

LGM are still the best. The other methods slightly overestimate recovery. 
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CHAPTER VI 

FIELD EXAMPLES 

 

The different decline methods were applied to 4 wells from different fields. 

These fields are the Barnett, Bakken, Eagleford, and Fayetteville fields. 

6.1 Barnett Shale Gas - Well B-314  

Well B-314 is a shale gas well from the Barnett shale. The well shows linear 

flow half-slope followed by a deviation that can be considered as BDF (Figure 45). At 

long production times some rates fall short from the linear flow half-slope trend. These 

lower rates are cause by either liquid loading or partial shut-ins. These rates are filtered 

out using turner’s method. 

The forecast and EUR is shown in Figure 45. This case is similar to Case 4 and 

the PLE should be the most accurate method while the other methods should improve 

with production time. The LGM and SEPD methods give forecasts similar to the PLE. 

The Duong method is overestimating because production time of BDF decline is not 

sufficient.  
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Figure 45. Barnet Well B-314. The well exhibits linear flow and BDF. The best 

method when BDF is reached is the PLE method. The other methods should 

converge as production time increase. 

 

 

 

 

 

 

 

 

 



 

64 

 

6.2 Bakken Shale Oil - Well BK-86 

Well BK-86 is an oil well from the Bakken shale. Its production shows a half-

slope indicating transient linear flow to 875 days and the forecast is shown in Figure 46. 

Noisy data are removed manually to improve matching. This well is in transient linear 

flow and it might either continue showing linear flow until abandonment (Case 1) or go 

into BDF if boundary is reached (Case 2). For case 1 the Arps, LGM and PLE method 

should result in good forecasts. However, in this well the SEPD method also gives a 

similar forecast. For Case 2, the forecast has to be rerun when the boundary is reached.  

 

 
Figure 46. Linear flow for Bakken shale oil well BK-86.This well is similar to Case 

1 or 2. For Case 1, Arps, LGM and PLE methods provide comparable forecasts 

assuming linear flow regime until abandonment. For Case 2 the forecast has to be 

re-run when BDF is reached. 
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6.3 Eagleford Shale Gas - Well EF-3  

This well is an oil well from the Eagleford shale. The well shows a decline that is 

most similar to Case 3. If the well reaches the boundary then it becomes similar to case 

4. Assuming Case 3, the best methods are the SEPD, Duong, and PLE. If Case 4 is 

assumed, the forecast should be re-run when boundary is reached. 

 

 
Figure 47. Eagleford well 204. This well is similar to case 3 or 4. For Case 3 the true 

forecast should be bracketed between Arps and the LGM method. Fore Case 4 the 

forecast has to be re-run when BDF is reached. 
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6.4 Fayetteville Shale Gas - Well FF-3  

This well is a gas well from the Fayetteville shale. The production decline is 

different from all the cases that were run. Therefore it is not possible to determine which 

method is best. A range of possible forecast can be established from the different 

methods. The range is from 1.7 to 3 Bscf. 

 

 
Figure 48. Fayetteville Well FF-3. The well is not similar to any of the run cases. 

The best method cannot be determined.  
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CHAPTER VII 

DISCUSSION AND CONCLUSIONS 

 

The decline methods shown here have different models and equation forms, thus 

often provide different forecasts. Arp’s hyperbolic equation can be shaped into a straight 

line to fit either bilinear or linear flow with b values of 2 and 4 respectively. However, it 

cannot model multiple flow regimes. The PLE is the only method that models transient 

and BDF decline. The SEPD model is difficult to shape into a straight-line because of its 

equation formulation. Duong’s is the only method that models clean-up while the LGM 

is the easiest method to use. If BDF is expected, the EUR cannot be accurately 

established until BDF is observed. Four cases that represent the typical flow regimes of 

shale wells were simulated to evaluate which method(s) is/are best for each case:  

 Linear: if a well is expected to show linear flow to abandonment, the 

most accurate EUR is determined using Arps, PLE, or LGM. The Duong 

method can also be used if    is constrained to 0. 

 Bilinear-Linear: if a well is expected to show linear flow to abandonment 

but was preceded by bilinear flow, the most accurate EUR is determined 

by the PLE, SEPD, or Duong methods.  

 Linear-BDF or Bilinear-Linear-BDF: if the well is expected to show BDF 

prior to abandonment, a reliable forecast cannot be established. The BDF 

must be observed to reliably estimate ultimate recovery. The method that 

best models both transient and BDF of shale wells is the PLE method. 
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In addition, the methods equation forms are investigated and improvements were 

suggested.  

 Arps cannot fit multiple flow regimes and therefore a composite Arps’ 

method with two different b values is suggested. 

 The iteration of the PLE method might blow-up because the    parameter 

can be too large for Excel to handle. A constraint to prevent this is 

introduced. 

 The SEPD method takes a very long time for iteration. The use of LMA 

reduces the time greatly. 

 Duong’s method cannot rigorously model linear or bilinear flow. 

Programmers who develop a decline program might encounter an error 

while validating Duong’s method against linear or bilinear flow models. 

A correction for this error is introduced. 
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APPENDIX A 

PLE DERIVATION 

 

This appendix shows the PLE rate-time relation derivation. 

If the loss-ratio is assumed to act as a power law function, the equation is, 

     
 (   )                                                                                                                 (   ) 

Where (   ) is the slope.  

This loss-ratio decrease as time increase and therefore we can add a constant    which 

dominates the equation at late times. This constant makes the late time behavior similar 

to Arps’ exponential equation with (   ). 

     
 (   )                                                                                                        (   ) 

Substituting this formulation of loss-ratio into the definition of the loss-ratio gives the 

PLE rate-time relation, 

Loss-ratio 

  
    

  
 
 

 

  

  
                                                                                                         (   ) 

Substituting the PLE loss-ratio into (   ), 
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 (   )     

 

 

  

  
                                                                                               (   ) 

Integrating from 0 to t, 

∫ [      
 (   )]  

 

 

 ∫
 

 
  

 

 

                                                                             (   ) 

   
  
 
     ( )    (  )                                                                                       (   ) 

Rearranging into final form, 

       (     
  
 
  )                                                                                         (   ) 
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APPENDIX B 

DOUNG’S METHOD DERIVATION 

 

This appendix shows Duong’s method derivation. 

Time and material-balance time in linear or bilinear flow are related by the following 

equation, 

                                                                                                                                 (   ) 

It can be rearranged to the following, 

   ⁄                                                                                                                         (   ) 

Duong added a fiddle factor m to make the equation more general, 

   ⁄                                                                                                                        (   ) 

Rearranging, 

 

    
                                                                                                                          (   ) 

Differentiating with respect to time, 

  
  
      (         )

(    ) 
                                                                                   (   ) 
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Rearranging, 

  

  
 
 (    )            

    
                                                                                   (   ) 

Expanding, 

  

  
         

        

    
                                                                                        (   ) 

Rearranging, 
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Integrating from 1 to t, 

∫
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Final form, 
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(      )}                                                                        (    ) 
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APPENDIX C 

TIME AND MATERIAL-BALANCE TIME RELATION 

 

This section shows the relationship between time and material balance time for 

linear. 

For linear flows the rate equation is the following, 

   
 

 

 

√     
                                                                                                              (   ) 

Integrating from 0 to      gives the dimensionless cumulative equation, 

   ∫         

    

 

 ∫   
 

 

 

√      
      

    

 

                                                    (   ) 

   
 

 

 

√ 
  √        

                                                                                                 (   ) 

   
 

 

 

√ 
  √                                                                                                            (   ) 

Dimensionless material-balance time is defined as, 

     
  
  
                                                                                                                      (   ) 

Substituting into the material-balance time equation gives, 

                                                                                                                           (   ) 
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APPENDIX D 

LEVENBERG-MARQUARDT ALGORITHM (LMA) 

 

This appendix shows the Levenberg-Marquardt Algorithm. 

The objective function is the sum of squares, 

 (   )  ∑[    (      )]
 

 

   

                                                                           (   ) 

Where   represents the parameters as a vector and   is the adjustment in parameters 

Expanding using the Taylor series throughout the linear term, 

 (   )  ∑[    (    )     ]
 

 

   

                                                                        (   ) 

In vector notation, 

 (   )  ‖   ( )    ‖                                                                                     (   ) 

Re-writing as, 

(   )    [   ( )]                                                                                                   (   ) 

This is a gradient approach and Levenberg improved the function by adding a damping 

factor  . 
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The Levenberg-Marquardt Algorithm (LMA), 

(       )    [   ( )]                                                                                        (   ) 

Where I is the identity matrix. 

Each iteration step, the damping factor is adjusted. If improvement in the sum of 

least-squares is slow, the damping factor is increased. This brings the solution faster 

towards the gradient descent direction. On the other hand if the increased damping 

parameter results in a worse sum of least-squares, the damping value from the previous 

step is used.  

 


