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ABSTRACT 

 

Oil well blow outs are investigated to determine methods to quickly and accurately 

respond to an emergency situation. Flow rate is needed to guide containment and 

dispersal operations. The Stratified Integral Multiphase Plume, SIMP, model was used to 

investigate the range of initial conditions available to integral modeling. Sensitivity to 

initial conditions is modest, but without experimental data at the appropriate scale the 

most accurate condition is unable to be determined. Flow rates are difficult to directly 

measure in blow out situations, so another method must be determined; therefore, 

sensitivity of several parameters to flow rate was also evaluated. Methane concentration 

in the first intrusion can be used in conjunction with velocity and trap height 

measurements to determine flow rate using an integral model. Plume width and 

temperature were determined to have little sensitivity. Separately, a containment dome 

was tested in the laboratory to determine if a full scale dome can be used to contain an 

oil leak in the field. The dome was found to have satisfactory entrapment in the designed 

position. 
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1. INTRODUCTION  

 

Oil well blowouts are accidents resulting in uncontrolled flow in an oil recovery well. 

When multiple layers of redundancy fail, these accidents may result in uncontrolled 

discharge of oil and gas to the water column, as occurred in 2010 from the Deepwater 

Horizon MC252 disaster. The key to recovering from these accidents is a thorough 

understanding of the physics that occur in multiphase oil and gas plumes. Several 

recovery techniques are used in blowout situations including, but not limited to, 

chemical dispersants, burning of surface oil, and containment domes (EPA, 1999). 

Containment domes are beneficial in that the oil is contained near the source. However, 

containment domes require knowledge of the flow rate from the system to be properly 

implemented. Flow rate remains difficult to determine during these emergencies due to 

the difficulty of directly measuring the flow rate with an ROV or other submersible 

instrument. This thesis comprises of methods to estimate the flow rate of oil, gas, and 

water into a containment dome system using simple measurements combined with 

integral modeling and tests the range of operating conditions in which a particular dome 

can operate in the laboratory. 

 

Integral modeling is used to determine characteristics of multi-phase plumes using a 

self-similarity assumption, the assumption that profiles retain the same shape at every 

level in the plume. To generate an integral model, initial conditions must be found such 
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that the model can begin calculations, and the self-similarity assumption is used to 

continue the calculations through the entire length of the plume. Basic initial conditions 

include the initial velocity profiles and magnitudes, plume width, and plume constituents 

as shown in Figure 1.1. 

 

 

Figure 1.1: Visual description of initial conditions and self-similarity. 

 

One of the most difficult areas of plume dynamics is the zone of flow establishment 

(ZFE) due to the invalid assumptions of self-similarity in integral plume models in this 

area. The ZFE is the region of flow in which the velocity develops from a top-hat 

distribution to a Gaussian distribution inside the plume. Containment domes operate in 

the ZFE and are therefore difficult to operate with the current methods of determining 

flow rate in the zone of operation. Several initial conditions have been proposed, e.g. 
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(Morton, Taylor, & Turner, 1956), (Wüest, Brooks, & Imboden, 1992), and (Asaeda & 

Imberger, 1993), to determine the plume characteristics after the ZFE, and it is beneficial 

to see the relationship between these initial conditions and the behavior of the integral 

model following each choice.  

 

This research also addresses limitations in field-scale measurements; flow rate is a 

difficult parameter to directly measure. The general flow rate of a field-scale accident 

may be determined by measuring certain parameters in the plume itself using an ROV 

and constraining integral models to reproduce the measurements. This allows integral 

models to determine flow rate without measuring it directly. Several parameters are 

investigated in this report, namely, plume temperature, width, point velocity in the inner 

plume, trap height, as well as methane concentration in the outer plume. All of these 

parameters can be measured using an ROV in an emergency situation and may aid to 

quickly and accurately determining the likely flow rate of oil and gas at the source. 

 

This report also examines the operating conditions of a particular containment dome 

designed by Shell. The containment dome is a scaled model and was tested in the Texas 

A&M University hydromechanics laboratory.  

 

This research is an important step in the containment of accidental blow out situations. It 

will allow for quicker and more accurate modeling of the situation, which will provide 

for faster response times and more successful endeavors to contain the situation. 
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2. LITERATURE REVIEW 

 

2.1. Introduction to Plumes and Non-Dimensional Parameterizations 

McDougall developed one of the first integral models for buoyant plumes in stratified 

environments. This model included the use of double plumes which entailed the 

separation of the inner bubble plume and a second annular plume of entrained water 

which contained no bubbles, as shown in Figure 2.1 (McDougall, 1977). The model 

assumes a Gaussian velocity distribution.  

 

 

Figure 2.1: Position of the inner and outer plume for McDougall's double plume model. 
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Asaeda and Imberger altered this model, defining double plumes as the combination of 

the rising inner plume and the falling outer plume including intrusions, shown in Figure 

2.2 (Asaeda & Imberger, 1993). This differed from the McDougall model by including 

all upward-flowing water and bubbles in the inner plume.  

 

They observed three types of plumes based on laboratory experiments shown in Figure 

2.3. Type 1 is a plume that intrudes upon the surface, Type 2 is a plume that intrudes in 

distinct layers below the surface, and Type 3 is a plume that continuously intrudes. Type 

1* is defined as a plume in which the slip velocity is relatively low and some of the 

smaller bubbles will intrude (Socolofsky & Adams, "Role of Slip Velocity in the 

Behavior of Stratified Multiphase Plumes", 2005). Asaeda and Imberger also developed 

two non-dimensional parameters to describe plume types 1, 2, and 3: 

 
3 4

0

N

N H
P

Q g
=  (1.1) 

 0

3 34
H

s

Q g
M

Huπα
=  (1.2) 

where PN is the non-dimensional plume number, us is the slip velocity, z is the distance 

above the source, and N is the buoyancy frequency defined as 

 2 a

r

g
N

z

ρ

ρ

∂
= −

∂
, (1.3) 

g is the acceleration of gravity, ρa is the ambient density, α is the entrainment coefficient, 

H is the water depth, Q0 is the bottom volume flux of gas, and MH is the velocity ratio of 

plume fluid and dispersant bubbles. The non-dimensional plume number represents the 
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ratio of water depth to trap height, and the velocity ratio represents the ratio of the 

velocities of the water in the plume to the bubbles in the plume. These non-dimensional 

numbers were shown to reliably predict the plume type in a given situation (Asaeda & 

Imberger, 1993).  

 

 

Figure 2.2: Positioning of Asaeda and Imberger's definition of double plume. 
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Figure 2.3: Definition of plume types where H is water depth (Socolofsky & Adams, "Role of Slip 

Velocity in the Behavior of Stratified Multiphase Plumes", 2005).  

 

The Asaeda and Imberger paper shows the characteristic velocity scale as the single-

phase plume rise velocity in stratified fluid and derived it as 

 1/4( )cu BN=  (1.4) 

where B is the kinematic buoyancy flux given by  

 0
a b

r

B gQ
ρ ρ

ρ

−
=  (1.5) 

such that ρb is the density of the dispersed phase, and Q0 is the volume flux at the bottom 

(Asaeda & Imberger, 1993). Socolofsky and Adams developed a new non-dimensional 

coefficient, the non-dimensional slip velocity, UN , to predict plume types 1
*
, 2, and 3 

described in Figure 2.3 (Socolofsky & Adams, "Role of Slip Velocity in the Behavior of 

Stratified Multiphase Plumes", 2005). UN is the ratio of the slip velocity and the 

characteristic fluid velocity, shown in equation (1.4), and is given by 

 
1/4( )

s

N

u
U

BN
=   (1.6) 
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This parameter allows for a more simplistic determination of plume type than the 

combination of two terms used by Asaeda and Imberger. This parameter is also 

independent of water depth; hence, it can be used in deep water more confidently than 

those derived by Asaeda and Imberger. The characteristic height can be used for 

comparisons in trap height and is defined as 

 

1/4

3c

B
l

N

 
=  
 

 . (1.7) 

Figure 2.3 also includes hT, trap height, given as the height at which the peeling fluid 

becomes trapped in the stratification and intrudes, and hP, peeling height, defined as the 

height at which the first peeling event occurs. 

2.2. Initial Conditions 

This section is intended as a brief overview of the various initial conditions used in this 

research. Initial condition equations try to predict behavior to match plume properties at 

the top of the ZFE. A more in depth discussion will occur in Section 0. 

 

The zone of flow establishment is also a source of research to increase accuracy of 

currently used models. Henderson-Sellers determined an estimate for the length of the 

zone of flow establishment for buoyant plumes  

 

2

2 2

2

4 8

3.27 0.26 ) 8 128

6.2 128

d

e d d

d

d F

z F d F

d F

 <


= + ≤ ≤
 >


  (1.8) 

where d is the source diameter and  
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2

2

D

u
F

b
=

∆
  (1.9) 

where u is the centerline velocity, b is the radius of the plume, and  

 
( )

p a

a

T T
g

T

−
∆ =   (1.10) 

where Tp is the plume temperature and Ta is the ambient temperature (Henderson-Sellers, 

1983). These temperatures may be converted to densities using the saltwater equation of 

state, and the densities and void ratios of the plume components. These equations are 

linear fits to the numerical data obtained by Chen and Nikitopoulos (Chen & 

Nikitopoulos, 1979) who developed a numerical model to investigate plume behavior 

that is accurate in the zone of flow establishment for a single phase plume. These non-

dimensional parameters will be used to validate portions of the analysis performed in 

this study. 

 

Since the ZFE is not self-similar, initial conditions are developed so the model returns 

accurate results above the ZFE. McDougall developed a set of initial conditions that 

begin at a virtual point source below the actual source of the plume. The initial 

conditions for non-dimensional velocity and plume width are a function of the 

following: 

 
2

2 2 2

( 1)

4

S a

r B

Q p
M

H u

λ

πα ρ

+
=   (1.11) 

 
z

x
H

=   (1.12) 
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where M is the relative importance of the volume flux of gas at the source and the total 

water depth in the non-dimensional solutions, QS is the volume flux at the surface, pa is 

the pressure at the surface, λ is the ratio of plume width to density deficiency, α is the 

entrainment coefficient, ρr is the reference density, H is the static pressure head at the 

nozzle, uB = us(λ
2
+1), us is the slip velocity, x is the non-dimensional height above the 

plume source, and z is the dimensional height above the plume source. It should be noted 

that M is a function of the volume flux at the surface, which is not a trivial solution in a 

plume that intrudes, and that x is a function of the water depth, which is not an 

appropriate non-dimensionalization when H→∞ in deep water. 

 

Asaeda and Imberger altered McDougall’s initial conditions to include the bottom 

volume flux instead of the volume flux at the surface as shown in equations (1.2) and 

(1.11); this eliminates any ambiguity existing due to intrusions. However these initial 

conditions still include non-dimensionalization using water depth. 

 

Wüest, Brooks, and Imboden also developed a set of initial conditions that can be used at 

the source of the plume (Wüest, Brooks, & Imboden, 1992). The initial radius is taken as 

the radius of the source. Wüest defines a dimensionless Froude number to determine the 

initial velocity, 

 
[ ]

0

1/2
2 ( ) /

a

u
Fr

bgλ ρ ρ ρ
=

−
  (1.13) 
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where u0 is the initial vertical velocity, λb is the initial plume radius, ρa is the ambient 

density, and ρ is the plume density, which includes both entrained water and the 

dispersed phase. Wüest explains how the dimensionless Froude number at the source 

varies around several factors, but as depth increases the initial Froude number tends to a 

nearly constant value of 1.6. Wüest goes on to show sensitivity analyses on the initial 

Froude number values to show that 1.6 is a reasonable assumption for most plumes. The 

initial vertical velocity can be determined by solving the dimensionless Froude number 

equation. 

 

Morton, Taylor, and Turner developed a set of initial conditions that begin at a virtual 

point below the source of a single-phase plume (Morton, Taylor, & Turner, 1956). 

Originally this initial condition was used for smoke stacks, but it can be adapted to deep 

water, single-phase plumes. Like Asaeda and Imberger, this initial condition is a series 

expansion containing a variable that represents the distance from the virtual point source 

to the actual source in the case of a non-point source scenario. 

 

Neto developed a set of initial conditions for plumes that contain momentum at the 

source exit (Neto, 2012). This is the only set of initial conditions studied that does not 

assume momentum at the source has a value of zero. These initial conditions use only 

the volume flow rates of liquid and gas at the source exit, and the diameter of the source 

to find the initial velocity. The initial plume width is taken as the diameter of the source. 

This initial condition is valid at the orifice and does not require a virtual point source. 
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Also, in beginning the model, initial values must be studied to determine the accuracy 

needed for initial values to produce reliable results. Bombardelli, et.al. studied the 

effects of changing initial values input into unstratified bubble plume models 

(Bombardelli, Buscaglia, Rehmann, Rincon, & Garcia, 2007). It is found that the results 

converge regardless of the initial diameter and Froude number at a height of z/D = 5 

where z is the height above the plume and D is defined as  

 0

2 34 s

gQ
D

uπα
=   (1.14) 

where Q0 is the flow rate at the bottom, and us is the slip velocity. 

 

This research will use the initial conditions developed by the authors described above to 

determine model sensitivity to initial condition selection. 

2.3. Building Blocks of the SIMP Model  

This section will describe the basis of the integral model used in this research. Many of 

the pieces of this model were taken from various theories and combined to create a more 

robust model. The model used includes the ability to add stratification, constituents in 

the bubble plume including multiple gasses, gas expansion, dissolution, and multiple 

bubble sizes therefore increasing the accuracy of integral modeling. 

 

Wüest developed the discrete bubble model for use in the integral model’s inner plume 

(Wüest, Brooks, & Imboden, 1992). The discreet bubble model follows the development 
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of one bubble through the extent of the plume, and assumes that all bubbles develop 

similarly. 

 

Crounse, et al. developed an integral model that included the ability to track dispersed 

phase dissolution for CO2 in deep water (Crounse, Wannamaker, & Adams, 2007). This 

allows the ability for the inner plume density to change due to dissolution. This model 

also allows for a wide range of plume behavior due to the added peeling parameter. 

 

Crounse included many similar equations utilized in the SIMP integral model used in 

this research (Crounse B. C., 2000). The equations used to take into account the 

dissolution of CO2 are altered to determine methane dissolution in the SIMP model 

(Socolofsky, Bhaumik, & Seol, "Double-Plume Integral Models for Near-Field Mixing 

in Multiphase Plumes", 2008). Both models track the heat and salinity flux inside the 

plume to determine a reliable plume density and conservation of mass, momentum, heat, 

and salinity are used as the steady state governing equations. 

 

Socolofsky, Bhaumik, and Seol developed a consistent set of initial conditions for the 

subsequent inner and outer plume structures in multiphase plumes allowing the model to 

run smoothly from one intrusion to the next (Socolofsky, Bhaumik, & Seol, "Double-

Plume Integral Models for Near-Field Mixing in Multiphase Plumes", 2008). Current 

literature was used to calibrate and validate the model. These results were implemented 

in the SIMP model. 
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The model used in this research has been verified and used in other research. The current 

modeling techniques were used in the analysis by (Anderson, et al., 2012). The research 

was used to determine the likelihood of methane hydrates forming under several test 

cases. These results were used in conjunction with high pressure experiments conducted 

by Shell to help interpret results of SIMP simulations. These test cases, similar to those 

discussed in this paper, were evaluated using the same model used in this research. 

 

The same model was also used in (Socolofsky, Bhaumik, & Seol, "Double-Plume 

Integral Models for Near-Field Mixing in Multiphase Plumes", 2008). This paper 

compared several integral models to existing experimental data. This research also 

determines that most applications of this model can use a constant momentum 

amplification factor and constant entrainment coefficients, among other parameters. 

 

(Socolofsky & Bhaumik, "Dissolution of Direct Ocean Carbon Sequestration Plumes 

Using an Integral Model Approach", 2008) use this model to study the unsteady 

intrusion layers due to large amounts of dissolved carbon dioxide over the plume 

heights. They determine that in spite of the complexity of the plume itself, it has a steady 

maximum rise height. 
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3. SENSITIVITY OF RESULTS TO INITIAL CONDITIONS 

 

3.1. Initial Conditions 

A series of initial condition equations were used to determine the sensitivity of results to 

different approaches to solutions inside the ZFE. Two categories of initial conditions 

exist: those that find the starting value at a virtual point source below the real source and 

those that find the starting value at the source itself. Figure 3.1illustrates the difference 

between the position of the actual source and the virtual point source. 

 

 

Figure 3.1: Difference between a virtual point source and the actual source. 
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The purpose of this section is to determine at what height the initial conditions converge 

for different cases and the sensitivity of model results below the convergence height. 

The cases investigated are listed in Table 3.1. All cases use the same conditions to allow 

comparison of results. Three flow rates and three bubble diameters are investigated to 

determine the effect of both on initial conditions. Cases were determined using typical 

ranges of flow rates and bubble diameters for depths of 1829 m, 3000 m, and 914.4 m 

for cases 1, 2, and 3 respectively. 

 

Table 3.1: Cases studied in the initial condition analysis. 

Case 1 Case 2 Case 3 

Flow Rate 

(BPD) 

Bubble 

Diameter 

(mm) 

Flow Rate 

(BPD) 

Bubble 

Diameter 

(mm) 

Flow Rate 

(BPD) 

Bubble 

Diameter 

(mm) 

50,000 2 50,000 2 50,000 2 

100,000 2 100,000 2 100,000 2 

250,000 0.4 250,000 0.4 250,000 0.4 

250,000 2 250,000 2 250,000 2 

250,000 4 250,000 4 250,000 4 

 

 

 

3.1.1. Wüest et.al. 

Wüest developed an initial condition to determine the starting velocity at a plume 

source. It was assumed that the starting plume radius would be equivalent to the source 

radius. Matlab’s zeroing function (fzero) was used to determine the starting velocity, u, 

based on the equation 

 
[ ]

1/2
1.6

2 ( ) /
a

u
Fr

bgλ ρ ρ ρ
= =

−
  (2.1) 
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first described in Section 2.2. The zeroing function is used because of the implicit nature 

of the equation. Velocity is needed to determine the density of the inner plume. 

3.1.2. Asaeda & Imberger 

Asaeda and Imberger altered the non-dimensional variables given by McDougall (1977) 

to incorporate the initial flow rate as opposed to the flow rate at the surface. Equation 

(1.2) gives the value for MH used in the Asaeda and Imberger paper; whereas, the 

following equation defines the corresponding value found in the McDougall paper: 

 
2

0

2 2 2

( 1)

4

a

r b

Q p
M

H u

λ

πα ρ

+
=   (2.2) 

where Qx is the volume flux at the surface, λ represents the spreading ratio, and ub is the 

bubble velocity. Qs is related to Q0 through the following equation: 

 0 a
s

r

Q p
Q

H gρ
=   (2.3) 

where pa is atmospheric pressure. It can be shown that both M and MH are proportional 

to Q0/H, so both initial conditions can be used interchangeably, varying only by a 

constant. The variables from Asaeda and Imberger were non-dimensionalized by the 

following: 

 
2

b
B

Hα
=   (2.4) 

 
1/3

s H

u
U

u M
=   (2.5) 

 
z

x
H

=   (2.6) 
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where b is the dimensional plume width and is non-dimensionalized by the entrainment 

coefficient, α, and the water depth, H; u is the dimensional velocity non-dimensionalized 

by the slip velocity, us, and MH.; and z is the dimensional height above the diffuser non-

dimensionalized by the water depth, H. The non-dimensional initial plume width and 

velocity were taken from McDougall and are given by  

2/3 1/3 2/3 2/3 1[0.6 0.01719 0.002527 ( 0.04609 0.000031 ) ...]H H HB x M x M x x M
− − −= + − + − + +  

 (2.7) 

1/3 1/3 1/3 2/3 2/3 1[1.609 0.3195 0.06693 (0.4536 0.0105 ) ...]H H HU x M x M x x M
− − − −= − + + − +   (2.8) 

where MH is defined in equation (1.2). These equations for plume width and velocity are 

evaluated at the point where the plume width is equal to the source radius, some x > 0, 

shown in Figure 3.1, and then used as the starting values for the integral model. These 

initial conditions are proportional to those proposed by McDougall et al.; therefore, these 

conditions are used to demonstrate the effects of both interchangeably.  

3.1.3. Morton, Taylor, & Turner 

Morton, Taylor, and Turner developed a set of initial conditions that begin at a virtual 

point source. The following parameters were non-dimensionalized: 

 
7/8 1/4 1/2 1/4 3/8

02

z
x

F Gπ α− − − −
=   (2.9) 

 
3/4 1/2 1/2 1/4

02

V
v

F Gπ − −
=   (2.10) 

 
7/8 3/4 1/2 3/4 5/8

02

W
w

F Gπ α− −
=   (2.11) 
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where z is the dimensional height above the source, V is the plume radius, b, times the 

velocity, u, and W = b
2
u, all of which are non-dimensionalized by the entrainment 

coefficient, α, the buoyancy flux, F0, and G = -(g/ρref)dρa/dx. The initial conditions are 

given by the following series: 

 4 8/3 16/3 21/30.1368 0.0098 0.0001 ...v x x x= − + +   (2.12) 

 5/3 13/30.3649 0.0025 ...w x x= − +   (2.13) 

where the variables are defined above. This solution is evaluated such that the plume 

width is the same as the source radius, and the solutions are used to begin the integral 

model. 

3.1.4. Neto 

Neto developed initial conditions that begin at the source exit (Neto, 2012). Velocity at 

the source is found using 

 
2

1
4

l

g

g l

Q
u

Q d

Q Q

π
=
  

−   +   

  (2.14) 

where Ql is the liquid volume flow rate at the source, Qg is the gas volume flow rate at 

the source, and d is the source diameter. The initial plume width is taken as the diameter 

of the orifice. This initial condition is the only condition that assumes the flow contains 

momentum at the source exit. It should be noted that Ql cannot be zero; thus this 

equation cannot be used for bubble plumes. 
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3.2. Results and Discussion 

True values are calculated for the sensitivity analysis; true values are the output values 

calculated during the integral model. Figure 3.2 shows an example case of the true 

values achieved through the model. The black lines represent the Wüest initial 

conditions; because these values are more constrained than the other models, these 

values will be used as the base case for comparison. The subsequent figures in this 

section are found from similar true value cases. 

 

 

Figure 3.2: True values for flow rate. These values are from Case 1. 
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Figure 3.3 through Figure 3.5 show the set of four initial conditions up to 12 diameters 

away from the source. 12 diameters represents the length used to describe the ZFE by 

many researchers. Changes in bubble diameter were found to have little effect in all 

cases, so the figures neglect these cases for clarity. Slip velocity has little effect since 

most of the initial conditions contain us internally in one of the variables, or not at all. 

Figure 3.3 represents Case 1 results, Figure 3.4 represents Case 2 results, and Figure 3.5 

represents Case 3 results for initial conditions at 50 kBPD, 150 kBPD, and 250 kBPD. 

Wüest was used as the base case in the sensitivity analysis for all cases. The sensitivity 

equation is defined as 

 1B

B

N N
E

N

−
=   (2.15) 

where E is the sensitivity, NB is the base case value, and N1 is the compared value. This 

value corresponds to the sensitivity of the parameter where a higher value is equivalent 

to higher sensitivity. 
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Figure 3.3: Sensitivity of flow rate to different initial conditions 12 diameters away from source. Case 1, a 

depth of 1829 m, is used for all results in this figure. The values include a range of flow rates from 50 

kBPD to 250 kBPD and four initial conditions: (Asaeda & Imberger, 1993), (Morton, Taylor, & Turner, 

1956), (Wüest, Brooks, & Imboden, 1992), and (Neto, 2012). 
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Figure 3.4: Sensitivity of flow rate to different initial conditions 12 diameters away from source. Case 2, a 

depth of 3000 m, is used for all results in this figure. 
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Figure 3.5: Sensitivity of flow rate to different initial conditions 12 diameters away from source. Case 3, a 

depth of 914 m, is used for all results in this figure.  
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The Morton initial conditions tend to stay closely grouped and within 100% of the 

Wüest conditions. Morton is similar to the Wüest conditions in every case in that the 

flow rate sensitivity remains nearly vertical at 100%; this shows that results determined 

using the Morton initial condition differ from those calculated from Wüest by a factor of 

2 near the source.  

 

The Asaeda initial conditions, when compared to the Wüest base case, vary more with 

changes in flow rate than Morton conditions, but still remain within 200% of each other. 

These conditions more closely resemble the Wüest conditions when in shallow water 

and tend to stray away in deeper water.  

 

The Neto conditions become more similar to the Wüest conditions at shallow water 

depths. These values tend to have the least sensitivity compared to the Wüest conditions. 

The Neto initial conditions tend to converge in shallow water; this shows that flow rate 

becomes less important in shallow water when determining the use of initial conditions. 

In general the cases tend to converge in shallower water leading to the conclusion that 

the choice of initial conditions is more important as depth increases. All cases converge 

and become identical after the first peeling event. 

 

It is impossible to tell which initial condition is more accurate in this study. Future 

research can be conducted to find true values for inside and close to the ZFE to confirm 

the initial condition that gives the most accurate results.  
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4. SENSITIVITY OF PLUME PARAMETERS FOR 

ESTIMATION OF LEAK FLOW RATE 

 

The purpose of this section is to determine the plausibility of estimating leak flow rate 

using other measured parameters. A remotely operated vehicle, ROV, has the ability to 

measure several parameters including temperature, measured through a thermometer; 

velocity, measured through current meters; concentration, through taken samples; and 

plume width, using velocity distribution. The results of these measurements will 

constrain the model to estimate flow rate. 

4.1. Model 

Several cases were evaluated using the following model to determine the sensitivity of 

various parameters to changes in flow rate. These results may aid to a method of fast 

evaluation of the flow rate in time sensitive situations such as oil well blow-outs in the 

Gulf of Mexico. The test cases were developed based on Mustang’s figures of drilling 

barrels per day (BPD) and depth in the Gulf of Mexico shown in Figure 4.1 (Mustang 

Engineering, 2012). These flow rates represent all wells developed by each platform. 

The case depths are shown on the x-axis; the enclosing lines were used to find a range of 

production volume reasonable for each water depth. Case 2 is outside the range of data 

acquired, therefore will use the same production volumes as Case 1. The cases evaluated 

are described in Table 4.1. 
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Figure 4.1: Current platform depth and production in the Gulf of Mexico. 

 

 

Table 4.1: Description of cases run for sensitivity to flow rate. 

Water Depth 

(m): 

Run 1 

(BPD oil) 

Run 2 

(BPD oil) 

Run 3 

(BPD oil) 

Run 4 

(BPD oil) 

Run 5 

(BPD oil) 

Case 1: 1829 50,000 100,000 150,000 200,000 250,000 

Case 2: 3000 50,000 100,000 150,000 200,000 250,000 

Case 3: 914.4 10,000 50,000 100,000 150,000 200,000 
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4.1.1. Governing Equations 

A set of governing equations are evaluated in the integral plume model. It is assumed 

that the equations are obtained from (Crounse B. C., 2000) unless stated otherwise. It 

should be noted that the integral model uses a top-hat velocity profile simplification as 

this reduces complexity without detracting from accuracy. A top-hat velocity profile 

differs from a Gaussian profile also used in modeling in that the top-hat profile assumes 

a constant velocity across the width of the inner/outer plume. This constant velocity is 

such that the area under the top-hat profile would be the same as the area under the 

Gaussian. This simplification reduces complexity because Gaussian profiles contain 

asymptotic tails on either end of the profile; whereas top-hat profiles end at the edges of 

the plume it describes. Figure 4.2 is a visual representation of the Gaussian and top-hat 

profiles. 

 



29 

 

 

Figure 4.2: Visual description of the difference between Gaussian and Top-Hat velocity profiles. 

 

4.1.1.1. Inner Plume 

The basis for the model comes from the self-similarity assumption and entrainment 

hypothesis. Cross-sectionally averaged profiles yield a set of conservation equations that 

evolve along the plume centerline, the solution for which yields the profile parameters. It 

should be noted that multiple classes of bubbles can be present with additional 

conservation equations; however, in this study, the bubbles are assumed to be identical. 

The conservation equations are based on several state variables defined as 

 
31

6
b b b b

W d Nπ ρ=   (3.1) 
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where Wb is the flux of droplet mass, db is the effective bubble diameter, Nb is the 

number of bubbles, and ρb is the density of hydrocarbons inside the bubble; 

 2(1 )i b i iQ C b uπ= −   (3.2) 

where Qi is the flow rate in the inner plume assuming a top hat profile, Cb is the void 

fraction occupied by bubbles, bi is the inner plume half-width, and ui is the average inner 

plume velocity; 

 
i i i iM Q uξ ρ=   (3.3) 

where Mi is the kinematic momentum flux of the inner plume including droplets, ξ is an 

amplification factor given in (Milgram, 1983), and ρi is the inner plume density; 

 
i i iS Q s=   (3.4) 

where Si is the salinity flux, and si is the inner plume salinity; 

 
i i r p iJ Q c Tρ=   (3.5) 

where Ji is the heat flux, ρr is a reference density, cp is the heat capacity of sea water, and 

Ti is the temperature of the inner plume; and  

 
i i iC Q c=   (3.6) 

where Ci is the mass flux of constituent, and ci is the concentration of a given constituent 

in the inner plume. 

The buoyant forces are given by 

 ( )ˆ b
b b a

s i

Q
B g

u u
ρ ρ= −

+
  (3.7) 
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where ˆ
bB is the buoyancy force of the bubbles on the entrained plume fluid, g is the 

acceleration due to gravity, us is the slip velocity, and ρa is the ambient density given by 

an equation of state; 

 ( )ˆ i
i i a

i

Q
B g

u
ρ ρ= −   (3.8) 

where ˆ
iB  is the buoyancy force of the inner plume without bubbles.   

The mixing equations represent fluxes into and out of the inner plume and ambient water 

and are based on the entrainment hypothesis. Then entrained fluxes are based on the 

entrainment hypothesis. Figure 4.3 shows a visual representation of the equations that 

follow. 
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Figure 4.3: Visual representation of entrainment fluxes. 

 

The entrained fluxes are defined as 

 
2 ( ) ( )

2 ( )

i i i o

i

i i i

b u u AI
E

b u BC

π α

π α

−
= 


  (3.9) 

where Ei represents the volume flux into the inner plume from the outer plume if the 

outer plume is present (AI) or the flow into the inner plume from the ambient fluid if the 

outer plume is not present (BC), and αi is the entrainment coefficient; 
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 2o i o oE b uπ α=   (3.10) 

where Eo represents the volume flux from the inner plume to the outer plume, αo is the 

entrainment coefficient, and uo is the velocity of the outer plume; 

 

2

2

b i
p

i i

u B
E

u u
ε
   

=    
   

  (3.11) 

where Ep represents the volume flux peeling from the inner plume into the intrusion, ε is 

the peeling factor, and Bi is the buoyancy of the inner plume given by 

 
( )

i a
i i

r

B gQ
ρ ρ

ρ

−
=  . (3.12) 

Conservation equations are used to close the model so that the general laws of physics 

apply; for example, conservation of mass equations ensure that the model does not allow 

mass to be added or eliminated. The inner plume conservation equations are given by the 

following: Conservation of bubble mass is defined as 

 2 ( )
b s i

b b

i s

dW K C c
N d

dz u u
π

−
= −

+
  (3.13) 

where K is the mass transfer coefficient, and Cs is the saturation concentration. This 

equation is based on the discrete bubble model found from the Ranz-Marshall 

dissolution equation (Ranz & Marshall, 1952). Conservation of mass is defined as 

 i
i o p

dQ
E E E

dz
= + +  . (3.14) 

The terms represent the flow from the outer plume into the inner plume, the inner plume 

into the outer plume, and the inner plume into the peeling region respectively. 

Conservation of momentum is defined as 
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 ˆ ˆi
b i i o o o i i p i i

dM
B B E u E u E u

dz
ρ ρ ρ= − + + +   (3.15) 

where ρo is the outer plume density. The first term represents the buoyancy contribution 

from the bubbles, and the second represents the buoyancy contribution due to the 

difference in density between the inner plume and ambient. The remaining terms account 

for momentum exchange among the inner and outer plumes. The remaining terms 

account for momentum exchange among the inner and outer plumes. Conservation of 

mass for a given particulate is defined as 

 i
i o o i p i

dC
E c E c E c

dz
= + +   (3.16) 

where co is the concentration of the particulate in the outer plume. The terms represent 

the concentration flux from the outer plume to the inner plume, from the inner plume to 

the outer plume, and the inner plume to the peeling region respectively. Conservation of 

salinity is defined as 

 i
i o o i p i

dS
E s E s E s

dz
= + +   (3.17) 

where so is the salinity in the outer plume. The terms in this equation are similar to those 

described for equation(3.16). Conservation of heat is defined as 

 ( )
gi b o

p ref i o o i p i sol

dJdJ dW dJ
c E T E T E T H

dz dz dz dz
ρ= + + + ∆ − −   (3.18) 

 
( )

2
g b b

i s g pg g g

dJ N d

dz u u c T

π

ρ β
= −

+
  (3.19) 
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o b b

i s o po o o

dJ N d
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π

ρ β
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+
  (3.20) 
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where To is the temperature in the outer plume, dJg/dz is the conservation of heat for gas, 

dJo/dz is the conservation of heat for oil, ρg is the density of gas, ρo is the density of oil, 

cpg is the specific heat of gas, cpo is the specific heat of oil, βg is the mass transfer 

coefficient for gas, βo is the mass transfer coefficient for oil, Tg is the temperature of gas, 

To is the temperature of oil, and 
solH∆  is the heat of solution for a given constituent. The 

first terms are the heat fluxes from the outer plume into the inner plume, the inner plume 

into the outer plume, and the inner plume into the peeling region respectively. The last 

term represents the heat transferred via dissolution; additional terms must be added for 

all constituents. 

4.1.1.2. Outer Plume 

The outer plume state variables are defined as follows: 

 2 2( )o o i oQ b b uπ= −   (3.21) 

where Qo is the outer plume volume flux, and bo is the outer plume width; 

 
o o o oM Q uξ ρ=   (3.22) 

where Mo is the momentum flux of the outer plume; 

 
o o oS Q s=   (3.23) 

where So is the salinity flux of the outer plume; 

 
o o r p oJ Q c Tρ=   (3.24) 

where Jo is the heat flux in the outer plume; and 

 
o o oC Q c=   (3.25) 

where Co is the concentration of the given constituent in the outer plume.  
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An additional buoyant force term is given as 

 ˆ ( )o
o o a

o

Q
B g

u
ρ ρ= −   (3.26) 

where ˆ
oB  is the buoyancy force of the outer plume.  

An additional mixing term is added for the volume transfer from the ambient to the outer 

plume, Ea, given by 

 2a o a oE b uπ α=   (3.27) 

where αo is the entrainment coefficient. 

The conservation equations for the outer plume are similar to the inner plume. 

Conservation of mass is given by  

 o
i o p a

dQ
E E E E

dz
= + + +  . (3.28) 

The terms are similar to those given in equation (3.14) with an added term Ea 

representing the flow from the outer plume into the ambient. 

 

Conservation of momentum is given by 

 ˆo
o i o o o i i p i i a a a

dM
B E u E u E u E u

dz
ρ ρ ρ ρ= + + + +   (3.29) 

where ua is the velocity of the ambient water. The first term represents the buoyant force 

due to the density difference between the outer plume and the ambient. The following 

terms represent contributions due to the exchange from the outer plume to the inner 

plume, the inner plume to the outer plume, the inner plume to the peeling region, and the 
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ambient to the outer plume. Conservation of the concentration of a constituent is given 

by 

 o
i o o i p i a a

dC
E c E c E c E c

dz
= + + +   (3.30) 

where ca is the concentration of the constituent in the ambient water. The terms are 

similar to those given for equation (3.16) with the exception of the last term which 

represents the concentration flux from the ambient to the outer plume. Conservation of 

salinity is given by  

 o
i o o i p i a a

dS
E s E s E s E s

dz
= + + +   (3.31) 

where sa is the salinity of the ambient water. The terms in this equation are similar to 

those given for equation (3.30). Conservation of heat is given by 

 ( )o
p r i o o i p i a a

dJ
c E T E T E T E T

dz
ρ= + + +   (3.32) 

where Ta is the temperature of the ambient water. The terms are similar to those given 

for equation (3.18); however this equation adds a term for heat transfer from the ambient 

to the outer plume, and it neglects the final term from equation (3.18) due to the 

assumption that no bubbles travel to the outer plume. 

4.1.2. Initial Conditions and Model Closure 

The initial conditions are determined using the Wüest equation (2.1) evaluated using 

Matlab’s zeroing function (fzero).  
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The model is closed by determining functions for several variables. The model assumes 

an entrainment that varies linearly by the difference in velocities between two regions. 

Entrainment coefficients are determined for the mass transfer between the inner plume 

and ambient flow, the inner plume and outer plume, and the outer plume and ambient 

flow. The slip velocity of the bubbles is determined by (Clift, Grace, & Weber, 1978). 

The mass transfer is determined by the discrete bubble model developed by Wüest, et.al. 

(1992). The density of seawater is given by an equation of state described in (Crounse B. 

C., 2000) in the Appendix. Table 4.2 shows the constants used in the SIMP integral 

model and their values (Socolofsky, Bhaumik, & Seol, "Double-Plume Integral Models 

for Near-Field Mixing in Multiphase Plumes", 2008). 

 

Table 4.2: Constant coefficients used in the SIMP model. 

Coefficient Value 

ρr 1031 

αi 0.055 

αo 0.110 

αa 0.110 

λ1 0.20 

λ2 1.20 

ε 0.0500 

ξ 1.10 

 

4.1.3. Numerical Model 

The integral model is evaluated using Matlab’s ODE solver (ode23s) in the SIMP model. 

This solver is specifically used for stiff solutions, such as those found when plumes peel. 

The inner plume is evaluated up to the surface. Then, the model starts at the surface and 
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evaluates the outer plumes through the water column using the results found for the 

inner plume. This is an iterative process, so the model will evaluate the inner plume 

again with the outer plume data. This process will repeat until the answers converge, 

generally in three to five iterations (Socolofsky, Bhaumik, & Seol, "Double-Plume 

Integral Models for Near-Field Mixing in Multiphase Plumes", 2008). 

4.2. Sensitivity Analysis 

This sensitivity analysis is used to determine the relative effects of flow rate on several 

parameters. The cases run are described in Table 4.1. A base case for the analysis is 

taken to be at 100,000 BPD of oil, and all of the results will be compared to this base 

case using the equation (2.15). 

 

The sensitivity bars are labeled with values representing where that particular sensitivity 

value occurs where S represents the location at the source and I represents the location at 

the intrusion. 

4.3. Temperature in the Inner Plume 

Sensitivity results can be found in the Appendix and are summarized in Figure 4.4 

through Figure 4.6. The sensitivities for each case were calculated through the water 

column. Each result was truncated so that the summarized results below occur between 

10 diameters above the source and the trap height for each case. The median was 

calculated using 1000 points equally spaced along the truncated results. The error bars 

represent the highest and lowest sensitivity along the truncated water column. Water 
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depths at which the highest sensitivities occur are also represented on the figure as 

diameters away from the source, #D; the source, S; or the intrusion, I. It should be noted 

that values which occur at the source or intrusion would be difficult to model and 

measure accurately, respectively. Figure 4.4 shows the sensitivity for Case 1, at a depth 

of 1829 m. The flow rates from Table 4.1 are given using the symbols at the median; the 

first three represent 250,000 BPD, the second three represent 200,000 BPD and so on. 

Each of the clusters has 3 sets of medians and error bars representing the bubble 

diameter in the simulation. The medians are small in comparison to the span of the error 

bars, showing that sensitivity is relatively small and difficult to measure correctly. The 

error bars range values of sensitivity that are not unique to individual flow rates; this 

leads to the conclusion that for measurements taken along the water column, it is 

difficult to determine flow rate using temperature alone.  
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Figure 4.4: Temperature sensitivity for Case 1. The median sensitivity according to bubble diameters 0.4 

mm, 2 mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 

250, 200, 150, 100, and 50 kBPD are given by filled diamond, filled circle, filled square, unfilled 

diamond, and unfilled circle respectively. The error bars represent the maximum and minimum sensitivity 

inside the range of 10 diameters above the source and the trap height. 
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Figure 4.5: Temperature sensitivity for Case 2. The median sensitivity according to bubble diameters 0.4 

mm, 2 mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 

250, 200, 150, 100, and 50 kBPD are given by filled diamond, filled circle, filled square, unfilled 

diamond, and unfilled circle respectively. The error bars represent the maximum and minimum sensitivity 

inside the range of 10 diameters above the source and the trap height. 
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Figure 4.6: Temperature sensitivity for Case 3. The median sensitivity according to bubble diameters 0.4 

mm, 2 mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 

200, 150, 100, 50 and 10 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, 

and unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.5 represents Case 2 at 3000 m and shows that the maximum and minimum 

values are more consistent with large depths. However, the median values remain close 

to zero relative to the span of the error bars. The error bars for all cases have a region in 

which there is little to no overlap with other cases; this allows for the use of temperature 

at certain regions through the water column to be used to determine flow rate.  

 

Figure 4.6 shows the results for Case 3 at a water depth of 914 m. This figure 

demonstrates more sensitivity in the median in relation to the span of the maximum and 

minimum. This implies that efforts to determine flow rate through temperature 

measurements could be more plausible at smaller water depths. 

 

Due to the largely overlapping sensitivities, it is concluded that temperature has an 

inadequate sensitivity to flow rate for the purposes described in this research. 

4.4. Velocity in the Inner Plume 

Velocity sensitivity for the entire water column is given in the Appendix. Figure 4.7 

through Figure 4.9 truncate the results to the range between 10 diameters above the 

source and the trap height for each case. The medians were found using 1000 equally 

spaced points in the truncated range.  

 

Figure 4.7 shows a reasonable separation of the median values in relation to flow rate. 

The median values show roughly a 15% increase in velocity with a 50,000 BPD increase 
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in flow rate. The large error span detracts from the parameter’s usefulness; however, it 

should be noted that the medians are relatively close to the inner bound. This allows for 

at least half of the possible measuring heights to be in close range of the median. This 

differs from the temperature sensitivity in that the medians are significantly different 

from the base case. 

 

 

Figure 4.7: Velocity sensitivity for Case 1. The median sensitivity according to bubble diameters 0.4 mm, 

2 mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 250, 

200, 150, 100, and 50 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, and 

unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.8 : Velocity sensitivity for Case 2. The median sensitivity according to bubble diameters 0.4 mm, 

2 mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 250, 

200, 150, 100, and 50 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, and 

unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.9: Velocity sensitivity for Case 3. The median sensitivity according to bubble diameters 0.4 mm, 

2 mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 200, 

150, 100, 50 and 10 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, and 

unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.8 represents velocity sensitivity for Case 2, at 3000 m water depth. It should be 

noted that the range of sensitivity is significantly smaller at the larger water depth. There 

is little overlap in the sensitivity range, showing that velocity is an adequate parameter to 

use in determining flow rate at large depths. 

 

Figure 4.9 shows larger medians and larger ranges of sensitivities. There is large overlap 

in the error bars. The plausibility of using velocity as the parameter for determining flow 

rate significantly decreases for smaller depths. 

 

It is concluded that velocity could be used to determine flow rate, but should be used in 

conjunction with another parameter for confirmation. 

4.5. Plume Width 

Figure 4.10 through Figure 4.12 contain the sensitivity of plume width to flow rate. The 

results are listed in the appendix for the full water column. For this analysis the results 

were truncated to the distance between 10 diameters after the source and the trap height 

for each case. The error bars represent the highest and lowest sensitivity values in this 

truncated section. 
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Figure 4.10: Width sensitivity for Case 1. The median sensitivity according to bubble diameters 0.4 mm, 2 

mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 250, 200, 

150, 100, and 50 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, and 

unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.11: Width sensitivity for Case 2. The median sensitivity according to bubble diameters 0.4 mm, 2 

mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 250, 200, 

150, 100, and 50 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, and 

unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.12: Width sensitivity for Case 3. The median sensitivity according to bubble diameters 0.4 mm, 2 

mm, and 4 mm are given by light, medium, and dark error bar shades respectively. Flow rates of 200, 150, 

100, 50 and 10 kBPD are given by filled diamond, filled circle, filled square, unfilled diamond, and 

unfilled circle respectively. The error bars represent the maximum and minimum sensitivity inside the 

range of 10 diameters above the source and the trap height. 
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Figure 4.10 shows the sensitivity results for Case 1. The median values for all cases are 

within 5% of the base case. This parameter is therefore unusable for this purposes 

discussed here. The error bars in this case are also too large to accurately determine 

sensitivity values in practical instances. This result largely confirms self-similarity in 

that the spreading angle should be constant independent of flow rate if the plume is 

strictly self-similar. 

 

As with other parameters, the median values get smaller with greater water depth and the 

span of error bars reduce in size with greater water depth. The best case for plume width 

sensitivity is Case 3, but it is not recommended as a parameter to use unless in 

conjunction with another. 

4.6. Trap Height 

The sensitivity of trap height to flow rate is shown in Figure 4.13 through Figure 4.15. 

The true values used in this analysis can be found in the Appendix. Figure 4.13 

represents the sensitivity of trap height to flow rate at the Case 1 depth for three possible 

bubble diameters. It should be noted that for every 50,000 BPD change in flow rate, the 

trap height sensitivity changes by approximately 0.5%.  
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Figure 4.13: Trap height sensitivity relative to flow rate for Case 1. Bubble diameters 0.4 mm, 2 mm, and 

4 mm are represented by circle, square, and triangle, respectively. 100,000 BPD is used as the base case. 
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Figure 4.14: Trap height sensitivity relative to flow rate for Case 2. Bubble diameters 0.4 mm, 2 mm, and 

4 mm are represented by circle, square, and triangle, respectively. 100,000 BPD is used as the base case. 
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Figure 4.15: Trap height sensitivity relative to flow rate for Case 3. Bubble diameters 0.4 mm, 2 mm, and 

4 mm are represented by circle, square, and triangle, respectively. 50,000 BPD is used as the base case. 
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Both Case 2, shown in Figure 4.14, and Case 3, shown in Figure 4.15, have a larger 

sensitivity to trap height than Case 1. This leads to the possible conclusion that there is a 

zone of water depths in which there occurs a minimum range of sensitivity. Case 2 

shows a change of approximately 10% per change of 50,000 BPD with less change in 

sensitivity at higher flow rates. Case 3 shows a change of approximately 10-15% per 

change of 50,000 BPD with the same change in sensitivity decline at higher flow rates. 

4.7. Methane Concentration in the Outer Plume 

Figure 4.16 through Figure 4.18 show the sensitivity of methane concentration in the 

outer plume for Case 1 through 3 respectively. Median values were not calculated for 

these figures as there should be no ambiguity between flow rates due to the small 

overlaps. The horizontal lines represent the range of values present in the sensitivity 

analysis. 100,000 BPD was used as the base case for Case 1 and 2, and 50,000 BPD was 

used as the base case for Case 3. 
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Figure 4.16: Sensitivity for methane concentration in the first intrusion for Case 1. 
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Figure 4.17: Sensitivity for methane concentration in the first intrusion for Case 2. 
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Figure 4.18: Sensitivity for methane concentration in the first intrusion for Case 3. 
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Case 1 has the smallest ranges of sensitivity values, showing that this technique is most 

accurate in this case. As flow rates increase by 50 kBPD, sensitivity increases by about 

50% for Case 1. The largest overlap occurs in Case 2 between 200 and 250 kBPD, but in 

the case that this situation occurs, other parameters can be used to confirm flow rate. The 

sensitivity roughly increases by 50% for every increase in 50 kBPD. Case 3 shows the 

largest sensitivity variations between flow rates at roughly 125% for every 50 kBPD 

change.  

These values show that the most reliable parameter for determining flow rate in a plume 

is methane concentration in the first intrusion. Other parameters should only be used in 

conjunction with this parameter. ROVs can easily obtain a water sample from the outer 

plume, allowing this parameter to be easily measured. 

4.8. Comparison to Predictions of Empirical Equations 

Non-dimensional values were discussed in Section 2.2. The non-dimensional velocity 

and trap height were both used in this section to determine if sensitivity can be predicted 

using these non-dimensional equations.  

4.8.1. Non-Dimensional Velocity 

Equation (1.4) was used in determining the characteristic velocity for each set of 

conditions. A weighted average was performed to match the characteristic velocity to the 

numerical values such that larger flow rates had larger effects on the average and is 

defined as 
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 1

1

.

N

N N

N

N

Q V

Avg

Q

=
∑

∑
  (3.33) 

where Avg. is the weighted average, QN represents each flow rate, and VN represents the 

values for which the average is taken. Figure 4.19 through Figure 4.21 show the 

sensitivity for numerical medians for each condition in Case 1 as the solid symbol and 

the non-dimensional value in the unfilled symbol. Case 1 shows reasonable correlation 

between non-dimensional and true values. Correlation is similar regardless of bubble 

diameter. The sensitivity in this case varies less than 10% for all values.  

 

Figure 4.22 through Figure 4.24 show the sensitivity comparison for true and non-

dimensional values for Case 2. It is apparent that Case 2 shows a higher correlation 

between both values than Case 1 for all bubble diameters. The sensitivity varies less than 

10% for all values.  

 

Figure 4.25 through Figure 4.27 show the sensitivity for the median and non-

dimensional values for Case 3. Though the correlation is still high for this set of cases, 

the sensitivity can vary as much as 50%.  
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Figure 4.19: Median velocity and non-dimensional velocity for Case 1 with a bubble diameter of 0.4 mm. 
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Figure 4.20: Median velocity and non-dimensional velocity for Case 1 with a bubble diameter of 2 mm. 
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Figure 4.21: Median velocity and non-dimensional velocity for Case 1 with a bubble diameter of 4 mm. 
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Figure 4.22: Median velocity and non-dimensional velocity for Case 2 with a bubble diameter of 0.4 mm. 
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Figure 4.23: Median velocity and non-dimensional velocity for Case 2 with a bubble diameter of 2 mm. 
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Figure 4.24: Median velocity and non-dimensional velocity for Case 2 with a bubble diameter of 4 mm. 
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Figure 4.25: Median velocity and non-dimensional velocity for Case 3 with a bubble diameter of 0.4 mm. 
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Figure 4.26: Median velocity and non-dimensional velocity for Case 3 with a bubble diameter of 2 mm. 
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Figure 4.27: Median velocity and non-dimensional velocity for Case 3 with a bubble diameter of 4 mm. 
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The sensitivities of the median and non-dimensional velocity for all cases show high 

correlation. Deeper water shows a closer relation between values than shallower water. 

This analysis shows that non-dimensional values can be used to predict reasonably 

accurate sensitivity values for velocity when only one data point is available. It also 

shows that the empirical equations and the model behave similarly despite the fact that 

the empirical equations lack dissolution. This is further evidence that the model solution 

is rather weakly dependent on leak rate and, hence, it will be difficult to estimate leak 

rate by matching to measured data. 

4.8.2. Non-Dimensional Trap Height 

Equation (1.7) was used to determine the non-dimensional trap height. The multiplied 

coefficient was found by setting the sensitivity of the maximum flow rate to the non-

dimensional sensitivity.  

 

Figure 4.28 through Figure 4.30 show the sensitivity for trap height and non-dimensional 

trap height for Case 1 for diameters of 0.4 mm, 2 mm, and 4 mm respectively. 

Correlation between both values is reasonable.  

 

Figure 4.31 through Figure 4.33 show the sensitivity of trap height and non-dimensional 

trap height for Case 2 for bubble diameters of 0.4 mm, 2 mm, and 4 mm respectively. 

Correlation remains reasonable with slightly closer results than Case 1.  
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Figure 4.34 through Figure 4.36 represent the sensitivity of trap height and non-

dimensional trap height for Case 3 with bubble diameters of 0.4 mm, 2 mm, and 4 mm 

respectively. Correlation remains very high for this case as well.  

 

All cases have significantly large correlation between the trap height and non-

dimensional trap height sensitivities. Trap height sensitivity can be predicted using the 

non-dimensional values and one true value.  
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Figure 4.28: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 1 with 0.4 mm bubble diameter. 
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Figure 4.29: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 1 with 2 mm bubble diameter. 
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Figure 4.30: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 1 with 4 mm bubble diameter. 
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Figure 4.31: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 2 with 0.4 mm bubble diameter. 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
50

100

150

200

250

F
lo

w
 R

a
te

 (
k
B

P
D

)

Sensitivity



77 

 

 

Figure 4.32: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 2 with 2 mm bubble diameter. 
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Figure 4.33: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 2 with 4 mm bubble diameter. 
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Figure 4.34: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 3 with 0.4 mm bubble diameter. 
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Figure 4.35: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 3 with 2 mm bubble diameter. 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

140

160

180

200
F

lo
w

 R
a
te

 (
k
B

P
D

)

Sensitivity

 

 



81 

 

 

Figure 4.36: Sensitivity of trap height (solid symbols) and non-dimensional trap height (unfilled symbols) 

for Case 3 with 4 mm bubble diameter. 
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4.9. Summary of Results 

Parameters that may lead to the determination of flow rate were investigated. The 

purpose is to find a parameter that, when measured in an oil leak, can be compared to 

model results to determine the flow rate of the leak. It was determined that methane 

concentration in the intrusion has the best potential to be used in model comparisons. 

Velocity, plume width, and trap height can be used to corroborate the results, but 

temperature shows little ability to be used for the purpose of this study. However, it 

should be noted maximum sensitivity occurs at roughly the same height among different 

flow rates in most cases, so further research may allow measurements targeted at 

maximum sensitivity to be conducted that may be appropriate to use in model 

comparisons. 

 

Non-dimensional comparisons show close correlation between modeled results and non-

dimensional variables. This reduces the number of modeling scenarios done when a 

parameter is measured in an oil leak. One scenario can be used and combined with non-

dimensional values to determine an approximate flow rate, and scenarios can be run with 

an approximate value in mind, thus reducing the time needed to find a solution. 

 

Further research will determine if these parameters can be used with field data to 

accurately determine flow rate.  
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5. CONTAINMENT DOME EXPERIMENT 

 

This chapter is included to use laboratory experiments to show a containment dome is 

operational.  

5.1. Set Up 

The containment dome used in this experiment was provided by Shell. The dome 

contains an inlet at the base for an air/oil/entrained water mixture to flow from the riser 

system at the base of the tank into the dome. The piping set up is shown in Figure 5.1. 

The oil flow rate was controlled by a valve located between the oil drum and the flow 

meters. The flow meters were placed over 10 diameters upstream and downstream from 

any valves or bends in the piping. High capacity and low capacity flow meters were used 

depending on the flow rate into the system. The flow meters were on separate tracks, 

each having its own control valve. The air flow rate was controlled and measured using 

an air mass flow meter. The air and oil were mixed along a length of pipe before exiting 

the riser system.  

 

Figure 5.2 shows the tank dimensions and the adjusted directions for the experiment.  

 

Figure 5.3 shows the operation of the containment dome. A gas/oil/water mixture flows 

in the center of the base of the dome. As the mixture flows upward the oil is siphoned off 
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the top and the remaining sea water flows from the outlets in the bottom. The important 

dimension for this study is the inlet diameter which was 16 cm.  

 

 

Figure 5.1: Piping set up for the experiment. Air and oil intakes are on the right and the air/oil mixture 

outlet is on the left. 

 

 

 

Figure 5.2: Experimental set up with tank dimensions.  
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Figure 5.3: Containment dome with flow arrows. 

 

5.2. Results 

Table 5.1 shows the operating conditions of the containment dome. 

 

Table 5.1: Laboratory conditions. 

  
Optimal 

Position 

Position Vertical (cm) 2.5 

Horizontal (cm) 0 

Rotational (degrees) 0 

Flow 

rates 
Oil in (liters/minute) 2.08 

Air in (liters/minute) 45 

Oil/Water out 

(liters/minute) 
2.02 
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5.3. Scaling and Prototype Conditions 

Gravitational and inertial forces were determined to be dominant in this situation. Froude 

scaling  

 
U

Fr
gL

=   (4.1) 

where Fr is the Froude number, U is the characteristic velocity, and L is the 

characteristic length, was used to geometrically scale both the containment dome and the 

riser system. Velocity scaling was achieved using  
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where subscripts P and M represent prototype and model respectively, ρg is the gas 

density, and ρl is the liquid density. Gas density is found through 

 
g g

g

g g

M P

R T
ρ =   (4.3) 

where Mg is the molar mass, Pg is the pressure, Rg is the universal gas constant, and Tg is 

the temperature. Since the ratio of prototype and model gravities and density ratios are 

negligible, Equation (4.2) reduces to  
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  (4.4) 

which leads to 
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2.5
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 
  (4.5) 

where A is the area of the orifice. The length scale is given as 1:20. The flow rates are 

approximately scaled in Table 5.2.  

 

Table 5.2: Prototype values for failure conditions. 

  
Optimal 

Position 

Position Vertical (m) 0.5 

Horizontal (m) 0 

Rotational (degrees) 0 

Flow 

rates 
Oil in (bbl/day) 34 

Air in (liters/minute) 80000 

Oil/Water out (bbl/day) 33 

 

 

The prototype dome inlet dimensions are 3.2 m funneling to 1 m, and the riser diameter 

is 31 cm. These inlet and riser dimensions will be used in numerically modeling the 

limits in Section 5.4. 

5.4. Predictions Using Integral Model 

This model was numerically tested at a depth of 30.5 m with the values given in Table 

3.1. The oil and gas temperature was set to 53°C. The true plume width was found 3 

standard deviations away from the center where the standard deviation is given as 

 22
i

i

Q

M

λ
σ

π
=   (4.6) 
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where λ2 is taken as 1.2. The results for conditions are shown in Figure 5.4. The unfilled 

square represents the experimental condition. The test condition must be more restrictive 

to show preference to initial condition. 

 

 

Figure 5.4: Results using Asaeda, Morton, Neto, and Wüest initial conditions. Experimental condition is 

given as unfilled square. 
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6. SUMMARY AND CONCLUSIONS 

 

 

There has been much advancement in integral modeling techniques; these advancements 

were combined into the SIMP modeling program which was used to draw conclusions 

related to deep water oil well blow outs.  

 

Initial conditions were compared and found to converge with shallow water depths. The 

comparison was made to a base case. The Neto initial conditions are found to vary 

further from the values given by the Asaeda, Wüest, and Morton initial conditions. The 

most accurate of the initial conditions is unable to be determined with numerical 

modeling alone. Future analysis of experimental modeling can be used to determine the 

most accurate initial condition for a variety of scenarios. 

 

Analysis was done on several parameters to determine sensitivity to flow rate. 

Temperature and plume width show little sensitivity to changes in flow rate, but 

centerline velocity and trap height show moderate sensitivity. The largest sensitivity was 

found for methane concentration in the first intrusion. All of these parameters are easily 

measured from the ROV being used to investigate a blowout. All parameters can be used 

in conjunction to determine flow rate using integral modeling. It was also found that 

non-dimensional equations can be used to predict sensitivity for trap height and 
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centerline velocity. Future research in the field can be used to determine the validity of 

these parameters as adequate to determine flow rate. 

 

The containment dome was shown to be operational.  
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APPENDIX A 

 

A.1 Sea water equation of state 

This is the sea water equation of state used in the integral model (Gill, 1982). It 

calculates salt water density, ρsw, in kg/m
3
 using temperature, T, in degrees Celcius; 

salinity, S, in PSU; and pressure, P, in bars. 

 

At standard atmosphere (P = 0): 
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Under pressure: 
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where 
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A.2 Plots for Sensitivity Analysis 

These figures represent the results from which the figures in Section 4 were calculated.  

A.2.1 Case 1, Depth: 1829 m, Bubble Diameter: 0.4 mm 

This case applies to Figure A.1 through Figure A.5. 

 

Figure A.1: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.2: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.3: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.4: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: Sensitivity 

analysis of the CH4 at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.5: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 100,000 BPD used as the reference value. 
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A.2.2 Case 2, Depth: 3000 m, Bubble Diameter: 0.4 mm 

This case applies to Figure A.6 through Figure A.10. 

 

Figure A.6: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.7: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.8: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.9: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.10: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 100,000 BPD used as the reference value. 
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A.2.3 Case 3, Depth: 914 m, Bubble Diameter: 0.4 mm 

This case applies to Figure A.11 through Figure A.15. 

 

Figure A.11: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.12: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.13: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.14: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.15: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 50,000 BPD used as the reference value. 
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A.2.4 Case 1, Depth: 1829 m, Bubble Diameter: 2 mm 

This case applies to Figure A.16 through Figure A.20. 

 

Figure A.16: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.17: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.18: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.19: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.20: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 100,000 BPD used as the reference value. 
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A.2.5 Case 2, Depth: 3000 m, Bubble Diameter: 2 mm 

This case applies to Figure A.21 through Figure A.25. 

 

Figure A.21: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.22: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.23: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.24: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.25: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 100,000 BPD used as the reference value. 
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A.2.6 Case 3, Depth: 914 m, Bubble Diameter: 2 mm 

This case applies to Figure A.26 through Figure A.30. 

 

Figure A.26: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.27: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.28: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.29: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.30: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 50,000 BPD used as the reference value. 
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A.2.7 Case 1, Depth: 1829 m, Bubble Diameter: 4 mm 

This case applies to Figure A.31 through Figure A.35. 

 

Figure A.31: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.32: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 100,000 BPD is used as the reference. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

Velocity (m/s)

H
e
ig

h
t 

(m
)

 

 

50,000 BPD oil

100,000 BPD

150,000 BPD

200,000 BPD

250,000 BPD

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000

Sensitivity

H
e
ig

h
t 

(m
)

 

 

50,000 BPD oil

100,000 BPD

150,000 BPD

200,000 BPD

250,000 BPD



128 

 

 

Figure A.33: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.34: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.35: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 100,000 BPD used as the reference value. 
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A.2.8 Case 2, Depth: 3000 m, Bubble Diameter: 4 mm 

This case applies to Figure A.36 through Figure A.40. 

 

Figure A.36: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.37: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.38: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.39: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 100,000 BPD is used as the reference. 
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Figure A.40: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 100,000 BPD used as the reference value. 
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A.2.9 Case 3, Depth: 914 m, Bubble Diameter: 4 mm 

This case applies to Figure A.41 through Figure A.45. 

 

Figure A.41: Top: Raw data for inner plume temperature at a series of flow rates. Bottom: Sensitivity 

analysis of the temperature at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.42: Top: Raw data for inner plume mean velocity at a series of flow rates. Bottom: Sensitivity 

analysis of the mean velocity at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.43: Top: Raw data for inner plume width at a series of flow rates. Bottom: Sensitivity analysis of 

the width at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.44: Top: Raw data for outer plume CH4 concentration at a series of flow rates. Bottom: 

Sensitivity analysis of the CH4 at the same flow rates. 50,000 BPD is used as the reference. 
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Figure A.45: Top: Trap height for the outer plume with respect to flow rate. Bottom: Sensitivity in relation 

to flow rate with 50,000 BPD used as the reference value. 
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A.3 Nomenclature 

 

AM Area of model source 

AP Area of real source 

b Plume radius 

ˆ
bB  

Buoyancy force of the bubbles 

ˆ
iB  Buoyancy force of the inner plume 

ˆ
oB  Buoyancy force of the outer plume 

B Kinematic buoyancy flux 

B Non-dimensional plume width 

bi Inner plume width 

Bi Buoyancy of the inner plume 

bo Outer plume width 

ca Concentration in the ambient 

Cb Void fraction occupied by bubbles 

ci Inner plume concentration 

Ci Inner plume concentration flux 

co Inner plume concentration 

Co Inner plume concentration flux 

cp Heat capacity 

CS Saturation concentration 
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d Diameter of source 

db Effective bubble diameter 

Ea Volume transfer from the ambient to the outer plume 

Ei Volume flux into the inner plume from the outer plume if present or from the ambient fluid 

Eo Volume flux from the inner plume to the outer plume 

Ep Volume flux peeling from the inner plume into the outer plume 

F0 Buoyancy flux 

Fr Froude number 

g Acceleration due to gravity 

gM Gravity in model 

gP Gravity in prototype 

H Water depth 

Ji Inner plume heat flux 

Jo Outer plume heat flux 

K Mass transfer coefficient 

L Characteristic length 

lc Characteristic length for trap height 

LM Length in model 

LP Length in the prototype 

M Relative importance of the volume flow of gas and the total water depth 

Mg Molar mass of gas 
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MH Velocity ratio 

Mi Momentum flux of the inner plume 

Mo Momentum flux of the outer plume 

N Buoyancy frequency 

N1 Value to be compared to base case in sensitivity analysis 

Nb Number of bubbles 

NB Base case in sensitivity analysis 

Pg Pressure of gas 

PN Plume number 

Q0 Volume flux at the source 

Qg Gase flow rate at the source 

Qi Flow rate in the inner plume 

Ql Liquid volume flow rate at the source 

QM Flow rate for model 

Qo Flow rate in the outer plume 

QP Flow rate for prototype 

QS Volume flux at the surface 

Rg Universal gas constant 

sa Salinity in the ambient 

si Inner plume salinity 

Si Inner plume salinity flux 
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so Outer plume salinity 

So Outer plume salinity flux 

Ta Ambient temperature 

Tg Temperature of gas 

Ti Inner plume temperature 

To Inner plume temperature 

Tp Plume temperature 

u Centerline velocity 

U Non-dimensional plume velocity 

u0 Vertical velocity at source 

uB Bubble velocity 

uc Characteristic velocity scale 

ui Inner plume average velocity 

UM Model velocity 

UN Ratio of slip velocity and characteristic fluid velocity 

uo Outer plume average velocity 

UP Prototype velocity 

us Slip velocity 

V Plume radius times centerline velocity, bu 

W Plume radius squared times the centerline velocity, b
2
u 

Wb Droplet mass flux 
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x Non-dimensional height above the plume source 

z Distance above source 

ze Length of zone of flow establishment 

α Entrainment coefficient 

αi Entrainment coefficient for the inner plume 

αo Entrainment coefficient for the outer plume 

ε Peeling factor 

λ Ratio of plume width to another parameter 

ξ Milgram amplification factor 

ρ Plume density 

ρa Ambient density 

ρb Density of dispersed phase 

ρg Density of gas 

ρi Inner plume density 

ρl Density of liquid 

ρo Outer plume density 

ρr Reference density 

 


