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ABSTRACT

Classification problems arise in so many different parts of life – from sorting machine
parts to diagnosing a disease. Humans make these classifications utilizing vast amounts of
data, filtering observations for useful information, and then making a decision based on a
subjective level of cost/risk of classifying objects incorrectly.

This study investigates the translation of the human decision process into a mathematical
problem in the context of a border security problem: How does one find special nuclear
material being smuggled inside large cargo crates while balancing the cost of invasively
searching suspect containers against the risk of allowing radioactive material to escape
detection? This may be phrased as a classification problem in which one classifies cargo
containers into two categories – those containing a smuggled source and those containing
only innocuous cargo. This task presents numerous challenges, e.g., the stochastic nature
of radiation and the low signal-to-noise ratio caused by background radiation and cargo
shielding.

In the course of this work, we will break the analysis of this problem into three major
sections – the development of an optimal decision rule, the choice of most useful measure-
ments or features, and the sensitivity of developed algorithms to physical variations. This
will include an examination of how accounting for the cost/risk of a decision affects the
formulation of our classification problem.

Ultimately, a support vector machine (SVM) framework with F -score feature selection will
be developed to provide nearly optimal classification given a constraint on the reliability of
detection provided by our algorithm. In particular, this can decrease the fraction of false
positives by an order of magnitude over current methods. The proposed method also takes
into account the relationship between measurements, whereas current methods deal with
detectors independently of one another.
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CHAPTER I

INTRODUCTION

Classification problems occur in many different aspects of life, be they in the human de-
cision process or in a computational evaluation. Classifying objects involves a complex
interplay between the available information, the ultimate goals of the process, and the var-
ious consequences of the resulting actions. For instance, when examining information in
preparation to making a decision, we analyze the information as a collection and not just as
individual measurements, allowing us to utilize correlations between data and improve the
accuracy of our decision. Furthermore, we as humans analyze the costs and risks involved
in the situation and weight various pieces of information in order to compensate for the
varying importance of goals in our decision making process. This could include restricting
the likelihood of occurrences of one of the outcomes or weighting the different outcomes to
compensate for differences in costs.

In this work, we will discuss the balance of these ideas in the context of detecting smuggled
nuclear material entering through US ports. Every year, approximately 40 million shipping
containers pass through American ports [54] – this is more than 100,000 crates each day.
After the terrorist attacks on September 11, 2001, the border security problem has drawn
more attention. This has led to increasing the number of checkpoints at border crossings
and more stringent security requirements when flying. It has also facilitated the enactment
of several border security laws, including the mandatory screening of maritime cargo as
specified in Public Law 110-53 – August 3, 2007: Implementing Recommendations of the
9/11 Commission Act of 2007 [55]. Thus, there is a need for effective, efficient sorting (or
classification) algorithms that locate smuggled nuclear material inside of cargo containers.

First, we will discuss the physical and mathematical frameworks necessary for a formal
discussion of this source detection problem and some of the challenges it presents. Then,
several methods for classification will be considered using statistics, optimization, and
machine learning. Each of these methods will be evaluated through examination of the
consequences of the classification process as compared with other methods. Extraction of
the most relevant information from all of the available information will also be considered
and the benefits of data-mining as a precursor to classification will be discussed. Once we
have developed the classification and feature selection methods, we will discuss the impact
of variations in the problem parameters, including the size and position of source and the
shielding effects of cargo, on the effectiveness of the automated numerical methods. Finally,
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we will provide some concluding remarks pertaining to the applicability of the classification
methods and the challenges that remain to be addressed.

I.1 Basics of the Source Detection Problem

The source detection problem encompasses several physical phenomena – in particular, the
radiation produced by the smuggled nuclear material and other background sources, and
the physical geometry of the cargo container and its contents. Before we begin to apply
mathematical classification frameworks, an understanding of these influences is required.
Thus, this section will provide a detailed description of the physical situation that we will
examine in terms of radiation physics, the problem geometry, and practical considerations
of cargo shipment, as well as some contemporary detection systems.

I.1.1 Radiation Basics

Before we discuss our problem and the challenges it presents, we need to take note of
some basic physics that we will make use of here. In general, radioactive materials can
emit many different forms of radiation including photons, neutrons, electrons, positrons,
and alpha particles. These particles can be absorbed by or scattered off of material that
the radiation encounters as it travels. Sometimes these interactions can induce additional
radiation. Such interactions occur randomly with a measurable probability determined
by the interaction cross sections of the material, which are dependent upon the type of
material and the energy of the incident particles. These interactions affect the amount of
radiation that will be observed by a detector. In this case, we say that the radiation is
shielded by the other materials. This effect will play an important role in our studies.

Let us consider a localized source of radioactive material that is surrounded by a vacuum
with no other radiation sources present and suppose it emits radiation isotropically, as do
all specific materials discussed in this study. If we are given two identical detectors that are
both placed at a distance r away from the center of the source material, then each detector
will observe, on average, the same amount of radiation from the source. This is because
each of the detectors occupies the same solid angle. As we move one of these detectors
farther away from the source, the amount of observed radiation will decrease as 1/r2 in
proportion to its decreasing solid angle. The real world, of course, is more complicated
than this hypothetical case, but there is still a strong correlation between distance from
the source and a decrease in the amount of source radiation detected. This effect will have
a significant impact on our source detection problem as discussed in Sec. I.1.2.

Some of the most prominent photon producing materials are Plutonium, Uranium–233
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and Uranium–235. These are collectively referred to as Special Nuclear Material (SNM).
However, these are not the only materials that produce radiation. Naturally occurring
radioactive materials (NORM) such as bananas, potash and concrete all emit radiation
with enough strength to potentially mask out the signal from small quantities of SNM.
These isotopes and others can be identified by examining their radiation spectra. The
strength and energies of photons emitted by a material can narrow down which isotopes
have decayed in order to produce the observed radiation. In this study, we will concentrate
on the detection of Highly Enriched Uranium (HEU), which is predominantly a mixture
of 235U and 238U. Natural Uranium contains less than 0.72 wt. % 235U. In contrast, HEU
contains a minimum of 20 wt. % 235U and weapons grade HEU is typically much larger
(over 70 wt. %). As the quality of the HEU increases, the percentage of 235U increases
and that of 238U decreases. For HEU, the most commonly emitted photons have energies
of either 186 keV (produced by the 235U), 766.4keV or 1.001 MeV (produced by the 238U)
[44]. The lower energy photons are more easily absorbed and, therefore, less likely to exit
the cargo container under observation. Furthermore, those that do survive are not easily
distinguishable from the vast amount of background radiation. Thus, this study focuses
on the 1 MeV line in order to distinguish HEU from NORM. There are several options for
detecting photons available currently. At 1 MeV, High Purity Germanium (HPG) detectors
have a 2 keV energy resolution for photons and NaI (Sodium Iodide) detectors have a 20 keV
energy resolution window. Therefore, it is possible for researchers to examine fluctuations
in the 1 MeV peak and use the methods described in this study to determine whether or
not these fluctuations provide enough information in the classification of cargo containers,
as described in the next section.

I.1.2 Problem Description

Stated simply, our goal in this study is to use knowledge of the radiation exiting a standard
cargo container in order to determine whether or not there is illicit radioactive material
within the crate. We must balance the necessity for accurate classification with the costs
of implementing any algorithm. To be completely accurate in our classification, we would
need to open a container and test each and every material inside to determine which objects
are composed of radioactive material. However, this is prohibitively expensive, so we must
use more indirect measurements – in this case, the photon count rates for detectors located
outside the container.

In the source detection problem for ocean-going cargo crates, we have several physical
challenges that need to be kept in mind. A standard cargo container has dimensions of 20 ft
long by 8 ft wide by 8.5 ft tall and a total weight limit of about 21,000 kg (depending on the
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manufacturer). Within these confines, an SNM source can be placed at any location with
any variety of other material that the crate owner specifies. According to the International
Atomic Energy Agency, 25 kg of HEU is a significant quantity of interest and enough to
cause serious damage if it were to escape detection [23]. This amount of Uranium could be
packaged in a space of less than half a cubic foot, which is very small in comparison with
the total volume (1360 cubic feet) of the container. The studies in this work concentrate
on methods that may be used to locate a 1 kg HEU source inside of a filled cargo container.
With such a small source, the radiation produced by the source is masked by background
sources and further disguised by the other material in the cargo container that shields some
of the radiation that the source produces. HEU is in general harder to detect than other
sources as it produces lower energy photons [30, 31].

We will be considering methods here that do not delay the cargo container unduly as it
passes through the port in order to minimize the impact of these tests on the commercial
transport process. Therefore, our detectors are placed outside of the cargo container along
the large vertical sides of the container, much like the radiation portal monitors currently
in place [24]. For a localized source placed in the center of the cargo container, the near-
est detector will be approximately 4 ft away and radiation may have to pass through a
significant amount of other cargo before reaching the detector. As mentioned in the previ-
ous section, the distance between the detector and source directly impacts the amount of
observed radiation and, thus, our ability to accurately detect the material. On the other
hand, we know that the radiation falls off in a predictable way (see Sec. I.1.1), so there
are correlations in detector measurements as a result of their spatial relationship. We will
make use of these relationships to improve the accuracy of our detection algorithms. The
exact characterization of the detector configuration used in this study can be found in
Ch. II.

The last major physical piece of the puzzle is the contents of the cargo container. Initially,
we only have knowledge of the cargo contents as given in the manifest and we can only
consider that information reliable in so far as we trust the person who wrote the description.
Since every material interacts differently with radiation, the cargo in the container will
affect not only the amount of radiation from the HEU source that is observed, but also
the amount of background radiation that reaches the detectors. Without more accurate
knowledge of the container contents, it is difficult to determine how radiation interacts
with the cargo. This introduces a significant statistical variation to our measurement data,
as will be shown in Ch. VI.
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I.1.3 Current Detection Methods

There are several detection systems currently in use to detect nuclear material – fixed
radiation portal monitors, personal radiation detectors, hand-held gamma and neutron
search detectors, and hand-held radio-nuclide identification devices [27]. In most cases, the
background radiation levels must be established. The detection equipment is then set to
alarm when radiation exceeds four standard deviations above the mean [25]. In order to
determine the exact type of nuclear material present, radiation spectra are analyzed in
a process known as energy windowing – count rates for various energies of particles are
determined and the percentage of counts in each window is compared to determine the
type of material [15]. Neither of these methods fully utilize the correlations between spatial
detection measurements nor do they control the global error rates of a system of detectors,
which will be the focus of our studies.

I.2 Translating Physical Observations into Mathematics

In the previous section, we concentrated on the physical realities of the source detection
problem, but a mathematical description of our problem is necessary for rigorous analysis.
Two approaches will be used in this study – one using the statistical formalism already
available for classification and the other using optimization algorithms. Before we discuss
the particular terms that will be required for each individual approach, there are some
common concepts that we need to grasp.

First, recall the desired outcome of our research – to decide whether or not a shipping
crate contains a smuggled HEU source using only detector measurements obtained from
devices outside of the container. There are several ways that we could approach this
kind of problem. For example, an inverse problem approach would attempt to uniquely
determine a complete model of the container contents that most closely matches the given
detector measurements. However, this requires extensive computational resources in order
to match every single container coming into port and it usually provides a lot of extraneous
information [1]. Typically, we do not have enough information to implement this concept
in practice. In order to make a decision regarding whether or not an HEU source is in
the container, we only need to know if it exists in the crate, not the exact source position
nor the nature of all of the other materials inside the container. Therefore, we want to
create a decision algorithm that compromises between the computational resources and
the accuracy of the solution. One such approach phrases our situation as a classification
problem:
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Definition I.2.1. A classification problem is the problem of assigning a label (from
a fixed label set) to each member of a population based on a collection of measurements
associated with each object in the population.

I.2.1 Developing a Labeling System for Classification

In order to develop a classification algorithm, we need to identify both a set of labels
that we will assign and a set of measurements or features that we will use in order to
assign such labels. Then, an algorithm which analyzes a measurement and assigns the
label is referred to as a classifier or decision rule. Usually, the labels are determined by the
ultimate purpose of the classification. For instance, in our particular situation, the objects
under consideration are the cargo containers, the measurements through which we obtain
our knowledge of the cargo container come from the exterior detectors, and we label the
container as belonging to one of two categories – crates containing an HEU source and
those that do not. A common shorthand used throughout this text will be to call crates
containing an HEU source “dangerous” or belonging to set D. Similarly, cargo containers
without such a source will be denoted as “safe” or members of set S.

I.2.2 Choice of Feature Space

Now that we have our set of objects and the categories we want to sort into, we will need
to define the set of measurements that will be used as a basis for our decision. Before
we discuss what this means in terms of our problem, it behooves us to have an abstract
definition of the feature or measurement space:

Definition I.2.2. The feature space, usually denoted Sn, is the set of all possible mea-
surements or quantities, x, that will be used to make the decision as to which category the
item belongs.

Remark I.2.3. The feature space is not unique for any given problem and can be chosen by
the researcher to fit whatever criterion he chooses. Furthermore, once a set of measurements
is taken, they can be transformed, combined or disregarded to create a new feature space
that is more useful in the classification process. We will discuss some of these types of
modifications further in the remainder of this section as well as in Ch. V.

It should be noted that good choices for the feature space will drastically affect the al-
gorithm generated and is often the most difficult portion of formulating any classification
algorithm [46]. It is wise to choose items that vary as little as possible within each class of
objects, but change more obviously between classes. The choice of measurements in this
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study is based on experience in the nuclear detection field, where studies have been made to
characterize the radiation produced by materials. In this particular classification problem,
there is no single measurement that will allow for classification with complete accuracy,
except chemical examination of all the materials in the container. Unfortunately, this re-
quires opening and physically searching every container, which is extremely expensive in
terms of money, time and man-power and, as such, is infeasible in terms of a real-world
approach. Therefore, we will restrict ourselves to non-invasive measurements, which are
more indirect and less reliable.

Utilizing independent features is helpful in developing quick and accurate classification
methods. Generally, two features are independent if knowledge of the value of one feature
gives no information about the value of the other feature. By choosing independent features
from among the entire set of available data, one can reduce the number of measurements
(the dimensionality n of the feature space Sn) by eliminating redundant information while
maintaining the level of accuracy in our decision. A more mathematically rigorous expla-
nation of independence requires probability theory (Def. I.2.5), but as a heuristic example,
suppose we use volume (V ), mass (m) and density (ρ) to determine whether an object is
metal or not. Recalling basic physics, we know that we can relate these three quantities
using the formula ρ = m/V . From this we can see that knowing any two quantities, will
allow us to calculate the third and thus, these features are not independent. However,
any two of these features will be independent. This idea extends easily to other fields in
that one always wants to determine a set of features which provides all the necessary in-
formation to make an accurate classification without duplicating data or adding too much
computational complexity.

For the detection of smuggled sources, we have chosen to use 1 MeV photon count rates
from a spatially distributed array of detectors. Therefore, each measurement x is actually
an n-dimensional vector of count rates where each component corresponds to readings from
a specific detector in the array. Frequently, a set of detector readings will be referred to
by the labels D and S and, in that case, we really mean that a cargo container producing
the given measurements is a member of the specified class.

Since each detector in our scenario is counting the number of photons that hit its surface,
the measurement may be viewed as a positive integer. Hence, we can define our feature
space as Nn ⊂ Rn (see Sec. I.1). Knowledge of the values which measurements can obtain
is not enough information to perform classification accurately. Additional structure on the
space must be imposed to denote which values are more likely to be observed. This can be
given in the form of probability distributions or random samples from such a distribution,
as discussed in Sec. I.2.4.
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Figure I.1: Shown here is a pictorial representation of the result of the classification pro-
cess. The red crosses represent measurements, x, that would be obtained by scanning a
cargo container that contains a radiation source. The blue circles represent measurements
obtained from a harmless cargo container. The decision boundary (black wavy line) is
determined by the function f(·) and divides the feature space into two regions – the green
space is the set of measurements that will cause an object to be assigned the “safe” la-
bel, i.e., where f(x) = S, and any other measurement is labeled as “dangerous,” where
f(x) = D. The various types of errors in classification (false positives and false negatives)
are also marked here, which will be discussed further in Sec. I.2.5.

I.2.3 Arriving at a Decision Rule

Once we have the feature space and labels defined, we need a way to develop our decision
rule – our method of assigning labels. In our particular problem, we want to sort objects
into two categories based on detector measurements, which can be done by dividing the
feature space into two disjoint pieces – one region where measurements are more likely to
have been obtained by measuring a safe cargo container and the complement of this region
containing measurements from a container with a source. Thus, our task is to find the
appropriate boundary between the two regions in Sn. This can be denoted by a function
f : Sn → {S,D}, as demonstrated in Fig. I.1. Ideally, the optimal boundary would be
found in a solution space containing all possible functions that partition the feature space
into two sets. However, this space is quite large so the solution space of the classifier is
often restricted to linear or piecewise linear functions. The ultimate classification of objects
will be given by testing a measurement x from that container to determine its membership
in one of the regions of feature space.
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There are several choices for methods, usually referred to as machine learning methods,
for developing the final classification rule. Such methods include the classical theory of
statistics, optimization methods or support vector machines. Several of these methods will
be discussed in the following pages. By common consent of the community, a good decision
algorithm, f(x), is one that

• Makes as few errors in classification as possible (see Sec. I.2.5).

• Is an accurate predictor for any object and not just those used to develop the method.

• Balances the relative costs of different kinds of mistakes in classification, when nec-
essary, (see Sec. I.2.5).

• Provides a (relatively) simple rule for making a decision on a single point in feature
space.

• Can be generated or adapted to new information quickly.

Upon implementation, various methods must also be compared to find the optimal clas-
sification method, as depicted in Sec. I.3. We will address these points for each method
discussed in this study.

Generally, algorithms to create classification rules are lumped into one of four categories
based on what information we have about the distribution of measurements (see Sec. I.2.4):
Analytical, Supervised, Unsupervised and Reinforced. The first requires the analytical form
of the distribution of measurements or a good approximation to it and then uses this along
with prespecified formulas to create the classification rule. The other three categories use
a set of random samples drawn from the distributions of measurements in order to do the
same. If it is a supervised algorithm, then the user provides a data set containing pairs of
data points from the feature space and the appropriate label under which they should be
classified. Unsupervised algorithms require only the data points from the feature space,
not the labels, and use clustering of the points to make the classification rule. Similarly,
the reinforcement algorithms require only the data points and a starting classification
rule. These points are then processed by the algorithm and a user decides whether the
classification of that point is correct or incorrect. This information is then used to adapt
the algorithm so that this point in feature space is more accurately classified in future
trials.
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I.2.4 Probabilities of Measurement

Before using the categories and feature space to create a decision rule, we need a way to
discuss all of the variations and uncertainties that arise in this problem. As mentioned in
Sec. I.1, the production, scattering and absorption of photons are all random processes.
Therefore, if we take measurements, x, from the same cargo container and detector set
up multiple times, then the photon count rates may differ each time. To account for this,
we must obtain some information about how likely it is that a set of measurements can
be linked to a specific type of object (a safe or dangerous container). We can do this
by analyzing the probability distributions of the measurements. This information can be
given as an analytical form of the distribution of each population or as a set of sample
measurements.

In the analytical setting, we can use the common language of probability and statistics to
discuss the variations of our measurements. For any measurement, x, we can denote how
likely we are to observe such a measurement by the probability density function or pdf, p(x).
We can also talk about how likely we are to observe a specific phenomenon, such as x ∈ A,
for which we will use the notation, P (A) =

∑
x∈A

p(x), where the capitalization indicates

that we are referring to the probability of the event x ∈ A and no longer concerned with a
specific point x. We can further delineate our data by recalling that our problem considers
two disjoint populations, S and D, that completely cover the sample space from which
we have measurements x. This will give us additional information to incorporate into our
probability distribution in the form of conditional distributions:

Definition I.2.4. If A and B are events in a sample space S and P (B) > 0, then the
conditional probability of A given B is

P (A|B) = P (A ∩B)
P (B) (I.1)

In words, this conditional probability is the probability of both events occurring as scaled
by the probability of the prior knowledge that B occurs.

We would like to know how likely the object is of a specified type given that we observe
a specific measurement x, i.e., p(S|x) and p(D|x). To determine these quantities straight
from Def. I.2.4 would require knowledge about how likely we are to obtain every single
possible measurement in order to determine the denominator of Def. I.2.4. This would be
extremely difficult information to gather since our feature space could have a very large
dimension if we have a large detector array. However, it is relatively easy to measure the
conditional probabilities p(x|S) and p(x|D), which indicate how likely it is to obtain the
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measurement x when observing an object from the specified population. Similarly, it is
relatively easy to estimate the prior probabilities P (S) and P (D), which give the fraction of
objects from each population present in the sample we are studying. From the quantities
we do know, we can use Bayes’ Rule to calculate the probability that a container with
measurement x belongs to population S or population D:

p(S|x) = p(x|S)P (S)
p(x|S)P (S) + p(x|D)P (D)

p(D|x) = p(x|D)P (D)
p(x|S)P (S) + p(x|D)P (D) = 1− p(S|x) (I.2)

With this information, we can use our measurements to determine which scenario is more
likely and create our classification algorithm. It is important to note that this formula, and
any decision rule that follows from it, can be extended to any collection of populations,
but for the purposes of this research we will concentrate on developing a decision rule for
two disjoint populations.

With the definition of conditional probabilities, we can also be more specific about inde-
pendence of events as suggested in Sec. I.2.2. While we will not make use of this relation
directly, we will discuss the algorithmic effects of having redundant or useless information
in Ch. V. Recall that we are looking for measurements or events that give us no information
about one another, i.e., knowing the value of one variable does not provide any information
about the other variable. Mathematically, this can be stated:

Definition I.2.5. Two events A and B are independent if P (A|B) = P (A).

While there is a surfeit of information on using probability to make statements about the
likelihood of a decision being correct, this does not always help once the complexities of the
real world are introduced. For instance, it is often difficult to know the exact distributions
of our measurements because so many different variables can affect the outcome. There-
fore, we can use a large collection of sample measurements to approximate the necessary
distributions to develop our classification methods. The challenges of obtaining a large
enough sample to ensure accuracy will be discussed further in Sec. I.6.

I.2.5 Comparing Outcomes of Classification – Cost vs. Risk

In addition to the basic statistics language, we need a common language with which to
evaluate the effectiveness of our algorithms. In our classification framework, accuracy of
the algorithm is naturally determined by the comparison of the true state of an object
in our population and the labeled outcome produced by our algorithm. There are four
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Table I.1: The four possible outcomes of a binary classification are determined by com-
parison of the true label and the label given by our classification algorithm in a confusion
matrix. This allows us to examine the consequences of different types of mistakes when we
discuss the effectiveness of our algorithm.

PPPPPPPPPLabel
Truth Class S Class D

Class S Correct False Negative
Source Not Detected

Class D False Positive Correct
Unnecessary Search

outcomes that we need to consider in this binary classification problem, as expressed in
Table I.1. An accurate classification occurs when the true state of the object and the label
coincide. Mistakes or misclassifications occur when the label assigned by our algorithm is
not the same as the true label. This leads to two different kinds of mistakes (see Fig. I.1)
– a false positive where our algorithm thinks that there is a radiation source in the crate
when it is really harmless cargo and a false negative where our algorithm does not detect
the present source.

Each of these outcomes has a different cost associated with the decision. For every false
positive or false alarm that occurs, we must investigate the contents more thoroughly and
this will cost both time and money. Each false negative has allowed nuclear material into
the country and possibly led to the destruction of a major city. While we can calculate
the monetary cost of invasively searching each false alarm, it is more difficult to arrive at
a single value that incorporates all the property damage, loss of human capital, economic
impact and societal pressures that arise from the loss of a city. Thus, the translation of
ideas into a numeric cost for classification is not a trivial matter.

One way to consider this cost conundrum is by looking at global expected error rates of
our system of detectors and algorithms. If we examine Fig. I.1, we can determine that a
certain percentage of our sample measurements are false positives and another set are false
negatives. Therefore, instead of asking a researcher to assign an arbitrary and subjective
cost value to misclassifications, it is often asked if we can bound a particular error type and
thus guarantee a certain reliability in the detection process. The Neyman-Pearson Lemma
stated below gives exactly such a constraint.

Theorem 1 (Neyman-Pearson Lemma [39]). Suppose we are labeling objects as belonging
to one of two populations: S and D. Given knowledge of the conditional distributions of
measurements for each population and the proportion of each population in the overall con-
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text, then the likelihood-ratio test which gives the label S to an object having measurement
x with a specified false negative rate α is

Λ(x) = L(D|x)
L(S|x) = p(x|D)P (D)

p(x|S)P (S) ≤ η (I.3)

where η is a constant chosen such that P (Λ(x) ≤ η|D) = α

Remark I.2.6. In terms of our decision rule f(·) discussed previously, this statement of
the Neyman-Pearson Lemma provides the decision rule:

f(x) =

S when Λ(x) ≤ η

D otherwise
(I.4)

The constraint P (Λ(x) ≤ η|D) = α mathematically states that the expected probability
of mislabeling a container with a source (should correctly belong to class D) as a safe
container S is α. However, the usual method for enforcing the false negative constraint
involves integration (analytic or numeric) of the probability distributions over the set of
all x for which Λ(x) ≤ η and some sort of search method that will locate the appropriate
value of η. As stated in Sec. I.6, this can lead to problems in higher dimensions.

Remark I.2.7. This formulation can be generalized to classification problems with any
number of classes and multiple constraints on various types of misclassifications [17]. To the
best of my knowledge, this still has only been implemented for cases where the dimension
of x is low due to computational complexity.

I.3 Classification by Bayes’ Risk Minimization

There are many ways to go about classifying populations, as mentioned above. If exact
information about the conditional distributions of these populations, the probability of
each object type in the overall population and the costs of various classification actions
(misclassification costs, for example) are known or can be approximated with some accu-
racy, then an optimal classification rule can be determined. This classification method is
called the Bayes’ Rule for Cost Minimization or the Bayes’ Minimal Risk Decision.

This method is based on the fact that it is usually easiest in an experimental situation to
control the type of an object rather than the exact measurement, x. Consider an experiment
to determine the gender of a person based on height measurements. It is relatively easy to
find many people that are clearly male or clearly female and then measure each of those
people’s height. It is much harder to find a sufficient sample of people of any gender that
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are exactly the same height for every possible height measurement.

These distributions, where we control either the class or the measurement and allow the
other event to vary, are called conditional probabilities, as mentioned in Sec. I.2.4, and can
be transformed using Bayes’ Rule (I.2) from functions that have the class controlled by the
researcher into functions that presume that the measurement was the controlled quantity.
As we can see in the following theorem, we can construct a decision rule that minimizes
the expected cost of misclassification using analytic information about the probability
distributions.

Theorem 2 (Bayes’ Rule for Minimization of Cost of Misclassification [28]).
Let us consider a set of features Sn obtained from two populations, S and D, with population
conditional distributions p(x|S) and p(x|D), respectively, for x ∈ Sn ⊆ Rn. Also, suppose
P (S) and P (D) are the prior probabilities of encountering each respective population and
P (S)+P (D) = 1, i.e., all items that produce readings in the feature space must be classified
as belonging to exactly one of the two populations. Further, let the cost of misclassifying a
point from the S population as a member of population D be given by cD|S, and cS|D be the
cost of classifying a point from the D population as coming from the S population. Then,
for a given point in the feature space, x, the classification rule that minimizes the expected
cost of misclassification is:

x is classified as belonging to S ⇐⇒

x ∈
{
x ∈ Sn

∣∣ cS|Dp(x|D)P (D) ≤ cD|Sp(x|S)P (S)
}

(I.1)

Proof:

Suppose that a point x in feature space is classified as belonging to population S if it is a
member of a region, A, of the feature space, Sn, and is classified as a member of population
D otherwise. We want to define the region A so that the expected cost of misclassification,
ECM, is minimized, i.e., the total number of mistakes made by using our decision rule as
weighted by the costs of making these mistakes and their likelihood of occurring is low.
Using membership of x in A as a template for classification, we can write the probability
of producing a false positive as:

P (D|S) =
∑
x∈AC

p(x|S)P (S) = P (S)− P (S)
∑
x∈A

p(x|S) (I.2)
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Similarly, the probability of obtaining a false negative is given by:

P (S|D) =
∑
x∈A

p(x|D)P (D) (I.3)

Given that the fixed cost of misclassifying a false positive is given by cD|S whereas the
fixed cost of misclassifying a false negative is given by cS|D, the total expected cost of
misclassification, ECM, is given by:

ECM = cS|DP (S|D) + cD|SP (D|S)

= cS|D
∑
x∈A

p(x|D)P (D) + cD|S
∑
x∈AC

p(x|S)P (S)

= cS|D
∑
x∈A

p(x|D)P (D) + cD|SP (S)− cD|S
∑
x∈A

p(x|S)P (S)

= cD|SP (S) +
∑
x∈A

[
cS|DP (D)p(x|D)− cD|SP (S)p(x|S)

]
(I.4)

This is clearly minimal when
∑
x∈A

[
cS|Dp(x|D)P (D)− cD|Sp(x|S)P (S)

]
is minimal, since

the only adjustable quantity is the region A. Since all of the probabilities and costs for
each individual x are positive, this implies that the sum is minimal if we define A as:

A =
{
x ∈ Sn

∣∣ cS|Dp(x|D)P (D)− cD|Sp(x|S)P (S) ≤ 0
}

=
{
x ∈ Sn

∣∣ cS|Dp(x|D)P (D) ≤ cD|Sp(x|S)P (S)
}

(I.5)

Thus, to minimize the expected cost of misclassification, an object having a measurement
x will be classified as safe if x belongs to the set A as defined above.

Remark I.3.1. Under the further assumption that P (S), cD|S and p(x|D) are strictly
greater than zero for all points x in the feature space, then

A =
{
x ∈ Sn

∣∣∣ cS|DP (D)
cD|SP (S) ≤

p(x|S)
p(x|D)

}
(I.6)

This demonstrates that the absolute cost of each individual error need not be known nor
do the probability distributions need to be normalized for this analysis to be valid. Only
the relative costs of the two error types and the proportionality of the two cargo container
types are required. Further, by treating the cost ratio or indeed the whole left side of the
inequality as an unknown, we can use this framework to impose constraints on the expected
total misclassification rate or even the individual expected rates of false negatives and false
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positives through the Neyman-Pearson Lemma (Thm. 1). This will be the foundation for
all of the methods discussed in Ch. III.

Remark I.3.2. In this proof of the theorem, the conditional probability distributions were
assumed to be discrete distributions with countably many possible outcomes. However, as
one can see in [28], this need not be the case as the basic principles still hold for continuous
distributions mutatis mutandis.

Remark I.3.3. One could generalize this proof and assign a different cost to each spe-
cific measurement x, making the costs cS|D = cS|D(x) and cD|S = cD|S(x), respectively.
However, it does add an extra term to the sum as follows:

ECM =
∑
x∈A

[
cS|D(x)p(x|D)P (D) +

cD|S(x)P (S)
vol(A) − cD|S(x)p(x|S)P (S)

]

=
∑
x∈A

[
cS|D(x)p(x|D)P (D) + cD|S(x)P (S)

(
vol(A)−1 − p(x|S)

)]
(I.7)

where vol(A) is the volume of the region or the number of elements in the region for
continuous and discrete distributions, respectively. Thus giving the decision rule: x is a
measurement classified as coming from a container of type S if and only if

x ∈ A :=
{
x ∈ Sn

∣∣ cS|D(x)p(x|D)P (D) ≤ cD|S(x)
(
(vol(A))−1 − p(x|S)

)
P (S)

}
(I.8)

Unfortunately, this makes the definition of A self-referencing, which means that, for a given
set of costs and probability distributions, a numerical solution could be obtained through
careful iteration, but a closed analytical form is not possible.

I.4 Optimization

Optimization algorithms have been used to find the equivalent of the Bayes’ Rule solution
when the distributions are not completely known, but there are several concerns that need
to be addressed [49]. Generally, an optimization problem is composed of three parts

1. an objective or cost function,

2. a set of controllable inputs,

3. and a set of constraints.

The goal is to either minimize or maximize the objective function by adjusting the control-
lable input variables, which may be restricted as a result of the constraints. The objective
function is generally given as a real-valued function describing a physical requirement as
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a function of several parameters that are either fixed by the physical system or adjustable
in order to reach the physical goal. The objective function may also contain other terms
called penalty terms, which improve performance or enhance certain features of the feasible
input space. Constraint functions may be used to limit the feasible values of the adjustable
parameters and often correspond to a physical constraint as well.

Once the objective function, constraints and variable parameters have been defined, there
are many methods one can use in order to find the extrema of the system, including gradient
descent and interior point search methods. The choice of method is determined largely by
the characteristics of the objective function. For instance, combinatorial or graph theoretic
methods are needed if the controllable parameters take on only discrete values. There are a
variety of software packages available to solve such problems, including Opt++ [36], TAO
[38], and MATLAB [35].

I.4.1 Overview of the Optimization Formulations

Such formulations are quite common in science and engineering when one seeks to minimize
the entropy or maximize the power output of a system by changing pressure or temperature.
Constraints in this situation might be something like a function limiting the metal stresses
as a result of the adjusted quantities in order to ensure safety of the system. In our
problem, these concepts are naturally extended – our objective function and constraints
will relate the overall costs of each type of misclassification to parameters that will describe
a function that partitions our feature space into two regions as mentioned in Sec. I.2.3. We
will discuss two formulations utilizing optimization to solve the cost-sensitive classification
problem in Sec. IV.1 and IV.2.

I.4.1.1 Shape Optimization

The first formulation we will be discussing is a variation of shape optimization, where a
variety of parameters describe a region and are adjusted incrementally to achieve a specified
goal. This is a common situation in engineering disciplines, where the basic design of a
part is given and then evolved until it reaches a shape providing for optimal performance
[20]. In our case as described in Sec. IV.1, we will define the basic shape of our decision
boundary and modify it until we minimize the expected probability of obtaining a false
positive subject to the constraint that there is no more than a set expected probability of
false negatives.
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I.4.1.2 Support Vector Machines

Support Vector Machines (SVM) are a specialized optimization method for kernel based
classification rule development, which will be further described in Sec. IV.2. The goal of
SVM algorithms is to find the hyperplane separating two populations which minimizes mis-
classifications. Studies have shown that decision rules produced in this manner approach
the Bayes’ Optimal Rule in the space of such restricted classifiers as the sample size in-
creases [9, 21, 34, 50]. In the linear case, SVM methods optimize over both the normal and
distance to the origin of a plane separating the two populations, i.e., SVM algorithms seek
to find an optimal separating hyperplane to partition the feature space, Sn, according to
the labels S and D. There are algorithms that use a kernel such as an nth degree polyno-
mial or radial basis function in order to transform the high dimensional feature space into
a lower dimensional space where optimization algorithms can work more effectively. The
hyperplane is found in this transformed space and then pushed back to the original feature
space to perform classification. The choice of kernel is initially provided by the researcher,
so it requires expert judgment and experimentation to choose the appropriate function.

I.4.2 Challenges in Our Particular Problems

In both of these formulations, there are several quirks, described in more detail in Sec. I.6,
that impact the effectiveness of the optimization framework. For example, both of these
formulations are created based on the assumption that we are dealing with sample data
of integer values. This means that any function we construct will be a non-smooth ap-
proximation that can have large flat regions with no information about where the true
optima actually lie. Mollifiers have been used and tested in this situation, but this can
introduce an error as an artifact of the smoothing. Alternatively, different objective func-
tions, such as the Perceptron Criterion function or distance penalty functions, can be used
to assure a smoother gradient. The Perceptron Criterion function, more commonly called
the least squares error, is frequently used in many scientific disciplines for just this reason
[14, p227,235]. More information about how we dealt with this challenge can be found in
Sec. IV.1.

Local optima can also hamper the effectiveness of optimization algorithms and can occur
as real features of the underlying distributions or as artifacts from inadequate sampling
of the measurement space. According to Miller et al. [37], the common way to help en-
sure that your algorithm finds global optima instead of settling at local optima is to take
numerous random starting points and choose the best results from the collection. Rose
[45] also mentions the same problems with optimization surfaces created from probability
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distributions, but suggests using stochastic gradient techniques in addition to the repeated
starting point approach in order to deal with the local optima. Stochastic gradient tech-
niques take advantage of the fact that the objective function J(w) can be written as the
sum of differentiable functions of a single parameter, Ji(w), where each function contributes
information about the relation of ith sample of the population and the parameter. This
allows the step size in the optimization algorithm to be adjusted based on the effect of one
sample at a time. These challenges make the process of choosing an appropriate objective
function and constraints especially important in our analysis.

I.5 Other Methods of Classification and Challenges

There are many other methods of classification available at this time, though we will not
discuss their application in this work. Two of the most common types of formulations are
clustering methods and discriminant analysis. We will give two short examples of such
methods here.

I.5.1 k-Nearest Neighbor Classification

The k-Nearest Neighbor classification algorithm is one of the simplest methods of machine
learning available [14]. In this case, one begins with an initial sample of labeled data,
called the training set. Assignment of a label to a measurement x is done by analyzing
the k points from the training set which lie closest to the new point and using the class
label which has a majority of points among the k analyzed. One can incorporate the cost-
risk analysis that we are interested in by weighting the votes of the points appropriately,
although this might require adjustment of the weights if one is trying to control the cost
in the Neyman-Pearson sense.

Despite the benefits of the simplicity of this algorithm, there are two drawbacks that make
this method inconvenient for our source detection problem. First, when measurements from
the two classes differ by only a small amount, the distributions overlap and the algorithm
can have difficulty classifying points that lie near the decision boundary. In fact, based on
variations in the initial training data, one could frequently return measurements for which
no classification can be made as there are an equal number of points from each class in the
k-nearest neighboring points. Since we can not guarantee that the radiation measurements
will be well separated for all those containers with a source and those without, we would
not have as much control over the total expected number of containers that would be
invasively searched. Both the containers that are unable to be classified as well as all the
containers classified as containing a source would impact this secondary scan. Secondly,
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this method requires a large number of points to accurately characterize and sample the
feature space, which we have mentioned brings the Curse of Dimensionality into effect.

I.5.2 Multiple Discriminant Analysis

Multiple Discriminant Analysis [14, p117-124] is an area of classification that deals with
some of the problems of high dimensional spaces by projecting the data into a lower di-
mension space and then separating the data. These methods do not necessarily correspond
with the Bayes’ Rule, but they do allow for an optimal solution to be chosen within the
projection space, which may have been difficult in the higher dimension space. However,
the Bayes’ Rule and the Fisher Linear Discriminant method produce the same rule in the
case where both the conditional distributions, p(x|S) and p(x|D), are Gaussian and have
equal covariance matrices. The Fisher Linear Discriminant method finds the vector w in
feature space for which the functional

J(w) = wTSBw
wTSWw (I.1)

is maximal independent of the magnitude of w, where SB and SW are scatter matrices
with the following definitions

SB = (mS −mD)(mS −mD)T

SW =
∑
x∈S

(x−mS)(x−mS)T +
∑
x∈D

(x−mD)(x−mD)T

where mS is the mean of population S, mD is the mean of population D, and each sum
is over all the points in the appropriate training set. Multiples of this vector w form the
projection space and then further optimization would be necessary to determine the optimal
decision rules in the new space. Physically, wTSBw represents the squared difference of
the population means in the projection space where wTSWw is the sum of the population
variances in the projection space. This method can be extended to multiple class situations,
but the manner in which this is currently stated does not take into account a difference in
the cost of misclassification. The most common method to incorporate the disparate risks
of such misclassification is to weight the points in each class and adjust these weights to
control the global error.

I.6 The Curse of Dimensionality

As stated in Sec. I.2.2, we are utilizing an array of photon detectors to make our clas-
sifications of cargo containers. This, of course, gives us a large data array of discrete
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integer-valued measurements. Furthermore, as in Sec. I.2.4, the real world rarely provides
complete information about the distribution of such measurements. All of these quirks
require that we keep the character of our feature space and the type of available informa-
tion in mind when we create a decision rule in order to effectively combat their influence
on the accuracy of the machine learning methods, e.g., challenges of dealing with large
data arrays, overfitting due to inadequate sampling, non-smooth functions as a result of
discretization. Each of these problems will be addressed more fully as they impact each
of the algorithms we discuss, but ultimately, these problems are greatly influenced by the
size of the feature space that we are working with and the Curse of Dimensionality.

The Curse of Dimensionality is a well-known problem in algorithm implementation for
many areas of mathematics. Briefly, this problem refers to the fact that techniques used to
analyze data in one or two dimensions become inefficient as the number of dimensions in
the problem and thus, the complexity of the problem grows. The container classification
problem under discussion suffers from the Curse of Dimensionality as it requires numer-
ical integration of or sampling from high dimensional spaces, both of which increase the
complexity of the problem exponentially. The rule of thumb in the areas of numerical
integration or sampling is that when using “brute force” methods, like simple numerical
quadrature rules or uniform random sampling, roughly one power of ten is needed for every
dimension in order to get any real kind of accuracy. This type of problem only worsens
as the volume of the region under investigation grows, e.g., dealing with functions on the
unit n-dimensional sphere is more tractable than dealing with all of Rn, but is still more
difficult than studying the unit circle in R2. Current classification methods are not exempt
from this effect and most methods break down in higher dimensions [14]. For instance,
when working with sample data in high dimensions, a classification method may be tai-
lored to work extremely well with initially provided data, but fail to detect patterns in
additional data. This situation is known as overfitting and is caused when sample data
does not provide information about the entire feature space, as is frequently the case in
higher dimensions.

In classification, the most common method for combating this curse is to limit the dimen-
sion of the problem as much as possible before classification is performed. One such method
is to transform measured variables x ∈ Sn to a lower dimensional space, y = g(x) ∈ Rm

and then use the computed value, y, to make the actual classification, e.g., using density
to make a decision instead of the mass and volume separately. In our particular case, we
will use feature selection methods prior to classification in order to reduce the 320 initial
measurements (Ch. II) to 30 equally spaced detectors and then to 2–6 useful measurements
(Ch. V). Choosing independent features instead of multiple, correlated pieces of data can
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also reduce the dimensionality. Continuing our example, it does not make sense to use
density, volume and mass to make a decision since given any two of these measurements,
one can compute the third exactly. This means that we have duplicated some of the in-
formation and thus, the third measurement will likely not change the classification of an
item obtained using only the other two measurements.

A third general class of methods to reduce dimensionality is to treat each measurement
separately in order to arrive at classification. Many current classification methods use
a decision tree to incorporate data from multiple tests in order to lessen the effects of
dimensionality. For example, a single test could be performed and the decision to label or
continue testing made. Then, things that could not be classified by the first test alone would
undergo a second test and a similar decision process implemented. This could continue for
as many tests as desired until total classification is achieved. Therefore, each item tested
undergoes a single “labeling” step, but may undergo many tests and the number of tests
it undergoes may differ for each item of interest. In this decision tree framework, each
decision is made independently of all other decisions in the process. This method is similar
to that currently in practice for radiation detection in cargo containers. Another possible
way to deal with data from multiple tests is to have an item undergo every test and develop
the thresholds for each test independently of all other data. This means that each item
will undergo every test available, but its classification may be based on the results of a
single test. Of course, we would like to perform on average as few tests as possible in
order to classify an item in order to save time and money required for such tests. This
requires a significance ordering of the tests and then some sort of estimate of the overall
rate of misclassification as a result of the rates of misclassification for each individual test
[51]. Since thresholds for each test are determined independently of the others in these
examples, we can think of this as a “box” threshold, which is an n-dimensional hyper-
rectangle contained in our sample space Sn with one vertex on the origin. Ultimately,
these tests are not optimal because these types of decisions discard the correlation between
different tests [51]. For instance, we may have a situation where several tests could be close
to the decision boundaries for the individual tests, but none of the readings by themselves
are enough to change the assigned label. However, when taken as a whole, the set of
measurements may change the classification. This research will continue to explore the use
of sensor data as an ensemble instead of a chain of separate readings.

I.7 Comparing Classifiers – Receiver Operating Characteristics

With so many different methods for generating our decision rule, one needs a way to
compare the accuracy and precision of the varying methods. For a fixed false negative
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Table I.2: The confusion matrix below is utilized by ROC curves to measure the accuracy
and sensitivities of classification algorithms by analyzing the outcome of labeling a data
set.

True class
D S

Labeled class
D True Positives False Positives
S False Negatives True Negatives

Column Totals P N

rate, i.e., a fixed percentage of dangerous cargo containers escaping detection, we can
compare the false positive rates of two classifiers to determine which method requires us to
search through fewer safe containers. The natural choice for the better classifier will save
time and money by opening fewer containers. However, it would be beneficial to choose
the more effective classifier, irrespective of the particular false negative rate as the cost of
such mistakes may change with the political and social climate. Thus, we need a way to
discuss the abilities of a classifier for a wide range of false negative rates.

Receiver Operating Characteristics (ROCs) are a commonly used tool in evaluating the
effectiveness of classifiers. We begin with a set of test data containing P samples from
the class of containers with a source and N samples from containers with harmless cargo.
For each binary classifier, the number of true positives, false positives, true negatives and
false negatives for this data set may be calculated as given in Table I.2. A classifier is then
mapped into the ROC space [0, 1] × [0, 1] by determining the true positive or recall rate
and the false positive rate:

TP (Recall) rate = TP

P FP rate = FP

N (I.1)

By comparing the various false positive rate – recall rate pairs of the classifiers, we can
analyze the relative trade-offs between the benefits (correctly finding the nuclear material)
and the costs (opening containers unnecessarily). We can also use this information to
determine the accuracy and precision of the various classification methods:

Precision = TP

TP + FP
Accuracy = TP + TN

P + N
(I.2)

The cost–benefit comparison is easy to understand through a visualization of the ROC
space [16], as seen in Fig. I.2. A perfect classifier will correctly label all points, i.e., there
will be no false positives or false negatives. Thus, the False Positive Rate will be 0 and
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Figure I.2: Examples of the positions of 5 different decision rules and their corresponding
positions on a Receiver Operating Characteristic Plot are illustrated. For a more complete
description of the features of this graph, see Sec. I.7.

the True Positive Rate will be 1, corresponding the the upper left hand corner of the ROC
plot. The closer a classification method lies to this corner of the graph, the better its
performance. Conversely, the worst classifier possible would incorrectly label every point,
reversing the False Positive Rate and True Positive Rate values, and be plotted in the
lower right corner of ROC space. One can note that this worst case classifier could be
corrected (and turned into a perfect classifier) by switching the labeling system so that
all previously labeled safe containers were now labeled as dangerous and vice versa. This
situation presents a reversed classifier, where the labeling system need only be reversed to
improve its performance and reflecting its (TP rate,FP rate) mapping across the diagonal
line of the ROC space. Thus, points lying on this diagonal can not be easily improved
without further information provided and are the equivalent of a “random guess” strategy
when assigning labels.

A ROC plot also distinguishes between liberal and conservative classifiers. A liberal clas-
sifier is one that will assign a label with very little evidence and, as a result, they cause
more frequent false alarms. A conservative classifier requires more stringent proof before
declaring that something belongs to class D, which forces the false alarm rate to stay low,
but often causes the true positive rate to be low as well. As a consequence, liberal classifiers
have a higher false positive rate than conservative ones, but generally have a higher true
positive rate as well. These positions are also illustrated in Fig. I.2.

Every point in the ROC space gives the performance of a classifier with a specific false
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Figure I.3: Classification families can be represented as curves on a ROC plot. A single
point denotes a decision rule with a specific false positive rate, but by adjusting user-chosen
parameters in the decision rule, one can generate a family of classifiers of varying error rates
created by essentially the same type of algorithm. Here, Algorithm B is consistently better
than the other two algorithms, regardless of the false positive rate. Algorithms A and
C, however, are better for different ranges of classifiers (C is the better of the two when
classifying conservatively, and A is better for the more liberal settings).

positive rate. Often, our methods for creating a decision rule introduce a set of param-
eters, e.g., radiation thresholds for individual detectors, which can be used to tune the
performance of the classifier to meet a variety of specified error rates. In doing so, we
obtain entire families of classifiers corresponding to curves in ROC space. One classifier is
considered “better” than another if its ROC curve is consistently greater than the other,
e.g., Classifiers B and A in Fig. I.3. This may only happen for a set range of False Positive
rates, e.g., Classifiers A and C in Fig. I.3.

Additionally, ROC classifiers allow us to examine the cost ratio depicted in Theorem 2.
Classifiers with the same expected cost ratio will fall on a line with a slope, m, proportional
to the ratio of the costs of misclassifications and the probability of encountering a specific
class:

m =
cS|Dp(S)
cD|Sp(D) (I.3)

As shown in Tortorella [52], this can be utilized to help select cost ratios to control global
error rates in addition to the analysis already presented by an ROC curve.

25



CHAPTER II

COMMON TEST CASES

As was mentioned in Sec. I.2.2, any classification method requires some knowledge of the
distribution of the measurements in the feature space, be this through an exact distribution
or a random sampling of possible scenarios. The following sets of simulated measurements
will be used for the development and testing of the methods discussed in this work. The
algorithms themselves are completely independent of any specific properties of the distri-
butions. The methods in Ch. III require that the distributions be known to the researcher,
but do not make any specific demands about the types of distributions involved. The al-
gorithms in Ch. IV do not require analytic knowledge of the distributions – only sample
measurements – so, to be consistent in our comparison of methods, we will use samples
drawn from the same distributions as used in the analytic case.

Each measurement set given here depends on two separate physical parameters – the ma-
terial inside the container and the detector configuration – and a choice of distribution. In
this chapter, we will discuss the general process for simulating the data with a choice of
distribution and then go through the specific material configurations used. Finally, we will
consider the various detector configurations used in these tests. Typically, we will compare
measurements with and without an internal HEU source for a single material configuration
and detector array. This results in a pair of distributions (for the analytic methods) or
sample sets (for the methods in Ch. IV) labeled Safe and Dangerous, respectively, for use
in the classification of containers.

II.1 Simulation of the Data Sets

In order to train the classification algorithms, an exemplar set of typical measurements
is needed. This could be obtained either through physical experimentation or through
computer simulation. There are drawbacks to both methods of data compilation. For
instance, physical experimentation can be prohibitively expensive as we would need many
detectors, sets of physical cargo and a radioactive source as well as the personnel and
physical space to actually take detector readings. On the other hand, computer simulations
require a well tested and developed code to handle the radiation transport. Also, most
computational codes give only an average count rate for each detector as the final output
and ignore the fluctuation from measurement to measurement that is seen in the physical
experiment.
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Figure II.1: The geometry of the cargo container and detectors used in the MCNP deck.
There are 160 detectors completely covering either side of the cargo container and com-
pletely covering the surface of the container. The coloring on the side indicates the mean
count rate seen by the given detector in a 30 second interval, as computed by MCNP.

To balance the shortcomings of both the physical experimentation and computer simula-
tion, the data sets used in the development of our classification methods are created using
a two step process. First, for each cargo container scenario under examination, the Monte
Carlo n-Particle software package (MCNP)[56] is used to simulate the statistical mean
particle count rates for each detector in the array for a specified time period. This involves
specifying the geometry of the cargo container and the two arrays of detectors, as depicted
in Fig. II.1. We will further discuss how the cargo in the container is modeled in Sec. II.2
and describe each scenario under consideration here in detail in Appendix A.

Once these mean values are determined, the random fluctuation that is seen in physical
experimentation is introduced by letting the count rate for each detector vary according to
a Poisson distribution about the specified mean. Many experiments have verified that the
detection of gamma radiation behaves according to a Poisson distribution. Furthermore,
when considered over time scales that are small in comparison to the half-life decay of the
radioactive source, gamma radiation emission and detection is a Poisson process since it
holds to the Poisson postulates:

Theorem 3 (The Poisson Postulates [5]). For each t ≥ 0, let Nt be an integer-valued
random variable with the following properties. (Think of Nt as denoting the number of
arrivals in the time period from time 0 to time t.)

(i) N0 = 0
(start with no arrivals)

(ii) s < t =⇒ Ns and Nt −Ns are independent
(arrivals in disjoint time periods are independent)
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(iii) Ns and Nt+s −Nt are identically distributed
(number of arrivals depends only on the period length)

(iv) lim
t→0

P (Nt = 1)
t

= λ

(arrival probability proportional to period length, if length is small)

(v) lim
t→0

P (Nt > 1)
t

= 0
(no simultaneous arrivals)

If conditions (i)-(v) hold, then Nt follows a Poisson distribution with mean λt.

Using the flux rates calculated by MCNP for each container, we can determine the average
number of counts for each detector in a 30 second interval, λi, and reintroduce the variation
one would see in experimental observations according to a Poisson distribution as follows:

pi(xi) = e−λi
λxi
i

xi!
(II.1)

where λi is the mean value for the ith detector and xi is the detector measurement observes
at that same detector. In the development of methods which require exact knowledge of
the distribution of measurements (see Ch. III), the multivariate Poisson distribution is used
where the probability of obtaining any specific set of measurements from the detector array
is the product of the probability distributions for each detector

p (x) =
∏
i

pi(xi) =
∏
i

e−λi
λxi
i

xi!
(II.2)

A random sample from this multivariate distribution is used in the methods in Ch. IV so
that methods with exact knowledge and with collected data can be more easily compared.

Definition II.1.1. A random sample is a number of independent observations from the
same probability distribution. This involves selecting N samples from the distributions in
such a way that any such choice of samples has an equal change of being selected.

Fig. II.2 demonstrates the readings that one might expect to obtain experimentally if the
radiation escaping from a single cargo container was measured several different times. Each
point on this graph represents a single possible measurement from two separate detectors.

II.2 Cargo, Sources and Background

As stated in Sec. I.1, the material placed between a source and a detector will prevent some
of the source radiation from reaching a detector and some of these materials will emit their
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Figure II.2: After determining the mean count rates for each detector, the variation one
would observe in reality is reintroduced by drawing a random sample from a Poisson
distribution. Here, we depict a random sample of 500 measurements where the means of
two of the detectors are λ1 = 64 and λ2 = 27. One can see that the sample is grouped
more tightly near the given means and spreads in the same manner as the variance for the
Poisson distribution.

own radiation signatures. Further, background radiation and unknown source positions
can influence our ability to detect illicit materials. Any algorithm that we develop needs to
be flexible enough to recognize these situations and still accurately detect smuggled HEU.
Accordingly, the data sets used to test the algorithms have varying materials in the cargo
container, background source strength and internal source positions, which will be outlined
below. Details on the exact combinations and placement of materials used in the MCNP
simulations can be found in Appendix A.

This work concentrates on 5 different cargo loads designated L1–L5. These scenarios are
used to test the influence of materials placed within the cargo container on our ability
to detect a 1 kg HEU source. We have divided the interior of the cargo container into
32 brick-shaped blocks of equal volume as depicted in Fig. II.3, which we then fill with
various materials. L1 is treated as a base case and contains only light density (under
1 g/cm3) materials – wood, cotton, and plastic. L2 tests the effects of density variations
by replacing some of the light density material close to the source with iron, which has a
density of 7.8 g/cm3. L3 and L4 substitute different amounts of concrete (2.4 g/cm3) for
the iron in L2 providing an internal source as well as a density variation. Concrete is an

29



Figure II.3: To test the effects of variations in cargo on the effectiveness of the algorithms,
we have divided the container into 32 brick-shaped blocks, which are filled in our simulations
with different combinations of materials. Depicted here is an L1 loading scheme where the
different shades of the blocks correspond to different density materials, the lightest being
white and the most dense being dark gray. The red box is filled with cotton and the S1
source is centered in the long direction and on the back wall of this box.

Table II.1: Summary of the material combinations used and the properties that are tested
in each loading scenario.

Loading Properties
L1 base case – light density material
L2 some medium density material present
L3 light density material with a NORM source (concrete)
L4 smallest internal NORM source, light density materials
L5 all material is light density NORM (potash)

example of NORM containing large percentages of 40K, which has a 1.46 MeV gamma line.
These photons can scatter off of other materials in the container and lose energy, e.g., the
photons may reach the detectors with an energy of 1 MeV. This phenomenon can affect
our detection problem by obscuring the radiation peak attributed to the HEU source in
two ways. It can add to the background in such a way as to hide the localized peak coming
from the smuggled material or it can be so localized that it creates a false signature for the
algorithm. The difference between these two scenarios is the amount of concrete present –
L3 has roughly twice the amount of concrete than is present in L4. L5 is filled with only
a typical potash fertilizer (2.66 g/cm3). Potash is a NORM and contains 40K, as did the
concrete of the L3 and L4 scenarios. As such, these scenarios result in elevated background
measurements. The salient details can be found in Table II.1.
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Table II.2: Several source combinations were used in the test sets, designated below.

Source Designation Position and type
S0 base case – the only source is the concrete slab on which the

container rests
S0a internal NORM sources (part of the background)
S1 HEU source located 7.5 ft back and 2.5 ft in from the side

wall on the bottom of the container
S2 HEU source located 7.5 ft back and 2.5 ft in from the side

wall and 4.5 ft from the bottom of the container

In addition to the internal source provided by the NORM discussed above, each data set
includes background radiation produced by a 30.0 cm thick concrete slab placed under the
cargo container and extending past the detectors in all directions. This source is orders of
magnitude greater than that produced by either the internal NORM sources or the 1 kg
HEU source under consideration. This HEU source is placed in one of two locations either
directly on the floor of the container or suspended about halfway between the container floor
and ceiling. In both cases, the source is placed well away from either end of the container
so that greater amounts of material block the emitted radiation from the detectors. Thus,
we have various designations for different source positions, as given in Table II.2. Since the
background radiation from the concrete slab is greater near the bottom of the container,
the radiation emitted by the HEU source on the bottom of the container makes up a
smaller percentage of the detector count rate than the source suspended in the middle of
the container, making it more difficult to detect.

For most of the development of these algorithms, we will work with cargo loading L1 and
the S1 source, but with the addition of an inch thick steel shield in between the concrete
background source and the cargo container. This particular configuration is referred to as
Data Set A. The reason for working with this particular data set is twofold. Firstly, the
presence of the steel shielding cuts down on the amount of background radiation shown
in proportion to that of the local internal source for which we are searching. While this
is rather expensive to implement in practice, one could adopt such a shield in order to
improve the detection probabilities. Additionally, Data Set A gives us independent data
with which to develop and test the classification algorithms. This will help us avoid the
overfitting problem mentioned in Sec. I.6.
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II.3 Detector Configurations

The MCNP simulations involve the placement of 320 detectors on the long sides of the
container as shown in Figs. II.1 and II.4. This detector configuration will be referred to
as the original detector set. To ensure that the algorithms developed are independent of
the physical detector configuration and the magnitudes of the count rate, there are three
other detector sets that are made by combining and taking subsets of the original data
set. The original detector configuration without steel shielding for the L1 and L2 material
loadings, see Sec. II.2, have mean count rates of anywhere from 50 to 100 photons in a 30
second period, depending on the position of the detector. The detector subsets considered
here are the 30 detector subset (30Det), the column totaled subset (CTDet), and the 4 by
4 summed subset (4×4Det), which are discussed further in the following subsections. The
S1 HEU source is closest to detectors 57 and 58 as numbered in the original configuration,
Fig. II.4, and the S2 source is nearest to detector 61.

II.3.1 30Det: 30 Detector Subset

This detector set uses detectors of the same size as those in the original detector set, but,
instead of having detector surfaces completely covering the side of the cargo container, the
detectors are spaced out along the container wall. The original detectors chosen for the
subset are depicted in Fig. II.4 and it should be noted that these 30 detectors come from
both sides of the cargo container. When referring to specific detectors, the numbering
system shown in Fig. II.5a will be used. In this subset, the S1 source position is closest
to detector position 23. The rest of the diagrams in Fig. II.5 give examples of the average
count rate on each detector over a 30 second period for two cargo containers with no
internal source and one cargo container with an S1 source.

II.3.2 CTDet: Column Totaled Detectors

This data set involves detectors that are 8 times the area of the original set and are obtained
by adding up all of the individual detector readings in one column of Fig. II.4 to obtain the
new measurements. Typical detectors in this configuration with L1 or L2 material settings
have a mean count rate of approximately 500-600 counts in 30 seconds. Fig. II.6 gives
some examples of the average measurements observed if this detector configuration is used
for a few of our test configurations. It should be noted that when referring to individual
detectors, the numbering is sequential from left to right.
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8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

7 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159

6 14 22 30 38 46 54 62 70 78 86 94 102 110 118 126 134 142 150 158

5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125 133 141 149 157

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 156

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123 131 139 147 155

2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122 130 138 146 154

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153

168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320

167 175 183 191 199 207 215 223 231 239 247 255 263 271 279 287 295 303 311 319

166 174 182 190 198 206 214 222 230 238 246 254 262 270 278 286 294 302 310 318

165 173 181 189 197 205 213 221 229 237 245 253 261 269 277 285 293 301 309 317

164 172 180 188 196 204 212 220 228 236 244 252 260 268 276 284 292 300 308 316

163 171 179 187 195 203 211 219 227 235 243 251 259 267 275 283 291 299 307 315

162 170 178 186 194 202 210 218 226 234 242 250 258 266 274 282 290 298 306 314

161 169 177 185 193 201 209 217 225 233 241 249 257 265 273 281 289 297 305 313

Figure II.4: The original MCNP detector geometry consists of 320 detectors spread over
two sides of the container and numbered as given here. The top half of the numbers denotes
the detectors nearest to the S1/S2 sources and the bottom half denotes the far side of the
container. In order to allow for ease of analysis, we consider a 30 detector space subset of
the original detectors, 30Det, as marked by the highlighted red detectors in the original
array.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

(a) Numbering (b) L1, S0

(c) L2, S0 (d) L1, S1

Figure II.5: This is a depiction of measurements from the 30 detector space subset of the
original detectors, 30Det, and the numbering system of detectors. It should be noted that
the detectors in the first five columns come from the side of the container nearest the source
and the last five come from the far side. When referring to specific detectors from this
subset, we will use the numbering system given in Fig. II.5a. For three different scenarios
(two with background only, S0, and on with a smuggled source), we depict the average
count rate expected for each of the 30 detectors. Purple and blue detectors indicate low
count rates and the count rate increases across the color spectrum until the highest average
count rates are indicated in red.
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(a) L1, S0

(b) L2, S0

(c) L1, S1

Figure II.6: These figures are examples of average count rates for the column totaled subset
of the original detectors, CTDet, from both sides of the container with 20 column detectors
apiece. The first 20 detectors correspond to the side nearest the source. Detectors with
the lowest count rate are purple and the highest are red, as is usual. The first two figures
contain no internal source and the last one has a smuggled source located behind detector
8. One can see that the detectors near the edges of the container see more radiation in
general than do those near the interior, leading to the series of yellow detectors in the
middle and at each end of the row in each subfigure above. This increase in radiation is
a result of two factors – (1) some of the least dense material in each of these scenarios is
located near the ends of the container and (2) the concrete slab from which the background
radiation comes extends beyond the container bounds which allows some radiation from
outside the cargo container to interact with the detectors on the edge of the array.
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8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

7 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159

6 14 22 30 38 46 54 62 70 78 86 94 102 110 118 126 134 142 150 158

5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125 133 141 149 157

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 156

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123 131 139 147 155

2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122 130 138 146 154

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153

168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320

167 175 183 191 199 207 215 223 231 239 247 255 263 271 279 287 295 303 311 319

166 174 182 190 198 206 214 222 230 238 246 254 262 270 278 286 294 302 310 318

165 173 181 189 197 205 213 221 229 237 245 253 261 269 277 285 293 301 309 317

164 172 180 188 196 204 212 220 228 236 244 252 260 268 276 284 292 300 308 316

163 171 179 187 195 203 211 219 227 235 243 251 259 267 275 283 291 299 307 315

162 170 178 186 194 202 210 218 226 234 242 250 258 266 274 282 290 298 306 314

161 169 177 185 193 201 209 217 225 233 241 249 257 265 273 281 289 297 305 313

Figure II.7: Using the original MCNP configuration of 320 detectors placed on two sides
of the containers, we create the 4 by 4 detector subset, 4×4Det, by adding squares of
detectors as given in the checkerboard pattern above. This creates two rows of detectors
where each detector is 16 times the area of the original detectors.

II.3.3 4×4Det: Four by Four Summed Detectors

This data set involves detectors that are 16 times the size of the original set and are
obtained by adding up blocks of 16 detectors from the original set in 4 by 4 squares, as
shown in Fig. II.7. Typical detectors in this configuration for the L1 or L2 material settings
have a mean count rate of approximately 800 counts for the top row or 1300 counts for the
bottom row of detectors in 30 seconds. Fig. II.8 gives some of examples of measurements
taken if this detector configuration is used. The numbering system is shown in Fig. II.8a
and the S1 source is behind detector 12 and close to the border with detector 13.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(a) Numbering (b) L1, S0

(c) L2, S0 (d) L1, S1

Figure II.8: Examples of the average count rate in the 4 by 4 detector subset, 4×4Det,
which cover both sides of the cargo container with an equal number of detectors. The
first five columns of detectors correspond to the container side near the source positions
and the last five to the far side. Fig. II.8a gives the native numbering scheme that will be
used to refer to specific detectors here. The rest of the diagrams give the average count
rate for each detector in three different scenarios – two different loading schemes with only
background and one with a source behind the second detector from the right in the bottom
row (S1 scenario).
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CHAPTER III

CLASSIFIERS BASED ON BAYES’ RULE

Now that the basic elements of classification have been defined, we can discuss the imple-
mentation and effectiveness of several different algorithms. In this chapter, our discussion
will be confined to two techniques based on Bayes’ Rule and the Neyman-Pearson Lemma
from Sec. I.3 and I.2.5. In these methods, the necessary probability distributions are as-
sumed to be completely known to the researcher, see Sec. II.1. However, the costs of
various misclassifications are unknown. As always in our problem, the goal in classifier
development is to define a subset of the feature space, A, where a container is given the
label S if the corresponding measurement x ∈ A. We also desire that this definition of the
region A minimizes the total fraction or cost of misclassifications made by the algorithm.
While working on this problem, we need to keep in mind two goals:

1. The classifier allows no more than a prescribed fraction, α, of containers with HEU
to escape detection:

∑
x∈A

p(x|D) ≤ α.

2. Among the set of all classifiers for which the first condition holds, the total number
of false positives,

∑
x∈AC

p(x|S), must be minimal.

We can further interpret these goals in terms of the ROC plots described in Sec. I.7 by
examining the relations of these quantities to the true positive (TP) and false positive (FP)
rates:

TP rate = 1−
∑
x∈A

p(x|D) FP rate =
∑
x∈AC

p(x|S) (III.1)

On a ROC plot, a classifier satisfying the above conditions would be no more than α from
the top of the plot and as close to the upper left corner as possible. We should note that
we could have easily switched these two conditions, i.e., we could specify the allowable
fraction of false alarms and then minimize the expected number of false negatives. This
would not drastically affect the implementation of the algorithm, requiring only that the
label of the distributions be exchanged.

Two methods, called the Box Threshold Method and the Analytic Bayes’ Optimal Decision
Method, will be the subject of this chapter. The Box Method (Sec. III.1) uses information
about individual detectors to determine the decision rule and then progresses to utilizing
all the measurements for actual classification. This is the most basic of our classification
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methods and, as such, will be used as a standard by which to judge the effectiveness
of all other algorithms. The Bayes’ Method uses information about all of the detectors
simultaneously to both compute the decision rule as well as make the final classifications.
The second method allows correlations in the data to influence the ultimate classification
process, as will be shown in Sec. III.2.

III.1 Box Threshold Method

The first algorithm we will discuss is what we will call the Box Threshold Method. The
end goal of this method is, for a given set of n measurements, to define an n-dimensional
box in the feature space, Sn, such that the total expected misclassification error is minimal
and the false negative rate is equal to the specified rate α. Any container that produces
a measurement x that lies within this n-dimensional box will be classified as safe. To the
best of the author’s knowledge, this method, where every detector has an alarm threshold
that is independent of the other detectors, is similar to that currently in practice in border
security checks.

In this section, we assume that we are given exact probability distributions for the readings
from each detector (see II.1) for each type of container, so this algorithm takes advantage
of our knowledge of the exact form of the Poisson distribution. The basic algorithm is as
follows:

1. Specify an individual detector false negative rate, αind. This requires that every
single detector has the same false alarm rate when taken separately.

2. Using the Neyman-Pearson Criterion, we enforce the constraint on the false negative
rate by finding a value ci such that, for the ith detector of a container with an HEU
source having mean λi,D,

P (x ≤ ci|D) =
ci∑
x=0

λxi,D
x! e

−λi,D = αind (III.1)

3. Determine individual thresholds, ti ≤ ci, by minimizing either the expected cost of
misclassification or the expected false positive rate, as chosen by the researcher and

38



specified in the respective equations below:

ECM(ti) = P (x > ti|S) + P (x ≤ ti|D)

= 1−
ti∑
x=0

λxi,S
x! e

−λi,S +
ti∑
x=0

λxi,D
x! e

−λi,D (III.2)

P (x > ti|S) = 1−
ti∑
x=0

λxi,S
x! e

−λi,S (III.3)

4. Arrange these values ti into the vector t, then calculate the total expected false
negative rate α̃, which in this case can be found by computing:

α̃ := P (S|D) = P (x ≤ t|D) =
∏
i

ti∑
xi=0

λxi
i

xi!
e−λi (III.4)

5. Repeat steps 1-4 adjusting αind until α̃ is as close as possible to α, the desired
expected false negative rate as given by the researcher. In this particular instance,
adjustment of αind will be made using the bisection method where the function of
which we want to find the root is f(αind) = α̃ (αind)− α.

Then, x ≤ t is the decision rule that classifies an object which produces a set of measure-
ments x as safe (without a source). As a result, we have guaranteed that the false negative
rate, P (S|D), is less than or equal to the specified level α.

Remark III.1.1. Current methods of radiation detection usually use a constant thresh-
old for every detector in the system, but as we are interested in how correlations in mea-
surements affect the classification process, we will allow each detector threshold to vary
individually. Further investigation exploring this difference in approaches is warranted.

Remark III.1.2. If one chooses to minimize the total expected cost of misclassification
as in (III.2), it may not be possible to exactly achieve the specified false negative rate α.
Even though the false positive rate will continue to decrease as the threshold increases, it
may not offset the increase in the overall misclassification rate since the false negative rate
will increase as the threshold increases.

If we choose to minimize the false alarm rate as in (III.3), we can further utilize the known
structure of the distribution functions to simplify our computations. Using the fact that
the cumulative distribution function of any one dimensional distribution increases as the
argument x goes to infinity, we know that the false positive rate given by P (x > ti|S) will
decrease as the threshold value increases. More simply, the false positive rate for a one
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dimensional function is a monotonically decreasing function. Therefore, with this objective
function, we can develop the thresholds using only information about the distribution of
measurements from containers containing HEU, p(x|D).

In this particular case, we are guaranteed that the distributions of the individual detector
readings are independent Poisson distributions, which means that the multivariate distri-
bution can be expressed as the product of the distributions for each detector:

P (S|D) = P (x ≤ t|D) =
∏
i

ti∑
xi=0

λxi
i

xi!
e−λi =

∏
i

P (x ≤ ti|D) (III.5)

As a result, the need for iteration of the first three steps of the above algorithm could
have been eliminated by taking the nth root of the desired false negative rate α and then
finding the threshold ti satisfying (III.1) where αind = n

√
α. By leaving the iteration steps

in the algorithm, this process could easily be extended to the situation where the exact
distribution in unknown, but adequate samples of the distributions are present. Then, a
step 0 would need to be included in the algorithm where the sample set would be projected
onto each detector space to get the set of approximated 1D distributions, see Fig. III.1.
This would also require that, instead of using the analytic forms of the distribution, the
calculation of the individual detector false negative rates and the total false negative rates
would have to be done by numerical integration using the sample points.

III.1.1 Choice of Objective Function

For initial testing, we examine the minimization of both the expected cost of misclassi-
fication and the false positives with the constraint on the total false negative rate. The
30 detector subset described above (Sec. II.3.1) was used to decrease the computational
requirements and simplify the analysis. For each of the thresholds, ti, only information
from a single detector was used to determine the optimal threshold, although the training
set was labeled as to whether a point was generated as a result of measuring a container
with a source or without. For these tests, the respective objective functions were imple-
mented using an approximation method. We began with multi-dimensional sample data
consisting of NS samples of measurements from safe cargo containers and ND samples from
dangerous containers. Then, we worked component-wise with the sample data and binned
it appropriately to approximate the distributions of measurements for each detector as
discussed previously. Instead of using the explicit analytic form of the objective functions
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Figure III.1: Illustration of the Box Method implementation for a 2 detector system with
minimization of the false positive rate. Assume that we are given many samples of two de-
tector measurements that we might observe when scanning a specific kind of container that
contains a HEU source (the scatter plot at the top right). First, we project these samples
into the 1D spaces for the set of all detector readings, essentially looking at measurements
from one detector at a time while completely ignoring the other measurements, as given
by the frequency plots along each access of the scatter plot. Next, we use the Neyman-
Pearson criterion to determine a threshold with a specified false negative percentage, αind,
which are denoted by the red line in each frequency plot. Finally, we use these individual
thresholds to create a rectangular area in the original feature space, which corresponds
to the box created by the axes and the two red lines in the scatter plot. The interior of
this rectangle is designated as the region A and points that fall inside this region will be
classified as belonging to safe cargo containers. Given this defined region we can count the
total fraction of false negatives that fall inside this region to get the total false negative
rate, α̃ and iteration can be used to adjust the region until α̃ = α.

41



as in (III.2) and (III.3), we approximate the false positive and negative rates by:

P (xi > ti|S) ≈ 1
NS

∑
xi>ti

1 P (xi ≤ ti|D) ≈ 1
ND

∑
xi≤ti

1 (III.6)

Once these functions were implemented, the optimal thresholds were determined using a
trust region Hessian based algorithm from MATLAB called fmincon. However, as was
mentioned in Sec. I.4.2, this optimization algorithm requires a smooth objective function
to operate effectively. Thus, a mollifier was employed to reduce the step function nature of
this objective. As a result, points far outside the boundary take values near one, those well
inside the boundary are close to zero and points near the boundary interpolate between
the two extremes.

We can see examples of the distributions of measurements for four detectors after we have
projected from the 30 dimensional space into each of the individual detector spaces in
Fig. III.2. For most of the detectors, the distribution of measurements from a container
with and without a source are indistinguishable as in Fig. III.2a. This is a result of the
behavior of radiation described in Sec. I.1 and the small size of the source. Detectors
nearer the source will have more separated distributions, as in the remaining figures in
Fig. III.2, and will provide a better opportunity to classify containers correctly. For this
particular container loading (Data Set A) and detector combination (30Det), only two
detectors can actually see enough radiation from the source to trigger/create a reasonable
threshold alarm – Detectors 22 and 23.

This distinction of two detector classes is more easily shown in Table III.1, where we
compare the false positive and false negative rates for thresholds developed with each
objective function. As one can see, for most of these detectors with the specified false
negative rate, the false positive rate is over 90%. This means that our classification method
based on these detectors is so conservative that we will have false alarms on most of our
containers. This is not a favorable outcome because it requires that too many containers
be needlessly opened, adding a large cost to our algorithm in the field. Looking at the
frequency plots for these detectors in Fig. III.2, it is easy to see why such a classification
is developed as the graphs of the two distributions overlap considerably in such cases.

We can better understand the information provided by this data and the thresholds de-
veloped by analyzing the sum of the false negative and false positive rates β = P (xi >
ti|S) + P (xi ≤ ti|D) given in Table III.1, which must take on a value in [0, 2]. For most of
the detectors here, β obtains a value near 1. However, for detectors 22 and 23, this sum is
significantly less than 1. This suggests a way to distinguish those detectors with informa-
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(a) Histogram for Detector 21 (b) Histogram for Detector 22

(c) Histogram for Detector 23 (d) Histogram for Detector 13

Figure III.2: Sequentially generated thresholds were produced using both the false positive
(solid black line) and expected cost of misclassification (dashed pink line) objective func-
tions according to the procedure described previously in Sec. III.1. The blue bars show the
distribution of the safe measurements and the red bars show the dangerous measurements.
In all of the pictured cases, both methods provide the same threshold and this is a common
occurrence in this algorithm. Further analysis of these figures can be found in Sec. III.1.1.
These measurements were generated using Data Set A (Sec. II.2).
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Table III.1: Expanding on Fig. III.2, this table provides a list of the error rates in the
sequential determination of detector thresholds for both the false positive and ECM objec-
tive functions. Using the two different objective functions described in Sec. III.1, we use
the information from Data Set A (Sec. II.2) to determine detector thresholds and calculate
the false positive and false negative rates for each objective function. From the data below,
we can see that for most detectors, the false positives rates are so high that using only one
detector to make the decision is not worth the cost of implementation, even with control
over the false negative rate for each detector.

False Positive Optimization ECM Optimization
Detector Threshold False Pos. False Neg. Threshold False Pos. False Neg.

1 3.27 0.94 0.05 3.27 0.94 0.05
2 0.37 0.96 0.05 0.00 0.96 0.04
3 1.11 0.95 0.05 0.00 0.96 0.03
4 2.07 0.95 0.05 0.00 0.97 0.03
5 3.46 0.95 0.05 0.00 0.97 0.02
6 3.27 0.95 0.05 0.00 0.97 0.02
7 3.16 0.94 0.05 3.16 0.94 0.05
8 2.27 0.95 0.05 0.00 0.97 0.03
9 1.26 0.96 0.05 0.00 0.96 0.03
10 2.60 0.95 0.05 0.00 0.97 0.02
11 5.50 0.95 0.05 0.00 0.98 0.02
12 5.57 0.93 0.05 5.57 0.93 0.05
13 5.68 0.88 0.05 5.68 0.88 0.05
14 3.28 0.95 0.05 0.00 0.97 0.02
15 3.62 0.95 0.05 0.00 0.97 0.02
16 5.99 0.93 0.05 5.99 0.93 0.05
17 4.86 0.94 0.05 4.86 0.94 0.05
18 5.77 0.94 0.05 5.77 0.94 0.05
19 3.70 0.95 0.05 0.00 0.97 0.02
20 3.64 0.95 0.05 0.00 0.97 0.02
21 7.66 0.94 0.05 7.66 0.94 0.05
22 14.99 0.55 0.05 14.99 0.55 0.05
23 19.64 0.12 0.05 19.64 0.12 0.05
24 5.37 0.95 0.05 4.26 0.96 0.03
25 5.97 0.94 0.05 5.97 0.94 0.05
26 5.76 0.95 0.05 0.00 0.98 0.02
27 3.99 0.95 0.05 0.00 0.97 0.02
28 5.95 0.94 0.05 5.95 0.94 0.05
29 6.77 0.93 0.05 6.77 0.93 0.05
30 6.84 0.94 0.05 6.84 0.94 0.05
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tion about the source from those without. This sum also tells us whether the threshold we
have calculated is useful in classification. When β is close to or greater than 1, then using
such a detector singly will misclassify the larger portion of our cargo containers.

The final thing that should be noted when analyzing the information given in Table III.1
is the difference between the two objective functions – false positive minimization and
expected cost of misclassification (ECM) minimization. The major distinction between
the two methods is that the false positive minimization will always achieve the individual
false negative rate αind for every detector, while the ECM method may not achieve this
constraint for all detectors. In particular, for detectors where the two distributions overlap
significantly, we can see that P (xi ≤ ti|S) ≈ P (xi ≤ ti|D), so

ECM(ti) = P (xi > ti|S) + P (xi ≤ ti|D) ≈ P (xi > ti|S) + P (xi ≤ ti|S) = 1 (III.7)

With such a flat objective function for all possible choices of threshold, ti, the standard
optimization algorithms will not find a global minimum of use in classification. Several
studies were undertaken where the false negative probability α = P (xi ≤ ti|D) was specified
at a variety of levels. In each case, those detectors with separation in the distributions of the
two classes produced the same threshold through minimization of either the false positive
rate or the expected cost of misclassification. Furthermore, the specified false negative rate
for each such detector, αind, was achieved with both methods. However, the global false
negative rate P (x ≤ t|D), which is calculated using information about all of the detectors,
was more difficult to control when using the ECM objective function as a result of the flat
functions for most detectors described above. Thus, while the threshold for each individual
detector was increased iteratively in our algorithm, there was not enough information to
motivate a change in the global false negative rate. Thus, for the rest of this work and in
comparison with other algorithms, we will minimize the false positive rate to simplify the
calculations and provide greater control over the global false negative rates.

III.1.2 Challenges in Controlling the Global False Negative Rate

Every time that the Box Method is implemented to determine detector thresholds, we need
to calculate the global false negative rate:

P (S|D) = P (x ≤ t|D) =
∏
i

ti∑
xi=0

λxi
i

xi!
e−λi (III.8)

which may involve summation over a possibly high dimensional feature space. Thus, con-
trolling global error rates can be computationally expensive, as stated in Sec. I.6. Addition-
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Figure III.3: There are several challenges in adjusting the box threshold to have a specified
false negative rate. Here we have two different box thresholds in a 2 dimensional measure-
ment space. By adjusting the detector 2 threshold by 1 count, we can generate two boxes
– Box 1 (black line) has a false negative rate of 0.0498 and Box 2 has a rate of 0.0369. We
can not further adjust this particular threshold to get any false negative rate in between
these two values because of the discrete nature of the Poisson distributions.

ally, the discrete nature of the Poisson distribution can present computational challenges.
Due to the fact that we are dealing with a rectangular space, every time we adjust the
boundaries of the region, we add a number of points to the labeled safe region, which
means that we can not specify the false negative rate exactly. For instance, in Fig. III.3,
we have two boxes in two dimensional feature space, where we have changed the detector
2 threshold by 1 count. The inner box has a false negative rate of α = 0.369 and the outer
box has α = 0.498. Since the photon count rate measurements lie at integer points, no
values of α between 0.369 and 0.498 can be achieved by varying the threshold of detector
2.

We will further discuss the performance of the Box Method in Sec. III.3, when it is compared
to the Bayes’ Optimal Decision Method.

III.2 Analytic Bayes’ Optimal Decision Method

The other option for a classification method using analytic distribution information that
will be discussed in this study is the Bayes’ Optimal Decision Method. Unlike in the
previous method, all the detectors that will ultimately be used to make the classification
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will also be used simultaneously to arrive at the decision rule. This will allow correlations
between the measurements to be exploited in order to produce more accurate classifications.
In fact, this method will achieve the optimal decision rule. However, it may not be possible
to achieve this in practice as we are not usually provided with complete analytic knowledge
of the distributions of measurements.

Following the procedure of Sec. I.3, we would like to find the region of feature space A
which minimizes the total expected cost of misclassification (ECM)

ECM = cS|DP (S|D) + cD|SP (D|S)

= cS|D
∑
x∈A

p(x|D)P (D) + cD|S
∑
x∈AC

p(x|S)P (S) (III.1)

subject to the constraint that the false negative rate P (S|D) must be no more than α, i.e.,∑
x∈A

p(x|D)P (D) ≤ α. This will be done utilizing the likelihood ratio formulation where a

cargo container is classified as safe if its measurement, x, satisfies the inequality

cS|DP (D)
cD|SP (S) ≤

p(x|S)
p(x|D) (III.2)

where cS|D is the cost of a false negative, cD|S is the cost of a false positive, P (·) is the
fraction of containers of the specified class, and p(x|·) is the conditional distribution of
measurements of the given class.

As discussed in Sec. I.2.5, determining the exact costs of each type of misclassification and
even the correct proportions of containers in the overall population can be exceedingly
difficult. Therefore, we will treat the left hand side of (III.2) as a constant and utilize
the Neyman-Pearson Lemma (Theorem 1) to enforce our constraint. Thus, our problem
becomes to determine a value for the cost ratio η such that a container is labeled safe if

η ≤ Λ(x) = p(x|S)
p(x|D) (III.3)

where η is chosen so that P (Λ(x) ≥ η|D) ≤ α. In this fashion, we will trade estimation of
the misclassification costs in the original cost minimization formulation for control of the
global false negative rate.

Remark III.2.1. It is important to note that we could have specified the overall false
positive rate that we would find acceptable instead of the false negative rate and this would
not substantially change the overall algorithm. The general statement of the Neyman-
Pearson Lemma makes this possible by changing the labeling system and a few inequalities.
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III.2.1 Determination of Cost Ratio

One way to determine the cost ratio is through a root finding approach. We begin by
assuming that there is a value η0 such that the safe region is defined by p(x|S)

p(x|D) ≥ η0 and
has the desired false negative rate α = P (Λ(x) ≥ η0|D). Then for any other choice of η,
we can determine the associated false negative rate, αη = P (Λ(x) ≥ η|D). One can then
adjust η until αη is as close as possible to the specified level α by finding the roots of

f(η) = αη − α = P (Λ(x) ≥ η|D)− α. (III.4)

This turns the problem of finding thresholds for multiple detectors into an effectively one
dimensional problem.

Furthermore, we can notice that f(η) is a monotonically decreasing function as a result
of the properties of probability distributions. One of the basic properties of probability
distributions is monotonicity, i.e., if A ⊆ B, then P (A) ≤ P (B). Thus, if η < β, then this
implies that {x|Λ(x) ≥ β} ⊂ {x|Λ(x) ≥ η} and hence

P (Λ(x) ≥ β|D) ≤ P (Λ(x) ≥ η|D). (III.5)

Combining this monotonicity with the normalization of probability measures, we can see
that, as η → 0, P (Λ(x) ≥ η|D) → 1 and for η large, P (Λ(x) ≥ η|D) will be near 0, so
f(η) will range from 1 − α to −α as η grows. From the monotonicity property, we can
also conclude that there is an interval [a, b] of finite length such that f(η) is close to 0 for
all η ∈ [a, b]. This function may not actually attain 0 because we are dealing with the
discrete Poisson distribution rather than a continuous distribution. Measurements drawn
from the Poisson distribution are either outside of the set {x|Λ(x) ≥ η} or inside and as
such the summation over this set has a step like increase when a new point is included.
This is similar to the problem mentioned in Sec. III.1.2 for the Box Threshold Method.
Likewise, the discrete nature of the distribution means that we may not be able to choose
one particular value of η as the root of the function f(η) since, by definition, neither
distribution varies smoothly.

We will use a standard bisection method to locate roots of f(η) to within a reasonable
tolerance, thereby determining an appropriate value for η0. Because we are generally
working in high dimensions, we will use stochastic integration techniques to approximate
P (Λ(x) ≥ η|D) instead of actually performing the summation:

P (Λ(x) ≥ η|D) =
∑

{x|Λ(x)≥η}
p(x|D). (III.6)
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This means that we also avoid having to parameterize the boundary of the region and avoid
some of the computational problems that can occur in high dimensional integration.

As a result of this treatment of the cost ratio, we can make use of our calculated values
for η and known information to estimate the dollar cost of a false negative cS|D for a par-
ticular implementation of the algorithm. For example, we know that there are roughly
11 million containers entering US ports each year [53] and according to the International
Atomic Energy Agency (IAEA), there have been 2331 confirmed incidents involving illicit
trafficking and other such unauthorized activities involving nuclear material in the period
from 1993 to 2012, 16 of which have involved “unauthorized possession” of HEU or Plu-
tonium [22]. Supposing that all of these events were to occur by using cargo containers
to smuggle such material into American ports, we have an average of 0.8 events per year,
giving us the proportions of each container type in our population as P (D) ≈ 7.3 × 10−8

and P (S) = 0.99999993. We can further estimate the cost of physically searching the cargo
container needlessly, cD|S , by assuming that it will take 8 man hours to perform the search
and the average dock worker is paid $14 per hour. Giving these workers a hazard pay of
$25 per hour, we can assume that the cost of such a needless search is cD|S = $200. Thus,
the cost of allowing nuclear material to escape detection by our algorithm is

cS|D = η cD|S
P (S)
P (D) ≈ 2.7× 109η (III.7)

Therefore, if we found that a 5% false negative rate gave a value of η = 0.1, then our
algorithm has assigned a dollar value of around 274 million to the destruction of a city.
In comparison, Hurricane Katrina cost roughly 108 billion dollars in property damage and
destruction [29]. It should be noted that the estimate of P (D) used here is different from
the true average value as a result of our assumptions about the IAEA statistics. The events
recorded by the IAEA are international statistics, not just those events occurring at Amer-
ican ports. Furthermore, 25 kg of HEU are required by the IAEA before a “significant
quantity” of material is obtained. The IAEA defines a significant quantity to be “the ap-
proximate amount of nuclear material for which the possibility of manufacturing a nuclear
explosive device cannot be excluded” [23]. Based on this fact, 25 crates, each containing 1
kg of HEU, would need to be smuggled into the country in a relatively short time period.
If we assume that all of the material must make it into the country within a single year, the
proportions of each container type become: P (D) = 2.3×10−6 and P (S) = 0.999997. Per-
forming the calculation in the same manner as before, cS|D ≈ 8.8× 107η, which decreases
the cost of allowing a single container to escape detection significantly (≈ $9× 106). Since
the total smuggled source requires 25 crates, this translates to a cost of approximately $220
million for the entire 25 kg of HEU.
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We can also reverse our procedure and determine the equivalent cost of searching every
container, cD|S , if we suppose that the destruction of a city through nuclear material is
equivalent to the impact of this hurricane. In this case,

cD|S =
cS|D
η

P (D)
P (S) ≈

7.8× 103

η
(III.8)

With the same 5% false negative rate and η = 0.1 as in the previous analysis, this compu-
tation suggests that hand searching a single container is worth on the order of 78 thousand
dollars. In reality, the cost of searching containers is far less than this and leads one to
conclude that searching containers is worth the cost in return for a large decrease in risk.
Furthermore, these calculations suggest that it might be more appropriate to control the
overall false alarm rates of the system if one wants to control the cost of the entire system
since the general population contains many more safe containers than those with a source.
However, we will continue to constrain the false negative rate in this study for consistency.

III.2.2 Initial Tests of the Bayes’ Optimal Method

The actual shape of the region defined by specifying Λ(x) ≥ η is highly dependent on
both the character of the distributions used to determine the value η and the global false
negative rate α. For example, tests were completed using two detectors where the distribu-
tion of measurements for containers with a source, p(x|D), changed from a single Poisson
distribution to a bimodal distribution that is the sum of two Poisson distributions. Both
tests had the same distribution for safe measurements, p(x|S), which is a two-dimensional
Poisson distribution with mean (13.0, 17.0). In the first test (Fig. III.4a), the mean of
the dangerous distribution was placed at (30.0, 23.0). In the second test (Fig. III.4b), the
means of the two dangerous distributions are (30.0, 23.0) and (25.0, 35.0). Given the same
false negative rate α = 0.05, we can see that the two curves generated differ substantially
as the bimodal distribution has forced the boundary of the Bayes’ Optimal Decision Re-
gion to bend. As a result, accurate and complete characterization of the distribution of
measurements is necessary in order to develop the most accurate classification algorithms.

Alternatively, we can study the region described by the Bayes Optimal Decision rule for
a fixed distribution as the percentage of false negatives is varied. Using the bimodal test
distribution as in the previous discussion, tests were completed allowing only the desired
false negative rate α to vary. In this particular case, it appears that the boundaries vary
along two vectors that are linked to the difference in means of the two distributions and the
parameter that changes is the distance from each major boundary portion to the origin,
as seen in Fig. III.5. More generally, the overall shape of the region, A, appears to be
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(a) Single peak distribution and boundary (b) Bimodal distribution and boundary

Figure III.4: Given here are the Bayes’ Optimal Decision Boundaries for two different
distributions as determined by a root finding method. This simple example shows how
the character of the distributions influences the shape of the region A and emphasizes the
need for an accurate characterization of the entire feature space for the most complete
classification.

Figure III.5: Effects of varying the allowable false negative rate on the shape of the Bayes’
Optimal Decision Region. As the level α increases, the boundary moves further away from
the origin, but the overall shape remains constant, suggesting that the shape is controlled
by the character of the distributions alone.
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Table III.2: Variations in the cost ratio η and false positive rate as the false negative
constraint is changed for a fixed distribution, corresponding to the curves in Fig. III.5.

False Negatives η False Positives
0.025 1.3580 0.0307
0.05 0.3629 0.0121
0.1 0.0736 0.0039
0.2 0.0115 0.0006

controlled by the character of the distributions used to generate the decision boundary
and the false negative level α controls the size of the region. This could prove useful in
updating algorithms in practice as one large detailed study could be made to understand
the character of the region, which is then adjusted using more naive methods to obtain
specific false negative rates as requested.

It is interesting to note the trade off in error types caused by adjusting the decision bound-
ary. Table III.2 shows the computed values of η and the false negative and false positive
rates for each of the optimal decision regions in Fig. III.5. As the percentage of false nega-
tives doubles, the false positive rate decreases by an order of magnitude. This may not be
true for the realistic distribution of measurements, but it will allow us to discuss the effects
of the disparate numbers of safe and dangerous containers in our population. In particular,
with the nearly 40 million safe containers each year passing through ports, decreasing the
false positive rate corresponds to a significant decrease in the number of highly scrutinized
containers. This translates to a reduction in cost for scanning systems and hence must be
evaluated when determining the acceptable risk of undetected smuggled nuclear material.

III.3 Comparison of Analytic Algorithms

There are several metrics through which we can compare our classification algorithms,
including:

1. expected false positive rate FP (α) for a fixed false negative rate, α,

2. total probability of error E(α) = P (S|D)P (D) + P (D|S)P (S) for a fixed false neg-
ative rate; in this calculation, we will use the proportions of each type of container
found in Sec. III.2.1,

3. the trade-offs in these values as a result of varying the false negative rate.

In this section, we will discuss these methods with the assistance of ROC curves, as de-
scribed in Sec. I.7 for the Box Threshold and Bayes’ Optimal Decision Rule methods.
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Table III.3: For a fixed false negative rate of α = 0.0668, we can compare the false positive
and total error rates of the Box Threshold and Bayes’ Optimal methods. In the calculation
of the total probability of error, we set P (D) = 5.8275 × 10−5 and P (S) = 0.999942. For
both metrics, the Bayes’ Method performs two orders of magnitude better than the Box
Method.

False Positive FP (α) Total Error E(α)
Box 0.1378 0.137796

BODR 0.0033 0.003304

These methods will also serve as benchmarks by which we can judge the effectiveness of
the algorithms described in Ch. IV.

Before we begin the analysis, it is important to note that, for any of these comparison
metrics, one must integrate or sum over a portion of the feature space, which can be high
dimensional. This is notoriously difficult (see Sec. I.6), so we will be approximating these
quantities using Monte Carlo integration techniques. For example,

P (x ∈ A|D) =
∫
A

p(x|D) dx = 1
N

N∑
i=1

IA(xi) (III.1)

where xi are a collection of N samples drawn from the distribution p(x|D) and IA(·) is
the standard indicator function returning 1 if x ∈ A and 0 otherwise. This approximation
of the integral is well known to converge as 1/

√
N . Similar results hold for the case of

discrete distributions where the integral in (III.1) is replaced by a summation.

Let us begin our analysis by examining the two detector scenario depicted in Fig. III.6,
where the mean of the safe distribution is at (13, 17) and the mean of the dangerous
distribution at (25, 30). We begin by specifying the false negative rate as α = 0.0668 and
following the procedures outlined in this chapter determine both the Box Thresholds and
Bayes’ Optimal Decision Rule for this data. From here, we can compare the false positive
and expected cost of misclassification for each method as seen in Table III.3. For this
particular level α and distribution pair, we can see that the Bayes’ Method outperforms
the Box Threshold method in both the false positive and total probability of error. One
should also note that because there are so many more safe containers in the population,
the false positive rate is a good approximation for the overall error probability, so in the
future, we will just use this quantity as a measure of algorithm effectiveness.

Examining this single false negative level does not provide a complete picture of the classi-
fication method. We will discuss the sensitivity of the two algorithms to physical changes
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Figure III.6: Pictorial comparison of the regions generated by the Box Threshold and Bayes’
Optimal methods with a two dimensional feature space. The means of the distributions
are (17, 13) and (25, 30). The cost ratio for the Bayes’ Method was η = 0.0911.

in the cargo and source in Ch. VI, but here we will discuss how variations in the false
negative constraint affect the performance of the two algorithms. First, we will use ROC
curves in order to analyze the performance of the two algorithms. As in Sec. I.7, this tool
examines the recall (true positive) rate versus the false positive rate. We will begin with a
sample set of measurements containing equal proportions of measurements from both safe
and dangerous container types. This is not true in the realistic population setting, but it
will be computationally useful in this analysis. For each of a range of false negative rates,
the false negative and true positive values were calculated as shown in Fig. III.7a. As one
can see for each tested value of our constraint, the Bayes’ Optimal Method outperforms the
Box Method since all of the points lie closer to the upper left corner of the plot. It should
be noted that this plot has been normalized in such a way that if one wanted to examine
the changes in false positive rate as a function of the false negative constraint, Fig. III.7a
would simply be reflected across the line y = 0.5. In Fig. III.7b, one can see that varying
the false negative level can affect both the accuracy and the precision of the algorithms.
However, the Bayes’ Method produces more precise, accurate classifications than the Box
Method.

We can perform a similar analysis for higher dimensional spaces to investigate the effects
of increasing the available information on our algorithm. In Fig. III.8, a 6 detector ar-
ray, which includes the two detectors analyzed previously, is used in order to perform the
calculations for the two plots as described above. These detectors were chosen from the
30Det subset by a feature selection method, discussed in Ch. V, to be the most useful in
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(a) ROC Plot (b) Accuracy v. Precision Plot

Figure III.7: Depicted here for a two dimensional feature space are the ROC and Accuracy
curves for comparing classification methods irrespective of a specific desired false negative
constraint, α. The left plot is a standard ROC plot analyzing the relative trade off of
cost versus benefit. In this case as well, the Bayes’ Optimal Method is a more perfect
classifier than the Box Method. The right plot shows that the Bayes’ Method is both
more precise and more accurate than the Box Method and that changing the false negative
constraint does affect both of these quantities. The means of the distributions are (17, 13)
and (25, 30), as before.

classification as the two distributions are the most well separated of the available informa-
tion. As one can see in the diagrams, the ROC curve for the Bayes’ Method is once again
closer to the corner indicating a superior classifier while the Box Method is little better
than a random guess in this higher dimensional space. Similarly, the Bayes’ Method is still
more accurate than the Box Method. Unfortunately in this case, increasing the number of
features available in order to make the classification appears to decrease our accuracy as
compared to the 2 detector scenario and increased the false positive rate for any fixed false
negative rate. This phenomenon is explained by a combination of the Curse of Dimension-
ality and the introduction of redundant data. We have added computational complexity
by increasing the dimension of our array without adding much more information about the
nature of the source detection problem. This is reflected in the fact that measurements
from any of the 4 new detectors are almost indistinguishable between classes, when taken
singly.
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(a) ROC Plot (b) Accuracy v. Precision Plot

Figure III.8: Shown here for a 6 dimensional feature space are the standard ROC and
Accuracy/Precision plots. The ROC curve for the Bayes’ Method is once again closer to
the corner indicating a more perfect classifier while the Box Method is little better than a
random guess in this higher dimensional space. The Bayes’ Method is still more accurate
and more precise than the Box algorithm.
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CHAPTER IV

OPTIMAL CLASSIFICATION WITH SAMPLE DATA

Perhaps, one of the more natural ways to consider this classification problem is as an
optimization problem with an objective function and constraints. This chapter examines
two different classification methods that incorporate sample measurements as opposed to
analytical information about the distributions of measurements within the framework of
optimization. We will first consider an approach involving a naive optimization formulation
and then move to a support vector machine implementation. The classical optimization
formulation, while more intuitively understandable than the support vector machine ap-
proach, provides several examples of the challenges of implementing classification methods
with discrete distributions, which we will go over in depth in Sec. IV.1.2.

In both these cases, we will use sample data pulled from the same distributions and cargo
loading scenarios used in the previous chapter, but the classification algorithm will be
developed with no knowledge of the underlying distributions. Instead of two distributions
that are referred to as either “safe” or “dangerous” depending on whether they describe
the possible measurements from an innocuous container or one containing an HEU source,
we have two sets of example measurements with the same labeling system. This is all
explained in detail in Ch. II, including how the example measurements are generated.

IV.1 Misclassification Minimization as an Optimization Problem

In the previous section (Sec. III.3), we noticed that because our population of containers has
far more harmless containers than those with sources, we can use minimization of the false
positive rate with the false negative rate constrained to obtain an almost identical result.
This was, in fact, the first approach taken to analyze this detection problem. However,
as mentioned in the literature search (Sec. I.4), this approach is not very effective in two
dimensions let alone in higher dimensions. We will first discuss the construction of the
objective and constraint functions from sample measurements. Then, we will examine a
few challenges of practical implementation and some of the initial results obtained with
this optimization formulation.

IV.1.1 Construction of the Optimization Problem

Here we will begin with a collection of samples – NS of which are obtained by observing
containers of type S and ND associated with class D. For simplicity when discussing
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this formulation, we will abuse the notation x ∈ S to denote a measurement x from this
being obtained by observing a container of type S, and similarly for measurements from
dangerous containers, D.

As always, our goal for any classification approach to this problem is to minimize the
expected number of misclassifications while restricting the expected number of false neg-
atives (the percentage of containers containing an HEU source that escape detection) to
be less than a specified percentage. In a similar manner to the methods from Ch. III, the
optimization algorithm will ultimately define a region of the measurement space, A ⊂ Sn,
and a container will be labeled as “safe” if its associated features lie within this region, i.e.,
x ∈ A.

Our first task is to create the objective function – a function that defines the expected
probability of obtaining a false positive as a function of the region A. We can utilize
the same principles that make Monte Carlo integration possible in order to define the
percentage of false positives produced by the region A as follows:

f (A) = P (S|D) =

∫
AC

p(x|S) dx∫
Sn

p(x|S) dx ≈
1
NS

∑
x∈S

IAC (x) (IV.1)

where p(x|S) is the conditional distribution for safe measurements, possibly unknown,
from which the NS sample measurements in the “safe” set, S, are drawn. Simply put, this
function determines the fraction of points from our random sample of safe measurements
which lie outside of the region A.

Similarly, the number of false negatives, which we are constraining in order to produce a
reliable algorithm, can be denoted by:

g (A) = P (D|S) =

∫
A
p(x|D) dx∫

Sn

p(x|D) dx ≈
1
ND

∑
x∈D

IA(x) (IV.2)

where p(x|D) is the distribution of “dangerous” measurements, A is as before, D is the set
of example measurements from “dangerous” containers and ND is the number of points in
the set D.

This gives us the optimization formulation:

min
A
f (A) subject to [α− g (A)] ≥ 0 (IV.3)
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where α is a maximal allowable false negative percentage specified by the user. We are
searching for a region A that will satisfy these conditions. However, the set of all possible
such subsets of the measurement space Sn = Nn ⊂ Rn is infinite, so for the sake of decreas-
ing the computational complexity of the problem, we will limit our discussion to regions
that can be described by the intersection of half spaces. This will be further restricted so
that the user specifies the number of half spaces and the normal of the bounding hyper-
planes. To designate a set of M hyperplanes, one requires M n-dimensional vectors, vi,
which denote the normal vectors for each plane, and magnitudes, ci ∈ R, which are used to
specify the distance from the origin to the plane along the corresponding vector. In other
words, the region A is defined by a set of vectors V = {vi} and a point from the set:

XV := {c ∈ Rn | vi · x ≤ ci ∀x ∈ S with vi fixed for i = 1, . . . ,m} (IV.4)

As a result of this description of the space XV, our minimization problem is really to
choose c ∈ XV such that we have satisfied (IV.3). The classification rule that results will
guarantee that any point, x, that is in the safe region, A, must satisfy all of the following
equations:

vi · x ≤ ci i = 1, ...,M (IV.5)

for V fixed by the researcher and c chosen as a result of the optimization approach with
provided training data.

IV.1.2 Implementation of the Optimization

Since the point of this study is the discussion of cost-sensitive classification algorithms,
not the study of the inner workings of standard optimization techniques, we examined
the effectiveness of several different optimization software packages – TAO, OPT++ and
MATLAB. TAO and OPT++ had several limitations on the types of allowable constraints.
In this problem, this ultimately involved a mixture of linear and non-linear inequality con-
straints as discussed here as well as in Sec. IV.1.1, thereby rendering TAO and OPT++
ineffective. As such, MATLAB was chosen for analysis purposes as it is a robust soft-
ware package with greater flexibility in the constraints. Other challenges with the Naive
Optimization formulation (Sec. IV.1.1) will be discussed in this section. Ultimately, the
methods for overcoming the difficulties associated with this approach will be in vain, since
the initial choice of vectors, vi, have a much larger impact on the efficiency of the developed
classification rule.

There are two issues with our original construction of the problem that need to be ad-
dressed. First, we need to examine the minimization of real-valued functions that only
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(a) Smoothed ε = 0.001 (b) Smoothed ε = 0.2

Figure IV.1: Using the mollified versions of our objective function, we have many versions
of a one dimensional optimization function for our problem, two of which are depicted
here. Using (IV.8), the overall shape of the function is preserved, but the flat regions that
can create false local optima are minimized. As ε → 0, the smoothed objective function
approaches the original function given in (IV.1).

change their value at a discrete set of points. Recall from (IV.5), we are optimizing over
c ∈ XV. Most standard optimization methods for determining such quantities require
information about the partial derivatives of the objective function with respect to these
variables. Such data is frequently determined by numerical approximation using changes
in the function value. However, in our problem, the objective function, f(A), only changes
when a new point in the integer lattice becomes a member of the region A as a result of the
summation of indicator functions, IA(x). If δA is too small here, then f(A) = f(A+δA) and
the derivative approximation will result in f ′(A) = 0. Thus, the optimization algorithm
will not be given any useful derivative information and terminate with a false optimum,
when in fact the function is simply very flat in that region, see Fig. IV.1a. This is a well
known problem in the realm of optimization and the most common method for alleviating
the computational challenge is the use of mollifiers, which smooth away these false optima
as in Fig. IV.1b.

Definition IV.1.1. We can define a family of mollifiers φε = ε−1φ(x/ε) in terms of
convolution with a function T by requiring that:

1. lim
ε→0

T ∗ φε = T (the original function can be recovered)

2. supp (T ∗ φε) ⊂ supp (T )
⊎

supp (φε) (the support of the smoothed function does not
deviate too much from that of the original function)
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We begin, in our particular case, to construct our smoothed function by noticing that the
statement x ∈ A is equivalent to stating that x · vi ≤ ci for all i as shown in (IV.5) and so
the indicator function on A can be decomposed as:

IA(x) =
M∏
i=1

Ix·vi≤ci(x) (IV.6)

Thus, we can generate a smoothing function for the whole indicator by smoothing each
of the component indicator functions. We can write a single indicator function as the
shifted Heaviside function, H(ci − x · vi). It can be shown that convolving φ(x) =[
π
(
1 + (ci − x · vi)2

)]−1
with this Heaviside function satisfies all of the above proper-

ties over a sufficiently large interval on the real line and provides the smoothed indicator
function:

ti(x) = 1
π

arctan
(
ci − x · vi

σε

)
+ 1

2 (IV.7)

Therefore, we can use the smoothed approximation of the indicator function:

IA(x) ≈ tA(x) =
M∏
i=1

ti(x) =
M∏
i=1

( 1
π

arctan
(
ci − x · vi

σε

)
+ 1

2

)
(IV.8)

where ci and vi are the same as in the half space description above, σ is the square root
of the variance of the distribution of safe points, and ε allows for the adjustment of the
smoothness of the function. As ε tends to zero, this function, tA(x), becomes more like
the indicator function function IA(x). At the boundary of the region, the function varies
smoothly and monotonically between 0 and 1. By adjusting the smoothing parameter,
ε, one can mitigate the step function nature of the objective and constraint functions as
shown in Fig. IV.1b. In order to approximate IAC as is needed in the objective function, a
similar calculation can be performed to show that:

IAC (x) ≈ tAC (x) =
M∏
i=1

(
− 1
π

arctan
(
ci − x · vi

σε

)
+ 1

2

)
(IV.9)

The next problem we will discuss is dealing with an objective function that contains large
flat regions, as do most probability functions. Since we are again reconstructing the true
objective function from sample data, there may be large regions of the feature space which
contain no sample measurements and thus no useful information about the function. In
addition, we are also working with probability distributions with a range limited to the
values in [0, 1]. Even when using analytic knowledge of such distributions, cumulative
probability distributions like the false positive rate have large regions of their domain
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where the function changes very little. This can be seen in Fig. IV.1 for values of the
coefficient c ≥ 30. Therefore, we need to further modify our objective function to account
for these small changes in slope, which will be done here by using ln (f (A)) giving us the
modified objective function:

min
c∈XV

{
ln
(

1
NS

∑
x∈S

tAC (x)
)}

subject to
[
α− 1

ND

∑
x∈D

tA(x)
]
≥ 0 (IV.10)

There are several methods for solving constrained optimization problems numerically, in-
cluding quadratic penalty methods, Lagrange multiplier formulations, and active set meth-
ods [41]. In this study, MATLAB’s fmincon function from the Optimization Toolbox is used
to solve the optimization problem with the specified constraints. This function constructs
and solves a Lagrange multiplier formulation of the user provided problem.

Unfortunately, as a result of these modifications to make the problem numerically tractable,
several false optima have been introduced. From a common sense and physical point of
view, we know that for large count rates (even on a single detector), our algorithm should
classify the measurement as dangerous, but that is not necessarily reflected in our choice of
objective function, as we do not have sample information from the entire space of dangerous
measurements. To ensure this classification occurs with this formulation, either more points
from the dangerous distribution are needed so that information about the whole domain
of the distribution is available or one must add a penalty term for large values of the
coefficients, ‖c‖. This particular phenomenon can also be managed by the choosing the
bounding hyperplanes so that not all normals are parallel to a detector axis, which is the
method we chose here.

Furthermore, our smoothed objective function exhibits behavior that is not present in the
original formulation. We consider the case where our objective function is a given by the
product of two indicator functions where the basis vectors are not orthogonal:

f(c) =
∑
x∈S

I(x·v1≤c1)(x)I(x·v2≤c2)(x) , (IV.11)

where v1 =
[

1
2 ,
√

3
2

]
and v2 =

[√
3

2 ,
1
2

]
. Then, for a fixed value of one coefficient c1, the

other coefficient c2 can be increased to a point where {x| x · v1 ≤ c1} ⊆ {x| x · v2 ≤ c2}
and increasing c2 further should not change the objective function either, and yet, with
our smoothed formulation, it does. As a result, changing the starting value in numerical
optimization software can change the solution, which is one reason why starting from a
number of randomly selected points is suggested in the literature (Sec. I.4).
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There are three other ways in which we could deal with these false optima. The first is to
gain more example measurements with which to build the objective function and, thus gain
more complete information about the true objective function. While we are generating our
own sample measurements, this may be possible, but it is usually infeasible to do so in a real
world situation. Therefore, we will ignore this option. The next method is to introduce a
distance penalty term to the objective function. This modification will penalize safe region
choices where points from the dangerous distribution lie farther inside the region by adding
the distance from each point to the boundary, for instance by a distance function like:

h(A) =
∑
x∈D

ũ(x) =
∑
x∈D

min
i

(
ci − x · vi

σε

)
(IV.12)

where σ and ε are scaling parameters based on the standard deviation of the points from
population D and the smoothing parameter discussed previously. When adding this term
into the objective function, one must weight it with an adjustable parameter, 1/µ, that will
serve as a Lagrange multiplier which a researcher must vary by hand. As µ becomes large,
the objective function will behave just as (IV.10) and, as µ becomes small, it will more
heavily penalize regions with higher false negative rates. This distance penalty method
works most effectively when there are points spread throughout the feature space, so that
in places where the conventional objective formulation changes very little, the distance
penalty can still effect the function. As mentioned previously, this is not necessarily the
case in our situation, so although this method was tested initially, it was abandoned in the
final formulation.

The final method, and the one we will use in this particular formulation, is a system of
linear inequality constraints that force all of the hyperplanes to contain at least one point
on the boundary of the safe region. Suppose we examine five hyperplanes described by
the pairs (ci,vi) in a two dimensional feature space, which, in concert with the x and y

axes, describe the convex hull that is the safe region. Then, as in Fig. IV.2, one can see
that the main difference between an admissible and an inadmissible hull is the fact that an
inadmissible hull has one line, j, where there is no point on this line xj that satisfies all of
the i inequalities xj · vi ≤ ci. One can test this property by verifying that no line can be
removed without altering the convex hull. Unfortunately, this method only limits where
the false minima of the function may occur and does not remove them. Therefore, starting
the numerical optimization from a variety of different points is still advisable in order to
find the global minima.

One should note that, as stated in Sec. I.4 and Sec. I.6, all of these problems become
more pronounced in higher dimensional feature spaces and as the number of optimization
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(a) Admissible Region (b) Inadmissible Region

Figure IV.2: These figures show two examples of the safe region, A, made up of the
intersection of 5 halfspaces – one of which is admissible and the other is not. The pink line
in the figure on the right is the one that causes problems in this formulation because now
only four of the five lines adjoin the safe region, A.

variables, M is increased. A larger and more descriptive sample set would be required in
order to make effective use of this formulation. Thus, this method was discarded in the
final comparison of algorithms.

IV.1.3 Initial Results and Comparison to Bayes’ Optimal Decision Rule

Before abandoning the naive optimization method, we will look more closely at some of the
results for a two dimensional feature space. As one can see in Table IV.1 and Figs. IV.3
and IV.4, the outcomes of the optimization method are heavily dependent on the choice of
hyperplane normals and the starting point of the optimization algorithm, even in this low
dimensional feature space. In this case, the dominant hyperplane in the description of the
safe region changes as a result of a change in the initial starting point for the optimization
algorithm.
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(a) Safe Region, A – ci0 = 50 (b) Safe Region, A – ci0 = 30

Figure IV.3: Here, we compare the classification rules developed using the Bayes’ Optimal
and the Naive Optimization methods with normal vectors

[
1/2,
√

3/2
]

and
[√

3/2, 1/2
]

and two choices for starting point ci0 = 30 and ci0 = 50. The means of the distributions
are (17, 13) and (25, 30). Both regions have a false negative rate of 0.05, for which the
Bayes’ method has a cost ratio of η = 0.1734. The associated false positive rates are given
in Table IV.1.

Table IV.1: False positive rates for the various methods shown in Fig. IV.3 are calculated
here using a common sample set of measurements rather than analytic knowledge of the
distributions. The Bayes’ Optimal Decision Rule has a false positive rate of 0.005, if
calculated analytically. While it appears that the false positive rate decreases for our
Naive Optimization routine with c0 = 50, this is actually a response to the fact that the
Naive method deals with incomplete sample data and not the analytic distribution as in
the Bayes’ Optimal method.

Method False Positive Rate
Bayes’ Optimal 0.0140

Optimization – ci0 = 50 0.0120
Optimization – ci0 = 30 0.0570
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Figure IV.4: Here, we compare the classification rules developed using the Naive Opti-
mization and the Bayes Optimal methods with 5 basis vectors. In this case, [1, 0], [0, 1],
[
√

2/2,
√

2/2], [1/2,
√

3/2] and [
√

3/2, 1/2] are used. Both regions have a false negative rate
of 0.03380, for which the Bayes’ method has a cost ratio of η = 0.514984.

IV.2 Support Vector Machine Implementation

As we saw in the previous section, one of the major drawbacks of the Naive Optimization
formulation of our detection problem is that the researcher must choose the normals of the
separating hyperplane a priori. This choice combined with a choice of starting point for the
numerical optimization algorithm can drastically affect the accuracy of the classification
rule produced. Support Vector Machines (SVM) are a learning method that takes these
problems into account by allowing both the normal direction and the distance to the origin
to vary when choosing a single hyperplane that separates the two populations. This section
will discuss the most basic SVM formulation before moving onto one of the cost sensitive
versions of the method and the initial implementation and results for our problem.

IV.2.1 Basics of Support Vector Machines

Support Vector Machines are a specialized type of classification formulation first stated
by Cortes and Vapnik in [9]. It can be stated as a problem where the labels of each
sample reading are known (supervised), the labels for some of the samples are unknown
(semi-supervised) or no knowledge of the class is tied to the samples (unsupervised). The
most common and tested formulation is the supervised learning example discussed here.
Consider a set of n samples (yi, xi) where xi is the vector of measurements on which the
decision is based and yi is either 1 or −1 and corresponds to the labeling of the two
classes we are trying to distinguish. There are two steps to any support vector formulation
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– transformation of the vectors of measurements, xi, to the Hilbert space on which the
decision function will operate and then utilization of quadratic programming methods to
find the optimally separating hyperplane between the two classes of samples in this space.

The first step is referred to as the kernel application, in which a sample is transformed from
one space to another by means of a researcher-chosen function, Φ(x). The purpose of this
step is to manipulate the data into a space where there is a clear separation between the
two groups under study. It can also be used to reduce the dimension of the measurement
space and improve the efficacy of numerical optimization programs. These transformed
points are used in the optimization problem as part of a inner product between the normal
decision vector in the transformed space w = Φ(w̃) and a transformed sample measurement
– w ·Φ(x), where w̃ is in the same space as x. Thus, it is more common to see this inner
product treated as a single function called the kernel:

k(w̃, x) := w ·Φ(x). (IV.1)

Commonly utilized kernels include linear transformations, the Gaussian radial basis func-
tion, higher degree polynomial functions and hyperbolic tangent functions.

After completing the kernel application step, a quadratic programming method chooses the
optimal separating hyperplane by determining the normal vector w and associated distance
b that maximizes the margin, the distance between the decision boundary and the nearest
xi from each class, on either side of the separating hyperplane, as shown in Fig. IV.5. In
a similar manner to the Naive Optimization approach of Sec. IV.1, the |b|/‖w‖2 is the
distance from the hyperplane to the origin along the normal w. The optimal hyperplane
is found through solving the constrained optimization problem:

min
w,b

1
2‖w‖

2 (IV.2)

s.t. yi (w ·Φ(xi) + b) ≥ 1, for i = 1, . . . , n

In practice, one often introduces slack variables ξi for each constraint in order to reduce the
sensitivity of the method to outliers and to deal with the case where the distributions of
measurements as represented by the sample population overlap significantly. This results in
one of two equivalent formulations: the C-SVM method [9] or the ν-SVM [47] formulation.
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Figure IV.5: SVM methods choose the separating hyperplane that maximizes the margins
between the two classes of points. In the original formulation, the two margins have equal
size 1/‖w‖. The ν-SVM formulation allows some of the points from the training method
to be inside of these margins or to be misclassified. This can be necessary, especially when
the two sets of points S and D are not easily separable.

The ν-SVM formulation is shown here:

min
w,b,ρ

1
2‖w‖

2 + 1
n

n∑
i=1

ξi − νρ (IV.3)

s.t. yi (w ·Φ(xi) + b) ≥ ρ− ξi, for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

where ν ∈ [0, 1] is an upper bound on the fraction of margin errors produced by the
algorithm, i.e., the fraction of sample points which are incorrectly classified. We have
chosen the ν-SVM formulation here because the limited domain for ν makes tuning the
SVM for optimal learning easier than the unbounded approach in the original slack variable
formulation, C-SVM. As an additional feature, the parameter ν bounds the margin errors
and thus provides an estimate on the total probability of error (both false positives and
false negatives) on the training set.

In order to make this method cost-sensitive as in the other methods in this study, we will
utilize the 2ν-SVM formulation proposed in [7, 11], which relies on the introduction of a
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single parameter γ ∈ (0, 1) that gives the trade off in the two error types:

min
w,b,ρ

1
2‖w‖

2 + γ

n

∑
i∈I+

ξi + 1− γ
n

∑
i∈I−

ξi − νρ (IV.4)

s.t. yi (w ·Φ(xi) + b) ≥ ρ− ξi, for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

where I+ = {i : yi = 1} (n+ = |I+|) and I− = {i : yi = −1} (n− = |I−| ). As further
shown in [7, 12], the choice of ν and γ can provide bounds on the fraction of margin errors
of each type, ν+ and ν−:

ν+ = νn

2γn+
ν− = νn

2(1− γ)n−
(IV.5)

In practice, one usually works with the dual form of (IV.4):

min
α

1
2

n∑
i,j=1

αiαjyiyjΦ(xi) ·Φ(xj) (IV.6)

s.t. 0 ≤ αi ≤
γ

n
, for i ∈ I+

0 ≤ αi ≤
1− γ
n

, for i ∈ I−

n∑
i=1

αiyi = 0,
n∑
i=1

αi ≥ ν (IV.7)

where αi are the Lagrange multipliers associated with each constraint. There are restric-
tions on the choices of ν and γ for the feasibility of the dual problem [12]. A search over this
feasible space is necessary to determine the combination (ν, γ) so that the false negative
rate is bounded by the specified rate. One can recover our original solution (w, b) with

w =
∑
i

αiyiΦ(xi) and b = 1
NSV

NSV∑
i=1

w ·Φ(xi)− yi (IV.8)

where NSV is the number of test points (yi,xi) such that the associated Lagrange multiplier
is non-zero. These xi are called the support vectors and they are the sample vectors, which
influence the solution {w, b}. The optimization problem can be sped up if the support
vectors are known before starting, since the corresponding constraints are the most likely
to be violated by changing the position of the decision boundary.
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Figure IV.6: Depicted here for a two dimensional feature space are the decision boundaries
created by the Bayes’ Optimal and SVM methods. The two boundaries are identical for a
false negative rate of α = 0.05 with identical false positive rates 0.0055. The means of the
distributions are (17, 13) and (25, 30), as before.

IV.2.2 Implementation and Comparison of SVM Trials

There are many pieces of software that need to work together for the support vector machine
framework to operate effectively. Therefore, we used the LIBSVM software package [6]
with the modifications for the 2ν-SVM formulation as given in [10]. In order to bound the
false negative rate, a simple search over the feasible region is performed to gain a basic
understanding of how the false negative rate changes and then localized to find a specific
false negative rate in a similar fashion to the coordinate descent method described in [12].
The largest difference is that our method varies ν and γ where Davenport’s coordinate
descent method varies ν+ and ν−.

As one can see, in Figs. IV.6 and IV.7, for the two detector case, the SVM method is an
improvement on the Box Threshold Method and matches well with the Bayes’ Optimal
solution in the space of restricted classifiers [33]. By this, we mean that, in the space of
hyperplane decision boundaries, the SVM method will choose the Bayes’ Optimal solution,
which may differ from that described in Sec. III.2 because the likelihood ratio test does
not necessarily generate a planar boundary. In this case, this may provide a skewed sense
of the efficacy of the SVM as compared with the Box Method since the Bayes’ Optimal
solution is linear here. The kernel choice can effect the outcome as much as the sample
points provided for training and there is a danger of overfitting in higher dimensions for
all of the methods, as can be seen with the Box Method in Fig. IV.8.
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(a) ROC Plot (b) Accuracy v. Precision Plot

Figure IV.7: As before, we can use the ROC and Accuracy curves for comparing all three
classification methods (Box, Bayes’ and SVM) irrespective of a specific desired false nega-
tive constraint, α for a two dimensional feature space. In this case as well, the SVM method
which takes into account the correlations in measurements improves upon the classification
provided by the Box Method. The means of the distributions are (17, 13) and (25, 30), as
before.

(a) ROC Plot (b) Accuracy v. Precision Plot

Figure IV.8: Adding features until we are working with a 4 dimensional feature space, we
can utilize the ROC and Accuracy curves for comparing classification methods irrespective
of a specific desired false negative constraint, α. The SVM method performs almost as well
as the optimal choice. However, we are starting to add information about features that
do not differ between safe and dangerous containers. Therefore, the overall classification
performance has begun to decline (as seen by the Box curve) and we are in danger of
overfitting the SVM method to our sample points since they do not provide information
about the greater volume of the feature space.
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CHAPTER V

THE IMPORTANCE OF FEATURE SELECTION

One of the most important questions in the process of creating a classification method
is “What measurements should we use in order to produce the best decision algorithm?”
As mentioned in Sec. I.1, there are several choices for the type of measurements one can
utilize, including comparison of the gross count rates of photons exiting the container
and analysis of the energy spectrum of this radiation. Even if we restrict our physical
measurement to the 1 MeV photon count rates discussed throughout this study, we have
already seen that not every detector will perceive enough information from a source to
significantly distinguish it from the background noise (Sec. III.1). Additionally, enforcing
the constraint on the percentage of false negatives produced by each algorithm, requires
integration over a potentially high dimensional space. As stated in Sec. I.6, this can create a
myriad of problems with computation of the optimal decision rules. Good feature selection
can mitigate such problems and lead to classification with minimal information.

As a result, feature selection algorithms are the topic of much discussion in several fields [2–
4, 13, 19, 26, 40, 42, 43, 46]. There are three main categories of feature selection algorithms
– filters, wrappers and embedded methods. Filter methods apply knowledge external to
the classification framework, but intrinsic to the samples under consideration to judge
the value of the subsets like the correlations between various features. Wrapper methods
use the performance of the learning machine itself as an evaluation metric for the various
feature subsets. This results in a set of nested loops of evaluations – first to determine the
features under consideration and then to find the optimal decision rule. Embedded feature
selection methods choose the feature subset and the optimal boundary simultaneously by
adding more variables to the optimization problem [18]. Wrapper and embedded methods
are much more computationally expensive than filter methods, but they can lead to more
accurate classifications. Thus, we will focus our examination on filter methods that can be
applied to any of the methods we have discussed previously.

Some studies also incorporate normalization and ranking methods as preprocessing steps
before feature selection occurs to improve upon the effectiveness of the algorithm [32].
This is a way to incorporate external knowledge of the measurement types into the fea-
ture selection process, but it does have drawbacks – namely, it is very specific to the type
of measurement given and the assumptions made about the initial conditions. This sec-
tion will look at methods for both feature selection and data normalization that may be
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employed for the source detection problem.

V.1 Filter and Ranking Methods

As was mentioned previously, filter methods usually focus on either analysis of the standard
statistical properties such as the mean, variance and correlations of the samples. However,
they can also involve external knowledge of the physical properties of measurements or the
utilization of an information theoretical approach. In this section, we will discuss three
different methods for feature selection, two of which will be implemented.

The first two filter methods discussed here give a ranking of each feature on its own merits
and do not generally give a feel for which subset of features will work best in an ensemble
classification setting. The best two features on their own may in fact give redundant
information when used together. Duch advocates combating this redundancy by using the
ranking capabilities of the filter in combination with the subset selection of a wrapper
by adding or subtracting features in the order they were ranked when evaluating their
effectiveness with the classification method [13]. However, this method requires choosing a
single classification method and ensuring that a sufficient description of the feature space
has already been achieved. We will discuss this later in the section.

The introductory work on these filter methods uses the 30Det detector subset from Sec. II.3.1
for Data Set A (Sec. II.2). We have avoided the full detector array since, as determined
previously, utilizing 15 or 30, let alone the 320 detectors calculated with MCNP, is infeasi-
ble computationally with MATLAB. This smaller subset makes it more intuitively obvious
when determining which detectors will be most helpful in making a classification. It is
important to note that distance from the ground (which is a major source of background
radiation) is a major factor in how much radiation is seen by a specific detector, as can be
seen in Fig. V.1.

V.1.1 External Knowledge Filtration

As one can see in Fig. V.1, the cargo in the container and the distance from both the back-
ground source provided by the concrete and the internal smuggled source affect the mean
count rates for each detector. In an ideal world, knowledge of the interior material of every
cargo container would be available and could potentially be used to simulate the radiation
pattern created by a source and the expected count rates for these detectors. However,
this is not the case, as was explained in Sec. I.1. Often, the classification method and thus,
the feature selection algorithm must make a decision with only the information from one
example of measurements belonging to a specific container configuration. Ultimately, we
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

(a) Measurements without HEU source

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

(b) Measurements with HEU source

Figure V.1: We will begin our discussion of feature selection by using the 30 detector subset
for Data Set A. This data set will be used as a starting place in order to discuss our feature
selection algorithms. One can intuitively tell that detectors 22 and 23 contain information
about our source and should be most useful for classification.

would like to eliminate the necessity to have knowledge of the exact cargo loading scenario
of the container as well. From initial simulations, the average background count rates vary
as a function of the distance from each detector to the ground or major background source
contributions. If we take the average of all detectors at a fixed height, then any detector
that deviates greatly from this average is more likely to contain information about whether
or not there is a source in the container.

Of course, now we need to determine what we mean by “deviates greatly.” We have several
options for this. First, we could use the sample deviation of all detectors at a specific
height in the array

σ2
h = 1

N

N∑
i=1

(xi − xh)2 , where xh = 1
N

N∑
i=1

xi (V.1)

and the xi are the count rates for each detector at height h as a basis for comparison. As a
second option, since the detection of radiation is a Poisson process and Poisson distributions
have a variance equal to the mean, one could consider using the square root of the mean
as the standard deviation σh =

√
xh. This choice is based on the assumption that the

dominant source of radiation is the background and that it travels evenly throughout the
container so that no streaming effects are present.

Once one of these options is chosen, the algorithm claims that any detector reading of fixed
height that is greater than one deviation, σh, above the mean, xh, is highly likely to contain
information about the smuggled source. One standard deviation is chosen because the high
detector readings that we want to isolate for later use have been incorporated into the mean
value previously calculated. A σh threshold set too high in this method will not designate
any detectors for further investigation. One gains further information by simply ranking
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each of the detectors based on the distance in standard deviations from the observed count
rate xi to the mean count rate xh. Using the first option for σh and the arrays described
previously, only two detectors on the bottom row (23 and 22) were determined to deviate
sufficiently from the background, while the others were ranked at approximately the same
level. However, the lower thresholds of the second option designate detectors 23, 22 and 6
as markedly different from the average count rates.

While this particular method of feature selection does allow the researcher to incorporate
information about the shielding effects of the cargo into the decision making process, there
are some substantial drawbacks that must be addressed. For instance, this method assumed
that the radiation due to the concrete background traveled in a smooth fashion throughout
the container and, thus, there were no substantial differences in detector readings of similar
height. This is not always the case, as will be shown in Sec. VI.3.

Additionally, as discussed in Sec. I.1, we know that detectors closer to the source should
observe more radiation from the internal smuggled point source. Unfortunately, with this
method for either choice of sigma, we do not account for this phenomenon. Because we
know the location of the source in this particular study, we know that an optimal feature
selection method should choose detector 23 first and then it should rank detectors that
are physically near this location as the next most likely to contain information about
the internal source. However, this algorithm does not do so and is highly susceptible to
fluctuations that can occur in the background radiation levels. For instance, detector 6 has
a higher count rate than other detectors of similar height, but it is due to the fact that it
is physically on the edge of a container and observes more radiation from the background
unshielded by cargo and not its proximity to the internal source. However, according to
our second option for σh, this is one of the more promising detectors for the purposes of
our decision.

Another major drawback of this method of feature selection is that it requires a distinction
in the height of the detectors in order to work effectively. If we instead used the column
averaged detectors produced in Sec. II.3.2, this particular method chooses detectors 40, 39,
38 , 19, 16, 20, and 8 as the ranking for the top seven detectors to use in classification.
However, the only detector that is actually near the source and is seeing radiation different
from what one would expect in a container with harmless cargo is Detector 8. The rest of
the detectors have larger count rates because they are near the physical edges of the cargo
container and thus observe more radiation from outside of the cargo container than the
other detectors.

75



V.1.2 Mutual Information and Maximum Relevant, Minimum Redundancy Methods

Another filter method which looked promising in initial studies is an information theoretical
approach. This method looks at the correlation between a feature and the class types
through the mutual information framework [8, 46]. Usually, this is done through knowledge
of the joint and partial distributions of the feature space and the two classes in order to
calculate an information score [19] for each test feature such as:

I(i) =
∫
xi

∑
y∈{S,D}

p(X = xi, Y = y) log p(X = xi, Y = y)
p(X = xi)P (Y = y) . (V.2)

This method requires accurate knowledge of the probability distributions of measurements
for each container type. Furthermore, depending on which distributions are available, it
may require an additional integration step to obtain the individual distributions for each
feature within the label classes. Once this is completed, the problem becomes a series of
one dimensional integration problems with the highest information scores corresponding
to the features most likely to make accurate classifications. Because the source of our
problem may move and thus, cause the relevant features to change with each container
under discussion, it is difficult to get enough information about a particular container
in order to estimate the appropriate distribution, making this an impractical method for
implementation in the field.

There are many variations on this theme that counter some of the drawbacks mentioned
previously. For instance, the Shannon Entropy for each feature can be used to overcome
some of the error and slowness caused by the binning required to approximate the proba-
bility distributions in this method. However, to get the most accurate approximation, the
entropy must be calculated for multiple combinations of features and then combined in a
similar manner to derivatives in a Taylor expansion of a function [8]. While this makes
the approximations more accurate it does not negate the need for large amounts of sample
points. Furthermore, as with the other filtration methods discussed in this section, this
kind of feature selection does not take correlations between features into account. How-
ever, this method can be extended to take these relations into account with the Maximum
Relevance – Minimum Redundancy framework, which uses an information score between
two features in addition to the score between each feature and the class labeling [42]. This
allows features to be chosen that correlate well to certain classes while avoiding dupli-
cate information. Even though these methods show a great improvement in classification
accuracy in their respective studies, the necessity for large numbers of points in order
to approximate distributions and choose relevant features makes this impractical in our
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particular problem. Therefore, we will ignore this method in further studies.

V.1.3 F -Score Testing

With all of the assumptions required by the previous methods and the misidentifications of
useful detectors in even these simplified test cases, one can see that it will be ineffective in
practical application. Thus, we will move on to a feature selection method that relies less on
the physical characteristics of the measurements. In doing so, we will utilize measurements
from a larger set of samples than the single sample in the previous method. In this case,
we will analyze the class separation in each variable through the following formulation to
calculate an F -Score [13, pp. 315-324] for each feature:

F (i) =

(
x+
i − xi

)2
+
(
x−i − xi

)2

1
n+−1

∑
k∈n+

(xi,k − x+
i )2 + 1

n−−1
∑

k∈n−
(xi,k − x−i )2 (V.3)

where there are n+ “safe” sample measurements, n− “dangerous” sample measurements,
x+
i is the mean of the sample population of “safe” measurements, x−i is the mean of the

“dangerous” sample population, xi is the mean for all samples in the training population
and xi,k is the ith component of the kth sample of the population in question. This provides
a look at the average separation of the conditional means of the two populations as scaled
by the average variance of the two populations. The features with higher F -Scores have
greater separation between classes and thus, for a fixed number of features, a higher chance
of minimizing the expected cost of misclassification. Also, higher F -Scores are linked to
lower variances in each class, which concentrates the bulk of the readings in a more localized
region of the feature space.

Working with the same 30 detector subset used in the external knowledge filter, we have
evaluated the F -Score for each detector in the set, Table V.1 and Fig. V.2. Detectors 23,
22 and 13 are more obviously well separated and localized than the rest of the features.
The next set of potentially effective detectors is detectors 2, 3, 5, 11 and 12, which have
F -Scores of less than one tenth the size of the first group. The rest all have an F -Score
less than one hundredth the size of the F -Scores in the first two categories.

This selection method is much more successful in choosing detectors that are physically
nearer to the true source location than the external knowledge feature selection method
and its effectiveness is not diminished with physical variations in the container provided
there are multiple measurements of a single configuration with and without a source. In
reality, we will not have multiple samples with which to make such decisions. However, this
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Table V.1: An F -Score for each detector in the 30 detector subset can be calculated, as
shown here.

0.0000 0.0061 0.0051 0.0000 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000
0.0015 0.0071 0.0158 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0230 0.1333 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Figure V.2: We can represent the F -score graphically for 30 detector subsets. Here, we
see that only three, possibly four detectors, have sufficiently greater F -scores to warrant
further scrutiny.

method can operate effectively with a large sample of “safe” measurements and a single
example of a “dangerous” or unknown sample, making it more practical for implementation,
provided the measurement distributions do not overlap significantly. However, if only one
measurement of the container is used, then the F -Score will be sensitive to detectors that
deviate greatly from the mean detector count rate and may incorrectly identify the most
important features if the distributions of the measurements overlap significantly.

There are situations in which this method can choose relevant features incorrectly. As a first
example, if we compare cargo loadings that differ substantially even without an internal
source present, the F -Score method will choose detector measurements that deviate the
most between the compared container types, as will be shown in Ch. VI. This identification
does not indicate the presence of a source, only differences. Similarly, if the calculated F -
Scores are relatively constant throughout the feature space, then there is no information
provided by this method. This can indicate that either the container has no internal
smuggled source or that there is a distributed source throughout the container that masks
the signal of the point source effectively. Without sufficient samples over the entirety of
the feature space and with blind application of the procedure, there is no guarantee of
correct identification of relevant features and it may even introduce false positives before
classification begins. Despite these drawbacks, this was the most effective feature selection
method tested and the one that we continue to use in further tests.

Using the F -Score as a ranking method, we can apply the subset selection method suggested
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Figure V.3: Increasing the number of features used in the decision making process improves
the accuracy of classification methods, but only as long as the new features contain infor-
mation about the source. Even when developing classification rule via the Bayes’ Optimal
Decision framework, as shown in this figure, the addition of further features decreases the
false positive rate, but only up to a point. Since the radiation source is small, only three
features in the 30Det set contain significant amounts of radiation from the smuggled source.

by Duch [13] to determine the number of features that will allow us to make the most
accurate classification possible. A subset to size k is created by choosing the features
with the k highest F -Scores. As shown in Fig. V.3, for a fixed false negative rate, one
can create decision rules with between 1 and 4 detectors. Initially, adding information
provided by other detectors improves the false positive rate while maintaining the same
level of reliability of detection. However, after a point (in this case three detectors), adding
detectors only increases the computational complexity of the problem without decreasing
the false positive rates. This phenomenon is due to the fact that our source is physically so
small, that only a few detectors are near enough to observe a statistically significant amount
of radiation, as seen in Fig. V.2. It should be noted that the number of useful features may
vary with the detector array or measurement type. In particular, if we examine the 320
detector array, there are at least a dozen detectors that see an average of 15 photons more
than the background radiation. In the 30Det Scenario used for initial testing, only a single
detector, Detector 23, observed that much of an increase in observable radiation levels.
The improvement in false positive rates for the 320 detector array was not tested due to
the computational limitations of MATLAB, which can not draw enough points in the high
dimensional space for the stochastic integration methods to converge in a reasonable time
period.
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V.2 Normalization

Normalization of features before attempting feature selection or classification is a common
theme in many areas [14, 19, 32]. The goal here is to remove noise and fluctuations between
measurement types so that their deviations are more easily compared while maintaining the
overall characteristics of the distribution of measurements. Thus, instead of classification
using the raw measurement vectors, xi, one uses the rescaled measurements, x̃i. Many
classification algorithms, including the SVM method from Sec. IV.2, use distances between
points as a criterion for weighting their effect on the solution. Thus, if we consider two
features, f1 and f2, which are known to be equally useful in classification and there is a
difference in their average magnitudes, i.e. f1 >> f2 on average, these algorithms will favor
variations in the feature with the higher magnitude, f1, when determining the solution.

There is no standard method for performing such modifications to the data since it usually
combines expert knowledge of the behavior of the measurements initially obtained with
statistical properties of the sample. Each feature in the space is rescaled independently of
the others and scaling is consistent no matter which category (S or D) from which the point
is drawn. In many cases, a z-score method is used, in which the jth feature is centered about
the corresponding mean from the safe distribution xjS , or its approximation, and then scaled
by (an approximation of) the same distribution’s standard deviation σjS , i.e., x̃ji = xj

i−x
j
S

σj
S

.
The intent behind this is to force the measurements to take on characteristics of a normal
distribution with mean 0 and standard deviation 1, N (0, 1), which works well with systems
that have underlying normal distributions. Then, feature selection and classification work
by measuring the deviation of the second distribution from this standard.

Another common method is to use Min-Max Normalization which scales the data so that
the minimum measurement for the jth feature, mj , and the maximum reading, M j , corre-
spond to 0 and 1, respectively. This can be done using the rescaling:

x̃ji = xji −mj

M j −mj
(V.1)

The Min-Max Method is sensitive to outliers in the data, but it does preserve the relation-
ships among the original sample points in the rescaled sample.

In our particular study, we examined several methods for rescaling the photon count rate
data, as depicted in Fig. V.4. With knowledge of the physical system, one can make
several observations. First, getting a sample that completely describes the entire feature
space for every detector is difficult, so having accurate knowledge of the global minimum
and maximum value of each detector is not possible. For instance, the maximum count rate
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could be extremely large for sources placed immediately adjacent to a detector, but this
type of source position may not be included in the training set, making Min-Max scaling
impractical here. Secondly, in our situation, the average count rate for a detector is roughly
correlated with the height of the detector from the concrete slab, as noted in Sec. V.1.1.
In order to avoid overfitting to a single cargo loading, we normalized each detector using
the average count rate for detectors of a fixed height, rather than for a specific detector.
Thirdly, since the detection of photons is a Poisson process, as mentioned in Sec. II.1, the
measurements from each detector roughly obey a Poisson distribution and thus, we can
approximate the standard deviation by the square root of the sample mean. However,
this also means that this scaling method may spread out portions of the sample with
smaller count rates. Finally, in reality, there are many more examples of harmless cargo
containers than of dangerous measurements, so most realistic data will be available for the
safe distribution.

It is important to note that none of the analytic classification methods discussed in Ch. III
will be affected by any of these linear rescaling methods. Since the exact probability of
obtaining each point is known, we can associate the same probability to its rescaled point
and thus, any region with a fixed false negative probability in the rescaled features will
contain the same points as a region in the unscaled feature space with the same false
negative probability. The rescaling will affect the performance of the SVM method. As all
of these rescaling methods change the average magnitude of any given feature, the problem
of unfairly weighting one feature over another is removed.

After testing the SVM method with each of these normalization schemes, except for the
Min-Max scaling determined previously to be unreliable for physical reasons, we found that
the z-score rescaling using height-dependent means and variances, xh and

√
xh, proved to

give nearly the optimal solution in multiple tested cases with our typical 1 MeV photon
readings:

x̃ji = xji − xh√
xh

(V.2)

However, this method of rescaling has two major drawbacks in the general setting. First,
the mean and standard deviation choices used here are tied to the physical scenarios in
our test set where a set of detectors of fixed height have roughly the same average count
rate. If one were to incorporate other types of measurements or intelligence data into the
decision process, then these features would need to be normalized in a different fashion
based on their specific physical properties. Secondly, this form of normalization does not
compensate for internal sources created by harmless radiative sources like concrete. These
extra internal sources force the centers of the distribution functions for some of the detectors
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(a) Original measurements (b) Scaled by individual mean xi
xi

(c) Scaled by mean for similar height h, xi
xh

(d) Scaled by height based z-score xi−xh√
xh

(e) Scaled by Min-Max x
j
i

−mj

Mj −mj

Figure V.4: There are a variety of ways to rescale data so that classification methods
using Euclidean distances between points do not unduly weight features based on their
magnitude. Shown here are a small sample of these methods that were considered in this
study that rescale data according to various statistical properties of the sample. Based on
the modeling of detector readings by Poisson distributions used throughout this study, we
will approximate the standard deviation of the sample by the square root of the mean.
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from safe containers off of the origin, which could lead to false positives when classifying
an unknown container type with a previously developed rule assuming no such sources.
If the effects of harmless internal sources on the detector measurements are known, then
the mean for each detector xi can be used instead of the average for a given height xh to
improve the classification accuracy. Unfortunately, this requires more accurate information
about a particular cargo configuration than we may commonly expect. This consequence
will be discussed further in Ch. VI. For the more homogeneous cargo scenarios discussed
in this study, the height-dependent z-score normalization works most consistently and will
be used in the rest of this study.
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CHAPTER VI

METHODOLOGY SENSITIVITY TO PHYSICAL VARIATIONS

Now that we have examined the development of methods for classification, it is natural
to ask how sensitive these methods are to physical variations such as source size, source
position, and cargo loading.

VI.1 Variations in Source Size

In our first study, we will examine the effects of source strength on the efficacy of the
algorithms previously discussed. Let us consider the case where the cargo loading, L1, and
source position, S1, are constant and the source strength is the only thing that varies, as
depicted in Fig. VI.1. We first need to determine if the feature selection method will choose
the same detectors in each case. Using the F -score method in Table VI.1, which was the
most flexible of the feature selection methods discussed in Ch. V, we can see that Detectors
23, 22, 13 and 12 are consistently chosen as the most disparate features in the 30Det set.
If one considers other loading scenarios, it is important for this particular study that the
only parameter that differs between the safe and dangerous containers is the source size.
Therefore, harmless internal sources, such as the concrete blocks from the L3 scenario,
are present in both the safe and dangerous example measurements, so the efficacy of the
feature selection method extends to these other scenarios in a similar fashion to the L1
scenario.

Next, we will consider the performance of classifiers for three source strengths through
the development of the classification algorithm with information concerning only the 1 kg
source and then testing its effectiveness in the classification of the other source strengths.
As one can see from Fig. VI.2a, the SVM method provides a good approximation of the
optimal decision rule for any source strength, above that of the Box Method. Furthermore,
one can see that using the 1 kg rule with a fixed false positive rate, any of the sources are
detected more effectively than randomly guessing, but it is unlikely that a half strength
source will be detected. As there are a far greater numbers of harmless cargo containers
scanned each year, controlling the false positive rate may prove desirable. Unfortunately,
for the lowest false positive rates, most of the sources of size 1 kg or less will pass through
undetected. However, this study is somewhat misleading, since we were considering meth-
ods developed by constraining the false negative rates in order to make statements about
the reliability of detection of smuggled sources. Using the developed rule with a fixed
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(a) Background (b) Half Strength 1 kg HEU source

(c) 1 kg HEU source (d) Double Strength 1 kg HEU source

Figure VI.1: Using the 30Det (Sec. II.3.1) scenario with the L1 loading and S1 source
position, we have varied the source size from half the strength of a 1 kg source to twice the
strength. As one can see, the relevant detectors do not change among the source strength
variations, but the mean count rates are noticeably different. Purple detectors indicate low
count rates and the highest average count rates are indicated in red.

Table VI.1: F -score Test for comparative source strengths of 0.5, 1, and 2 times a 1 kg
source. For each case, detectors 23, 22, 13 and 12 are consistently an order of magnitude
larger than any of the other detectors.

(a) Half Strength Source

3.2e-07 3.1e-05 3.8e-06 1.7e-06 3.2e-05 4.4e-05 5.5e-07 1.9e-05 2.4e-05 4.0e-08
1.1e-06 1.1e-04 2.1e-04 2.6e-05 7.9e-08 4.5e-07 4.5e-06 3.3e-06 3.6e-06 4.3e-07
3.1e-06 3.4e-04 1.7e-03 5.6e-06 1.7e-05 4.0e-06 5.7e-06 7.9e-08 3.5e-05 5.6e-07

(b) Full Strength Source

5.6e-09 6.0e-05 3.4e-08 2.6e-09 1.3e-05 1.4e-06 2.9e-08 3.6e-08 1.7e-06 6.8e-06
5.5e-08 1.8e-04 5.9e-04 2.2e-05 2.4e-05 2.2e-08 1.2e-05 8.0e-06 2.6e-06 3.5e-08
4.5e-06 2.1e-03 5.9e-03 2.8e-06 2.0e-06 1.7e-06 1.5e-07 7.4e-06 1.7e-05 1.5e-06

(c) Double Strength Source

5.2e-06 1.1e-06 1.4e-06 1.0e-06 3.6e-05 3.3e-07 2.6e-05 1.0e-07 1.3e-07 3.6e-06
1.4e-05 1.1e-03 2.7e-03 3.6e-06 3.7e-06 1.4e-05 1.5e-05 2.1e-05 1.2e-05 2.5e-06
3.8e-06 5.5e-03 2.0e-02 1.3e-05 1.3e-06 7.2e-07 1.3e-06 3.4e-06 7.0e-08 7.4e-07
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(a) ROC Plot for varying source strengths (b) Detection Rate for varying source strengths

Figure VI.2: Using Detectors 23 and 22, as designated by the F -score method for all source
strengths, a classification rule using information about only the 1 kg source was developed
with each of the three methods – Box, Bayes’ Optimal and SVM. Blue curves represent the
effectiveness for the half strength source, green for the 1 kg source, and red for the double
strength source. Circles show rates developed using the Box Method, ×’s correspond to
the Bayes’ Optimal Method, and squares the SVM method. Here, the Bayes’ Optimal
Rule defined as a test on the likelihood ratio p(x|S)/p(x|Di) depends on the source size
as the rule assumes exact knowledge about the distribution p(x|Di) of measurements for
each source size Di. For a more complete interpretation of this information, please see the
main text of this section.

detection rate (false negative rate), the double strength source is regularly detected by all
methods, as demonstrated in Fig. VI.2b. However, as expected, the half strength source,
though still detectable, is almost twice as likely as the 1 kg source to be misclassified and
escape detection.

One should note that there are two ways in which one could consider the Bayes’ Decision
Rule for the 0.5 kg and 2 kg in this situation. First, as shown in VI.2, one could assume that
one has exact knowledge of the distributions of measurements for all source sizes, in which
case these can be used in the calculation of the Bayes’ Decision Rule. Thus, for a fixed
likelihood ratio η generate by a specified rate of detection for a 1 kg source, both the false
positive and false negative rates will vary. This does not occur in the evaluation of other
methods, which have a constant false positive rate. It does however give the optimal choice
of decision rule for a source of the specified size. In essence, this changing distribution type
actually changes the nature of the classification rule. This brings us to the second option
for the Bayes’ Decision Rule, which uses the same probability distributions for classification
of all source sizes, as given in Fig. VI.3. This ensures that the major characteristics of the
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(a) ROC Plot for varying source strengths (b) Detection Rate for varying source strengths

Figure VI.3: In a similar fashion to Fig. VI.2, each of the classification methods is tested
for its effectiveness in detecting different size sources while ensuring that the decision rules
are unchanged. Here, the Bayes’ Optimal Rule defined as a test on the likelihood ratio
p(x|S)/p(x|D) is fixed as the rule assumes each dangerous point follows the distribution
p(x|D) for a 1 kg source sample. For a more complete interpretation of this information,
please see the main text of this section.

classification rule do not change and gives a more realistic picture of the classification of
these alternative source sizes. With this constancy in all of the decision rules, the Bayes’
Optimal Decision Rule and the SVM solution are in agreement for any fixed false negative
rate. As shown in Fig. VI.3, rules developed for a 1 kg source will reliably detect the double
strength source. The half strength source is far less likely to be detected than the 1 kg
source, but the decision rule produced by the 1 kg source does work better than randomly
guessing at the containers.

Instead of developing the classification rule from data about the single source, one could
use example measurements from multiple source sizes in order to create the decision rule.
In this case, the detection rule is most heavily influenced by points from the smallest
source, as they are the most similar to those of a safe container and, thus, most likely to be
misclassified. This suggests that the signal to noise ratio, or rather the separation between
the examples of safe and dangerous measurements, plays an important role in our ability
to accurately detect the smuggled material.
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(a) L1, background only (b) L1, S1 source

(c) L1, S2 source

Figure VI.4: Using the 30Det scenario with the L1 and source positions S1 and S2, one can
see the effects of the change in source position on the average detector count rates. Purple
and blue detectors indicate low count rates and the count rate increases across the color
spectrum until the highest average count rates are indicated in red. It should be noted
that the detectors in the first five columns come from one side of the container and the last
five come from the opposite side.

VI.2 Source Position Variations

We can also study the susceptibility of our algorithm to a change in the source position.
While maintaining the cargo loading and source size constant, we can change the position of
the source from S1 to S2, which corresponds to a change in the height of the radiating object
from the floor of the container. Furthermore, it changes the type of material surrounding
the HEU source from plastic with a density of 0.99 g/cm3 to wood of 0.5 g/cm3. This
change in density of the surrounding material allows significantly more radiation to escape
the container, making it far easier for the classification process to occur correctly. As
shown in Fig. VI.4, the source position definitely affects which features are most useful in
the course of classification, with 23 being most useful in the detection of the S1 source and
detector 13 most useful for the S2 source. In this case, the F -score feature selection method
accurately locates the relevant detectors for each position type, as shown in Table VI.2.

Application of any of the normalization methods suggested in Sec. V.2 does not affect the
selection of the relevant features either for this L1 loading scenario. However, a careful
choice of normalization can be beneficial to the classification process, irrespective of the
method used. Let us additionally use the F -score as a ranking method and compare
detectors of similar rank, i.e., compare measurements from detector 23 on an S1 source
with those from detector 3 on an S2 source. Then, one can use the z-score to normalize each
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Table VI.2: Testing the sensitivity of feature selection to source position. The F -score
method correctly identifies detectors 23, 22, 13 and 12 as being the most useful for classifi-
cation with an S1 source, provided that multiple examples of the dangerous measurements
are used. For the S2 source location, detectors 3, 13, 12 and 2 as most useful. The S2
source requires far fewer example measurements for the correct choices since (1) it is sur-
rounded by less dense material which allows a greater portion of the radiation to escape
the container and (2) the location is farther from the background source making the signal
to noise ratio lower.

(a) F -scores for S1 Source

5.6e-09 6.0e-05 3.4e-08 2.6e-09 1.3e-05 1.4e-06 2.9e-08 3.6e-08 1.7e-06 6.8e-06
5.5e-08 1.8e-04 5.9e-04 2.2e-05 2.4e-05 2.2e-08 1.2e-05 8.0e-06 2.6e-06 3.5e-08
4.5e-06 2.1e-03 5.9e-03 2.8e-06 2.0e-06 1.7e-06 1.5e-07 7.4e-06 1.7e-05 1.5e-06

(b) F -scores for S2 Source

3.2e-03 1.2e-01 2.3e-01 3.3e-03 4.4e-04 1.3e-03 2.1e-04 7.1e-04 1.3e-03 1.8e-04
1.5e-03 1.3e-01 2.3e-01 4.4e-04 3.5e-05 9.3e-04 2.8e-07 1.2e-05 3.3e-05 8.5e-07
5.9e-06 5.1e-05 5.7e-04 2.1e-06 4.2e-05 2.6e-05 1.7e-04 7.0e-06 2.0e-05 2.6e-05

measurement according to the average count rate of detectors of similar height, xh, and use
the classification rule developed with an S1 source to attempt detection of the S2 source, as
depicted in Fig. VI.5. As one can see, this decision rule is an almost perfect classifier for the
S2 source even though no knowledge of this particular source was used in the development.
However, this classification rule does not provide a constant false positive rate for all
source positions. Since we are normalizing detectors by the average count rate for a group
of detectors instead of each detector individually, the distribution of measurements for
individual detectors will not be perfectly centered on the origin. Therefore, if a classification
rule is developed using detectors with above average background radiation for their height
(i.e., xi > xh), then other detectors will have a lower false positive rate than predicted
in the development stages. On the other hand, false positive rates could be higher than
usual if xi < xh in the development stage. The choice of normalization helps us avoid
overfitting the method to a particular container type, but at the same time it loses some
of the consistency that normalizing to measurements from each detector individually.

Unfortunately, this choice of normalization may not allow us to perform the same sort of
near perfect classification of sources if harmless internal sources are present in the cargo
container. In the L1 scenario, the average count rate for each detector of fixed height was
nearly constant. For the L3 and L4 cargo loadings, the presence of natural internal sources
causes variations among the average count rate, as shown in Figs. VI.6c and VI.6e. As be-
fore, we should note that the change in source position for these two scenarios again causes
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(a) ROC Plot for varying source strengths (b) False Positive Rates for Decision Rules devel-
oped with an S1 source of specified False Negative
rate

Figure VI.5: Using normalization by the z-score method with the mean being a function
of height x̃i = (xi − xh) /

√
xh, classification rules developed for the source position S1 can

be used to classify the measurements from an S2 source in the case of an L1 loading. As
we can see in Fig. VI.5a, the S2 source is almost perfectly classified by any of the decision
rules developed for the S1 source. Fig. VI.5b allows us to analyze the effectiveness of the
normalization scheme. We notice that for the S2 source position, the safe distribution
means are slightly lower than average for detectors of that height, which reduces the false
positive rate when classifying sources in this position. This may not always be the case,
especially if the classification rule is developed for detectors with below average background
radiation for their height. For more information, see the main text of the section.
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a change in the density of the material surrounding the S2 position. If one normalizes using
height averages as in the L1 scenario, then the means of the normalized safe measurement
distributions are not as near to 0 as before and classification of the S2 source for the L3
loading is not as good as in the L1 scenario. We will discuss this problem further in the
next section.

VI.3 Cargo Loading Sensitivity

Our final sensitivity study will analyze the effects of the cargo content of the container.
As can be seen in Fig. VI.6, modifications in the cargo can cause significant variations
in the mean count rates for each container. Each of the classification, feature selection
and normalization methods themselves are ignorant of the cargo loading, detecting only
deviations from the normal – in particular, once a decision rule is developed, classification
of any provided point will proceed under the assumption that enough information was
provided to do so accurately. Therefore, if one develops the classification, feature selection
and normalization rules with only information about the radiation emanating from the L1
loading, then all future comparisons will be made with this basis for the radiation levels
one would expect to see from either a safe or dangerous container.

Both the feature selection and the normalization will emphasize deviations from the con-
sidered normal and any such deviations from this will show as a potential source. Let us
first suppose that the only examples of safe containers used during the development of the
classification methods are of L1 type (Fig. VI.6a). Then, when one attempts to compare
a container of L3 type without any internal source (Fig. VI.6c), the F -score method des-
ignates detectors 4, 21, 2 and 3 as having the most deviation between the two container
instances. We are fortunate here that the mean count rates for the L3 no source case are
generally lower than or comparable to those of the L1 scenario, resulting in a lower false
positive rate. Unfortunately, as a result of the lower background radiation from the L3
cargo, the average count rate for detectors near an HEU source are less than we would
expect and more importantly they deviate less from the average than other detectors with
depressed background (like detector 21). Thus, the F -score method as it stands does not
make a distinction between measurements from an L3 container with and without a smug-
gled source in comparison to the L1 scenario, selecting detectors 4, 21, 2 and 3 in both
cases. If, however, we add the additional requirement that not only must the F -score be
large, but that the mean of the suspected dangerous container be larger than that of the
means of the safe container for each detector, then this mitigates the problem somewhat.
This modified F -score method selects detectors 3, 22, 5 and 23 when an HEU source is
present and 3, 5, 24 and 11 otherwise.
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(a) L1, background (b) L1, S1 source

(c) L3 no internal source, background (d) L3 no internal source, S1 source

(e) L3 concrete internal source, background (f) L3 concrete internal source, S1 source

Figure VI.6: Using the 30Det scenario with the L1 and L3 loadings and S1 source position,
one can see that a choice of background will matter in the feature selection methods. In each
of these figures, the same color scale is used to denote the photon count rates. Comparing
the background and source for a single cargo container, one can accurately determine the
most useful detectors for classification (Detectors 23, 22, 13, and 12). However, if one
were to compare the various backgrounds in Figs. VI.6a, VI.6c, and VI.6e, it is possible to
locate false positives based on the variations in harmless internal sources and cargo density.
Purple and blue detectors indicate low count rates and the count rate increases across the
color spectrum until the highest average count rates are indicated in red.
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(a) False Positives for background only (b) False Negatives for S1 source position

Figure VI.7: The starting background assumptions play a major role in the accuracy of
classification as well. If one develops a classification methodology (here an SVM classifier,
with feature selection and count rate minimum, normalization by z-score with height de-
pendent means) with evidence of only one container type (L1 in these figures), then all
decisions made within this framework are in fact measuring deviations from the consid-
ered normal. For a fixed false negative rate used in the development of the classification
rule, the rate of both error types has increased as a result of changing container types in
the implementation phase. This suggests that the classification has been overfitted to one
particular cargo scenario. For a more complete interpretation of this information, see the
main text of this section.

As one can see from Fig. VI.7, both the rate of false positives and false negatives from the
L3 cargo loading are larger than those of the L1 container type utilizing either classification
method, although only the SVM is pictured here. However, this is almost certainly a case of
overfitting the feature selection method, as emphasized by the non-smooth variation of the
L3 error rates in comparison to the L1 error rates. If the roles of the cargo distributions had
been reversed and we were measuring deviations from the L3 scenario, it is likely that false
positives will be produced due to the differences in measurements of detectors 4 and 21,
as identified by the F -score test. These detectors have larger means in the L1 background
scenario than the L3 scenario, but they are still examples of harmless cargo and should not
be flagged for further study.

If we add a single internal concrete source adjacent to detectors 21 and 22 in the L3 scenario,
then this again changes the likelihood of accurate classification. For instance, the F -score
test designates detectors 4, 22, 3 and 2 as useful in classification, of which detectors 22 and
3 have higher than normal count rates. Therefore, when applying the classification rule, the
chance of a false positive is higher than predicted in the development of the classification
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rule, as seen in Fig. VI.7. Also, the elevation in background radiation caused by the internal
concrete source increases the likelihood of correctly identifying the smuggled HEU source.
This is a misleading identification though, since the F -score method identifies detector 22
as most useful in classification rather than detector 23 as one would expect. The increase
in radiation observed by detector 22 is caused in large part by the internal concrete source
and the smuggled source presents a much smaller portion of the signal.

Even from these few examples, it is clear that the self-shielding of the cargo within the
container as well as the presence of harmless internal sources plays a significant role in the
performance of any classification method. The accuracy of our classification methods is
tied to what we consider normal levels of radiation and the deviations from this standard.
Thus, we can conclude that in order to gain the improvement in performance shown by the
support vector machine methods, one must have accurate information about the expected
levels of radiation and variations in the cargo.
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CHAPTER VII

CONCLUSIONS

The classification problem for the detection of smuggled HEU has many facets that must
be addressed – the development of an optimal classification rule that balances the costs
and risks associated with a decision rule, the selection of features containing the most in-
formation about the source, normalization of data so that measurements for each feature
are comparable, and the treatment of physical changes in the additional cargo and their
effect on the classification process. The current Box Methods ignore correlations in mea-
surements that can improve classification by decreasing the likelihood of a false positive by
an order of magnitude, under the right conditions. Since far more harmless containers pass
through ports each year, reductions in the false positives produced by detection algorithms
can mean real reductions in monetary costs.

VII.1 Summary of Results

In this study, we have developed a cost-sensitive SVM framework with F -Score feature
selection and z-score normalization by height that can achieve nearly optimal classifica-
tion. It allows the researcher to control the reliability of detection of our algorithm (the
expected false negative rate) without requiring exact knowledge of the cost of various out-
comes or analytic information about the distribution of measurements, as required by the
Bayes’ Optimal Decision Rule. The SVM method developed here is insensitive to source
position and size, provided that the background radiation and additional cargo meet cer-
tain conditions. First, the background radiation must be fairly regular to ensure that the
signal from the source is not obscured by fluctuations in the background. In our study,
we used one of the simplest possible background characterizations – a single concrete slab.
It is well established that there are other sources of naturally occurring radioactive mate-
rial and their presence may vary between screening sights at different ports. Each of the
classification and feature selection methods are really measuring deviations from what the
researcher designates as expected levels of radiation. Thus, accurate characterization of
the background levels are absolutely necessary. Any variations in background may require
modifications to the normalization method to maintain the effectiveness of the algorithms.
In a similar fashion, the cargo in the container with the potential smuggled source can
not have any large variations in density or unknown, harmless internal sources. As we
discussed in Ch. VI, such variations cause too large of a deviation for a single classification
rule to encompass all of the variations. Finally, for the decision rule to work effectively
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for all source positions, it must be developed using the “worst case scenario” – a minimal
source strength placed in a position as far from detectors as possible with large background
contribution and strong shielding. These restrictions influence the minimal signal to noise
ratio that will be acceptable for accurate classification.

VII.2 Possible Future Improvements

As with most projects, investigating the intricacies of the source detection problem has
only spawned more ideas with which to attack the problem. For instance, it is clear that
utilizing correlations in measurements is a key feature to improve the likelihood of detection.
There are several signal separation techniques used in pattern recognition that may prove
useful in locating features that are influenced most heavily by a point source of smuggled
material. It would also be interesting to investigate the use of radiographs (x-rays) to
estimate the likely fluctuations in background as a result of density variations. As noted
in Ch. VI, these fluctuations have a large influence on the effectiveness of the algorithms
and are difficult to characterize when classification methods only measure deviations from
the average. Finally, the support vector machine framework could be expanded to a real
time learning algorithm that would be able to account more easily for small variations in
background radiation that can occur daily.
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[20] J. Haslinger and R. Mäkinen, Introduction to shape optimization: theory,
approximation, and computation, Advances in Design and Control, Society for
Industrial and Applied Mathematics, Philidelphia, PA, 2003.

[21] C.-C. Hsu, K.-S. Wang and S.-H. Chang, Bayesian decision theory for support
vector machines: Imbalance measurement and feature optimization, Expert Systems
with Applications, 38 (2011), pp. 4698–4704.

[22] IAEA Incident and Trafficking Database (ITDB), Incidents of nuclear and
other radioactive material out of regulatory control: 2013 Fact Sheet,
http://www-ns.iaea.org/downloads/security/itdb-fact-sheet.pdf, 2013.

[23] International Atomic Energy Agency, IAEA Safegaurds Glossary, vol. 3,
IAEA International Nuclear Verification Series, IAEA, Vienna, 2001.

[24] International Atomic Energy Agency, Detection of radioactive materials at
borders, IAEA-TECDOC 1312, International Atomic Energy Agency, Vienna, Sept.
2002.

98

http://www-ns.iaea.org/downloads/security/itdb-fact-sheet.pdf


[25] International Atomic Energy Agency, Combating Illicit Trafficking in
Nuclear and Other Radioactive Material, vol. 6, IAEA Nuclear Security Series, 2007.

[26] A. G. Janecek, W. N. Gansterer, M. A. Demel and G. F. Ecker, On the
Relationship Between Feature Selection and Classification Accuracy, J. Mach.
Learn. Res.: Workshop and Conference Proceedings, 4 (2008), pp. 90–105.

[27] K. Jarman, C. Scherrer, L. Smith, L. Chilton, K. Anderson, et al., Indirect
estimation of radioactivity in containerized cargo, Radiation Measurements, 46
(2011), pp. 10–20.

[28] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis,
Pearson Prentice Hall, Upper Saddle River, NJ, 6 ed., 2007.

[29] R. D. Knabb, J. R. Rhome and D. P. Brown, Tropical Cyclone Report:
Hurricane Katrina: 23-30 August 2005,
http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf, Sept. 2011.

[30] R. Kouzes, Challenges for interdiction of nuclear threats at borders, First
International Conference on Advancements in Nuclear Instrumentation
Measurement Methods and their Applications (ANIMMA), June 2009, pp. 1–3.

[31] R. Kouzes, Neutron and gamma ray detection for border security applications,
First International Nuclear & Renewable Energy Conference (INREC), 2010, Mar.
2010, pp. 1–3.

[32] M.-L. T. Lee and G. A. Whitmore, Intensity-Dependent Normalization in
Microarray Analysis: A Note of Concern, Bernoulli, 10 (2004), pp. 943–949.

[33] Y. Lin, Support Vector Machines and the Bayes Rule in Classification, Data
Mining and Knowledge Discovery, 6 (2002), pp. 259–275.

[34] Y. Lin, Y. Lee and G. Wahba, Support Vector Machines for Classification in
Nonstandard Situations, Machine Learning, 46 (2002), pp. 191–202.

[35] MATLAB, version 7.12.0635 (R2011a), The MathWorks Inc., Natick, MA, 2011.

[36] J. Meza, P. Hough, P. Williams and R. Oliva, Opt++: An Object-Oriented
Nonlinear Optimization Library (version 2.4), Software:
https://software.sandia.gov/opt++/, Sandia National Laboratory,
Albuquerque, NM, 2007.

[37] D. Miller, A. V. Rao, K. Rose and A. Gersho, A Global Optimization
Technique for Statistical Classifier Design, IEEE Trans. Signal Process. 44 (1996),
pp. 3108–3122.

99

http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf
https://software.sandia.gov/opt++/


[38] T. Munson, J. Sarich, S. Wild, S. Benson and L. C. McInnes, TAO 2.0
Users Manual, tech. rep. ANL/MCS-TM-322, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 2012.

[39] J. Neyman and E. Pearson, On the Problem of the Most Efficient Tests of
Statistical Hypothesis, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
231 (1933), pp. 289–337.

[40] R. Nilsson, J. M. Peña, J. Björkegren and J. Tegnèr, Consistent Feature
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APPENDIX A

DETAILS OF MCNP INPUT DECKS

The data used in this study was generated through extensive use of MCNP. Each testing
set is given a 3 number designation, e.g. B1S1L1, which corresponds to the box drawing
scenario, the source position and the material loading scenario, respectively. The meaning
of each of these numbers is given in the following subsections and the results in following
section.

A.1 Problem Geometry - Box Drawing Scenario

The 20 ft dry cargo container has dimensions 5.898 m by 2.352 m by 2.394 m in the MCNP
input deck created by Dr. Sunil Chirayath. The box drawing scenario has 4 boxes in the
x-direction with a width of 1.5235 m, 2 in the y-direction with a width of 1.217 m, and 4
in the z-direction with a width of 0.646625 m. The boxes are enumerated by rows in the
z direction from the top of the cargo container to the bottom, as shown in Fig. A.1. The
HEU source is in box 15 for the S1 source position and in box 11 for the S2 source.

A.2 Problem Materials - Loading Scenarios

In accordance with the MCNP modeling scenarios developed by Dr. Chirayath and the
Smuggled HEU Interdiction through Enhanced anaLysis and Detectors (SHIELD) team,
the highest density materials being nearest to the S1 source box (box 15) and the density
decreases as the distance to the source increases. This is so that the greatest shielding
covers most of the source and makes the detection problem harder. This principle will be
used in loading the first box drawing scenario as well to continue to make the problem
more difficult. The container has a weight limit of 21,630 kg, which causes the iron and
concrete boxes to be reduced in either density or percentage of box filled. For consistency
with the other portions of this project, the only materials that will be used to fill the boxes
in this round of tests are wood, plastic, cotton, concrete, iron and potash. The density of
these materials is given in Table A.1.

Potash is a fertilizer, usually labeled with the formula, NPK. However, many different
fertilizers can be referred to by this label with chemical formulas including but not limited to
Potassium Nitrate, Potassium Chloride, Potassium Sulfate and Potassium-Sodium Nitrate
mixtures. Typical densities are in the range 1-3 g/cm3. The exact formula and density may
vary between companies. One of the more common potash fertilizers is sulfate of potash,
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Figure A.1: Depiction of the box drawing scenario where the red box contains the source
and density is given by darkness of the gray – the darker the box, the more dense the
material.

Table A.1: Densities of materials used to fill containers for testing.

Material Density (g/cm3)
Wood 0.5
Plastic 0.91
Cotton 0.03

Concrete 2.35
Iron 7.8

Potash 2.6

K2SO4, which is used in this study.

There are 5 loading scenarios that are common to all sections of this project. The highest
density materials are placed in the boxes closest to the source in box 15.

A.3 Problem Sources - Background, NORM and HEU sources

Two different source positions have been devised – one resting on the bottom of the cargo
container towards the center of the container in the x-direction (S1) and the other in the
middle of the container in the z-direction (S2). The S1 position is in loading box 15 and
the S2 position is in loading box 27. These two positions are chosen for several reasons.
First, they are towards the center of the container, which means that more material is
between each detector and the source and each detector covers a smaller solid angle of
radiation paths and, therefore, each detector sees less radiation from the source. Next,
the placement along the bottom of the container hides the source radiation in the greater

103



Table A.2: Proportions of boxes containing the given materials in the considered test
schemes. Each scenario has one box filled with the HEU and plastic.

Scenario No. Plastic Wood Cotton Iron Concrete Potash
L1 8 8 15 0 0 0
L2 7 7 15 2 (50% full) 0 0
L3 6 6 17 0 2 (100% full) 0
L4 6 6 17 0 2 (40% full) 0
L5 0 0 0 0 0 31

radiation coming from the background concrete. The higher source placement is present
to verify that we are not over-compensating for the low source to signal ratio given by the
first scenario. S0 will be the designation for MCNP runs with only an external concrete
source. In the case where the background includes both the external concrete source and
an internal concrete or potash source, there will be additional runs (designated S0a) which
calculate the contribution from only the internal source. The total background source, in
this case, will be calculated by adding the internal (S0a) and external (S0) contributions.

The background and norm sources that are present in our problem are concrete and potash.
The active nuclide in both these materials is Potassium-40, which most commonly produces
a 1.46 MeV photon, with an intensity of 10.67% production for every disintegration of the
nuclide (numbers from [48] obtained on 2/1/12). To put this in an MCNP deck, we need to
calculate the mass of Potassium in the given volume of the substance and use a distributive
source. The number of photons can be given by:

1.46 MeV photons/sec
g K39 =

(
abundance of K40

) (
specific activity of K40

)
(A.1)

×
(dps

Ci

)(1.46 MeV photons
disintegration

)
=

(
0.000117 g K40

g K39

)(
7.1× 10−6 Ci

g K40

)
(A.2)

×
(

3.7× 1010dps
Ci

)(0.1067 photons
disintegration

)
= 3.2795 1.4MeV photons/sec

g K39 (A.3)

Using this fact and the composition of concrete and potash (K2SO4) found in the MCNP
decks, one can calculate that, in the background concrete of volume 30 cm by 1524 cm by
1012 cm with density 2.4 g/cm3, the total production rate of 1.46 MeV photons is 6.9×106
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photons per second. Similarly, we can calculate the contributions of alternate internal
sources, like potash and concrete, by first calculating the volume of the material in the
interior. For example, a 100% filled box of concrete has a volume of 1.2 × 106 cm3 and
a 40% filled box has a volume of 4.8 × 105 cm3. Using the same chemical composition of
concrete as in the background source, we can see that each box percentage generates 1.46
MeV photons at a rate of 1.8 × 105 photons per second and 7.1×104 photons per second,
respectively. If there are two such boxes in a given scenario, the total internal source is
twice what is mentioned here.

In the potash scenario, one can calculate the internal source in a similar fashion. If we use
K2SO4 and the density of 2.66 g/cm3, we can calculate that one standard box produces
1.46 MeV photons at a rate of 4.621×106 photons per second. Only 14 of the 32 boxes can
be filled at this density before the weight limit of the cargo container is reached. Potash
varies greatly in density depending on type, country of origin and composition. This is the
composition of muriate of potash, a common fertilizer type in the mid-20th century. Other
compositions may be lighter and, thus, fill the containers more completely.

The HEU source was 1 kg of HEU (70 wt% 235U and 30 wt% 238U), which produces
roughly 33 photons per gram per second (22 of which are of 1 MeV), as designated by Dr.
Chirayath’s initial input deck. This source description was unchanged to conform with the
MCNP used by other portions of the DHS project.

A.4 Variance Reduction in the MCNP Runs

Due to the long length scales of this problem, importance weighting must be used in MCNP
to counteract the loss of particles due to absorption. For the wood, plastic and cotton filled
cargo containers, the importance must be multiplied by a power of two every time it crosses
a boundary since roughly half of the particles are lost in each cell. This weighting must be
changed for higher density materials. Note that the Uranium shells present in the original
input file are much smaller than the material boxes and still have an importance weighting
of powers of two.

The importance weighting alone is not enough to guarantee that the MCNP runs will
converge and produce the average count rates for each detector. Therefore, we utilized the
weight window generation feature of MCNP to help reduce the variation in measurements
and aid the computational process [56, Vol. I, Ch. 2, Sec. 7].
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