

MULTIPLE VEHICLE ROUTING PROBLEM WITH FUEL CONSTRAINTS

A Thesis

by

DAVID R LEVY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Sivakumar Rathinam

Committee Members, Sergiy Butenko
 Dvahg Swaroop
Head of Department, Andreas Polycarpou

August 2013

Major Subject: Mechanical Engineering

Copyright 2013 David R Levy

ii

ABSTRACT

In this paper, a Multiple Vehicle Routing Problem with Fuel Constraints (MVRPFC) is

considered. This problem consists of a field of targets to be visited, and a collection of

vehicles with fuel tanks that may visit the targets. Consideration of this problem is

mainly in the improvement of feasible solutions, but the following steps are discussed:

Cost Matrix Transformation, Field Partitioning, Tour Generation and Rerouting, and

Tour Improvement.

Four neighborhoods were investigated (2-opt, 3-opt, Target Vehicle Exchange, Depot

Exchange), using the Variable Neighborhood Descent and Variable Neighborhood

Search schemes, with APD and Voronoi partition methods. These neighborhoods were

compared to investigate their performance for various instances using the above schemes

and partition methods. In general, 2-opt performed as well as 3-opt in less time than 3-

opt; in fact, 3-opt was the slowest of the four neighborhoods. Additionally, the Variable

Neighborhood Descent scheme was found to produce better results than the Variable

Neighborhood Search.

iii

NOMENCLATURE

APD Approximate Primal-Dual algorithm

LKH Lin-Kernighan Heuristic

MV Multiple Vehicle

MVRPFC Multiple Vehicle Routing Problem with Fuel Constraints

TSP Traveling Salesman Problem

TVE Target Vertex Exchange

VND Variable Neighborhood Descent

VNS Variable Neighborhood Search

iv

TABLE OF CONTENTS

Page

ABSTRACT ...ii

NOMENCLATURE ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vi

LIST OF TABLES ...vii

1 INTRODUCTION .. 1

2 PROBLEM STATEMENT .. 4

3 ALGORITHMS .. 5

3.1 Overview .. 5

3.2 Cost Matrix Transformation ... 5
3.3 Partitioning ... 9
3.4 Tour Generation ... 10

3.5 Tour Rerouting ... 10

3.6 Tour Improvement.. 12
3.6.1 Variable Neighborhood Search .. 12
3.6.2 Variable Neighborhood Descent .. 16

3.6.3 2 Opt ... 16
3.6.4 3 Opt ... 17

3.6.5 Depot Exchange ... 18
3.6.6 Target Vehicle Exchange ... 19

4 RESULTS ... 21

4.1 Implementation... 21
4.2 Neighborhood Configuration Investigation ... 21

4.3 Voronoi Partitioning Investigation ... 26
4.4 Total Best Combinations .. 28

4.4.1 Best 1 Combination .. 29
4.4.2 Best 2 Combination .. 30

4.4.3 Best 3 Combination .. 31
4.4.4 Best 4 Combination .. 32

v

Page

5 CONCLUSION .. 34

REFERENCES ... 37

APPENDIX A FULL RESULTS ... 39

vi

LIST OF FIGURES

Page

Figure 3-1 Formation .. 7

Figure 3-2 Shortest Path Determination ... 8

Figure 3-3 Primal Dual Algorithm Depiction .. 9

Figure 3-4 Tour Expansion .. 11

Figure 3-5 Variable Neighborhood Search Algorithm ... 13

Figure 3-6 Variable Neighborhood Search Initialization ... 13

Figure 3-7 Variable Neighborhood Search Shaking Step .. 14

Figure 3-8 Variable Neighborhood Search Move-or-not Step ... 16

Figure 3-9 2-opt Move ... 17

Figure 3-10 3-opt Move ... 18

Figure 3-11 Depot Exchange Move ... 19

Figure 3-12 Target Vehicle Exchange Example .. 20

file:///C:/Users/ewf/Dropbox/David_thesis/rev1/thesis_active.docx%23_Toc358846008

vii

LIST OF TABLES

Page

Table 4-1 Effect of Neighborhood Order (4 Neighborhoods) .. 22

Table 4-2 Effect of Neighborhood Order (3 Neighborhoods) .. 23

Table 4-3 Effect of Neighborhood Order (2 Neighborhoods) .. 24

Table 4-4 Effect of Neighborhood Order (1 Neighborhood) ... 25

Table 4-5 Voronoi Construction Heuristic Costs ... 26

Table 4-6 Comparison Between Improved APD and Voronoi Runs 28

Table 4-7 Best 1 Combination Results ... 29

Table 4-8 Best 2 Combination Results ... 30

Table 4-9 Best 3 Combination Results ... 31

Table 4-10 Best 4 Combination ... 33

Table 5-1 Result Summary .. 39

1

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a canonical problem in the field of

optimization, with many practical applications in fields such as logistics, military

surveillance, and disaster relief (Army, 2007), (Curry, Maslanik, Holland, & Pinto,

2004). This problem, in its most basic form, is to find the cheapest order to visit a

collection of targets for a vehicle such that each target is visited at least once and the

total distance traveled by the vehicle is a minimum. Finding an optimal solution for the

TSP is challenging because the computation time required by the existing algorithms

increase exponentially with the size of the problem. This difficulty is compounded when

multiple vehicles are considered, and even more when fuel constraints are imposed on

these vehicles. The TSP, with these additional considerations, is called the Multiple

Vehicle Routing Problem with Fuel Constraints (MVRPFC). This problem can be stated

as follows: given a set of targets, fuel stations, and vehicles, find a path for each vehicle

such that every target is visited at least once, none of the vehicles violate their fuel

constraints along their respective paths, and the total travel cost is a minimum.

The MVRPFC is a generalization of the standard TSP and is NP-hard. Therefore, the

focus of this thesis is to develop heuristics that can find good solutions to the MVRPFC

as quickly as possible. We do this through the framework of the Variable Neighborhood

Search (VNS) and Variable Neighborhood Descent (VND). VNS and VND are meta-

heuristics used to solve difficult combinatorial and global optimization problems. These

2

are iterative algorithms where in each iteration, the algorithms search through multiple

neighborhoods of the current feasible solution to find a feasible solution with lower cost.

The use of multiple neighborhoods allows the solution in the VNS and VND heuristics

to move away from local optima as quickly as possible. To generate an initial feasible

solution to the problem, we rely on the approximation algorithm develop by Kaarthik et

al. in (Sundar & Rathinam, 2013). An -approximation algorithm is a polynomial time

algorithm that produces a solution whose cost is at most times the optimal cost for any

instance of the problem.

The single vehicle version of the MVRPFC has been addressed by the authors in

(Khuller, Malekian, & Mestre, 2011), (Sundar & Rathinam, 2013). Khuller et al. present

an approximation algorithm for the symmetric version of the problem. Kaarthik et al.

present an approximation algorithm for the asymmetric version of the problem. The

MVRPFC is also closely related to routing problems with intermediate facilities [Ghiani,

Angelelli, Crevier] as discussed in (Sundar & Rathinam, 2013). Variants of the

MVRPFC have also been studied in the literature. Dell et al considered a multiple

vehicle TSP from a practical perspective, incorporating time windows and equity

constraints (Dell, Batta, & Karwan, 1996). Approximation algorithms and heuristics for

a heterogeneous multiple vehicle TSP are studied by Rangarajan, where some targets

must be visited by certain vehicles (Rangarajan, 2011). Oberlin discusses a

transformation of a heterogeneous multiple vehicle, multiple depot TSP into an

asymmetric TSP so that algorithms for the standard TSP can be put to good use (Oberlin,

3

2009). Rathinam and Sengupta determine lower bounds for a multiple depot, multiple

vehicle TSP, along with a 2-approximation algorithm for solving this problem

(Rathinam & Sengupta, 2006).

Hansen and Mladenovic review improvement schemes in (Hansen & Mladenovic, 2001),

notably the Variable Neighborhood Descent (VND) and Variable Neighborhood Search

(VNS), which are the focus of this paper.

In this paper, an -approximation algorithm is used in combination with improvement

heuristics to calculate solutions for an MVRPFC. The method discussed in this paper

consists of the following steps: Cost Matrix Transformation, Partitioning, Tour

Generation and Rerouting, and Tour Improvement. For the Partitioning step, an

Approximate Primal-Dual algorithm is used and compared with a Voronoi

implementation. For the Tour Improvement step, several heuristics are used: the 2-opt,

3-opt, Depot Exchange, and Target Vehicle Exchange heuristics. These heuristics are

used as part of VNS and VND schemes, and are discussed in details, along with results

from application of these schemes on several instances.

4

2 PROBLEM STATEMENT

Consider a multiple vehicle routing problem with vehicles with fuel capacities

 , let denote the set of targets to be visited, and let denote the set of

depots that are available. The problem is then formulated on a complete undirected

graph , where is the set of edges between every pair of members of

 , and is assumed to satisfy the triangle inequality:

 . Additionally, some constraints are imposed on the problem data: for every

target in , it is required that there is a depot in that is reachable by every vehicle:

Then the objective of this paper is to find tours, for each vehicle, such that every

target in is visited at least once, the total cost to traverse the tours is at a minimum, and

none of the vehicles run out of fuel while traversing their tours.

5

3 ALGORITHMS

3.1 Overview

The algorithm discussed in this thesis consists of five basic steps: cost matrix

transformation, partitioning, tour generation, tour rerouting, and tour improvement. The

first step in the process is to adjust the given cost matrix to account for possible

necessary refueling trips. The resulting cost matrix will then contain real fuel costs to

travel between two nodes. The next step is the partitioning of the target field. In this

step, groups of nodes are assigned to vehicles based on their proximity to the nodes.

Once these partitions have been found, the next step is to find a tour for the partition that

will only visit each target once. These tours are not necessarily feasible, so refueling

trips are added, where necessary, to ensure that the vehicle can realistically navigate the

tour. Once the tours have been made feasible, they are improved using a variety of

improvement heuristics. The intent of these heuristics is to reduce the cost required for

the vehicles to navigate the tours.

3.2 Cost Matrix Transformation

The first step in the algorithm is to adjust the cost matrix to account for refueling trips.

This step is required to ensure that the partitioning algorithm has a monotonically non-

increasing set of cost matrices to work with.. The first step is to determine the closest

refueling station to every target that is to be surveilled. This information is used when

adding required refueling trips. Once the closest stations have been found, the algorithm

iterates through every pair of targets, determines if a refueling trip is necessary, and if

6

so, calculates the cost of the refueling trip. To find the cheapest path for the refueling

trip, a graph is formed that contains the nodes of interest and every refueling station on

the field. Edges between nodes are then added to the graph if they are feasible. Once

this graph has been formed, a simple shortest path algorithm is run. This shortest path is

stored, and the cost to traverse it is placed in the adjusted cost matrix. A detailed

technical description of the algorithm follows.

First, consider any two targets and , where the cost to travel from to is called

 . We denote the closest depot to as , where the cost to travel from to is

called . Similarly for y, we define and . Then our objective is to determine a

path from that is feasible; that is, the vehicle will not run out of fuel

traversing this path. If is the fuel capacity of the th vehicle (the vehicle of interest),

then to travel this path directly, we must have

However, if this inequality is not satisfied, an indirect path must be found from to .

To accomplish this, an intermediate graph is formed. First, all the depots that are

reachable from after the vehicle has visited are added to the graph; that is, all

depots within a distance of from are added to the graph, along with the edges

from to these depots. These depots are selected to ensure that they are reachable from

 in the best case, when the vehicle has the most possible fuel it can have at . Similarly

for , depots within a distance of from are added to the graph. Then, the

7

remaining depots on the field are added to the graph, and edges between the depots are

added if the cost to travel those edges are less than (see Figure 3-1).

Then, a shortest path is determined to travel from to along this graph, using

Dijkstra’s algorithm. This path, shown in Figure 3-2, is the indirect path from to ,

and the cost to travel this path is called . This value is calculated for every pair

of targets and for every vehicle.

Figure 3-1 Formation

8

Figure 3-2 Shortest Path Determination

An important result of this algorithm, that is also a requirement for the Approximate

Primal Dual algorithm, is that if the vehicles are ordered such that ,

then

 : the matrices are monotonically

nondecreasing. This result is easy to understand when the graph formed between and

 is considered. For example, take the above algorithm for a pair of targets and and

for the first vehicle. Then the graph between and contains only edges with a cost

that is less than , the fuel capacity of the vehicle. When the value is calculated for

the second vehicle, this graph cannot contain more edges than that for the first vehicle,

because . Therefore,
 , the cost of the shortest path from to in this graph,

must be greater than or equal to
 .

9

3.3 Partitioning

The next step in the algorithm is to determine partitions for the vehicles. This consists of

assigning groups of nodes to certain vehicles, based on some criteria. The partitioning

algorithm used in this paper is an extension of the primal dual algorithm described by

Jungyun Bae (Bae & Rathinam, 2011). The primal dual algorithm takes advantage of

the relation between linear programs and their duals; it repeatedly tightens primal

constraints via dual variables until there are no more constraints to tighten. At this point,

a pruning step is performed to retrieve disjoint sets of nodes for each vehicle. The

output of the algorithm is the field partitions for each vehicle, as shown in Figure 3-3.

Figure 3-3 Primal Dual Algorithm Depiction

10

3.4 Tour Generation

The task of generating tours from partitions found in the previous step was delegated to

K. Helsgaun’s implementation of the Lin-Kernighan heuristic (Helsgaun, 2012). The

lkh.exe executable takes the field partitions as input, and produces tours for each vehicle.

The lkh executable finds low cost tours for the partitions that are input, without

considering fuel capacity restrictions.

3.5 Tour Rerouting

The Lin-Kernighan heuristic implementation does not know about the fuel capacities of

the vehicles, so the tours it returns are not guaranteed to be feasible. Therefore,

refueling trips must be inserted into the tours where necessary. The first step in this

process is to reintroduce the indirect refueling trips found in the cost matrix

transformation step (Section 3.2). This step is called tour expansion, and is shown in

Figure 3-4.

11

Figure 3-4 Tour Expansion

From this augmented tour, strands between refueling visits are identified and extracted.

Each strand is checked for feasibility by calculating the cost required to travel the nodes

in the strand. For each infeasible strand, an augmented greedy strand is generated where

every node visit is succeeded by a refueling trip to the station nearest to the node.

Refueling trips that are not required for strand feasibility are removed, and the strands

are rejoined to form the feasible tour.

12

3.6 Tour Improvement

The tours generated at this point in the algorithm are far from optimal. In an effort to

improve them, several schemes are used in conjunction with an implementation of a

variable neighborhood search. The following neighborhoods are examined in this paper:

2-Opt, 3-Opt, Depot Exchange, and Target-Vehicle Exchange.

3.6.1 Variable Neighborhood Search

The variable neighborhood search is a method that is used to search for cheaper tours in

multiple neighborhoods. A variable neighborhood search consists of 3 main steps:

Shaking (covered in Section 3.6.1.1), Local Search (Section 3.6.1.2), and Move Or Not

(Section 3.6.1.3) (Hansen & Mladenovic, 2001). To set up for a variable neighborhood

search, a collection of k neighborhoods and an initial solution x are required. Once these

have been determined, the first neighborhood N1 is chosen as the “current”

neighborhood. A concise description of the algorithm is shown in Figure 3-5. In this

figure, step 3 is the Shaking step, step 4 is the Local Search step, and step 5 is the Move

Or Not step.

13

Figure 3-5 Variable Neighborhood Search Algorithm

Figure 3-6 shows a depiction of the solution space, with the initial solution denoted.

Figure 3-6 Variable Neighborhood Search Initialization

1. Start with an initial set of tours .
2. Set .
3. Choose random neighbor from neighborhood of .
4. Choose best neighbor from neighborhood of .
5. If , set , and go to Step 3. Otherwise,

increment .
6. If , output . Otherwise, go to Step 3.

14

3.6.1.1 Shaking

The shaking step is the characteristic feature of the variable neighborhood search. In this

step, a random member of the currently selected neighborhood of x is found, and

denoted as x’. Selecting a random neighborhood member introduces fluctuations into

the solution search path, and acts to generally avoid getting stuck in local optima. For

certain neighborhoods, it may be possible that there are no feasible neighbors; i.e. the

neighborhood of x is empty. In this special case, the shaking step is skipped, and x’ is

the same as x. Figure 3-7 shows the solution space, where the neighborhood is

denoted by a red circle, and the product of the shaking step is denoted as .

Figure 3-7 Variable Neighborhood Search Shaking Step

15

3.6.1.2 Local Search

Once x’ has been found, a simple local search is used to find the cheapest solution in the

current neighborhood of x’, which is denoted as x’’. Again, it may be possible that the

current neighborhood of x’ is empty. If this is the case, x’’ is set to be the same as x’.

3.6.1.3 Move Or Not

In this step, the cost of x’’ is compared to the cost of x. The two possible outcomes of

interest are when the cost of x’’ is less than the cost of x, and when the cost of x’’ is

greater than or equal to the cost of x. In the first case, x’’ is cheaper than x. When this is

true, x is set to be x’’ (see Figure 3-8). The first neighborhood is set as the “current”

neighborhood, and computations continue with the Shaking step (Section 3.6.1.1).

When the second case is true, x’’ is forgotten, and the next neighborhood is set as the

“current” neighborhood. If there is no next neighborhood; i.e. the “current”

neighborhood is the last neighborhood designated, the algorithm terminates.

16

Figure 3-8 Variable Neighborhood Search Move-or-not Step

3.6.2 Variable Neighborhood Descent

The Variable Neighborhood Descent method, also described in (Hansen & Mladenovic,

2001), is very similar to the Variable Neighborhood Search method, save for the absence

of the Shaking step.

3.6.3 2 Opt

The 2 opt neighborhood can be generated from an initial tour by removing 2 edges, and

then reconnecting the tour in a different arrangement. In the 2 opt case, only one

rearranged tour can be generated from an initial tour. Once the rearranged tours have

17

been generated, infeasible tours are removed, and the tour with the lowest cost is chosen

as the new initial tour, as shown in Figure 3-9.

Figure 3-9 2-opt Move

3.6.4 3 Opt

The 3 opt neighborhood is generated in a similar fashion to the 2 opt neighborhood; 3

edges are removed from the initial tour, and the tour is then reconnected in 7 different

arrangements (shown in Figure 3-10). The feasible configurations are then added to the

neighborhood.

18

Figure 3-10 3-opt Move

3.6.5 Depot Exchange

The depot exchange neighborhood is the simplest of the neighborhoods. To form this

neighborhood, visits to depots that are not the vehicle’s starting depot are first identified

in the initial tour. For each visit to depot D, all other depots in the graph are substituted.

Tours with this substitution that are feasible are added to the neighborhood. Figure 3-11

shows an example depot exchange move.

19

Figure 3-11 Depot Exchange Move

3.6.6 Target Vehicle Exchange

To build the target vehicle exchange neighborhood, all possible pairs of vehicles are

determined. Then, for each pair, one vehicle is chosen as the donor vehicle and the other

is designated as the beneficiary vehicle. Then, each target visited by the donor vehicle is

inserted into the tour of the beneficiary vehicle in as many locations as possible. The

configurations that retain the feasibility of both the donor vehicle’s tour and the

beneficiary vehicle’s tour are added to the neighborhood. Figure 3-12 shows a possible

Target Vehicle Exchange move, where a target visit is chosen in the tour of the first

vehicle, and possible insertions of this target into the tour of the second vehicle are

checked for feasibility, and improvement.

20

Figure 3-12 Target Vehicle Exchange Example

21

4 RESULTS

4.1 Implementation

Implementation of the algorithms discussed in Section 3 was achieved by way of three

separate executables: apd_nographics, lkh, and mv. apd_nographics and mv were

written by the student, and implement the approximate primal-dual algorithm (Bae &

Rathinam, 2011) and the multiple vehicle algorithm, respectively. The lkh executable

was the reference implementation of the Lin-Kernighan heuristic (Helsgaun, 2012). To

facilitate communication and transfer of data between the processes, two file formats

were developed: APD and MVGS.

4.2 Neighborhood Configuration Investigation

The above multiple vehicle algorithm was run for 23 problem instances, with names

ranging from p01 to p21, and pr01 to pr21. Complete detailed results for these instances

are contained in Appendix A. However, a summary of the interesting results are

discussed here.

First, the effect of the order of neighborhoods was investigated when 4 neighborhoods

were considered, and the best results are listed in Table 4-1.

22

Table 4-1 Effect of Neighborhood Order (4 Neighborhoods)

Scheme Partition N1 N2 N3 N4

Avg
Improvement
(percent)

Avg. Time
(secs)

VND APD 2-opt TVE 3-opt Depex 33.92% 78.04881

VND APD 2-opt TVE Depex 3-opt 33.79% 77.33881

VND APD 2-opt 3-opt TVE Depex 33.76% 197.7543

VNS APD TVE 2-opt 3-opt Depex 27.52% 70.8876

VNS APD TVE 2-opt Depex 3-opt 27.39% 75.12725

VNS APD TVE Depex 2-opt 3-opt 26.99% 75.44715

VND Voronoi Depex TVE 3-opt 2-opt 38.08% 310.7845

VND Voronoi TVE 3-opt Depex 2-opt 37.94% 304.7469

VND Voronoi Depex TVE 2-opt 3-opt 36.85% 203.9593

VNS Voronoi TVE Depex 2-opt 3-opt 42.22% 221.0236

VNS Voronoi TVE Depex 3-opt 2-opt 38.23% 741.5726

VNS Voronoi Depex TVE 3-opt 2-opt 37.52% 799.8579

At first, it can be seen that the order does not significantly affect improvement percent,

when observation is constrained to a specific scheme. However, the Variable

Neighborhood Descent produces better final results, with higher average improvement

percentages. Additionally, the 2-opt, Depex, TVE, 3-opt configuration produced the

best improvement percentages, while requiring an order of magnitude less time than the

other configurations, on average. Considering the neighborhood selection behavior of

the VND and VNS methods, where the first neighborhood is selected as the active

neighborhood whenever a better solution is found, a conclusion can be drawn that the 2-

opt neighborhood produces comparable (if not better) results than the 3-opt

neighborhood, while taking significantly less time to run.

23

Next, the effect of neighborhood order was investigated for three neighborhoods. The

best results are listed in Table 4-2.

Table 4-2 Effect of Neighborhood Order (3 Neighborhoods)

Scheme Partition N1 N2 N3

Avg
Improvement
(pct)

Avg Time
(secs)

VND APD 2-opt TVE 3-opt 33.99% 483.1837

VND APD 2-opt 3-opt TVE 33.86% 595.6045

VND APD TVE 3-opt 2-opt 33.49% 89.5769

VNS APD TVE 2-opt 3-opt 27.52% 71.3513

VNS APD TVE 3-opt 2-opt 26.77% 178.1168

VNS APD 2-opt TVE 3-opt 25.87% 79.254

VND Voronoi TVE Depex 3-opt 42.59% 323.1872

VND Voronoi TVE 2-opt 3-opt 36.24% 225.4593

VND Voronoi Depex TVE 3-opt 35.97% 891.1418

VNS Voronoi TVE 2-opt 3-opt 37.37% 241.9253

VNS Voronoi TVE 3-opt Depex 37.18% 298.7079

VNS Voronoi Depex TVE 3-opt 36.93% 795.2278

Again, the results show that the VND scheme produces better improvement percentages

than the VNS scheme. Additionally, it can be seen that the 3-opt neighborhood occurs

frequently in these runs, but is mainly the last neighborhood in the configuration. This

reinforces the conclusion drawn previously that 3-opt is effective, but slow, so is not

preferred by the improvement schemes.

24

Next, configurations with 2 neighborhoods were investigated, with the best results listed

in Table 4-3.

Table 4-3 Effect of Neighborhood Order (2 Neighborhoods)

Scheme Partition N1 N2

Avg
Improvement
(pct)

Avg Time
(secs)

VND APD TVE 2-opt 32.82% 417.9984

VND APD 2-opt TVE 32.15% 422.4113

VND APD TVE 3-opt 31.99% 495.1695

VNS APD TVE 3-opt 22.76% 170.846

VNS APD 3-opt TVE 21.24% 173.4163

VNS APD 3-opt 2-opt 20.38% 121.7078

VND Voronoi TVE 3-opt 39.42% 753.4336

VND Voronoi 3-opt TVE 33.73% 1109.158

VND Voronoi TVE 2-opt 30.32% 11.05305

VNS Voronoi TVE 3-opt 33.93% 503.4305

VNS Voronoi 3-opt TVE 29.22% 479.8828

VNS Voronoi TVE 2-opt 27.92% 7.714526

These results exhibit the same behavior as the above tables with regards to the

improvement scheme, but provide a clearer picture of the overall improvement

capability of the different neighborhoods. From Table 4-3, it is immediately seen that

the Target Vehicle Exchange (TVE) and 3-opt neighborhoods appear most frequently,

followed by the 2-opt neighborhood. This indicates that TVE and 3-opt are the most

effective neighborhoods, even though they take one or two orders of magnitude longer to

run than other neighborhoods.

25

Finally, configurations with only one neighborhood were investigated. The best of these

runs are tabulated in Table 4-4.

Table 4-4 Effect of Neighborhood Order (1 Neighborhood)

Scheme Partition N1

Avg
Improvement
(pct)

Avg
Time
(secs)

VND APD 3-opt 22.96% 1462.62

VND APD 2-opt 21.96% 420.1842

VND APD TVE 14.08% 1.017391

VNS APD 3-opt 17.32% 109.5311

VNS APD 2-opt 10.36% 0.75705

VNS APD TVE 8.13% 0.30115

VND Voronoi 3-opt 21.29% 835.2096

VND Voronoi TVE 17.56% 1.6659

VND Voronoi 2-opt 15.56% 4.2504

VNS Voronoi 3-opt 19.92% 459.5533

VNS Voronoi 2-opt 13.19% 3.118789

VNS Voronoi TVE 8.87% 0.399421

Results in this table are not surprising when the previous tables are considered. These

results exhibit the same behavior regarding improvement scheme and neighborhood

selection. However, this set of results makes it easier to see the relative execution times

of the three best neighborhoods; 3-opt generally takes an order of magnitude longer than

other neighborhoods, but provides the best improvement percent of the three top

neighborhoods.

26

4.3 Voronoi Partitioning Investigation

To determine the effectiveness of the Approximate Primal-Dual algorithm in

determining vehicle partitions, runs were performed using a simple Voronoi partitioning

scheme, where targets are assigned to the vehicle whose starting depot is closest to the

target. The costs of the solutions output by the construction heuristic using the Voronoi

partitions, relative to the same costs using the APD algorithm are listed in Table 4-5.

Table 4-5 Voronoi Construction Heuristic Costs

Instance APD
Cost

Voronoi
Cost

Voronoi
Pct

p01 2483.04 2474.20 99.64%

p03 2170.27 3666.57 168.95%

p04 2569.91 4354.53 169.44%

p05 2588.21 2645.91 102.23%

p06 5089.49 4158.92 81.72%

p07 5759.59 5798.38 100.67%

p08 40044.10 59003.20 147.35%

p09 37783.80 51802.70 137.10%

p10 34990.60 50382.60 143.99%

p11 34610.90 71234.30 205.81%

p12 5917.04 12618.00 213.25%

p15 23619.60 9628.57 40.77%

p21 77354.60 19131.90 24.73%

pr01 6964.58 9940.97 142.74%

pr02 7625.70 7854.82 103.00%

pr03 21303.90 29336.80 137.71%

pr04 14659.20 19382.00 132.22%

pr05 9780.66 24196.30 247.39%

pr06 24778.50 9144.85 36.91%

pr07 4026.09 10006.30 248.54%

27

Table 4-5 Continued

Instance APD
Cost

Voronoi
Cost

Voronoi
Pct

pr08 9340.81 14959.80 160.16%

pr09 12207.20 16921.70 138.62%

pr10 9119.63 30491.90 334.35%

From Table 4-5, it can be seen that the cost of the Voronoi partitions were generally

more than that of the APD partitions, save for a few outliers where the Voronoi

partitions were slightly cheaper.

However, the costs of the solutions output by the construction heuristic do not tell the

entire story. Therefore, the Voronoi partitioned instances were improved using the same

neighborhoods and schemes as their APD partitioned counterparts, and selected results

are listed in Table 4-6. In this table, the 7th column shows the final cost using the

Voronoi partitions as a percentage of the final cost using the APD partitions. The 6th

column is provided as a reference.

28

Table 4-6 Comparison Between Improved APD and Voronoi Runs

Scheme N1 N2 N3 N4

APD Improved

Cost (pct)

Voronoi

Improved

Cost (pct)

VNS TVE 2-opt Depex 3-opt 100.00% 90.10%

VND Depex 2-opt TVE 3-opt 100.00% 95.58%

VND Depex 2-opt TVE 3-opt 100.00% 95.58%

VNS TVE 3-opt Depex 3-opt 100.00% 118.64%

VND 3-opt TVE Depex

100.00% 98.20%

VNS TVE 2-opt 3-opt

100.00% 91.27%

VND TVE 2-opt 3-opt

100.00% 94.15%

VNS TVE 2-opt

100.00% 101.52%

VND TVE 2-opt

100.00% 93.53%

VNS 3-opt 2-opt

100.00% 135.45%

VND TVE 3-opt

100.00% 97.90%

VNS TVE

100.00% 151.36%

VND 2-opt

100.00% 103.04%

VND TVE

100.00% 134.98%

Average: 107.24%

From Table 4-6, it can be seen that the instances that used the Voronoi partitions did

about the same, on average, than their APD counterparts. In fact, the average Voronoi

cost percentage over all runs was 107.24%. This indicates that selection of partition

method is not a very important factor in final solution quality.

4.4 Total Best Combinations

The averages of all the improvement percentages were used to determine the best

configurations for the 1, 2, 3, and 4 neighborhood groups. These configurations were

then run for every instance to ensure a complete result set.

29

4.4.1 Best 1 Combination

The best 1 neighborhood group was found to be 3-opt, without shaking and with the

APD partition method. These runs averaged a 22.96% improvement percentage.

Results from these runs are shown in Table 4-7.

Table 4-7 Best 1 Combination Results

Instance Start
Cost

Impr
Cost

Impr Pct Secs

p01 2483.04 1942.48 21.77% 7.368

p03 2170.27 1172.44 45.98% 4.822

p04 2569.91 1301.3 49.36% 15.816

p05 2588.21 1468.28 43.27% 30.267

p06 5089.49 2904.23 42.94% 180.685

p07 5759.59 4456.7 22.62% 195.286

p08 40044.1 40044.1 0.00% 192.995

p09 37783.8 37783.8 0.00% 142.009

p10 34990.6 34990.6 0.00% 374.885

p11 34610.9 34610.9 0.00% 30.816

p12 5917.04 2064.31 65.11% 25.047

p15 23619.6 3105.85 86.85% 5842.052

p21 5564.69 4889.38 12.14% 28.90068

p21 77354.6 76936.9 0.54% 9000

pr01 6964.58 6885.05 1.14% 11.20039

pr02 7625.7 7625.7 0.00% 9.709453

pr03 21303.9 21303.9 0.00% 29.87566

pr04 14659.2 13465.5 8.14% 943.9597

pr05 9780.66 8137.73 16.80% 286.9558

pr06 24778.5 14108.8 43.06% 32975.92

pr07 4026.09 2151.59 46.56% 2.17765

pr08 9340.81 7385.68 20.93% 178.9951

pr09 12207.2 9294.9 23.86% 480.1001

pr10 9119.63 9119.63 0.00% 50.35585

30

As can be seen, some of the instances (the larger ones) were unable to find any

improvement for this configuration. This is a common trend in the result set; it seems

that the larger instances started in local optima more frequently than the smaller

instances.

4.4.2 Best 2 Combination

The best 2 combination was found to have TVE as the first neighborhood, and 3-opt for

the second, using the VND scheme and the Voronoi partitions. For this configuration,

the improvement percentages averaged 39.42%. Table 4-8 lists these results.

Table 4-8 Best 2 Combination Results

Instance Start
Cost

Impr
Cost

Impr
Pct

Secs

p01 2474.2 1096.8 55.67% 1.012

p03 3666.57 1253.25 65.82% 16.18

p04 4354.53 1762.64 59.52% 206.734

p05 2645.91 1465.84 44.60% 38.875

p06 4158.92 1829.36 56.01% 22.65

p07 5798.38 2224.81 61.63% 48.702

p08 59003.2 59003.2 0.00% 518.078

p09 51802.7 51802.7 0.00% 557.311

p10 50382.6 50382.6 0.00% 479.043

p11 71234.3 67496.8 5.25% 9570.828

p12 12618 1573.43 87.53% 8.731

p15 9628.57 2398.17 75.09% 23.964

p21 19131.9 5543.1 71.03% 58.40544

pr01 9940.97 9940.97 0.00% 2.577926

pr02 7854.82 2425.53 69.12% 16.12673

pr03 29336.8 22436 23.52% 4844.833

pr04 19382 18776.1 3.13% 508.4298

31

Table 4-8 Continued

Instance Start
Cost

Impr
Cost

Impr
Pct

Secs

pr05 24196.3 17398.5 28.09% 4531.525

pr06 9144.85 5088.55 44.36% 252.208

pr07 10006.3 5294.35 47.09% 2.493464

pr08 14959.8 8907.27 40.46% 142.704

pr09 16921.7 5272.41 68.84% 100.4253

pr10 30491.9 30491.9 0.00% 46.63218

This configuration shows typically longer run times than that of the best 1 combination,

but with a higher average improvement percentage. This indicates that the TVE

neighborhood is effective for solution improvement.

4.4.3 Best 3 Combination

The best 3 combination configuration used TVE, Depot Exchange, and 3-opt

neighborhoods, without shaking, and using the Voronoi partitioning method. These runs

averaged a 42.59% for improvement percent, and are shown in Table 4-9.

Table 4-9 Best 3 Combination Results

Instance Start
Cost

Impr
Cost

Impr
Pct

Secs

p01 2474.2 1096.8 55.67% 0.962

p03 3666.57 1253.25 65.82% 16.196

p04 4354.53 1634.81 62.46% 186.685

p05 2645.91 1465.84 44.60% 38.83

32

Table 4-9 Continued

Instance Start
Cost

Impr
Cost

Impr
Pct

Secs

p06 4158.92 1829.36 56.01% 22.633

p07 5798.38 2224.81 61.63% 48.9

p08 59003.2 59003.2 0.00% 515.802

p09 51802.7 51802.7 0.00% 554.835

p10 50382.6 50382.6 0.00% 476.858

p11 19327.5 4599.05 76.20% 212.3943

p12 12618 1573.43 87.53% 8.829

p15 9628.57 2398.17 75.09% 24.106

p21 19131.9 5391.13 71.82% 89.22671

pr01 9940.97 9940.97 0.00% 2.634846

pr02 7854.82 2435.17 69.00% 14.46503

pr03 29336.8 22475.2 23.39% 4365.047

pr04 19382 18776.1 3.13% 541.5995

pr05 24196.3 17403.7 28.07% 4190.062

pr06 9144.85 5165.15 43.52% 235.299

pr07 10006.3 5510.2 44.93% 2.12073

pr08 14959.8 8689.09 41.92% 179.7975

pr09 16921.7 5289.71 68.74% 94.15305

pr10 30491.9 30491.9 0.00% 46.17499

These runs took less time than the best 2 combination runs, but provided a slightly better

average improvement percentage. This indicates that the Depot Exchange neighborhood

provides some improvement at a negligible run time increase.

4.4.4 Best 4 Combination

The best configuration with 4 neighborhoods was TVE, Depot Exchange, 2-opt, and 3-

opt, using a Variable Neighborhood Search and Voronoi partitions. These runs averaged

a 42.22% improvement, and are shown in Table 4-10.

33

Table 4-10 Best 4 Combination

Instance Start
Cost

Impr
Cost

Impr
Pct

Secs

p01 2474.2 694.271 71.94% 0.232

p03 3666.57 1143.62 68.81% 4.915

p04 4354.53 1551.03 64.38% 58.451

p05 2645.91 1476.75 44.19% 19.571

p06 4158.92 1474.53 64.55% 12.117

p07 5798.38 1464.33 74.75% 26.84

p08 59003.2 59003.2 0.00% 519.381

p09 51802.7 51802.7 0.00% 559.957

p10 50382.6 50346.4 0.07% 470.61

p11 71234.3 65498.1 8.05% 1910.843

p12 12618 2385.06 81.10% 53.939

p15 9628.57 2409.39 74.98% 11.693

p21 19131.9 5492.56 71.29% 78.08324

pr01 9940.97 9940.97 0.00% 2.691766

pr02 7854.82 2107.41 73.17% 14.26489

pr03 29336.8 22494.6 23.32% 974.1806

pr04 19382 18603.2 4.02% 213.7126

pr05 15198.4 9801.09 35.51% 484.938

pr06 9144.85 5240.83 42.69% 98.146

pr07 10006.3 4827.39 51.76% 1.632319

pr08 14959.8 8357.23 44.14% 64.22047

pr09 16921.7 4676.42 72.36% 168.083

pr10 30491.9 30473.4 0.06% 47.34827

These runs took longer, thanks to the addition of the 2-opt neighborhood, but did not

offer much improvement over the best 3 group. This is probably due to the overlap in

the solution spaces of the 3-opt and 2-opt neighborhoods.

34

5 CONCLUSION

To examine the effects of different neighborhoods and different schemes on solution

improvement for a multiple vehicle routing problem with fuel constraints, two

algorithms were implemented in two executables: the apd.exe executable and the mv.exe

executable. These implement the Approximate Primal-Dual algorithm and the Multiple

Vehicle algorithm, respectively. To facilitate result analysis and program

intercommunication, two file formats were created: the .apd file format and the .mv file

format.

Once these implementations were completed, four neighborhoods were selected: 2-opt,

3-opt, Depot Exchange, and Target Vehicle Exchange. Then, all combinations of one,

two, three, and four of these were run on 23 instances, utilizing the Variable

Neighborhood Descent and Variable Neighborhood Search schemes, and the APD and

Voronoi partition methods. Once as many of these runs were completed as possible

(some instances required too much time to complete), certain combinations of

neighborhoods, scheme, and partition methods were chosen to investigate their effects

on solution improvement.

The first observation that was made was that the Variable Neighborhood Descent

produced better solution improvement than the Variable Neighborhood Search. This is a

counter-intuitive result because the shaking step of the VNS was intended to break out of

35

local minima. The next observation was that the 2-opt neighborhood provides

improvement comparable to the 3-opt neighborhood, in an order of magnitude less time.

Finally, the effect of neighborhood order on improvement was investigated. This found

that the best improvement percentages were achieved when 2-opt was the first

neighborhood. Additionally, these runs completed in less time than other configurations,

because the VND and VNS schemes utilize the first neighborhood more often than the

others. Then the 2-opt neighborhood is used more, and its small solution space becomes

an advantage, allowing a quick approach to a local minima. The effect of the partition

method (either the Approximate Primal-Dual algorithm, or the Voronoi partitions) was

investigated, and it was found that while the Voronoi partitions produced solutions with

a higher starting cost, the final costs after improvement were close to that of the APD

partitions. This suggests that the improvement step is somewhat resilient to the initial

solution given to it.

The final investigation performed against the run data was to find the best configurations

that include only one, two, three, and four neighborhoods. The configuration groups

were sorted by improvement percent, and resulted in the following best configurations:

1. VND, APD: 3-opt

2. VND, Voronoi: TVE, 3-opt

3. VND, Voronoi: TVE, Depot Exchange, 3-opt

4. VNS, Voronoi: TVE, Depot Exchange, 2-opt, 3-opt

36

These results imply that the neighborhoods can be ordered in descending improvement

percentage: 3-opt, TVE, Depot Exchange, and 2-opt.

37

REFERENCES

Army, U. S. (2007, October 18). Soldiers Train With Raven UAVs. Retrieved January

20, 2013, from United States Army: http://www.army.mil/article/5644/soldiers-

train-with-raven-uavs/

Bae, J., & Rathinam, S. (2011). A Primal-Dual Algorithm for a Heterogeneous Traveling

Salesman Problem. arXiv, http://arxiv.org/abs/1111.0567.

Curry, J. A., Maslanik, J., Holland, G., & Pinto, J. (2004). Applications of Aerosondes in

the Arctic. Bulletin of the American Meteorological Society, 1855-1861.

Dell, R. F., Batta, R., & Karwan, M. H. (1996, May). The Multiple Vehicle TSP with

Time Windows and Equity Constraints over a Multiple Day Horizon.

Transportation Science, 30(2).

Hansen, P., & Mladenovic, N. (2001). Variable Neighborhood Search: Principles and

Applications. European Journal of Operational Research, 449-467.

Helsgaun, K. (2012, August). LKH. Retrieved September 2012, from Research Page of

Keld Helsgaun: http://www.akira.ruc.dk/~keld/research/LKH/

Khuller, S., Malekian, A., & Mestre, J. (2011, July). To Fill or Not To Fill: The Gas

Station Problem. ACM Transactions on Algorithms, 7(3).

Oberlin, P. (2009, May). Path Planning Algorithms for Multiple Heterogeneous

Vehicles. Master's Thesis. College Station, Texas: Texas A&M University.

38

Rangarajan, R. (2011, May). Approximation Algorithms and Heuristics for a

Heterogeneous Traveling Salesman Problem. Master's Thesis. College Station,

Texas: Texas A&M University.

Rathinam, S., & Sengupta, R. (2006, March). Lower and Upper Bounds for a Symmetric

Multiple Depot, Multiple Traveling Salesman Problem. Berkely, CA: Institute of

Transportation Studies.

Sundar, K., & Rathinam, S. (2013, April). Algorithms for Routing an Unmanned Aerial

Vehicle in the Presence of Refueling Depots. arXiv,

http://arxiv.org/abs/1304.0494.

39

APPENDIX A

FULL RESULTS

Table 5-1 summarizes the result set from the runs performed for this paper. For each combination of instance, scheme, and

partition method, the improved cost of the best combinations with 1, 2, 3, and 4 neighborhoods are listed, respectively.

Additionally, the starting cost is listed (the cost after the construction heuristic).

Table 5-1 - Result Summary

 Best 1 Combo Best 2 Combo Best 3 Combo Best 4 Combo
Instance Scheme Partition Start Cost Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken

p01 VNS APD 2483.04 1942.48 8.290 1148.07 2.602 1029.72 1.716 813.37 1.125

p01 VNS Voronoi 2474.20 1929.48 0.024 792.15 0.274 537.45 0.265 537.45 0.266

p01 VND APD 2483.04 1163.14 0.149 1051.55 0.184 1051.55 0.179 1029.72 8.438

p01 VND Voronoi 2474.20 1499.81 0.050 1047.64 3.993 890.03 1.599 890.03 1.615

p03 VNS APD 2170.27 1617.30 0.313 1062.95 2.185 1036.81 2.525 963.07 1.062

p03 VNS Voronoi 3666.57 1801.66 9.760 1411.49 10.434 1120.64 5.349 1099.25 6.356

p03 VND APD 2170.27 1172.44 4.822 1158.89 5.021 1138.59 1.719 1134.36 1.792

p03 VND Voronoi 3666.57 1801.66 9.783 1253.25 16.180 1177.55 14.394 1177.55 14.324

p04 VNS APD 2569.91 1301.30 15.748 1298.91 5.206 1292.39 4.118 1281.77 5.195

p04 VNS Voronoi 4354.53 2832.90 182.724 2770.80 349.353 1663.61 114.348 1551.03 58.451

p04 VND APD 2569.91 1301.30 15.816 1301.30 15.758 1301.30 15.943 1301.30 15.890

p04 VND Voronoi 4354.53 2809.46 194.482 1753.87 227.212 1543.85 224.807 1474.78 32.102

p05 VNS APD 2588.21 1478.15 34.644 1477.15 18.722 1473.29 16.819 1459.48 15.729

p05 VNS Voronoi 2645.91 1465.84 39.486 1465.84 39.472 1465.84 39.655 1457.50 19.640

p05 VND APD 2588.21 1468.28 30.267 1468.28 30.110 1468.28 30.329 1468.28 30.308

p05 VND Voronoi 2645.91 1465.84 38.858 1465.84 38.861 1465.84 39.109 1465.84 39.484

p06 VNS APD 5089.49 3428.53 205.309 2894.21 134.432 2883.44 136.893 2876.65 83.280

p06 VNS Voronoi 4158.92 3414.69 0.208 1052.84 18.011 1052.84 18.036 1052.84 18.073

40

Table 5-1 Continued
 Best 1 Combo Best 2 Combo Best 3 Combo Best 4 Combo
Instance Scheme Partition Start Cost Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken

p06 VND APD 5089.49 2904.23 180.685 2904.23 181.884 2904.23 181.093 2904.23 181.794

p06 VND Voronoi 4158.92 2624.25 0.959 1829.36 22.650 1776.17 277.707 1752.59 8.741

p07 VNS APD 5759.59 4456.70 197.979 3294.58 862.749 2392.51 2.833 2392.40 3.502

p07 VNS Voronoi 5798.38 4038.83 3.191 1928.29 53.184 1558.05 181.364 1464.33 26.840

p07 VND APD 5759.59 2962.01 2.306 2395.09 274.106 2395.09 277.892 2395.09 277.484

p07 VND Voronoi 5798.38 3829.60 123.154 2224.81 48.702 2136.65 48.252 2114.11 24.676

p08 VNS APD 40044.10 40044.10 0.904 40044.10 194.059 39793.90 568.133 39730.70 579.968

p08 VNS Voronoi 59003.20 59003.20 1.208 59003.20 521.369 58868.50 1029.656 58868.50 1034.539

p08 VND APD 40044.10 40044.10 0.638 40044.10 193.823 40044.10 192.518 40044.10 192.859

p08 VND Voronoi 59003.20 59003.20 0.909 59003.20 522.883 59003.20 522.492 59003.20 521.843

p09 VNS APD 37783.80 37586.20 1.261 37586.20 2.112 37586.20 140.221 37586.20 142.557

p09 VNS Voronoi 51802.70 51802.70 0.945 51796.40 0.739 51562.60 1633.865 51562.60 1656.211

p09 VND APD 37783.80 37783.80 0.696 37783.80 147.777 37783.80 143.700 37783.80 143.602

p09 VND Voronoi 51802.70 51802.70 0.720 51802.70 546.646 51802.70 559.428 51802.70 564.941

p10 VNS APD 34990.60 34990.60 1.610 34990.60 372.422 34990.60 381.882 34990.60 369.433

p10 VNS Voronoi 50382.60 50346.40 0.713 50346.40 1.555 50289.00 930.216 50289.00 956.784

p10 VND APD 34990.60 34990.60 1.520 34990.60 381.347 34990.60 377.317 34990.60 375.210

p10 VND Voronoi 50382.60 50382.60 0.677 50382.60 481.611 50382.60 482.115 50382.60 475.982

p11 VNS APD 34610.90 34610.90 0.399 32694.60 397.689 31863.90 13.479 31731.40 70.013

p11 VNS Voronoi 71234.30 67871.30 33.827 67509.30 7733.787 65936.30 1610.337 65498.10 1910.843

p11 VND APD 34610.90 30679.70 9.765 30558.60 1520.315 30558.60 1474.569 30558.60 1486.398

p11 VND Voronoi 71234.30 67496.80 9505.046 67496.80 9532.939 4599.05 115.675 67496.80 9549.344

p12 VNS APD 5917.04 3069.05 32.756 2088.40 5.984 2054.97 7.104 1979.15 5.916

p12 VNS Voronoi 12618.00 3552.20 641.124 2707.32 155.453 1559.21 84.632 1559.21 84.086

p12 VND APD 5917.04 2064.31 25.047 2039.37 2.865 2039.37 2.835 2039.37 2.852

p12 VND Voronoi 12618.00 1556.68 661.698 1545.49 25.355 1545.49 25.492 1545.49 25.657

p15 VND APD 23619.60 3105.85 5842.052 3105.85 5935.886 3080.96 349.839 3105.85 5870.366

p21 VND APD 5564.69 4889.38 15.740 24147.60 9000.000 49162.80 9000.000 - -

pr01 VNS APD 6964.58 6885.05 6.318 6885.05 9.594 6885.05 8.066 6885.05 7.956

41

Table 5-1 Continued
 Best 1 Combo Best 2 Combo Best 3 Combo Best 4 Combo
Instance Scheme Partition Start Cost Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken
pr01 VNS Voronoi 9940.97 9940.97 0.000 9742.18 5.616 9711.07 0.062 9711.07 2.730

pr01 VND APD 6964.58 6885.05 6.100 6885.05 5.881 6885.05 5.850 6885.05 6.038

pr01 VND Voronoi 9940.97 9940.97 0.016 9940.97 1.451 9940.97 1.435 9940.97 1.419

pr02 VNS APD 7625.70 7209.52 0.032 5671.24 78.328 5671.24 75.723 5596.61 121.401

pr02 VNS Voronoi 7854.82 5187.07 0.733 2226.53 13.697 2047.71 6.630 2047.71 6.583

pr02 VND APD 7625.70 3001.42 3.494 3001.42 3.526 3001.42 3.744 3001.42 3.884

pr02 VND Voronoi 7854.82 4326.63 20.920 2425.53 8.783 2145.94 12.199 2145.94 12.246

pr03 VNS APD 21303.90 21303.90 0.125 21303.90 17.160 21303.90 26.302 21114.30 32.651

pr03 VNS Voronoi 29336.80 24552.40 1964.436 22713.00 2656.131 22423.60 1920.069 22423.60 2287.047

pr03 VND APD 21303.90 21303.90 0.093 21303.90 16.318 21303.90 16.177 21303.90 16.395

pr03 VND Voronoi 29336.80 24528.40 2153.634 22436.00 2638.612 22369.10 496.132 22369.10 508.206

pr04 VNS APD 14659.20 13465.50 545.101 13463.20 694.660 13456.30 410.674 13429.00 348.773

pr04 VNS Voronoi 19382.00 18776.10 286.185 18620.90 2.871 18544.80 51.527 18387.50 133.377

pr04 VND APD 14659.20 13465.50 514.103 13448.50 318.275 13448.50 310.319 13448.50 313.392

pr04 VND Voronoi 19382.00 18776.10 296.793 18776.10 283.548 18776.10 290.569 18776.10 281.411

pr05 VNS APD 9780.66 8137.73 157.952 8129.20 172.616 7954.24 148.545 7954.24 147.078

pr05 VND APD 9780.66 8137.73 156.283 8108.92 183.318 8108.92 191.804 8108.92 184.020

pr05 VND Voronoi 24196.30 18372.10 8.237 17398.50 2467.977 17235.50 2788.436 17399.40 4609.273

pr06 VND APD 24778.50 14108.80 17959.474 14108.80 17795.797 - - - -

pr07 VNS APD 4026.09 2140.68 1.435 2098.52 1.419 2087.64 1.311 2087.64 1.279

pr07 VNS Voronoi 10006.30 6104.24 0.218 5105.09 0.484 4884.46 0.530 4827.39 0.889

pr07 VND APD 4026.09 2151.59 1.186 2090.29 1.248 2090.29 1.295 2090.29 1.357

pr07 VND Voronoi 10006.30 6271.34 0.171 5224.70 0.421 5175.43 0.764 5175.43 0.811

pr08 VNS APD 9340.81 7385.68 94.069 7385.68 98.032 7143.78 15.273 7133.24 29.453

pr08 VNS Voronoi 14959.80 10765.70 64.257 9395.85 72.447 8566.96 81.963 8357.23 34.976

pr08 VND APD 9340.81 7385.68 97.485 7385.68 92.899 7312.80 54.491 7312.80 56.784

pr08 VND Voronoi 14959.80 10765.70 62.478 8907.27 77.720 8689.09 97.922 8659.87 21.185

pr09 VNS APD 12207.20 7881.07 2.012 5758.65 25.928 5417.64 30.825 5417.64 31.512

pr09 VNS Voronoi 16921.70 12113.80 340.661 7097.05 21.638 4543.79 118.234 4422.08 108.281

pr09 VND APD 12207.20 6325.20 4.945 5706.90 461.125 5598.21 179.558 5598.21 191.975

pr09 VND Voronoi 16921.70 7489.55 14.804 5272.41 54.694 4983.53 40.966 4767.24 60.279

42

Table 5-1 Continued
 Best 1 Combo Best 2 Combo Best 3 Combo Best 4 Combo
Instance Scheme Partition Start Cost Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken Impr Cost Secs Taken

pr10 VNS APD 9119.63 6922.19 0.468 6027.47 1.029 4701.49 2.028 4701.49 6.973

pr10 VNS Voronoi 30491.90 30473.40 0.655 30468.60 76.145 30332.70 1.669 30332.70 27.877

pr10 VND APD 9119.63 4044.72 1.389 4044.72 9.282 4044.72 728.606 4044.72 737.623

pr10 VND Voronoi 30491.90 30491.90 0.109 30491.90 25.365 30491.90 25.335 30491.90 25.241

