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  ABSTRACT 

 

Top Tensioned Riser (TTR) and Steel Catenary Riser (SCR) are often used in a 

floating oil/gas production system deployed in deep water for oil transport. This study 

focuses on the improvements to the existing numerical code, known as CABLE3D, to 

allow for static and dynamic simulation of a TTR connected to a floating structure 

through a tensioner system or buoyancy can, and a SCR connected to a floating structure 

through a flex joint. A tensioner system usually consists of three to four cylindrical 

tensioners. Although the stiffness of individual tensioner is assumed to be linear, the 

resultant stiffness of a tensioner system may be nonlinear. The vertical friction at a riser 

guide is neglected assuming a roller is installed there. Near the water surface, a TTR is 

forced to move due to the motion of the upper deck of a floating structure as well as 

related riser guides. Using the up-dated CABLE3D, the dynamic simulation of TTRs 

will be made to reveal their motion, tension, and bending moment, which is important 

for the design. A flex joint is approximated by a rotational spring with linear stiffness, 

which is used as a connection between a SCR and a floating structure or a connection 

between a TTR and the sea floor. The improved CABLE3D will be integrated into a 

numerical code, known as COUPLE, for the simulation of the dynamic interaction 

among the hull of a floating structure, such as SPAR or TLP, its mooring system and 



 

iii 
 

riser system under the impact of wind, current and waves. To demonstrate the 

application of the improved CABLE3D and its integration with COUPLE, the related 

simulation is made for ‘Constitution’ SPAR under the met-ocean conditions of hurricane 

‘Ike’. The mooring system of the Spar consists of nine mooring lines and the riser 

system consists of six TTRs and two SCRs.  
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1. INTRODUCTION 

1. 1 Background and Significance 

Many platforms have been designed and used for production of oil and gas in the 

Gulf of Mexico (GoM) since 1940s. The tremendous fast development of offshore 

construction can be observed for a large variety of activities at sea. Different types of 

offshore platforms are being proposed for better performance as oil and gas exploration 

is pushed into deeper and deeper water (Murray et al. 2007).  

On floating host platforms, dry-tree system is constructed to facilitate tieback of the 

subsea manifolds, via TTRs, to a dry environment on the vessel to minimize the 

construction and production costs (Murray et al. 2006). The top tension of a TTR is 

provided by either a buoyancy can or a deck mounted tensioner systems, such as 

hydropneumatic tensioner (Yang and Kim 2010). Both types of TTR are used in various 

kinds of platforms, including tension leg platforms (TLPs), semi-submersible and Spars.  

On a TLP, TTR with a tensioner system is more widely utilized. Whilst on a Spar 

deployed in moderate-depth water, a TTR with a buoyancy can is more popular. In this 

case, buoyancy cans are to provide tension at the top of production and drilling risers. A 

TTR with a buoyancy can does not impose vertical loads on the Spar hull and its vertical 

movements is independent of the hull motion (Chen et al. 2008). However for Spars that 

are constructed at ultra-deep water depth, which is more than 1500 meters, 
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disadvantages of TTR of this kind begin to emerge to form many practical problems. As 

water depth goes deeper, the volume of a buoyancy can will become larger due to the 

increasing net weight of the TTR. Due to the limitations of center well space and Spar 

hull volume, the buoyancy cans might not be feasible choice under the ultra-deep water 

circumstance (Chen et al. 2008).  

Since technology in tensioners has advanced significantly these years, tensioners 

show greater advantages compared to buoyancy cans especially for ultra-deep water 

conditions. Though tensioners do not have negative effects on the center well and Spar 

hull size, they will exert tension loads on the entire floating structure and may have a 

functional constraint since all tensioner systems have stroke limitations (Chen et al. 

2008). Despite of these challenges, it has been demonstrated that the cost implication of 

Spars from tensioners due to extra tension loads and stroke limitations would be far less 

than that from buoyancy cans in ultra-deep water situations. Advances in tensioner 

technology enable larger stroke requirements, hence TTRs with tensioner system are 

gaining increasingly popularity in real-world applications these years. Above all, the 

global performance analysis of TTRs of such type is of great significance to both 

fundamental research and industry applications. 

Turning to the steel catenary riser (SCR), it is always connected to the hull through 

the connection of flex joint (See Fig. 1.1). The flex joint will exert bending moment on 
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the upper end of SCR. However, in most previous researches, the connection point 

between SCR and hull was assumed to be a hinge. The calculations can be simplified 

following this approach, but there will be some discrepancy with the actual conditions if 

the connection point is assumed to be a hinge. Therefore, the specific model of flex joint 

is of great significance for a comprehensive analysis of SCR.  

 

Fig. 1.1 Configuration of flex joint (API RP 2RD) 

Therefore, several improvements will be made to the existing numerical code, 

known as CABLE3D, to allow for static and dynamic simulation of a TTR connected to 
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a floating structure through a tensioner system or buoyancy can, and a SCR connected to 

a floating structure through a flex joint. The improved CABLE3D will be integrated into 

a numerical code, known as COUPLE, for the simulation of the dynamic interaction 

among the hull of a floating structure, such as SPAR or TLP, its mooring system and 

riser system under the impact of wind, current and waves. 

 

1. 2 Review of Previous Work  

Chen and Nurtjahyo (2004) introduced a “Linearized P-Delta” model to account for 

the effects of buoyancy can TTR on the Spar motions. The predicted motions using the 

proposed model were compared with the model test results for a production truss Spar in 

the Gulf of Mexico. There are two types of tensioner system: tension style and 

compression style respectively (See Fig. 1.2). In most compression style tensioner 

system, cylinders are parallel with each other and the compressed air inside cylinders 

provides the top tension needed by risers, therefore the whole compression style 

tensioner system could be modeled as one individual linear or nonlinear spring (Chen et 

al. 2008).  
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Fig. 1.2 Tension vs compression style tensioner system (Perryman et al. 2005) 

 

The tensioner system with parallel configuration of cylinders is called RAM type 

tensioners. The RAM type tensioner is a hydro-pneumatic passive tensioner system 

utilizing ram cylinders mounted parallel to the risers (Perryman et al. 2005). Perryman et 

al. (2005) studied RAM type tensioners, which were implemented on “Holstein Spar” to 

support drilling/production risers. Yang and Kim (2010) introduced a linear and 

nonlinear approach to model TTRs on the Spar. The relationship between tensions and 

strokes for hydro-pneumatic tensioner is based on the ideal gas equation where the 
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isotropic gas constant can be varied to achieve an optimum stroke design based on 

tensioner stiffness.  

Due to parallel cylinders of compression style tensioner system, the model can be 

simplified as a single spring without considering the detailed configuration of tensioner 

cylinders. As presented in Fig. 1.2, in tension style tensioner system, individual 

cylindrical tensioner bears an angle with a TTR, thus nonlinearity of the system has to be 

taken into account. Not many finite element (FE) programs currently are applicable of 

modeling this type of tensioner system considering the detailed configuration of each 

cylinder, which induces the nonlinearity of the system. Specific models of a tension style 

tensioner system will be discussed in Section 2. 

Previously, the connection point between SCR and hull is assumed to be a hinge in 

CABLE3D. Yet in real applications, a flex joint will be inserted at the porch and hence 

bending moments are applied on the upper end of a SCR. For instance, Chen (2002) 

pointed out that when the moments applied at the porch are neglected, it means flex 

joints are not modeled. In this study, related improvements will be made to the original 

CABLE3D program for the analysis of TTR and SCR with a flex joint at its porch. 

The up-dated Cable3D will then be integrated into COUPLE. Various coupled 

analyses of integrated floating structure were performed before. For a typical deep-water 

Spar such as the ‘Constitution’ simulated in this study, the ratio of the structure 
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dimension to the characteristic design wavelength is usually small (less than 0.2). 

Therefore according to slender body approximation (Kim and Chen 1994), the 

diffraction and radiation effects are neglected and it is assumed that the wave field is not 

disturbed by the structure, so that the modified Morison equation (Morison et al. 1950) 

is adequate to calculate the first and second-order wave exciting forces (Cao and Zhang 

1997). Li (2012) conducted the fully-coupled time-domain analysis for ‘Constitution’ 

Spar by utilizing the slender-body approximation without the consideration of diffraction 

and radiation effects. However, simulation of TTRs and flex joints are not achieved in 

Li’s analysis. In this study, coupled effects caused by tension style tensioner system, 

buoyancy can, riser guides and flex joints are further investigated by using the up-dated 

COUPLE for the simulation of ‘Constitution’. 
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2. METHODS AND MODELS 

2.1 Simulation of Riser 

Both TTRs and SCRs could be modeled as small extensible slender rods with 

certain bending stiffness. The 1-D Galerkin’s method was used to discretize the 

governing equations, which will be discussed in this section. As what Chen (2002) 

pointed out, the Newton’s method and the Newmark-β method were introduced to solve 

the static problem and dynamic problem, respectively.  

The equations for motion of slender rods are presented below, mainly following the 

work by Love (1944), Nordgren (1974), Garrett (1982), Paulling and Webster (1986), 

Ma and Webster (1994) and Chen (2002). The internal state of stress at a point on the 

rod is described fully by the resultant force F and the resultant moment M
~

 acting at the 

centerline of the rod. Based on the law of conservation of linear momentum and moment 

of momentum, the governing equations could be obtained: 

 ),( tsrqF   (2.1) 

 0
~

 mFrM  (2.2) 

where q is the distributed external force per unit length,  is the mass per unit length, m 

is the external moment per unit length, and a superposed dot denotes differentiation with 

respect to time. The prime denotes the derivatives with respect to s, and s means the arc 

length along the rod. The effects of rotary inertia and shear deformations are neglected. 
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The resultant moment M
~

 can be written as: 

 rrrM  HB )(
~

 (2.3) 

 rrrrM  HHB )(
~

 (2.4) 

Where H is the torque and B is the bending stiffness. The torque effects are neglected 

here, thus H=0. Letting m=0 means no external bending moment along the risers except 

at their ends. Substitute '
~
M  into equation (2.2), we have the follwoing expression for F: 

 )(  rrF B  (2.5) 

 2 BT   (2.6) 

where ''''2
rr  , and  is the local curvature of the rod, and Fr  '),( tsT  is the local 

tension. According to the inextensibility assumption: 

 1 rr  (2.7) 

The equation of motion is finally formed by plugging the expression for F into 

(2.1): 

 rqrr   )()(B  (2.8) 

Equation (2.7) can be expanded to allow for small extension by: 

 
2

)1(  rr  (2.9) 

where 
EA

T
 , EA is the elastic stiffness of the riser. When  is very small, equation of 

motion (2.8) and equation of Lagrange multiplier  (2.6) are valid.  
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The external forces q  applied on the riser include gravity forces, hydrostatic and 

hydrodynamic forces. The gravity force gives rise to a distributed load on the riser: 

 yttt gAts eq ),(  (2.10) 

The hydrodynamic forces consist of added-mass force, drag force, and Froude-

Krylov force. The first two terms are predicted by Morrison equation: 

 )()(),( raTraNq   fMtfffMnff

I

f CACAts   (2.11) 

 

)()(
2

1

)()(
2

1
),(

rvTrvT

rvNrvNq









ffDtff

ffDnff

D

f

CD

CDts





 (2.12) 

where CMn, CMt, CDn and CDt are the normal added-mass coefficient, tangential added-

mass coefficient, normal drag coefficient and tangential drag coefficient, respectively.  

Froude - Krylov force due to sea water outside the riser is: 

 )()(),( 


raeq ffffyf

KF

f APAgts   (2.13) 

Froude-Krylov force (pressure forces) due to the fluid inside the rod is: 

 )(),( 


req iiyii

KF

i APgAts   (2.14) 

Where: 

 = t At+i Ai, the mass per unit rod (including the internal fluid), 

f (s) = the mass density of the sea water, 

i (s) = the mass density of the inside fluid, 

t (s) = the mass density of the tube, 
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Af (s) = the outer cross-section area of the rod, 

Df (s) = the diameter of the rod, 

Ai (s) = the inner cross-section area of the rod, 

At (s) = the structural cross-section area of the rod, 

vf = the velocity of the sea water (current and wave), 

af = the acceleration of the sea water (current and wave), 

Pf = pressure of the sea water, 

Pi = pressure of the internal fluid, 

T, N = transfer matrices, 

I = identity matrix, 

where the subscripts f, i and t denote the sea water, the fluid inside the riser and the riser 

itself. T and N are defined by: 

 rrT 
T  (2.15) 

 TIN   (2.16) 

The governing equation is: 

 qrrrM  )
~

()( B  (2.17) 

where 
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)()(
2

1

)()(
2

1

)()(

rvTrvT

rvNrvN

aTNIeq











ffDtff

ffDnff

fMtMnffyttiiff

CD

CD

CCAgAAA







 (2.18) 

 TNIM MtffMnffiitt CACAAA   )(  (2.19) 

 2
)(

~
 BAPAPT iiff   (2.20) 

and assume curvature  is small, then  can be expressed as: 

 
EA

APAP

EA

T iiff 





~

 (2.21) 

The Galerkin's method is adopted to discretize the partial differential equations of 

motion from (2.17), and the constraints equations (2.9) and (2.21) in space, resulting in a 

set of nonlinear 2nd-order ordinary differential equations in the time domain. This is a 1-

D problem. The discretization is performed on a 1-D rod. 

Equation (2.17) may be reduced to a set of ordinary differential equations using 

Galerkin's method. Multiplying both side of the equation by ai(s) and integrating it with 

respect to s from 0 to L for an element of the length of L: 

   0)()
~

()(
0

 dssaB i

L

qrrrM   (2.22) 

where the Hermite cubic shape function a(s) are: 

32

4

32

3

32

2

32

1

)(

23)(

2)(

231)(

















a

a

a

a

    (2.23) 
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Integrating the above equation by parts results in equation (2.24): 

 
 

  L

i

L

oi

L

iiii

saBsaB

dssasasaBsa

0

0

)()(
~

)(

)()(
~

)()(





rrr

qrrrM




 (2.24) 

The first term on the right-hand side of the equation is related to the moments at the ends 

of the element, and the second term (in curly brackets) is the forces at the ends of the 

element. The right-hand side terms are called generalized forces fi, which can be 

expressed as: 

   L

i

L

oii aBaB
0

)(
~

 rrrf  , for i = 1,2,3,4 (2.25) 
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 )(
~

)(
1

)0(
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4 LL
L

B
L

Mrrf   (2.29) 

The details of adopting shape functions to discretize the motion equation and 

constraints equation could be found in work by Chen et al (2002). At free ends of the 

first and last elements, it is necessary to supply the boundary conditions. If N elements 

are used to describe a line in three dimensions, then the procedure results in 15+8(N-1) 

independent equations and coefficients. After the formation of the global system of 

equations AX=B, different boundary conditions will be added into the global equation 

for different types of risers, which will be discussed in later subsections. 
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2.2 Numerical Model of TTR 

2.2.1 Numerical Model of Tensioner System 

 

Fig. 2.1 Configuration of top-tensioned riser (API RP 2RD) 

 

 

The configuration of top-tensioned riser is shown in Fig. 2.1 (API RP 2RD). When 

a concentrated force ( f
~

) is applied at s0 along a slender rod, say a TTR (top tensioned 

riser), the corresponding forces can be added to the dynamic equations by introducing a 

 function as follows (Chen 2002):  
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()( 0  fqrrrM ssB   (2.30) 

In the use of the finite element analysis, the locations of concentrated forces are 

often defined at certain nodes. In modeling a TTR, beam elements with bending stiffness 

are selected. For such elements, the boundary conditions between two adjacent elements 

are (Chen 2002): 
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The three formulas in (2.31) represent continuity of displacement, continuity of 

slope and continuity of tension, respectively. The first formula in (2.32) shows that the 

difference between action and reaction force at a node is equal to the concentrated force 

applied at this node, and the second formula in (2.32) illustrates the continuity of 

bending moment applied at the node. The concentrated force ( f
~

) will be denoted as a 

function of relevant parameters, including stiffness, pretension of and configuration of 

tensioners, coordinates of the node where the tensioner system applies, etc.  

A tensioner system may consist of three to four individual cylindrical tensioners. 

The tension of an individual tensioner cylinder is approximated by a linear spring. 

Although the tension provided by an individual tensioner is linear, the stiffness of the 
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whole tensioner system is likely to be nonlinear. The initial pretension of each tensioner 

is denoted by if0


 and its initial length is denoted by iL0 . The length of a tensioner at a 

given time step is iL , where i specifies an individual tensioner, i. For instance, if there 

are four tensioners, i ranges from 1 to 4. The corresponding spring stiffness is given by 

ik . Hence, the tension at each time step is given by: 

 
)( 00 iiiii LLkff 



  (2.33) 

where if


 represents the tension of the ith tensioner, which is a function of time and a 

scalar denoting the magnitude of the tension. iL  and iL0  are given below. 

 )( iiii rrDL


  

 iii rDL 000


  (2.34) 

where iD


 represents the coordinates of upper end of a tensioner, which is its connection 

point to the upper deck, ir


 is the coordinate of the lower end of the tensioner, which is 

the connection between tensioner and riser, at a time step. iD0


 is the initial position of 

the upper end of ith tensioner while ir0


 represents the initial position of the lower end of 

the tensioner. 

The three components of if


 in the x, y, z directions can be obtained by introducing 

a unit direction vector id


. id


 is defined by the following formula. 
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  (2.35) 
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All tensioners in the same tensioner system are attached to a TTR through a load 

ring. Hence ir


 is calculated based on the coordinates of the center point of riser where 

the load ring is attached. ir


  is the unknown increment of ir


 at each iterative step and it 

will be calculated in solving the global matrix. Thus rri


  is the predictive coordinates 

at each time step. It is noted that ir


  is the same for all tensioner cylinders because the 

load ring is considered to be rigid.  

Using the Taylor expansion and discarding the high-order terms

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where        2/12
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By introducing the approximation xx
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1)1( 2

1




 when x <<1, the equation can 

be linearized to: 
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Similarly, the expression for 
iL

1
, which will be used in the computation of id


, can 

be obtained. 
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  (2.38) 

Then substituting the above expression into formula (2.35) for id


, the following 

formulas can be acquired: 
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Finally the three components of if


 are obtained by ijiij dff  , 
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where  iiiiii rDlkfT 000


 . 

Substituting the expression for ijf  into the governing equation (2.30) and moving 

the terms related to ir


  to the left side of the global equations AX=B, we allow the 

effects of a tensioner system in the dynamic analysis of a TTR. 

 

2.2.2 A Simplified Approach of Modeling TTRs with Buoyancy Can 

For TTRs tensioned by buoyancy cans, the top tension of a TTR is provided by 

buoyancy cans attached at its top. TTRs are designed to be laterally constrained by the 

riser guides at several Spar elevations but are allowed to move independently in the 

vertical direction (Chen and Nurtjahyo 2004). The buoyancy is constant due to the 

constant volume of can. There are two approaches of modeling this TTR type. The first 

is to introduce different element types while discretizing the riser. For elements within 

the buoyancy can area, the buoyancy of cans is integrated into the element properties, 

which are the input of CABLE3D. In this way the buoyancy is distributed evenly onto 

the corresponding riser segment. The second approach is to model the buoyancy can as 
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concentrated force acting on the upper end of the riser, following equation (2.30). The 

first approach is selected in this study.    

 

2.3 Numerical Model of Upper Deck and Riser Guide 

In modeling TTRs, the effects of upper deck and riser guides will be taken into 

account. The motion of offshore structures is transmitted to TTRs through upper deck 

and riser guides. The vertical friction between TTRs and upper deck or riser guides is 

neglected, since rollers are placed here to minimize the friction. As shown in Fig. 1.2, 

upper deck locates on top of tensioner system. Riser guides are often below the sea 

surface and the lowest among them at the bottom is called keel guide (See Fig. 2.2). 

More riser guides are likely to be constructed at various elevations of the Spar due to its 

deep draft and long length of TTR within the moon pool or truss.  

The locations of connection points between TTRs and upper deck or riser guides at 

each time step are crucial to TTR motion. Translation and rotation motions of a floating 

platform are considered to determine the instant location of the riser guides. The 

relationship between space-fixed coordinates 
t

zyx )ˆ,ˆ,ˆ(ˆ x  and body-fixed coordinates 

t
zyx ),,(x  is given by Chen (2002) 

 xTξx
t

ˆ  (2.43) 

where  
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 = (1, 2, 3)
t
, is the translation displacement of the body expressed in the space fixed 

coordinate system zyxo ˆˆˆˆ , 

T is a transfer matrix between body-fixed coordinate system and the space-fixed 

coordinate system, superscript t represents transpose of a matrix. 
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T is an orthogonal matrix with the property that T
t
=T

-1 

α =(1, 2 3)
t
 are the Euler angles in the sequence of the roll-pitch-yaw motion 

Since the body-fixed coordinates of upper deck and riser guides are known in 

advance, their instant location can be calculated using the above formulas.  

Because the vertical relative motion between TTR and upper deck/riser guide is not 

constrained, the instant contacting locations of the upper deck and riser guides will move 

along TTR. The related transient positions are determined at each time step and lateral 

support from riser guides is acting on the node closest to their transient positions. To 

ensure high accuracy, small elements with short lengths are recommended to better 

approximate the precise locations of connection points. 
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Fig. 2.2 Configuration of tensioner system and riser guides (Perryman et al. 2005) 

 

2.4 Numerical Model of Flex Joint 

The bending moment at a flex joint is denoted by )(
~

(t)(t) 'rδ'r


M . It is induced by 

the angle   between (t)(t) 'rδ'r


 and 0'r


, where (t)(t) 'rδ'r


  represents the direction 

vector at the upper end of riser at time step (t) and 0'r


 the direction vector when no 

moment is applied at the flex joint (equilibrium position for most cases).   can be 

calculated if (t)(t) 'rδ'r


 and 0'r


 are known. The direction of M
~

 can also be 

determined by 0( '( ) '( )) 'r t r t r   (See Fig. 2.3). 
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Fig. 2.3  Directions of related vectors )(')(' trtr


 , 0'r


, and ''r


 

 

At first, the magnitude of the moment is calculated by,  

0
MM θ      (2.44) 

where 0M  represents the linear rotational stiffness of the flex joint, which should be 

provided by the user based on the types of the flex joint used in the design. The 

magnitude of θ  is given by 
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Assuming that the elongation of the riser can be ignored, both 'r'r


  and 0'r


 are equal 

to 1. The Taylor expansion of 
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From Chen (2002), 

rrrM

 HB )(

~
    (2.47) 

where H is the torque and B is the bending stiffness. H=0 is assumed in this case. 

According to headings of (t)(t) 'rδ'r


 , 0'r


 and ''r


 (See Fig. 2.4), it could be shown that 

the direction of M
~

 can be obtained by )''('0 rrr


 , which is denoted as vector t


: 
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where i


, j


, k


 represent the unit vector in x, y, and z direction. And, assuming 
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So the total moment ),,(
~

zyx MMMM  can be obtained as the following. 
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After Galerkin Method is used to get a series of ordinary differential equations, the 

generalized force is calculated by, 
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L
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   (2.53) 

At the upper end of SCR, 2f represents the moment exerted by the flex joint on the 

riser at the porch. Substituting the expression for r'r'  and ),,( zyx MMM , the 

expressions for 21f , 22f , 23f  could be obtained. Adding this boundary condition to the 

global system of equations AX=B, the analysis considering the effects of flex joint 

could be performed. 
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Add the first term of 21f , 22f , 23f  onto the right hand side of vector B, while other 

terms are moved to the left hand side of the global system of equation. Necessary 

changes are to be made on corresponding entries of left matrix A. 

 

2.5 Boundary Conditions of Coupled Analysis 

2.5.1 Coupled Effects at Riser Guide and Porch 

In using ‘COUPLE’, TTRs and SCRs are modeled by a subroutine, which is similar 

to CABLE 3D. This subroutine used inside COUPLE includes the interface between 

risers and hull. Motions of a Spar are transmitted from main program to CABLE3D 

subroutine and forces and moments will be transmitted to the main program COUPLE 

after calculation in CABLE3D subroutine. How the translation and rotation motions of 

offshore structures are transmitted to TTR through upper deck and riser guides were 

explained in Section 2.3. When the flex joint is considered, the boundary condition at a 

porch is no longer assumed to be a hinge. This section will discuss how the force and 

moment induced by the upper deck, riser guides and porches are calculated, mainly 

following Chen (2002). 
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O'X'Y'Z' is a space-fixed coordinate system for TTRs and SCRs. Its origin locates at 

the still water surface and Y' axis directs positive upward. OXYZ is a space-fixed 

coordinate system for the hull, with origin at the still water surface and Z axis positive 

upward. O' and O are coincident. oxyz is a body-fixed coordinate system moving with 

the body (see Fig. 2.4). At initial position, o is as well coincident with O' and O. 

 

 

 

 

 

 

 

 

Fig. 2.4 Coordinate system for structure and mooring system 

 

A transfer matrix L between OXYZ and O'X'Y'Z' is introduced: 
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And the coordinates in O'X'Y'Z' can be transformed to coordinates in OXYZ system 

by applying the matrix L: 
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Forces and moments applied on the hull at riser guides and porches are the reaction 

force from TTRs and SCRs, 

 ),,( 1312111 fff fF  (2.59) 
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frM L  (2.60) 

where 1f  refers to generalized forces acting at TTRs through upper deck, riser guide, 

tensioner system and porch, 2f  refers to generalized moments applied at the upper end of 

SCR by flex joint at porch and L is element length. F  represents force exerted on the 

hull, which has opposite direction with 1f . )0(
~
M  denotes the moments applied on the 

hull via flex joint at the porch and could be obtained from 2f . 

If the total number of upper deck, riser guides, tensioner systems, and porches of the 

whole riser system is M, and the total number of flex joint is N, the forces of the riser 

system applied on the hull are the summation of forces and moments of each individual 

riser acting on the structure, which can be expressed as: 

 



M

m

mR

1

)(LFF  (2.61) 

  



M

m

mmR

1

1 )(TLFrM  (2.62) 

  



N

n

nR

1

2

~
MTLM  (2.63) 



29 
 

29 
 

where RF  refers to the forces applied by TTRs and SCRs, mr  represents the coordinates 

of the point of corresponding force component in the body fixed coordinate system oxy, 

and 1RM  is the moment induced by RF . 2RM  is the moment applied by flex joints only. 

RF  is expressed in the space-fixed coordinate system zyxo ˆˆˆˆ  while both 1RM  and 2RM  

are expressed in the body-fixed coordinate system oxyz. 

 

2.5.2 Effects of Structure Rotation on Neutral Angle of A Flex Joint 

If the floating structure is experiencing rotation motions, the neutral angle of flex 

joint will be changed considering that a flex joint is rigidly fixed on the hull. In 

subsection 2.4, it is determined that 0'r


 represents the direction of vector when no 

moment is applied at the flex joint and the angle between 0'r


 and the vertical line is the 

neutral angle. 0'r


 is expressed in the O'X'Y'Z', which is a space-fixed coordinate system 

for TTRs and SCRs. The formula for the rotation of 0'r


 is presented below, 

'' 00 rr
tt

n


LTL      (2.64) 

where nr 0'


 is the up-dated direction of vector after considering the rotation of the hull, 

and T is a transfer matrix between body-fixed coordinate system and the space-fixed 

coordinate system, superscript t represents transpose of a matrix. By multiplying with L

(defined in Eq.(2.60)), 
0'r


 is transformed into OXYZ, the space-fixed coordinate system 

for the hull. After applying matrix 
t

T , 
0'r


 is rotated to a new position due to the roll-
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pitch-yaw motion. t
L  is used for transforming the direction vector back to the O'X'Y'Z’ 

system. 

In order to consider the rotation effects on neutral angle, 
0'r


 is to be replaced by 

nr 0'


 in all formulas related to 
0'r


 presented in 2.4.  
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3. CASES USED IN NUMERICAL COMPUTATION 

3.1 Top Tension Riser 

The TTR selected for the simulation is used in an Ultra Deepwater Dry Tree System 

for Drilling and Production in the Gulf of Mexico (GoM). All data presented in this 

section is cited from an online report of FloaTEC, (RPSEA CTR 1402, 2009). The depth 

of water is about 2,400m and the upper end of the riser is 40m above the sea surface. The 

TTR was used in a SPAR for drilling. The riser sizing is shown in Fig.3.1. Detailed 

information of this double casing riser is listed in Table 3.1. 

 

Fig. 3.1 Riser sizing of TTR case (cited from report from FloaTEC, 2009) 

 

It is assumed that riser’s top tension is provided by a hydro-pneumatic tensioner 

system. The total nominal top tension is about 1,800 kips (about 8,000kN).  The 

tensioner system consisted of four tensioner cylinders, each of which has a stiffness of 

91.2 kN/m. The stroke-tension relationship of an individual tensioner is assumed to be 

linear; however, the tensioner system stiffness may be nonlinear. The total stroke of a 
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tensioner is 8 meters. The up limit for stroke is 4 meters and its down limit is 4 meters as 

well. The tensioner becomes rigid and the stiffness will be very large when the up and 

down limits are exceeded. According to Yang and Kim (2010), 8
105.1   kN/m is to be 

used when the tensioner system becomes rigid at extreme sea conditions. Within the up 

and down limits, the tensioner is modeled as a linear spring. 

 

Table 3.1 Physical properties of TTR and parameters needed for analysis. 

Physical Properties of TTR 

Length of TTR 2438m 

Young's Modulos 206850MPa 

Moment of Inertia 3.56E-04 4
m  

Mass of Riser Per Unit Length 2.85E+02kg/m 

Buoyancy Per Unit Length 9.76E+02N/m 

Normal Drag Coefficient 1.2 

Tangential Drag Coefficient 0.0 

Normal Added-mass Coefficient 1.0 

Tangential Added-mass Coefficient 0.0 

 

At the equilibrium position, the upper deck was at about 25 meters above the sea 

level. Lateral support from the upper deck is considered in our simulation. The elements 

are divided into two types. The first type of element is above the sea level and the other 
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below the sea level considering the difference between with or without the buoyancy. 

The first type of elements is used at the top portion of the riser, which is 40 meters above 

sea level. The second type of element is used for the rest portion of the riser. The density 

of sea water is 3
3

1003.1
m

kg
  and the density of inner fluid is 3

3
1090.0

m
kg

 . 

Afterwards three riser guides are considered. The vertical distance from each riser 

guide to the upper deck was 110 meters, 137 meters and 165 meters respectively. The 

bottom riser guide is known as the keel guide.  

 

3.2 SCR with a Flex Joint at its Porch 

The Oil Export SCR studied by Deka et al. (2010) is selected for our simulation. 

The water depth is 5,200ft (1585m) and the porch height is assumed to be at the sea 

surface. As presented in Fig. 3.2, the outer diameter of riser is 20” (50.8 cm) and its wall 

thickness is 1.25 inch (3.175 cm). The density of the steel is 7,900
3

/ mkg . Detailed 

information of the SCR is given in Table.3.2. The SCR top neutral angle was 15 degree 

from the vertical line, and the 20 inch SCR flexjoint rotational stiffness was 63 kip-

ft/degree ( 6
4.894 10 N-m/rad). The density of the inside fluid is 913

3
/ mkg  and the 

seawater density is 1,030
3

/ mkg . The drag coefficient and added mass-coefficient of the 

risers are taken as 1.6 and 2.0, respectively (Deka et al. 2010). 
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Fig. 3.2 Riser sizing of SCR case 

 

Table 3.2 Physical properties for SCR 

Physical Properties of SCR 

Length of SCR 2500m 

Young's Modulos 206850MPa 

Moment of Inertia 1.40E-03 4
m  

Cross Section Area 2.03E-01 2
m  

Internal Cavity Area 1.55E-01 2
m  

Mass of Riser Per Unit Length 3.75E+02Kg/m 

Buoyancy Per Unit Length 2.05E+03N/m 

Normal Drag Coefficient 1.6 

Tangential Drag Coefficient 0.0 

Normal Added-mass Coefficient 2.0 

Tangential Added-mass Coefficient 0.0 
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At equilibrium position, the top neutral angle of SCR is about 15 degree and no 

moment is exerted by the flex joint. Through trail-and-error of different horizontal 

excursions, the equilibrium position will be determined when the top angle is closest to 

15 degree. Further analysis will be made based on this equilibrium position. 

 

 



36 
 

36 
 

4. RESULTS AND DISCUSSION 

4.1 Analysis of TTR 

4.1.1 Static Analysis of TTR 

For the case stated in 3.1, static analysis is performed by using different offset 

values at the upper deck as the input. Fig. 4.1 shows the TTR configuration when offset 

value equals to -100m, -50m, 0m, 50m, 100m respectively. While performing static 

analysis, the lower end is rigidly fixed. Riser guides are not supplied here, thus the riser 

segment inside the moon pool bears an angle with the vertical line when the offset is not 

zero (See Fig. 4.1). 

 

Fig. 4.1 TTR configuration of different offsets at its upper deck 
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Fig. 4.2 demonstrates the tension distribution from the TTR top to its bottom. At all 

situations, a sharp increase is observed at the node where the tensioner system is 

attached. The larger the offset is, the larger the tension will be. In the elements above the 

tensioner system, negative values of tension are observed due to the compression caused 

by the weight of the top portion of TTR above the tensioner ring. This compression is 

tiny and will not result in buckling of the riser. 

 

Fig. 4.2 Tension distribution along the TTR  

 

4.1.2 Dynamic Analysis of TTR 

Various cases were performed to analyze TTR responses under different harmonic 

excitations. To ensure stability of the numerical codes, the ramp function lasting for 50 
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seconds is added onto the very beginning at each simulation. Using the ramp function, 

the motion gradually reaches fully sinusoidal oscillation without sudden jumps. 

 

4.1.2.1 Results Using Different Sizes of Time Steps 

In this subsection, different time steps are used to examine the consistency and 

stability of the program. Two cases are studied here.  

The first case describes the TTR experiencing a heave motion with the amplitude of 

2m and period of 15s. In the simulation, the time steps of 0.5s and 0.2s were adopted, 

respectively. The y coordinate (vertical direction) of the 6
th

 node was traced, where the 

tensioner system is attached and is 10 meters above the sea surface. The results obtained 

using different time steps are almost identical (See Fig. 4.3). The amplitude of y-

direction motion is very small because this results from the elongation of riser, which is 

very tiny.  
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Fig. 4.3 Y-direction of the 6
th

 node with times steps of 0.2s and 0.5s in heave motion 

 

 

 

Fig. 4.4 Tension of the 6
th

 node with times steps of 0.2s and 0.5s, in heave motion. 
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Fig. 4.4 shows the tension time history at the 6
th

 node. It is observed that the two 

simulations of different time steps are virtually identical. The amplitude of the tension 

reaches about 700 kN, which is consistent with the tension-stroke relationship of the 

tensioner system. The tensioner system stiffness is about 365 kN/m and the stroke is 

about 2 meters in this case, which is approximately the heave motion amplitude, 

therefore it can be easily estimated that the force caused by the stroke of tensioner agrees 

reasonably well with the amplitude of tension time series.  

The second case is involved with a harmonic excitation at the upper deck in surge 

direction with the amplitude of 40m and period of 200s. Again, two different time steps 

0.5s and 0.2s were used, respectively. The tension at the 6
th

 node was traced. The results 

obtained using the two different time steps are the same (See Fig. 4.5). The simulation 

shown in this figure only lasts for 200 seconds for the purpose of comparison. 

Simulation lasting 1000 seconds will be presented in subsection 4.1.2.2. 
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Fig. 4.5 Tension of the 6
th

 node with times steps of 0.2s and 0.5s, in surge motion 

 

4.1.2.2 Analysis of Motion in Surge/Sway/Heave Direction 

Several cases are tested to demonstrate the resilience and robustness of the updated 

CABLE3D. The case for the TTR experiencing a harmonic excitation in surge direction, 

with the amplitude of 40m and period of 200 seconds, which represents a slow drift 

motion, is simulated (See Fig. 4.6). The top graph of Fig. 4.6 shows the x-coordinate 

(horizontal direction) of the 6
th

 node as a function of time. As discussed before, the 6
th

 

node is the node where the tensioner system is attached. The middle graph reveals the 

time series of y-coordinate of that node. Though the amplitude of surge motion reaches 

40 meters, the amplitude of y coordinate is merely about 0.1 meter. The bottom graph 

presents the time series of tension at the 6
th

 node and the amplitude is approximately 40 



42 
 

42 
 

kN, which is much smaller than the tension amplitude of heave motion shown in last 

subsection. 

Also, it is found that the tension at the 6
th

 node is closely related to its y-coordinate. 

However, both the tension and y-direction motion have almost the double frequency as 

the x-direction motion. When the horizontal offset reaches the maximum, its y-

coordinate becomes the lowest; when the x-coordinate reaches the equilibrium position, 

the y-coordinate becomes the highest; when the horizontal offset reaches maximum at 

the other side, its y-coordinate again becomes the lowest. Thus one period motion in the 

x-direction corresponds to two periods in the y-direction motion. Ramp function lasting 

for 50 seconds is used in the simulation, and it is noted that the motion in the first 50 

seconds is not in the harmonic state.  

The harmonic excitation in surge direction with the amplitude of 3m and period of 

15s is also examined (See Fig. 4.7). Similar observation as in the previous case are made 

here and both amplitudes of y-coordinate and tension are much smaller than those in the 

last case of slow drift motion. The major period of the y-direction motion is one half of 

that of the x direction motion. After ramp function the oscillation of y-coordinate 

becomes fully developed and the mean value at this stage is smaller than the initial y-

coordinate. This is due to the lateral hydrodynamic force caused by the translation of the 

riser. What’s more, when the riser passes through the mean position, the translation 
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velocity reaches the highest and induces the largest hydrodynamic loads within one 

cycle. This force makes the riser bending and lowers the y-coordinate of the 6
th

 node. 

The y-coordinate is related to tension, thus correspondingly the mean tension at the 

fully-developed stage is larger than the initial tension. 

 

 

Fig. 4.6 Surge excitation with amplitude of 40m and period of 200s 
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Fig. 4.7 Surge excitation with amplitude of 3m and period of 15s 

 

As shown in Fig. 4.8, the case of the harmonic excitation at the upper end of the 

TTR in heave direction with the amplitude of 2m and period of 15s is presented. The top 

graph represents the trend of the y coordinate of the upper end. The middle one shows 

the y coordinate of the 6
th

 node. The bottom one shows the time series of tension at the 

6
th

 node. The tension amplitude reaches as high as 700 kN, which is much larger than the 

tension amplitude in the case of large-amplitude slow drift surge motion. It indicates that 

the heave motion is the most critical to the tensioner system. If the heave amplitude is 

large, the tensioner system will experience large stroke, which is dangerous to the safe 

operations of TTRs.   
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Fig. 4.8 Heave excitation with amplitude of 2m and period of 15s. 

 

Fig. 4.9 presents the case of the harmonic excitation in sway direction with the 

amplitude of 40m and period of 200s, which represents the transverse slow drift motion 

(in z-direction). The top graph shows how the y-coordinate of the 6th node is changing 

with time. The middle graph shows the z-coordinate of the 6
th

 node, and the bottom 

graph shows the tension at the 6
th

 node. The trends observed in Fig. 4.9 are similar to 

those observed in the excitation in surge direction (Fig. 4.6). 
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Fig. 4.9 Sway excitation with amplitude of 40m and period of 200s 
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4.1.2.3 Specific Analysis of Tension and Bending Moment 

To observe the tension and bending moment distribution along a TTR, the results of 

the excitation with the amplitude of 40 m and period of 200s in surge direction are 

presented. The motion was simulated for duration of 1000 seconds. The motion, tension 

and bending moment at two different nodes (6
th

 and 15
th

 node) were analyzed, which 

could be found in Fig. 4.6 and Fig. 4.10, respectively. The two nodes show similar trends 

in both motion and tension. At the 15
th

 node which is 51 meters below the water surface, 

the y coordinate amplitude is 0.1 meter and tension amplitude is about 40 kN. The 

amplitude values are almost the same with those at the 6
th

 node.  

 

 

Fig. 4.10 Surge excitation with amplitude of 40m and period of 200s at 15
th

 node 



48 
 

48 
 

 

Fig. 4.11 Tension at nodes 300m, 495m, 800m, and 1498m below the sea surface 

 

 

 

 

Fig. 4.12 Time series of bending moment of nodes near upper deck and tensioner 
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The time series of the tensions at four different nodes (35
th

, 50
th

, 74
th

 and 129
th

 

node) are presented in Fig. 4.11. The four nodes are at the depth of 300m, 495m, 800m 

and 1498m, respectively. The phases of the tension are quite synchronized at different 

depths. The tension amplitude which is related to dynamic tension is also almost the 

same.  

Fig. 4.12 shows the bending moment at the 5
th

, 6
th

 and 7
th

 node, respectively, which 

located at the vicinity of the upper deck and the tensioner system. It is revealed that the 

bending moment in the elements near the upper deck (5
th

 node) reaches the highest level. 

Since the bending moment corresponds to the magnitude of curvature, it is known that 

the largest curvature happens near the tensioner system. Riser guide has not been 

considered in this case. After adding the constraints of riser guides, the peak value of 

dynamic bending moment will appear at the lowest riser guide according to further study 

considering riser guides that will be included in the subsection 4.1.2.4. 

 

4.1.2.4 Effects of Riser Guide 

To restrict relative motion between TTRs and the hull, the riser guides are required 

such as in the cases of TLP or SPAR. To quantify the effects of riser guides, three riser 

guides are modeled in the case illustrated in subsection 3.1. The vertical distances from 
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the three riser guides to the upper deck are 110 meters, 137 meters and 165 meters, 

respectively.  

 

Fig. 4.13 TTR configuration with different offsets when riser guide is considered 
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Fig. 4.14 Dynamic bending moment time series at the 175
th

, 180
th

, 185
th

 node 

 

 

 

 

Fig. 4.15 Dynamic bending moment time series at the 170
th

, 180
th

, 190
th

 node 
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The surge motion of the Spar experiencing the offset of -100 meters, -50 meters, 0 

meter, 50 meters and 100 meters are studied. As shown in Fig.4.13, the TTR section 

above the keel guide (about 140m below the sea surface) inside the moon pool remains 

vertical due to the restrictions of the three riser guides. The maximum curvature takes 

place in the vicinity of the keel guide, which means the maximum bending moment is 

likely to occur at this place. Further analysis reveals the dynamic bending moment in the 

neighborhood of the keel guide. 

To quantify the dynamic bending moment, the Spar is assumed to experience a slow 

drift motion with amplitude of 40 meters and period of 200 seconds. To ensure high 

accuracy, fine elements are adopted in this case. The keel guide locates at the 180
th

 node, 

which is about 139 meters below the sea surface. The bending moments at 160
th

 node, 

165
th

 node, 170
th

 node, 175
th

 node, 180
th

 node, 185
th

 node, 190
th

 node, 195
th

 node, 200
th

 

node, and 205
th

 node are computed. These nodes locate at 119 meters, 124 meters, 129 

meters, 134 meters, 139 meters, 144 meters, 149 meters, 154 meters, 159 meters, 164 

meters below the sea surface, respectively. These ten nodes chosen here are in the 

vicinity of keel guide.  

Fig. 4.14 indicates that the maximum dynamic bending moment amplitude occurs at 

the 180
th

 node, where the keel guide locates. The amplitude reaches as high as 400 

kN.m. However, at the 175
th

 node and the 185
th

 node, which locate at 5 meters above 
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and below the keel guide, respectively, the peak bending moment diminishes to below 

100 kN.m, which is far less than the dynamic bending moment at the keel guide. 

Although the magnitude is different, the phases of the bending moment are quite 

synchronized along nodes at different depths. 

The amplitude of the dynamic bending moment further decreases to below 20 kN.m 

at 170
th

 node and 190
th

 node, which are 10 meters above and below keel guide, 

respectively (See Fig. 4.15). The further away from the keel guide the location is, the 

smaller the dynamic bending moment at that point will be. At 205
th

 node, which is 25 

meters below the keel guide, the maximum dynamic bending moment is only 3 kN.m, 

which is negligible compared to that at the keel guide. Thus the vicinity of keel guide is 

more likely to experience high dynamic bending moment, and fatigue analysis within 

this area is of great significance to the design. 
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4.2 Analysis of SCR 

4.2.1 Static Analysis of A SCR with A Flex Joint at its Porch 

At first, the computation of the equilibrium position of a static SCR is attempted 

through iterations. During the iteration, the horizontal excursion of the SCR varies until 

the top angle of the riser with respect to the vertical line is close to the 15 degrees, which 

is the neutral angle of the flex joint used in the study. In our simulation, the riser top 

angle is obtained at 14.85 degrees with respect to the vertical line when the horizontal 

excursion is 635m. After the equilibrium position is obtained, several cases with 

different offset values are calculated using the static subroutine in CABLE3D. The 

results related to the offsets of -100m, -80m, -60m, -40m, -20m, 20m, 40m, 60m, 80m, 

100m are depicted in Fig.4.16. The touch-down point varies with different fairlead offset 

values.  

Fig.4.17 illustrates the relationship between the offsets and bending moment 

provided by the flex joint. When the offset is zero, which is the equilibrium position, the 

bending moment at the porch is almost zero. When the offset to the right gets larger, it is 

expected that the bending moment becomes larger, which reaches about 300 mkN   as 

the offset value is 100 meters.  

The larger the right-going offset is, the larger the top angle with respect to the 

vertical line will be (See Fig. 4.18). The comparison between a hinged riser and the same 
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riser but with a flex joint at the porch qualitatively validates the numerical scheme 

developed in this study. Since the flex joint exerts a moment on the upper end of the 

riser, the top angle of the riser is restricted and becomes smaller as indicated in Fig. 4.18. 

However, the reduction of top angle is very limited. When the offset reaches as large as 

100m, which could only occur in extremely harsh sea conditions, the reduction of top 

angle with respect to the hinged boundary condition is 0.5 degree, which is not 

significant. The reduction merely accounts for 10 percent of the angle between riser top 

end and neutral angle. The effects of flex joint on bending moment along the SCR will 

be discussed in the later subsection. 

 

 

Fig. 4.16 SCR with flex joint installed at its porch under different offsets  
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Fig. 4.17 Relationship between bending moment and offset 

 

 

Fig. 4.18 Relationship between the SCR top angle and offsets with/without the flex joint 
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4.2.2 Dynamic Analysis of Design Case in GoM 

Various dynamic analysis cases were performed to analyze a SCR with flex joints 

under different harmonic excitations at its porch. As cases of TTRs, the ramp function is 

applied at the beginning of each simulation. The duration of ramp function varies with 

the period of excitation from 5s to 200s. 

 

4.2.2.1 Results Using Different Sizes of Time Steps 

In this subsection, different sizes of time steps are used to explore the resilience and 

robustness of the program. Two cases are examined here. The first is a harmonic 

excitation with period of 5s and amplitude of 1m in the surge direction. The second is 

the harmonic excitation of a period of 15s and amplitude of 3m also in surge direction. 

The surge motion is forced at the upper end of the riser and the time series of its top 

angle with respect to the vertical line is the output. Three time steps 1.0s, 0.5s and 0.2s 

are tested. As shown in Fig.4.19, the results of two time steps (0.2 s and 0.5 s) are almost 

identical. In the top panel of Fig. 4.19, when the period is short (5 s), the largest time 

step (1 s) results in relatively large error. Therefore, in later simulations, the time step of 

0.25 s is chosen to ensure accuracy. 
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Fig. 4.19 Verification of different time steps under two harmonic excitations at upper 

end. 

 

 

Fig. 4.20 Surge excitation with amplitude of 1m and period of 5s. 
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4.2.2.2 Analysis of Motion due to Different Direction Excitations 

The Fig.4.20 shows the top angle of the riser when its upper end is forced to move 

in the surge direction with the amplitude of 1m and period of 5s. The top angle has the 

same period with the forced motion, which is expected. However, there is a phase 

difference between the top angle and the related excitation. The top angle has a phase 

advance compared to forced motion. Fig.4.21 depicts the similar plots but the forced 

surge motion has the amplitude of 3m and period of 15s. Yet while the upper end of riser 

experiences a slow drift motion with the amplitude of 40m and period of 200s, it is 

observed that the top angle time series is not exactly in harmonic with the forced motion 

(See Fig. 4.22).  

 

 

Fig. 4.21 Surge excitation with amplitude of 3m and period of 15s. 
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Fig. 4.22 Surge excitation with amplitude of 40m and period of 200s. 

 

 

Fig. 4.23 Sway excitation with the amplitude of 1m and period of 5s 



61 
 

61 
 

 

Fig. 4.24 Sway excitation with the amplitude of 3m and period of 15s 

 

Fig.4.23 depicts the top angle of the riser when its upper end is excited in the sway 

direction with the amplitude of 1m and period of 5s. It is observed that the frequency of 

the change in the top angle is doubled in comparison with that of the related excitation. 

The same trend is also observed in Fig.4.24, which reveals the results due to the 

excitation in sway direction with the amplitude of 3m and period of 15s. When the sway 

offset reaches the maximum, the top angle becomes the maximum. After one quarter of 

the period of the sway excitation, the upper end of the riser returns to its equilibrium 

position (zero offset at the upper end), the top angle reaches its minimum. After a half of 

the sway period, the sway offset at the upper end reaches the maximum when it sways to 

the opposite side and the top angle again reaches the maximum. This is why one period 

of the sway motion corresponds to two periods of the change in the top angle. 
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4.2.2.3 Effects of Flex Joints 

Fig.4.25 and Fig. 4.26 reveal the tension and bending moment at the upper end 

when the two different surge excitations are forced at the upper end, respectively. In Fig. 

4.25, the excitation is of the amplitude of 1m and period of 5s, while in Fig. 4.26 it is of 

the amplitude of 3m and period of 15s. The moment is dominated by the magnitude of 

the top angle thus their phases are quite synchronized. The phase of tension series is 

even more advanced than phase of moment. The response of risers under irregular 

excitations is to be analyzed in subsection 5.2.5 after integrating CABLE3D into 

COUPLE.   

Then the comparison of the top angle between a hinge used at the porch and a flex 

joint used there is conducted (See Fig. 4.27). The comparison reveals that the flex joint 

reduces the magnitude of the changes in the top angle, which is expected based on our 

intuition. The reduction is about 10 percent of the original top angle when a hinged 

condition is considered and this is consistent with what is drawn in static analysis. 



63 
 

63 
 

  
Fig. 4.25 Surge excitation with amplitude of 1m and period of 5s 

 

 

Fig. 4.26 Surge excitation with amplitude of 3m and period of 15s 
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Fig. 4.27 Comparison between a hinge used at the porch and the flex-joint used there 
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5. APPLICATION 

5.1 Analysis Background 

The up-dated CABLE3D is integrated into COUPLE, making it applicable to the 

analysis of a floating system consisting of a Spar, its mooring system, SCRs and TTRs. 

The case of ‘Constitution’ Truss Spar is selected to be analyzed.  

  

5.1.1 Introduction of ‘Constitution’ Truss Spar 

Based on the information provided by Li (2012), the Anadarko ‘Constitution’ Spar 

consists of four major components: topsides, hull, moorings, and risers.  

 

Fig. 5.1 Configuration of ‘Constitution’ Spar 
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Table 5.1 Main characteristics of the Spar 

Properties Units Value 

Water Depth m 1524 

Draft m 154 

Center of Buoyancy from Keel m 112.34 

Center of Gravity from Keel m 91.27 

Topside Payloads ton 10770 

Hull Weights ton 14800 

Total Displacement ton 59250 

Hard Tank Diameter m 30 

Length Overall m 169 

Hard Tank Length m 74 

Soft Tank Length m 14 

Truss Length m 81 

Truss Spacing m 20 

Fairlead Location from Keel m 98 

 

The hull consists of the three main parts from the top to the bottom: hard tank, truss, 

and soft tank, which have lengths of 74m, 81m, and 14m, respectively. The 

configuration of ‘Constitution’ is depicted in Fig. 5.1, which is cited from the drawings 

offered by Anadarko Corporation. The characteristics of the truss Spar are given in 

Table 5.1. 

 

5.1.2 Mooring Line and Riser Properties 

The mooring system of ‘Constitution’ includes three groups, each of which has three 

mooring lines. Each mooring line section has three segments: platform chain, mid-

section cable, and ground chain. The mooring line fairleads are located at the hard tank 

section, which is about 55.6 meters below the sea surface. The riser system consists of 2 
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SCRs and 6 TTRs. The physical properties of mooring lines and SCRs are listed in Table 

5.2 and Table 5.3 respectively. The distribution of mooring system and riser system is 

shown in Fig. 5.2, and the configuration of mooring lines and SCRs are depicted in Fig. 

5.3 and Fig. 5.4 respectively. Based on drawings, the coordinates of fairleads of mooring 

lines, porches of SCRs and upper end of TTRs are presented in Table 5.4. 

The detailed physical properties of TTR are not available to the author, but it could 

be concluded that double-casing risers are used in ‘Constitution’ due to the fact that only 

double-casing risers could be applied in this ultra-deep water condition. Thus the 

physical properties of TTRs are the same with TTRs described in the subsection 3.1 and 

in Table 3.1.  

 Table 5.2 Mooring line properties 

  Platform Chain Mid-section Ground Chain Units 

Line Type R4 Studless Steel Wire R4 Studless   

Equivalent Diameter 0.142 0.127 0.142 m 

Jacket Thickness 

 

0.011 

 

m 

Weight in Air 3949.4 823.2 3949.4 N/m 

Weight in Water 3439.8 646.8 3439.8 N/m 

EA 152,957 151,020 152,957 ton 

 

Table 5.3 SCR properties 

  SCR #1 SCR #2 Units 

Length 1706.88 1706.88 m 

Diameter 0.254 0.3048 m 

Dry Weight 561.54 958.4 kg/m 

Unit Buoyancy 511.46 736.5 kg/m 
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Table 5.4 The coordinates of upper ends of nine mooring lines, two SCRs and six TTRs 

Mooring Line/Riser X(m) Y(m) Z(m) 

Mooring Line # 1 14.49 3.61 -55.6 

Mooring Line # 2 14.48 -3.64 -55.6 

Mooring Line # 3 12.8 -7.69 -55.6 

Mooring Line # 4 -3.64 -14.48 -55.6 

Mooring Line # 5 -7.69 -12.8 -55.6 

Mooring Line # 6 -12.8 -7.69 -55.6 

Mooring Line # 7 -12.8 7.69 -55.6 

Mooring Line # 8 -7.69 12.8 -55.6 

Mooring Line # 9 -3.64 14.48 -55.6 

SCR #1 5.11 -14.03 -140 

SCR #2 6.31 -13.54 -140 

TTR #1 4.88 2.44 20 

TTR #2 0 2.44 20 

TTR #3 -4.88 2.44 20 

TTR #4 -4.88 -2.44 20 

TTR #5 0 -2.44 20 

TTR #6 4.88 -2.44 20 

 

 

Fig. 5.2 Distribution of mooring lines and risers and headings of wave, wind and current 
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Fig. 5.3 A mooring line configuration 

 

 

 

 

Fig. 5.4 A SCR configuration 
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Because no details were provided on how the TTRs of ‘Constitution’ were 

tensioned, we exercised both cases, that is, TTRs tensioned by tensioner systems and 

TTRs tensioned by buoyancy cans. For both cases, several assumptions are made. The 

top tension is approximated as 1.5 times of the net dry weight of individual TTR. If the 

top tension is provided by deck mounted hydropneumatic tensioner systems, the 

approximate tension of each tensioner is 1650kN. The tensioner system stiffness is 

exactly the same as the case in 3.1. This assumption is valid due to the same type of 

risers adopted in these two cases. Four tensioners are assumed to be used in a tensioner 

system for each TTR. If TTRs with buoyancy cans are modeled, the cans are assumed to 

be attached to the TTR segments within the moon pool and the buoyancy is to be 

distributed to every elements of this segment.  

In the numerical simulation, flex joints are considered to be used at the upper ends 

of the two SCRs and the bottom ends of the six TTRs. The rotational stiffness of SCR 

flex joints is chosen as 
rad

mN 
6

102  and stiffness of TTR bottom flex joints is also 

selected as 
rad

mN 
6

102 . The actual values for rotational stiffness of flex joints used 

on ‘Constitution’ are not available, thus stiffness values are estimated based on the 

information provided by Deka et al. (2010). 
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5.1.3 Estimation of Hydrodynamic Coefficients 

Magee et al. (2000), Prislin et al. (2005) and Theckumprath (2006) attempted to 

quantify the hydrodynamic coefficients of the Spar and the other main sections. These 

coefficients are also used in our simulation (See Table 5.5). The drag coefficient and 

added-mass coefficients of the mooring system have been supplied by Anadarko 

Petroleum Corporation. 

Table 5.5 Hydrodynamic coefficients 

Spar Sections 

Hydrodynamic Coefficient 

Added-mass Coefficient Drag Coefficient 

Hard Tank 1 1.2 

Truss Members 0.8 1 

Soft Tank 1 1.2 

Heave Plate 2 6 

Mooring Chain 2 2.4 

Mooring Wire 1 1.2 

 

In computing current loads on a TTR, it is considered that the whole portion of the 

TTR below water surface is exposed to the current. However, when TTRs were installed 

inside a Spar, certain segments of TTR were inside the moon pool of hard tank and soft 

tank thus they were protected from the hydrodynamic loads due to relative motion 

between a TTR and ambient fluid. Following the Morrison Equation, the added-mass 

force and drag force acting on 6 TTRs are approximated and summed. This amount of 

extra forces caused by TTRs is then subtracted from the related forces acting on the Spar 
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to eliminate the redundancy of computing them. In our calculations, equivalent added 

mass coefficient of 1.0 and equivalent drag coefficient of 1.12 for the hard tank and soft 

tank are adopted.  

 

5.1.4 Met-ocean Conditions of Hurricane ‘Ike’ 

The hurricane ‘Ike’ has been selected in the coupled dynamic analysis. This 

hurricane occurred on September 12
th

, 2008. According to Li (2012), the peak of ‘Ike’ 

went past ‘Constitution’ from 00:00am to 01:00am on September 12
th

, 2008. The 

direction and magnitude of the wind, wave and current are presented in Table 5.6 and 

visual expression of their headings is plotted in Fig. 5.2. The current velocity as a 

function of depth is shown in Table 5.6 and Fig. 5.5 (Li, 2012).  

 

Table 5.6 Met-ocean data of hurricane ‘Ike’ 

Load Parameters Units Hurricane ‘Ike’ 

Wave Spectrum Type 

 

JONSWAP 

 

Significant Height meter 9.30 

 

Peak Period second 14.84 

 

Shape Factor 

 

2.20 

 

Heading degree 170.00 

Wind Spectrum Type 

 

API 

 

Speed m/s 37.40 

 

Heading degree 170.00 

Current Heading degree 164.00 

 

Depth-Speed m-m/s 0-0.8 

   

61-0.43 

   

92-0.1 

   

1524-0.05 
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Fig. 5.5 Current profile (Li, 2012) 

 

5.1.5 Field Measurement 

Li (2012) pointed out that Environment Platform Response Measurement System 

(EPRMS) was utilized to record the field measurements. The available records ranged 

from June 2007 to June 2010 were downloaded from the BMT’s Client Data Center 

(CDC) with the permission of Anadarko Petroleum Corporation. The data used in this 

study include: 

·Mooring Line Tensions    

·Hourly Significant Wave Height and Peak Period   



74 
 

74 
 

·The Platform Position (GPS signals)  

·Platform Surge, Sway and Heave  

·Roll, Yaw, Heel and Pitch   

·Current Profile and direction   

·Spar Platform Draft   

·Wind Speed and Direction  

·Hourly Spar Riser Tension   

Particular equipment was attached on the platform to take measurements of currents. 

The wind was recorded by an anemometer equipped at the platform crane. The mooring 

tensions were recorded at the chain jack. The field measurements will be presented on 

the subsection 5.2.1 and 5.2.2 to compare with simulation results by COUPLE. 
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5.2 Result and Comparison 

In this section, time-domain analysis is performed for ‘Constitution’ Spar during one 

of the peak hours of hurricane ‘Ike’. Three different versions of COUPLE are used in the 

analysis.  

 

Version 1: TTRs are simplified as vertical constant force acting on the Spar. The 

results of this case are provided by Zhu (2013). The simulation lasts for 2048 seconds. 

Version 2: TTRs with buoyancy cans together with the flex joints at the bottom and two 

riser guides for each TTR are considered. The simulation duration is also 2048 seconds. 

Version 3: Specific models of TTRs tensioned by tensioner systems, riser guides and flex 

joints at the bottom illustrated in previous sections are integrated into COUPLE in this 

version. The same duration of simulation is performed. 

 

At first, static analysis was performed to reach an equilibrium position under the 

combined effects of wind, wave and currents, which contributed to a mean drift force 

that drove the Spar to a new mean position. At the new mean position, due to the steady 

forces from waves, wind and current, the TTRs are experiencing the forces at the 

location of riser guides and tensioner system. In terms of a tensioner system, it could be 

simply imagined as a spring that was attached between a TTR and the Spar. The 
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imagined “spring” contributes to an increase of total restoring force exerted on the Spar, 

especially in the heave. The effects of TTRs will be explored in detail in this section. 

Comparison will be made between three versions and field measurements (FM). All of 

FM data are cited from Li (2012). 

In Version 1, when TTRs are simplified as steady force, the dynamic coupling 

effects between the TTRs and hull are neglected. In Version 2, the coupling effects at 

upper deck, riser guides and SCR flex joints are calculated by iterative method. In 

Version 3, the tensioner systems are considered. Comparison between Version 1 and 2 

will be useful in investigating effects of riser guides and comparison between Version 2 

and 3 may reveal the coupled effects from tensioner systems 

 

5.2.1 Translation Motions Comparison 

Fig. 5.6 compares the translation motions of the three versions. To ensure clearness, 

simulation that lasts 1000 seconds is presented and the ramp function is effective in the 

first 100 seconds. 

 

5.2.1.1 Effects of Riser Guides 

The comparison between Version 1 and Version 2 may reveal the effects of riser 

guides. It can be found that the motion trends in surge and sway directions are quite 
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synchronized but between the curves of Version 1 and Version 2 there is certain 

discrepancy, which is attributed to the coupling effects at riser guides (See Fig. 5.6). 

Also, the difference of mean drift steady position gives rise to the amplitude difference 

of later motion.  

In surge direction, comparing the results of Version 1 with those of Version 2, the 

maximum displacement increases about 2.47m and minimum displacement increases 

about 2.90m (See Table 5.7). Although the RMS value increases from 2.87m to 2.95m, it 

should be noted that the difference between maximum displacement and minimum 

displacement changes from 20.10m to 19.67m. In terms of the sway mode, RMS value 

decreases from 3.34m to 3.27m by about 2.1%, yet difference between maximum 

displacement and minimum displacement changes from 12.44m in Version 1 to 12.24m 

in Version 2. A shift of about 0.239m takes place at mean sway position, mainly due to 

the different initial positions of 2 versions. Despite of certain discrepancy of time series 

curves, from statistical results it can be concluded that the horizontal motions are not 

affected obviously by riser guides.  

In heave direction, if TTRs with buoyancy cans are modeled, the heave RMS 

changes from 0.59m to 0.52m and the difference is not that big. Since buoyancy can 

TTRs are decoupled from the hull in vertical direction, this reduction may be due to 
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coupling effect between heave and other motion modes. Overall, TTR with buoyancy 

cans have limited effects on heave motion. 

 

5.2.1.2 Effects of Tensioner System 

The comparison between the results of Version 2 and Version 3 reflects effects of 

tensioner systems. The curves of the two versions nearly overlap with each other in 

surge and sway modes (See Fig. 5.6). It means though riser guides play a crucial role in 

providing extra lateral force for the hull, tensioner system does not affect the horizontal 

motions substantially. This could be verified statistically that difference of maximum, 

minimum, mean and RMS values between Version 2 and Version 3 are mostly within 3% 

(See Table 5.7).  

 

Fig. 5.6 Comparison in surge, sway and heave motions 
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However, the heave oscillation reduces significantly when tensioner systems are 

supplied. The heave statistics show that the mean position change is tiny, while the RMS 

value decreases from Version 1/ 2 to Version 3 (See Table 5.7). When tensioner systems 

replace buoyancy cans, large vertical restoring forces apply on the hull and thus heave 

RMS is strongly reduced. It is obvious that tensioner systems increase the vertical 

restoring stiffness of the floating system. The comparison between Version 2 and 

Version 3 indicates that maximum value decreases by about 38.1% and minimum value 

increase by about 27.0%. The RMS reduction rate reaches as high as 27.6% compared to 

Version 2 (See Table 5.7).  

 

Table 5.7 Statistical analysis on translation motions and comparison with field 

measurements 

Direction Statistics 

Without TTR 

models 

(Version 1) 

TTRs with 

Buoyancy 

Can(Version 2) 

TTRs with 

Tensioner 

System 

(Version 3) 

Field 

Measurement 

Surge Mean(m) -34.379 -31.056 -31.465 -40.000 

 

Max(m) -26.724 -24.252 -24.584 -27.200 

 

Min(m) -46.826 -43.922 -44.085 -54.300 

 

SD(m) 2.871 2.949 2.863 3.000 

Sway Mean(m) 2.854 3.093 3.117 3.000 

 

Max(m) 9.043 9.574 9.298 9.500 

 

Min(m) -3.395 -2.669 -2.605 -4.000 

 

SD(m) 3.339 3.273 3.199 2.800 

Heave Mean(m) -0.104 -0.114 -0.122 -0.100 

 

Max(m) 1.462 1.366 0.846 1.000 

 

Min(m) -2.321 -2.097 -1.531 -1.100 

 

SD(m) 0.596 0.525 0.380 0.300 
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5.2.1.3 Comparison with the Field Measurements (FM) 

Comparison with the FM may verify the reliability and robustness of the numerical 

codes. During the measurements, errors might exist while measuring significant wave 

height. This may lead to inaccuracy in numerical simulation. It is noted that before the 

hurricane ‘Ike’, the origin of the Spar was not locating at (0,0). The discrepancy of two 

origins gives rise to errors in maximum, minimum and mean values of FM data. What is 

more, after wave components were separated, random phases were selected to generate 

the wave fields, which were different from real conditions and led to mismatching 

between simulation results and FM data. Therefore the difference of mean, maximum 

and minimum values are partially due to the uncertainty of measurements, the difference 

of origins and randomness of wave phases. It is of more significance to focus on RMS 

value, which reflects statistical characteristics of Spar motion.  

The RMS amplitude of surge is 2.95m or 2.86m when 6 TTRs are modeled (See 

Table 5.7). The difference with FM surge amplitude is within 5%. In sway motion, both 

simulation results from Version 2 and Version 3 are about 10% bigger than FM result but 

still agree reasonably well with FM. In the case of buoyancy can, heave RMS is about 

50% larger than measurements. If tensioner system is modeled, heave RMS is 0.38m, 

which is very close to the measurements.  
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5.2.2 Rotation Motions Comparison 

5.2.2.1 Effects of Riser Guides 

The comparison between Version 1 and Version 2 indicates that the RMS value of 

roll decreases from 0.470 degree to 0.266 degree by about 43.4% when coupling effects 

at riser guides are considered. The pitch RMS angle of Version 2 is 1.552 degree, 13.4% 

smaller than that of Version 1. The yaw RMS value of Version 2 also reduces to 0.719 

degree with a 13.79% reduction compared to Version 1. This phenomenon corresponds 

to the utilization of TTRs with buoyancy cans. It means that the coupled effects reduce 

the motion in roll/pitch/yaw modes. The system rotational stiffness is enhanced as a 

result of the existence of riser guides and TTRs. The changes of natural frequency will 

be discussed in subsection 5.2.3.  

 

Fig. 5.7 Comparison in roll, pitch and yaw motions 
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5.2.2.2 Effects of Tensioner System 

Turning to the comparison between Version 2 and Version 3, curves of time series 

mostly overlap with each other (See Fig. 5.7). Statistical results as well demonstrate that 

Version 3, in which TTRs with tensioner systems are adopted, show negligible 

discrepancy with Version 2 (See Table 5.8). According to simulation results, RMS values 

of roll/pitch/yaw increase within only 4%. Thus it can be concluded the rotation motion 

will not be affected substantially by tensioner systems.  

 

5.2.2.3 Comparison with Field Measurements 

While comparing to FM, as reasons explained in the previous subsection, 

discrepancy occurs while comparing the maximum, minimum and mean values. The 

simulated RMS results agree reasonably well with FM data especially in pitch mode, 

which is the dominant rotation in the case of hurricane “Ike”. The pitch RMS is only 

0.052 degree larger than that of FM in case of TTRs with buoyancy can. In terms of roll 

and yaw rotation, the simulation results are about 30% smaller than measurements; 

however it should be noted that the magnitudes of roll and yaw are much smaller than 

that of pitch hence the magnitude of numerical error is unimportant.  
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Table 5.8 Statistical analysis on rotation motions and comparison with field 

measuements 

Direction Statistics 

Without TTR 

models 

(Version 1) 

TTRs with 

Buoyancy 

Can(Version 2) 

TTRs with 

Tensioner System 

(Version 3) 

Field 

Measurement 

Roll Mean(deg) 0.118 0.055 0.053 -0.100 

 

Max(deg) 1.316 0.766 0.843 1.200 

 

Min(deg) -1.350 -0.944 -1.036 -2.100 

 

SD(deg) 0.470 0.266 0.271 0.400 

Pitch Mean(deg) 0.292 -0.049 -0.014 -2.000 

 

Max(deg) 5.798 4.823 5.128 0.400 

 

Min(deg) -6.452 -6.044 -6.328 -7.000 

 

SD(deg) 1.794 1.552 1.581 1.500 

Yaw Mean(deg) 1.018 0.983 0.993 0.100 

 

Max(deg) 3.417 3.153 3.246 3.200 

 

Min(deg) -1.685 -1.209 -1.279 -3.000 

 

SD(deg) 0.834 0.719 0.747 0.900 
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5.2.3 Power Spectrum Comparison 

From graph (a) of Fig. 5.8, the spectrums of three versions in surge direction almost 

overlap with each other, in both low frequency (ω=0~0.02 Hz) and the wave frequency 

range (ω=0.05~0.08 Hz). The slow drift motion in low frequency is dominant in surge 

direction. The natural frequency of the floating system does not indicate any shifts after 

riser guides and tensioner systems are considered. The identical conclusions can be 

drawn in sway direction. The motion at wave frequencies is negligible, whilst the motion 

at the frequency of about 0.005Hz is quite dominant. The peak corresponds to the 

response of the floating system in sway natural frequency (See graph (b) of Fig. 5.8). 

However, this natural frequency seems not affected by riser guides and tensioner system. 

From both surge and sway spectrum, it can be concluded that the riser guides and 

tensioner system do not affect the horizontal stiffness obviously, which is the 

determinant factor of natural frequency. 

Turning to the heave spectrum, it is revealed that the spectrum of Version 1 and 

Version 2 are quite similar, and that most of the heave motion energy concentrates on 

the wave frequency range. This implies buoyancy can TTRs do not exert much impact 

on the heave spectrum since they are decoupled from the Spar in vertical direction. 

However, after supplying tensioner systems, the heave motion is reduced, and this 



85 
 

85 
 

corresponds well to the conclusion drawn in 5.2.1.2. Though heave RMS substantially 

decreases, the locations of peaks do not show any shifts (See graph (c) of Fig. 5.8).  

When it comes to rotation motions, the motion at wave frequency (ω=0.05~0.08 Hz) 

can be observed in roll and pitch modes but is negligible in yaw mode (See graph (d), (e) 

and (f) of Fig. 5.8). Besides, natural frequencies of roll, pitch and yaw increase as a 

result of riser guides and tensioner systems. The original natural frequencies of roll and 

pitch before including TTRs are both about 0.038 Hz, and it can be shown from several 

peaks appearing within this range (See graph (d) and (e) of Fig. 5.8). Yet, after riser 

guides and tensioner system are considered, the related peaks move to approximately 

0.04 Hz. The riser guides and TTRs contribute to an enhancement of the rotational 

stiffness in roll and pitch, which in turn increases the rotational natural frequency in 

these two modes. In yaw spectrum, there are other peaks besides peaks induced by roll 

and pitch around 0.04 Hz. For instance, the peak at about 0.045 Hz of the spectrum of 

Version 1 may be related to the yaw natural frequency. The related peak also moves to 

higher frequency range in the spectra of Version 2 and Version 3. The phenomenon 

indicates that the riser guides, the tensioner systems and TTRs may also contribute to an 

increase of yaw natural frequency.  
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(a) Surge 

 

(b) Sway 

 

(c) Heave 
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(d) Roll 

 

(e) Pitch 

 

(f) Yaw 

Fig. 5.8 Comparison of 6DOFs spectrum during the peak hours of ‘Ike’ 
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5.2.4 Mooring Line/Risers Tension Comparison 

5.2.4.1 Comparison among Three Versions 

The statistics of the tension in each mooring line/SCR are derived, and the results 

are presented in Table 5.9. Overall, the RMS values of tension in each mooring line/SCR 

are smaller in Version 2 and Version 3 than in Version 1. It is consistent with the trends 

of the RMS results of the Spar translation of the three versions. Although surge and 

sway motions do not substantially differ with each other, there is a significant decrease 

in heave motion RMS in Version 2 and Version 3. Among Version 2 and Version 3, 

RMS tension values in Version 3 are further reduced and it is mainly due to the even 

smaller heave RMS in case of TTR tensioned by tensioner system. When the overall 

heave motion is smaller, the tension RMS at fairlead or porch is also smaller.  

In terms of mean values of tension, after TTRs are considered in the simulation of 

Version 2 and Version 3, the mean tension of mooring line 1, 2 and 3 is reduced whilst 

mean tension of mooring line 4 to 9 increases. This is due to the fact that the first 3 

mooring lines are in the upwind direction and other 6 lines are in the downwind. After 

considering TTR coupling effects, the equilibrium position will be adjusted; the 

existence of riser guides increases the horizontal restoring force and this leads to the 

change of mooring line tension in both sides of Spar.  
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5.2.4.2 Comparison with Field Measurement 

While comparing with FM data, as discussed in the previous subsections, RMS 

values are the most significant. Yet it is found in all mooring lines, the numerical results 

in three cases are much greater than FM data, though results of Version 2 and Version 3 

are closer to those of measurements. According to reasons stated in Li (2012), the large 

discrepancy is mainly due to the friction at the fairlead that significantly reduced the 

dynamic tension after the fairlead roller. The measured tension at the chain jack is 

related to the tension after the fairlead roller while the simulated tension is equal to the 

tension force before the fairlead. Similar differences were also observed in the previous 

study of Hurricane Ike done by Kiecke (2011). 

Though considerable discrepancy between simulation and FM emerge in dynamic 

tension, the measured mean tension recorded at the chain-jack agreed reasonably well 

with the simulated mean tension in an overall view (see Table 5.9). The error between 

simulated results and measurements is within 10% in most mooring lines.  
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Table 5.9 Hurricane ‘Ike’ mooring line/riser tension comparison 

Mooring 

Line # 

Tension 

(kN) 

Without TTR 

models 

(Version 1) 

TTRs with 

Buoyancy 

Can(Version 2) 

TTRs with 

Tensioner 

System 

(Version 3) 

Field 

Measurement 

Line 1 Max 8906.89 8672.96 8718.68 6774.64 

 

Min 2872.01 2579.86 2440.07 3309.47 

 

Mean 4766.72 4400.14 4445.23 4793.40 

 

RMS 823.95 784.73 772.74 474.00 

Line 2 Max 8399.00 8422.10 8457.95 5960.61 

 

Min 2742.83 2486.81 2345.77 2815.72 

 

Mean 4475.39 4226.72 4265.88 4164.24 

 

RMS 790.18 765.41 752.73 431.00 

Line3 Max 8487.35 8414.69 8445.92 6476.61 

 

Min 2843.22 2555.50 2416.32 3087.06 

 

Mean 4559.02 4248.20 4287.26 4548.75 

 

RMS 797.94 760.49 746.65 465.00 

Line 4 Max 2616.34 2629.17 2564.41 2588.86 

 

Min 1957.35 1956.32 2023.04 2259.69 

 

Mean 2255.18 2271.87 2269.38 2432.30 

 

RMS 99.92 92.64 82.28 39.00 

Line 5 Max 2614.50 2611.24 2610.48 2557.72 

 

Min 1876.33 1862.02 1919.54 2188.52 

 

Mean 2220.40 2238.12 2235.59 2367.52 

 

RMS 108.19 103.62 96.07 40.00 

Line 6 Max 2694.17 2703.64 2731.58 2851.31 

 

Min 1786.89 1760.49 1807.64 2357.55 

 

Mean 2208.00 2227.37 2224.77 2593.71 

 

RMS 128.18 127.52 122.48 58.00 

Line 7 Max 3417.13 3335.18 3281.02 3006.99 

 

Min 1605.75 1548.68 1585.97 2055.07 

 

Mean 2448.26 2444.59 2442.63 2538.91 

 

RMS 266.19 257.32 254.13 106.00 

Line 8 Max 3227.35 3201.02 3138.54 2900.24 

 

Min 1666.09 1621.81 1665.85 2041.73 

 

Mean 2405.79 2424.32 2422.60 2479.17 

 

RMS 219.74 218.03 213.01 94.00 

Line 9 Max 3278.10 3249.79 3176.26 2873.55 

 

Min 1729.06 1696.03 1749.90 2019.49 

 

Mean 2464.31 2486.35 2484.70 2473.03 

 

RMS 213.02 209.46 201.85 95.00 
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Table 5.9 Continued 

Mooring 

Line # 

Tension 

(kN) 

Without TTR 

models 

(Version 1) 

TTRs with 

Buoyancy 

Can(Version 2) 

TTRs with 

Tensioner 

System 

(Version 3) 

Field 

Measurement 

SCR 1 Max 667.49 657.77 649.12 NA 

 Min 522.19 526.48 539.79 NA 

 Mean 592.05 591.34 591.44 NA 

 RMS 25.50 22.49 18.04 NA 

SCR 2 Max 1068.80 1055.53 1040.40 NA 

 Min 862.08 868.71 888.94 NA 

 Mean 963.38 962.12 962.29 NA 

 RMS 35.92 31.86 25.79 NA 
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5.2.5 Effects of Flex Joints 

5.2.5.1 Effects of Flex Joints on Spar 

Table 5.10 Effects of flex joint on Spar motion 

Direction Statistics Hinge With Flex Joint 

Surge Mean(m) -33.0616 -33.0591 

 Max(m) -24.8029 -24.7984 

 Min(m) -44.9784 -44.9792 

 RMS(m) 2.7507 2.7509 

Sway Mean(m) 3.2386 3.2390 

 Max(m) 7.3775 7.3812 

 Min(m) -1.0525 -1.0457 

 RMS(m) 2.0153 2.0153 

Heave Mean(m) -0.6158 -0.6157 

 Max(m) 0.5561 0.5552 

 Min(m) -2.0861 -2.0854 

 RMS(m) 0.3706 0.3706 

Roll Mean(deg) 0.0617 0.0616 

 Max(deg) 0.9444 0.9433 

 Min(deg) -1.1727 -1.1698 

 RMS(deg) 0.2982 0.2976 

Pitch Mean(deg) 0.0243 0.0239 

 Max(deg) 5.0410 5.0289 

 Min(deg) -5.5504 -5.5426 

 RMS(deg) 1.7543 1.7520 

Yaw Mean(deg) 1.0197 1.0203 

 Max(deg) 3.2083 3.2111 

 Min(deg) -1.2660 -1.3005 

 RMS(deg) 0.6583 0.6599 

 

To analyze the effects of flex joints, another case is run in COUPLE by excluding 

effects of flex joints in Version 3. The connection point between a SCR and the Spar is 

assumed to be a hinge. Table 5.11 compares statistical results of Spar motion when a 

hinge is used at the porch and when a flex joint is used there. It can be seen that 
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translation motions in both two cases virtually show no differences. For instance, in 

surge direction, RMS value increases by only 0.0002m.  

Rotation motion shows relative bigger difference, though still very tiny, due to the 

moments applied by flex joints. The roll RMS amplitude decreases by about 0.2%, the 

pitch amplitude decrease by about 0.13% and the yaw RMS amplitude increases by 

about 0.24%. The mean, maximum and minimum values show negligible discrepancy, 

thus it can be concluded that the effects of flex joints are negligible for the global motion 

of Spar. 

 

5.2.5.2 SCR Bending Moment Distribution Analysis 

The flex joint can exert a bending moment at the upper end of SCR and how it 

affects the bending moment distribution along SCR is discussed in this subsection.  

Fig. 5.9 reveals the comparison of bending moment between a hinge at the porch 

and a flex joint used at the porch. The porch is 140 meters below the sea surface. When a 

flex joint is used, there is a considerable increase of bending moment near the porch. 

However, the further away from the porch the node is, the smaller the bending moment 

magnitude at that node will be. Though amplitudes of bending moments are different at 

different nodes, their phases are quite synchronized.  
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Fig. 5.9 Comparison of bending moments at the vicinity of porch  

 

 

 

Fig. 5.10 Comparison of bending moments far away from the flex joint  
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At the node 117m away from the porch, the discrepancy between two cases is 

negligible. When the distance is 750.563m or 1495.59m, the curves of two times series 

nearly overlap with each other (See Fig. 5.10). However, the amplitude of bending 

moment becomes larger as the interested point goes further away from the porch. It is 

very likely that these points are near the touch-down point thus the bending moment at 

this place is considerable. 

 

Table 5.11 Mean & dynamic bending moment comparison at various nodes 

 Mean Bending Moment ( mN  ) 

Dynamic Bending 

Moment( mN  ) 

Distance to flex 

joint 

With Flex 

Joint With a Hinge 

With Flex 

Joint With a Hinge 

3.00 13761.53 1539.07 7082.12 190.71 

6.00 10214.04 2594.88 4691.37 317.91 

9.00 8378.35 3234.61 3350.05 391.65 

117.35 5586.60 5544.06 386.14 377.25 

222.70 6605.06 6598.66 311.15 305.22 

328.05 7949.98 7948.95 277.26 272.01 

433.40 9743.58 9743.21 258.85 255.31 

538.75 11848.86 11848.44 268.89 265.68 

750.54 18083.58 18083.12 304.00 301.60 

856.97 22730.99 22730.62 334.82 333.58 

963.41 29270.72 29270.42 365.53 363.81 

1069.84 38725.07 38724.91 519.02 516.15 

1176.28 52683.65 52684.02 649.18 650.51 

1282.72 73175.16 73177.07 1010.38 1009.06 

1389.15 101065.17 101069.39 1732.05 1732.72 

1495.59 131189.53 131195.19 2363.42 2363.42 

1602.02 89191.87 89188.79 1354.29 1354.81 
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Statistical results give a quantitative view of bending moments along SCR (See 

Table 5.11). For both mean and dynamic bending moment, the difference between 2 

cases diminishes as the distance from the porch increases. At the nearest node, which is 

3m away from flex joint, the mean bending moment is 8.9 times the bending moment 

when a hinge is adopted and the dynamic bending moment is nearly 37 times that of 

hinged condition. However, at the node 117.35m away from the porch, the mean and 

RMS bending moment only increases by about 0.78% and 2.9%, respectively. Thus it 

can be concluded that when the distance is larger than 100 meters, bending moments of 

two cases are almost similar, thus effects of flex joints can be negligible.  

Dynamic bending moment is crucial to the fatigue life of SCRs; therefore the flex 

joint with large rotational stiffness will contribute to an increase of the amplitude of 

cyclic stress in the vicinity of flex joint. The number of cycles to failure is reduced in 

accordance with S-N curve. Soft flex joints are recommended in engineering 

applications to reduce cyclic loading, or thick pipes or stress joints are to be used near 

the porch, thus prolonging the fatigue life of the materials near flex joint.  
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6. CONCLUSIONS 

 

In this study, the existing code CABLE3D is extended to include the models of 

top tension system of TTRs, riser guide and flex joint. Individual tensioner cylinder in a 

tensioner system is modeled as a linear spring that applies concentrated force on TTR. 

Linear rotational spring is adopted to represent a flex joint. The up-dated CABLE3D is 

proved to be robust, convergent and stable in performing static and dynamic analysis of 

selected cases for a TTR and a SCR. After verification of CABLE3D, all these modules 

are integrated into COUPLE, making COUPLE capable of analyzing a floating system 

with TTRs and SCRs with flex joints. The ‘Constitution’ Spar is used as an example. 

Using the up-dated COUPLE, it is simulated under hurricane ‘Ike’ met-ocean conditions 

and further analysis on effects of the tensioner system, riser guides and flex joints are 

conducted. The main conclusions based on this study are summarized below. 

1. While riser guides are considered, the maximum curvature takes place in the 

vicinity of the lowest guide (keel guide), meaning the maximum bending 

moment occurs at this place. Thus the amplitude of cyclic stress increases as a 

result, and due to S-N curve the number of cycles to failure and the 

corresponding fatigue life decreases.  
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2. While analyzing ‘Constitution’ Spar, TTRs with buoyancy cans and TTRs with 

tensioner systems are integrated into the floating system, respectively, and flex 

joints are modeled at the porch of SCR. The riser guides do not affect the surge 

and sway motion substantially. The heave motion RMS amplitude decreases 

significantly in the case of tensioner systems installed on TTRs.  

3. For roll, pitch and yaw modes, their RMS are significantly reduced compared to 

those without consideration of TTRs. The reduction is mainly due to the extra 

horizontal loads at riser guides. The system rotational stiffness and rotation 

natural frequencies are enhanced as a result of the existence of riser guides. On 

the other hand, tensioner systems have very limited impact on rotation motions.  

4. Flex joint does not affect the global performance of the Spar, as expected. The 

moments exerted by flex joints are tiny compared to total moments applied on 

the hull by wave, current and winds.  

5. The utilization of flex joints will contribute to an increase in bending moment on 

the vicinity of SCR porch. The further a node is away from the porch, the smaller 

the effects of a flex joint will be. To reduce cyclic loading near porch, a flex joint 

with relative small rotational stiffness is recommended. 
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In summary, with the newly up-dated modules, the applications of CABLE3D 

have been significantly widened. The integration of up-dated CABLE3D into COUPLE 

has allowed the analysis of floating production system with TTRs tensioned by either 

buoyancy cans or tensioner systems and SCRs connecting flex joints at the porches. The 

simulation results have been compared to field measurements and show better 

consistency with the measurements. More accurate analysis can be performed if detailed 

configuration of TTRs and mooring system is obtained. The nonlinear approach of 

modeling tensioner cylinders and flex joints and how it differs with linear approach may 

require further research efforts. 
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APPENDIX A 

 

NUMERICAL MODEL OF FLEX JOINT 

 

The bending moment at aflex joint is denoted by )(
~

(t)(t) 'rδ'r


M . It is induced by 

the angle   between (t)(t) 'rδ'r


 and 0'r


, where (t)(t) 'rδ'r


  represents the direction 

vector at the upper end of riser at time step (t) and 0'r


 the direction vector when no 

moment is applied at the flex joint (equilibrium position for most cases).   can be 

calculated if (t)(t) 'rδ'r


 and 0'r


 are known. The direction of M
~

 can also be 

determined by 0( '( ) '( )) 'r t r t r  . 

At first, the magnitude of the moment is calculated by,  

0
MM θ      (A.1) 

where 0M  represents the linear rotational stiffness of the flex joint, which should be 

provided by the user based on the types of the flex joint used in the design. The 

magnitude of θ  is given by 
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    (A.2) 

Assuming that the elongation of the riser can be ignored, both 'r'r


  and 0'r


 are equal 

to 1. The Taylor expansion of 
2

1
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 is given by: 



105 
 

105 
 











0

12

2 )12()!(4

)!2(

n

n

n
x

nn

n
  and 

2

1

20 )
''

')'(
(1


















0'rrr

rr'r







x   (A.3) 

The calculation of   is divided into two parts, the first depends on )(t'r


 only, 

which is up-dated at each time step; the second depends on )(t'r


 , which is unknown 

and solved in the global matrix equation AX=B.  
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From Chen (2002), 

rrrM

 HB )(

~
    (A.6) 

where H is the torque and B is the bending stiffness. H=0 is assumed in this case. 

According to headings of (t)(t) 'rδ'r


 , 0'r


 and ''r


 (See Fig. 2.4), it could be shown that 

the direction of M
~

 can be obtained by )''('0 rrr


 , which is denoted as vector t


: 

   krrrrrrjrrrrrrirrrrrrt
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           (A.7) 
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where i


, j


, k


 represent the unit vector in x, y, and z direction. And, assuming 
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The higher order terms, 
2

( ' )O r , are discarded. Based on the approximation 
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So the moment in x direction could be derived as the following: 
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Following the same procedure, 
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where 2000 cosMM y  ,  121001 cos RBMQ   ,  222002 cos RBMQ   , and 

 323003 cos RBMQ   . In these expressions,  
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The moment in z direction: 
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where 3000 cosMM Z  ,  131001 cos RCMT   ,  232002 cos RCMT   , and 

 333003 cos RCMT   . In these expressions,  
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Thus the total moment ),,(
~

zyx MMMM  is obtained. 

After Galerkin Method is used to get a series of ordinary differential equations, the 

generalized force is calculated by, 
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L

B
L

   (A.13) 

At the upper end of SCR, 2f represents the moment exerted by the flex joint on the 

riser at the porch. Substituting the expression for r'r'  and ),,( zyx MMM , the 

expressions for 21f , 22f , 23f  could be obtained. Adding this boundary conditions to the 

global system of equations AX=B, the analysis considering the effects of flex joint 

could be performed. 
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Add the first term of 21f , 22f , 23f  onto the right hand side of vector B, while other 

terms are moved to the left hand side of the global system of equation. Necessary 

changes are to be made on corresponding entries of left matrix A. 

 

 

 


