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ABSTRACT 

 

 

Unmanned Vehicles (UVs) have been significantly utilized in military and civil 

applications over the last decade. Path-planning of UVs plays an important role in 

effectively using the available resources such as the UVs and sensors as efficiently as 

possible. The main purpose of this thesis is to address two path planning problems 

involving a single UV. 

 

The two problems we consider are the quota problem and the budget problem. In the 

quota problem, the vehicle has to visit a sufficient number of targets to satisfy the quota 

requirement on the total prize collected in the tour. In the budget problem, the vehicle 

has to comply with a constraint of the distance traveled by the UV. We solve both these 

problems using a practical heuristic called the prize-multiplier approach. This approach 

first uses a primal-dual algorithm to first assign the targets to the UV. The Lin – 

Kernighan Heuristic (LKH) is then applied to generate a tour of the assigned targets for 

the UV. We tested this approach on two different vehicle models. One model is a simple 

vehicle which can move in any direction without a constraint on its turning radius. The 

other model is a Reeds-Shepp vehicle. We also modeled both problems in C++ using the 

multi-commodity flow formulations, and solved them to optimality by using the Concert 

Technology of CPLEX.  
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We used the results generated by CPLEX to determine the quality of the solutions 

produced by the heuristics. By comparing the objective values of the obtained solutions 

and the running times of the heuristics and CPLEX, one can conclude that the proposed 

heuristics produce solutions with good quality to our problems within our desired time 

limits. 



 

 iv 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor, Dr. Rathinam for his patient and constant guidance, 

support and motivation throughout this research. I would also like to express my 

gratitude to Dr. Swaroop and Dr. Wang for being an important part of my committee. 

 

I wish to thank my friends, Jung and Kaarthik for helping when I met troubles and 

doubts in the research. Thanks also go to the department faculty and staff for making my 

time at Texas A&M University a great experience.  

 

Finally, thanks to my mother and father for their encouragement and love. 

 



 

 v 

TABLE OF CONTENTS 

Page 

ABSTRACT ...................................................................................................................... ii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES ......................................................................................................... vii 

LIST OF TABLES ......................................................................................................... viii 

1. INTRODUCTION ...................................................................................................... 1 

1.1 Motivation ...................................................................................................... 1 
1.2 Motivation and Problem Statements .............................................................. 2 
1.3 Literature Review ........................................................................................... 3 
1.4 Thesis Overview ............................................................................................ 4 

2. PROBLEM FORMULATION .................................................................................... 5 

2.1 General Model ............................................................................................... 5 
2.2 Quota Problem Formulation .......................................................................... 6 
2.3 Budget Problem Formulation ....................................................................... 10 

3. HEURISTICS ............................................................................................................ 12 

3.1 General Ideal of Implementing The Heuristic Algorithm ............................ 12 
3.2 Introduction to The Prize Collection Steiner Tree Problem ........................ 12 
3.3 Prize-Multiplier Approach for Quota Problem ............................................ 15 
3.4 Prize-Multiplier Approach for Budget Problem .......................................... 24 

4. SIMULATION RESULTS ....................................................................................... 29 

4.1 Input Data to The Quota Problem and The Budget Problem ....................... 29 
4.2 Result and Quality Analysis ........................................................................ 30 

5. CONCLUSIONS AND FUTURE WORK ............................................................... 34 



 

 vi 

REFERENCES ................................................................................................................. 35 

 



 

 vii 

LIST OF FIGURES 

 Page 

Figure 3-1: Percentage of prize obtained with prize-multiplier approach ........................ 20	  

Figure 3-2: Total edge cost of the solution ....................................................................... 24	  

 



 

 viii 

LIST OF TABLES 

 Page 

Table 4-1: The results of the quota problem for the simple vehicle model ...................... 31	  

Table 4-2: The results of the quota problem for the Reeds-Shepp vehicle model ........... 32	  

Table 4-3: The results of the budget problem for the simple vehicle model .................... 32	  

Table 4-4: The results of the budget problem for the Reeds-Shepp vehicle model ......... 32	  

 
 
 
 
 



 

 1 

1. INTRODUCTION 

1.1 Motivation 

Unmanned Vehicles (UVs) have been utilized in civil and military applications for 

decades. For example, there are a series of military robots named as Packbots deployed 

in military operations in Afghanistan in 2002. These robots have been used to detect and 

disarm explosive devices. It has also been used to collect air samples to detect chemical 

and radiological agents[10].  

 

Like Packbots, many other UVs are deployed to complete tasks which could be 

dangerous for human operators. The main advantage of deploying UVs is that they help 

to save on labor cost, reduce risk to human lives, and extend the operation area to places 

that are not suitable for humans.  

 

Path-planning plays an important role in UV monitoring missions. The research on 

planning a suitable traveling path for a UV to fulfill its task while satisfying a number of 

resource constraints has attracted numerous research groups from around the world. In 

this thesis, we consider two path planning problems for a single UV tasked to visit a 

collection of targets. In the next section, we motivate these path planning problems in 

the context of surveillance applications.  
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1.2 Motivation and Problem Statements 

Consider a research lab focused on studying the effects of climate change upon the 

environment by analyzing the integrity of soil, water, and air in a certain area. A number 

of monitoring spots (utilized as information resources) have been set up all over this 

area. A UV will be sent out from the lab for monitoring this area. The UV will collect 

the data available at each monitoring spot it visits, and return to the lab with the 

collected data. 

 

Suppose the lab can generate a traveling path for the UV before sending it out by 

choosing the spots to be visited and planning the sequence of spots along the traveling 

path. Each monitoring spot is assigned a value by evaluating the importance of research 

data it can provide. To generate an optimal path for the UV, these values along with the 

coordinates of all the monitoring spots are input to the central computer in the lab 

through human-computer interface. The coordinates of the depot and terminal, which is 

the lab, are also input to the central computer.  

 

In this scenario, consider the following path planning problems. 

(1) Quota Problem 

The lab does not need data from every monitoring spots in the area. However, in 

order to maintain decent research quality, the lab only has to sample sufficient 

number of monitor spots, whose total value meets the given quota. The condition of 

the environment revealed by processing and analyzing the data collected from the 
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chosen monitoring spots will be adequate to represent the general environmental 

conditions in this area. The objective of path-planning problem in this scenario is to 

minimize the total traveling time of UV while visiting enough monitor spots to 

satisfy the quota requirement. 

(2) Budget Problem 

Instead of the quota, the fuel efficiency is the main concern in budget problem. 

Obviously, the fuel tank of UV has a size limitation. One full tank of fuel carried by 

UV can only support it to cover a limited distance which we call as the budget. In 

order to utilize the fuel more efficiently, the lab wants the UV to collect data from 

the best monitoring spots within one trip. In another words, the objective of path-

planning problem in this scenario is to maximize the total value of the monitoring 

spots visited by the UV under the constraint of the fuel budget. 

 

1.3 Literature Review 

In 1987, Segev [9] first proposed the Node Weighted Steiner Tree problem, introducing 

non-negative vertex weights in addition to the edge weights to the problem. In his paper, 

one of his contributions is to introduce the Single Point Weight Steiner Tree problem, in 

which a special given vertex has to be included in the solution. 1n 1989, it is the first 

time that the term of Prize collecting Traveling Salesman is introduced by Balas [2]. 

Later the Prize Collecting Steiner Tree problem was first introduced by Bienstock et al. 

[3]. The first approximation algorithms for the Prize Collecting Traveling Salesman and 

Prize Collecting Steiner Tree problems with approximation guarantees of 5/2 and 3 
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respectively are also developed in this work. Goemans and Williamson [5,6] improved 

the approximation guarantee of both algorithms. Minkoff [8] proposed a modification of 

the algorithm for the Prize Collecting Steiner Tree problem and the primal-dual 2-

approximation algorithm based on Goemans and Williamson’s work. A practical 

heuristic denoted as the Prize-Multiplier approach is also proposed in [8]. In this thesis, 

we will mainly focus on implementing this Prize-Multiplier approach, which was 

proposed in  Minkoff [8] , for our path planning problems involving ground robots. 

  

1.4 Thesis Overview 

In section 2, we build a mathematical model for the problem and formulate the quota 

problem and the budget problem. The formulation presented in this section will be 

utilized to solve the problem in CPLEX. In section 3, we present and study the heuristic 

algorithms we are implementing for the problem. We mainly implemented the Prize-

Multiplier approach proposed by Minkoff. We conclude the thesis in section 4. We 

evaluate the heuristic algorithms by comparing and discussing the solutions to the 

problem generated by CPLEX and the heuristic algorithms. Finally, we summarize the 

work we have done and present the possible directions for the future research. 
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2. PROBLEM FORMULATION 

2.1 General Model 

To solve the problem, we first build a general model mathematically. We consider a 

graph G(V, E) . Let V denote the set of all vertices in the graph. Let E denote the set of 

all the undirected edges joining any two vertices in V. Noticing there is a root vertex 

serving as both depot and terminal, . A UV is parking at the root. It can visit the 

vertices in the graph by traveling along the edges belongs to E. We consider two 

characteristics of this undirected graph G(V, E), ce and . Let ce denote the cost of 

traveling through edge e. Let denote the collected prize at vertex v. Let edge eij 

denotes the edge joins vertices i and j. We assume that the costs satisfy the triangle 

inequality, i.e, for , . Note that each vertex in the graph can be 

visited no more than once by the UV. Let  denote the solution tour of the UV. 

 is all the vertices visited in the tour, and  is all the edges travelled through by the 

UV along the tour. 

(1) Quota Problem 

Let Q denote the nonnegative quota. The quota constraint is that the total prize 

collected from the vertices visited along the tour should be no less than the quota Q. 

The objective of the problem is to find a tour  such that the total costs of 

traveling along the tour is minimized, subject to the quota constraint. That is, 

 

 o∈V

 π v

 π v

  i, j,k ∈V
 
ceij

+ cejk
≥ ceki

  T (V ', E ')

  V '   E '

  T (V ', E ')

  

min                cee∈E '∑
subject to:
                      π vv∈V '∑ ≥ Q
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(2) Budget Problem 

Let B denote the nonnegative budget. The budget constraint is that the total costs of 

traveling along the tour should be no greater than the budget B. The objective of the 

problem is to find a tour  such that the total prize collected from the 

vertices visited along the tour is maximized, subject to the budget constraint. That is, 

 

 

2.2 Quota Problem Formulation 

Let arc(i, j) denote the directed arc which starts from vertex i and ends at vetex j. Let E1 

denote the set of arcs joining any two vertices in the graph. We then covert the 

undirected graph G(V, E) to a directed one, G1(V, E1), by replacing each undirected edge 

eij with two arcs, which are arc(i, j) and arc(j, i). Accordingly, let  denote the cost of 

traveling along arc(i, j) .  still denotes the prize collected at vertex v.  

 

In this formulation, we use integer variable for any vertices  to decide whether 

arc(i, j) is chosen in the tour. Arc arc(i, j) is present in the tour if and only if . 

Similarly, integer variable for any vertex  decides whether vertex i is visited in 

the tour. Vertex i is present in the tour if and only if .  

 

  T (V ', E ')

  

min                π vv∈V '∑
subject to:
                      cee∈E '∑ ≤ B

 
cij

 π v

 
xij   i, j ∈V

  
xij = 1

 yi  i ∈V

  yi = 1
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Suppose for vertex k, there is a virtual shipment of commodity originating from the root 

and then flowing along the tour. During the trip of the shipment, if and only if vertex k is 

visited, the shipment will be unloaded at vertex k. If vertex k is missed by the tour, the 

shipment will return to the root after finishing the trip. Under this hypothesis, we 

introduce a third integer variable,  for any vertices . The flow 

of the kth commodity, which is for vertex k, flows from vertex i to vertex j if and only if 

when . This variable ensures that every vertex in the tour is reachable from the 

root with arcs chosen in the tour. Note that  can then be interpreted as the capacity of 

arc(i,j) for the kth commodity, and  can be interpreted as the demand of the kth 

commodity at vertex k. 

 

The mathematical expression of these 3 integer variables is as below: 

 

 

The objective function of quota problem is quite similar to what we’ve discussed in 

section 2.2, which is 

 
fij

k
  i, j ∈V  and k ∈V \{o}

  
fij

k = 1

 
xij

yk

  

xij =
1 if arc (i, j)∈E1  is in the tour

0 otherwise

⎧
⎨
⎪

⎩⎪

yi =
1 if vertex i is visited in the tour
0 otherwise

⎧
⎨
⎪

⎩⎪

fij
k = 1 if the flow of the kth commodity flows from vertex i to vertex j

0 otherwise

⎧
⎨
⎪

⎩⎪
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The quota constraint can be written as: 

 

 

As we were noticing in the previous part of this section,  can then be interpreted as 

the capacity of arc(i,j) for the kth commodity. Thus we get the capacity constraint as, 

 

 

To make sure that the shipment of kth commodity satisfies the demand of the kth target, 

and can only be unloaded at vertex k, we formulate a set of 3 flow balance constraints. 

The first one is, 

 

This constraint ensures that the flow of the kth commodity comes out of the root o has to 

satisfy the demand of the kth vertex before it comes back to the root. The second flow 

balance constraint is,  

 

  
min cij

i, j∈V
∑ xij

 
π i yi

i∈V
∑ ≥ Q

 
xij

  
fij

k ≤ xij ∀i, j ∈V ,∀k ∈V \{o}

  
( foj

k − f jo
k )

j∈V \{v0}
∑ = yk ∀k ∈V \{o} and o is the root

  
( f jk

k − fkj
k )

j∈V
∑ = yk ∀k ∈V \{o}
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This constraint ensures that the flow of the kth commodity comes into vertex k should 

satisfy the demand of the kth vertex before it comes out. The last flow balance constraint 

is, 

 

This constraint ensures that the kth commodity is not unloaded at any vertex i when 

. 

 

To avoid the tour visiting the same vertex repeatedly and forming a circle, which 

contains only one vertex, we add this constraint, 

 

To ensure that the solution tour starts and ends at the same vertex, we add a constraint 

which restricts the in-degree to be equal to the out-degree for each vertex in the graph 

except the root. Here is the constraint, 

 

The last constraint makes sure that there’s only one arc out of root o. 

 

 

 

Now we get the integer program for the quota problem, which is as below, 

fij
k

j∈V
∑ = f ji

k

j∈V
∑ ∀i,k ∈V \{o} and i ≠ k

i ≠ k

  
x jj = 0 ∀j ∈V

  
(xij − x ji )

i∈V
∑ = 0 ∀j ∈V \{o}

  
xoj

j∈V \{o}
∑ = 1
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max cijxij
i, j∈V
∑

subject to:

π i
i∈V
∑ yi ≥ Q

fij
k ≤ xij ∀i, j ∈V ,∀k ∈V \{o}

( foj
k − f jo

k )
j∈V \{o}
∑ = yk ∀k ∈V \{o}

fij
k

j∈V
∑ = f ji

k

j∈V
∑ ∀i,k ∈V \{o} and i ≠ k

( f jk
k − fkj

k )
j∈V
∑ = yk ∀k ∈V \{o} 

x jj = 0 ∀j ∈V

(xij − x ji )
i∈V
∑ = 0 ∀j ∈V \{o}

xoj
j∈V \{o}
∑ = 1

xij , yi , fij
k ∈{0,1} ∀i, j,k ∈V  and k ≠ o

 

 

2.3 Budget Problem Formulation 

For the budget problem, we use the same integer variables as we’ve used for the quota 

problem in section 2.2, which are  for any .  

 

The objective function of the budget problem is, 

 

The budget constraint can be written as, 

  
xij , yi , fij

k
  i, j ∈V  and k ∈V \{o}

  
max π i

i∈V
∑ yi
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Obviously, the rest of the constraints, such as the capacity constraint, the flow balance 

constraints and other constraint, are the same with the quota problem. We get the integer 

program of the budget problem, which is as below, 

  

max π i
i∈V
∑ yi

subject to:

cijxij
i, j∈V
∑ ≤ B

0 ≤ fij
k ≤ xij ∀i, j ∈V ,∀k ∈V \{o}

( foj
k − f jo

k )
j∈V \{o}
∑ = yk ∀k ∈V \{o}

fij
k

j∈V
∑ = f ji

k

j∈V
∑ ∀i,k ∈V \{o} and i ≠ k

( f jk
k − fkj

k )
j∈V
∑ = yk ∀k ∈V \{o} 

x jj = 0 ∀j ∈V

(xij − x ji )
i∈V
∑ = 0 ∀j ∈V \{o}

xoj
j∈V \{o}
∑ = 1

xij , yi , fij
k ∈{0,1} ∀i, j,k ∈V  and k ≠ o  

  
cijxij

i, j∈V
∑ ≤ B
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3. HEURISTICS 

3.1 General Ideal of Implementing The Heuristic Algorithm 

The goal of our thesis is to implement a heuristic algorithm to solve the quota problem 

and the budget problem. We expect performance of the heuristic algorithm with better 

time efficiency and acceptable approximate result. 

 

The general plan of implementing the heuristic algorithm is as below: 

(1) Formulate the problem base on a mathematical model similar to the Prize 

Collecting Steiner Tree (PCST) problem. 

(2) Generate an approximate solution tree T using the prize-multiplier approach. 

(3) Generate the solution tour with all the vertices spanned by tree T, using the LKH 

algorithm. 

 

3.2 Introduction to The Prize Collection Steiner Tree Problem 

Let G(V, E) denote an undirected graph with root o. V denotes the set of all the vertices 

in the graph. E denotes the set of all the edges joining any two of the vertices.  ce  is the 

cost of traveling through edge e.  π v is the penalty for not visiting vertex v. Let 
 
eij denote 

the edge joining vertices i and j. We assume costs satisfy the triangle inequality, i.e. 

 
ceij

+ cejk
≥ ceki

 for any vertices . The objective of PCST problem is to find a 

tree   T (VT , ET )  spanning a subset of the vertices and the root vertex o, such that the sum 

  i, j,k ∈V
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of the total costs of edges in the tree and the total penalties associated with vertices not 

spanned by the tree is minimized.  

 

We use the following integer variables: 

xe =
1 if e is in the tree
0 otherwise

⎧
⎨
⎪

⎩⎪
 

  
zN = 1 if N is the set of all vertices not spanned by the tree

0 otherwise

⎧
⎨
⎪

⎩⎪
 

Noting that subset of vertices   N ⊆V \{o} . 

 

As we stated above, the objective function of PCST problem is 

  
min cexe

e∈E
∑ + zN

N⊆V \{o}
∑ π i

i∈N
∑  

 

Let S denote a subset of vertices not containing the root vertex o. If subset S only 

contains vertices spanned by solution tree T, obviously S and T intersect each other. 

Thus there must be at least on edge of T crossing the outer edge of subset S. If subset S 

contains not only the vertices spanned by tree T but also the vertices out of T, S and T 

still intersect each other. This situation is the same as the previous one. If subset S only 

contains the vertices not spanned by tree T, this means that there is no edge of T crossing 

the outer edge of subset S and subset S is within the subset N that only contains all the 
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vertices not spanned by tree T. We use the following expression to describe this 

constraint: 

  
xe

e∈δ (S )
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}  

To ensure that there is at most one subset N that satisfies   zN = 1, we add a second 

constraint: 

  
zN

N⊆V \{o}
∑ ≤1  

 

Noting that because of the second term of the objective function, the last constraint is 

automatically satisfied by optimal solution. Thus we can drop it without affecting the 

optimization. Relaxing the constraints of integer variables, we get the linear program of 

PCST problem as below: 

  

min cexe
e∈E
∑ + zN

N⊆V \{o}
∑ π i

i∈N
∑

subject to:
xe

e∈δ (S )
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}

xe ≥ 0                     e∈E

zN ≥ 0 N ⊆V \{o}

 

 

Corresponding to the first constraint of the above linear program, we set up a non-

negative dual variable  yS for each subset of vertices   S ⊆V \{o}. The dual of the linear 

program of PCST problem is as below: 



 

 15 

  

max yS
S⊆V \{o}
∑

subject to:

yS
S:e∈δ (S )
∑ ≤ ce e∈E

yS
S⊆N
∑ ≤ π i

i∈N
∑ N ⊆V \{o}

yS ≥ 0 S ⊆V \{o}

 

 

 

3.3 Prize-Multiplier Approach for Quota Problem 

The prize-multiplier approach is proposed by Minkoff in [8]. The idea of the prize-

multiplier approach came out of this scenario. With the cost  ce  and the prize  π v , we 

only want to include the vertex v in the solution tree if the cost of reaching the vertex is 

outweighed by the value of prize collected. In the situation where the solution tree does 

not contain enough prizes, a prize multiplier can be introduced to scale the prize of each 

vertex and makes the total prize in the solution tree sufficient enough to offset more cost. 

Thus the solution tree is forced to span more vertices. Ideally, we can obtain the desired 

value of prizes collected in the solution tree by adjusting the value of prize multiplier. 

 

3.3.1 Quota Problem Formulation 

As we’ve stated in the general plan for solving the problem in section 3.1, the objective 

is to generate a solution tree instead of a tour before we could apply the LKH algorithm. 

Thus, at this step, the objective of the new quota problem is to find a solution tree 
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  T (VT , ET )  that total cost of edges in the tree is minimized while the total prize collected 

at the vertices spanned by the tree is no less than quota Q. 

 

We use the same set of integer variables as we’ve used for PCST problem formulation. 

xe =
1 if e is in the tree
0 otherwise

⎧
⎨
⎪

⎩⎪
 

  
zN = 1 if N is the set of all vertices not spanned by the tree

0 otherwise

⎧
⎨
⎪

⎩⎪
 

 

The objective function is 

min cexe
e∈E
∑  

The first two constraints are the same ones as for PCST problem, 

  
xe

e∈δ (S )
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}  

  
zN

N⊆V \{o}
∑ ≤1  

The third constraint is the quota constraint. In the previous section, we’ve written this 

constraint as below, 

 
π i

i∈VT

∑ ≥ Q  
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We intend to introduce the same integer variables we’ve used for PCST problem 

formulation in section 3.1 into the quota constrain. Thus we have to make modifications 

to the above expression. First we get 

 
π i

i∈V
∑ − π i

i∈VT

∑ ≤ π i
i∈V
∑ −Q  

Noting that the left hand side of the above inequality is the total prize of all vertices in 

the graph minus the total prize collected at the vertices spanned by the solution tree T. In 

another word, the left hand side is the total prize of all the vertices not spanned by the 

solution tree T. Thus we can re-write the quota constraint as below, 

  
zN π i

i∈N
∑

N⊆V \{o}
∑ ≤ π i

i∈V
∑ −Q  

Relaxing the constraints of the integer variables and dropping the second constraint, we 

get the linear programming relaxation to the new quota problem as below, 

min cexe
e∈E
∑

subject to:
xe

e∈δ (S )
∑ + zN

N⊇S
∑ ≥1              S ⊆V \{o}

zN π i
i∈N
∑

N⊆V \{o}
∑ ≤ π i

i∈V
∑ −Q

xe , zN ≥ 0                 N ⊆V \{o}

 

Non-negative dual variable  yS  for each subset of vertices   S ⊆V \{o}  is corresponding 

to the first constraint. A new non-negative dual variable µ  is corresponding to the 

second constraint. We write the dual of this linear program as below, 
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         max        yS
S⊆V \{o}
∑ − µ( π i −Q)

i∈V
∑

subject to:

                        yS
S:e∈δ (S )
∑ ≤ ce          e∈E

                        yS
S⊆N
∑ ≤ µπ i

i∈N
∑      N ⊆V − r

                        µ, yS ≥ 0               S ⊆V − r

 

 

By observing the objective function of the dual program, we can easily notice that when 

µ  is fixed, the second term of the objective function is constant. For each fixed µ , this 

term will not affect the optimization. Comparing the constraints of the above dual 

program with the ones of the dual program for PCST problem, the only difference is that 

in the second constraint of the above dual program, there is µ  serving as a prize 

multiplier. Thus solving the dual program for the new quota problem is identical to 

solving the dual program for PCST problem with prizes scaled by µ .  

 

To solve the quota problem with the prize-multiplier approach, we first choose a set of 

µ . Then we run a primal-dual algorithm on the PCST problem once for each chosenµ . 

Among the set of solution trees we have generated, we pick a tree that satisfy the quota 

requirement and has a total prize collected as close to the quota Q as possible.  
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3.3.2 Bisection Search 

In order to reach the desired solution tree in a shorter time, we apply bisection method to 

search the appropriate prize-multiplier. Let   [µlo ,µhi]  be the search interval. At each step, 

compute the midpoint of the interval   µmid = (µlo + µhi ) / 2 . The search interval is divided 

in two now, which are   [µlo ,µmid ]  and   [µmid ,µhi] . Then we generate a solution tree T with 

prize-multiplier µmid . Compare the total prize collected in tree T,  ∏T , with the quota Q. 

If  ∏T ≥ Q , the solution tree T is the best feasible solution we have obtained until this 

step. We record this solution and then try to obtain a new tree   T '  with lower total prize 

∏T '  using a smaller prize-multiplier µ . Following the principle of bisection search, we 

start a new bisection search in the subinterval   [µlo ,µmid ] . If  ∏T < Q , we need to increase 

the prize-multiplier µ  to obtain a solution tree   T '  with greater total prize ∏T ' . Thus we 

start a new bisection search in the subinterval   [µmid ,µhi] . Repeat the steps until the best 

solution obtained in the process cannot be improved much more. The best solution is the 

last feasible solution obtained in the bisection steps. Record the best solution for further 

procedure. 

 

The algorithm we deployed to solve the PCST problem in each bisection search step is a 

primal-dual algorithm developed by Bae et al.[1]. This algorithm is essentially 

developed for a two-depot heterogeneous traveling salesman problem. We implement it 

for our single depot PCST problem by intentionally setting the cost of each edge joining 
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any two vertices except the depot as infinity for the second vehicle. The cost of each 

edge joining the depot for the second vehicle and any other vertex v is set to be the prize 

collected at the vertex v by the first vehicle. The input data for the first vehicle are the 

data for our original PCST problem. After running the algorithm, the result tree for the 

first vehicle is our solution tree. The result for the second vehicle is ignored. 

 

3.3.3 Pruning Heuristic for The Quota Problem 

 
Figure 3-1: Percentage of prize obtained with prize-multiplier approach 
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It is always possible to obtain a solution tree with total prize to be no less then the given 

quota Q when Q is smaller than the total prize of all vertices in the graph. By choosing a 

proper bisection search interval, a best solution out of the prize-multiplier approach can 

be achieved. We hope by performing more iterations of bisection search, the total prize 

collected in the solution tree will be approaching the quota Q gradually and getting 

closer and closer to Q. When the total prize reaches Q or arrives at close enough to Q, a 

solution tree with decent approximating rate is obtained. However this is not the case. As 

we can see from the Figure 3-1, when we run the algorithm with prize-multiplier µ  

increasing gradually and slowly by the step of 0.01, we get a set of solution trees with 

total prize increasing discretely.  

 

Given a very small  ε > 0 , let  µ2 = (1+ ε )µ1 . Let   T1  denote to solution tree generated 

with prize-multiplier  µ1  and 
  
∏T1

denote the total prize of tree   T1 . Let   T2  denote to 

solution tree corresponding to prize-multiplier  µ2  and ∏T2
denote the total prize of tree 

  T2 , 
  
∏T1

<∏T2
. Suppose the given quota Q falls between 

  
∏T1

 and ∏T2
, 

  
∏T1

< Q <∏T2
. It 

is possible that within the feasible solution tree   T2  there exists a subtree   T3  whose total 

edge cost is smaller and yet a feasible solution. The goal of pruning heuristic for the 

quota problem is to prune away vertices that decrease the total edge cost as much as 

possible while still maintain a total prize no less than quota Q. To conduct the pruning 

procedure more effective and efficient, we always try to prune away subtrees with more 
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edge cost and less prize. Thus we compute the cost-prize ratio of each subtree. This ratio 

denotes the value of edge cost per unit of prize of a subtree.  

 

Given a solution tree T and a non-negative quota Q, suppose vertex u and v are visited in 

tree T. Let  denote the subtree within tree T and rooted at vertex u. The edge  euv  is in 

tree T and joins vertex u and v. Vertex v is not spanned by subtree  Tu . We call vertex v 

the parent of vertex u. Let  cuv  denote the cost of edge  euv , and CTu  denote the total cost 

of edges in subtree  Tu . Let 
 
∏Tu

 denote the total cost collected in subtree  Tu . The cost-

prize ratio of subtree  Tu  is defined as 
 
Ru =

CTu
+ cvu

∏Tu

. 

The detailed pruning steps are as below:  

Quota-Prune(T, Q) 

1  sort all subtrees  Tu  on the decreasing order of cost-prize ratio  Ru  

2  For each  Tu  in decreasing order of   Ru  do 

    if  
 
∏T −∏Tu

≥ Q  then 

          T ←T −Tu ; break, 

    end if 

    end for 

3  update  Rv for each vertex v on the path u ~ root     

 

 Tu
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Repeat the above pruning steps until there is no subtree can be removed without leaving 

the remained subtree unsatisfying the quota requirement.  

 

Run LKH algorithm using the result tree from pruning steps as input to generate the final 

solution tour for the Quota Problem. LKH was developed by Helsgaun [6]. It is one of 

the best heuristic for single vehicle Traveling Salesman Problem. We use the executable 

package downloaded online at [7]. 

 

3.3.4 Summary 

To sum up, the steps of solving the quota problem with the prize-multiplier approach are 

listed below 

Steps of solving the quota problem with heuristic  

• run primal-dual algorithm for PCST problem with prize-multiplier µ  and obtain a 

solution tree 
 
Tµ  

• repeat the above step, using bisection search to find a prize-multiplier µ , such that 

the corresponding solution tree 
 
Tµ  is feasible and has a total prize as close to the 

quota Q as possible 

• prune the chosen tree 
 
Tµ  to get a new feasible tree 

  
Tµ '  

• run LKH algorithm on tree 
  
Tµ '  to generate the final solution tour  
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3.4 Prize-Multiplier Approach for Budget Problem 

According to the dual program to the quota problem we discussed in previous section, 

each time we solve the dual for with a fixed prize-multiplier µ , we get a solution tree, 

which is independent of the quota Q.  

 

Figure 3-2: Total edge cost of the solution 

As we increasing the prize-multiplier µ , we are forcing the solution tree to include more 

vertices with prize. In the mean time, the solution is also forced to add more edges with 

cost, as we can see from Figure 3-2. Thus the idea of the prize-multiplier approach for 

budget problem is to increase prize-multiplier µ  in order to maximize the total prize 

collected in the tree until the total edge cost reaches the budget B. 
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3.4.1 Bisection Search 

Let  Ctree  denote the total edge cost of a tree.  Let  Ctour  denote the total edge cost of the 

tour generated out of all the vertices in the tree. Obviously,  Ctour ≠ Ctree . In another word, 

it is possible that the tree satisfies the budget requirement while the tour does not. Thus, 

we run LKH algorithm on the solution tree in each iteration of bisection search and 

perform the search using the total edge cost of solution tour. 

 

Let   [µlo ,µhi] be the search interval. At each step, compute the midpoint of the interval 

  µmid = (µlo + µhi ) / 2 . The search interval is divided in two now, which are   [µlo ,µmid ]  and 

  [µmid ,µhi] . Then we generate a solution tour T with prize-multiplier µmid . Compare the 

total edge cost in tour T,  CT , with the given budget B. If  CT ≤ B , the solution tour T is 

the best feasible solution we have obtained until this step. We record this solution and 

then try to obtain a new tour   T '  with more total prize ∏T '  using a larger prize-multiplier 

µ . Following the principle of bisection search, we start a new bisection search in the 

subinterval   [µmid ,µhi] . If  CT > B , the solution tour T contains the least edge cost among 

all the infeasible solutions we have obtained until this step. We call it the best infeasible 

solution. We need to decrease the prize-multiplier µ  to obtain a solution tour   T '  with 

less total prize ∏T ' . Thus we start a new bisection search in the subinterval   [µlo ,µmid ] . 

Repeat the steps and keep the record of both the best feasible solution tree and the best 

infeasible solution tree, until the best infeasible solution obtained in the process cannot 
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be improved much more without bring the solution to be feasible. We use the best 

infeasible solution tour as the original tour for pruning steps. After the pruning step, we 

choose a solution tour with more total prize as the final solution between the best 

feasible solution our we obtained after the bisection search and the resulting subtour of 

the pruning steps. 

 

3.4.2 Pruning Heuristic for The Budget Problem 

Given a solution tour T and a non-negative budget B, suppose vertex p, q, u and v are 

visited in tour T. Directed arcs arc(p, u) and arc(v, q) are in tour T. Let  Tuv  denote a 

segment of tour T that is rooted at vertex u and ends at vertex v. Arc arc(p, q) is not in 

tour T and joins vertex p and q. Let cij  denote the cost of arc arc(i, j) for any two vertices 

in the tour, and 
 
CTuv

 denote the total cost of edges in  Tuv . Let 
 
∏Tuv

 denote the total cost 

collected in subtree  Tu . When  Tuv  is removed from T, the total cost of removed edge is 

as below 

  
C(u,v) = CTuv

+ cpu + cvq  

The cost-prize ratio of  Tuv  is defined as  

Ru =
C(u,v) − cpq

∏Tuv
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Budget-Prune(T, B) 

1  sort all  Tuv  on Ruv  in decreasing order 

2  count = 0 

3  for each  Tuv  in decreasing order of  Ruv  

4        if 
  
CT −C(v,u)+ cpq > B    then 

5            
 
T ←T −Tuv + epq ;  break cycle 

6        else count =  count + 1 

5        end if 

6  end for 

7  if count = number of  vertices in  Tuv   

8      find the first T maxuv  with the smallest 
 
∏Tuv

 

9       do  
  
T ←T −Tvu

max + epq  

9  end if 

10 update Ruv , 
 
∏Tuv

and  Tuv  for new T 

 

Repeat the above pruning steps until the result tour is feasible. Compare the result tour 

with the best feasible solution we have obtained in previous bisection search steps, 

choose the one with greater total prize as the final solution of the heuristic algorithm for 

the budget problem. 
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3.4.3 Summary 

To sum up, the steps of solving the budget problem with the prize-multiplier approach 

are listed below 

Steps of solving the budget problem with heuristic  

• run primal-dual algorithm for PCST problem with prize-multiplier µ  and obtain a 

solution tree 
 
Tµ  

• apply LKH algorithm on 
 
Tµ  to generate a tour 

  
Tµ '  

• repeat the above steps, using bisection search to find prize-multipliers  µ1  and  µ2 , 

such that the corresponding tour Tµ1 '  is infeasible and has a total edge cost as close 

to the budget B as possible, and tour 
  
Tµ2

'  is feasible and has a total edge cost as close 

to the budget B as possible. 

• prune away vertices in tour Tµ1 '  until the resulting tour 
  
Tµ1

''  is feasible 

• pick the tour with greater total prize between 
  
Tµ2

'  and 
  
Tµ1

''  as the final solution 
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4. SIMULATION RESULTS 

4.1 Input Data to The Quota Problem and The Budget Problem 

We solve the quota problem and budget problem on two different UV models. The first 

model of UV can move in any direction, and has no constraint on the minimum turning 

radius. We call this UV model the simple model. The second model we implement is the 

famous Reeds-Shepp model. A Reeds-Shepp UV can move both forwards and 

backwards and can turn fully left and fully right. There is a constraint on the minimum 

turning radius for the Reeds-Shepp UV. 

 

Initially we generate a number of vertices randomly distributing in a test area of 1000m2. 

The traveling distance between any two vertices in the graph for UV is used as the cost 

of edge joining the two vertices. The prize collected at each vertex is set to be 1. Let n 

denote the number of vertices in the test area. Set the quota 
  
Q = n

2
. Set the budget 

  B = 1500,1800,2000,2500,2800  for   n = 10,20,30,40,50  correspondingly.  

 

Let n denote the number of vertices in the test area. We run the algorithms with input 

data of n=10 (20, 30, 40, 50)  for 50 instance respectively. In order to evaluate the 

solution quality of the heuristic algorithm, we solve the problem in CPLEX using the 

formulation we developed in section 2 and the same input data. 
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The codes for the heuristic is written in MATLAB and run on an Intel Core i7 

2.9Ghz/8GB laptop. The codes for CPLEX is written in C++ and run on an AMD 

Athlon(tm) II X4 640 3.0Ghz/8GB desktop. 

 

4.2 Result and Quality Analysis 

 
Figure 4-1: An example of solution to the quota problem with Reeds-Shepp UV 

In Figure 4-1, an approximate Reeds-Shepp tour is generated for n=10 and Q=5. We can 

see that the total prize in the tour is 5. This is a feasible solution. 
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Each time we get a result from the algorithms, we record the running time for 

optimization and the objective value. Let  tCPLEX denote the average running time of 

optimization for each value of n in CPLEX. Let  theuristc  denote the average running time 

of the heuristic algorithm for each value of n. Let  CCPLEX  and  ∏CPLEX  denote the total 

edge cost and total prize of the solution tour generated by CPLEX. Let  Cheuristic  and 

 ∏heuristic  denote the total edge cost and total prize of the solution tour generated from the 

heuristic algorithm. Define the solution quality for the quota problem as below: 

  
SQquota =

Cheuristic −CCPLEX

Cheuristic

×100%  

The solution quality for the budget problem is defined as below 

  
SQbudget =

∏CPLEX −∏heuristic

∏CPLEX

×100%  

We also compare  theuristc  with  tCPLEX  to analyze the time efficiency of the heuristic 

algorithm. 

 

Table 4-1: The results of the quota problem for the simple vehicle model 

Number of Vertices Average Solution Quality 

Average Time/sec 

CPLEX Heuristic 

10 9.50% 0.64 1.59 

20 11.36% 33.72 4.69 

30 8.63% 267.58 7.96 

40 9.63% 1937.09 16.84 

50 12.34% 6000.31 37.23 
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Table 4-2: The results of the quota problem for the Reeds-Shepp vehicle model 

Number of Vertices Average Solution Quality 

Average Time/sec 

CPLEX Heuristic 

10 5.07% 0.70 1.08 

20 10.55% 23.97 3.09 

     30 14.45% 414.16 7.15 

40 15.30% 2803.31 14.75 

50 16.11% 6815.03 24.95 

 

Table 4-3: The results of the budget problem for the simple vehicle model 

Number of Vertices Average Solution Quality 

Average Time/sec 

CPLEX Heuristic 

10 9.64% 0.55 1.53 

20 10.54% 24.20 3.88 

30 11.82% 217.48 8.13 

40 11.67% 962.53 15.79 

50 12.98% 5330.72 24.89 

 

Table 4-4: The results of the budget problem for the Reeds-Shepp vehicle model 

Number of Vertices Average Solution Quality 

Average Time/sec 

CPLEX Heuristic 

10 7.27% 0.70 1.20 

20 13.43% 28.32 5.23 

30 15.59% 365.56 7.83 

    40 15.04% 716.84 13.22 

50 15.17% 3457.70 24.35 
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Observing the data in Table 4-1,4-2,4-3,4-4, we come to these conclusions. By 

comparing with the results generated by CPLEX, we note that the value of solution 

quality of heuristic algorithm increases with n. This means that the heuristic algorithm 

produces better approximate solution when n is small. When n is 50, the average 

solution quality is within the range of [12%, 17%]. We also notice that the heuristic 

algorithm performs slightly better with the simple vehicle model than with the Reeds-

Shepp vehicle. However the heuristic algorithm has a significant advantage in time 

efficiency as n grows larger. When n is 10, CPLEX wins in the running time 

comparison. As n grows from 20 to 50, the running time of CPLEX increases 

exponentially while the running time of the heuristic algorithm stays at an acceptable 

range. When n reaches 50, the running time of CPLEX is almost 200 times of the one of 

the heuristic algorithm. Thus we can conclude that the heuristic algorithm we 

implemented generates acceptable approximate rate with significant improvement in 

time efficiency.  
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5. CONCLUSIONS AND FUTURE WORK 

In this thesis we implemented a heuristic algorithm of prize-multiplier approach on the  

single vehicle quota problem and budget problem. We tested the algorithms two 

different models of vehicle. This heuristic performs well when solving our problems 

with both vehicle models. It provides a solution with good approximation rate in a small 

period of time. The quality of the solutions obtained with the heuristic algorithm drops 

as the number of vertices increases. The solution produced by CPLEX using the multy-

commodity flow formulation has better quality but is very time consuming as the 

number of vertices increases. 

 

In future work, the heuristic can be tested on new vehicle models with asymmetric edge 

cost matrixes and more generalized vertex prize matrixes. Also, the solutions from the 

heuristic can be improved trough the framework of improvement heuristics. 
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