

ALGORITHMS FOR AN UNMANNED VEHICLE

PATH PLANNING PROBLEM

A Thesis

by

JIANGLEI QIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Sivakumar Rathinam
Committee Members, Darbha Swaroop
 Bruce Wang
Head of Department, Andreas A. Polycarpou

August 2013

Major Subject: Mechanical Engineering

Copyright 2013 Jianglei Qin

 ii

ABSTRACT

Unmanned Vehicles (UVs) have been significantly utilized in military and civil

applications over the last decade. Path-planning of UVs plays an important role in

effectively using the available resources such as the UVs and sensors as efficiently as

possible. The main purpose of this thesis is to address two path planning problems

involving a single UV.

The two problems we consider are the quota problem and the budget problem. In the

quota problem, the vehicle has to visit a sufficient number of targets to satisfy the quota

requirement on the total prize collected in the tour. In the budget problem, the vehicle

has to comply with a constraint of the distance traveled by the UV. We solve both these

problems using a practical heuristic called the prize-multiplier approach. This approach

first uses a primal-dual algorithm to first assign the targets to the UV. The Lin –

Kernighan Heuristic (LKH) is then applied to generate a tour of the assigned targets for

the UV. We tested this approach on two different vehicle models. One model is a simple

vehicle which can move in any direction without a constraint on its turning radius. The

other model is a Reeds-Shepp vehicle. We also modeled both problems in C++ using the

multi-commodity flow formulations, and solved them to optimality by using the Concert

Technology of CPLEX.

 iii

We used the results generated by CPLEX to determine the quality of the solutions

produced by the heuristics. By comparing the objective values of the obtained solutions

and the running times of the heuristics and CPLEX, one can conclude that the proposed

heuristics produce solutions with good quality to our problems within our desired time

limits.

 iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Rathinam for his patient and constant guidance,

support and motivation throughout this research. I would also like to express my

gratitude to Dr. Swaroop and Dr. Wang for being an important part of my committee.

I wish to thank my friends, Jung and Kaarthik for helping when I met troubles and

doubts in the research. Thanks also go to the department faculty and staff for making my

time at Texas A&M University a great experience.

Finally, thanks to my mother and father for their encouragement and love.

 v

TABLE OF CONTENTS

Page

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES ... viii

1. INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Motivation and Problem Statements .. 2
1.3 Literature Review ... 3
1.4 Thesis Overview .. 4

2. PROBLEM FORMULATION .. 5

2.1 General Model ... 5
2.2 Quota Problem Formulation .. 6
2.3 Budget Problem Formulation ... 10

3. HEURISTICS .. 12

3.1 General Ideal of Implementing The Heuristic Algorithm 12
3.2 Introduction to The Prize Collection Steiner Tree Problem 12
3.3 Prize-Multiplier Approach for Quota Problem .. 15
3.4 Prize-Multiplier Approach for Budget Problem .. 24

4. SIMULATION RESULTS ... 29

4.1 Input Data to The Quota Problem and The Budget Problem 29
4.2 Result and Quality Analysis .. 30

5. CONCLUSIONS AND FUTURE WORK ... 34

 vi

REFERENCES ... 35

 vii

LIST OF FIGURES

 Page

Figure 3-1: Percentage of prize obtained with prize-multiplier approach 20	

Figure 3-2: Total edge cost of the solution ... 24	

 viii

LIST OF TABLES

 Page

Table 4-1: The results of the quota problem for the simple vehicle model 31	

Table 4-2: The results of the quota problem for the Reeds-Shepp vehicle model 32	

Table 4-3: The results of the budget problem for the simple vehicle model 32	

Table 4-4: The results of the budget problem for the Reeds-Shepp vehicle model 32	

 1

1. INTRODUCTION

1.1 Motivation

Unmanned Vehicles (UVs) have been utilized in civil and military applications for

decades. For example, there are a series of military robots named as Packbots deployed

in military operations in Afghanistan in 2002. These robots have been used to detect and

disarm explosive devices. It has also been used to collect air samples to detect chemical

and radiological agents[10].

Like Packbots, many other UVs are deployed to complete tasks which could be

dangerous for human operators. The main advantage of deploying UVs is that they help

to save on labor cost, reduce risk to human lives, and extend the operation area to places

that are not suitable for humans.

Path-planning plays an important role in UV monitoring missions. The research on

planning a suitable traveling path for a UV to fulfill its task while satisfying a number of

resource constraints has attracted numerous research groups from around the world. In

this thesis, we consider two path planning problems for a single UV tasked to visit a

collection of targets. In the next section, we motivate these path planning problems in

the context of surveillance applications.

 2

1.2 Motivation and Problem Statements

Consider a research lab focused on studying the effects of climate change upon the

environment by analyzing the integrity of soil, water, and air in a certain area. A number

of monitoring spots (utilized as information resources) have been set up all over this

area. A UV will be sent out from the lab for monitoring this area. The UV will collect

the data available at each monitoring spot it visits, and return to the lab with the

collected data.

Suppose the lab can generate a traveling path for the UV before sending it out by

choosing the spots to be visited and planning the sequence of spots along the traveling

path. Each monitoring spot is assigned a value by evaluating the importance of research

data it can provide. To generate an optimal path for the UV, these values along with the

coordinates of all the monitoring spots are input to the central computer in the lab

through human-computer interface. The coordinates of the depot and terminal, which is

the lab, are also input to the central computer.

In this scenario, consider the following path planning problems.

(1) Quota Problem

The lab does not need data from every monitoring spots in the area. However, in

order to maintain decent research quality, the lab only has to sample sufficient

number of monitor spots, whose total value meets the given quota. The condition of

the environment revealed by processing and analyzing the data collected from the

 3

chosen monitoring spots will be adequate to represent the general environmental

conditions in this area. The objective of path-planning problem in this scenario is to

minimize the total traveling time of UV while visiting enough monitor spots to

satisfy the quota requirement.

(2) Budget Problem

Instead of the quota, the fuel efficiency is the main concern in budget problem.

Obviously, the fuel tank of UV has a size limitation. One full tank of fuel carried by

UV can only support it to cover a limited distance which we call as the budget. In

order to utilize the fuel more efficiently, the lab wants the UV to collect data from

the best monitoring spots within one trip. In another words, the objective of path-

planning problem in this scenario is to maximize the total value of the monitoring

spots visited by the UV under the constraint of the fuel budget.

1.3 Literature Review

In 1987, Segev [9] first proposed the Node Weighted Steiner Tree problem, introducing

non-negative vertex weights in addition to the edge weights to the problem. In his paper,

one of his contributions is to introduce the Single Point Weight Steiner Tree problem, in

which a special given vertex has to be included in the solution. 1n 1989, it is the first

time that the term of Prize collecting Traveling Salesman is introduced by Balas [2].

Later the Prize Collecting Steiner Tree problem was first introduced by Bienstock et al.

[3]. The first approximation algorithms for the Prize Collecting Traveling Salesman and

Prize Collecting Steiner Tree problems with approximation guarantees of 5/2 and 3

 4

respectively are also developed in this work. Goemans and Williamson [5,6] improved

the approximation guarantee of both algorithms. Minkoff [8] proposed a modification of

the algorithm for the Prize Collecting Steiner Tree problem and the primal-dual 2-

approximation algorithm based on Goemans and Williamson’s work. A practical

heuristic denoted as the Prize-Multiplier approach is also proposed in [8]. In this thesis,

we will mainly focus on implementing this Prize-Multiplier approach, which was

proposed in Minkoff [8] , for our path planning problems involving ground robots.

1.4 Thesis Overview

In section 2, we build a mathematical model for the problem and formulate the quota

problem and the budget problem. The formulation presented in this section will be

utilized to solve the problem in CPLEX. In section 3, we present and study the heuristic

algorithms we are implementing for the problem. We mainly implemented the Prize-

Multiplier approach proposed by Minkoff. We conclude the thesis in section 4. We

evaluate the heuristic algorithms by comparing and discussing the solutions to the

problem generated by CPLEX and the heuristic algorithms. Finally, we summarize the

work we have done and present the possible directions for the future research.

 5

2. PROBLEM FORMULATION

2.1 General Model

To solve the problem, we first build a general model mathematically. We consider a

graph G(V, E) . Let V denote the set of all vertices in the graph. Let E denote the set of

all the undirected edges joining any two vertices in V. Noticing there is a root vertex

serving as both depot and terminal, . A UV is parking at the root. It can visit the

vertices in the graph by traveling along the edges belongs to E. We consider two

characteristics of this undirected graph G(V, E), ce and . Let ce denote the cost of

traveling through edge e. Let denote the collected prize at vertex v. Let edge eij

denotes the edge joins vertices i and j. We assume that the costs satisfy the triangle

inequality, i.e, for , . Note that each vertex in the graph can be

visited no more than once by the UV. Let denote the solution tour of the UV.

 is all the vertices visited in the tour, and is all the edges travelled through by the

UV along the tour.

(1) Quota Problem

Let Q denote the nonnegative quota. The quota constraint is that the total prize

collected from the vertices visited along the tour should be no less than the quota Q.

The objective of the problem is to find a tour such that the total costs of

traveling along the tour is minimized, subject to the quota constraint. That is,

 o∈V

 π v

 π v

 i, j,k ∈V

ceij

+ cejk
≥ ceki

 T (V ', E ')

 V ' E '

 T (V ', E ')

min cee∈E '∑
subject to:
 π vv∈V '∑ ≥ Q

 6

(2) Budget Problem

Let B denote the nonnegative budget. The budget constraint is that the total costs of

traveling along the tour should be no greater than the budget B. The objective of the

problem is to find a tour such that the total prize collected from the

vertices visited along the tour is maximized, subject to the budget constraint. That is,

2.2 Quota Problem Formulation

Let arc(i, j) denote the directed arc which starts from vertex i and ends at vetex j. Let E1

denote the set of arcs joining any two vertices in the graph. We then covert the

undirected graph G(V, E) to a directed one, G1(V, E1), by replacing each undirected edge

eij with two arcs, which are arc(i, j) and arc(j, i). Accordingly, let denote the cost of

traveling along arc(i, j) . still denotes the prize collected at vertex v.

In this formulation, we use integer variable for any vertices to decide whether

arc(i, j) is chosen in the tour. Arc arc(i, j) is present in the tour if and only if .

Similarly, integer variable for any vertex decides whether vertex i is visited in

the tour. Vertex i is present in the tour if and only if .

 T (V ', E ')

min π vv∈V '∑
subject to:
 cee∈E '∑ ≤ B

cij

 π v

xij i, j ∈V

xij = 1

 yi i ∈V

 yi = 1

 7

Suppose for vertex k, there is a virtual shipment of commodity originating from the root

and then flowing along the tour. During the trip of the shipment, if and only if vertex k is

visited, the shipment will be unloaded at vertex k. If vertex k is missed by the tour, the

shipment will return to the root after finishing the trip. Under this hypothesis, we

introduce a third integer variable, for any vertices . The flow

of the kth commodity, which is for vertex k, flows from vertex i to vertex j if and only if

when . This variable ensures that every vertex in the tour is reachable from the

root with arcs chosen in the tour. Note that can then be interpreted as the capacity of

arc(i,j) for the kth commodity, and can be interpreted as the demand of the kth

commodity at vertex k.

The mathematical expression of these 3 integer variables is as below:

The objective function of quota problem is quite similar to what we’ve discussed in

section 2.2, which is

fij

k
 i, j ∈V and k ∈V \{o}

fij

k = 1

xij

yk

xij =
1 if arc (i, j)∈E1 is in the tour

0 otherwise

⎧
⎨
⎪

⎩⎪

yi =
1 if vertex i is visited in the tour
0 otherwise

⎧
⎨
⎪

⎩⎪

fij
k = 1 if the flow of the kth commodity flows from vertex i to vertex j

0 otherwise

⎧
⎨
⎪

⎩⎪

 8

The quota constraint can be written as:

As we were noticing in the previous part of this section, can then be interpreted as

the capacity of arc(i,j) for the kth commodity. Thus we get the capacity constraint as,

To make sure that the shipment of kth commodity satisfies the demand of the kth target,

and can only be unloaded at vertex k, we formulate a set of 3 flow balance constraints.

The first one is,

This constraint ensures that the flow of the kth commodity comes out of the root o has to

satisfy the demand of the kth vertex before it comes back to the root. The second flow

balance constraint is,

min cij

i, j∈V
∑ xij

π i yi

i∈V
∑ ≥ Q

xij

fij

k ≤ xij ∀i, j ∈V ,∀k ∈V \{o}

(foj

k − f jo
k)

j∈V \{v0}
∑ = yk ∀k ∈V \{o} and o is the root

(f jk

k − fkj
k)

j∈V
∑ = yk ∀k ∈V \{o}

 9

This constraint ensures that the flow of the kth commodity comes into vertex k should

satisfy the demand of the kth vertex before it comes out. The last flow balance constraint

is,

This constraint ensures that the kth commodity is not unloaded at any vertex i when

.

To avoid the tour visiting the same vertex repeatedly and forming a circle, which

contains only one vertex, we add this constraint,

To ensure that the solution tour starts and ends at the same vertex, we add a constraint

which restricts the in-degree to be equal to the out-degree for each vertex in the graph

except the root. Here is the constraint,

The last constraint makes sure that there’s only one arc out of root o.

Now we get the integer program for the quota problem, which is as below,

fij
k

j∈V
∑ = f ji

k

j∈V
∑ ∀i,k ∈V \{o} and i ≠ k

i ≠ k

x jj = 0 ∀j ∈V

(xij − x ji)

i∈V
∑ = 0 ∀j ∈V \{o}

xoj

j∈V \{o}
∑ = 1

 10

max cijxij
i, j∈V
∑

subject to:

π i
i∈V
∑ yi ≥ Q

fij
k ≤ xij ∀i, j ∈V ,∀k ∈V \{o}

(foj
k − f jo

k)
j∈V \{o}
∑ = yk ∀k ∈V \{o}

fij
k

j∈V
∑ = f ji

k

j∈V
∑ ∀i,k ∈V \{o} and i ≠ k

(f jk
k − fkj

k)
j∈V
∑ = yk ∀k ∈V \{o}

x jj = 0 ∀j ∈V

(xij − x ji)
i∈V
∑ = 0 ∀j ∈V \{o}

xoj
j∈V \{o}
∑ = 1

xij , yi , fij
k ∈{0,1} ∀i, j,k ∈V and k ≠ o

2.3 Budget Problem Formulation

For the budget problem, we use the same integer variables as we’ve used for the quota

problem in section 2.2, which are for any .

The objective function of the budget problem is,

The budget constraint can be written as,

xij , yi , fij

k
 i, j ∈V and k ∈V \{o}

max π i

i∈V
∑ yi

 11

Obviously, the rest of the constraints, such as the capacity constraint, the flow balance

constraints and other constraint, are the same with the quota problem. We get the integer

program of the budget problem, which is as below,

max π i
i∈V
∑ yi

subject to:

cijxij
i, j∈V
∑ ≤ B

0 ≤ fij
k ≤ xij ∀i, j ∈V ,∀k ∈V \{o}

(foj
k − f jo

k)
j∈V \{o}
∑ = yk ∀k ∈V \{o}

fij
k

j∈V
∑ = f ji

k

j∈V
∑ ∀i,k ∈V \{o} and i ≠ k

(f jk
k − fkj

k)
j∈V
∑ = yk ∀k ∈V \{o}

x jj = 0 ∀j ∈V

(xij − x ji)
i∈V
∑ = 0 ∀j ∈V \{o}

xoj
j∈V \{o}
∑ = 1

xij , yi , fij
k ∈{0,1} ∀i, j,k ∈V and k ≠ o

cijxij

i, j∈V
∑ ≤ B

 12

3. HEURISTICS

3.1 General Ideal of Implementing The Heuristic Algorithm

The goal of our thesis is to implement a heuristic algorithm to solve the quota problem

and the budget problem. We expect performance of the heuristic algorithm with better

time efficiency and acceptable approximate result.

The general plan of implementing the heuristic algorithm is as below:

(1) Formulate the problem base on a mathematical model similar to the Prize

Collecting Steiner Tree (PCST) problem.

(2) Generate an approximate solution tree T using the prize-multiplier approach.

(3) Generate the solution tour with all the vertices spanned by tree T, using the LKH

algorithm.

3.2 Introduction to The Prize Collection Steiner Tree Problem

Let G(V, E) denote an undirected graph with root o. V denotes the set of all the vertices

in the graph. E denotes the set of all the edges joining any two of the vertices. ce is the

cost of traveling through edge e. π v is the penalty for not visiting vertex v. Let

eij denote

the edge joining vertices i and j. We assume costs satisfy the triangle inequality, i.e.

ceij

+ cejk
≥ ceki

 for any vertices . The objective of PCST problem is to find a

tree T (VT , ET) spanning a subset of the vertices and the root vertex o, such that the sum

 i, j,k ∈V

 13

of the total costs of edges in the tree and the total penalties associated with vertices not

spanned by the tree is minimized.

We use the following integer variables:

xe =
1 if e is in the tree
0 otherwise

⎧
⎨
⎪

⎩⎪

zN = 1 if N is the set of all vertices not spanned by the tree

0 otherwise

⎧
⎨
⎪

⎩⎪

Noting that subset of vertices N ⊆V \{o} .

As we stated above, the objective function of PCST problem is

min cexe

e∈E
∑ + zN

N⊆V \{o}
∑ π i

i∈N
∑

Let S denote a subset of vertices not containing the root vertex o. If subset S only

contains vertices spanned by solution tree T, obviously S and T intersect each other.

Thus there must be at least on edge of T crossing the outer edge of subset S. If subset S

contains not only the vertices spanned by tree T but also the vertices out of T, S and T

still intersect each other. This situation is the same as the previous one. If subset S only

contains the vertices not spanned by tree T, this means that there is no edge of T crossing

the outer edge of subset S and subset S is within the subset N that only contains all the

 14

vertices not spanned by tree T. We use the following expression to describe this

constraint:

xe

e∈δ (S)
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}

To ensure that there is at most one subset N that satisfies zN = 1, we add a second

constraint:

zN

N⊆V \{o}
∑ ≤1

Noting that because of the second term of the objective function, the last constraint is

automatically satisfied by optimal solution. Thus we can drop it without affecting the

optimization. Relaxing the constraints of integer variables, we get the linear program of

PCST problem as below:

min cexe
e∈E
∑ + zN

N⊆V \{o}
∑ π i

i∈N
∑

subject to:
xe

e∈δ (S)
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}

xe ≥ 0 e∈E

zN ≥ 0 N ⊆V \{o}

Corresponding to the first constraint of the above linear program, we set up a non-

negative dual variable yS for each subset of vertices S ⊆V \{o}. The dual of the linear

program of PCST problem is as below:

 15

max yS
S⊆V \{o}
∑

subject to:

yS
S:e∈δ (S)
∑ ≤ ce e∈E

yS
S⊆N
∑ ≤ π i

i∈N
∑ N ⊆V \{o}

yS ≥ 0 S ⊆V \{o}

3.3 Prize-Multiplier Approach for Quota Problem

The prize-multiplier approach is proposed by Minkoff in [8]. The idea of the prize-

multiplier approach came out of this scenario. With the cost ce and the prize π v , we

only want to include the vertex v in the solution tree if the cost of reaching the vertex is

outweighed by the value of prize collected. In the situation where the solution tree does

not contain enough prizes, a prize multiplier can be introduced to scale the prize of each

vertex and makes the total prize in the solution tree sufficient enough to offset more cost.

Thus the solution tree is forced to span more vertices. Ideally, we can obtain the desired

value of prizes collected in the solution tree by adjusting the value of prize multiplier.

3.3.1 Quota Problem Formulation

As we’ve stated in the general plan for solving the problem in section 3.1, the objective

is to generate a solution tree instead of a tour before we could apply the LKH algorithm.

Thus, at this step, the objective of the new quota problem is to find a solution tree

 16

 T (VT , ET) that total cost of edges in the tree is minimized while the total prize collected

at the vertices spanned by the tree is no less than quota Q.

We use the same set of integer variables as we’ve used for PCST problem formulation.

xe =
1 if e is in the tree
0 otherwise

⎧
⎨
⎪

⎩⎪

zN = 1 if N is the set of all vertices not spanned by the tree

0 otherwise

⎧
⎨
⎪

⎩⎪

The objective function is

min cexe
e∈E
∑

The first two constraints are the same ones as for PCST problem,

xe

e∈δ (S)
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}

zN

N⊆V \{o}
∑ ≤1

The third constraint is the quota constraint. In the previous section, we’ve written this

constraint as below,

π i

i∈VT

∑ ≥ Q

 17

We intend to introduce the same integer variables we’ve used for PCST problem

formulation in section 3.1 into the quota constrain. Thus we have to make modifications

to the above expression. First we get

π i

i∈V
∑ − π i

i∈VT

∑ ≤ π i
i∈V
∑ −Q

Noting that the left hand side of the above inequality is the total prize of all vertices in

the graph minus the total prize collected at the vertices spanned by the solution tree T. In

another word, the left hand side is the total prize of all the vertices not spanned by the

solution tree T. Thus we can re-write the quota constraint as below,

zN π i

i∈N
∑

N⊆V \{o}
∑ ≤ π i

i∈V
∑ −Q

Relaxing the constraints of the integer variables and dropping the second constraint, we

get the linear programming relaxation to the new quota problem as below,

min cexe
e∈E
∑

subject to:
xe

e∈δ (S)
∑ + zN

N⊇S
∑ ≥1 S ⊆V \{o}

zN π i
i∈N
∑

N⊆V \{o}
∑ ≤ π i

i∈V
∑ −Q

xe , zN ≥ 0 N ⊆V \{o}

Non-negative dual variable yS for each subset of vertices S ⊆V \{o} is corresponding

to the first constraint. A new non-negative dual variable µ is corresponding to the

second constraint. We write the dual of this linear program as below,

 18

 max yS
S⊆V \{o}
∑ − µ(π i −Q)

i∈V
∑

subject to:

 yS
S:e∈δ (S)
∑ ≤ ce e∈E

 yS
S⊆N
∑ ≤ µπ i

i∈N
∑ N ⊆V − r

 µ, yS ≥ 0 S ⊆V − r

By observing the objective function of the dual program, we can easily notice that when

µ is fixed, the second term of the objective function is constant. For each fixed µ , this

term will not affect the optimization. Comparing the constraints of the above dual

program with the ones of the dual program for PCST problem, the only difference is that

in the second constraint of the above dual program, there is µ serving as a prize

multiplier. Thus solving the dual program for the new quota problem is identical to

solving the dual program for PCST problem with prizes scaled by µ .

To solve the quota problem with the prize-multiplier approach, we first choose a set of

µ . Then we run a primal-dual algorithm on the PCST problem once for each chosenµ .

Among the set of solution trees we have generated, we pick a tree that satisfy the quota

requirement and has a total prize collected as close to the quota Q as possible.

 19

3.3.2 Bisection Search

In order to reach the desired solution tree in a shorter time, we apply bisection method to

search the appropriate prize-multiplier. Let [µlo ,µhi] be the search interval. At each step,

compute the midpoint of the interval µmid = (µlo + µhi) / 2 . The search interval is divided

in two now, which are [µlo ,µmid] and [µmid ,µhi] . Then we generate a solution tree T with

prize-multiplier µmid . Compare the total prize collected in tree T, ∏T , with the quota Q.

If ∏T ≥ Q , the solution tree T is the best feasible solution we have obtained until this

step. We record this solution and then try to obtain a new tree T ' with lower total prize

∏T ' using a smaller prize-multiplier µ . Following the principle of bisection search, we

start a new bisection search in the subinterval [µlo ,µmid] . If ∏T < Q , we need to increase

the prize-multiplier µ to obtain a solution tree T ' with greater total prize ∏T ' . Thus we

start a new bisection search in the subinterval [µmid ,µhi] . Repeat the steps until the best

solution obtained in the process cannot be improved much more. The best solution is the

last feasible solution obtained in the bisection steps. Record the best solution for further

procedure.

The algorithm we deployed to solve the PCST problem in each bisection search step is a

primal-dual algorithm developed by Bae et al.[1]. This algorithm is essentially

developed for a two-depot heterogeneous traveling salesman problem. We implement it

for our single depot PCST problem by intentionally setting the cost of each edge joining

 20

any two vertices except the depot as infinity for the second vehicle. The cost of each

edge joining the depot for the second vehicle and any other vertex v is set to be the prize

collected at the vertex v by the first vehicle. The input data for the first vehicle are the

data for our original PCST problem. After running the algorithm, the result tree for the

first vehicle is our solution tree. The result for the second vehicle is ignored.

3.3.3 Pruning Heuristic for The Quota Problem

Figure 3-1: Percentage of prize obtained with prize-multiplier approach

 21

It is always possible to obtain a solution tree with total prize to be no less then the given

quota Q when Q is smaller than the total prize of all vertices in the graph. By choosing a

proper bisection search interval, a best solution out of the prize-multiplier approach can

be achieved. We hope by performing more iterations of bisection search, the total prize

collected in the solution tree will be approaching the quota Q gradually and getting

closer and closer to Q. When the total prize reaches Q or arrives at close enough to Q, a

solution tree with decent approximating rate is obtained. However this is not the case. As

we can see from the Figure 3-1, when we run the algorithm with prize-multiplier µ

increasing gradually and slowly by the step of 0.01, we get a set of solution trees with

total prize increasing discretely.

Given a very small ε > 0 , let µ2 = (1+ ε)µ1 . Let T1 denote to solution tree generated

with prize-multiplier µ1 and

∏T1

denote the total prize of tree T1 . Let T2 denote to

solution tree corresponding to prize-multiplier µ2 and ∏T2
denote the total prize of tree

 T2 ,

∏T1

<∏T2
. Suppose the given quota Q falls between

∏T1

 and ∏T2
,

∏T1

< Q <∏T2
. It

is possible that within the feasible solution tree T2 there exists a subtree T3 whose total

edge cost is smaller and yet a feasible solution. The goal of pruning heuristic for the

quota problem is to prune away vertices that decrease the total edge cost as much as

possible while still maintain a total prize no less than quota Q. To conduct the pruning

procedure more effective and efficient, we always try to prune away subtrees with more

 22

edge cost and less prize. Thus we compute the cost-prize ratio of each subtree. This ratio

denotes the value of edge cost per unit of prize of a subtree.

Given a solution tree T and a non-negative quota Q, suppose vertex u and v are visited in

tree T. Let denote the subtree within tree T and rooted at vertex u. The edge euv is in

tree T and joins vertex u and v. Vertex v is not spanned by subtree Tu . We call vertex v

the parent of vertex u. Let cuv denote the cost of edge euv , and CTu denote the total cost

of edges in subtree Tu . Let

∏Tu

 denote the total cost collected in subtree Tu . The cost-

prize ratio of subtree Tu is defined as

Ru =

CTu
+ cvu

∏Tu

.

The detailed pruning steps are as below:

Quota-Prune(T, Q)

1 sort all subtrees Tu on the decreasing order of cost-prize ratio Ru

2 For each Tu in decreasing order of Ru do

 if

∏T −∏Tu

≥ Q then

 T ←T −Tu ; break,

 end if

 end for

3 update Rv for each vertex v on the path u ~ root

 Tu

 23

Repeat the above pruning steps until there is no subtree can be removed without leaving

the remained subtree unsatisfying the quota requirement.

Run LKH algorithm using the result tree from pruning steps as input to generate the final

solution tour for the Quota Problem. LKH was developed by Helsgaun [6]. It is one of

the best heuristic for single vehicle Traveling Salesman Problem. We use the executable

package downloaded online at [7].

3.3.4 Summary

To sum up, the steps of solving the quota problem with the prize-multiplier approach are

listed below

Steps of solving the quota problem with heuristic

• run primal-dual algorithm for PCST problem with prize-multiplier µ and obtain a

solution tree

Tµ

• repeat the above step, using bisection search to find a prize-multiplier µ , such that

the corresponding solution tree

Tµ is feasible and has a total prize as close to the

quota Q as possible

• prune the chosen tree

Tµ to get a new feasible tree

Tµ '

• run LKH algorithm on tree

Tµ ' to generate the final solution tour

 24

3.4 Prize-Multiplier Approach for Budget Problem

According to the dual program to the quota problem we discussed in previous section,

each time we solve the dual for with a fixed prize-multiplier µ , we get a solution tree,

which is independent of the quota Q.

Figure 3-2: Total edge cost of the solution

As we increasing the prize-multiplier µ , we are forcing the solution tree to include more

vertices with prize. In the mean time, the solution is also forced to add more edges with

cost, as we can see from Figure 3-2. Thus the idea of the prize-multiplier approach for

budget problem is to increase prize-multiplier µ in order to maximize the total prize

collected in the tree until the total edge cost reaches the budget B.

 25

3.4.1 Bisection Search

Let Ctree denote the total edge cost of a tree. Let Ctour denote the total edge cost of the

tour generated out of all the vertices in the tree. Obviously, Ctour ≠ Ctree . In another word,

it is possible that the tree satisfies the budget requirement while the tour does not. Thus,

we run LKH algorithm on the solution tree in each iteration of bisection search and

perform the search using the total edge cost of solution tour.

Let [µlo ,µhi] be the search interval. At each step, compute the midpoint of the interval

 µmid = (µlo + µhi) / 2 . The search interval is divided in two now, which are [µlo ,µmid] and

 [µmid ,µhi] . Then we generate a solution tour T with prize-multiplier µmid . Compare the

total edge cost in tour T, CT , with the given budget B. If CT ≤ B , the solution tour T is

the best feasible solution we have obtained until this step. We record this solution and

then try to obtain a new tour T ' with more total prize ∏T ' using a larger prize-multiplier

µ . Following the principle of bisection search, we start a new bisection search in the

subinterval [µmid ,µhi] . If CT > B , the solution tour T contains the least edge cost among

all the infeasible solutions we have obtained until this step. We call it the best infeasible

solution. We need to decrease the prize-multiplier µ to obtain a solution tour T ' with

less total prize ∏T ' . Thus we start a new bisection search in the subinterval [µlo ,µmid] .

Repeat the steps and keep the record of both the best feasible solution tree and the best

infeasible solution tree, until the best infeasible solution obtained in the process cannot

 26

be improved much more without bring the solution to be feasible. We use the best

infeasible solution tour as the original tour for pruning steps. After the pruning step, we

choose a solution tour with more total prize as the final solution between the best

feasible solution our we obtained after the bisection search and the resulting subtour of

the pruning steps.

3.4.2 Pruning Heuristic for The Budget Problem

Given a solution tour T and a non-negative budget B, suppose vertex p, q, u and v are

visited in tour T. Directed arcs arc(p, u) and arc(v, q) are in tour T. Let Tuv denote a

segment of tour T that is rooted at vertex u and ends at vertex v. Arc arc(p, q) is not in

tour T and joins vertex p and q. Let cij denote the cost of arc arc(i, j) for any two vertices

in the tour, and

CTuv

 denote the total cost of edges in Tuv . Let

∏Tuv

 denote the total cost

collected in subtree Tu . When Tuv is removed from T, the total cost of removed edge is

as below

C(u,v) = CTuv

+ cpu + cvq

The cost-prize ratio of Tuv is defined as

Ru =
C(u,v) − cpq

∏Tuv

 27

Budget-Prune(T, B)

1 sort all Tuv on Ruv in decreasing order

2 count = 0

3 for each Tuv in decreasing order of Ruv

4 if

CT −C(v,u)+ cpq > B then

5

T ←T −Tuv + epq ; break cycle

6 else count = count + 1

5 end if

6 end for

7 if count = number of vertices in Tuv

8 find the first T maxuv with the smallest

∏Tuv

9 do

T ←T −Tvu

max + epq

9 end if

10 update Ruv ,

∏Tuv

and Tuv for new T

Repeat the above pruning steps until the result tour is feasible. Compare the result tour

with the best feasible solution we have obtained in previous bisection search steps,

choose the one with greater total prize as the final solution of the heuristic algorithm for

the budget problem.

 28

3.4.3 Summary

To sum up, the steps of solving the budget problem with the prize-multiplier approach

are listed below

Steps of solving the budget problem with heuristic

• run primal-dual algorithm for PCST problem with prize-multiplier µ and obtain a

solution tree

Tµ

• apply LKH algorithm on

Tµ to generate a tour

Tµ '

• repeat the above steps, using bisection search to find prize-multipliers µ1 and µ2 ,

such that the corresponding tour Tµ1 ' is infeasible and has a total edge cost as close

to the budget B as possible, and tour

Tµ2

' is feasible and has a total edge cost as close

to the budget B as possible.

• prune away vertices in tour Tµ1 ' until the resulting tour

Tµ1

'' is feasible

• pick the tour with greater total prize between

Tµ2

' and

Tµ1

'' as the final solution

 29

4. SIMULATION RESULTS

4.1 Input Data to The Quota Problem and The Budget Problem

We solve the quota problem and budget problem on two different UV models. The first

model of UV can move in any direction, and has no constraint on the minimum turning

radius. We call this UV model the simple model. The second model we implement is the

famous Reeds-Shepp model. A Reeds-Shepp UV can move both forwards and

backwards and can turn fully left and fully right. There is a constraint on the minimum

turning radius for the Reeds-Shepp UV.

Initially we generate a number of vertices randomly distributing in a test area of 1000m2.

The traveling distance between any two vertices in the graph for UV is used as the cost

of edge joining the two vertices. The prize collected at each vertex is set to be 1. Let n

denote the number of vertices in the test area. Set the quota

Q = n

2
. Set the budget

 B = 1500,1800,2000,2500,2800 for n = 10,20,30,40,50 correspondingly.

Let n denote the number of vertices in the test area. We run the algorithms with input

data of n=10 (20, 30, 40, 50) for 50 instance respectively. In order to evaluate the

solution quality of the heuristic algorithm, we solve the problem in CPLEX using the

formulation we developed in section 2 and the same input data.

 30

The codes for the heuristic is written in MATLAB and run on an Intel Core i7

2.9Ghz/8GB laptop. The codes for CPLEX is written in C++ and run on an AMD

Athlon(tm) II X4 640 3.0Ghz/8GB desktop.

4.2 Result and Quality Analysis

Figure 4-1: An example of solution to the quota problem with Reeds-Shepp UV

In Figure 4-1, an approximate Reeds-Shepp tour is generated for n=10 and Q=5. We can

see that the total prize in the tour is 5. This is a feasible solution.

 31

Each time we get a result from the algorithms, we record the running time for

optimization and the objective value. Let tCPLEX denote the average running time of

optimization for each value of n in CPLEX. Let theuristc denote the average running time

of the heuristic algorithm for each value of n. Let CCPLEX and ∏CPLEX denote the total

edge cost and total prize of the solution tour generated by CPLEX. Let Cheuristic and

 ∏heuristic denote the total edge cost and total prize of the solution tour generated from the

heuristic algorithm. Define the solution quality for the quota problem as below:

SQquota =

Cheuristic −CCPLEX

Cheuristic

×100%

The solution quality for the budget problem is defined as below

SQbudget =

∏CPLEX −∏heuristic

∏CPLEX

×100%

We also compare theuristc with tCPLEX to analyze the time efficiency of the heuristic

algorithm.

Table 4-1: The results of the quota problem for the simple vehicle model

Number of Vertices Average Solution Quality

Average Time/sec

CPLEX Heuristic

10 9.50% 0.64 1.59

20 11.36% 33.72 4.69

30 8.63% 267.58 7.96

40 9.63% 1937.09 16.84

50 12.34% 6000.31 37.23

 32

Table 4-2: The results of the quota problem for the Reeds-Shepp vehicle model

Number of Vertices Average Solution Quality

Average Time/sec

CPLEX Heuristic

10 5.07% 0.70 1.08

20 10.55% 23.97 3.09

 30 14.45% 414.16 7.15

40 15.30% 2803.31 14.75

50 16.11% 6815.03 24.95

Table 4-3: The results of the budget problem for the simple vehicle model

Number of Vertices Average Solution Quality

Average Time/sec

CPLEX Heuristic

10 9.64% 0.55 1.53

20 10.54% 24.20 3.88

30 11.82% 217.48 8.13

40 11.67% 962.53 15.79

50 12.98% 5330.72 24.89

Table 4-4: The results of the budget problem for the Reeds-Shepp vehicle model

Number of Vertices Average Solution Quality

Average Time/sec

CPLEX Heuristic

10 7.27% 0.70 1.20

20 13.43% 28.32 5.23

30 15.59% 365.56 7.83

 40 15.04% 716.84 13.22

50 15.17% 3457.70 24.35

 33

Observing the data in Table 4-1,4-2,4-3,4-4, we come to these conclusions. By

comparing with the results generated by CPLEX, we note that the value of solution

quality of heuristic algorithm increases with n. This means that the heuristic algorithm

produces better approximate solution when n is small. When n is 50, the average

solution quality is within the range of [12%, 17%]. We also notice that the heuristic

algorithm performs slightly better with the simple vehicle model than with the Reeds-

Shepp vehicle. However the heuristic algorithm has a significant advantage in time

efficiency as n grows larger. When n is 10, CPLEX wins in the running time

comparison. As n grows from 20 to 50, the running time of CPLEX increases

exponentially while the running time of the heuristic algorithm stays at an acceptable

range. When n reaches 50, the running time of CPLEX is almost 200 times of the one of

the heuristic algorithm. Thus we can conclude that the heuristic algorithm we

implemented generates acceptable approximate rate with significant improvement in

time efficiency.

 34

5. CONCLUSIONS AND FUTURE WORK

In this thesis we implemented a heuristic algorithm of prize-multiplier approach on the

single vehicle quota problem and budget problem. We tested the algorithms two

different models of vehicle. This heuristic performs well when solving our problems

with both vehicle models. It provides a solution with good approximation rate in a small

period of time. The quality of the solutions obtained with the heuristic algorithm drops

as the number of vertices increases. The solution produced by CPLEX using the multy-

commodity flow formulation has better quality but is very time consuming as the

number of vertices increases.

In future work, the heuristic can be tested on new vehicle models with asymmetric edge

cost matrixes and more generalized vertex prize matrixes. Also, the solutions from the

heuristic can be improved trough the framework of improvement heuristics.

 35

REFERENCES

[1] Bae, Jungyun and Sivakumar Rathinam. "A Primal Dual Algorithm for a

Heterogeneous Traveling Salesman Problem." arXiv preprint arXiv:1111.0567 (Nov,

2011).

[2] Balas, E. "The Prize Collecting Traveling Salesman Problem." Networks 19, no. 6

(1989): 621-636.

[3] Bienstock, Daniel, Michel X. Goemans, David Simchi-Levi, and David Williamson.

"A Note on the Prize Collecting Traveling Salesman Problem." Mathematical

Programming 59, no. 1-3 (mar, 1993): 413-420.

[4] Garg, N. "A 3-Approximation for the Minimum Tree Spanning k Vertices."

Proceedings of the 37th Annual IEEE Symposium on Foundation of Computer

Science, (1996): 302-309.

[5] Goemans, M. X. and D. P. Williamson. "A General Approximation Technique for

Constrained Forest Problems." SIAM Journal on Computing 24, no. 2 (1995): 296-

317.

[6] Goemans, M. X. and D. P. Williamson. "The Primal-Dual Method for

Approximation Algorithms and its Application to Network Design Problems."

Approximation Algorithms for NP-Hard Problems (1997): 144-191.

[7] Helsgaun, Keld. "Lin-Kernighan Heuristic." Retrieved May 6, 2013, from

http://www.akira.ruc.dk/~keld/research/LKH/.

[8] Lin, S. and B. W. Kernighan. "An Effective Heuristic Algorithm for the Traveling-

Salesman Problem." Operations Research vol. 21 (1973): 498-516.

 36

[9] Minkoff, Maria. "The Prize Collecting Steiner Tree Problem."Massachusetts Institute

of Technology, 2000.

[10] Segev, Arie. "The Node-Weighted Steiner Tree Problem." Networks 17, no. 1

(1987): 1-17.

[11] "Packbot." In Wikipedia. Retrieved May 6, 2013, from

http://en.wikipedia.org/wiki/PackBot.

