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ABSTRACT

The Mukhin-Tarasov-Varchenko Theorem (previously the Shapiro Conjecture) as-

serts that a Schubert problem has all solutions distinct and real if the Schubert

varieties involved osculate a rational normal curve at real points. When conjectured,

it sparked interest in real osculating Schubert calculus, and computations played a

large role in developing the surrounding theory. Our purpose is to uncover gener-

alizations of the Mukhin-Tarasov-Varchenko Theorem, proving them when possible.

We also improve the state of the art of computationally solving Schubert problems,

allowing us to more effectively study ill-understood phenomena in Schubert calculus.

We use supercomputers to methodically solve real osculating instances of Schubert

problems. By studying over 300 million instances of over 700 Schubert problems,

we amass data significant enough to reveal generalizations of the Mukhin-Tarasov-

Varchenko Theorem and compelling enough to support our conjectures. Combining

algebraic geometry and combinatorics, we prove some of these conjectures. To im-

prove the efficiency of solving Schubert problems, we reformulate an instance of a

Schubert problem as the solution set to a square system of equations in a higher-

dimensional space.

During our investigation, we found the number of real solutions to an instance of

a symmetrically defined Schubert problem is congruent modulo four to the num-

ber of complex solutions. We proved this congruence, giving a generalization of the

Mukhin-Tarasov-Varchenko Theorem and a new invariant in enumerative real alge-

braic geometry. We also discovered a family of Schubert problems whose number of

real solutions to a real osculating instance has a lower bound depending only on the

number of defining flags with real osculation points.

We conclude that our method of computational investigation is effective for uncov-

ering phenomena in enumerative real algebraic geometry. Furthermore, we point

out that our square formulation for instances of Schubert problems may facilitate

future experimentation by allowing one to solve instances using certifiable numerical

methods in lieu of more computationally complex symbolic methods. Additionally,

the methods we use for proving the congruence modulo four and for producing an
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unexpected square system of equations are both quite general, and they may be of

use in future projects.
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CHAPTER I

INTRODUCTION

The fundamental theorem of algebra states that the number of complex roots of a uni-

variate polynomial is the degree of the polynomial, counting multiplicities. Bézout’s

Theorem gives the number of points of intersection of two projective plane curves,

thereby generalizing the fundamental theorem of algebra. Enumerative algebraic ge-

ometry studies the further generalization of counting solutions to polynomial systems

with geometric meaning. The most elegant results in enumerative algebraic geome-

try, such as the fundamental theorem of algebra and Bézout’s Theorem, depend on

working over an algebraically closed field, so they are of limited use in applications

which require information about real solutions.

One real analogue to the fundamental theorem of algebra is Descartes’s rule of signs,

which bounds the number of positive roots of a univariate polynomial with coefficients

in R. With very little work, one may use the rule of signs to find an upper bound

R on the number r of real roots of a real polynomial. Since nonreal roots of real

polynomials come in pairs, we have r ≡ R mod 2.

The inelegance of counting the real roots of a polynomial compared to counting

complex roots is typical of statements in enumerative real algebraic geometry. This

makes real statements harder to detect and less attractive to prove. As a result, the

enumerative theory of real algebraic geometry is not as well formed as its complex

companion.

With the use of computers we may now engage in a study of enumerative real al-

gebraic geometry that is long overdue. One example of success in this field is the

Shapiro Conjecture, made by the brothers Boris and Michael Shapiro in 1993. The

conjecture was refined and supported by computational data collected by Sottile

[38]. Eremenko and Gabrielov proved partial results [10], and the full conjecture for

the real Schubert calculus of Grassmannians was proved by Mukhin, Tarasov, and

Varchenko [27, 28]. The Mukhin-Tarasov-Varchenko Theorem states that a Schubert

problem has all solutions real and distinct if the Schubert varieties involved are de-

fined with respect to distinct real flags osculating a single real parametrized rational
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normal curve. Thus the number of real solutions to the corresponding system of

real polynomials depends only on the Schubert problem, and this number may be

obtained using the Littlewood-Richardson rule.

Computational projects [12, 14, 32] have suggested generalizations to the Mukhin-

Tarasov-Varchenko Theorem, some of which now have been proven [10, 19, 27, 28].

In this thesis, we describe a computational project extending the study by Eremenko

and Gabrielov [9] of lower bounds on the number of real solutions to certain Schu-

bert problems. Eremenko and Gabrielov computed a topological degree which gives

a lower bound for the number of real points in an intersection of osculating Schubert

varieties when the intersection is stable under complex conjugation and at most two

of the Schubert varieties are not hypersurfaces. We solved over 339 million instances

of 756 Schubert problems, including those involving non-hypersurface Schubert va-

rieties, to investigate these Eremenko-Gabrielov type lower bounds. For Schubert

problems involving at most two non-hypersurface Schubert varieties, we tested the

sharpness of known bounds.

During our computational investigation, we observed that the number of real solu-

tions to a real Schubert problem with certain symmetries is congruent modulo four to

the number of complex solutions. This is stronger than the usual congruence modulo

two arising from nonreal solutions coming in complex conjugate pairs. While this

congruence was unexpected, the underlying reason is simple enough: there are two

involutions acting on the solutions to a real symmetric Schubert problem, complex

conjugation and a Lagrangian involution. When subtle nondegeneracy conditions

are satisfied, the involutions are independent. This gives Theorem IV.3.6, the first

of our two main results.

Computational complexity can be a serious obstacle when studying systems of equa-

tions, and even more so when we investigate systems by the hundreds of millions. As

with previous large-scale computations, we were limited by the severe complexity of

symbolic computation [13, 26]. Numerical homotopy methods provide an alternative

for solving problems which are infeasible by Gröbner basis methods in characteristic

zero, but the approximate solutions produced do not come with a certificate ver-

ifying the solutions. There is software which may be used to certify approximate

solutions [18], but the algorithms used require a square polynomial system. That
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is, the number of equations must equal the number of variables, and there must be

finitely many solutions. Like many other problems in algebraic geometry, Schubert

problems are traditionally not defined by a square system.

We give a primal-dual formulation of a Schubert problem which presents it as a

square system in local coordinates. This reformulation is presented in our second

main result, Theorem V.2.11, and it allows one to certify approximate solutions

obtained numerically.

In Chapter II, we give definitions needed for Schubert calculus and a brief history

of conjectures and theorems in real Schubert calculus. In Chapter III, we describe

the computational project extending the study of Eremenko-Gabrielov type lower

bounds. In Chapter IV, we prove a new theorem in enumerative real algebraic

geometry, the congruence modulo four discovered in the computational project. In

Chapter V, we give a method for formulating a general Schubert problem as a square

system.
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CHAPTER II

REAL SCHUBERT CALCULUS

Schubert calculus is the study of linear spaces having special position with respect

to fixed but general linear spaces. We provide background and describe a series

of surprising conjectures and theorems about real solutions to problems in Schu-

bert calculus. Large computations played a big role in uncovering conjectures and

motivating theorems in this area.

II.1 Preliminaries

We assume knowledge of [5] as a basic reference. We are interested in enumerative

problems in real Schubert calculus which are solved by counting real points in a

variety. We provide background which is useful for counting these points when the

associated ideal is generated by a set of real multivariate polynomials. The first step

is to write the generators in a standard form using a Gröbner basis.

Let x = (x1, . . . , xq) denote variables and a = (a1, . . . , aq) denote an exponent vector

so that xa := x1
a1 · · ·xqaq is a monomial. A term order on C[x] is a well-ordering of

monomials of C[x], for which 1 is minimal, and which respects multiplication. The

lexicographic term order ≺ on C[x] is the term order, such that xa ≺ xb if the last

nonzero entry of b− a is positive. We give some comparisons for q = 3,

1 ≺ x1 ≺ x9
1 ≺ x17

1 ≺ x2 ≺ x2
2x

6
1 ≺ x3

2 ≺ x3 ≺ x3x1.

Let f(x) ∈ C[x] be a multivariate polynomial. The initial term in≺ f of f(x) is the

maximal term of f with respect to ≺. For example, if f(x) = 4− 2x1 +x2 + 3x3 and

g(x) = x2x
9
1 + 3x2

2x1 + 2x5
2 − 5x3x1, then in≺ f = 3x3 and in≺ g = −5x3x1.

This definition extends to ideals. The initial ideal in≺ I of an ideal I ⊂ C[x] is the

ideal generated by the initial terms of elements of I,

in≺ I := (in≺ f | f ∈ I) .
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A Gröbner basis B = (g1, . . . , gN) of an ideal I is a generating set for I such that

(in≺ g1, . . . , in≺ gN) is a generating set of in≺ I. There are efficient algorithms imple-

mented in the computer algebra system Singular, which calculate Gröbner bases

[6].

Suppose f = (f1, . . . , fp) is a system of multivariate polynomials in the variables x

with finitely many common zeros and let I be the ideal generated by f . An eliminant

of I is a univariate polynomial g(x1) ⊂ I of minimal degree. This implies that the

roots of g1 are the x1-values of the points in the variety V(I).

If V(I) is zero-dimensional, then the degree d of I is the number of points in V(I),

counting multiplicity. (Here, the multiplicity of a point in a zero-dimensional scheme

is the usual Hilbert-Samuel multiplicity.) In this case, if the points of V(I) have

distinct x1-values, then an eliminant g of I has degree d. An eliminant may be

calculated using a Gröbner basis with respect to the lexicographic term order ≺.

Indeed, one of the generators will be an eliminant.

A reduced lexicographic Gröbner basis of I is a Gröbner basis B = (b1, . . . , bN) with

respect to the lexicographic term order ≺ such that in≺ bi does not divide any term

of bj for distinct i, j ≤ N . Given a Gröbner basis with respect to ≺, one may obtain

a reduced lexicographic Gröbner basis by iteratively reducing the generators using

the Euclidean algorithm.

Proposition II.1.1 (The Shape Lemma [2]). Let I ⊂ C[x] be an ideal with V(I)

zero-dimensional. Suppose f is a generating set for I and B is a reduced lexicographic

Gröbner basis of I obtained by applying Buchberger’s algorithm to f . If the eliminant

g ∈ B has degree d = deg(I) and g is square-free, then

B = (g(x1), x2 − g2(x1), . . . , xq − gq(x1)) ,

with deg(gj) < d for j > 1.

Proof. The polynomial g generates I ∩C[x1], so 1, x, . . . , xd−1 are standard monomi-

als. The number of standard monomials of I with respect to ≺ is deg(I), so there are

no other standard monomials. The generators in B have initial terms xd1, x2, . . . , xq,

so reducing the generators gives a Gröbner basis of the stated form.
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Choosing a root r1 of the eliminant g ∈ B uniquely determines a point r :=

(r1, g2(r1), . . . , gq(r1)) ∈ V(I). When I has a generating set of real polynomials,

Buchberger’s algorithm produces a Gröbner basis of real polynomials. Using this

Gröbner basis, one obtains a reduced Gröbner basis B whose generators are real

polynomials. Thus the Shape Lemma asserts that r1 is real in and only if r is real.

This allows us to use an eliminant to calculate the number of real points in a zero-

dimensional variety. The following corollary to the Shape Lemma has been useful in

computational experiments in Schubert calculus [12, 14, 32].

Corollary II.1.2. Suppose the hypotheses of Proposition II.1.1 are satisfied. If f is

real then the number of real points in V(I) is equal to the number of real roots of g.

If the projection from V(I) to the x1-coordinate is not injective, then one may per-

mute the variables x or use more sophisticated methods to rectify this [31]. To use

Corollary II.1.2, we require an algorithm for counting the real roots of g, which is

based on sequences of polynomials. Let y denote the minimal variable in x after

reordering.

Definition II.1.3. If f1, f2 ∈ C[y] are univariate polynomials, the Sylvester sequence

Syl(f1, f2) is the subsequence of nonzero entries of the recursively defined sequence,

fj := −remainder(fj−2, fj−1) for j > 2 .

Here, the remainder is calculated via the Euclidean algorithm, so Syl(f1, f2) is finite

with final entry fs = ± gcd(f1, f2).

Definition II.1.4. If f ∈ C[y] is a univariate polynomial, the Sturm sequence of

f ∈ C[y] is Sturm(f) := Syl(f, f ′).

We point out that while none of the entries of Sturm(f) are identically zero, its

evaluation Sturm(f(a)) at a point a ∈ C may contain zeros. We are concerned with

the number of sign changes that occur between the nonzero entries.

Definition II.1.5. Suppose f ∈ C[y] is a univariate polynomial, a ∈ C is a complex

number, Σa is the subsequence of nonzero entries of Sturm(f(a)), and l is the number

of entries in Σa. For j ∈ [l− 1], the product Σa
jΣ

a
j+1 is negative if and only if the jth

and (j + 1)th entries of Σa have different signs. The variation of f at a is obtained
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by counting sign alternations,

var(f, a) := #{j ∈ [l − 1] | Σa
jΣ

a
j+1 < 0} .

Theorem II.1.6 (Sturm’s Theorem). Let f ∈ R[y] be a univariate polynomial and

a, b ∈ R with a < b and f(a), f(b) 6= 0. Then the number of distinct zeros of f in the

interval (a, b) is the difference var(f, a)− var(f, b).

The proof is standard. One treatment may be found in [1, p. 57]. The bitsize

of coefficients in a Sturm sequence may grow quickly. Implementations may con-

trol this growth by using a normalized Sturm-Habicht sequence. Each entry of a

Sturm-Habicht sequence is a positive multiple of the corresponding entry of a Sturm

sequence, so var(f, a) may be calculated via the normalized sequence. The library

rootsur.lib written by Enrique A. Tobis for Singular implements algorithms from

[1] to compute a Sturm-Habicht sequence of a univariate polynomial to count its dis-

tinct real roots.

II.2 The Grassmannian

We fix positive integers k < n and a complex linear space V of dimension n. The

choice of standard basis e identifies V with Cn, giving it a real structure. Complex

conjugation v 7→ v is an involution on V .

Definition II.2.1. The Grassmannian Gr(k, V ) of k-planes in V is the set of k-

dimensional linear subspaces of V ,

Gr(k, V ) := {H ⊂ V | dim(H) = k} .

The automorphism v 7→ v preserves the dimension of subspaces, so H ∈ Gr(k, V )

implies H ∈ Gr(k, V ).

Let Matk×n denote the set of k× n matrices with complex entries. The determinant

of an i× i submatrix of M ∈ Matk×n is called an i× i minor of M . The determinant

of a maximal square submatrix of M is called a maximal minor of M .

Definition II.2.2. The Stiefel manifold St(k, n) is the set of full-rank k×n matrices,

St(k, n) := {M ∈ Matk×n | rank(M) = k} .
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Since rank(M) < k is a closed condition (given by the vanishing of minors), St(k, n)

is a dense open subset of a vector space and thus a smooth manifold.

The Stiefel manifold parametrizes the Grassmannian by associating P ∈ St(k, n)

with its row space H ∈ Gr(k, V ). There is a left action of GL(k,C) on St(k, n)

given by multiplication. Since the set of all points in St(k, n) with row space H is

the GL(k,C) orbit of P , St(k, n) is a GL(k,C) fiber bundle over Gr(k, V ). Complex

conjugation extends to matrices, and rowspace(P ) = H implies rowspace(P ) = H.

Definition II.2.3. Let ∧ denote the usual exterior product in V , and
∧k V the kth

exterior power of V . The product v1∧· · ·∧vk ∈
∧k V is alternating, since transposing

vi and vi+1 is equivalent to multiplication by −1. If H is a k-plane then
∧kH is a

line through the origin in
∧k V . Thus

∧kH is a point in projective space, and we

have a well-defined map

Φ: Gr(k, V ) −→ P(
∧k V ) ,

H 7−→
∧kH

called the Plücker map. We call the space P(
∧k V ) Plücker space.

Definition II.2.4. Let
(

[n]
k

)
denote the set of sublists of [n] := {1, 2, . . . , n} with k

entries.

Definition II.2.5. The basis e of V induces a basis of
∧k V whose generators are

eα := eα1 ∧ · · · ∧ eαk

for α ∈
(

[n]
k

)
. The coordinates [ pα | α ∈

(
[n]
k

)
] dual to this basis are called Plücker

coordinates. For H ∈ Gr(k, V ) we write

Φ(H) =
∑

α∈([n]
k )

pα(H)eα ,

with pα(H) ∈ C. We call pα(H) the αth Plücker coordinate of H.

The Plücker coordinates are closely related to the parametrization of Gr(k, V ) given

by St(k, n). Suppose Q ∈ St(k, n) has row space H ∈ Gr(k, V ) and α ∈
(

[n]
k

)
. Let Qα

denote the maximal minor of Q involving columns α1, . . . , αk. Then [Qα | α ∈
(

[n]
k

)
]

and [ pα(H) | α ∈
(

[n]
k

)
] are the same point in Plücker space. The proofs of the two

8



following propositions are based partially on [23].

Proposition II.2.6. The Plücker map is injective.

Proof. Let Q ∈ St(k, n) be a matrix with row space H ∈ Gr(k, V ). The k-plane

H has some nonzero Plücker coordinate, so without loss of generality p[k](H) 6= 0.

Thus Q may be written in block form [A|B] where A is a k × k invertible matrix.

Multiplying, we have A−1Q = [Idk |A−1B], which gives another matrix with row

space H.

For i ∈ [k] and j ∈ {k + 1, . . . , n} we define α(i, j) := (1, . . . , î, . . . , k, j). We may

express the (i, j)th entry of A−1Q as a maximal minor

(A−1Q)ij = (−1)k−i(A−1Q)α(i,j) = pα(i,j)(H) .

Since the maximal minors of A−1Q are the Plücker coordinates [ pα(H) | α ∈
(

[n]
k

)
],

H may be recovered from the Plücker coordinates [ pα(H) | α ∈
(

[n]
k

)
]. Therefore, the

Plücker map is injective.

In the course of the proof, we used an affine cover of Plücker space. To formalize

this, let

U := {Uα | α ∈
(

[n]
k

)
} (II.1)

be the cover of P(
∧k V ) where Uα is the open set of P(

∧k V ) given by the open

condition pα 6= 0. If α = [k] then the set S of k × n matrices of the form [Idk |B]

parametrize Φ(Gr(k, V ))∩U[k], i.e., the map rowspace : S→ U[k] gives injective coor-

dinates for Φ(Gr(k, V ))∩U[k] which are linear in the parameters of S. By permuting

the columns of matrices in S, we may similarly parametrize Φ(Gr(k, V )) ∩ Uα for

α ∈
(

[n]
k

)
.

Proposition II.2.7. The image of the Plücker map is a projective variety.

Proof. Since U is an affine cover of Plücker space, it suffices to show that the dense

open set Φ(Gr(k, V )) ∩ Uα is an affine variety for each α ∈
(

[n]
k

)
. We show this for

α = [k], and the other cases follow by symmetry. Let

Gα := Φ−1(Φ(Gr(k, V )) ∩ Uα) .

9



In the proof of Proposition II.2.6, we show that points in Gα are linear subspaces

rowspace[Idk |B] ⊂ V such that B ∈ Matk×(n−k). This identification defines a bijec-

tive map Ψ : Matk×n−k → Gα. The composition Φ ◦ Ψ is injective, by Proposition

II.2.6. Since this composition is given by minors, it is a regular map. We observed

that the entries of B are Plücker coordinates, so they span an affine space in Plücker

space. Let W denote the complementary affine space, and Ω : Uα → W the pro-

jection. Then Gα is the graph of the regular map Ω ◦ Φ ◦ Ψ. It follows that Gα is

defined by polynomials in Uα, so it is an affine variety, and the image of the Plücker

map is a projective variety.

Corollary II.2.8. The Grassmannian Gr(k, V ) is a projective variety of dimension

k(n− k).

Proof. The Plücker map is injective, so Gr(k, V ) is a projective variety. The dense

subset Gα ⊂ Gr(k, V ) is isomorphic to Matk×n−k, so dim(Gr(k, V )) = k(n− k).

Definition II.2.9. A complex projective algebraic variety X is called a real variety

if X = X.

Note that a nonempty real variety need not contain any closed points with residue

field R. For example, the curve defined by x2+y2+z2 = 0 in P2 is real and nonempty,

but contains no closed points with residue field R.

II.3 Schubert Varieties

Schubert varieties are distinguished projective subvarieties of a Grassmannian. They

are defined with respect to a flag and a list α ∈
(

[n]
k

)
.

Definition II.3.1. A flag F• on V is a list of nested linear subspaces of V ,

F• : 0 ( F1 ( F2 ( · · · ( Fn = V ,

with dim(Fi) = i for i ∈ [n]. If f1, . . . , fn ∈ V and Fi = 〈f1, . . . , fi〉 for i ∈ [n], then

we say the n× n matrix

F• :=


f1

...

fn

 (II.2)
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is a basis for the flag F•. We sometimes refer to the list (f1, . . . , fn) as a basis for

F•.

Definition II.3.2. Let α ∈
(

[n]
k

)
and F• a flag in V . The Schubert variety XαF• ⊂

Gr(k, V ) is the set of k-planes satisfying the incidence conditions,

XαF• := {H ∈ Gr(k, V ) | dim(H ∩ Fαi) ≥ i for i ∈ [k]} .

We call α a Schubert condition on Gr(k, V ) and F• a defining flag for XλF•.

We will give determinantal equations in Proposition II.3.15 which locally define XαF•

as a subvariety of Gr(k, V ). If dim(H ∩Fj) ≥ i, then dim(H ∩Fj−1) ≥ i−1, so some

of the conditions defining XαF• may be implied by other defining conditions. The

implied conditions are called irrelevant. If αk = n, then the corresponding condition

is also irrelevant since H∩Fn = H has dimension k for H ∈ Gr(k, V ). The necessary

defining conditions are called relevant.

Example II.3.3. The k-planes H ∈ X(2,3,5)F• ⊂ Gr(3,C5) satisfy

(1) dim(H ∩ F2) ≥ 1,

(2) dim(H ∩ F3) ≥ 2, and

(3) dim(H ∩ F5) ≥ 3.

Condition (3) is trivial since dim(H ∩ F5) = dim(H) = 3 ≥ 3. Condition (1) is

implied by (2) and is thus irrelevant. Condition (2) is the only relevant condition

defining X(2,3,5)F•.

Definition II.3.4. The flag E• with basis (e1, . . . , en) is called the standard flag.

We note that the identity matrix Idn is a basis for the standard flag.

We give sets of matrices S(α), Sα, and Sβα which, using the standard basis e of V ,

locally parametrize the Grassmannian Gr(k, V ), the Schubert variety XαE•, and the

intersection XαE• ∩XβE
′
• respectively.

Definition II.3.5. For α ∈
(

[n]
k

)
, the subset S(α) ⊂ St(k, n) of the Stiefel manifold

is the set of matrices M with (i, αj)th entry

Mi,αj := δij for i, j ∈ [k] ,
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and with other entries arbitrary. The parameters of M give coordinates for the dense

open set Gr(k, V )∩Uα ⊂ Gr(k, V ), and we call S(α) Stiefel coordinates on Gr(k, V ).

Example II.3.6. If α = [k], then matrices in S(α) have block form [Idk |B].

Example II.3.7. For k = 3 and n = 7, the matrices in S(2, 5, 7) have the form∗ 1 ∗ ∗ 0 ∗ 0

∗ 0 ∗ ∗ 1 ∗ 0

∗ 0 ∗ ∗ 0 ∗ 1

 .

The 1 in position (i, αi) of a matrix in S(α) is called a pivot. The following is a

consequence of the proof of Proposition II.2.6.

Definition II.3.8. For α ∈
(

[n]
k

)
, the subset Sα ⊂ S(α) is the subset of matrices such

that each entry to the right of a pivot is 0. We call Sα the Stiefel coordinates on

XαE•.

Example II.3.9. For k = 3 and n = 7, the matrices in S(2,5,7) have the form∗ 1 0 0 0 0 0

∗ 0 ∗ ∗ 1 0 0

∗ 0 ∗ ∗ 0 ∗ 1

 .

Definition II.3.10. Let α ∈
(

[n]
k

)
. We call XαE

◦
• := XαE• ∩ Uα the big cell of

XαE•.

Proposition II.3.11. The restriction to Sα of the birational map φ : S(α) →
Gr(k, V )∩Uα given by H 7→ [ pα(H) | α ∈

(
[n]
k

)
] is a birational map φα : Sα → XαE

◦
• .

Proof. The incidence conditions on H ∈ XαE
◦
• given in Definition II.3.2 are equiv-

alent to the conditions that H contains independent vectors hi ∈ 〈e1, . . . , eαi〉 for

i ∈ [k]. If H ∈ Gr(k, V ) ∩ Uα, then hi may be chosen to be

hi = eαi +
αi−1∑
j=1

hijej .

Therefore, Sα is a subset of S(α) which maps into XαE
◦
• via φ. The inverse φ−1

α exists

on XαE
◦
• . The map φα is rational as it is given by minors. The inverse φ−1

α is rational

as the nonzero entries which are not identically 1 are Plücker coordinates.
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Any flag F• has a basis f := (f1, . . . , fn). Using f as a basis for V realizes F• as the

standard flag. We apply Proposition II.3.11.

Corollary II.3.12. Suppose α ∈
(

[n]
k

)
and F• is a flag in V . Then a matrix Mα

parametrizing Sα gives local coordinates for XαF•.

The ith row of Mα has ai− i indeterminates. Corollary II.3.12 allows us to calculate

the dimension of a Schubert variety.

Corollary II.3.13. The dimension of XαF• is

dim(XαF•) =
k∑
i=1

αi − i.

Using Corollary II.2.8, we calculate the codimension of a Schubert variety.

Definition II.3.14. The codimension of XαF• in Gr(k, V ) is

|α| := k(n− k)−
k∑
i=1

αi − i .

With this definition, we see that each Grassmannian Gr(k, V ) admits a unique Schu-

bert condition (k, k + 2, . . . , n) which defines Schubert varieties of codimension one.

We write to denote this condition, and we call X F• a hypersurface Schubert

variety.

There is an implicit way express the open dense subset XαF• ∩ Uβ ⊂ XαF• using

the Stiefel coordinates S(β) parametrizing Uβ with respect to e. Let the matrix F•

denote a basis for the flag F• with respect e. Similarly, let Fi denote the i × n

submatrix of F• whose row space is the subspace Fi in the flag F•.

Proposition II.3.15. Let α, β ∈
(

[n]
k

)
be Schubert conditions. Let XαF• ⊂ Gr(k, V ),

and M ∈ S(β) be a matrix parametrizing Uβ ⊂ Gr(k, n). Then the open dense subset

XαF• ∩ Uβ ⊂ XαF• is defined by the vanishing of the ri × ri minors of
(
M
Fαi

)
, where

ri = k + αi − i+ 1 for i ∈ [k].

Proof. The definition (II.3.2) is equivalent to the requirement that the rows of M and

rows of Fαi span a space of dimension at most ri − 1. The implied rank conditions

on
(
M
Fαi

)
are given by the vanishing of ri × ri minors.
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Example II.3.16. Suppose H ∈ X(2,3,5,6)F• ⊂ Gr(4, 6). The only relevant condition

is dim(H ∩ F3) ≥ 2, so the determinantal conditions of Proposition II.3.15 consist

of the seven maximal minors of
(
M
F3

)
.

Definition II.3.17. Regarding Gr(k, V ) as a variety in Plücker space via the Plücker

embedding, the Plücker ideal Plk,n is the ideal Plk,n := I(Gr(k, V )).

The partially ordered set of Schubert conditions in
(

[n]
k

)
given by

α ≤ β if αi ≤ βi for i ∈ [k]

is called the Bruhat order. This order gives us a way to determine the number of

determinants needed to define a Schubert variety.

Proposition II.3.18. The ideal of the Schubert variety XαE• in Plücker space is

Plk,n +(pβ | β 6≤ α) .

Proof. Suppose the matrix M parametrizes S(α), and consider the Stiefel coordinates

Sα ⊂ S(α) on XαE
◦
• ⊂ Gr(k, V )∩Uα. As observed in the proof of Proposition II.2.6,

the parameters of M which are identically zero on Sα are the Plücker coordinates pβ

such that β 6≤ α.

This gives us the number of linearly independent generators of I(XαF•) as a subva-

riety of Gr(k, V ). The right action of g ∈ GL(n,C) on V induces a dual left action

on the Plücker coordinates of Gr(k, V ). The Grassmannian is invariant under the

action of GL(n,C), so the Plücker ideal is invariant under the dual action. Thus for

g ∈ GL(n,C) we have

I(XαF•.g) = Plk,n +(g−1.pβ | β 6≤ α) .

Corollary II.3.19. Let F• be any flag in V . The ideal of the Schubert variety XαF•

as a subvariety of Gr(k, V ) is generated by

#{pβ | β 6≤ α}

linearly independent determinantal equations.

Using this, we see how far one may reduce the system of determinantal equations
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given by Proposition II.3.15. For example, the seven maximal minors in Example

II.3.16 may be reduced to three linearly independent minors.

Observe that the hypersurface X F• ⊂ Gr(k, V ) has one relevant condition given by

det
(

M
Fn−k

)
= 0. Using Corollary II.3.19, we see the number of linearly independent

determinants from Proposition II.3.15 needed to define XαF• is greater than |α| when

|α| > 1 and min{k, n− k} ≥ 2.

II.4 Schubert Problems

We have now seen two ways to locally express a Schubert variety XαF•, one by

choosing a basis f of V so that Sα parametrizes a dense subset of XαF• and another

by determinantal equations in parameters for some Uβ with respect to the standard

basis e. Thus we may express the intersection points of XαF• ∩ XβG• using either

determinantal conditions defining XαF• and XβG• in local Stiefel coordinates for

Gr(k, V ) or determinantal conditions defining XβG• in local Stiefel coordinates for

XαF•. We give a third formulation of XαF•∩XβG• when F• and G• are in sufficiently

general position.

Definition II.4.1. The flag E ′• with basis (en, . . . , e1) is called the standard opposite

flag.

We note that the n×n matrix with ones along the antidiagonal and zeros elsewhere

is a basis for the standard opposite flag.

Definition II.4.2. For α, β ∈
(

[n]
k

)
, the subset Sβα ⊂ Matk×n consists of matrices M

whose entries satisfy

Mij = 1 if j = αi and Mij = 0 if j > αi or j < n+ 1− βk−i+1 ,

and whose other entries are arbitrary.

Example II.4.3. Let α = (2, 5, 7, 9) and β = (4, 5, 7, 8) be Schubert conditions in(
[9]
4

)
. The variety XαE• ∩XβE

′
• has local Stiefel coordinates

0 1 0 0 0 0 0 0 0

0 0 ∗ ∗ 1 0 0 0 0

0 0 0 0 ∗ ∗ 1 0 0

0 0 0 0 0 ∗ ∗ ∗ 1

 . (II.3)
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We describe flags in sufficiently general position.

Definition II.4.4. The flags F• and G• in V are in linear general position if

dim(Fi ∩Gj) = max{0, i+ j − n} for i, j ∈ [n] .

Proposition II.4.5. If the flags F• and G• are in linear general position, then they

have bases (f1, . . . , fn) and (g1, . . . , gn) respectively, such that gi = fn−i+1 for i ∈ [n].

Proof. We simply choose nonzero vectors fi ∈ Fi ∩ Gn−i+1, and Definition II.4.4

ensures that the sets (f1, . . . , fi) and (fn, . . . , fi) are each linearly independent.

Proposition II.4.5 ensures that if αi+βk−i+1 ≥ n+1 for all i, and F•, G• are in linear

general position, then we may choose coordinates for V so that Sβα parametrizes a

dense subset of XαF• ∩XβG•.

Example II.4.6. Let α = (2, 5, 7, 9) and β = (4, 5, 7, 8) be Schubert conditions in(
[9]
4

)
and F•, G• be flags in V in linear general position. Choosing a basis as described

in Proposition II.4.5, the matrices from Equation (II.3) parametrize XαF• ∩XβG•.

Definition II.4.7. An intersection X := X1∩· · ·∩Xm of subvarieties of a variety G

is said to be transverse at a point x ∈ X if the equations defining the tangent spaces

of X1, . . . , Xm at the point x are in direct sum.

Definition II.4.8. An intersection X := X1 ∩ · · · ∩Xm of subvarieties of a variety

G is said to be generically transverse if, for each component Y ⊂ X, there is a dense

open subset Z ⊂ Y such that X is transverse at every point in Z. If X is zero

dimensional, then it is generically transverse if and only if it is transverse at every

point x ∈ X.

Definition II.4.9. Let α = (α1, . . . , αm) be a list of Schubert conditions in
(

[n]
k

)
.

We define |α| := |α1|+ · · ·+ |αm|.

The following is a result of Kleiman [22].

Proposition II.4.10 (Generic Transversality). Let α = (α1, . . . , αm) be a list of

Schubert conditions in
(

[n]
k

)
. If F 1

• , . . . , F
m
• are general flags, then

X := Xα1F 1
• ∩ · · · ∩XαmF

m
• (II.4)

is generically transverse. In particular, if X is nonempty, then codim(X) = |α|.
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Kleiman proved Proposition II.4.10 for characteristic zero, and Vakil proved the

analogue for positive characteristic [42].

Remark II.4.11. As an immediate consequence, if F•, G• are general and XαF• ∩
XβG• 6= ∅, then

codim(XαF• ∩XβG•) = |α|+ |β| .

Straightforward calculation shows that Sβα has dimension k(n− k)− |α| − |β|.
Definition II.4.12. A list α = (α1, . . . , αm) of Schubert conditions on Gr(k, V )

satisfying
m∑
i=1

|αi| = k(n− k) = dim(Gr(k, V ))

is called a Schubert problem on Gr(k, V ). By Proposition II.4.10, given general flags

F 1
• , . . . , F

m
• on V , the intersection

X := Xα1F 1
• ∩ · · · ∩XαmF

m
•

is finite. We call X an instance of α.

Since general flags are in linear general position, we may formulate an instance X of

α with minors involving local coordinates for Gr(k, V ), Xα1F 1
• , or Xα1F 1

• ∩Xα2F 2
• .

The third formulation may be the most efficient for computation, since it involves the

fewest determinantal equations and variables. A real instance of a Schubert problem

α is an instance

Xα1F 1
• ∩ · · · ∩XαmF

m
• ,

which is a real variety.

Remark II.4.13. Traditionally, Schubert calculus asks for the number of intersection

points in a general instance of a Schubert problem. In this thesis, we study the number

of intersection points with residue field R (i.e. real subspaces of V ) in a real instance

of a Schubert problem. We say that a real instance of a Schubert problem has been

solved if we have successfully counted the number of real points in the intersection.

We call the complex intersection points solutions to the Schubert problem.

Definition II.4.14. A parametrized rational normal curve γ ⊂ Pn−1 is a curve of

the form

γ(s, t) := (γ1(s, t) , . . . , γn(s, t)) , for (s, t) ∈ P1 ,
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so that (γ1, . . . , γn) is a basis for the space of degree n−1 forms on P1. If each γi has

real coefficients, then we say that γ is a real parametrized rational normal curve.

If γ1 and γ2 are parametrized rational normal curves, then they are bases for the

space of degree n− 1 forms, so they differ by a change of basis B ∈ GL(n,C),

γ1(s, t)B = γ2(s, t) .

Furthermore, if γ1 and γ2 are real, then they give real bases for the space of n − 1

forms on P1, and there is a real change of basis C ∈ GL(n,R),

γ1(s, t)C = γ2(s, t) .

Therefore, all real parametrized rational normal curves are equivalent by the action

of GL(n,R).

Throughout this thesis, we consider the real curve γ(s, t) to be fixed. While we may

make different choices of γ to facilitate proof, the resulting theorems hold for all

other choices by applying the GL(n,R) action.

Example II.4.15. The Veronese curve parametrized by

γ(s, t) := (sn−1 , sn−2t , . . . , stn−2 , tn−1)

is a real parametrized rational normal curve. By convention, γ(t) := γ(1, t) for t ∈ C,

and γ(∞) := γ(0, 1).

Definition II.4.16. For a ∈ P1, the osculating flag F•(a) is the flag whose ith

subspace Fi(a) is the i-dimensional row space of the matrix,

Fi(a) :=


γ(a)

γ′(a)
...

γ(i−1)(a)

 . (II.5)

If γ is the Veronese curve, then F•(0) is the standard flag, and F•(∞) is the standard

opposite flag.

Definition II.4.17. Let α be a Schubert condition on Gr(k, V ), a ∈ P1, and F•(a)
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the flag osculating γ at γ(a). We call the Schubert variety Xα(a) := XαF•(a) an

osculating Schubert variety. We say that Xα(a) osculates γ at γ(a).

II.5 Dual Schubert Varieties

The duality between V and V ∗ induces a duality between the Grassmannian Gr(k, V )

and its dual Grassmannian Gr(n−k, V ∗). We find it useful to study the corresponding

duality of Schubert varieties.

Definition II.5.1. Let F• be a flag in V . The flag F⊥• dual to F• is the flag in V ∗

whose i-dimensional subspace F⊥i is the annihilator of Fn−i for i ∈ [n− 1],

F⊥• : 0 ( (Fn−1)⊥ ( · · · ( (F1)⊥ ( F⊥n := V ∗ .

The complement of α ∈
(

[n]
k

)
is the list αc := [n]\α. We realize a Schubert condition

α ∈
(

[n]
k

)
as a permutation σ(α) on [n], by appending αc to α,

σ(α) := (α, αc) .

Example II.5.2. The Schubert condition (1, 3, 6) ∈
(

[7]
3

)
is a permutation

σ(α) = (1, 3, 6 | 2, 4, 5, 7) .

We use a vertical line in place of a comma to denote the position where the entries

of σ(α) are allowed to decrease.

Let σ0 := (n, n− 1, . . . , 2, 1) be the longest permutation on [n].

Definition II.5.3. Let α ∈
(

[n]
k

)
be a Schubert condition. The Schubert condition

α⊥ ∈
(

[n]
n−k

)
associated to α is given by the composition of permutations

α⊥ := σ0σ(α)σ0 .

Example II.5.4. Let α = (2, 3) ∈
(

[5]
2

)
be a Schubert condition. Writing

α⊥ = σ0(2, 3 | 1, 4, 5)σ0

as a Schubert condition gives α⊥ = (1, 2, 5).
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Definition II.5.5. Let ⊥ : Gr(k, V ) → Gr(n − k, V ∗) be the dual map, mapping a

k-plane to its annihilator, H 7→ H⊥. Since (H⊥)⊥ = H, ⊥ is a bijection.

Proposition II.5.6. Let XαF• ⊂ Gr(k, V ) be a Schubert variety. Then ⊥(XαF•) =

Xα⊥F
⊥
• .

We call Xα⊥F
⊥
• the Schubert variety dual to XαF•.

Proof. Let H ∈ XαF•. Definition (II.3.2) is equivalent to the condition

dim(H ∩ Fi) ≥ #{αj ∈ α | αj ∈ [i]}

for i ∈ [n]. Equivalently, dim(span(H,Fi)) ≤ k + i − #{αj ∈ α | αj ∈ [i]}, so

dim(span(H,Fi)
⊥) is at least

n− k − i+ #{αj ∈ α | αj ∈ [i]} = n− i−#{αj ∈ α | αj ≥ i+ 1} .

This yields

dim(span(H,Fi)
⊥) = dim(H⊥ ∩ F⊥n−i) ≥ n− i−#{αj ∈ α | αj ≥ i+ 1} .

By changing indices and applying the definition of α⊥, we have

dim(H⊥ ∩ F⊥i ) ≥ i−#{αj ∈ α | αj ≥ n− i+ 1} = #{α⊥j ∈ α⊥ | α⊥j ∈ [i]} ,

for i ∈ [n]. This is equivalent to Definition II.3.2 for Xα⊥F
⊥
• .

Let F• be the standard flag, whose basis is given by the row vectors e1, . . . , en. Since

F⊥• is a flag in the dual space V ∗, it has a dual basis of column vectors,

e∗n =



0
...

0

0

1


, e∗n−1 =



0
...

0

1

0


, . . . , e∗2 =



0

1

0
...

0


, e∗1 :=



1

0

0
...

0


.

We adapt the coordinates (II.3.8) on XαF•, giving local coordinates on the dual
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Schubert variety Xα⊥F
⊥
• .

Definition II.5.7. Let α⊥ ∈
(

[n]
n−k

)
be a Schubert condition for Gr(n − k, V ∗). The

set Ŝα⊥ ⊂ Matn×(n−k) consists of matrices M whose entries satisfy

Mn+1−α⊥i,j = δi,j if i, j ∈ [n− k] , and Mi,j = 0 if i < n+ 1− α⊥j , (II.6)

and whose other entries are arbitrary.

Remark II.5.8. The matrices of Ŝα⊥ are related to transposes of the matrices of Sα⊥.

Suppose Mα⊥ is a matrix of indeterminates parametrizing Sα⊥, and N := (δi,n−j+1)

is the n × n matrix with ones along the antidiagonal. Then Ŝα⊥ is parametrized by

the product

Mα⊥ := NMα⊥ .

Example II.5.9. If α = (2, 5) is a Schubert condition on Gr(2, 6), then the Schubert

condition is α⊥ = (1, 3, 4, 6). The coordinates Sα and Ŝα⊥ are given by the matrices

(
a 1 0 0 0 0

b 0 c d 1 0

)
and



0 0 0 1

0 0 0 −a
0 0 1 0

0 1 0 0

0 −d −c −b
1 0 0 0


.

Note that choosing the arbitrary entries of one matrix determines the entries those

of the other so that each gives the null space of the other.

Let (x0, y0) and (x1, y1) be points in the Cartesian plane with x0 > x1 and y0 > y1.

A left step is the vector (−1, 0), and a down step is the vector (0,−1). A path from

(x0, y0) to (x1, y1) is a sequence p of length L := x0 − x1 + y0 − y1 of left steps and

down steps such that (x0, y0) +
∑L

i=1 pi = (x1, y1).

Definition II.5.10. To α ∈
(

[n]
k

)
we associate the path p(α) from (n−k, 0) to (0,−k)

given by

p(α)i = (0,−1) if i ∈ α , and p(α)i = (−1, 0) if i 6∈ α .

The association α↔ p(α) is a bijection between Schubert conditions
(

[n]
k

)
and paths

from (n− k, 0) to (0,−k).
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Example II.5.11. If α = (2, 5) ∈
(

[6]
2

)
then α⊥ = (1, 3, 4, 6) ∈

(
[6]
4

)
. Then p(α) and

p(α⊥) are given by thick lines in Figure II.1.

Figure II.1: p(α) and p(α⊥).

Proposition II.5.12. We have the equality of codimensions |α| = |α⊥|.

Proof. Given α ∈
(

[n]
k

)
, |α| is equal to the area of the region enclosed by p(α) and the

axes. Similarly, |α⊥| corresponds to the region enclosed by p(α⊥) and the axes. The

path p(α⊥) is the reflection of the path p(α) across the line y = −x, so the regions

defining |α| and |α⊥| have the same area.

The enclosed regions in Figure II.1 illustrate the equality |α| = 4 = |α⊥| for α =

(2, 5) ∈
(

[6]
2

)
.

II.6 Osculating Schubert Calculus

The study of osculating Schubert calculus is made possible by work of Eisenbud and

Harris [8]. They showed that given a set of Schubert varieties that osculate a rational

normal curve at distinct points, their intersection is dimensionally transverse. To

prove this, we use a correspondence between Schubert calculus and the Wronskian

which originated in work by Castelnuovo [4].

Definition II.6.1. Let Cn[t] be the vector space of polynomials in the variable t of

degree less than n with coefficients in C. The Wronskian of f1, . . . , fk ∈ Cn[t] is the

determinant

Wr(f1, . . . , fk) := det


f1 · · · fk

f ′1 · · · f ′k
...

...

f
(k−1)
1 · · · f

(k−1)
k

 . (II.7)

22



Suppose f := (f1, . . . , fk) spans a k-dimensional subspace H. If g is another basis of

H, and B is a change-of-basis matrix such that Bf = g, then det(B) Wr(f) = Wr(g).

Therefore, the roots of Wr(f1, . . . , fk) depend only on H.

Proposition II.6.2. Suppose f1, . . . , fk ∈ Cn[t] are complex univariate polynomials

of degree at most n − 1. The Wronskian Wr(f1, . . . , fk) is a point in Ck(n−k)+1[t],

that is, a univariate polynomial of degree at most k(n− k).

Proof. If f is not linearly independent, then Wr(f) = 0, so we may assume that f

spans a H ∈ Gr(k, V ). We claim the k-plane H has a basis g = (g1, . . . , gk) with

deg(g1) > · · · > deg(gk) .

To achieve this basis, let i < k be the minimal index for which deg(fi) ≤ deg(fi+1).

If deg(fi) > deg(fi+1), then we transpose their indices to reverse their roles. If

deg(fi) = deg(fi+1), then we redefine deg(fi+1) by reducing it modulo deg(fi). We

repeat this process until there is no i < k with deg(fi) ≤ deg(fi+1). This is a modified

version of the classical bubble sorting algorithm, which terminates. The ordered list

is g.

Since g and f span the same k-plane, their Wronskians have the same roots, so

deg(Wr(f)) = deg(Wr(g)). Let M denote the matrix in Definition (II.7) giving

Wr(g), whose entries are polynomials. Since deg(gi) ≤ n − i for i ∈ [n], we have

deg(Mij) ≤ n− i− j + 1. It follows directly that deg(det(M)) ≤ k(n− k).

Remark II.6.3. In general, the upper bound k(n−k) on the degree of Wr is attained.

In particular, we will prove Proposition II.6.6, which implies that if H is a solution

to an instance of a Schubert problem involving only osculating hypersurface Schubert

varieties, then Wr(H) has k(n− k) distinct roots in P1.

Since the Wronskians of bases f and g of a k-plane H ∈ Cn[t] are proportional, the

Wronskian induces a well-defined map, called the Wronski map,

Wr : Gr(k,Cn[t]) −→ PCk(n−k)+1[t] .

By Proposition II.6.2, dim(PCk(n−k)+1[t]) = k(n− k) = dim(Gr(k,Cn[t])).
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The proofs of the following Proposition and Corollary are based on an argument in

[39]. Recall the definition (II.5) of the matrix Fi(a).

Proposition II.6.4. Let V = Cn[x] have standard basis (1, x, . . . , xn−1), let H ∈
Gr(k, V ), and let L := H⊥ ∈ Gr(n − k, V ∗) be the annihilator of H. If Fk(x) is

the matrix corresponding to the k-planes in V osculating the Veronese curve γ(t) :=

(1, t, . . . , tn−1) at γ(x), then L is the row space of a (n− k)× n matrix, also denoted

by L, with

det

(
Fk(t)

L

)
= Wr(H) ∈ PCk(n−k)+1[x] . (II.8)

Proof. We prove this for H with the general property that Wr(H) has k(n − k)

distinct roots. The other cases follow by a limiting argument. We reverse the roles

of Gr(k, V ) and Gr(n−k, V ∗), so we consider H⊥ ⊂ V ∗ to be spanned by row vectors

and H ⊂ V to be spanned by column vectors h1(x), . . . , hk(x).

Set h := (h1, . . . , hk) ∈ Matn×k, where hi be the column vector of coefficients

in Cn such that the polynomial hi(x) is the dot product γ(x) · hTi . We observe

that the product Fk(x)h is the matrix given in Definition (II.7) giving Wr(h), and

rowspace(h) = H, so det(Fk(x)h) = Wr(H). Since L is the null space of H, the

determinant W := det
(
Fk(x)
L

)
and Wr(H) vanish at the same points.

Laplace expansion along the first k rows of
(
Fk(x)
L

)
gives

W =
∑
α

(−1)(k−1)(n−k)+
∑
i αiLαFk(x)αc ,

where Lα is the maximal minor of L involving columns α, and Fk(x)αc is the maximal

minor of Fk(x) involving columns αc. Thus, we have an upper bound for the degree

of W ,

deg(W ) ≤ deg(Fk(x)(n−k+1,...,n)) = k(n− k) .

Since W vanishes at the k(n−k) distinct roots of Wr(H), deg(W ) = k(n−k). Since

W and Wr(H) have the same roots and the same degree, they are proportional.

Corollary II.6.5. If H ∈ Gr(k, V ), then H is contained in the hypersurface X (t)

for at most k(n− k) values of t ∈ C.
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Proof. We argue in the dual Grassmannian Gr(n−k, V ∗). Let L denote both a matrix

L ∈ St(n − k, n) and a (n − k)-plane L ∈ Gr(n − k, V ∗), so that rowspace(L) = L.

As we have previously observed, X (t) ⊂ Gr(n − k, V ∗) has one relevant condition

given by det
(
Fk(t)
L

)
= 0 for L ∈ X (t). So by Proposition II.6.4, choosing a n × k

matrix H with H := colspace(H) = L⊥, we have Wr(colspace(H)) = det
(
Fk(t)
L

)
as a

point in PCk(n−k)+1[x]. Since deg(det
(
Fk(t)
L

)
) = deg(Wr(H)) ≤ k(n− k), there are at

most k(n − k) values of t for which det
(
Fk(t)
L

)
= 0. Equivalently, there are at most

k(n− k) values of t for which L ∈ X (t). By Proposition II.5.6, we reverse the roles

of Gr(k, V ) and Gr(n− k, V ∗), giving the result.

Proposition II.6.6. Let H ∈ Xα(0). Then Wr(H⊥) has a root at x = 0 of order at

least |α|.

Proof. Using the notation of Proposition II.6.4, we prove the dual statement, that

is, if L = H⊥ ∈ Xα⊥(0) ⊂ Gr(n − k, V ∗) then Wr(H) has a root at 0 of order

at least |α⊥|. Since Xα⊥(0) has local coordinates Sα⊥ , we use coordinates Ŝα for

Xα(F•(0))⊥. Thus the columns hj form a basis of H where hji = 0 if i < n+ 1−αj.
Let H denote the n × (n − k) matrix with these columns, so that the determinant

of the product Fk(x)H is Wr(H). Since hji = 0 for i < n + 1 − αj, every term of

Wr(H) = det(Fk(x)H) has degree at least

k∑
j=1

n+ 1− αj − j = −k(k + 1) +
k∑
j=1

n+ 1− (αj − j) = |α| .

By Proposition II.5.12, every term of Wr(H) has a root at 0 of order at least |α⊥|.

Recall that the parametrized rational normal curve curve γ(t) is in fact a local

parametrization of the curve γ(s, t) with (s, t) ∈ P1. Thus the action of SL(2,C) on

P1 induces a dual action on γ(t).

Corollary II.6.7. Let H ∈ Xα(t) for some t ∈ C. Then Wr(H⊥) has a root at x = t

of order at least |α|.

Proof. Using the SL(2,C) action on P1 we may assume t = 0. Using the GL(n,C)

action on γ we may further assume γ(x) = (1, x, . . . , xn−1) is the Veronese curve.
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Thus the flag defining Xα(x) has basis

F•(x) =



1 x x2 · · · xn−1

0 1 2x · · · (n− 1)xn−2

0 0 2 · · · (n− 1)(n− 2)xn−3

...
...

...
...

0 0 0 · · · (n− 1)!


.

A direct calculation using II.6.4 shows that the lowest degree term of Wr(H) is

(−1)|α
⊥|pα⊥(H)x|α

⊥| where p•(H) are the Plücker coordinates of the null space L.

Since |α| = |α⊥|, the result follows.

Recall the open cover U of Plücker space from Definition II.1, which restricts to an

open cover

G := {Gα := Gr(k, V ) ∩ Uα | α ∈
(

[n]
k

)
} . (II.9)

Definition II.6.8. The matrix F•(t)
−1 acts on Xα(0), giving Xα(0).F•(t)

−1 = Xα(t).

We define G(t) to be the collection of dense open sets of Gr(k, V ) defined by the

corresponding action,

Gα(t) := Gα.F•(t)
−1 for Gα ∈ G .

The lower bound on the order of vanishing of Wr(H) at t = 0 given in the proof of

Proposition II.6.6 is attained for all H in the dense open subset Xα(t) ∩ Gα(t) of

Xα(t). This proves a stronger statement.

Corollary II.6.9. Let H ∈ Xα(t)∩Gα(t) for some t ∈ C. Then Wr(H⊥) has a root

at x = t of order |α|.

Given a list of Schubert conditions α = (α1, . . . , αm), we define

|α| := |α1|+ · · ·+ |αm| .

We may now prove dimensional transversality for intersections of osculating Schubert

varieties.

Theorem II.6.10 (Eisenbud-Harris). Let α = (α1, . . . , αm) be a list of Schubert
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conditions on Gr(k, V ) and a1, . . . , am ∈ P1 be distinct points. If the intersection

X := Xα1(a1) ∩ · · · ∩Xαm(am) (II.10)

is nonempty, then codim(X) = |α|.

Proof. Assume for a contradiction that X from (II.10) has codimension c < |α|. Let

t1, . . . , tk(n−k)−c ∈ P1 \ {a1, . . . , am} be distinct. Since dimX = k(n − k) − c, and

X (ti) is a hyperplane section for each i, we have

X ∩X (t1) ∩ · · · ∩X (tk(n−k)−c) 6= ∅ .

Let H be a point in this intersection. By Proposition II.6.2, Wr(H) is a polynomial of

degree at most k(n−k). However, by Corollary II.6.9, Wr(H) has |α|+k(n−k)−c >
k(n− k) roots, which is a contradiction.

Proposition II.6.11. A k-plane H ∈ Gr(k, V ) uniquely determines a Schubert prob-

lem α and an osculating instance X of α with H ∈ X.

Proof. Suppose H is a solution to instances X1, X2 of Schubert problems α,β,

X1 := Xα1(a1) ∩ · · · ∩Xαm(am) and X2 := Xβ1(b1) ∩ · · · ∩Xβp(bp) .

We may use the action of SL(2,C) on each Xi to avoid having any osculation points

at ∞. This induces an invertible action on H, so we lose no generality in doing this.

Since α and β are Schubert problems, |α| = |β| = k(n− k). By Corollary II.6.9, we

have the equality

m∏
i=1

(x− ai)|α
i| = Wr(H) =

p∏
i=1

(x− bi)|β
i| ,

in projective space. So m = p, and we may reorder the Schubert varieties involved in

X2 so that ai = bi and |αi| = |βi| for i ∈ [m]. Assume for a contradiction that αi 6= βi

for some i (without loss of generality, i = 1). Thus H ∈ Xβ1(a1)∩Xα1(a1) = Xω(a1)
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where ω ∈
(

[n]
k

)
is given by

ωi := min{β1
i , α

1
i } for i ∈ [k] ,

and so

H ∈ Xω(a1) ∩Xα2(a2) ∩ · · · ∩Xαm(am) . (II.11)

Since αi 6= βi, we have |ω| > |α1|, so |ω|+ |α2|+ · · ·+ |αm| > |α| = k(n− k), which

implies the intersection (II.11) is empty by Theorem II.6.10. This contradiction

implies αi = βi for all i, proving the statement.

II.7 The Shapiro Conjecture

The dimensional transversality of Eisenbud and Harris shows that it is reasonable to

study the Schubert calculus of osculating Schubert varieties. In 1993, the brothers

Boris and Michael Shapiro made the remarkable conjecture that an instance of a

Schubert problem in a Grassmannian given by real osculating Schubert varieties has

all solutions real. The conjecture was proved in [27, 28].

Theorem II.7.1 (Mukhin-Tarasov-Varchenko). Let α = (α1, . . . , αm) be a Schubert

problem on Gr(k, V ). If a1, . . . , am ∈ RP1 are distinct, then the intersection

Xα1(a1) ∩ · · · ∩Xαm(am)

is transverse with all points real.

The Shapiro Conjecture may be seen in the first nontrivial Schubert problem, which

asks how many 2-dimensional subspaces of C4 meet four fixed 2-dimensional sub-

spaces nontrivially. If the flags are general, the answer is two. Theorem II.7.1 asserts

that both solutions are real and distinct if the flags involved osculate a rational

normal curve at distinct real points. We show this in the following example.

Example II.7.2. Let γ(t) := (1, t, t2, t3) parametrize the Veronese curve, and F•(t)

be family of osculating flags. Suppose t1, . . . , t4 ∈ RP1 are distinct, and consider the

four 2-dimensional subspaces F2(t1), . . . , F2(t4) ⊂ C4. We ask two questions: (1)

how many 2-dimensional subspaces of C4 meet all four fixed subspaces nontrivially,

and (2) how many real 2-dimensional subspaces of C4 meet all four fixed subspaces

nontrivially?

28



We observe that Question (1) is a Schubert problem, and Question (2) is a real

Schubert problem, because we are counting the points in the intersection

X (t1) ∩X (t2) ∩X (t3) ∩X (t4) .

Since t1, t2 are real and distinct, there is some s ∈ SL(2,R) such that t1.s = 0,

t2.s = ∞, t3.s =: a ∈ R, and t4.s =: b ∈ R. Explicitly, if t1 = (t11, t12) and

t2 = (t21, t22), then

s =

(
t11 t12

t21 t22

)−1

.

Since s is invertible, the points 0,∞, a, b are distinct. By a change of real basis on

(γ1, . . . , γn), we may assume γ(t) is the Veronese curve. These actions allow us to

replace the flags F•(t1), . . . , F•(t4) of Questions (1) and (2) by the flags F•(0), F•(∞),

F•(a), and F•(b), which does not affect whether solutions to the Schubert problem are

real.

The only relevant condition for X (0) is that every H ∈ Gr(2,C4) meets F2(0)

nontrivially. Similarly, if H ∈ X it meets the other fixed 2-planes nontrivially. Thus

Question (1) is given by counting the points in the intersection

X := X (0) ∩X (∞) ∩X (a) ∩X (b) .

The intersection X (0) ∩X (∞) is parametrized by the matrix

M :=

(
x 1 0 0

0 0 y 1

)
,

so we find the set on which rowspace(M) meets F2(t) nontrivially for t = a, b. This

condition is equivalent to the equations

det


x 1 0 0

0 0 y 1

1 a a2 a3

0 1 2a 3a2

 = det


x 1 0 0

0 0 y 1

1 b b2 b3

0 1 2b 3b2

 = 0 .
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Thus we solve the system of equations

f := −2xya3 + a2x+ 3a2y − 2a = 0

g := −2xyb3 + b2x+ 3b2y − 2b = 0 .

Using f to eliminate the xy-term of g yields

y =
2a+ 2b− abx

3ab
, (II.12)

which is defined since a, b 6= 0 and a 6= b. Substituting back into f = 0 and multiplying

by the nonzero constant 3b
2a2

gives

abx2 − 2(a+ b)x+ 3 = 0 . (II.13)

This equation has two solutions,

x =
a+ b±

√
a2 − ab+ b2

ab
,

each determining a unique y-value by (II.12). We observe that the discriminant of

(II.13) is is a sum of squares,

a2 − ab+ b2 =
1

2
a2 +

1

2
b2 +

1

2
(a− b)2 ,

so it is positive for all a, b 6= 0 with a 6= b. This implies that there are two distinct

solutions, answering Question (1).

Since the discriminant of (II.13) is positive, the two solutions of Question (1) have

real x-values. These determine real y-values by Equation II.12, which implies that

both solutions to the complex Schubert problem are real, answering Question (2).

Question (2) is the first nontrivial example of Theorem II.7.1.

II.8 The Problem of Four Real Tangent Lines

The projective space Pn−1 is the Grassmannian Gr(1,Cn) of lines through the origin

of Cn. That is, a 1-dimensional subspace of Cn is a point (or 0-dimensional affine

space) in Pn−1. We extend this to higher dimensional subspaces and realize Gr(k,Cn)
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as the set of (k − 1)-dimensional affine spaces in Pn−1. In this way, Example II.7.2

is a question about lines which intersect four fixed lines in C3.

We illustrate this problem of four lines by giving another instance of Theorem II.7.1.

We assume γ to be the twisted cubic curve in P3 parametrized by

γ(t) :=

(
−1 + 6t2,

7

2
t3 +

3

2
t, −1

2
t3 +

3

2
t

)
,

and let `1, `2, `3, `4 be the fixed lines tangent to γ(t) at t = −1, 0, 1, 1
2

respectively.

This is the same curve used in [39], chosen for aesthetic reasons. Since all real rational

normal curves are equivalent by a real change of basis, this curve is equivalent to the

Veronese curve used in the previous example.

Since the family of quadric surfaces in P3 is 9-dimensional, and the restriction that a

quadricA contain a fixed line imposes 3 independent conditions on that quadric, three

mutually skew lines determine A. Figure II.2 displays the ruling of the hyperboloid

A containing the lines `1, `2, and `3. The lines in the opposite ruling are the lines in

P3 which meet `1, `2, and `3.

Figure II.2: γ(t), `1, `2, and `3.
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Figure II.3 shows the opposite ruling of A, containing the real lines meeting `1, `2, and

`3. The two lines meeting all four tangents are real if and only if the fourth tangent

meets the hyperboloid at two real points, and in this case the lines containing those

points are the two solutions. The thick black line in Figure II.3 is tangent to γ at

γ
(

1
2

)
, so the blue real lines are the two lines predicted by Schubert calculus when

the four fixed lines are tangent at t = −1, 0, 1, 1
2
.

Figure II.3: `4 and two solution lines.

II.9 Conjectures with Computational Support

Computer experimentation provided evidence in favor of the Shapiro Conjecture

[30], but further experimentation revealed that the most straightforward generaliza-

tion to general flag varieties is false [38]. After these computations, Eremenko and

Gabrielov proved the Shapiro Conjecture for the Grassmannian of lines Gr(2, n) [10].

Mukhin, Tarasov, and Varchenko eventually proved the Shapiro Conjecture for all

Grassmannians in type A [28].
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Computational experiments [12, 14, 16, 32] suggested generalizations and variants

of the Shapiro conjecture, some of which have been proven [11, 19]. We describe a

variant of the problem which will be the focus of much of this thesis.

Recall the Wronski map from a Grassmannian to a projective space,

Wr : Gr(k,Cn[t]) −→ PCk(n−k)+1[t] .

Restricting the domain to the Grassmannian of polynomials with real coefficients,

denoted by Gr(k,Rn[t]), gives the real Wronski map,

WrR : Gr(k,RCn[t]) −→ PRk(n−k)+1[t] .

By Theorem II.6.10, the fibers of Wr are finite. The problem of determining the

number of points in a fiber of Wr is called the inverse Wronski problem.

Since WrR is a map between manifolds of the same dimension, it may have a topo-

logical degree, which gives a lower bound for the number of real points in the fiber

Wr−1
R (f) over a general point f ∈ PRk(n−k)+1[t]. The main result of [9] calculates

this topological degree, finding nontrivial lower bounds on the number of points in a

fiber Wr−1
R (f). If n is even, we define σk,n := 0. If n is odd and k ≤ n− k, we define

σk,n :=
1!2! · · · (k−1)!(n−k−1)!(n−k−2)! · · · (n−2k+1)!

(
k(n−k)

2

)
!

(n−2k+2)!(n−2k+4)! · · · (n−2)!
(
n−2k+1

2

)
!
(
n−2k+3

2

)
! · · ·

(
n−1

2

)
!
. (II.14)

If n is odd and k > n − k, we define σk,n := σn−k,n. This is a lower bound on the

number of real points in the fiber Wr−1
R (f) over f ∈ PRk(n−k)+1[t] with k(n − k)

distinct roots. We give the main theorem of [9] in the language of Schubert calculus.

Theorem II.9.1 (Eremenko-Gabrielov). Suppose a ∈ (P1)k(n−k) is a list of distinct

points in P1. Furthermore, suppose a is stable under complex conjugation, that is,

a1, . . . , ak(n−k) are the roots of a real polynomial. Then the real osculating Schubert

problem

X := X (a1) ∩ · · · ∩X (ak(n−k))

contains at least σk,n real points.

The topological lower bounds of Eremenko and Gabrielov extend to Schubert prob-
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lems of the form α = (α, , . . . , ) where α is an arbitrary Schubert condition. So-

prunova and Sottile extended these topological lower bounds to Schubert problems

of the form α = (α1, α2, , . . . , ) [36], and we present their formula in Proposition

III.3.6. When k and n are even, there is a choice of points in Theorem II.9.1 such

that there are no real points in X, so the topological lower bound σk,n = 0 is sharp

[9]. For other cases, the lower bound given by σk,n is not known to be sharp.

In the next two Chapters, we discuss a computational investigation of Eremenko-

Gabrielov type lower bounds from the more general point of view of Schubert calculus

and prove results inspired by the data. We include a report on the observed sharpness

of many of the bounds σk,n. In this project, we keep track of whether each Schubert

condition is associated to a real or nonreal osculation point to detect additional

structure.
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CHAPTER III

INVESTIGATION OF LOWER BOUNDS

The Mukhin-Tarasov-Varchenko Theorem II.7.1 states that an instance of a Schu-

bert problem on a Grassmannian involving Schubert varieties osculating a rational

normal curve γ at real points has all solutions real. Intersections involving complex

osculation points with the nonreal points coming in pairs may be real varieties, but

they typically contain some nonreal points. While the number of real points in such

intersections may not be an invariant of the Schubert problem, there may be related

invariants such as the topological lower bound on the number of real solutions in

Theorem II.9.1 given by Eremenko and Gabrielov. We study real instances of Schu-

bert problems with the goal of understanding these invariants. Thus we describe real

osculating instances of Schubert problems as real enumerative problems and give a

method for solving them.

III.1 Real Osculating Instances

We retain the conventions of Chapter II. In particular, the results of this chapter

depend on fixing a real parametrized rational normal curve γ(t). For a flag F• in V ,

we define the conjugate flag

F• : 0 ⊂ F1 ⊂ · · · ⊂ Fn = V .

Proposition III.1.1. Let α ∈
(

[n]
k

)
be a Schubert condition and F• a flag in V . We

have XαF• = XαF•.

Proof. For H ∈ Gr(k, V ), we have the chain of equivalences

H ∈ XαF• ⇐⇒ dim(H ∩ Fαi) ≥ i for i ∈ [k]

⇐⇒ dim
(
H ∩ Fαi

)
≥ i for i ∈ [k]

⇐⇒ dim
(
H ∩ Fαi

)
≥ i for i ∈ [k]

⇐⇒ H ∈ XαF• .
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We note that atb = at
b

for any real number a and any positive integer b.

Corollary III.1.2. Let α ∈
(

[n]
k

)
be a Schubert condition. We have Xα(t) = Xα(t).

Recall that an instance of the Schubert problem α = ( , . . . , ) is a real variety if

the corresponding osculation points t1, . . . , tm are the roots of a real polynomial of

degree m. We refine this condition to give criteria for for an osculating instance of a

general Schubert problem to be a real variety.

Corollary III.1.3. Suppose α = (α1, . . . , αm) is a Schubert problem on Gr(k, V ),

and |αi| > 0 for i ∈ [m]. Furthermore, suppose t1, . . . , tm ∈ P1 are distinct, and the

instance

X := Xα1(t1) ∩ · · · ∩Xαm(tm) (III.1)

of α is nonempty. Then X is a real variety if and only if for i ∈ [m] there exists

j ∈ [m] such that Xαi(ti) = Xαj(tj).

If X from Equation (III.1) is real, then we call it a real osculating instance of α.

Proof. Suppose X is a real variety and H ∈ X. Since X = X, we have

H ∈ Xα1(t1) ∩ · · · ∩Xαm(tm) .

By Proposition II.6.11, one may recover α and t from H, so there is an involution

(Xα1(t1), . . . , Xαm(tm)) 7−→ (Xα1(t1), . . . , Xαm(tm)) .

Applying Corollary III.1.2, we have the forward implication. The reverse implication

is elementary, since X = X implies X is real.

Let <(a) and =(a) denote the real and imaginary parts of a complex number. Then

the real part <(f) or imaginary part =(f) of a complex polynomial may be defined

by taking the real or imaginary part respectively of the coefficients defining f .

Proposition III.1.4. The intersection Xα(t)∩Xα(t) of complex conjugate Schubert

varieties is defined by the vanishing of the real and imaginary parts of the minors

which define Xα(t).

When we have a real osculating instance of a Schubert problem, Proposition III.1.4

gives us a real generating set for its ideal.
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Proof. Let I be the ideal generated by the the minors from Proposition II.3.15 whose

vanishing defines Xα(t), let I be the ideal with generators conjugate to those of I, and

let J be the ideal generated by the the real and imaginary parts of the generators of I.

Note that V(I) is Xα(t), and for a complex polynomial f , we have <(f) = (f + f)/2

and =(f) = (f − f)/(2i). Since the generators of J are complex linear combinations

of the generators of I and I, we have J ⊂ I + I. Similarly, the generators of I

are complex linear combinations of the generators of J , so I ⊂ J . By symmetry,

I ⊂ J , so I + I ⊂ J . Therefore, J = I + I, which implies that J is the ideal of

Xα(t) ∩Xα(t).

III.2 Computations in Real Schubert Calculus

We use modern software tools to study the real inverse Wronski problem as a prob-

lem in Schubert calculus. Computation has been used to symbolically solve real

osculating instances of Schubert problems with the more restrictive hypothesis that

all osculation points are real [12, 14, 32, 38]. The framework used to interface with

networks of computers for [12] (later adapted for [14]) is described in [20]. We adapt

this framework to study Eremenko-Gabrielov type lower bounds for general Schubert

problems (those involving more than two non-hypersurface Schubert varieties).

The data collected in [12, 14] were gathered using the computer algebra system

Singular with custom libraries. We use the determinantal equations of Proposition

II.3.15 to formulate a real instance X of a Schubert problem (α1, . . . , αm) involv-

ing Schubert varieties which osculate the Veronese curve γ(t) in local coordinates

S(1, . . . , k), Sα1 , or Sα
2

α1 on Gr(k, V ), Xα1(0), or Xα1(0) ∩Xα2(∞) respectively.

We use the real generators from Proposition III.1.4 to model the ideal of an instance

X of a Schubert problem, and we apply the tools of Section II.1 to count the real

solutions. That is, we calculate an eliminant and then determine the number of

real roots using a Sturm-Habicht sequence. Our custom library calculates the real

generators, and schubert.lib and the standard Singular libraries perform the

remaining tasks. This is structured with efficiency and repeatability in mind. We

use the software architecture of [20], adapting the code of Hillar, et al.

We use a database hosted by the mathematics department at Texas A&M University

to keep track of instances of Schubert problems we wish to compute. It also records
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results of computations, data needed to repeat the (pseudo)random computations,

and enough information to recover from most errors. The database is automatically

backed up at regular intervals using mysqldump, and when otherwise unrecoverable

errors occur, we use a perl script designed to repair the damaged part of the database

using a recent backup.

Using algorithms based on the Littlewood-Richardson rule, we generated Schubert

problems and determined the numbers of complex solutions to corresponding in-

stances. For each Schubert problem α studied, we run timing tests to compare

computational efficiency subject to a choice of local coordinates, S(1, . . . , k), Sα1 or

Sα
2

α1 . After making practical decisions, we assign a corresponding computation type

to α, which denotes whether instances of α are to be solved using the coordinates

S(1, . . . , k) for all osculation types or using S(1, . . . , k) for some types and Sα1 or Sα
2

α1

for others. We then load the Schubert problem α into the database. This is auto-

mated by a script which generates an entry in a table used to keep track of pending

requests to solve a reasonable number of random instances of α.

This experiment is automated. The scheduling program crontab periodically invokes

scripts which check how many computations are running and submits job requests

to a supercomputer. Each job runs a perl wrapper which communicates with the

database using standard DBI::mysql and DBD::mysql modules. The main procedure

queries the database for a computation request and then generates a Singular input

file which models instances of the requested Schubert problem. It then invokes

Singular to run the input file. The Singular process performs all tasks needed

to count the number of real points in a randomly generated instance, and the perl

wrapper records the results in the database.

This project continues to run on the brazos cluster at Texas A&M University, a

high-performance computing cluster. We also benefited from the night-time use of

the calclab, a Beowulf cluster of computers used by day for calculus instruction.

III.3 Topological Lower Bounds and Congruences

We denote the Schubert condition α in a visually appealing way by its Young diagram

d(α), which is a northwest justified collection of boxes with n− k + i− αi boxes in

the ith row for i = 1, . . . , k. Immediately, one verifies that the number of boxes in
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d(α) is equal to |α|, giving us immediate access the the codimension of XαF•.

Example III.3.1. The Schubert condition α = (3, 6, 8) on Gr(3,C8) has Young

diagram

d(α) = .

The shape above and to the left of the path p(α) from Definition II.5.10 is the same

as the shape of d(α). To express α in a compact way, we introduce exponential

notation. Let α̂ = (α̂1, . . . , α̂p) denote the distinct Schubert conditions comprising

the Schubert problem α, and let a = (a1, . . . , ap) be an exponent vector. Then

α̂a := ((α̂1)a1 , . . . , (α̂p)ap) and α represent the same Schubert problem problem if α

consists of exactly ai copies of α̂i for i ∈ [p]. We will often use d(α) in lieu of α when

using exponential notation. For an example, let α̂1 = (5, 6, 9), α̂2 = (5, 7, 9), α̂3 =

(6, 8, 9) ∈
(

[3]
9

)
. The following represent the same Schubert problem,

α := (α̂1, α̂1, α̂2, α̂2, α̂2, α̂3)←→ ( 2, 3, ) =: α̂a .

Recall in a real osculating instance of a Schubert problem α, some osculation points

are real, while the rest come in complex conjugate pairs. Given such an instance, we

write rα to denote the number of Schubert varieties involved with Schubert condition

α osculating at a real point.

Suppose α̂ and α represent the same Schubert problem. If α̂j = α, then rα ≡ aj

mod 2. We call (rα | α ∈ α̂) the osculation type of the corresponding instance of α.

Example III.3.2. The instance

X (0) ∩X (∞) ∩X (1) ∩ X (2) ∩X (i) ∩X (−i)

in Gr(3,C6) has osculation type (r , r ) = (3, 1).

The Mukhin-Tarasov-Varchenko Theorem II.7.1, asserts that a real instance of a

Schubert problems with all osculation points real has all solutions real. Eremenko

and Gabrielov gave examples with other osculation types in which no solutions are

real. Thus the number of real solutions to a real osculating instance of a Schubert

problem is sensitive to the osculation type, and we track this in our data.

Table III.1 shows the observed frequency of real solutions after computing 400,000
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Table III.1: Frequency table with inner border.

# Real 7

Total
Solutions r = 7 r = 5 r = 3 r = 1

0 8964 8964
2 47138 67581 114719
4 77134 47044 22105 146283
6 100000 22866 5818 1350 130034

Total 100000 100000 100000 100000 400000

random instances of ( , 7) in Gr(2,C8). We leave a cell blank if there are no

observed instances of the given type with the given number of real solutions. Having

tested 100,000 instances with exactly one pair of complex conjugate osculation points

(r = 5), none had only two real solutions, but 77,134 had exactly four real solutions.

We note that there are always six complex solutions to the Schubert problem, and

the observed distribution in the r = 7 column is forced by the Mukhin-Tarasov-

Varchenko Theorem II.7.1, since all osculation points are real. Collecting the data

in Table III.1 consumed 1.814 GHz-days of processing power.

In [9], Eremenko and Gabrielov gave lower bounds on the number of real solutions

to a real osculating instance of a Schubert problem involving at most one Schubert

variety not given by . In [36], Soprunova and Sottile extended these lower bounds

to Schubert problem involving two nonhypersurface Schubert varieties. We refer to

these as topological lower bounds. The following definitions allow us to calculate

topological lower bounds.

Definition III.3.3. Let α ∈
(

[n]
k

)
be a Schubert condition. The complementary

Schubert condition α′ ∈
(

[n]
k

)
is

α′i := n+ 1− αk+1−i , for i = 1, . . . , k .

It is illustrative to draw the Young diagrams of α and α′ inside the diagram d(1, . . . , k).

For example, if k = 3, n = 4, α = (2, 5, 7), then

d(α) = and d(α′) = .
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Recall that the Bruhat order on Schubert conditions α ≤ β is given by α ≤ β for

i ∈ [k]. This induces an order on diagrams so that d(α) ≤ d(β) if d(α) fits inside

(.β). For example, (1, 3, 6) ≤ (3, 5, 7) in
(

[7]
3

)
, so

≤ .

Definition III.3.4. Given α, β ∈
(

[n]
k

)
with α ≤ β in the Bruhat order, the skew

Young diagram d(α/β) := d(α)/d(β) is the diagram d(α) with the boxes of d(β)

removed.

For Gr(3,C7),

λ := d((1, 3, 6)/(3, 5, 7)) =

/
= . (III.2)

A standard Young tableau of shape d(α/β) is an association between the boxes of a

skew Young diagram d(α/β) with N boxes and the set [N ] which is increasing in

each row from left to right and increasing in each column from top to bottom. We

give examples of standard Young tableaux of shape λ defined in Equation (III.2) ,

1 2
3 4

5

1 3
2 5

4

The standard Young tableau of shape d(α/β) which associates the boxes of d(α/β)

to the set [N ] in order from left to right starting with the top and working down is

called the standard filling of d(α/β). The tableau on the left pictured above is the

standard filling of λ. The set of standard Young tableaux of shape d(α/β) is denoted

SYT(d(α/β)).

The diagram has two standard fillings,

1 2
3 4

1 3
2 4 ,

so # (SYT ( )) = 2.

A tableau of shape may have i in the southwest box for i ∈ [5]. The order of the

41



other boxes given by their entries (1, . . . , î, . . . , 5) is the same as the order in one of

the standard tableaux of shape , so

#
(

SYT
( ))

= 5 ·#
(
SYT

( ))
= 10 .

Every standard Young tableau T of shape d(α/β) has a parity, sign(T ) = ±1, which

is the parity of the permutation mapping the standard filling to T .

Definition III.3.5. Suppose α, β ∈
(

[n]
k

)
, and α′ ≤ β. The sign imbalance of α′/β

is

Σ(α, β) :=

∣∣∣∣∣∣
∑

T∈SYT(α′/β)

sign(T )

∣∣∣∣∣∣ .
Proposition III.3.6 (Soprunova-Sottile). Suppose α, β ∈

(
[n]
k

)
, α′ ≤ β, and

X := Xα(t1) ∩Xβ(t2) ∩X (t3) ∩ · · · ∩X (tm)

is a real osculating instance of a Schubert problem. If α 6= or t1 ∈ RP1, then X

contains at least Σ(α, β) real points.

The lower bound Σ(α, β) is obtained by calculating the topological degree of a map,

and we it a topological lower bound. If α = β = , then Σ(α, β) = σ(k, n) from

definition (II.14).

Of the 756 Schubert problems we have studied so far, 267 of them have associated

topological lower bounds Σ(α, β) for the numbers of real solutions, and the other 489

involve intersections of more than two hypersurfaces. We calculated sign imbalances

and tested the sharpness of topological lower bounds Σ(α, β). In cases where k and

n are even, Eremenko and Gabrielov showed that their lower bound Σ( , ) = 0

is sharp. This applies to three of the 267 Schubert problems we studied with k = 2

and n = 4, 6, or 8. Our symbolic computations verified sharpness for 258 of the

remaining 264 cases tested. We do not give witnesses to these verifications here, but

our stored data are sufficient for repeating these calculations.

Our data suggest that the other six lower bounds may be improved. Table III.2

gives frequency tables associated to two of these Schubert problems, ( , , 7)

and ( , , 7), each with 35 solutions in Gr(4,C8). Theorem II.7.1 asserts that
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Table III.2: Topological lower bound 1, but observed lower bound 3.

# Real 7 7

Solutions r = 5 r = 3 r = 1 r = 5 r = 3 r = 1

1
3 16038 24070 16033 24184
5 5278 34048 51572 5224 34096 51017
7 15817 30992 28808 15769 30943 29449
9 41717 34231 48405 41872 33992 48248
11 17368 24601 23458 17465 24839 23756
13 15011 14761 8559 14829 14805 8560
15 13556 10197 4686 13471 10478 4635
17 7589 6255 2788 7650 6202 2816
19 13462 9744 3329 13295 9670 3081
21 5244 3071 1156 5337 3093 1060
23 4785 2256 581 4816 2169 605
25 17219 5535 1259 17335 5586 1262
27 1587 834 176 1530 814 184
29 3946 1236 235 4037 1242 289
31 3558 892 159 3498 876 157
33 711 307 73 631 262 75
35 33152 5002 686 33241 4900 622

Total 200000 200000 200000 200000 200000 200000

if r = 7 then all 35 solutions are real. We verified this fact 200,000 times for each

problem, but we omit the data from the frequency table. Since nonreal solutions

come in pairs, we expect expect only odd numbers of real solutions, so we omit rows

corresponding to even numbers of real solutions.

The problems given in Table III.2 are dual to each other. It is a consequence of the

duality studied in Chapter IV that for a fixed set of osculation points these problems

have the same number of real solutions. This explains the remarkable similarity

between the two distributions in Table III.2, and it implies that they have the same

lower bounds.

The Schubert problems ( , , 6) and ( , , 6) with 30 solutions in Gr(4,C8)

are also dual to each other, and their frequency tables bear remarkable similarity.

They have topological lower bound Σ = 0, but after calculating 1.6 million instances
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Table III.3: Congruence modulo four.

# Real 9

Total
Solutions r = 7 r = 5 r = 3 r = 1

2 1843 30223 34314 66380
6 13286 51802 93732 151847 310667
10 69319 57040 47142 35220 208721
14 18045 17100 10213 6416 51774
18 13998 12063 5532 2931 34524
22 22883 15220 5492 2345 45940
26 4592 2767 839 362 8560
30 11603 4634 1194 450 17881
34 3891 2056 504 181 6632
38 473 211 65 22 771
42 40067 6884 973 226 48150

Total 200000 200000 200000 200000 800000

of each we never observed less than 2 real solutions.

Table III.3 shows that we always observed at least two real solutions to ( 9), but

Σ( , ) = 0, so its topological bound is apparently not sharp.

More strikingly, while the number of real solutions to a real instance of this problem

must be congruent to 42 mod 2, we only observed instances with 42 mod 4 real

solutions. The stronger congruence modulo four in the number of real solutions is

due to a geometric involution which we explain in Chapter IV. Thus we will prove

that Σ( , ) is not a sharp lower bound for the number of real solutions to a real

osculating instance of ( 9).

The sixth and final topological lower bound which we did not find to be sharp is

Σ( , ) = 0 for ( , 8) having 90 complex solutions in Gr(4,C8). We omit the

rather large frequency table but note that we observed the number of real solutions

to be congruent to 90 modulo four. This congruence is related to that in Table III.3.

In IV, we see that two is the sharp lower bound for real osculating instances of this

Schubert problem.

44



III.4 Lower Bounds via Factorization

For each Grassmannian, we describe a special Schubert problem α, and following

joint work with Hauenstein and Sottile [16], we show that the number of real solu-

tions to an instance of α has a lower bound depending only on osculation type. In

particular, we explain the inner border in Table III.1 related to the Schubert problem

( , 7) in Gr(2,C8).

Definition III.4.1. Let := (2, . . . , k, n) ∈
(

[n]
k

)
. Note that the diagram d( ) has

n − k − 1 boxes in the ith row for i < k and no boxes in the kth row. Equivalently,

d( ) has k − 1 boxes in the jth column for j < n− k and no boxes in the (n− k)th

column.

For Gr(2, 8), d( ) = , and for Gr(4, 8), d( ) = . There are local coordi-

nates similar to S for X (∞), given by matrices M of the form

M :=



c1 c2a2 · · · cn−kan−k
bk
bk−1

0 0 0 · · · 0

0 0 · · · 0 1
n−k+2

bk−1

bk−2
0 0 · · · 0

0 0 · · · 0 0 2
n−k+3

bk−2

bk−3
0 · · · 0

...
...

...
...

. . .
. . .

. . .
. . .

...

0 0 · · · 0 0 · · · 0 k−2
n+3

b2
b1

0

0 0 · · · 0 0 · · · 0 0 k−1
n+2

b1


,

where a2, . . . , an−k, b1, . . . , bk are coordinates, b1, . . . , bk are nonzero, and ci are con-

stants,

ci := (−1)n
(n− k − i)!(i− 1)!

1!2! · · · (n− k − 1)!(n− k + 1)!
.

The constants ci are introduced to simplify further calculations. Consider the Schu-

bert problem α = ( , n−1) and distinct points t1, . . . , tn ∈ P1 with t1 = ∞. The

intersection

X := X (∞) ∩X (t2) ∩ · · · ∩X (tn) (III.3)

is a real osculating instance of α. We examine the determinantal conditions defining

X (t) for t = t2, . . . , tn in the local coordinates M . We write Mβ to denote the

maximal minor of M involving columns β, and we write (Fn−k(t))βc to denote the

maximal minor of Fn−k(t) involving columns βc. Expanding along the rows of M
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gives

det

(
M

Fn−k(t)

)
= (−1)k(n−k)

∑
β∈
(

[n]
k

)(−1)|β|Mβ(Fn−k(t))βc . (III.4)

The nonzero maximal minors of M involve at most one of the first n − k columns,

so they are indexed by k-tuples of the form

[i, ĵ] := (i, n− k + 1, . . . , n̂−k+j, . . . , n) ,

with i ∈ [n − k] and j ∈ [k], or of the form [n − k]c := (n − k + 1, . . . , n). Defining

a1 := 1 and b0 := 1, we have

M[i,̂j] =
1(

n−k+j
j−1

)ciaibk−j and M[n−k]c = bk .

For any β ∈
(

[n]
n−k

)
we have

(Fn−k(t))β = det


tβ1−1 · · · tβn−k−1

(β1 − 1)tβ1−2 · · · (βn−k − 1)tβn−k−2

...
...

(β1−1)!
(β1−n+k)!

tβ1−n+k · · · (βn−k−1)!

(βn−k−n+k)!
tβn−k−n+k



= t||β|| det


1 · · · 1

β1 − 1 · · · βn−k − 1
...

...
(β1−1)!

(β1−n+k)!
· · · (βn−k−1)!

(βn−k−n+k)!

 ,

where ||β|| := k(n−k)−|β| is the dimension of Xβ(t) ⊂ Gr(n−k,Cn). So (Fn−k(t))β

is t||β|| times the Van der Monde determinant,

(Fn−k(t))β = t||β||
∏
i<j

((βj − 1)− (βi − 1)) = t||β||
∏
i<j

(βj − βi) .
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Thus the determinant (Fn−k(t))[i,̂j]c is

tn−k+j−i1!2! · · · (i− 2)!
i!

1

(i+ 1)!

2
· · · (n− k − 1)!

n− k − i
(n− k + j)!

(j − 1)!

1

n− k + j − i
,

which implies

M[i,̂j](Fn−k(t))[i,̂j]c = (−1)ntn−k+j−i 1

n− k + j − i
aibk−j .

Referring back to (III.4), we see

det

(
M

Fn−k(t)

)
= (−1)k(n−k)(−1)|[n−k]c|M[n−k]c(Fn−k(t))[n−k]

+(−1)k(n−k)

n−k∑
i=1

k∑
j=1

(−1)|[i,̂j]|M[i,̂j](Fn−k(t))[i,̂j]c

= bk + (−1)n
n−k∑
i=1

k∑
j=1

(−t)n−k+j−i 1
n−k+j−iaibk−j =: f(t) .

Taking the derivative of f(t) yields

(−1)n
n−k∑
i=1

k∑
j=1

(−1)(−t)n−k+j−i−1aibk−j ,

which may be factored,

f ′(t) = (−1)n

(
n−k∑
i=1

(−t)n−k−iai

)(
k∑
j=1

(−t)j−1bk−j

)
=: A(t)B(t) , (III.5)

so that A(t) and B(t) are uniquely defined monic polynomials with coefficients

(−1)i−1ai and (−1)ibi respectively. The coefficients a2, . . . , an−k, b1, . . . , bk are co-

ordinates of a solution to the instance X of α from Equation (III.3) if and only

if f(t) has roots at t2, . . . , tn. There are no other roots, because #{t2, . . . , tn} =

k(n − k) − | | = n − 1 = deg f(t). A solution to an instance of X corresponds to

a real polynomial f(t) with r real roots. Applying Rolle’s Theorem, we see that

f ′(t) has at least r − 1 real roots.

The polynomials A(t) and B(t) have all coefficients real if and only if ai, bj ∈ R for
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all i, j (bk is real because it is an integer multiple of f(0)). This implies the following.

Theorem III.4.2. Let X be the real osculating instance of α from Equation (III.3).

The number of real points in X is equal to the number of factorizations f ′(t) =

A(t)B(t) from Equation (III.5), such that A(t), B(t) are monic real polynomials of

degree n− k − 1, k − 1 respectively.

Applying the action of GL(2,R) to the osculation points induces a real action on the

solutions, so our discussion involving t1 =∞ is general, and we have proven Theorem

III.4.2. Soprunova and Sottile [36] discovered the use of an auxiliary factorization

problem to rule out possible numbers of real solutions to geometric problems.

The polynomial f ′(t) in Theorem III.4.2 has degree n− 2, and it has at least r − 1

real roots, where (1, r ) is the osculation type of X. Increasing the number of real

roots of a polynomial of fixed degree cannot decrease its number of real factorizations,

so we have a lower bound on the number of real solutions to X.

Corollary III.4.3. Let X be the real osculating instance of α from Equation (III.3).

If X has osculation type (1, r ), then the number of real points in X is at least

the number of factorizations of a monic real polynomial g(t) = a(t)b(t) of degree

n− 2 with r − 1 real roots, such that a(t), b(t) are monic real polynomials of degree

n− k − 1, k − 1 respectively.

Furthermore, if k = 2p + 1 is odd and n = 2p + 2q + 2 is even, then the number of

real points in X is at least
(
p+q
p

)
, regardless of osculation type.

Proof. We have already proven the first statement. For the second statement, we

observe that if f ′(t) has no real roots, then it is a product of p+q complex conjugate

pairs of linear factors. The factorization f ′(t) = A(t)B(t) from Equation (III.5) is

real if and only if B(t) is the product of p complex conjugate pairs of linear factors.

This gives the stated lower bound.

If k is even or n is odd, then there may be no real factorizations of f ′(t), which

implies the trivial lower bound on the number of real points in X.

Example III.4.4. Consider the Schubert problem ( , 7) in Gr(2,C8), given

in Table III.1. The lower bounds in the table are given by counting factorizations

of a monic real degree-six polynomial f ′(t) into a monic real degree-five polynomial
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Table III.4: Irregular gaps.

# Real 7

Total
Solutions r = 7 r = 5 r = 3 r = 1

0 37074 37074
2 0
4 66825 47271 114096
6 0
8 85080 30232 14517 129829
10 0
12 0
14 0
16 0
18 0
20 100000 14920 2943 1138 119001

Total 100000 100000 100000 100000 400000

A(t) and a monic real degree-one polynomial B(t). Since f ′(t) has at least r − 1

real factors, there are
(
r −1

1

)
= r −1 ways to factor f ′(t) = A(t)B(t) with A,B real.

Example III.4.5. Consider the Schubert problem ( , 7) in Gr(4,C8), given in

Table III.4. The observed lower bounds are obtained by counting real factorizations

of the degree six polynomial f ′ into two monic degree three polynomials A,B. If

r = 1, then f ′ may have no real factors and thus no real cubic factor A, so the

lower bound is zero.

If r = 3, then f ′ has at least two real factors w, x and two pairs of complex factors

(y, y) and (z, z). So f ′ has real factorizations given by A = wyy, wzz, xyy, xzz, so

the lower bound is four.

Similar arguments show that r = 5 or 7 impose lower bounds 8 and 20.

Example III.4.6. Corollary III.4.3 asserts that every real osculating instance of

( , 5) in Gr(3,C6) has at least two real solutions, and every real osculating in-

stance of ( , 7) in Gr(3,C8) has at least three real solutions. Indeed, we observe

this in Tables III.5 and III.6 respectively.
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Table III.5: Nontrivial lower bound.

# Real 5

Total
Solutions r = 5 r = 3 r = 1

0 0
2 64775 87783 152558
4 0
6 100000 35225 12217 147442

Total 100000 100000 100000 300000

Table III.6: Another nontrivial lower bound.

# Real 7

Total
Solutions r = 7 r = 5 r = 3 r = 1

1 0
3 47274 76702 123976
5 0
7 77116 46912 21909 145937
9 0
11 0
13 0
15 100000 22884 5814 1389 130087

Total 100000 100000 100000 100000 400000
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III.5 Gaps

Several of the Schubert problems we studied had unexpected gaps in the possible

numbers of real solutions. One may see this in Tables III.4–III.6. That we never

have 12 or 16 solutions in Table III.4 is particularly unexpected, as this problem

satisfies a congruence modulo four, and 12 ≡ 16 ≡ 20 mod 4. The gaps in all three

of these tables may be fully explained by Theorem III.4.2. Proposition IV.3.7 from

Chapter IV gives an alternative explanation for the congruence modulo four observed

in Tables III.4 and III.5 (but not for the congruence in Table III.6).

A solution to an instance of the Schubert problem given in Table III.4 is real if

and only if its coordinates are given by a real factorization f ′(t) = A(t)B(t) as in

Theorem III.4.2. Since the number r of real factors of f ′(t) is at least r −1, we have

r = r − 1, r + 1, . . . , 6. For each of these r-values, the number of real solutions to

X is exactly the lower bound of Corollary III.4.3 associated to the osculation type

(1, r). Thus the set of lower bounds given by Corollary III.4.3 is the set of possible

numbers of real points in X, given by Theorem III.4.2.

Similar analysis explains the gaps found in Tables III.5 and III.6. We give an example

in a Grassmannian of higher dimension.

Example III.5.1. Consider the Schubert condition for Gr(5, 10). The lower

bounds of Corollary III.4.3 corresponding to α = ( , n−1) are 6, 6, 14, 30, or 70.

Thus any real osculating instance of α has exactly 6, 14, 30, or 70 real solutions.

The lower bound of 6 which is independent of osculation type is an example of the

nontrivial lower bound given by Corollary III.4.3. This lower bound is the topological

lower bound Σ( , ).

Let

· · ·

... =: λ(p, q)

be the skew-diagram with p boxes in the rightmost column and q boxes in the bottom

row.
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Proposition III.5.2. Let p = k − 1 and q = n− k − 1. If p ≥ 2 or q ≥ 2, then∑
T∈SYT(λ(p,q))

sign(T ) =
∑

T∈SYT(λ(p,q−2))

sign(T ) +
∑

T∈SYT(λ(p−2,q))

sign(T ) .

Proof. We first observe that both sides of the equation are zero unless p and q are

even. Thus we only need to prove one base case p = q = 2 to use induction. For the

base case, we observe∑
T∈SYT(λ(2,0))

sign(T ) +
∑

T∈SYT(λ(0,2))

sign(T ) = 1 + 1 = 2 .

To calculate
∑

T∈SYT(λ(2,2)) sign(T ), we compare the standard Young tableaux of the

shape , of which there are six.

3 4
2
1

2 4
3
1

2 3
4
1

1 4
3
2

1 3
4
2

1 2
4
3

The first tableau pictured above has sign +1 by definition, and the others have signs

−1,+1,+1,−1,+1 respectively. These sum to +2, proving the base case.

For the inductive step, we denote the two largest numbers appearing in a standard

Young tableau of shape λ(p, q) by Y := p + q − 1 and Z := p + q. Observe that

Z occurs in the last box of the single row of λ(p, q) or in the last box of the single

column of λ(p, q). Similarly, Y occurs in one of the last two boxes of either the single

row or the single column. We draw the four possible configurations of the numbers

Y,Z is a standard Young tableau of shape λ(p, q).

Z
Y

Y
Z

Y Z
Z
Y

Let T1 ⊂ SYT(λ(p, q)) be the set of standard Young tableaux of the first type

(Y appears in the single column, and Z appears in the single row). Similarly, let

T2, T3, T4 ⊂ SYT(λ) denote the sets of tableaux of the second, third, and fourth types

respectively. Since the tableaux of T2 are obtained by applying the transposition
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Y↔ Z to T1, we have ∑
T∈T1

sign(T ) +
∑
T∈T2

sign(T ) = 0 .

Therefore, we need only consider the parity of tableaux of the third and fourth types,∑
T∈SYT(λ(p,q))

sign(T ) =
∑
T∈T3

sign(T ) +
∑
T∈T4

sign(T ) .

Deleting the columns of tableaux in T3 which contain Y,Z gives a bijection

π3 : SYT(λ(p, q))→ SYT(λ(p, q − 2)) ,

which one immediately verifies has the property sign(π3(T )) = sign(T ) for T ∈
SYT(λ(p, q)). Therefore,∑

T∈SYT(λ(p,q))

sign(T ) =
∑

T∈SYT(λ(p,q−2))

sign(T ) +
∑
T∈T4

sign(T ) .

Deleting the rows of T ∈ T4 which contain Y,Z gives a bijection π4 : SYT(λ(p, q))→
SYT(λ(p− 2, q)). The standard filling of λ(p, q) has the same parity as the tableaux

given by assigning (1, 2, . . . , p − 2,Y,Z) to the column and (p − 1, p, . . . , p + q − 1)

to the row. Thus, sign(π4(T )) = sign(T ) for T ∈ SYT(λ(p, q)), and we have our

result.

The skew diagram λ(p, q) as a product of two chains, one of length p and one of

length q. Sottile and Soprunova studied products of chains and showed a connection

between lower bounds obtained by factorization and topological lower bounds [36].

The following is a corollary to Proposition III.5.2.

Theorem III.5.3. Suppose k = 2p+ 1 is odd, n = 2p+ 2q+ 2 is even, and X is the

real osculating instance of α from Equation (III.3). The lower bound
(
p+q
p

)
on the

number of real points in X coincides with the topological lower bound Σ( , ).

There are Schubert problems α not of the form ( , n−1) whose frequency tables

exhibit gaps, sometimes apparently due to unexpected upper bounds on the numbers

of real solutions for instances of α with certain osculation types. Table III.7 reporting
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Table III.7: Unexpected upper bound.

# Real 2

Total
Solutions r = 2 r = 0

0 148450 148450
2 64662 64662
4 99465 99465
6 59 59
8 87364 87364
10 0
12 0
14 0
16 400000 400000

Total 400000 400000 800000

Table III.8: Unexpected lower bounds and upper bounds.

# Real
2 3

Solutions
r = 2 r = 2 r = 0 r = 0 Total
r = 3 r = 1 r = 3 r = 1

0 27855 17424 45279
2 11739 82576 100000 194315
4 22935 22935
6 100000 37471 137471

Total 100000 100000 100000 100000 400000

on the Schubert problem ( , , , , ) in Gr(4,C8) exhibits such behavior.

There are also problems with no gaps which have apparent upper bounds lower than

the number of complex solutions for certain osculation types. Table III.8 exhibits

remarkable upper bounds for ( , , , , ) in Gr(3,C6). Unexpected upper

bounds were far less common than nontrivial lower bounds in the problems we tested.
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CHAPTER IV

A CONGRUENCE MODULO FOUR

Our report in Chapter III includes Schubert problems for which the number of real

solutions is fixed modulo four. Table III.3 representing the Schubert problem ( 9) in

Gr(3,C6) and Table III.4 representing ( , 7) in Gr(4,C8) exhibit this congruence.

We observed this phenomenon in several other problems sharing the property that

each defining Schubert condition α satisfies α = α⊥. We prove this congruence

modulo four and thereby find new invariants in enumerative real algebraic geometry.

The proof uses a geometric involution that fixes Schubert varieties Xα(t) ⊂ Gr(k, 2k)

with α = α⊥. This chapter follows joint work with Sottile and Zelenko [19].

IV.1 The Lagrangian Grassmannian

We retain the notation of Chapters II and III. Throughout this chapter, n = 2k. We

denote the real points of a variety X by X(R).

Let J be a skew-symmetric 2k × 2k matrix with determinant 1. The matrix J gives

an isomorphism J : V ∗ → V defined by v 7→ (Jv)T . The symplectic group Sp(V )J

is the set of all elements h of SL(V ) which satisfy J = hJhT . Let 〈· , ·〉J denote a

nondegenerate alternating form on V , called a symplectic form,

〈u, v〉J := uJvT for u, v ∈ V .

Given an l-plane H ∈ Gr(l,C2k), let H∠ ∈ Gr(2k − l, V ) denote its skew-orthogonal

complement (with respect to J) in V ,

H∠ := JH⊥ .

Since 〈· , ·〉 is nondegenerate, dim(H)+dim(H∠) = 2k and (H∠)∠ = H for any linear

subspace H ⊂ V . We call a flag F• in V isotropic (with respect to J) if for F∠
i = F∠

2k−i

for i < 2k.
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Since n = 2k, there is an involution

∠ : Gr(k, V ) −→ Gr(k, V ) ,

given by H 7→ H∠, i.e. ∠ = J ◦ ⊥. A k-plane H ∈ Gr(k, V ) is Lagrangian (with

respect to J) if H = H∠. We note that if F• is an isotropic flag in V , then Fk is

Lagrangian.

Consider skew-symmetric 2k × 2k matrix

J̃ =



0 · · · 0 0 −1
...

... . .
.

0 · · · 0 −1 0

0 1 0 · · · 0

. .
. ...

...

1 0 0 · · · 0


with determinant 1 and the real parametrized rational normal curve

γ̃(t) =

(
1, t,

t2

2!
, . . . ,

tk

k!
,
(−1)1tk+1

(k + 1)!
, . . . ,

(−1)k−1t2k−1

(2k − 1)!

)
. (IV.1)

The flag F•(t) osculating γ̃ at γ̃(t) has basis (γ̃(t), γ̃′(t), . . . , γ̃(2k−1)). A calculation

using Equation (IV.1) shows that if i < j, then

〈γ̃(i−1)(t), γ̃(j−1)(t)〉J̃ =

2k+1−i−j∑
l=0

(−1)i+j+l

(2k + 1− i− j)!
(

2k+1−i−j
l

)
.

If i + j 6= 2k + 1 then the dot product is zero. Thus F•(t) is isotropic with respect

to J̃ .

One may obtain any parametrized rational normal curve γ(t) by applying the right

action of g ∈ SL(V ) to γ̃(t), given by γ(t) = γ̃(t)g. If γ(t) is real, then g may be

chosen to be real. The skew-symmetric matrix J := g−1J̃(g−1)T with determinant

1 gives an isomorphism J : V ∗ → V . All symplectic groups are conjugate by this

action of SL(V ).
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Henceforth, we fix a real g ∈ SL(V ), thus fixing a real curve γ(t) and a real matrix J

which identifies V ∗ with V . Thus we omit subscripts of J , writing 〈· , ·〉 and Sp(V ).

To facilitate proofs, we may use the real action of SL(V ) to give a particular curve

γ(t) and a corresponding matrix J .

Proposition IV.1.1. Osculating flags are isotropic.

Proof. Flags osculating the rational normal curve γ(t) are isotropic with respect to

J , because

〈ug, vg〉 = ugJ(vg)T = uJ̃vT = 〈u, v〉J̃ .

The rest follows from our discussion above.

For X ⊂ Gr(k, V ), let X∠ denote the Lagrangian points of X, that is, the points

fixed by ∠. The Lagrangian Grassmannian LG(V ) is the subset of the Grassmannian

consisting of Lagrangian k-planes,

LG(V ) := Gr(k, V )∠ =
{
H ∈ Gr (k, V ) | H = H∠

}
.

We have observed that Gr(k, V ) is a homogeneous space for GL(V ). Since scaling

generators does not affect their span, Gr(k, V ) is a homogeneous space for SL(V ) as

well. The Lagrangian Grassmannian is a homogeneous space of Sp(V ).

Proposition IV.1.2. The Lagrangian Grassmannian LG(V ) ⊂ Gr(k, V ) is a sub-

variety of dimension
(
k+1

2

)
.

Proof. Without loss of generality, suppose

J =

(
0 − Idk

Idk 0

)
. (IV.2)

Recall definition (II.9) of the open cover G of the Grassmannian. For any α ∈
(

[2k]
k

)
,

the matrices of S(α) give coordinates for the dense set Gα ⊂ Gr(k, V ). A matrix

M ∈ S(α) gives coordinates for a point in LG(V ) if an only if for any two rows

u, v of M we have 〈u, v〉 = 0. This gives k2 polynomial equations which establish

LG(V ) ⊂ Gr(k, V ) as a subvariety.

One may choose α so that all of the equations given above are linear (α = [k], for
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example). Since 〈u, v〉 = −〈v, u〉 there are
(
k
2

)
linearly independent equations defining

LG(V ). Since dim(S(α)) = k2, we have dim(LG(V )) = k2 −
(
k
2

)
=
(
k+1

2

)
.

Remark IV.1.3. One may choose a standard basis of V in such a way that the

k × 2k matrix [Idk |M ] of parameters with M symmetric give local coordinates for

LG(V ).

Recall the definition of α⊥, and that the rows of d(α) are the columns of d(α⊥).

Noting that ∠ = J ◦ ⊥, Proposition II.5.6 implies the following.

Proposition IV.1.4. Suppose F• is isotropic and α ∈
(

[2k]
k

)
. Then ∠(XαF•) =

Xα⊥F•.

Definition IV.1.5. The Schubert condition α ∈
(

[2k]
k

)
is symmetric if α = α⊥. A

Schubert problem α is symmetric if each Schubert condition in α is symmetric.

For Gr(3,C6), we give diagrams of some symmetric Schubert conditions

d(3, 5, 6) = , d(2, 4, 6) = , d(2, 3, 6) = ,

and some non-symmetric Schubert conditions

d(1, 5, 6) = 6= , d(2, 4, 5) = 6= .

We give the key to proving the main theorems of this chapter.

Corollary IV.1.6. If α is a symmetric Schubert problem, and X is an osculating

instance of α, then X is stable under the Lagrangian involution, X∠ = X.

Proof. Proposition IV.1.1 asserts that the flags giving the instance X are isotropic.

Thus Proposition IV.1.4 establishes X as an intersection of Schubert varieties which

are stable under ∠. Therefore, X is stable under ∠.

Proposition IV.1.4 allows us to define Schubert varieties for the Lagrangian Grass-

mannian.

Definition IV.1.7. Suppose F• is isotropic and α ∈
(

[2k]
k

)
is symmetric. Then

YαF• := XαF• ∩ LG(V ) is a Lagrangian Schubert variety.

The length `(α) of a Schubert condition α ∈
(

[2k]
k

)
is the number of entries in α no
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greater than k,

`(α) := #{αi ∈ α | αi ≤ k} .

The length `(α) is the number of boxes in the main diagonal of the Young diagram

d(α), and we may write `(d(α)) to denote `(α). We illustrate this by giving Young

diagrams with their main diagonals shaded:

`
( )

= 1 , `
( )

= 2 , `
( )

= 2 .

Proposition IV.1.8. Let α be a symmetric Schubert condition and F• an isotropic

flag. The codimension of YαF• in LG(V ) is

‖α‖ :=
|α|+ `(α)

2
.

Proof. Without loss of generality, we use the symplectic form defined by

J =

(
0 − Idk

Idk 0

)
, (IV.3)

and a corresponding isotropic flag F• which makes the codimension of YαF• apparent.

Consider the path p(α) defined in Proposition II.5.12 (the northeast to southwest

path defining the lower border of the Young diagram d(α)). We label the vertical

edges of p(α) with elements of the standard basis e1, . . . , ek from top to bottom, and

we label the horizontal edges with ek+1, . . . , e2k from left to right. Reading the labels

along the path p(α) gives a basis f for a flag F•.

As an example, we draw the labeled path associated to the symmetric Schubert

condition (2, 5, 6, 8) ∈
(

[8]
4

)
.

e4
e5

e3

e2
e6 e7

e1
e8

Since α is symmetric, the ith vertical edge counting from the top is transposed

with the ith horizontal edge counting from the left, so reflecting the path along

the antidiagonal transposes ei with ei+k for i ∈ [k]. Equivalently, if fi = ej and

59



f2k−i+1 = el then |j − l| = k. Thus 〈fi , fj〉 = δj,2k−i+1, and F• is isotropic.

Furthermore, YαF• has local coordinates like the Stiefel coordinates given by the

matrix [Idk |M ] of parameters with M symmetric, such that the entries of M satisfy

the equations

mij = 0 if j ≤ d(α)i ,

where d(α)i is the number of boxes in the ith row of the diagram d(α). Since

M is symmetric, we have Mij = Mji for all i and j. A calculation shows that

these Stiefel-like coordinates have
(
k+1

2

)
− |α|+`(α)

2
independent parameters. Since

dim(LG(V )) =
(
k+1

2

)
, we have ‖α‖ = |α|+`(α)

2
.

We illustrate the coordinates defined in the proof of Proposition IV.1.8. The Schubert

condition α = (2, 5, 6, 8) has Young diagram

d(α) = ,

and the Lagrangian Schubert variety YαF• has local coordinates
1 0 0 0 m14

0 1 0 0 m22 m23 m24

0 0 1 0 m23 m33 m34

0 0 0 1 m14 m24 m34 m44

 ,

where denotes a coordinate in S(1, 2, 3, 4) on LG(V ) which is identically zero on

YαF•. With these coordinates, one may see that dim(YαF•) = 7 and ‖α‖ = 3. In

general, ‖α‖ is the number of boxes in and above the diagonal of (.α).

Given a list α = (α1, . . . , αm) of symmetric Schubert conditions for LG(V ), we

define ‖α‖ := ‖α1‖ + · · · + ‖αm‖. Kleiman’s Theorem (Proposition II.4.10) applies

to Lagrangian Schubert problems [22].

Proposition IV.1.9 (Lagrangian General Transversality). Let α = (α1, . . . , αm)

be a list of symmetric Schubert conditions for LG(V ). If F 1
• , . . . , F

m
• are general

isotropic flags, then the intersection

Y := Yα1F 1
• ∩ · · · ∩ YαmFm

• (IV.4)
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in LG(V ) is generically transverse. In particular, if Y is nonempty, then codim(Y ) =

‖α‖.

If α is a list of symmetric Schubert problems with ‖α‖ =
(
k+1

2

)
, then α is called a

Lagrangian Schubert problem.

IV.2 Congruence Modulo Four via Independent Involutions

We find it useful to discuss sets of fixed points of the Grassmannian under different

involutions. The set of points fixed by complex conjugation in Gr(k, V ) is the real

Grassmannian

RGr(k, V ) := Gr(k, V )(R) = Gr(k, V (R)) .

Using the local coordinates of Proposition IV.1.8, RGr(k, V ) is given by k×k matrices

M with the restriction that all entries are real.

Composing complex conjugation with ∠ gives another involution on Gr(k, V ), and

we call its set of fixed points the Hermitian Grassmannian,

HG(V ) :=
{
H ∈ Gr(k, V ) | H = H

∠
}
.

We could alternatively define the Hermitian Grassmannian as the set of k-planes

H with H = H∠, since ∠ commutes with complex conjugation. The Hermitian

Grassmannian has local coordinates given by k × k Hermitian matrices.

The real Lagrangian k-planes are fixed by both complex conjugation and the La-

grangian involution. They form the real Lagrangian Grassmannian

RLG(V ) = RGr(k, V )∠ ,

which has local coordinates given by k×k real symmetric matrices. We observe that

the real Lagrangian Grassmannian may be defined in several equivalent ways,

RLG(V ) = RGr(k, V ) ∩ LG(V ) = RGr(k, V ) ∩ HG(V ) = LG(V ) ∩ HG(V ) .

Suppose X and Z are irreducible varieties of the same dimension, and f : X → Z is

a dominant map of degree d. The number of complex points in the fiber f−1(z) over
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a general point z ∈ Z is d. Furthermore, if X and Z are real varieties and f is real,

then the fiber f−1(z) over a real point z ∈ Z(R) is a real variety, and for general

z ∈ Z(R) the fiber f−1(z)(R) satisfies the congruence

#(f−1(z)(R)) ≡ #(f−1(z)) mod 2 ,

since nonreal points come in conjugate pairs. By degenerating to special fibers and

counting multiplicities, we see that this congruence holds for all z ∈ Z(R).

If X is equipped with an involution ∠ such that f ◦∠ = f , then the points of f−1(z)

not fixed by ∠ satisfy another congruence modulo two. We give a nondegeneracy

condition which implies that these two involutions are independent, giving a stronger

congruence modulo four.

Proposition IV.2.1. Suppose X is an irreducible real variety with a real involution

∠, Z is a real variety of the same dimension, and f : X → Z is a dominant real

map such that f ◦ ∠ = f and codimZ f(X∠) ≥ 2. If y, z ∈ Z(R) are general points

in the same connected component of Z(R), then

#(f−1(y)(R)) ≡ #(f−1(z)(R)) mod 4 .

Proof. We prove this for sufficiently general points y, z ∈ Z(R). By degenerating

to special fibers and counting multiplicities, this congruence holds for all real points

y, z ∈ Z(R) in the same connected component.

Since codimZ f(X∠) ≥ 2, there is a path Γ : [0, 1] → Z(R) with Γ(0) = y and

Γ(1) = z having a finite set of critical values {c1, . . . , cr} =: C ⊂ (0, 1), such that

Γ does not meet f(X∠). Taking the closure, XΓ := closure(f−1(Γ([0, 1] \ C))), we

obtain a map fΓ : XΓ → [0, 1] having all fibers finite and stable under conjugation.

Let w ∈ Γ([0, 1]) and x ∈ f−1
Γ (w). Since the fiber f−1

Γ (w) is real and stable under ∠,

we have that Ax := {x, x, x∠, x∠} ⊂ f−1(w). Thus x may be grouped in one of the

following ways:

(1) Ax = {x, x, x∠, x∠} contains four distinct points,

(2) Ax = {x = x, x∠ = x∠} contains two distinct real points,

(3) Ax = {x = x∠, x = x∠} contains two distinct Hermitian points,
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(4) Ax = {x = x∠, x = x∠} contains two distinct Lagrangian points, or

(5) Ax = {x = x = x∠ = x∠} contains one real Lagrangian point.

Since the fibers over Γ contain no Lagrangian points, types (4) and (5) do not occur.

The number of points x of type (1), (2), or (3) respectively is locally constant on

Γ([0, 1] \ C). So as we vary w continuously, the number of real points in the fiber

f−1(w) may only change at a critical value c. It is forbidden that a Hermitian pair

collides to a real point x0 with multiplicity 2 at ci, because such an x0 would be

Lagrangian, and Γ([0, 1]) contains no Lagrangian points. Thus points in the fiber

may not pass from type (3) to type (2) or vice versa, and we see the only way for the

number of real points to change at c is for points in the fiber to change from type

(1) to type (2) or vice versa.

Suppose x ∈ f−1(c) is a real point in the fiber of the critical value c. Let a1(t), . . . ,

ap(t) be the nonreal points of f−1(t) which collide to x as t approaches c from below.

Let b1(t), . . . , bq(t) be the nonreal points of f−1(t) which collide to x as t approaches

c from above. Since the points ai(t) for i ∈ [p] come in pairs, p is even. Similarly q

is even, so q − p is even.

On the other hand, x∠ = x is in f−1(c). We have that a∠1 (t), . . . , a∠p (t) are the nonreal

points approaching x as t increases to c, and b∠1 (t), . . . , b∠q (t) are the nonreal points

approaching x as t decreases to c. Since 2(q − p) is a multiple of four, we have that

the number of points changing from type (1) to type (2) or vice versa is a multiple

of four.

IV.3 A Congruence Modulo Four in Real Schubert Calculus

Consider the Schubert problem α = ( k2) in Gr(k, V ) involving the intersection of

k2 hypersurface Schubert varieties. Schubert [33] calculated the number of complex

points in an instance of ( k2),

#k :=
(k2)!1! · · · (k − 1)!

k!(k + 1)! · · · (2k − 1)!
,

and Theorem II.6.10 implies that this is the number of complex points counting

multiplicity in a instance of ( k2) if the flags involved osculate a rational normal
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curve at distinct points.

More generally, we write #(α) to denote the number of complex points in an instance

of a Schubert problem α. We give one of the main results of this chapter.

Theorem IV.3.1. Suppose k ≥ 3 and n = 2k. Given a set of distinct points

(t1, . . . , tk2) in P1, stable under complex conjugation, the number of real points of the

instance

X := X (t1) ∩ · · · ∩X (tk2)

of the Schubert problem ( k2) is congruent to the number of complex points modulo

four.

Proof. We make the assumption that the list t = (t1, . . . , tk2) is sufficiently general

so that the points of X are distinct. We observe that since the map has finite fibers

the theorem holds for all lists t counting multiplicities by a limiting argument.

We use the interpretation of X as an inverse Wronski problem, described in Sec-

tion II.9, and we show that f = Wr : Gr(k,C2k[t]) −→ PCk2+1[t] satisfies the hy-

potheses of Proposition IV.2.1. Since Gr(k,C2k[t]) is smooth and connected, it is

irreducible. The isomorphism J giving ∠ ◦ ⊥ is real, so ∠ is a real map. Complex

conjugation on PCk2+1[t] is the usual complex conjugation of coefficients. We have

dim(Gr(k,C2k[t])) = k2 = dim(PCk2+1[t]).

By Theorem II.6.10, Wr is finite. Let H ∈ Gr(k,C2k[t]). By identifying the inverse

Wronski problem with intersections of osculating hypersurface Schubert varieties,

we apply the key fact of Corollary IV.1.6, and we have Wr ◦∠(H) = Wr(H). Since

k ≥ 3, we have

dim(LG(C2k[t])) =
(
k+1

2

)
≤ k2 − 2 = dim(PCk2+1[t])− 2 ,

so codimPCk2+1[t] Wr(Gr(k,C2k[t])∠) ≥ 2. The points of PRk2+1[t] are connected, since

they make up the projective space of real polynomials.

Since Wr satisfies the hypotheses of Proposition IV.2.1, we have that the number

of real points in a fiber Wr−1(z) over z ∈ PRk2+1[t] is fixed modulo four. Sottile

proved that there is a point z ∈ PRk2+1[t] whose fiber Wr−1(z) has all #k points real

[37]. Applying Proposition IV.2.1 we have #(Wr−1(y)) ≡ #k mod 4 for any real
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y. Interpreting this as an intersection of Schubert varieties, we have the congruence

#(X(R)) ≡ #k mod 4.

Theorem IV.3.1 explains the congruence modulo four found in Table III.3, which

presents data for ( 9) in Gr(3,C6). Eventually, we prove a congruence for more

general Schubert problems, such as ( , 7) in Gr(4,C8) presented in Table III.4.

Corollary IV.3.2. Let k = 3 and n = 6. Given a set of distinct points (t1, . . . , t9) in

P1, stable under complex conjugation, the number of real points of the real osculating

instance

X := X (t1) ∩ · · · ∩X (t9)

of the Schubert problem ( 9) is at least 2.

Proof. The number of complex points in X is #3 = 42. The corresponding topologi-

cal lower bound of Theorem II.9.1 on the number of real points is 0, because n = 2k

is even. Since 2 ≡ 42 mod 4 is the least non-negative integer congruent to #3, it is

a lower bound on the number of real points in X. The data presented in Table III.3

found using symbolic means verify that the lower bound 2 is sharp.

To generalize Theorem IV.3.1, we introduce the variety (P1)m6= consisting of m-tuples

of distinct points in P1. Let α = (α1, . . . , αm) be a Schubert problem and define

Xα ⊂ Gr(k, V )× (P1)m to be the closure of the variety

X◦ :=
{

(H, t) | t ∈ (P1)m6= , and H ∈ Xαi(ti) for i ∈ [m]
}
.

By Theorem II.6.10, the fibers of the projection X◦ → (P1)m6= are finite, so dim(X◦) =

m. The projection X◦ → (P1)m6= induces a projection Xα → (P1)m, and work of

Purbhoo [29] shows that every fiber of the induced projection contains #(α) points,

counting multiplicities.

The variety Xα turns out to have the wrong real structure for our study of sym-

metrically defined Schubert problems. When distinct osculation points ti 6= tj are

associated to a common Schubert condition αi = αj, we may have X := Xα1(t1) ∩
· · · ∩ Xαm(tm) and H ∈ X both real, but (H, t1, . . . , tm) ∈ Xα not real. To rectify

this, we will a variety related to Xα by projecting it to an auxiliary variety which
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forgets some of the order of the list (t1, . . . , tm).

Recall the exponential notation α̂a for a Schubert problem, introduced in Chapter

III. Given an exponent vector a whose entries sum to m, and setting the convention

a0 := 0, we give an equivalence relation ∼ which separates t into blocks of size

a1, . . . , ap, forgetting the order of the points ti ∈ P1 within each block. Formally, we

define ∼ on (P1)m6= by t = (t1, . . . , tm) ∼ (s1, . . . , sm) =: s if

{ta0+···+ai−1+1, . . . , ta0+···+ai} = {sa0+···+ai−1+1, . . . , sa0+···+ai} , for i ∈ [p] ,

as sets.

Example IV.3.3. Let a = (1, 2, 2). We give a maximal set of equivalent points in

(P1)5
6=, using vertical lines to separate the blocks given by a:

(0 | 1,∞| 2, 5) ∼ (0 |∞, 1 | 2, 5) ∼ (0 | 1,∞| 5, 2) ∼ (0 |∞, 1 | 5, 2) .

Definition IV.3.4. By realizing the entries in the ith block of (P1)m6= as roots of a

polynomial fi of degree ai we have

Pa :=
(P1)m6=
∼
⊂

p∏
i=1

Pai ,

where the usual coordinates in Pai are the coefficients of fi. The inclusion is as a

dense open subset.

Suppose α contains m Schubert conditions, and α̂a contains p distinct Schubert

conditions, and assume they give the same Schubert problem. We say α is sorted

with respect to α̂ if for 1 ≤ i < j ≤ p, each occurrence of α̂i precedes each occurrence

of α̂j in α.

Definition IV.3.5. Let α̂a be the exponential representation of a Schubert problem

α = (α1, . . . , αm), and assume α is sorted with respect to α̂. We define X̂α ⊂
Gr(k, V )× Pa to be the closure of the variety

{(H, t) | t ∈ Pa , and H ∈ Xαi(ti) for i ∈ [m]} .

This is well defined, because α is stable under the permutation mapping t to s ∼ t.
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We may define X̂α when α is not sorted with respect to α̂. We use this more general

definition, but we do not give the technical details since they are straightforward but

unenlightening.

As a direct consequence of Corollary III.1.3, X := Xα1(t1) ∩ · · · ∩Xαm(tm) is a real

variety if and only if (t1, . . . , tm) ∼ (t1, . . . , tm), that is, if and only if t is real in Pa.

Thus we have the desired property that X and H ∈ X are simultaneously real if and

only if (H, t1, . . . , tm) ∈ X̂α is real. Theorem II.6.10 implies that each fiber of

π : X̂α −→ Pa

has #(α) points. Thus we generalize Theorem IV.3.1.

Theorem IV.3.6. Suppose α = (α1, . . . , αm) is a symmetric Schubert problem, and

t ∈ (P1)m6= . If codim(π((X̂α)∠)) ≥ 2 and the instance

X := Xα1(t1) ∩ · · · ∩Xαm(tm)

of α is real, then the number of real points in X is congruent to #(α) modulo four,

counting multiplicities.

Since proving the subtle relation codim(π((Xα)∠)) ≥ 2 may be difficult, we give a

weaker statement which arises from calculating a lower bound on codim(π((Xα)∠)).

Proposition IV.3.7. Suppose α = (α1, . . . , αm) is a symmetric Schubert problem

containing no trivial Schubert condition α with |α| = 0, t ∈ (P1)m6= , and for some

distinct i, j, l ∈ [m] either αi = αj = αl or αi 6= αj. If

m−
(
k+1

2

)
+ ‖αi‖+ ‖αj‖ − 2 ≥ 2 , (IV.5)

and the instance

X := Xα1(t1) ∩ · · · ∩Xαm(tm)

of α is real, then the number of real points in X is congruent to #(α) modulo four,

counting multiplicities.

Proof. Our goal is to apply Proposition IV.2.1. To do this, we describe a dense

open subset X̂α

◦
⊂ X̂α for which π((X̂α

◦
)∠) has at least codimension two, and

π((X̂α

◦
))(R) is connected.

67



Suppose the Schubert problem α has exponential representation α̂a with p distinct

Schubert conditions. We have a commuting diagram of maps

X◦α

ρ
""DD

DD
DD

DD
D

φ //

ρ̃

xxqqqqqqqqqqqq X̂α

π

��
(P1)2

6= × (P1)m−2
ι

// (P1)m
ψ

// Pa

,

where ρ̃ is given by (H, s1, . . . , sm) 7→ (si, sj, s1, . . . , ŝi, . . . , ŝj, . . . , sm), and X◦α is the

dense open subset of Xα consisting of points {s | si 6= sj}. The maps ρ̃, ρ, π have

degree #(α), the maps φ, ψ have degree
∏p

i=1 ai!, and ι is injective. Thus, each map

has finite fibers.

We claim that X̂α

◦
:= φ(X◦α) is a dense open subset of X̂α with the codimension

condition given above and that X̂α

◦
(R) is connected. To see this, we observe that

the projection π′ : X̂α

◦
→ Gr(k, V ) lifts along φ to a projection ρ′ : X◦α → Gr(k, V )

with finite fibers. These maps commute with the Lagrangian involution, so we have

a commuting diagram of maps between the sets of fixed points,

(X◦α)∠

ρ′ $$III
III

III
I

φ // (X̂α

◦
)∠

π′zzttttttttt

LG(V )

.

These maps have finite fibers. For each r ∈ (P1)2
6= × (P1)m−2, we have

ρ′(ρ̃−1(r))∠ ⊂ Yαi(ri) ∩ Yαj(rj) .

Since ri 6= rj, we have

dim(Yαi(ri) ∩ Yαj(rj)) =
(
k+1

2

)
− ‖α1‖ − ‖α2‖ =: C .

The variety

Y := {(H, r) | r ∈ (P1)2
6= , H ∈ Yαi(ri) ∩ Yαj(rj)}

has dimension dim(Y ) = C + 2, which implies (X̂α

◦
)∠ ⊂ (π′)−1(Y ) has dimension at
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most C + 2. Therefore, dim(π((X̂α

◦
)∠)) ≤ C + 2. By Inequality (IV.5),

codim(π((X̂α

◦
)∠)) ≥ m− C − 2 ≥ 2 .

Having established the codimension hypothesis of Proposition IV.2.1, it is enough to

prove that given two points y, z ∈ π((X̂α

◦
))(R), there is a real path connecting them.

Thus we take a path Γ : [0, 1] → (P1)m such that ψ ◦ Γ is a real path connecting y

and z, and we show that we may require ri(x) 6= rj(x) for x ∈ [0, 1].

If we assume αi = αj = αl, then the projections ri(x), rj(x), rl(x) of x ∈ [0, 1] under

Γ are roots of a single polynomial fx given in Definition IV.3.4. Since deg(fx) ≥ 3,

we may choose Γ so that ri(x) 6= rj(x) for x ∈ [0, 1] with ψ ◦ Γ real. On the other

hand, if αi 6= αj, then ri(x), rj(x) are roots of different polynomials. Again, we may

choose Γ so that ri(x) 6= rj(x) for x ∈ [0, 1] with ψ ◦ Γ real.

Applying Proposition IV.2.1, we see the number of real points in X(s) is fixed modulo

four. The Mukhin-Tarasov-Varchenko Theorem II.7.1 gives s such that X(s) has all

#(α) solutions real. Thus we have #(X(R)) ≡ #(α) mod 4.

Proposition IV.3.7 proves the congruence modulo four for some of the problems we

studied computationally, reported in Chapter III.

Example IV.3.8. In Chapter III, we proved that real osculating instances of
(

, 7
)

in Gr(4,C8) have 20 mod 4 real solutions by counting real factorizations of a real

polynomial. Table III.4 gives data for this problem.

Proposition IV.3.7 gives another proof for this congruence modulo four, since

8−
(

5

2

)
+
∥∥∥ ∥∥∥+ ‖ ‖ − 2 = 8− 10 + 6 + 1− 2 = 3 ≥ 2 .

Example IV.3.9. Consider the Schubert problem
(

, 8
)

in Gr(4,C8) with 90 com-

plex solutions. We solved 100, 000 instances of
(

, 8
)
, and in each instance we

observed 90 mod 4 real solutions. Proposition IV.3.7 proves this congruence modulo

four, since

9−
(

5

2

)
+
∥∥∥ ∥∥∥+ ‖ ‖ − 2 = 9− 10 + 5 + 1− 2 = 3 ≥ 2 .
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Since two is the least positive integer congruent to 90 modulo four, two is a lower

bound for the number of real solutions to a real osculating instance of
(

, 8
)
. In

our computations, we have found 5853 real osculating instances of
(

, 8
)

with

exactly two real solutions, so the lower bound of two is sharp. The previously known

topological lower bound from Theorem II.9.1 was zero.

Example IV.3.10. Consider the Schubert problem
(

, , 8
)

in Gr(4,C8) with

426 complex solutions. Every real osculating instance of
(

, , 8
)

has 426 mod 4

real solutions by Proposition IV.3.7, since

10−
(

5

2

)
+
∥∥∥ ∥∥∥+

∥∥ ∥∥− 2 = 10− 10 + 3 + 2− 2 = 3 ≥ 2 .

Since two is the least positive integer congruent to 426 modulo four, two is a lower

bound for the number of real solutions to a real osculating instance of
(

, , 8
)
.

The previously known topological lower bound from Theorem II.9.1 was zero. We do

not yet know if two is the sharp lower bound.

Corollary IV.3.11. Let α = (α, β, m) be a symmetric Schubert problem with

#(α) 6≡ 0 mod 4 and X be a real osculating instance of α. Suppose the hypotheses

of Proposition IV.3.7 are satisfied by α. If the number of boxes above the main

diagonal of the skew Young diagram d((β)′/α) is odd, then two is a lower bound for

the number of real solutions to X. The previously known topological lower bound for

such a problem was Σ(α, β) = 0.

Proof. The only parts of Corollary IV.3.11 that do not follow immediately from

Proposition IV.3.7 are the assertion Σ(α, β) = 0 and the implicit assertion that

#(α) is even.

The sign imbalance Σ(α, β) as defined in Proposition III.3.6 may be calculated by ob-

serving that every standard Young tableau of shape d((β)′/α) may be uniquely paired

with another standard Young tableau of the same shape by reflecting the tableau

along the main diagonal. We give an example of paired tableaux with opposite signs.

1 2
3 4 5
6 7

←→
3 6

1 4 7
2 5
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This operation is an odd permutation, since there are an odd number of boxes above

the diagonal, so the paired tableaux have opposite signs. This implies that Σ(α, β) =

0.

Since #(α) is the number of tableaux of shape d((β)′/α), and since the number

tableaux with sign +1 equals the number of tableaux with sign −1, #(α) is even.

Proposition IV.3.7 is highly technical, and we believe a stronger, simpler statement

is true. Assuming one may generalize the dimensional transversality theorem of

Eisenbud and Harris, Theorem II.6.10, to intersections of Schubert varieties in a

Lagrangian Grassmannian, one could easily calculate the codimension involved in

Theorem IV.3.6 using combinatorial data. This would give the following result.

Conjecture IV.3.12. Let X be a real osculating instance of a symmetric Schubert

problem α in Gr(k, V ). If

‖α‖ −
(
k+1

2

)
≥ 2 , (IV.6)

then the number of real points in X satisfies the congruence #(X(R)) ≡ #(α) mod

4.

By permuting the entries of α, we may assume i = 1 and j = 2 in Inequality IV.5.

Since none of the Schubert conditions in α is trivial, we have

‖α3‖+ · · ·+ ‖αm‖ ≥ m− 2 .

This implies ‖α‖ −
(
k+1

2

)
≥ m −

(
k+1

2

)
+ ‖α1‖ + ‖α2‖ − 2. Therefore, assuming In-

equality (IV.5) gives Inequality (IV.6). Thus Conjecture IV.3.12 implies Proposition

IV.3.7.

IV.4 Support for Conjecture IV.3.12

We used supercomputers to study all 44 nontrivial symmetric Schubert problem α

on Gr(k, V ) with k ≤ 4 and #(α) ≤ 96. Ten of these Schubert problems satisfy the

hypotheses of Proposition IV.3.7 (and thus the hypotheses of Conjecture IV.3.12),

and we observed the expected congruence modulo four. We gave the data for two of

these problems in Tables III.3 and III.4.

We studied 11 symmetric Schubert problems which satisfy the hypotheses of Con-
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Table IV.1: Support for Conjecture IV.3.12.

# Real 4

Total
Solutions r = 4 r = 2 r = 0

0 0
2 687 687
4 0
6 1000 313 1000 2313

Total 1000 1000 1000 3000

jecture IV.3.12 but not those of Proposition IV.3.7. In each of these problems, the

conjectured congruence was observed.

Example IV.4.1. Consider the symmetric Schubert problem ( 4) for k = 4. This

problem does not satisfy Inequality (IV.5) of Proposition IV.3.7,

4−
(

5

2

)
+
∥∥ ∥∥+

∥∥ ∥∥− 2 = 4− 10 + 3 + 3− 2 = −2 6≥ 2 .

However, we see that Inequality (IV.6) is satisfied,

4 ·
∥∥ ∥∥− (4 + 1

2

)
= 4 · 3− 10 = 2 ≥ 2 .

Thus Conjecture IV.3.12 claims that the number of real solutions is fixed modulo four.

We verified this claim for 3, 000 examples, giving the data in Table IV.1. These data

consumed 1.486 GHz-years of processing power.

Indeed this Schubert problem cannot be a counter example to Conjecture IV.3.12. The

computational study [12] of Schubert problems given by secant flags (a generalization

of osculating flags) uncovered the congruence modulo four for real instances of ( 4).

This problem was analyzed the congruence we observe for this problem was proven

for all real instances of ( 4), including those which are not osculating instances.

We tested 23 symmetric Schubert problems which do not satisfy the hypotheses of

Conjecture IV.3.12. Nineteen of these problems, including the problem of four lines

( 4) with k = 2, did not exhibit a congruence modulo four.

Example IV.4.2. The symmetric Schubert problem ( 2, 3) in Gr(3,C6) does not
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Table IV.2: Congruence not implied by Conjecture IV.3.12.

# Real
2 2

Total
Solutions

r = 2 r = 2 r = 0 r = 0
r = 2 r = 0 r = 2 r = 0

0 73716 73895 147611
2 0
4 26284 26105 100000 152389
6 0
8 100000 100000

Total 100000 100000 100000 100000 400000

satisfy Inequality (IV.6),

2 ·
∥∥ ∥∥+ 3 · ‖ ‖ −

(
3 + 1

2

)
= 2 · 2 + 3 · 1− 6 = 1 6≥ 2 ,

so it cannot satisfy the more restrictive Inequality (IV.5). The results of symbolic

computations displayed in Table III.8 show that the number of real solutions to real

instances of this problem is not fixed modulo four.

Four of the 44 symmetric Schubert problems tested do not satisfy the hypotheses

of Conjecture IV.3.12, but exhibit a congruence modulo four on the number of real

solutions. Table IV.2, Table IV.3, Table IV.4, and Table IV.5 present data collected

for these four problems. The value of ‖α‖ for these problems are 10, 11, 11, and 11

respectively, but a symmetric problem α in Gr(4,C8) must have ‖α‖ ≥ 12 to satisfy

the hypotheses of Conjecture IV.3.12.
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Table IV.3: Another congruence not implied by Conjecture IV.3.12.

# Real 2

Total
Solutions r = 2 r = 0

0 160337 160337
2 0
4 39663 39663
6 0
8 200000 200000

Total 200000 200000 400000

Table IV.4: A third congruence not implied by Conjecture IV.3.12.

# Real 2

Total
Solutions r = 2 r = 0

0 142275 142275
2 0
4 200000 57725 257725

Total 200000 200000 400000

Table IV.5: A fourth congruence not implied by Conjecture IV.3.12.

# Real 2

Total
Solutions r = 2 r = 0

0 0
2 200000 200000 400000

Total 200000 200000 400000
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CHAPTER V

A SQUARE FORMULATION VIA DUALITY

We say a system of equations is square if it has the same number of equations as

variables, and overdetermined if it has more equations than variables. The classical

determinantal formulation of an instance of a Schubert problem given by Proposition

II.3.15 is overdetermined if more than two of the Schubert varieties involved are

given by Schubert conditions other than . Following joint work with Hauenstein

and Sottile [15], we realize an intersection X of Schubert varieties in a larger space

so that it is the solution set to a system of polynomial equations, and the number of

equations is equal to the codimension of X in the larger space. If X is an instance of a

Schubert problem, this gives a square system and allows one to use algorithms from

Smale’s α-theory to verify approximate solutions obtained by numerical methods

[34]. This procedure replaces determinantal equations of degree min(k, n − k) by

bilinear equations.

V.1 Background

Computational studies have used Gröbner bases to produce compelling conjectures in

Schubert calculus [12, 14, 30, 32, 38], some of which have been proven [10, 19, 27, 28].

The use of Gröbner bases in these computational studies has the advantage that it

produces exact information, and the steps taken to produce that information are in-

herently a proof of correctness. This rigidity is partially responsible for the complex-

ity of calculating a Gröbner basis [26], which is limiting even for zero-dimensional

ideals [13]. Gröbner basis calculations do not not appear to scale well when par-

allelized, especially for problems in commutative algebras [24], and this makes it

difficult to efficiently use modern parallel computing to mitigate their computational

complexity. Calculating the Gröbner basis of an instance of a typical Schubert prob-

lem with more than 100 solutions or involving more than 16 variables is infeasible in

characteristic zero.

Numerical and symbolic methods are subject to different computational bottlenecks,

so parallel numerical methods, such as those using a parameter homotopy [35], offer
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an alternative to symbolic methods for solving Schubert problems beyond the scope

of symbolic computation. There are optimized numerical algorithms for Schubert

problems, such as the Pieri homotopy algorithm [21], which has successfully solved

instances of a Schubert problem with 17,589 solutions [25]. There is work being done

to develop a more general Littlewood-Richardson homotopy [40] based on Vakil’s

geometric Littlewood-Richardson rule [41]. The authors of [40] are developing im-

plementations with Leykin and Mart́ın del Campo. While not optimized for Schubert

calculus, regeneration [17] offers a numerical approach for Schubert problems that

extends to flag varieties, natural generalizations of the Grassmannian.

Numerical methods generally do not give exact solutions, and the approximations

given are not guaranteed to be correct. When a computer verifies the accuracy of

numerical output, we say that the output has a certificate of validity. We say that

an approximate solution with a certificate is certified.

Newton’s method for expressing a root of a univariate polynomial as a limit has a

generalization giving a solution to a square system of polynomial equations as a limit.

Let E = (E1, . . . , Ep) be a vector of polynomials in the variables v = (v1, . . . , vp),

and consider x ∈ Cp as a vector. We define the Jacobian of E at x,

JacE(x) :=


∂E1

∂x1
· · · ∂E1

∂xp
...

...
∂Ep
∂x1

· · · ∂Ep
∂xp

 .

We set N0(x) := x and define the ith Newton iteration Ni(x) ∈ Cp for i > 0,

Ni(x) := Ni−1 − JacE(Ni−1(x))−1E(Ni−1(x)) .

Definition V.1.1. Let N∞(x) := limi→∞Ni(x). The sequence of Newton iterations

{Ni(x)} of x ∈ Cp converges quadratically to a solution of E if for every i > 0,

|Ni+1(x)−N∞(x)| ≤ 1

22i−1
|x−N∞(x)| ,

where | · | denotes the distance norm in Cp. The sequence of Newton iterations

converges quadratically if the number of significant digits doubles with each step. In

this case, x is called an approximate solution to E with associated solution N∞(x).
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There is a positive number α(x,E) > 0 depending on a point and system of equations

so that if

α(x,E) <
13− 3

√
17

4

then x is an approximate solution to E [3, Ch. 8]. Smale studied convergence of

Newton iterations and established α-theory to certify quadratic convergence and thus

approximate solutions. Sottile and Hauenstein showed that given an approximate

solution x, algorithms from α-theory may be used to determine whether its associ-

ated solution is real [18]. Given two approximate solutions, one may also determine

whether their associated solutions are distinct. These applications require that E be

a square system [7]. Schubert problems are famously overdetermined, and the main

goal of this chapter is to formulate them locally using square systems.

V.2 Primal-Dual Formulation

We present a way to formulate an instance of a Schubert problem in a Grassmannian

as a square system of equations. Recall the Stiefel coordinates Ŝ(α) dual to the

local coordinates S(α⊥) on Gr(k, V ) and Ŝα from Definition II.6 dual to the local

coordinates Sα⊥ for Xα⊥F•. There are also coordinates for an intersection of dual

Schubert varieties, dual to Sβα.

Definition V.2.1. Let Ŝβα ⊂ Matn×(n−k) be the set of matrices with entries mi,j

satisfying

mi,j = 1 if i = n+ 1− αj , and mi,j = 0 if i < n+ 1− αj or i > βn−k−j+1 .

The matrices Ŝβα give Stiefel coordinates for XαF
1
• ∩XβF

2
• ⊂ Gr(n− k, V ∗).

Example V.2.2. Let n = 7, and consider the Grassmannian Gr(4, V ∗) and the

Schubert conditions α = (2, 4, 5, 7) and β = (3, 4, 6, 7). The coordinates Ŝβα are given
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by matrices of the form 

0 0 0 1

0 0 0 m24

0 0 1 m34

0 1 m43 0

0 m52 0 0

1 m62 0 0

m71 0 0 0


.

By Corollary II.3.19, the classical determinantal formulation of XαF• requires more

than |α| equations, unless it is given by the Schubert condition . Thus an instance

of a Schubert problem α = (α1, . . . , αm) such that αi 6= for some i ∈ [m] is the

solution set to an overdetermined system in its classical determinantal formulation

in local coordinates S(α) for Gr(k, V ). However, the coordinates Sα give XαF• ⊂
Gr(k, V ) by setting |α| variables equal to zero in the coordinates S(α).

Example V.2.3. Consider the Grassmannian Gr(3,C7) and d(2, 5, 7) = . We

give coordinates S( ) and S of Gr(3, V ) and X F• respectively,m11 1 m13 m14 0 m16 0

m11 0 m13 m14 1 m16 0

m11 0 m13 m14 0 m16 1

 and

m11 1 0 0

m11 0 m13 m14 1 0

m11 0 m13 m14 0 m16 1

 ,

where denotes a coordinate which is identically zero.

Similarly, if F 1
• and F 2

• are in linear general position, Sβα parametrizes a dense open

subset of XαF
1
• ∩XβF

2
• using dim(XαF

1
• ∩XβF

2
• ) coordinates.

Recall the map ⊥ : Gr(k, V ) → Gr(n− k, V ∗) given by mapping a k-plane H to its

annihilator H 7→ H⊥.

Definition V.2.4. Let ∆: Gr(k, V )→ Gr(k, V )×Gr(n−k, V ∗) be the dual diagonal

map given by H 7→ (H,H⊥).

Proposition V.2.5. Let A,B ⊂ Gr(k, V ) be subsets. Then we have the equality of

sets

∆(A ∩B) = (A×⊥(B)) ∩∆(Gr(k, V )) .

Proof. This is a dual version of the classical argument of reduction to the diagonal.
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Abbreviating ∆G := ∆(Gr(k, V )), we observe

∆(A) = (A×⊥(A)) ∩∆G = (A×⊥(Gr(n− k, V ∗))) ∩∆G .

Similarly, we have

∆(B) = (B ×⊥(B)) ∩∆G = (Gr(k, V )×⊥(B)) ∩∆G .

Together, these give

∆(A ∩B) = ∆(A) ∩∆(B) = (A×⊥(B)) ∩∆G .

We call ∆(A ∩ B) the primal-dual formulation of A ∩ B. We call the first factor of

∆(A ∩B) the primal factor and the second factor of ∆(A ∩B) the dual factor.

This gives us a new way to exhibit an intersection X of two Schubert varieties. Let

M be a k × n matrix of kn indeterminates, giving global Stiefel coordinates for

Gr(k, V ) with respect to the standard basis e of V , and let N be a n× (n−k) matrix

of n(n − k) indeterminates, giving global Stiefel coordinates for Gr(n − k, V ∗) with

respect to the dual basis e∗ of V ∗. Then the rows of M span a point in Gr(k, V ),

the columns of N span a point in Gr(n− k, V ∗), and ∆(Gr(k, V )) is the solution set

to the matrix equation

MN = 0k×(n−k) ,

where 0k×(n−k) denotes the k×(n−k) zero matrix. This equation consists of k(n−k)

equations which are bilinear in the entries of M and N .

Suppose F 1
• and F 2

• are flags, and α, β ∈
(

[n]
k

)
. By Proposition V.2.5, we have

∆(XαF
1
• ∩XβF

2
• ) = (XαF

1
• ×Xβ⊥F

2⊥
• ) ∩∆(Gr(k, V )) .

Let F 1
• be a matrix that is a basis for the flag F 1

• . Recall that Sα gives coordinates for

XαF
1
• with respect to some basis f of V . Let Mα be a k×n matrix of indeterminates

in Sα. A change of basis for V from f to e induces a dual action on Stiefel coordinates,

so the matrix product MαF
1
• locally parametrizes XαF

1
• with respect to the standard
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basis e.

Let F̂ 2⊥
• be a basis for the flag F 2⊥

• , that is, the first i columns of the matrix F̂ 2⊥
• span

F 2⊥
• for all i. Let M̂β⊥ be a matrix of indeterminates in Ŝβ⊥ giving Stiefel coordinates

for Xβ⊥F
2⊥
• . By the argument above, the product F̂ 2⊥

• M̂β⊥ locally parametrizes

Xβ⊥F
2⊥
• with respect to the standard dual basis e∗. It follows that the matrix

equation

MαF
1
• F̂

2⊥
• M̂β⊥ = 0k×(n−k) (V.1)

defines the dual diagonal ∆(XαF
1
• ∩XβF

2
• ) in XαF

1
• ×Xβ⊥F

2⊥
• .

Equation (V.1) gives k(n− k) equations defining the restriction of the dual diagonal

∆(Gr(k, V )) to a dense open subset of XαF
1
• ×Xβ⊥F

2⊥
• . The equations are bilinear

in k(n− k)− |α| variables from Mα and n(n− k) variables from M̂β⊥. We describe

the dense subset of XαF
1
• ×Xβ⊥F

2⊥
• involved.

We used the action of GL(V ) to adapt the open cover G of the Grassmannian to

the cover G(t) from Definition II.6.8 so that Xα(t) ∩ Gα(t) is the dense open set

parametrized by Stiefel coordinates Sα. Given a flag F• whose basis is the matrix

F•, we similarly adapt G to an open cover

GF• := {Gα.F
−1
• | α ∈

(
[n]
k

)
} .

This has the feature that XαF• ∩ GF• is the dense open set parametrized by the

Stiefel coordinates Sα. Throughout this chapter, we use X◦αF• to denote this dense

open set. Similarly, we write (XαF• ∩ XβG•)
◦, X◦

α⊥F
⊥
• , and (Xα⊥F

⊥
• ∩ Xβ⊥G

⊥
• )◦

to denote the open dense sets parametrized by Sβα, Ŝα⊥ , and Ŝβ
⊥

α⊥
respectively. The

coordinates Ŝα⊥ and Ŝβ
⊥

α⊥
were chosen in a way that yields

⊥(X◦αF•) = X◦α⊥F
⊥
• and ⊥(XαF• ∩XβG•)

◦ = (Xα⊥F
⊥
• ∩Xβ⊥G

⊥
• )◦ .

We have shown the following.

Proposition V.2.6. If XαF
1
• , XβF

2
• are Schubert varieties in Gr(k, V ), then we have

the equality

∆(XαF
1
• ∩XβF

2
• ) = (XαF

1
• ×Xβ⊥F

2⊥
• ) ∩∆(Gr(k, V )) ,
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as sets. Furthermore, ∆(X◦αF
1
• ∩ X◦βF 2

• ) is the solution set to the k(n − k) bilinear

equations given by Equation (V.1) in the coordinates (Sα, Ŝβ⊥).

More may be said with a straightforward dimension calculation.

Corollary V.2.7. If F 1
• and F 2

• are flags in Gr(k, V ) in linear general position,

and if α, β ∈
(

[n]
k

)
satisfy αi + βk−i+1 ≤ n + 1 for i ∈ [k], then the equations of

Proposition V.2.6 define ∆(X◦αF
1
• ∩X◦βF 2

• ) in X := X◦αF
1
• ×X◦β⊥F

2⊥
• as the solution

set to a system of codimX ∆(X◦αF
1
• ∩ X◦βF 2

• ) equations, and the projection to the

primal factor

∆(X◦αF
1
• ∩X◦βF 2

• ) −→ X◦αF
1
• ∩X◦βF 2

•

gives a bijection of sets.

We note that αi + βk−i+1 ≤ n+ 1 for i ∈ [k] is the condition that XαF
1
• ∩XβF

2
• 6= ∅.

We may extend this method of obtaining a system of codimension-many equations

to intersections of more than two Schubert varieties.

Definition V.2.8. Let ∆m : Gr(k, V )→ Gr(k, V )×Gr(n−k, V ∗)×· · ·×Gr(n−k, V ∗)
be the map given by H 7→ (H,H2, . . . , Hm) such that Hi = H⊥ for 2 ≤ i ≤ m. We

call ∆m the dual diagonal map and observe that ∆ = ∆2.

Proposition V.2.9. Let A1, . . . , Am ⊂ Gr(k, V ) be subsets. Then

∆m(A1 ∩ · · · ∩ Am) = (A1 ×⊥(A2)× · · · × ⊥(Am)) ∩∆m(Gr(k, V )) .

The proof is omitted, since it is given by iterating the proof of Proposition V.2.5.

This gives a straightforward generalization of V.2.6.

Proposition V.2.10. If Xα1F 1
• , . . . , XαmF

m
• are Schubert varieties in Gr(k, V ), then

the set ∆m(X◦α1F 1
• ∩ · · · ∩X◦αmFm

• ) is equal to

(X◦α1F 1
• ×X◦α2⊥F

2⊥
• × · · · ×X◦αm⊥F

m⊥
• ) ∩∆m(Gr(k, V )) ,

and is the solution set to a system of k(n−k)(m−1) bilinear equations in coordinates

(Sα1 , Ŝα2⊥ , . . . , Ŝαm⊥).

The k(n − k)(m − 1) equations come from pairing the primal factor with each of

the m − 1 dual factors in Equation (V.1). Kleiman’s theorem, Proposition II.4.10,
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implies that if α is a Schubert problem, and F 1
• , . . . , F

m
• are in general position, then

X◦α1F 1
• ∩ · · · ∩X◦αmFm

• = Xα1F 1
• ∩ · · · ∩XαmF

m
• .

More generally, if α is not a Schubert problem, but F 1
• , . . . , F

m
• are in general posi-

tion, we still have that

X◦α1F 1
• ∩ · · · ∩X◦αmFm

• ⊂ Xα1F 1
• ∩ · · · ∩XαmF

m
•

is dense. We give the result of a straightforward dimension calculation.

Theorem V.2.11. Suppose F 1
• , . . . , F

m
• are sufficiently general flags in V and α =

(α1, . . . , αm) is a list of Schubert conditions. The intersection

X := X◦α1F 1
• ∩ · · · ∩X◦αmFm

•

is the solution set to the bilinear equations of Proposition V.2.10. This involves

formulating X using k(n−k)(m−1) equations in a space of dimension k(n−k)m−|α|.

In particular, if α is a Schubert problem, then X = Xα1F 1
• ∩ · · · ∩XαmF

m
• , and X

is formulated as the set of solutions to a square system of equations.

Using this formulation, we may certify approximate solutions to Schubert problems

and therefore may use numerical methods to study Schubert calculus from a pure

mathematical point of view. In some circumstances, this square formulation may

lead to more efficient computation than the determinantal formulation. We give an

example comparing the classical system of equations with the primal-dual system of

equations.

Example V.2.12. Let α = (α1, . . . , α4) be the Schubert problem in Gr(4,C8) given

by αi = (2, 5, 7, 8) for i = 1, . . . , 4, and let F 1
• , . . . , F

4
• be flags in general position.

We denote αi by its Young diagram . The classical formulation of the instance

X := X F 1
• ∩ · · · ∩X F 4

•

of α uses determinantal equations in the coordinates S of X F 1
• . By Corollary

II.3.19, this formulation involves a system of 3 · 17 = 51 linearly independent quartic

determinants in 16− 4 = 12 variables.
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The competing primal-dual formulation is a square system of bilinear equations in

the coordinates
(

S , Ŝ , Ŝ , Ŝ
)

of X F 1
• ×X F 2⊥

• ×X F 3⊥
• ×X F 4⊥

• . This system

involves 48 bilinear equations in 48 variables.

A feature of the primal-dual formulation for an instance of a Schubert problem is that

it requires more variables than the classical formulation, but it typically lowers the

degrees of the polynomials which must be solved. If we have flags in linear general

position, then we may reduce the number of variables and equations.

Example V.2.13. Let α = (α1, . . . , α4) be the Schubert problem for Gr(4,C8) given

by αi = (2, 5, 7, 8) for i = 1, . . . , 4, and let F 1
• , . . . , F

4
• be flags in general position.

We denote αi by its Young diagram . The classical formulation of the instance

X := X F 1
• ∩ · · · ∩X F 4

•

of α uses determinantal equations in the coordinates S of (X F 1
• ∩X F 2

• )◦. By

Corollary II.3.19, this formulation involves a system of 2 · 17 = 34 linearly indepen-

dent quartic determinants in 16− 4− 4 = 8 variables.

The competing primal-dual formulation is a square system of bilinear equations in

the coordinates
(

S , Ŝ
)

of (X F 1
• ∩X F 2

• )◦ × (X F 3⊥
• ∩X F 4⊥

• )◦. This system

involves 16 bilinear equations in 16 variables.

Proposition V.2.14. Suppose m ≥ 2 is even. If αi ∈
(

[n]
k

)
for i ∈ [m] and F i

• for

i ∈ [m] are flags in linear general position, then the set ∆m(Xα1F 1
• ∩ · · · ∩XαmF

m
• )

is equal toXα1F 1
• ∩Xα2F 2

• ×
m/2∏
i=2

Xα(2i−1)⊥F (2i−1)⊥
• ∩Xα2i⊥F 2i⊥

•

 ∩∆m/2(Gr(k, V ))

and is is expressed locally as a system of k(n− k)(m/2− 1) bilinear equations in the

coordinates (Sα
2

α1 , Ŝα
4⊥

α3⊥ , . . . , Ŝ
αm⊥

α(m−1)⊥).

With this proposition, we eliminate roughly half of the variables and equations

needed to define a Schubert problem with a square system.

Theorem V.2.15. Suppose m ≥ 2 is even, F 1
• , . . . , F

m
• are sufficiently general flags
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in Gr(k, V ), and α = (α1, . . . , αm) is a list of Schubert conditions. The intersection

X := X◦α1F 1
• ∩ · · · ∩X◦αmFm

•

is the solution set to the bilinear equations of Proposition V.2.14. This involves

formulating X using k(n−k)(m/2−1) equations by realizing it in a space of dimension

k(n− k)m/2− |α|.

In particular, if α is a Schubert problem, then X = Xα1F 1
• ∩ · · · ∩XαmF

m
• , and X

is formulated as the set of solutions to a square system of equations.

We may use Theorem V.2.15 in the case where m is odd by appending a trivial

Schubert condition αm+1 := (n− k + 1, . . . , n) to α.

Since X F• is a hypersurface defined by one determinant, we may formulate a Schu-

bert problem involving some hypersurface Schubert varieties using a square system

involving fewer equations and variables than suggested by Theorem V.2.15. We use

the primal-dual formulation to express the intersection of non-hypersurface Schubert

varieties and a determinant to define each hypersurface in the primal factor.

Example V.2.16. Consider the Schubert problem ( 3, 4) in Gr(4,C8). Suppose

F 1
• , . . . , F

7
• are general flags. We may express the instance

X := X F 1
• ∩ · · · ∩X F 3

• ∩X F 4
• ∩ · · · ∩X F 7

•

of ( 3, 4) by a system of determinantal equations in the local coordinates S

on (X F 1
• ∩ X F 2

• )◦. By Corollary II.3.19, this formulation involves a system of

1 · 17 + 4 · 1 = 21 quartic determinants in 16− 4− 4 = 8 variables.

The näıve competing primal-dual formulation is a square system of 48 bilinear equa-

tions in 48 variables.

Using a primal-dual formulation with X F 5
• ∩ X F 6

• ∩ X F 7
• defined by deter-

minants in the primal factor yields a square system of equations in the coordinates(
S , Ŝ

)
of X F 1

• ∩X F 2
• ×X F 3⊥

• ∩X F 4⊥
• consisting of 16 bilinear equations

and 3 quartic determinants in 19 variables.
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V.3 Flag Varieties

Many of the results of this chapter extend to Schubert problems more general than

those in a Grassmannian. As an example of this, we describe flag varieties, which

are generalizations of Grassmannians.

Fix a positive integer `, and let k := (1 ≤ k1 < · · · < k` < n) be an increasing `-tuple

of positive integers less than n.

Definition V.3.1. The flag variety Fl(k;V ) is the set of `-tuples H of nested ki-

planes,

Fl(k;V ) := {H | H1 ⊂ · · · ⊂ H` ⊂ V , dim(Hi) = ki for i ∈ [`]} .

If ` = 1, then Fl(k;V ) = Gr(k1, V ). We generalize the notion of a Schubert condition.

Definition V.3.2. Let α ∈
(

[n]
k

)
denote the set of permutations on [n] such that

αi < αi+1 for i ∈ [n] \ k. We call α ∈
(

[n]
k

)
a Schubert condition.

We give a few Schubert conditions for the flag variety Fl(2, 5;C7):

(3, 6 | 1, 2, 4 | 5, 7) , (6, 7 | 3, 4, 5 | 1, 2) , (1, 2 | 3, 4, 5 | 6, 7) .

We use a vertical line instead of a comma to denote positions where entries of α are

allowed to decrease.

Flag varieties have local coordinates similar to the Stiefel coordinates.

Definition V.3.3. Let α ∈
(

[n]
k

)
be a Schubert condition. The subset Sk(α) ⊂

Matk`×n is the subset of matrices whose entries mij satisfy the condition,

mi,αj = δij for kp−1 + 1 ≤ i ≤ kp , 1 ≤ j ≤ kp ,

for p ∈ [`] with the convention k0 = 0. We call the coordinates given by these matrices

the Stiefel coordinates.

Example V.3.4. Consider the flag variety Fl(2, 4; 6). Using ∗ to denote arbitrary

entries, we give arbitrary matrices in Sk(α) for α = (5, 6 | 3, 4) and α = (2, 4 | 1, 5)
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respectively, 
∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1

∗ ∗ 1 0 0 0

∗ ∗ 0 1 0 0

 , and


∗ 1 ∗ 0 ∗ ∗
∗ 0 ∗ 1 ∗ ∗
1 0 ∗ 0 0 ∗
0 0 ∗ 0 1 ∗

 .

The 1 in position (i, αi) for i ∈ [k`] is called a pivot.

The proof that Gr(k, V ) is smooth extends to flag varieties.

Proposition V.3.5. The flag variety Fl(k;V ) is a smooth variety of dimension

dim(Fl(k;V )) =
∑̀
i=1

(ki − ki−1)(n− ki) ,

with the convention k0 = 0.

Definition V.3.6. Given a flag F• and α ∈
(

[n]
k

)
, we have a Schubert variety,

XαF• := {H ∈ Fl(k;V ) | dim(Hp ∩ Fαi) ≥ #{αj | j ≤ i , αj ≤ αi}

for p ∈ [`] , kp−1 + 1 ≤ i ≤ kp} ,

with the convention k0 = 0.

Schubert varieties in flag varieties have local coordinates similar to the Stiefel coor-

dinates.

Definition V.3.7. Let α ∈
(

[n]
k

)
. The Stiefel coordinates of XαF• are given by the

subset of matrices (Sk)α ⊂ Sk(α) which satisfy the requirement that every entry to

the right of a pivot is zero.

Example V.3.8. Consider the flag variety Fl(2, 4; 6). Using ∗ to denote arbitrary

entries, we give arbitrary matrices in (Sk)α, which give coordinates for XαF•, for

α = (5, 6 | 3, 4) and α = (2, 4 | 1, 5) respectively,
∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1

∗ ∗ 1 0 0 0

∗ ∗ 0 1 0 0

 , and


∗ 1 0 0 0 0

∗ 0 ∗ 1 0 0

1 0 0 0 0 0

0 0 ∗ 0 1 0

 .
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As in the Grassmannian case, one may count indeterminates to determine the dimen-

sion (or codimension) of a Schubert variety in a flag variety. We write |α| to denote

the codimension of XαF• in Fl(k;V ). The Stiefel coordinates for XαF
1
• ∩XβF

2
• do

not have a straightforward generalization for general flag varieties.

We extend properties of duality to flag varieties.

Definition V.3.9. Let k⊥ denote the increasing `-tuple of integers defined as follows,

k⊥ := (1 ≤ n− k` < · · · < n− k1 < n)

Recall that the duality between V and V ∗ gives a map ⊥ : Gr(k, V )→ Gr(n−k, V ∗)
defined by H 7→ H⊥. We may extend this map to a map from a flag variety to a

dual flag variety,

⊥ : Fl(k, V )→ Fl(k⊥, V ∗) ,

given by (H1, . . . , H`) 7→ (H⊥` , . . . , H
⊥
1 ).

Let α ∈
(

[n]
k⊥

)
. The dual Stiefel coordinates are the coordinates given by matrices in

Ŝk(α) ⊂ Matn×k⊥` = Matn×(n−k1) with entries mij satisfying

mn−αi+1,j = δij for k⊥p−1 + 1 ≤ j ≤ k⊥p , 1 ≤ i ≤ k⊥p ,

for p ∈ [`] with the convention k0 = 0.

The coordinates given by Ŝk(α) parametrize Fl(k⊥;V ∗), as the first k⊥p columns

parametrize a k⊥p -plane Hp ∈ Gr(k⊥p , V
∗) for each p ∈ [`], and we have H1 ⊂ · · · ⊂ H`.

This gives coordinates for a dense subset of Fl(k⊥;V ∗), because the first k⊥p columns

of the matrices in Ŝk(α) give coordinates for a dense subset of Gr(k⊥p , V
∗) for each

p ∈ [`].

Example V.3.10. Let n = 7. Consider the flag variety Fl(3, 4, 6;V ∗) dual to

Fl(1, 3, 4;V ). We give arbitrary matrices in (Ŝ(3,4,6))α that provide local coordinates
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for the dual flag variety, for α = (5, 6, 7 | 4 | 2, 3) and α = (1, 3, 5 | 4 | 2, 7) respectively,

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

∗ ∗ ∗ 1 0 0

∗ ∗ ∗ ∗ 0 1

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ ∗ ∗


and



∗ ∗ ∗ ∗ 0 1

∗ ∗ ∗ ∗ ∗ ∗
0 0 1 0 0 0

∗ ∗ ∗ 1 0 0

0 1 0 0 0 0

∗ ∗ ∗ ∗ 1 0

1 0 0 0 0 0


.

For j ∈ [k`], the 1 in the (n− αj + 1, j) position is called a pivot.

Definition V.3.11. The dual Stiefel coordinates for the Schubert variety XαF• ⊂
Fl(k⊥;V ∗) are the local coordinates given by the subset (Ŝk⊥)α ⊂ Ŝk⊥(α) consisting

of matrices whose entries above each pivot are zero.

Definition V.3.12. Let α ∈
(

[n]
k

)
be a Schubert condition. We define ω = (n, n −

1, . . . , 2, 1) to be the longest permutation on [n]. The Schubert condition α⊥ ∈
(

[n]
k⊥

)
associated to α is given by the composition of permutations,

α⊥ := ωαω .

Definition V.3.12 allows us to extend Proposition II.5.6 to Schubert varieties in a

general flag variety.

Proposition V.3.13. If α ∈
(

[n]
k

)
then XαF• ∼= ⊥(XαF•) = Xα⊥F

⊥
• .

Example V.3.14. Let n = 7 and α = (4 | 2, 5 | 1, 6 | 3, 7) ∈
(

[7]
1,3,5

)
. We have α⊥ =

(1, 5 | 2, 7 | 3, 6 | 4, ) ∈
(

[7]
2,4,6

)
. We give Stiefel coordinates (Sk)α and (Ŝk⊥)α⊥ for XαF•

and Xα⊥F
⊥
• respectively,


a b c 1 0 0 0

d 1 0 0 0 0 0

e 0 f 0 1 0 0

1 0 0 0 0 0 0

0 0 g 0 0 1 0

 and



0 0 0 1 0 0

0 0 0 −d 0 1

0 1 0 0 0 0

0 −c 0 −a 1 −b
0 −f 0 −e 0 0

0 −g 1 0 0 0

1 0 0 0 0 0


.
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These parametrizations pair a point in XαF• with its dual in Xα⊥F
⊥
• .

Kleiman’s theorem of general transitivity applies to intersections in a flag variety

[22].

Proposition V.3.15. Let α = (α1, . . . , αm) be a list of Schubert conditions for

Fl(k;V ). If F 1
• , . . . , F

m
• are general flags, then

X := Xα1F 1
• ∩ · · · ∩XαmF

m
• (V.2)

is generically transverse. That is, X = ∅ or codim(X) = |α1|+ · · ·+ |αm| =: |α|.

We say that α is a Schubert problem in Fl(k;V ) if X of Equation (V.2) has expected

dimension zero, that is, if |α| = dim(Fl(k;V )).

The proposition and theorems of Section V.2 which do not use the coordinates Sβα

extend to flag varieties. Thus we may formulate Schubert problems in flag varieties

as solution sets to square systems of bilinear equations.

Example V.3.16. Consider the flag variety Fl(2, 4;C6) which is 12-dimensional,

general flags F 1
• , . . . , F

4
• in V , and the Schubert condition α = (3, 6 | 2, 5 | 1, 4). We

have |α| = 3, and

X := XαF
1
• ∩ · · · ∩XαF

4
•

contains 12 points. The relevant conditions characterizing (H1, H2) ∈ XαF
i
• are

dim(H1 ∩ F3) ≥ 1 , and dim(H2 ∩ F2) ≥ 1 .

Since dim(H1) = 2, the first relevant condition is given by 3 linearly independent

quadratic determinants. Since dim(H2) = 4, the second relevant condition is given

by one maximal quartic determinant. Using local coordinates for XαF
1
• , the classical

determinantal formulation of X involves 3 · 3 = 9 quadratic and 3 · 1 = 3 quartic

equations in 12− 3 = 9 variables.

The alternative primal-dual formulation involves a square system of 36 bilinear equa-

tions in the local coordinates ((S(2,4))α, (S(2,4))α⊥ , (S(2,4))α⊥ , (S(2,4))α⊥). Note that

k := (2, 4) implies k⊥ = (2, 4).
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CHAPTER VI

SUMMARY

In Chapter II, we gave background needed to understand our study in enumerative

real algebraic geometry. We outlined the history surrounding some theorems and

conjectures in Schubert calculus. The Mukhin-Tarasov-Varchenko Theorem is a sur-

prisingly elegant result in enumerative real algebraic geometry, which demonstrates

that the enumerative theory of real Schubert calculus is a rich field of study. This

remarkable theorem was not generally accepted when it was first conjectured, and

computations played a large role in giving credence to it.

In recent years, supercomputers have been used to solve billions of polynomial sys-

tems in order to investigate problems related to the Mukhin-Tarasov-Varchenko The-

orem. These investigations have lead to theorems and strongly supported conjectures.

We continued this practice of studying reality problems with the use of supercom-

puters.

In Chapter III, we described a study of Eremenko and Gabrielov, which used topo-

logical methods to obtain lower bounds to the number of real points in a fiber of the

Wronski map over a real point. We realized this inverse Wronski problem as a prob-

lem in Schubert calculus and used modern software tools to investigate these bounds

from a more general point of view. We discovered that the Eremenko-Gabrielov

type lower bounds are often sharp. In some cases, however, sharpness fails in an

interesting way.

We solved over 339 million instances of 756 Schubert problems, using over 469

gigahertz-years of processing power. While studying the data, we observed a re-

markable congruence modulo four in the number of real solutions to problems with

certain symmetries, and this congruence was the topic of Chapter IV. We also dis-

covered a family of Schubert problems, which has unusual gaps in the numbers of real

solutions to real osculating instances. These relate to work of Sottile and Soprunova,

and we used their method of counting real factorizations of a real polynomial to

explain the observed lower bounds and gaps.
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In Chapter IV, we proved a congruence modulo four in the number of real solutions

to real osculating instances of Schubert problems given by symmetric Schubert con-

ditions. This work affirmed the most surprising and compelling conjecture to come

out of the computational project described in Chapter III. One would typically ex-

pect the number of real solutions to a real osculating instance of a Schubert problem

to be fixed modulo two, because nonreal solutions come in pairs. We discovered that

there is a Lagrangian involution which also acts on symmetric Schubert problems.

For a rich family of such problems, the Lagrangian involution and complex conjuga-

tion are independent and the nonreal solutions come in sets of four. Establishing a

congruence modulo four on the number of real solutions to real osculating instances,

we established a new invariant in enumerative real algebraic geometry.

The work in Chapter III, and a lot of other work done in Schubert calculus, relied

heavily on formulating problems in a way that is efficient for computation. The

computational complexity of calculating a Gröbner basis in characteristic zero was

a bottleneck, which we hope to overcome through the use of certifiable numerical

methods. Algorithms from Smale’s α-theory may be used to certify numerical output,

when the problem involved is given by a square system of polynomial equations.

However, Schubert problems are famously overdetermined.

In Chapter V, we recast instances of Schubert problems as solution sets to square

systems. While this has the practical application of allowing us to use numerical

methods in a pure mathematical study of Schubert calculus, our ability to reformu-

late such a problem as a square system is interesting by its own right. The duality

between V and V ∗ induces a duality between Schubert varieties in a Grassmannian

and a dual Grassmannian, and we use this to give a primal-dual formulation for an

instance of a Schubert problem. This requires that we work in a larger space, adding

variables, but we benefit from replacing higher-degree determinantal equations by

bilinear equations. The square system of equations may be used to certify approx-

imate solutions obtained via an overdetermined system of determinantal equations,

but if the bilinear equations provide a more efficient setting for solving instances via

numerical methods, then we may do away with the overdetermined system altogether.
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