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ABSTRACT

Marsh vegetation is widely considered to offer protection against coastal storm

damage, and vegetated flow has thus become a key area of hydrodynamic research.

This study investigates the utility of simulated Spartina alterniflora marsh vegetation

as storm protection using an ADV measurement technique, and is the first to apply jet

self-similarity analysis to characterize the overall mean and turbulent flow properties

of a three-dimensional axisymmetric jet through a vegetated array.

The mean axial flow of a horizontal axisymmetric turbulent jet is obstructed by

three configurations of staggered arrays of vertical rigid plant stems. The entire

experiment is repeated over five sufficiently high jet Reynolds number conditions

to ensure normalization and subsequent collapse of data by nozzle velocity so that

experimental error is obtained.

All self-similarity parameters for the unobstructed free jet correspond to typical

published values: the axial decay coefficient B is 5.8 ± 0.2, the Gaussian spreading

coefficient c is 85± 5, and the halfwidth spreading rate η1/2 is 0.093± 0.003. Upon

the introduction of vegetation, from partially obstructed to fully obstructed, B falls

from 5.1±0.2 to 4.2±0.2 and finally 3.7±0.1 for the fully obstructed case, indicating

that vegetation reduces axial jet velocity.

Cross-sectionally averaged momentum for the unobstructed free jet is M/M0 =

1.05 ± 0.07, confirming conservation of momentum. Failure of conservation of mo-

mentum is most pronounced in the fully obstructed scenario—M/M0 = 0.54± 0.05.

The introduction of vegetation increases spreading of the impinging jet. The en-

trainment coefficient α for the free jet case is 0.0575; in the fully obstructed case,

α = 0.0631.

Mean advection of mean and turbulent kinetic energy demonstrates an expected

ii



reduction in turbulence intensity within the vegetated array. In general, turbulent

production decreases as axial depth of vegetation increases, though retains the bi-

modal profile of the free jet case; the fully vegetated case, however, exhibits clear

peaks behind plant stems. Turbulent transport was shown to be unaffected by veg-

etation and appears to be primarily a function of axial distance from the jet nozzle.

An analysis of rate of dissipation revealed that not only does the cumulative effect

of upstream wakes overall depress the magnitude of spectral energy density across all

wavenumbers but also that plant stems dissipate large anisotropic eddies in centerline

streamwise jet flow. This study, thus, indicates that sparse emergent vegetation both

reduces axial flow velocity and has a dissipative effect on jet flow. Typically, however,

storm surge does not exhibit the lateral spreading demonstrated by an axisymmetric

jet; therefore, the results of this study cannot conclusively support the claim that

coastal vegetation reduces storm surge axial velocity.
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1. INTRODUCTION

Increasing interest in protecting coastal settlements, environments and infras-

tructure from storm damage has promoted research into not only manmade coastal

protection, such as flow and scour around seawalls and pilings, but also natural pro-

tective structures, including dunes and wetlands. This study seeks to investigate a

frequently made argument that marsh vegetation reduces storm surge, specifically

by simulating Spartina alterniflora vegetation—a common rigid, emergent wetland

grass—as a staggered array of cylinders.

Various configurations of this vegetation are placed downstream of a fully turbu-

lent jet to investigate how the axial distance of flow impingement from the jet nozzle

affects downstream conditions. Alongside a standard calculation of turbulent kinetic

energy and dissipation, the axial velocity decay and radial spreading of the altered

jet are compared to a validated free jet scenario to determine if free jet self-similarity

parameters can be adapted to vegetative flow. These measurements are important

because demonstrated validation of self-similarity analysis to jets in vegetated flows

permits generalization of the entire flow field in terms of self-similarity parameters

and thus the application of a wide range of techniques and methods of characterizing

self-similar jet flows.

The self-similarity of the axisymmetric turbulent jet has been studied extensively

over the last fifty years, not only for its frequency in nature but also for the remarkable

accuracy with which it represents flow under diverse initial conditions. Early studies

developed the currently used momentum-based approach to characterize mean flows,

turbulence intensities and energy transport as functions of axial and radial distance

from the jet nozzle (Rajaratnam, 1976), (Wygnanski and Fiedler, 1969) and (Hussein

et al., 1994). Sufficiently far from the jet nozzle in this self-symmetric region called
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the zone of established flow, jet velocities are dependent only on initial conditions

(Xu and Antonia, 2002). Several other studies consider the potential cone in the zone

of flow establishment prior to transition to self-symmetry in the zone of established

flow (Keller, 1994) and (Liepmann, 1991).

Entrainment, the process by which ambient fluid is captured primarily through

large-scale engulfment by vortical structures on the edge of the jet cone, is generally

described in terms of a coefficient relating a mean radial entraining velocity at the

edge the jet cone to the mean axial centerline velocity (Falcone, 2003). Ambient fluid,

prior to entrainment, is in an irrotational state beyond the radial jet edge; however,

once entrained, it acquires a vorticity and is advected downstream (Bremhorst and

Harch, 1978). On a lesser scale, viscous diffusion of vorticity extracts external fluid

into the turbulent flow and initiates small-scale motion of already entrained fluid

(Turner, 1986). As a result, a packet of entrained fluid is not instantaneously fully

and uniformly entrained; rather, pockets of irrotational fluid may still be found within

the jet, but are best detected with instantaneous two-dimensional methods (Dahm,

1987).

Despite its frequency in literature, the applicability of the entrainment coefficient

for round jets has recently been called into question (Agrawal and Prasad, 2003).

Although the understanding of the underlying physics of the round turbulent jet

has not changed drastically in the last half century, the definitions of self-similarity

parameters have evolved (Liepmann, 1991). Current research efforts have focused on

explaining shortfalls in conservation of momentum and agreement with predictions

of kinetic energy terms. Nevertheless, the axisymmetric turbulent jet remains one of

the most predictable, reproducible and widely studied flows.

Typical instruments of measurement include both point-wise acoustic dopper ve-

locimetry (ADV) and planar particle image velocimetry (PIV). The former, employed
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in the present study, permits extensive statistical analysis and determination of subtle

three-dimensional turbulent correlations; the latter, records two-dimensional snap-

shots of particle motion and enables determination of instantaneous vorticity and

flow patterns.

Coastal vegetation has often been promoted as a first line of defense against storm

surge. A rule of thumb states that 14.5 km of wetland reduces storm surge by 1 m,

according to a 1963 report by the United States Army Corps of Engineers (Wamsley,

2010). This generalization is difficult to definitively confirm or disprove due to the

large number of flow, storm and marsh characteristics; however, certain parameters

can be measured under controlled conditions. Some studies investigate the effects of

wake formation behind one or two cylinders (Luo et al., 1996) and (Kiya et al., 1980).

Several experimental studies consider flow, especially drag and dissipation, through

arrays of vegetation in channel flow (Nepf, 1999), (Liu et al., 2008), (Murphy et al.,

2007), (James et al., 2004), (Kadlec, 1990) and (Tanino and Nepf, 2008). Recently,

such flows have been mathematically modeled (Braun and Kudriavtsev, 1995), (Huai

et al., 2009) and (Stoesser et al., 2009).

The present study seeks to further the understanding of vegetated flows by ob-

structing the zone of established flow of a free turbulent jet with sparsely vegetated

arrays. Because the turbulence and mixing properties of jets are well known, changes

in jet behavior upon impingement with simulated vegetation reveal the influence of

plant arrays on jet physics. Application of standard jet self-similarity parameters

to obstructed flow allows for the comparison of vegetated flow configurations to one

another, as well as to the validation free jet scenario. By developing a network

of measurement stations and validating self-similar conservation of momentum, en-

trainment and kinetic energy for a free jet, this same network can be used to study

deviations from a free jet caused by the introduction of simulated vegetation.
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The instrument of measurement, an ADV, allows high-frequency recording of

three-dimensional velocities so that mean and turbulent parameters could be de-

termined with accuracy. In addition to the free jet configuration, three additional

configurations of vegetated arrays are subjected to five fully turbulent flow speeds

with sufficiently high Reynolds numbers to permit the averaging, or collapse, of jet

speeds.

As a result, the analysis allows the computation of mean flow parameters, Reynolds

stresses and turbulent transport triple products with greater accuracy, as well as en-

abling the calculation of experimental error. By effectively bridging the gap between

axisymmetric jet studies and open channel vegetation studies, this study quantita-

tively describes hydrodynamic parameters ranging from enhanced simple axial ve-

locity decay to complex vegetation wake effects.
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2. EXPERIMENTAL SETUP

2.1 Main tank

The experiment was conducted in the Hydrodynamic Laboratory Building in

the Ocean Engineering Program at Texas A & M University at College Station.

The experimental tank is an open and elevated glass-fronted steel tank measuring

1.30m in height, 1.32m in width and 3.00m in length. A top-mounted rack allows

steady, precise three-dimensional instrument placement within the tank. To remedy

unevenness in the tank bottom, a false floor was installed, thus providing a plane

and level surface for placement of rigid simulated vegetation and the jet outlet stand.

2.2 Jet assembly and constant head tank

A constant head tank is a simple and reliable means of establishing and main-

taining a jet with reproducible initial conditions. In this study, an open five-gallon

bucket of a ten-inch diameter is suspended by a crane above the main tank, see

Figure 2.1. Supplied by a high-speed and -volume bilge pump positioned under the

false floor in the far downstream portion of the main tank, the water level in the

bucket is held constant at 0.229m above the bucket bottom. Surplus water exits the

bucket through perforations above the target water level and falls into a pan that

returns the excess water to the experimental tank through a diffuser situated under

the false floor and isolated from the upper jet flow chamber by horsehair lining.

Water is drawn continuously from the bottom of the bucket through a 3.66m long

flexible tube with a 1.27cm inner diameter and expelled from a 0.12m rigid plastic

tube with an inner diameter of 6.35cm. This extended nozzle was designed to ease

calibration and reduce tangential motion of the fluid. Although the main tank was

filled to 0.387m, the jet outlet was positioned so that the expanding jet cone remained
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Figure 2.1: Suspended constant head tank at maximum vertical extent and experi-
mental tank

sufficiently distant from walls, floor and free surface within the measurement domain.

Effectively, the jet vertical centerline is 0.187m above the false floor and 0.200m

under the free surface throughout the measured range. Shinneeb et al. (2011) em-

ployed a similar main tank and jet setup, but varied the jet centerline and measure-

ment plane vertically at a ratio of H/d, where H/2 is distance from free surface to

jet centerline and d is jet nozzle diameter. That study considered 5 ≤ H/d ≤ 15;

the present study, for reference, has a fixed H/d = 59 (Shinneeb et al., 2011).

It is known that the halfwidth of an axisymmetric, incompressible non-buoyant

jet will expand at an angle of 5.43◦ with respect to the jet centerline (Lipari, 2011).

The jet height was chosen so that the maximum streamwise extent of measurements

at 0.914m occurs at twice the halfwidth b, see Figure 2.2, and well before wall

effects have measurable influence on self-similarity. Necessitated by irregularities in

the shape of the tank bottom, placement of the false floor resulted in the mounted

jet centerline measuring 73.7cm from the left wall and 58.4cm from the right wall.
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Figure 2.2: Plan view of measurement plane coordinate system

Though the jet cone does not contact either wall, the offset produces a slight variance

in the tank recirculation current that is discernible in the resultant spanwise velocity

profiles.

The constant head tank is raised or lowered to produce a range of turbulent

initial nozzle velocities, of which five were chosen to generate collapsible profiles to

improve experiment accuracy and permit the determination of experimental error.

The highest tank placement ∆h, 1.93m difference between water level of constant-

head tank and water level of main tank, was the maximum vertical extent of the

crane, and the lowest tank placement, 0.71m, was the minimum elevation for which

the return pan siphon would function. Intermediate placements occurred at 1.63m,

1.32m and 1.02m.

After measuring flow volumes for these volumes at the water surface in the main

tank, the various placement heights produced the bulk velocities u0 in Table 2.1, as-

suming a top-hat initial nozzle velocity profile (Xu and Antonia, 2002). Each jet ex-
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Table 2.1: Constant-head tank placement and speed

Speed ∆h m u0 m/s ReM0

1 1.93 3.31 18600
2 1.63 3.06 17200
3 1.32 2.77 15500
4 1.02 2.45 13700
5 0.71 2.08 11700

hibits fully turbulent initial conditions, ReM0
≥ 4000, where ReM0

, non-dimensional

momentum Reynolds-like number, is defined by

ReM0
=

√
M0

ρ

1

ν
(2.1)

where M0 is mean initial momentum at the nozzle, ρ is density and ν is kinematic vis-

cosity (Lipari, 2011). An alternate form of the Reynolds number with bulk discharge

velocity as characteristic velocity scale is occasionally used and is defined by

Reu0 =
u0d

ν
(2.2)

where u0 is mean initial velocity at the nozzle and d is the jet outlet diameter. By

geometry, Reu0/ReM0
= 1.13 for radially axisymmetric jets (Lipari, 2011).

The described jet and tank setup is typical of modern jet studies. Due to the

wealth of literature regarding free jets, it is important to reproduce accepted jet

self-similarity in the present measurements before extending analysis to vegetated

arrays, presented in Chapter 3.
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2.3 Plant array

Without installation of vegetation, this study confirms accepted self-similarity

and conservation parameters of axisymmetric jets. In this study, however, this initial

analysis serves as a calibration and a necessary stepping stone to studying the effects

of introducing simulated vegetation as an obstacle to flow. Once validated as a self-

similar, conserving jet, arrays of simulated Spartina alterniflora, smooth cordgrass,

are inserted in three configurations for each of the five test speeds.

Spartina alterniflora is a common rigid, emergent wetland plant and is simulated

here by smooth acrylic rods of 6.35mm diameter vertically mounted on 0.305m by

0.914m acrylic sheets in an equidistant staggered pattern so that each interior plant

is 8.8cm from each of its six neighbors, similar to the mathematical model proposed

by Braun and Kudriavtsev (1995), though sparser. Stem oscillation produces random

fluid-elastic instabilities and thus produces undesirable symmetric vortex shedding

(Abd-Rabbo and Weaver, 1986) and (Jendrzejczyk et al., 1979). This undesired

velocity-induced vibration was eliminated by mounting an aluminum c-channel atop

rows of vegetation for 24 ≤ x/d ≤ 72 perpendicular to the jet centerline.

Although relatively sparse compared to recent open-channel vegetation studies—

vegetation density per meter a, given by

a =
d

∆S2
(2.3)

where ∆S is inter-plant spacing and compared with other studies in Table 2.2—it

is this sparseness that retains the basic shape of the jet cone and enables compar-

ison(Nepf, 1999). In nearly all studies of emergent, rigid vegetation, only plant

stems—actual or simulated—are installed; in at least two instances, however, arrays

of both simulated Spartina alterniflora stems and leaves were studied (Nepf et al.,

9



Table 2.2: Studies involving flow through vegetated arrays

Study ad Sensor type
present study 0.0052 ADV

Abd-Rabbo and Weaver (1986) 0.5 Tracer particles and camera
Balachandar and Parker (2002) — Numerical model
Braun and Kudriavtsev (1995) 0.25 Numerical model

Huai et al. (2009) 0.0036 ADV
Leonard and Luther (1995) 0.003− 0.083 LDV
Lightbody and Nepf (2006) 0.01 ADV

Liu et al. (2008) 0.016 LDV
Murphy et al. (2007) 0.015− 0.048 ADV, LDV and FVA

Neary (2003) — Numerical model
Nepf (1999) 0.008− 0.07 ADV and LDV

Nepf et al. (1997) 0.007− 0.288 ADV and LDV
Neumeier (2004) — ADV
Pye et al. (1995) 0.006 Current meter

Stoesser et al. (2009) 0.02 Numerical model
Tanino and Nepf (2008) 0.12− 0.45 ADV

1997) and (Lightbody and Nepf, 2006). Yagci et al. (2010) found that the accuracy

of a rigid cylinder representing an actual plant in terms of axial velocity reduction

depended on the depth of the measurement plane.

In addition to the non-dimensional parameter ad, where d is stem diameter, plant

density can be expressed by the dimensionless parameter φ, defined as

φ = mAS (2.4)

where m is number of plants per horizontal area and AS is stem cross-sectional

area (Tanino and Nepf, 2008). There is no simple conversion from one parameter

to another. By definition, ad is the preferred dimensionless vegetation density pa-

rameter for equidistant regular arrays, whereas φ is well suited for dense, random

placements, such as simulated mangroves (Tanino and Nepf, 2009). For the present
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study, ad = 0.0052 and φ = 0.00477. This ad was chosen to compare with other

studies investigating Spartina alterniflora. The typical density of emergent marsh

grasses with rounded stems is typically 0.01 ≤ a ≤ 0.07 1
cm

(Nepf and Ghisalberti,

2008).

Vortices shed from upstream cylinders attach to downstream inline cylinders,

whereas side-by-side cylinders favor a mode of vortex shedding equivalent to an

isolated cylinder if spacing is adequate (Kiya et al., 1980) and (Akilli et al., 2004). If

∆S ≤ 1.4d, no matter the orientation, as is the case in very dense arrays, the same

study found that adjacent cylinders act as a single body in terms of vortex shedding

(Kiya et al., 1980). In the present study, the staggered cylinder placement is between

both of these extremes, so that while the first rows of plant stems appear to shed

vortices as isolated cylinders; stems in the interior of the array not only shed their

own vortices but also are subjected to vortices shed by upstream rows. Staggered

arrays produce more flow resistance than inline arrays (Liu et al., 2008).

Vegetated plates were installed in three configurations, see Figure 2.3. In the

free-jet configuration, no simulated vegetation is present; this configuration serves to

validate the setup and analysis. This jet assembly was specifically chosen to replicate

the most prevalent jet in literature, the axisymmetric radial jet. In Configuration

1, two vegetated arrays are inserted so that the free jet cone enters vegetation for

x/d > 120 and all but Section 4 are within the free jet region. In configurations 2

and 3, the free jet cone enters vegetation at a smaller x/d, as described in Table 2.3.

Therefore, Configuration 1 represents a fully developed and self-similar jet flow

in the distant zone of established flow at the point of impingement with vegetation.

By contrast, the point of impingement for Configuration 3 is early within the zone of

flow establishment. Configuration 2 is an intermediate stage between configurations 1

and 3, in which the flow impinges on vegetation within the early zone of established

11



Figure 2.3: Plan view of measurement stations with sections and configurations
indicated

Table 2.3: Extent of vegetation by configuration

Configuration Free jet range Vegetated range
x/d Sections x/d Sections

Free jet 0− 216 1− 4 — —
1 0− 120 1− 3 120− 216 4
2 0− 72 1 72− 216 2− 4
3 0− 24 — 24− 216 1− 4
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flow. The zone of established flow, as determined by this study, occurs between

12 < x/d < 24, as is discussed in Chapter 3.2.

2.4 Measurement and record length

A 3D Nortek Vectrino ADV, with the control volume vertically centered on a

measurement plane parallel to the water surface and vertically coincident with the

jet centerline, recorded velocity in streamwise, spanwise and tangential directions.

The addition of a fourth acoustic leg permitted the measurement of two vertical

velocities; these were averaged to produce a single tangential velocity, thus the terms

tangential and vertical are equivalent due to alignment.

The initial axial nozzle velocity was on the order of 1m/s; therefore, a sampling

rate of 50Hz was chosen to capture statistically independent samples and the main

tank was seeded with seeding particles to ensure sufficiently high signal-to-noise ratio

and signal correlation. Initial attempts to reduce tank recirculation with horsehair

mounted on the far downstream wall resulting in substantial loss of ADV seed par-

ticles. Removal of the horsehair did result in a visible recirculation current visually

estimated at no more than 0.01m/s, which, as results will demonstrate, has a min-

imal effect on velocity profiles and no clear effect on momentum conservation or

entrainment halfwidth. The sampling frequency should be at least twice as high as

the highest frequency of interest, the so-called Nyquist frequency (Atta, 1974). In

order to determine optimal record length, the ADV was positioned in the wake of a

cylinder at a downstream position in fully vegetated flow. Allowing a maximum 10%

deviation threshold for any realization from the full record axial mean, the minimum

sample length at 50Hz was 36.3s. Because the mean axial centerline velocity serves

as a characteristic velocity scale, it is important to achieve an accurate mean.

In general, however, the record length at each station was 140−180s. Radial and
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Table 2.4: Location and extent of measurement sections

Section Alignment Stations x/d
(
r/r1/2

)
max

1 radial 9 48 2.70
2 radial 13 84 2.25
3 radial 15 120 1.71
4 radial 17 132 1.85
5 axial 12 12− 144 0

tangential velocities are considerably smaller in magnitude and variable and are not

characteristic length scales; therefore, higher deviation is permitted. At this sample

length, maximum deviation of radial and tangential velocity realizations from mean

are approximately 75% and 200%, respectively, due to the small magnitude of these

velocities and a raw mean of zero, see figures B.1– B.8 in Appendix B. Over all

sections and configuration, v
uc
< 0.1 and w

uc
� 0.1.

In order to capture adequate spatially varying velocity data, the selected testing

pattern, see Figure 2.3 and Table 2.4, consisted of 64 axial and radial measurement

stations. Twelve equidistant centerline measure stations at a spacing of 7.62cm,

the first of which is placed 7.62cm downstream of the jet nozzle, record axial de-

cay. Radial measurement stations resemble perpendicular branches off of the axial

measurement line and extend a distance of twice the anticipated free-jet halfwidth—

defined as the radial distance at which u(η) = uc/2—each side of the centerline at

a spacing of 2cm. Aside from Section 1, which has only 9 stations total, this radial

measurement spacing produced sufficient radial resolution to demonstrate momen-

tum conservation of the free jet case with low error.

2.5 Postprocessing

Raw ADV output includes instantaneous velocity, correlation and signal-to-noise

ratio in three Cartesian directions. Although there is value to this raw velocity and its
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Figure 2.4: Normalized spanwise mean velocity profiles for Section 4 of the free jet

mean over the entire record, it is common practice to compute the root-mean-square

(RMS) to obtain turbulent strength according to

u′ =

√√√√ 1

N

N∑
i=1

(u′i)
2 =

√√√√ 1

N

N∑
i=1

(u− u)2 (2.5)

where u′ is a turbulent fluctuation and u is a mean velocity (Carollo et al., 2002).

Figures 2.4 and 2.5 illustrate the comparative amplitudes of mean and RMS velocity

profiles of the same data set, Section 4 of the free jet, normalized to centerline axial

velocity.

In many cases, it may be preferable to despike ADV data prior to use. Based

on the physics-based approach to detect and smooth spikes described in Goring and

Nikora (2002), the present study initially used a modified version of this algorithm

that maintains peaks of a user-defined minimum peak width. Additional spatial and

temporal despiking techniques are available for particle image velocimetry (PIV)
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Figure 2.5: Normalized spanwise Reynolds stress profiles for Section 4 of the free jet

(Weisgraber and Liepmann, 1998). Although error was marginally reduced in un-

obstructed near-centerline flow, peak preservation modifications failed to retain suf-

ficient detail of large-scale turbulent structures along the entrainment boundary, as

well as behind stem wakes within the plant array. Overall, an average 5% of momen-

tum was lost at sections 3 and 4, see Figure 2.6. In addition, there was no physical

justification for the removal of turbulent peaks; therefore, it was decided to retain all

raw velocity data, though the occasional aberrant reading may have insignificantly

elevated averaged derived quantities, such as volumetric flow rate, momentum and

energy.

As described in Chapter 2.2, the slight offset of the jet centerline within the main

tank resulted in unequal recirculation currents. This effect, visible in all spanwise

velocity profiles, is small and consistent across all cross-section and does not displace

the jet mean from the centerline. Jet self-similarity parameters are defined for a
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(a) Centerline

Configuration 3 Speed 3

Section 4 Station 00

removed points in blue

(b) Entrainment boundary

Configuration 3 Speed 3

Section 4 Station 18

removed points in blue

Figure 2.6: Despiked ADV data

presumed Gaussian curve with a maximum mean coincident with the jet centerline;

therefore, the curve is folded and averaged about the centerline to produce a span-

wise Gaussian profile with symmetric sides, see Figure 2.7. During early alignment

of the jet, the ADV was set to record at varying distances along the jet centerline;

records were processed and Gaussian fitted to ensure vertical and horizontal center-

line alignment. Due to the slight unequal recirculation present within the tank, most

radial profiles exhibit variability at extreme radial stations.

Each measurement station was tested under three configurations at five speeds,

in addition to free jet configurations, across each of the 64 stations. All five jet

speeds are well-developed turbulent flows, and therefore, as expected from jet the-

ory, collapse upon normalization with respect to respective initial nozzle velocity.

Thus, after collapse, the fifteen vegetated runs produce three collapsed data sets—

one for each configuration—as well as the free jet validation runs. Throughout the
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Figure 2.7: Example Gaussian fit to spanwise axial velocity profile
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remainder of this study, referenced quantities are speed averaged, and the corre-

sponding errors are the Gaussian standard deviation of the normalized five speeds

prior to averaging. To obtain the collapsed velocity, each computed mean value is

normalized with respect to its bulk nozzle velocity. These five non-dimensional mean

values are then averaged to obtain the collapsed value. This procedure is applied to

mean velocities, Reynolds stresses and turbulent transport triple products, though

the power of the normalizing bulk velocity is adjusted to obtain a non-dimensional

mean. Figure 2.7 illustrates the collapsing of the five speeds to a single raw mean

value and demonstrates the effect of the recirculation at extreme radial measurement

stations.

18



3. FREE JET

3.1 Types of jets

Fluid turbulent jets are widely studied not only for their frequency in nature

and utility in industrial applications but also for their remarkable property of self-

similarity. Over five decades of research has produced a large body of data regarding

the jet characteristics of multiple configurations, thus enabling the study of other

phenomena through jets. Well away from the point of inflow, in the zone of estab-

lished flow, variability in the self-similarity parameters of a downstream jet can infer

the behavior of upstream obstacles or flow conditions.

Rajaratnam (1976) describes the equations of motion and solutions to several

types of jets—including plane, circular, radial, compound and wall jets. The cir-

cular jet employed in this study, in particular, is well described in literature and,

due to axisymmetry, allows for simplification of the equations of motion. Further

specifications—such as no swirl or initial tangential velocity, isotropic buoyancy,

incompressibility of jet and quiescent ambient fluid, and steady flow—permit sub-

stantial further simplification.

Early studies have assumed that for a sufficiently turbulent jet in an ideally

infinite and quiescent domain, downstream conditions are only a function of initial

conditions, including Reynolds number and jet velocity profile, the latter because

physical jets are not point sources (Hussain and Zaman, 1981) and (Hussein et al.,

1994).

Due to axisymmetry, jet geometry is described in cylindrical coordinates, where x

denotes streamwise or axial distance; r, streamwise or radial distance; and θ, tangen-

tial angle. The measurement plane is horizontal to the water surface and is bisected
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by the jet flow centerline; therefore, θ also describes the vertical displacement. Re-

spective velocities are u, v and w.

The Navier-Stokes equations with constant density and kinetic viscosity and with-

out external forces are given by

∂u

∂x
+

1

r

∂

∂r
(rv) +

1

r

∂w

∂θ
= 0 (3.1)

∂u

∂t
+ (u · ∇)u = −1

ρ

∂p

∂x
+ ν∇2u (3.2)

∂v

∂t
+ (u · ∇) v − w2

r
= −1

ρ

∂p

∂r
+ ν

(
∇2v − v

r2
− 2

r2
∂w

∂θ

)
(3.3)

∂w

∂t
+ (u · ∇)w +

vw

r
= −1

ρ

∂p

∂θ
+ ν

(
∇2w − w

r2
− 2

r2
∂v

∂θ

)
(3.4)

where

(u · ∇) = u
∂

∂x
+ v

∂

∂r
+
w

r

∂

∂θ
(3.5)

∇2 =
∂2

∂x2
+

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
(3.6)

(Kundu and Cohen, 2008). For a swirl-free and steady flow, ∂
∂θ

and ∂
∂t

, respectively,

are equal to zero. Equations 3.1 to 3.4 thus reduce to

∂u

∂x
+

1

r

∂

∂r
(rv) = 0 (3.7)(

u
∂

∂x
+ v

∂

∂r

)
u = −1

ρ

∂p

∂x
+ ν∇2u (3.8)(

u
∂

∂x
+ v

∂

∂r

)
v − w2

r
= −1

ρ

∂p

∂r
+ ν

(
∇2v − v

r2

)
(3.9)(

u
∂

∂x
+ v

∂

∂r

)
w +

vw

r
= ν

(
∇2w − w

r2

)
(3.10)

In Cartesian coordinates, the two-dimensional continuity equates ∂u
∂x

= −∂v
∂y

; how-

ever, the additional term within the cylindrical form of the Navier-Stokes equations
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∂u
∂x

= −∂v
∂r
− v

r
complicates simplification. By multiplying all terms of the continuity

equation by u and collecting terms, Equation 3.7 produces

∂u2

∂x
− u∂u

∂x
+

1

r

∂

∂r
(ruv)− v∂u

∂r
= 0 (3.11)

Likewise, Equation 3.7 produces

∂uv

∂x
− u∂v

∂x
+

1

r

∂

∂r

(
rv2
)
− v∂v

∂r
= 0 (3.12)

if multiplied by v and

∂uw

∂x
− u∂w

∂x
+

1

r

∂

∂r
(rvw)− v∂w

∂r
= 0 (3.13)

if multiplied by w (Rajaratnam, 1976).

Adding Equation 3.11 to the left side of the streamwise conservation of momentum

Equation 3.8 and simplifying results in

∂u2

∂x
+

1

r

∂

∂r
(ruv) = −1

ρ

∂p

∂x
+ νu∇2u (3.14)

(Rajaratnam, 1976). Analogous operations produce the spanwise and tangential

conservation of momentum expressions

∂uv

∂x
+
∂v2

∂r
+
v2 − w2

r
= −1

ρ

∂p

∂r
+ νv

(
∇2v − v

r2

)
(3.15)

∂uw

∂x
+

1

r

∂rvw

∂r
+
vw

r
= νw

(
∇2w − w

r2

)
(3.16)

In a jet with no initial swirl, tangential velocities are small compared to stream-

wise and spanwise velocities over the entire domain, and derivatives of the product
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including a tangential velocity are yet smaller. As a result, terms ∂uw
∂x

and 1
r
∂rvw
∂r

are

neglected.

To apply these simplified equations of motion to turbulent jets, first implement

Reynolds decomposition by splitting velocity into mean and turbulent components

ui = ui + ui
′, where u is mean axial velocity and u′ is a turbulent fluctuation, into

Equations 3.7, 3.14 and 3.15. Using an order-of-magnitude argument, the boundary

layer approximation assumes that the axial stress gradient ν∂2u/∂x2is neglible (Ra-

jaratnam, 1976). After averaging and neglecting the remaining small viscous terms

these equations can be recast as

∂u

∂x
= −1

r

∂rv

∂r
(3.17)

∂

∂x

(
u2 + u′2 +

p

ρ

)
= −1

r

∂r
(
uv + u′v′

)
∂r

(3.18)

∂u′v′

∂x
= − ∂

∂r

(
v′2 +

p

ρ

)
+
w′2 − v′2

r
(3.19)

(Hussein et al., 1994) and (Lipari, 2011).

This further simplification leaves only wv
r

= 0 in Equation 3.16. Although this

statement would suggest that any product including a tangential product may be

neglected, and indeed this is common practice, it is preferrable to nominally retain

the w2

r
term in Equation 3.15 to account for normal tangential turbulent contribu-

tions, although another common assumption that w2 = v2 is occasionally used to

further simplify Equation 3.15 and eliminates the governing equations of w altogether

(Weisgraber and Liepmann, 1998) and (Browne et al., 1987).

This form of the governing equations is especially useful for determining an ex-

pression for momentum; this procedure is covered in detail in Lipari (2011) and

produces an expression for momentum, see Equation 3.31.

22



3.2 Self-similarity

Inherent to circular free jets, radial velocity v and vertical velocity w are ide-

ally zero at centerline. The form of self-similarity equations as proposed by Lipari

(2011) are used for comparison against the historical reanalyses of several significant

previous studies contained in the article.

Issuing forth from a nozzle of diameter d at a bulk mean velocity u0, jet outflow

spreads spanwise while quiescent ambient fluid is entrained, see Figure 2.2. Xu

and Antonia (2002) studied the effects of jet initial conditions, in particular orifice

configuration, and the development and emergence of the zone of established flow.

In general, outlets are classified as either contraction nozzles or pipes, the former

exhibiting a characteristic “top hat” initial axial velocity profile of uniform bulk

velocity u0 and the latter, a logarithmic profile for turbulent pipe flow. The jet

nozzle in this study consists of a 0.12 m pipe; however, exhibits an axial decay more

consistent with a contraction nozzle. Although most studies include contraction

nozzles, some recent studies have looked at pipe flows (Falcone, 2003).

Self-similarity becomes apparent in the zone of established flow, which is char-

acterized by a centerline axial uc velocity profile that decays inversely to distance

along the centerline streamwise axis from the nozzle velocity and an axisymmetric

radial velocity profile that decays inversely with respect to spanwise distance from

flow centerline (Hussein et al., 1994). The onset of self-similarity begins as early as

6d (Kassab et al., 1996) and (Liepmann and Gharib, 1992). By visual inspection

of streamwise axial velocity profiles, the present study suggests that the onset of

emergent self-similarity presently occurs between 12 < x/d < 24.
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3.3 Axial velocity

The centerline axial velocity is related to the initial bulk nozzle velocity by

uc
u0

= B
d

x− xB
(3.20)

(Lipari, 2011). A momentum virtual origin offset xB is required because the free jet

has an initial diameter, though the expanding jet cone is approximated as having a

point source. The axial self-similarity parameters B and xB are found through linear

regression. Parameter B is an indicator of how rapidly centerline axial velocity decays

with increasing axial distance from the jet. This formulation is more straightforward

than the commonly used

uc
u0

=
C1

2

d

x
(3.21)

and avoids ambiguity regarding the effective axial distance from the physical jet

outlet.

Xu and Antonia (2002) found that B values of approximately 5.6 and 6.5 cor-

respond, respectively, to contraction nozzles and pipe flows. The unobstructed free

jet in this study was found to have a B value of 5.8± 0.2 with a linear coefficient of

determination R2 = 0.9907 across eleven points, conforming to the value range for

top-hat jets. In turbulent jets, axial velocity decays more rapidly than expected due

to flow reversal at jet boundaries (Schneider, 1985). The momentum virtual origin

xB/d of the averaged free jet was found have a value of 0±6. Due to the small diam-

eter of the nozzle, d = 6.35mm, uncertainty in the experimental virtual origin was

large in all analyses; therefore, these results are provided for comparison purposes

only. Centerline axial velocities spanned 24 ≤ x/d ≤ 132. The centerline reading
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at x/d = 12 was determined to potentially be within the zone of flow establishment

and thus excluded. As has been noted by Lipari (2011), tank recirculation, which

was minimized though nevertheless observed in this study, can reduce downstream

momentum and artificially depress the B value.

Spanwise, axial velocity decays according to a Gaussian profile

u(η)

uc
= e−cη

2

(3.22)

where η = r/(x − xS) (Wygnanski and Fiedler, 1969), (Hussein et al., 1994) and

(Lipari, 2011). Parameter r is radial distance from centerline, and xS is the spreading

virtual origin. Because xB and xS are not based on the same mechanism, differences

in virtual origin offset do not indicate error.

This notation, promoted in Lipari (2011), deviates from a common definition of a

location parameter of similar usage ηm = r/(c1x), where c1 an experimental constant

with the value 0.103 for circular jets, (Mih, 1989). Whereas linear regression of

streamwise axial velocity decay yields a momentum virtual origin offset xB, linear

regression of spanwise axial velocity decay produces a spreading virtual origin offset

xS. A so-called radial halfwidth b or r1/2 at which u(η) = uc/2 serves as a spanwise

characteristic length scale. Most entrainment occurs within ±1.7b (Shlien, 1987).

The halfwidth is occasionally defined as u(b) = uc/e, though the definition u(η) =

uc/2 is used throughout this thesis (Agrawal and Prasad, 2002). In addition to η

notation, ξ notation, where ξ = r/r1/2, is encountered and provides for convenient

normalization of spanwise velocity profiles (Agrawal and Prasad, 2003).

Typically, the spanwise profile of the axial velocity of a free jet is presumed to

be Gaussian (Agrawal and Prasad, 2003). Figure 2.7 illustrates the folding of radial

velocity profiles about the jet centerline and Gaussian fit, in this case for Section 3
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of Configuration 1. The recirculation effect of the finite tank is visible as deviation

from the folded mean for |r/b| > 1. The halfwidth spreading rate S1/2 is otherwise

defined as η1/2

S1/2 = η1/2 =
r1/2
x− xs

(3.23)

Typical values for c and η1/2 are 76.5 and 0.095 for contraction jets and 90.2 and

0.086 for pipe flows (Xu and Antonia, 2002). Contraction jets, thus, decay axially

and grow radially more rapidly than pipe flows. Due to conservation of momentum,

halfwidth growth is necessarily accompanied by accelerated axial velocity decay. As

a result of higher shear and enhanced entrainment, large-scale flow structures, such

as vortical rings, occur closer to the outlet of contraction jets than for pipe flows

(Liepmann, 1991). The averaged c and η1/2 values for the free jet in this study are

81 ± 5 and 0.093 ± 0.003, and xS/d is found to be −9 ± 14. These values result

from linear regression of spanwise values over 84 ≤ x/d ≤ 120. As is the case with

xB, uncertainty is great for all analyses of xS and the value is given for comparison

only. See Table 3.1 for a comparison of spread self-similarity parameters for all four

measurement sections. Of the four measured sections, Section 1 was excluded from

this average due to the poor radial resolution of the axial velocity profile. Parameters

c and η1/2 correspond to values expected of a top-hat jet, though somewhat elevated

due to the extended nozzle length.

Deviation of experimental results from theory is often based on the frequently

made assumption of some degree of isotropic flow (Kassab et al., 1996). Semi-

isotrophy develops in the zone of established flow so that v2/u2 = 0.6, and span-

wise axial velocity profiles in the zone of established flow collapse uniformly and

are thus self-similar(Kassab et al., 1996). Figure 3.1a shows that although profiles
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Table 3.1: Spreading self-similarity parameters of free jet

Section x/d c η1/2
1 48 86± 22 0.09± 0.01
2 84 82± 4 0.092± 0.002
3 120 81± 6 0.093± 0.004
4 132 81± 8 0.093± 0.004

collapse near the centerline, the mean radial velocity ratio is smaller than expected

0.2 < v2/u2 < 0.4 and suggests that small semi-isotropic eddies occur primarily at

the far radial edge and are overall diminished as vegetation is introduced. The ratio

w2/u2, see Figure 3.1c, exhibits a similar shape. The effect of the simplification that

v2 = w2 is especially frequently encountered in jet studies; however, as early as 1969,

the failure of the isotropic models away from the streamwise centerline has been

recognized (Wygnanski and Fiedler, 1969). Figures 3.1e and 3.1f demonstrate that

generally 0.2 ≤ w2/v2 ≤ 0.5 and 0.2 ≤ w′w′/v′v′ ≤ 0.4, respectively. As is shown in

Figure 3.1b, curiously, v′v′ is roughly equivalent to u′u′ over the measurement plane.

3.4 Flow rate

Measurement of the jet flow rate yields a means to determine both nozzle outlet

velocity and entrainment velocity. The general form for the volumetric flow rate of

a circular jet is given by

Q =

∫ ∞
0

2πru dr (3.24)

The initial flow rate Q0 is thus calculated from

Q0 = A0u0bulk =
π

4
d2u0bulk (3.25)
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Figure 3.1: Mean velocity and normal Reynolds stress ratios at Section 4

Configuration− free jet(∗) 1(©) 2(+) 3(×)
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where A0 is the area of the outlet nozzle.

The entrainment hypothesis put forth by Sir Geoffrey Taylor predicts that am-

bient fluid at the shear interface with the radially expanding jet is first drawn in

toward the jet centerline at an entrainment velocity ve

ve = αuc (3.26)

that is directly proportion by a certain factor, the entrainment coefficient α, to a

corresponding axial velocity along the jet centerline

α =
c

buc
(3.27)

where b is halfwidth and c is an experimental constant (Ricou and Spalding, 1961).

As a result, volumetric flux can be expressed in terms of mean centerline axial

velocity and characteristic turbulent jet self-similarity properties

dQ

dx
= 2πc = 2παbuc (3.28)

(Turner, 1986). Table 3.2 demonstrates that 0.0551 ≤ α ≤ 0.0638 over the free jet

range and is calculated from Equation 3.28. A commonly accepted value for α is

0.057(Falcone, 2003). An alternate formulation of the entrainment rate dQ
dx

is given

in

dQ

dx
= C3

Q0

d
(3.29)

(Crow and Champagne, 1971). Typically, the value of C3 falls within the range

0.185 ≤ C3 ≤ 0.34 for the zone of established flow (Falcone, 2003).
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Table 3.2: Numerically inte-
grated volume flux and entrain-
ment coefficient for free jet

Section x/d Q/Q0 α
1 48 14.49 0.0638
2 84 26.37 0.0633
3 120 30.32 0.0574
4 132 36.00 0.0551

Applying Equation 3.28 and calculating volumetric flow derivatives across span-

wise sections using a central-difference method, the free jet was found to have an

average α = 0.0575 over 84 ≤ x/d ≤ 132, due to radial resolution at sections 1 and

2. A closer inspection of α calculated per section, using the same method, see Table

3.2, reveals a gradual shift towards lower entrainment velocities relative to centerline

axial velocities. The mechanism for this decay is unclear and suggests that either

method of computation is flawed or that the jet may not be truly self-similar. It is

probable the axial resolution of the four sections is insufficient to accurately deter-

mine α. Entrainment velocities are related to α, by definition, and thus also exhibit

streamwise decay in obstructed flow.

3.5 Momentum

In general, momentum for a circular jet is fundamentally defined by

M = Qu =

∫ ∞
0

2πru2 dr (3.30)

For an ideal jet entering an infinite domain of quiescent ambient fluid, equations

3.18 and 3.19 are integrated twice, with third-order and higher terms neglected, to
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produce

M = 2πρ

∫ ∞
0

(
u2 + u′2 − v′2 + w′2

2

)
r dr (3.31)

Equation 3.31 for axial momentum, which can be decomposed into mean and turbu-

lent momentum contributions

M

M0

≈ 8
(
Bη1/2

)2 ∫ ∞
0

(
u

u0

)2

ξ dξ = 2.885
(
Bη1/2

)2
(3.32)

M ′

M0

≈ 8B2

∫ ∞
0

(
f
u′2
−
f
v′2

+ f
w′2

2

)
η dη (3.33)

respectively, where f
u′2

represents axial Reynolds stress normalized to mean axial

centerline velocity (Hussein et al., 1994), (Weisgraber and Liepmann, 1998), (Pa-

panicolaou and List, 1988) and (Lipari, 2011). Turbulent contribution in Equation

3.33 are normalized to nozzle axial velocity. Equation 3.31 takes into account the

momentum-based characterization of the jet cone through parameter B, as well as the

spreading analysis parameter η1/2. Based on the top-hat jet profile, i.e., u0 = u0bulk,

momumentum at the nozzle for an axisymmetric jet is given by

M0 ≈M0 = πρ(
d

2
)2u0

2 (3.34)

(Schneider, 1985).

Assumptions of purely quiescent ambient fluid, such as u∞ = 0 and dp∞
dx

= 0,

become problematic when tank recirculation or encroachment of the jet cone on

tank walls occurs. Terms that had been previously neglected due to this assumption

may now contribute to sapping momentum at axial distances far from the outlet

nozzle (Hussein et al., 1994). Such jets exhibit a downstream failure to conserve
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initial momentum, M
M0

= M+M ′

M0
< 1. Vortex interaction occurs as free shear layers

encounter wall shear layers (Shinneeb et al., 2011).

For the free jet over , this study found M
M0

= 0.83 ± 0.04, M ′

M0
= 0.22 ± 0.06 and

M
M0

= M+M ′

M0
= 1.05 ± 0.07. These values result from linear regression of spanwise

values over 84 ≤ x/d ≤ 132. For various studies reviewed, M
M0

generally varies

from 0.82 to 0.98 (Lipari, 2011). Two experiments reviewed in the journal article

demonstrated M ′

M0
values of 0.07 and 0.09. As a result, the present study predicts

a relatively low mean momentum ratio and a relatively high turbulent momentum

ratio, though the sum of these ratios indicate momentum conservation and thus

validation of setup, measurement scheme and analysis.

Despite efforts to eliminate recirculation and limit recording time to the down-

stream extent of the free jet, measurements realize a small recirculation current

that unevenly affects axial velocities across the spanwise profile, most noticeably at

extreme radial measurement stations. Attempts to measure and adjust for the recir-

culation velocity magnitude could not be applied uniformly for all speeds, sections

and configurations.

Considering a confined jet within a chamber, rather than a free jet in an infinitely

large, quiescent ambient fluid, tank recirculation accelerates centerline momentum

decay. The ratio of expected retained momentum is expressed by

M

M0

=

[
1 +

16

πB2

(x
d

)2 A0

AR

]−1
(3.35)

where B is the momentum self-similarity parameter, A0 is the area of the jet outlet

and AR is the cross-sectional area of the chamber (Hussein et al., 1994).

For the present setup, this ratio is essentially unity; therefore, any failure of in-

plane momentum conservation would not be due to the confined cross-sectional area
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Table 3.3: Axial conservation of momentum by self-
similarity parameter for free jet

Section x/d M/M0 M ′/M0 M/M0

1 48 0.8± 0.2 0.15± 0.07 1.0± 0.2
2 84 0.82± 0.05 0.3± 0.1 1.12± 0.09
3 120 0.83± 0.06 0.17± 0.02 1.00± 0.07
4 132 0.83± 0.07 0.185± 0.009 1.02± 0.08

Table 3.4: Numerically integrated axial
conservation of momentum for free jet

Section x/d M/M0 M ′/M0 M/M0

1 48 0.838 0.298 1.135
2 84 0.945 0.443 1.388
3 120 0.759 0.265 1.024
4 132 0.818 0.208 1.026

of the tank.

Applying equations 3.32 and 3.33, conservation of momentum for the free jet is

summarized in Table 3.3. Mean momentum is a function of both the axial decay

coefficient of mean axial velocity and radial speading coefficients. Turbulent mo-

mentum, but contrast, is computed with section-specific mean Reynolds stress and

mean axial centerline velocity. Conservation of momentum, however, can aslo be

calculated directly by applying Equation 3.31 through numerical integration,. The

resulting direct values for conservation of momentum—see Table 3.4—support val-

ues derived from self-similarity parameters. Results for the free jet configuration

confirm published values and validate the method of analysis for further application

to obstructed flow.
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3.6 Energy

Expressed in vector form, equations 3.2 – 3.4 yield

Du

Dt
=
∂u

∂t
+ (u · ∇)u− u2θ

r
r̂ +

uruθ
r

θ̂ = −1

ρ
∇p+ ε (3.36)

The dissipative term ε is expressed as a closure term. Derivation of an expression

for turbulent kinetic energy, however, is more straightforward with Einstein notion

uj
∂ui
∂xj
− u2θ

r
r̂ +

uruθ
r

θ̂ = −1

ρ

∂p

∂xi
+ ε (3.37)

where a further assumption of steady flow eliminates ∂
∂t

.

These equations can be manipulated, see the Appendix A for detailed derivation,

to produce an energy balance for turbulent kinetic energy

[(
u
∂

∂x
+ v

∂

∂r

)
q

]
advection

+[
2

(
∂u

∂r
u′u′ +

∂u

∂x
v′u′ +

∂v

∂r
v′v′ +

∂v

∂x
v′u′ +

∂w

∂x
w′u′ +

∂w

∂r
w′v′

)]
production

+[
∂u′q

∂x
+

1

r

∂
(
rv′q

)
∂r

]
turbulence transport

=

[
−2

ρ

(
∂u′p

∂x
+
∂v′p

∂r

)]
pressure transport

+

[ε]dissipation(3.38)

where q = u′u′ + v′v′ + w′w′ (Raupach, 1992). Following a similar procedure, and

multiplying through by mean velocity, rather than turbulent fluctuation, at Equation

A.5 in Appendix A produces an analogous energy balance for mean kinetic energy.

Advection represents the movement of turbulent kinetic energy by mean veloc-

ity. By contrast, the turbulence and pressure transport terms represent turbulent

kinetic energy moved by turbulence and pressure gradients, respectively. The pro-
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duction term—also occurring, though negated, in the energy balance for mean kinetic

energy—represents the conversion of mean kinetic energy to turbulent kinetic energy

as the Reynolds stresses interact with mean shear (Kundu and Cohen, 2008). Advec-

tion, production and turbulent transport—these terms may be directly calculated.

The magnitude of the pressure transport term, however, is often determined as the

closing term in the balance of the energy equation (Ramaprian and Chandrasekhara,

1985). Free-jet values across each are included in Chapter 4.4.

The remaining term, the closure dissipation term, represents the final conversion

of turbulent kinetic energy into heat on the molecular level, given explicitly by

ε = ν

(
∂u′i
∂xj

∂u′i
∂xj

+
∂u′i
∂xj

∂u′j
∂xi

)
(3.39)

(Lipari, 2011).

This expression is computationally cumbersome and rarely determined instanta-

neously (Elsner and Elsner, 1996). Instead, it is general practice to employ an FFT

to compute spectral energy density

Suu(f) =
2

N2∆f
|Xk|2 (3.40)

whereN is the number of samples in the original record, ∆f is the sampling frequency

divided by N , and Xk is the amplitude of the velocity spectrum output from the FFT.

In the present study, the complete record at each measurement station was split into

realizations of 1024 samples, the velocity spectrum was folded about its center, and

the resulting energy density spectra were averaged for smoothing. The final spectrum

was scaled for variance preservation.

From an energy perspective, the axial energy density spectrum, Suu(f), is given
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by

Suu(f) =
18

55
Aε

2
3

(
u

2π

) 2
3

f−
5
3 (3.41)

where A is an experimental constant approximately equal to 1.5, ε is the rate of

turbulent dissipation and f is the shedding frequency (Nepf, 1999). Expressed as a

function of wavenumber k, where k = 2π
u
f , this expression is alternatively given by

Kolmogorov’s K−5/3 Law

Suu(k) =
18

55
Aε

2
3k−

5
3 (3.42)

(Kundu and Cohen, 2008). To compute dissipation rate, ε is isolated and is the mean

product of the spectral energy density and wavenumber

ε =

(
Suu(k)k

5
3

18
55
A

) 3
2

(3.43)

Although dissipation is a viscous phenomenon, equations 3.42 and 3.43 are valid

over the so-called inertial subrange, in which energetic large-scale eddies break apart

through inertial forces—vortex streching—into small eddies that dissipate through

viscous heat generation (Kundu and Cohen, 2008). This region may readily be

determined by a -5/3 slope on a log-log plot of wavenumber to spectral energy density,

see Figure 3.2. The eddies occurring at smaller wavenumbers are anisotropic because

they are advected by mean gradients. By contrast, the eddies at higher wavenumbers

are nearly isotropic and in a state of viscous dissipation. The width of the inertial

subrange is a function of Reynolds number and, as will demonstrated in Chapter 4.4,

obstacles to flow.
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4. VEGETATION

4.1 Types of vegetation

Having validated the free jet over the four radial sections and five experimental

speeds, the free jet is obstructed by arrays of simulated vertical rigid vegetation.

Three configurations are selected so that the free jet impinges upon plant arrays at

various stages of jet development, see Figure 2.3. Configuration 1 allows the jet to

develop full self-similarity before entering vegetation; Configuration 2 allows study of

impingement within the early zone of established flow; and Configuration 3 populates

the full zone of flow establishment with vegetation.

The selected type of vegetation, rigid and emergent staggered vegetation, is but

one of several commonly studied wetland plants. Many researchers have investigated

Spartina alterniflora and similar rigid vegetation, both actual and simulated, under

emergent and submerged conditions, see Table 2.2. Under these conditions, it is

possible to investigate diffusion and turbulent mixing as agents of nutrient exchange

and plant-induced drag, as a means of reducing storm surge. Additionally, significant

research exists on drag induced by flexible submerged vegetation (Gambi et al., 1990).

In one study involving live Spartina anglica mounted in a recirculating flume,

Pye et al. (1995) demonstrated that the presence of saltwater vegetation influences

the concentration of suspended sediment, settling velocity and the deposition rate of

cohesive sediments by means of flow shear stress and turbulence. In a related study,

submerged flexible Zostera marina was found to extract momentum from the mean

flow through drag, and the density of the vegetation was directly related to turbulent

intensity, shear stress as canopy level and a reduction of the mean flow velocity, each

a property relevant to sediment suspension and nutrient distribution (Gambi et al.,
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1990). Neumeier (2004) has thus suggested that Spartina alterniflora is better suited

to erosion protection from storm surge than to increased local sediment deposition

under normal conditions.

For sparsely vegetated arrays where ad < 0.1 , see Equation 2.3, the cumulative

effects of multiple stem wakes are neglected, and only the wake structure of the closest

upstream stem is presumed to have significant effects on flow characteristics at any

measurement location (Nepf et al., 1997). The present study demonstrates, however,

that sufficiently high-frequency ADV measurements can capture the combined effects

of distant upstream vegetation on mean and turbulent jet flow parameters, thus

providing a means of quantitatively studying the effects of multiple stem wakes in

field or laboratory settings.

Measurements across the vegetated domain are taken for the same approximate

duration and at the same 64 measurement stations across the same centerline and

four radial sections at the same five speeds for each of the three vegetated configu-

rations, as with the free jet, resulting in more than forty hours of 50Hz 3-D ADV

records. Speeds are found to collapse for plant configurations and are the primary

means of determining experimental error, see Chapter 2.5. The spacing of centerline

measurement stations and axial distance of radial sections optimize ADV placement

with respect to plant array introduction.

In addition to recording multiple stem wake interactions, several stations are in

the immediate wake of individual stems, as well as immediately in front of stems,

thus permitting the future detailed study of both downstream and upstream effects

of isolated stems, respectively. The scope of the present study is largely limited to

cumulative wake interaction, though single-wake effects are clearly visible in plotted

data and warrant further study.
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4.2 Plant location and vortex shedding

Derived properties—such as streamwise self-similarity parameters, conservation

of momentum and turbulent kinetic energy balance—provide substantial information

about the overall domain under the influence of various vegetated configurations.

They, by definition, depict multiple wake effects. In order to determine the effects of

individual stem wakes, against a background of multiple wake effects, it is necessary

to look directly at individual measurement station records.

Figures B.1 to B.24 in Appendix B indicate that radial and tangential mean

velocities and all Reynolds stresses and turbulent triple products increase and ax-

ial mean velocity decreases behind plant stems. Directly behind a stem—within a

recirculation zone extending downstream up to approximately one diameter and sep-

arated from the mean flow by a free shear layer—the mean axial velocity is negative,

thus resulting in a gradual vertical spiral that displaces slow fluid from the base of

the plant stem to the top of the plant canopy, if submerged, or the free surface, if

emergent (Stoesser et al., 2009), (Liu et al., 2008) and (Sadeque et al., 2008). Due to

probe dimensions, however, direct measurement within this zone was not achieved.

Although mean axial velocity is clearly converted to radial velocity, Reynolds stresses

and turbulent triple products, there is insufficient evidence—only a slight increases

in w—to confirm the observation of vertical fluid displacement (Stoesser et al., 2009).

In the radial direction, these velocities result both in the expansion of the jet cone

and the manifestation of vortical eddies primarily within the axial-radial plane. Tan-

gential triple products, however, demonstrate a pronounced increase behind stems.

The mode of vortices shed off an isolated cylinder is a function of the Reynolds

number (Balachandar and Parker, 2002). An isolated cylinder, a widely studied

configuration, is essentially an element within an array with assumed infinite stem
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spacing. In laminar flow, a symmetric wake detaches from the cylinder, whereas in

turbulent flow, cylinders develop an alternately shedding horseshoe vortex, known

as the von Karman vortex street (Balachandar and Parker, 2002) and (Luo et al.,

1996). A study by Guillaume and LaRue (1999) investigated configurations of two,

three and four side-by-side cylinders and found that although cases with two or three

cylinders experienced multiple modes of vortex shedding, the four-cylinder case only

produced a single, multiple wake shedding mode. Applied to the present study, this

finding suggests a single, collective shedding mode for the first row, if not for each

subsequent row.

As a cylinder transitions from complete emergence to increasing degrees of sub-

mergence, the horseshoe vortex comprising the wake bubble decreases in size (Sad-

eque et al., 2008). In the first rows of a staggered array, the alternate vortex shedding

of each cylinder may be considered independent for low Reynolds numbers (Abd-

Rabbo and Weaver, 1986). In turbulent flow, von Karman vortex streets interfere,

especially in dense arrays, causing an increase in downstream dynamic pressure and

an accompanying increase in spanwise velocity and decrease in streamwise velocity

as fluid seeks to circumvent the vegetated array, which is consistent with the find-

ings of the present study (Braun and Kudriavtsev, 1995). Although this study varies

neither stem spacing nor diameters, Balachandar and Parker (2002) found that the

length scale of vortex shedding is defined by spacing, not stem diameter.

4.3 Self-similarity and momentum

The arrays of simulated vegetation are designed to imitate the rigid stems of

sparse salt marsh Spartina alterniflora, thereby preserving the characteristic shape

of jet flow—and the convenient ability to approximate self-similarity parameters—

without deviating significantly from realistic field conditions, thus allowing an anal-
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ysis of the promoted shore protective properties of marsh vegetation. By directly

applying the theory and means of analysis put forth in Chapter 3.2, one computes

vegetated flow self-similarity parameters describing axial or streamwise decay, as well

as radial or spanwise spreading. For simplicity and economy, no especial designation

differentiates true free jet self-similarity parameters and vegetated flow self-similarity

parameters. Figures in Appendix B record mean and RMS values of mean velocity,

Reynolds stresses and triple products for all collapsed cross sections; these figures

are provided for reference.

Applying Equation 3.20, axial decay along the jet centerline is measured with

the same assumption of linearity with respect to axial distance from the jet outlet,

see figures 4.1 and 4.2. The undulating streamwise profile for Configuration 3 in

figures 4.1b and 4.2d neatly indicate the positioning and effect of plants stem wakes

on axial velocity for the fully vegetated flow domain. The resulting axial decay

coefficient B steadily drops as the point of array impingement nears the jet outlet,

physically manifesting as slower downstream axial centerline velocities, see Table

4.1. Although the coefficient of determination R2 is above 0.95 across eleven points

for all four section-averaged configurations, determination of the momentum virtual

origin xB is subject to the same deficiency as for the free jet, namely the relatively

small nozzle diameter, and thus of no apparent practical use. As with the free jet,

averaged centerline axial velocities spanned 24 ≤ x/d ≤ 132, which is wholly within

the self-similar range.

Likewise, spanwise spreading is determined by Gaussian fitting radial folded pro-

files to Equation 3.22, resulting in Table 4.2. As introduced vegetation nears the jet

nozzle, the shape of the profile widens as c decreases, and the radial displacement

of the halfwidth from the axial centerline increases, indicated by an increase in η1/2.

Again, there is no definitive significance of the spreading virtual origin xS. Figure

42



0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

x/d

U
c
l/U

0

(a) Full range

Configuration− 1(+) 2(×) 3(©)

60 70 80 90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1

0.12

x/d

U
c
l/U

0

(b) Zone of established flow

Configuration− 1(+) 2(×) 3(©)

Figure 4.1: Axial streamwise velocity decay

Table 4.1: Section-averaged self-similar momentum parameters of vegetated jet

Configuration B xB/d R2

Free jet 5.8± 0.2 0± 6 0.991
1 5.1± 0.2 7± 4 0.953
2 4.2± 0.2 14± 2 0.973
3 3.7± 0.1 10± 2 0.967
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(d) Configuration 3

Figure 4.2: Streamwise linear regression of mean axial velocity
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4.3 displays axial halfwidth velocity; as expected, velocities are reduced as vegeta-

tion is introduced. These values result from linear regression of spanwise values over

84 ≤ x/d ≤ 120; Section 1 is excluded from the average due to insufficient radial

resolution. Table 4.3 and Figure 4.4 present spreading self-similarity parameters for

each section for all configurations. In every case, the Gaussian fit of Section 1 profiles

is accompanied by high experimental error.

Plotting calculated collapsed radial sections by configuration normalized to nozzle

velocity, see Figure 4.5, reveals that the increased presence of vegetation produces a

shallower, broader velocity profile. The radial spreading Gaussian fit for Configura-

tion 2 results in higher experimental error across all sections and propagates through

all derived parameters. In general, however, the collapsing of speeds enhanced pa-

rameter determination. The slight overall deviation and elevated uncertainty of Con-

figuration 2 from the general decreasing or increasing trend of parameters from free
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Figure 4.4: Spanwise linear regression of mean axial velocity
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jet to Configuration 3 may be indicative of subtle changes caused the intermediate

point of flow impingement upon vegetation across the five experimental speeds.

To facilitate determination of spreading self-similarity parameters through Gaus-

sian approximation, edge effects necessitated the occasional bilateral truncation of

extreme radial stations for select profiles. By universally applying an algorithm that

detects unrealistically high normalized RMS edge values, as compared to neighbor-

ing profile velocities or stresses and can be seen in figures B.11b and B.14b, these

aberrant reading values are eliminated during Gaussian fitting to ensure a proper

representative Gaussian curve. In all other cases, these values are retained.

Vegetated flow axial decay self-similarity parameters indicate accelerated cen-

terline velocity decay, and vegetated flow spreading parameters indicate a broader

radial zone of fluid entrainment. Equation 3.32 demonstrates that the product of
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Table 4.2: Section-averaged self-similar spreading parameters of vegetated jet

Configuration c η1/2 xS/d R2

Free jet 85± 5 0.093± 0.003 −9± 14 —
1 79± 3 0.094± 0.002 1± 6 0.984
2 70± 6 0.100± 0.005 −29± 30 0.895
3 64± 4 0.104± 0.003 −9± 12 0.980

Table 4.3: Self-similar spreading parameters of vegetated jet

Section x/d c η1/2
Free Jet

1 48 86± 22 0.09± 0.01
2 84 82± 4 0.092± 0.002
3 120 81± 6 0.093± 0.004
4 132 81± 8 0.093± 0.004

Configuration 1
1 48 99± 14 0.084± 0.007
2 84 83± 4 0.092± 0.002
3 120 77± 2 0.095± 0.001
4 132 76± 2 0.095± 0.002

Configuration 2
1 48 58± 16 0.11± 0.02
2 84 66± 9 0.103± 0.007
3 120 71± 6 0.099± 0.004
4 132 73± 6 0.098± 0.004

Configuration 3
1 48 67± 12 0.10± 0.01
2 84 64± 4 0.104± 0.004
3 120 64± 4 0.105± 0.003
4 132 64± 5 0.105± 0.004
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the axial parameter B and radial parameter η1/2 is proportional to mean axial jet

momentum. Applying the same technique to jet flow through vegetated arrays to

yield a vegetated flow self-similar conservation of momentum produces Table 4.4 for

section-averaged configurations and Table 4.6 for each section of each configuration.

The values for vegetated flow conservation of axial momentum suggest a loss of

momentum from M/M0 = 1.05 ± 0.07 for the free jet configuration to M/M0 =

0.54±0.05 for the fully vegetated configuration. This formulation of M/M0 relies on

Equation 3.32 and by extension B, which measures the total axial decay along the jet

centerline without accounting for a potentially abrupt change in velocity upon tran-

sitioning from free jet to vegetated flow. Spanwise profiles, and thus self-similarity

parameters, are independent of this effective smoothing effect. Due to the low un-

certainty of B and η1/2 in tables 4.1 and 4.2 along the centerline, the derived M/M0

of Table 4.4 describes an actual deficiency of momentum. It is prudent, nevertheless,

to consider any vegetated B and property derived from B as pertaining to vegetated

flow and a result of smoothing axial decay, despite high linear correlation. Table 4.6

contains momentum calulations for each section and configuration.

A numerical integration of radial profiles from vegetation configurations may ei-

ther support the M/M0 computation based on vegetated flow self-similarity parame-

ters or indicate failure of the vegetated flow self-similarity assumption by signaling an

abrupt change in conservation of momentum along the jet centerline of each vegetated

configuration. Tables 4.5 and 4.7 represent mean, turbulent and total momentum

calculated by numerically integrating RMS velocities spanwise at each radial section

in accordance with Equation 3.31.

In all instances, mean and turbulent numerically integrated momentum com-

ponents exceed momentum components determined through self similarity analy-

sis, though are generally within experimental error, see Figure 4.6. No abrupt
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Table 4.4: Section-averaged self-similar conservation of
axial momentum for vegetated jet

Configuration M/M0 M ′/M0 M/M0

Free jet 0.83± 0.04 0.28± 0.06 1.05± 0.07
1 0.67± 0.05 0.17± 0.04 0.85± 0.08
2 0.51± 0.04 0.3± 0.2 0.8± 0.2
3 0.44± 0.04 0.10± 0.03 0.54± 0.05

Table 4.5: Section-averaged numerically integrated conser-
vation of axial momentum and entrainment coefficient for
vegetated jet

Configuration M/M0 M ′/M0 M/M0 α
Free jet 0.9± 0.3 0.3± 0.1 1.2± 0.4 0.0575

1 0.8± 0.3 0.3± 0.1 1.1± 0.4 0.0566
2 0.8± 0.3 0.52± 0.07 1.3± 0.3 0.0580
3 0.7± 0.3 0.16± 0.05 0.9± 0.3 0.0631

change in momentum across the sections for a given configuration is clearly observed,

though low axial resolution prevents further exploring this potentially interesting

phenomenon. Conservation of momentum ratios determined for both vegetated flow

self-similarity parameters generally follow the trend of decreasing with respect to

increasing axial distance; the corresponding values for numerically integrated config-

urations, to an extent, do as well.

In the far zone of established flow, both methods used to determine momen-

tum indicate that turbulence has either reduced or lost the capacity to transport

momentum, as would be expected of the small, isotropic eddies that dominate high-

wavenumber viscous dissipation. Early in the zone of established flow, the momentum

calculated from numerical integration is noticeably greater than unity and momen-

tum calculated by the self-similarity method; in Figure 4.6c, numerically integrated
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momentum greatly exceeds initial momentum over sections 1 and 2. Because in-plane

momentum cannot be gained, only advected out of plane or dissipated, this excess

momentum is likely the result of insufficient radial resolution between measurement

stations. Self-similarity parameters, by contrast, in Figure 4.6a indicate a rising por-

tion of momentum advected by the mean flow for the free jet and Configuration 1,

which would be expected in a stretch of free jet where large, energetic eddies are

anisotropic and capable of transporting momentum. Vegetated configurations 2 and

3 enter vegetation early and thus lose momentum through advection or dissipation.

Table 4.8 indicates that the entrainment coefficient α likewise decays along the

streamwise axis for each configuration, though sections 3 and 4 of the vegetated

configurations suggest increased stability of the parameter in the zone of established

flow. The axial decay of α and the instance of multiple total numerically integrated

momentum ratios exceeding unity suggest that the radial resolution, ∆r = 2 cm,

may be insufficient, though this spacing was chosen to avoid overlap of the ADV

sampling volume.

Although numerically calculated conservation of momentum ratios recommend

caution applying vegetated flow self-similar parameters to derived properties of veg-

etated configurations, a combination of increased radial resolution and increased

number of sections—a measure of axial resolution with regard to jet impingement

upon vegetated arrays—may reconcile the current discrepancy.

4.4 Energy

An energy balance for turbulent kinetic energy was presented in Chapter 3.6 and

is presumed to apply to obstructed flow as well. Equation A.18 applies to vegetated

configurations without adaptation or approximation. The self-similarity analysis of

the various vegetated arrays demonstrated that as progressively more vegetation
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Figure 4.6: Streamwise conservation of momentum
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Table 4.6: Self-similar axial conservation of momentum for vege-
tated jet

Section x/d M/M0 M ′/M0 M/M0

Free jet
1 48 0.8± 0.2 0.15± 0.07 1.0± 0.2
2 84 0.82± 0.05 0.3± 0.1 1.12± 0.09
3 120 0.83± 0.06 0.17± 0.02 1.00± 0.07
4 132 0.83± 0.07 0.185± 0.009 1.02± 0.08

Configuration 1
1 48 0.54± 0.05 0.12± 0.06 0.66± 0.07
2 84 0.64± 0.03 0.2± 0.1 0.9± 0.1
3 120 0.68± 0.06 0.13± 0.01 0.82± 0.07
4 132 0.70± 0.06 0.15± 0.01 0.84± 0.07

Configuration 2
1 48 0.7± 0.2 0.3± 0.4 1.0± 0.4
2 84 0.54± 0.05 0.4± 0.4 1.0± 0.4
3 120 0.50± 0.04 0.2± 0.2 0.7± 0.2
4 132 0.49± 0.05 0.12± 0.05 0.6± 0.1

Configuration 3
1 48 0.4± 0.1 0.18± 0.08 0.6± 0.1
2 84 0.44± 0.05 0.11± 0.05 0.55± 0.09
3 120 0.44± 0.04 0.10± 0.04 0.54± 0.06
4 132 0.44± 0.04 0.08± 0.03 0.52± 0.05
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Table 4.7: Numerically integrated axial conservation of mo-
mentum for vegetated jet

Section x/d M/M0 M ′/M0 M/M0

Free jet
1 48 0.838 0.298 1.135
2 84 0.945 0.443 1.388
3 120 0.759 0.265 1.024
4 132 0.818 0.208 1.026

Configuration 1
1 48 0.8± 0.2 0.27± 0.09 1.1± 0.3
2 84 0.9± 0.3 0.4± 0.2 1.3± 0.4
3 120 0.8± 0.3 0.22± 0.07 1.0± 0.4
4 132 0.8± 0.4 0.2± 0.1 1.0± 0.5

Configuration 2
1 48 0.9± 0.2 0.7± 0.4 1.6± 0.5
2 84 0.9± 0.3 1.1± 0.2 2.0± 0.3
3 120 0.7± 0.2 0.29± 0.09 1.0± 0.3
4 132 0.7± 0.3 0.17± 0.08 0.8± 0.4

Configuration 3
1 48 0.8± 0.13 0.41± 0.09 1.2± 0.2
2 84 0.8± 0.2 0.23± 0.07 1.0± 0.3
3 120 0.7± 0.3 0.13± 0.06 0.8± 0.3
4 132 0.7± 0.3 0.13± 0.05 0.8± 0.4
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Table 4.8: Numerically integrated volume
flux and entrainment coefficient for vege-
tated jet

Section x/d Q/Q0 α
Free jet

1 48 14.49 0.0638
2 84 26.37 0.0633
3 120 30.32 0.0574
4 132 36.00 0.0551

Configuration 1
1 48 14± 2 0.0639
2 84 26± 4 0.0627
3 120 31± 6 0.0524
4 132 35± 8 0.0549

Configuration 2
1 48 15± 2 0.0676
2 84 26± 4 0.0583
3 120 29± 5 0.0560
4 132 32± 7 0.0597

Configuration 3
1 48 14± 2 0.0766
2 84 24± 4 0.0649
3 120 29± 6 0.0631
4 132 32± 8 0.0613
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Figure 4.7: Mean advection of mean kinetic energy across spanwise sections

Configuration− free jet (−) 1 (−−) 2 (−.) 3 (· · ·)

was introduced, mean axial velocity decreased and the width of the jet increased,

indicating that a transfer of mean kinetic energy from mean advection to transport,

viscous dissipation and production of turbulence, see Figure 4.7 (Kundu and Cohen,

2008).

As number of plants in flow and axial distance into the array increase, changes in

turbulence intensity are observed as a result of flow disruption. Nepf (1999) found

that turbulent intensity is greater within sparse vegetation, decreasing as density

56



−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

r/b

T
u

rb
u

le
n

t 
A

d
v
e

c
ti
o

n
 n

o
rm

a
liz

e
d

 t
o

 f
re

e
 j
e

t 
c
e

n
te

rl
in

e
 v

e
lo

c
it
y

(a) Section 1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

r/b

T
u

rb
u

le
n

t 
A

d
v
e

c
ti
o

n
 n

o
rm

a
liz

e
d

 t
o

 f
re

e
 j
e

t 
c
e

n
te

rl
in

e
 v

e
lo

c
it
y

(b) Section 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

r/b

T
u
rb

u
le

n
t 
A

d
v
e
c
ti
o
n
 n

o
rm

a
liz

e
d
 t
o
 f
re

e
 j
e
t 
c
e
n
te

rl
in

e
 v

e
lo

c
it
y

(c) Section 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

r/b

T
u
rb

u
le

n
t 
A

d
v
e
c
ti
o
n
 n

o
rm

a
liz

e
d
 t
o
 f
re

e
 j
e
t 
c
e
n
te

rl
in

e
 v

e
lo

c
it
y

(d) Section 4

Figure 4.8: Mean advection of turbulent kinetic energy across spanwise sections

Configuration− free jet (−) 1 (−−) 2 (−.) 3 (· · ·)

57



−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

r/b

T
u
rb

u
le

n
t 
P

ro
d
u
c
ti
o
n
 n

o
rm

a
liz

e
d
 t
o
 f
re

e
 j
e
t 
c
e
n
te

rl
in

e
 v

e
lo

c
it
y

(a) Section 1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r/b

T
u

rb
u

le
n

t 
P

ro
d

u
c
ti
o

n
 n

o
rm

a
liz

e
d

 t
o

 f
re

e
 j
e

t 
c
e

n
te

rl
in

e
 v

e
lo

c
it
y

(b) Section 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

r/b

T
u
rb

u
le

n
t 
P

ro
d
u
c
ti
o
n
 n

o
rm

a
liz

e
d
 t
o
 f
re

e
 j
e
t 
c
e
n
te

rl
in

e
 v

e
lo

c
it
y

(c) Section 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r/b

T
u
rb

u
le

n
t 
P

ro
d
u
c
ti
o
n
 n

o
rm

a
liz

e
d
 t
o
 f
re

e
 j
e
t 
c
e
n
te

rl
in

e
 v

e
lo

c
it
y

(d) Section 4

Figure 4.9: Production of turbulence across spanwise sections

Configuration− free jet (−) 1 (−−) 2 (−.) 3 (· · ·)

increases, and noted similar decreases in diffusivity due to smaller eddy scales. Like-

wise, Leonard and Luther (1995) found that marsh plants with increased vegetative

density resulted in lower flow speeds and turbulent intensity. Figure 4.8 indicates

that Reynolds stresses, the products of turbulent intensity, decrease as depth of the

introduced vegetated array increases. The high rate of turbulent dissipation within

the stem wake results in low turbulent intensity throughout the plant canopy (Rau-

pach and Shaw, 1982).
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Figure 4.10: Turbulent Transport across spanwise sections

Configuration− free jet (−) 1 (−−) 2 (−.) 3 (· · ·)

In addition, Figure 4.9 indicates that turbulent production is likewise diminished

due to plants and becomes characteristically bimodal about the flow centerline in

a region where mean axial flow of the jet cone is interacting with entrained fluid

through shear to generate turbulence. Turbulent production due to plants in emer-

gent vegetation, however, occurs primarily in stem wakes, which is observed for

Configuration 3 in Figure 4.9d (Nepf et al., 1997). In the present study, significant

turbulent production occurred at all sections of the free jet.
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Though normalization of mean advection and turbulent production to free jet

centerline axial velocities reveals no clear dependence on axial distance into the

array, turbulent transport, by contrast, appears to be a function of axial distance.

Figure 4.10 demonstrates the growth of this term as axial distance increases, though

no significant dependence on depth of vegetated array is evident. As the magnitude

of mean axial flow decreases with respect to axial distance, the produced and existing

turbulence is increasingly moved about by other turbulence.

In all cases, normalized values are exaggerated in magnitude due to insufficient

radial resolution. Equation 3.38 illustrates both axial and radial differential con-

tributions. In general, measurement station placement in the streamwise centerline

alignment was adequate to capture axial velocity profiles; however, the 2cm radial

spacing did not capture enough measurement points within the halfwidth.

According to Leonard and Luther (1995), turbulent eddies within marsh veg-

etation are generated at a length scale that differs from the length scale of eddy

dissipation, and the turbulence created by the stem wake is of a smaller length scale

and thus quickly dissipated (Liu et al., 2008). However, evidence for neither of these

statements is readily apparent in the present study. Figures 4.11 and 4.12, illustrate

spectral energy density the axial centerlines of sections 4 and 3, respectively. Fig-

ure 4.12 represents a measurement location behind a plant stem and indicates the

production of energetic eddies below the inertial subrange. For example, in Configu-

ration 3 of Section 3, see Figure 4.12d, there is a substantial loss of energy observed

as vortex stretching reduces the size of eddies. These small eddies decay quickly

because of the increased shear stress between them (Deissler, 1984).

Figure 4.11a, depicting the spectral energy density for Section 4 of the free jet

along the jet centerline, for example, shows a clear separation between anisotropic

eddies, isotropic eddies and the inertial subrange. The last of these zones clearly
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(b) Configuration 1
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(c) Configuration 2
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(d) Configuration 3

Figure 4.11: Suu(k) at Section 4 centerline (not behind plant stem)

k−5/3 indicated by a straight line and inertial subrange in red
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exhibits a k−5/3 slope in accordance Kolmogorov’s K−5/3 Law. This measurement

location is for the free jet and thus not affected by a plant stem; therefore, the energy

spectrum should reflect a fully developed self-similar jet. As vegetation is introduced,

see Figure 4.11, the inertial subrange and isotropic zone appear to shift to a higher

wavenumber, corresponding to increased dissipation of increasingly smaller length-

scales. No significant evolution is obvious in high-energy eddies. Unlike stem eddies,

which quickly dissipate, these cumulative array eddies break up without energy loss

before entering the inertial subrange.

Immediately behind a stem along the centerline at Section 3, see Figure 4.12,

similar evolution of the inertial subrange is observed, though difficult to discern from

the viscous dissipation range. As vegetation is introduced, the spectral energy density

of larger, anisotropic eddies decreases noticeably and is most apparent from Figure

4.12d, although the magnitude of the inertial subrange remains relatively unchanged.

Approximately one halfwidth from the centerline, mean axial advection is reduced

relative to radial and tangential advection. In this region, large, anisotropic eddies

are entraining ambient fluid and slowly breaking down through vortex stretching.

Despite the enhanced dissipation evident from the translation of the spectrum to

higher wavenumbers in Figure 4.13, the shape of the spectrum is relatively unaf-

fected as compared to figures 4.11 and 4.12, suggesting that the energy spectrum is

depicting the cumulative effect of stem wakes combined with turbulent production

and dissipation already present due to entrainment, though the spectral energy den-

sity of any given wavenumber for configurations 2 and 3 is decreased with respect to

those for the free jet and Configuration 1.

Figure 4.14 was recorded at a location behind a plant near Figure 4.13, further out

than the halfwidth on Section 4. Though the shapes of the energy density spectra are

roughly identical, the magnitudes observed in Figure 4.14 are smaller by an order
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(a) Free jet
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10
0

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

wavenumber (1/m)

S
u
u
 [
(m

/s
)2

 m
]

(c) Configuration 2
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(d) Configuration 3

Figure 4.12: Suu(k) at Section 3 centerline (behind plant stem)

k−5/3 indicated by a straight line and inertial subrange in red
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(a) Free jet

10
0

10
1

10
2

10
3

10
4

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

wavenumber (1/m)

S
u
u
 [
(m

/s
)2

 m
]

(b) Configuration 1
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(c) Configuration 2
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(d) Configuration 3

Figure 4.13: Suu(k) at Section 4 radial halfwidth (not behind plant stem)

k−5/3 indicated by a straight line and inertial subrange in red
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(c) Configuration 2
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(d) Configuration 3

Figure 4.14: Suu(k) at Section 4 radial halfwidth (behind plant stem)

k−5/3 indicated by a straight line and inertial subrange in red
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Table 4.9: Dissipation rate at jet centerline

Section x/d location normalized to uc
3

Free jet
1 48 behind stem 0.385
2 84 not behind stem 1.12
3 120 behind stem 1.25
4 132 not behind stem 0.370

Configuration 1
1 48 behind stem 0.385
2 84 not behind stem 1.12
3 120 behind stem 1.26
4 132 not behind stem 0.426

Configuration 2
1 48 behind stem 0.154
2 84 not behind stem 0.222
3 120 behind stem 1.71
4 132 not behind stem 0.295

Configuration 3
1 48 behind stem 0.0474
2 84 not behind stem 0.122
3 120 behind stem 0.730
4 132 not behind stem 0.112

of magnitude. It is difficult to determine how much, if any, of this reduction in

magnitude is due to upstream stem wake; the radial distance of 4cm between these

two points results in significantly diminished velocities and turbulent intensity in

all directions. Figure 4.14c exhibits unusual high-wavenumber structures that may

indicate the vortex shedding frequency of the upstream plant stem.

In the majority of measurement station records, it is difficult to accurately cal-

culate rate of dissipation from spectral energy density due to frequently unclear

boundaries of the inertial subrange. In general, the inertial subrange is more readily

identified in the free jet than in the fully vegetated case.

Tables 4.9 and 4.10 demonstrate an application of Equation 3.43 to figures 4.11
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Table 4.10: Dissipation rate at jet halfwidth

Section x/d location normalized to uc
3

Free jet
4 132 not behind stem 0.0611
4 132 behind stem 0.0208

Configuration 1
4 132 not behind stem 0.0604
4 132 behind stem 0.0135

Configuration 2
4 132 not behind stem 0.0156
4 132 behind stem 0.0015

Configuration 3
4 132 not behind stem 0.0036
4 132 behind stem 0.0005

to 4.14. Although the resulting centerline rates of dissipation normalized to mean

axial centerline velocity are greater behind stems presented in Table 4.9, the limited

number of processed profiles suggests caution. With similar caution, Table 4.10

suggests that, though the two measurement stations are too far radially separated for

quantitative comparison, cumulative upstream stem wakes represent the dominant

reduction of dissipation rate at the radial halfwidth and beyond.
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5. SUMMARY AND CONCLUSIONS

This study established a connection between traditional jet studies and current

investigations of drag and turbulent kinetic energy in vegetative arrays. In addition

to verifying and expanding the body of knowledge regarding self-similar axisymmet-

ric turbulent jets, statistical methods are applied to several configurations of flow

obstruction with vegetated arrays designed to investigate effects on jet self-similarity

development, conservation of momentum and turbulent kinetic energy.

Using flow characterization techniques applied to free jets, vegetated flow equiv-

alents for jets impinging on vegetation are suggested and determined, resulting in

parameters that express the retained jet characteristics, as well as take into account

multiple stem wake effects. Each configuration is executed under five collapsible

speeds to demonstrate preservation of jet self-similarity, to apply self-similarity pa-

rameters and to determine experimental uncertainty, which previous free-jet studies

have not considered. This method of analysis, in addition to standard dye studies

and PIV, provides a means of characterizing natural and industrial jet flows through

marsh vegetation or other sparse stem array.

Despite the limited configuration and scale of the experiment, even sparse, smooth

simulated vegetation demonstrated a significant and effective ability to extract mean

axial velocity and momentum from mean flow, converting it to radial or tangential

velocity, Reynolds stress and turbulence for eventual dissipation. This enhanced

dissipation does support the claim that marsh vegetation is an effective means of

reducing the mean velocity of storm surge. The axial velocity decay parameter B

reduces from 5.8 ± 0.2 for the free jet to 3.7 ± 0.1 for the fully vegetated configu-

ration, indicating enhanced decay of mean axial centerline velocity. Likewise, the

entrainment coefficient α at x
d

= 132 increased from 0.0551 for the free jet to 0.613
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for the fully vegetated case, indicating a greater rate of spreading. Caution must be

applied to this conclusion if storm surge is sufficiently high to submerge vegetation,

in which case the canopy will not correspond to the emergent vegetation modeled in

this study.

As predicted by energy balance, mean axial flow is converted to radial or tangen-

tial flow, turbulence or dissipated at an accelerated rate within a vegetative array.

As confirmation, total axial momentum normalized to initial momentum was found

to range from 1.02± 0.08 for the free jet to 0.52± 0.05 at x
d

= 132 for the fully vege-

tated configuration, indicating a failure of conservation of momentum in the presence

of vegetation. An analysis of turbulent kinetic energy indicated mean advection of

both mean and turbulent kinetic energy, as well as turbulent production, decreased

as plant stems were introduced into the flow. Turbulent transport, on the other

hand, appeared to be more a function of axial density and increased in the distant

zone of established flow.

The purpose of this study was two-fold: to test the applicability of jet self-

similarity techniques to vegetated flows and the rule of thumb stating that sparse

emergent vegetation has the ability to dissipate storm surge. Although additional

research involving variable stem density and diameter is required to confirm full

applicability of self-similarity analysis to vegetated arrays, the results of the present

study offer initial evidence towards the validity of this approach, and the abundance

of literature regarding self-similar jets and relative ease of the method suggest that

further research is worthwhile. More importantly, however, this study found that

even a relatively short length of sparse vegetation is capable of significantly reducing

the axial velocity of a jet and enhancing turbulent dissipation. Actual storm surge,

however, more closely resembles a line source than a point source and is incapable

of lateral spreading. Therefore, this study, as a result, cannot provide conclusive
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evidence to support the argument that emergent wetlands serve as protection against

coastal storm surge.
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APPENDIX A

DERIVATION OF TURBULENT KINETIC ENERGY BALANCE

Decomposing velocity into mean and turbulent components—recall that ui =

ui + ui
′—produces

(uj + uj
′)
∂ (ui + ui

′)

∂xj
− (uθ + uθ

′)2

r
r̂ +

(ur + ur
′) (uθ + uθ

′)

r
θ̂ = −1

ρ

∂ (p+ p′)

∂xi
+ ε (A.1)

Multiplying out the terms and ensemble averaging each produces equations
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respectively.

Subtracting Equation A.3, the inital expression for mean kinetic energy, from
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Equation A.2 leaves the initial expression for turbulent kinetic energy
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Multiplying this expression through by uk
′ produces
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which upon ensemble averaging yields

uj

〈
uk
′∂ui

′

∂xj

〉
+ 〈uk ′uj ′〉

∂ui
∂xj

+〈
uk
′uj
′∂ui

′

∂xj

〉
−
(
〈ur ′u′θu′θ〉

r
+ 2

uθ 〈ur ′uθ ′〉
r

)
r̂ +(

〈ur ′uθ ′uθ ′〉
r

+
ur 〈uθ ′uθ ′〉

r
+
uθ 〈ur ′uθ ′〉

r

)
θ̂ = −1

ρ

〈
uk
′ ∂p

′

∂xi

〉
+ ε (A.6)

where 〈ui′〉 = 0 and 〈uiui′uj ′〉 = ui 〈ui′uj ′〉.

At this point, taking Equation A.6 and swapping i and k indices generates
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Next, summing equations A.6 and A.7 and collapsing indices so that i = k produces
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Applying continuity identities,
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〈
uj
′∂ui

′

∂xj

〉
+ 0 (A.9)

∂ 〈ui′ui′〉
∂xj

= 2

〈
ui
′∂ui

′

∂xj

〉
(A.10)

∂ 〈ui′ui′uj ′〉
∂xj

=

〈
uj
′∂ui

′ui
′

∂xj

〉
+

〈
ui
′ui
′∂uj

′

∂xj

〉
=

〈
uj
′∂ui

′ui
′

∂xj

〉
+ 0

=

〈
uj
′2

(
ui
′∂ui

′

∂xj

)〉
= 2

〈
ui
′uj
′∂ui

′

∂xj

〉
(A.11)

the contracted form of the energy equation reduces to

uj

〈
∂ui
′ui
′

∂xj

〉
+ 2

∂ui
∂xj
〈ui′uj ′〉+〈

∂ui
′ui
′uj
′

∂xj

〉
− 2

r
(〈ur ′u′θu′θ〉+ 2uθ 〈ur ′uθ ′〉) r̂ +

2

r
(〈ur ′uθ ′uθ ′〉+ ur 〈uθ ′uθ ′〉+ uθ 〈ur ′uθ ′〉) θ̂ = −2

ρ

〈
∂ui
′p′

∂xi

〉
+ ε (A.12)
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Grouping terms by physical significance yields

[
uj

〈
∂ui
′ui
′

∂xj

〉]
advection

+[
2
∂ui
∂xj
〈ui′uj ′〉+

2

r
(ur 〈uθ ′uθ ′〉+ uθ 〈ur ′uθ ′〉) θ̂ −

2

r
(2uθ 〈ur ′uθ ′〉) r̂

]
production

+[〈
∂ui
′ui
′uj
′

∂xj

〉
+

2

r
〈ur ′uθ ′uθ ′〉 θ̂ −

2

r
〈ur ′u′θu′θ〉 r̂

]
turbulence transport

=[
−2

ρ

〈
∂ui
′p′

∂xi

〉]
pressure transport

+ [ε]dissipation(A.13)

Expanding i and j indices reduces tensors in Equation A.12 to directional vectors,

[
u
∂ 〈u′u′〉
∂x

+ v
∂ 〈u′u′〉
∂r

+ 2
∂u

∂x
〈u′u′〉+ 2

∂u

∂r
〈u′u′〉+

∂ 〈u′u′u′〉
∂x

+
1

r

∂ (r 〈v′u′u′〉)
∂r

= −2

ρ

∂ 〈u′p〉
∂x

+ ε

]
x̂ (A.14)[

u
∂ 〈v′v′〉
∂x

+ v
∂ 〈v′v′〉
∂r

+ 2
∂v

∂x
〈v′u′〉+ 2

∂v

∂r
〈v′v′〉+

∂ 〈u′v′v′〉
∂x

+

1

r

∂ (r 〈v′v′v′〉)
∂r

− 2

r
(〈v′w′w′〉+ 2w 〈v′w′〉) = −2

ρ

∂ 〈v′p〉
∂r

+ ε

]
r̂ (A.15)[

u
∂ 〈w′w′〉
∂x

+ v
∂ 〈w′w′〉
∂r

+ 2
∂w

∂x
〈w′u′〉+ 2

∂w

∂r
〈w′v′〉+

∂ 〈u′w′w′〉
∂x

+

1

r

∂ (r 〈v′w′w′〉)
∂r

+
2

r
(〈v′w′w′〉+ v 〈w′w′〉+ w 〈w′v′〉) = ε

]
θ̂ (A.16)

where ∂
∂θ

= 0 due to swirl-free conditions. Defining a quantity q = u′u′ + v′v′ +w′w′

and summing the scalar values of kinetic energy vectors given by equations A.14 –

A.16, produces

(
u
∂

∂x
+ v

∂

∂r

)
〈q〉+ 2

(
∂u

∂r
〈u′u′〉+

∂u

∂x
〈v′u′〉 ∂v

∂r
〈v′v′〉

)
+

2

(
∂v

∂x
〈v′u′〉+

∂w

∂x
〈w′u′〉+

∂w

∂r
〈w′v′〉

)
+
∂ 〈u′q〉
∂x

+
1

r

∂ (r 〈v′q〉)
∂r

+
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2

r
(v 〈w′w′〉 − w 〈w′v′〉) = −2

ρ

(
∂ 〈u′p〉
∂x

+
∂ 〈v′p〉
∂r

)
+ ε (A.17)

Figures B.9 to B.16 support a frequent simplification—i.e., v 〈w′w′〉 ≈ w 〈w′v′〉—thus

producing

[(
u
∂

∂x
+ v

∂

∂r

)
q

]
advection

+[
2

(
∂u

∂r
u′u′ +

∂u

∂x
v′u′ +

∂v

∂r
v′v′ +

∂v

∂x
v′u′ +

∂w

∂x
w′u′ +

∂w

∂r
w′v′

)]
production

+[
∂u′q

∂x
+

1

r

∂
(
rv′q

)
∂r

]
turbulence transport

=

[
−2

ρ

(
∂u′p

∂x
+
∂v′p

∂r

)]
pressure transport

+ [ε]dissipation (A.18)

where terms are grouped by physical significance. In addition, samples are tempo-

rally and statistically independent and spatially static; therefore, ensemble averaging

simplifies to a mean average.

81



APPENDIX B

VELOCITY PROFILES ACROSS RADIAL CROSS SECTIONS
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Figure B.1: ui Section 1 of free jet and Configuration 1

u(+) v(×) w(©)
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Figure B.2: ui Section 1 of Configurations 2 and 3

u(+) v(×) w(©)
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Figure B.3: ui Section 2 of free jet and Configuration 1

u(+) v(×) w(©)
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Figure B.4: ui Section 2 of Configurations 2 and 3

u(+) v(×) w(©)
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Figure B.5: ui Section 3 of free jet and Configuration 1

u(+) v(×) w(©)
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Figure B.6: ui Section 3 of Configurations 2 and 3

u(+) v(×) w(©)
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Figure B.7: ui Section 4 of free jet and Configuration 1

u(+) v(×) w(©)
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Figure B.8: ui Section 4 of Configurations 2 and 3

u(+) v(×) w(©)
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Figure B.9: u′ju
′
i Section 1 of free jet and Configuration 1

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)

90



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

0.2

η

<
u

ju
i>

M
E

A
N

/U
c
l

2

(a) Configuration 2 - Mean

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

η

<
u

ju
i>

R
M

S
/U

c
l

2

(b) Configuration 2 - RMS

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

η

<
u

ju
i>

M
E

A
N

/U
c
l

2

(c) Configuration 3 - Mean

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

<
u

ju
i>

R
M

S
/U

c
l

2
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Figure B.10: u′ju
′
i Section 1 of Configurations 2 and 3

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(d) Configuration 1 - RMS

Figure B.11: u′ju
′
i Section 2 of free jet and Configuration 1

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(d) Configuration 3 - RMS

Figure B.12: u′ju
′
i Section 2 of Configurations 2 and 3

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(a) Free jet - Mean
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(b) Free jet - RMS
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(c) Configuration 1 - Mean
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(d) Configuration 1 - RMS

Figure B.13: u′ju
′
i Section 3 of free jet and Configuration 1

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(a) Configuration 2 - Mean
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(b) Configuration 2 - RMS
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(c) Configuration 3 - Mean
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(d) Configuration 3 - RMS

Figure B.14: u′ju
′
i Section 3 of Configurations 2 and 3

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(a) Free jet - Mean
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(b) Free jet - RMS
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(c) Configuration 1 - Mean
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(d) Configuration 1 - RMS

Figure B.15: u′ju
′
i Section 4 of free jet and Configuration 1

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(a) Configuration 2 - Mean
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(b) Configuration 2 - RMS
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(c) Configuration 3 - Mean
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(d) Configuration 3 - RMS

Figure B.16: u′ju
′
i Section 4 of Configurations 2 and 3

u′u′(+) v′v′(×) w′w′(©) u′v′(∗) u′w′(�) v′w′(♦)
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(a) Free jet - Mean
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(b) Free jet - RMS
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(c) Configuration 1 - Mean
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(d) Configuration 1 - RMS

Figure B.17: u′ju
′
iu
′
i Section 1 of free jet and Configuration 1

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Configuration 2 - Mean
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(b) Configuration 2 - RMS
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(c) Configuration 3 - Mean
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(d) Configuration 3 - RMS

Figure B.18: u′ju
′
iu
′
i Section 1 of Configurations 2 and 3

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Free jet - Mean
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(b) Free jet - RMS
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(c) Configuration 1 - Mean

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

η

<
u

ju
iu

i>
R

M
S
/U

c
l

3

(d) Configuration 1 - RMS

Figure B.19: u′ju
′
iu
′
i Section 2 of free jet and Configuration 1

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Configuration 2 - Mean
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(b) Configuration 2 - RMS
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(c) Configuration 3 - Mean
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(d) Configuration 3 - RMS

Figure B.20: u′ju
′
iu
′
i Section 2 of Configurations 2 and 3

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Free jet - Mean
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(b) Free jet - RMS
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(c) Configuration 1 - Mean
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(d) Configuration 1 - RMS

Figure B.21: u′ju
′
iu
′
i Section 3 of free jet and Configuration 1

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Configuration 2 - Mean
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(b) Configuration 2 - RMS
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(c) Configuration 3 - Mean
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(d) Configuration 3 - RMS

Figure B.22: u′ju
′
iu
′
i Section 3 of Configurations 2 and 3

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Free jet - Mean
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(b) Free jet - RMS
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(c) Configuration 1 - Mean
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(d) Configuration 1 - RMS

Figure B.23: u′ju
′
iu
′
i Section 4 of free jet and Configuration 1

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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(a) Configuration 2 - Mean
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(b) Configuration 2 - RMS
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(c) Configuration 3 - Mean
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(d) Configuration 3 - RMS

Figure B.24: u′ju
′
iu
′
i Section 4 of Configurations 2 and 3

u′u′u′(+) u′v′v′(×) u′w′w′(©) v′u′u′(∗) v′v′v′(�)

v′w′w′(♦) w′u′u′(5) w′v′v′(4) w′w′w′(/)
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