
  

 INVESTIGATING CORRELATED NEUTRONS FROM PULSED 

PHOTONUCLEAR INTERROGATION FOR TREATY VERIFICATION 

APPLICATIONS 

 

 

A Thesis 

by 

SCOTT LAWRENCE STEWART 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 

 

 
Chair of Committee,  William S. Charlton 

Committee Members, Craig M. Marianno 
 Don T. Phillips  
Head of Department, Yassin Hassan  
 

August 2013
 

 

Major Subject: Nuclear Engineering 
 

Copyright 2013 Scott Lawrence Stewart



ii 

ABSTRACT 

 

The treaty verification field is of renewed importance as continued nuclear 

weapons disarmament is prioritized nationally in partnership with other nuclear weapons 

states. This interest has led to research and development on technologies that could 

support future U.S. verification missions. A technology employing pulses of high-energy 

photons from an electron linear accelerator is one technique under consideration. High-

energy photons are advantageous as an interrogation source because they penetrate thick 

shielding and can generate neutrons inside a measurement object. The neutrons would 

then multiply when presented with an object containing fissile material and allow for 

detection in a time domain immediately after the pulse. The purpose of this work was to 

develop an understanding of neutron behavior following a high-energy photon pulse and 

then develop a tool set to analyze data from this region to determine if a measurement 

object contains multiplying material, the mass of that material if present, and the 

moderation in the measurement object. Results indicate the tool sets developed were able 

to determine multiplication was present accurately in 3 out of 4 realistic verification 

objects. Additionally the state of the moderation in each object was able to be 

determined, and the mass could potentially be determined by calibrating to 

representative samples.     



 

iii 

DEDICATION 

 

I am thankful for the support of members of my faith community, my family, and 

my friends for their support of me over the years. I know I can always count on these 

groups of people to provide words of encouragement when needed. I would especially 

like to thank my parents for instilling in me a desire to seek out a field that allows me to 

serve others, for teaching me to work hard, and for providing encouragement and advice 

constantly. I have also been fortunate to have many individuals encourage my continued 

participation in safeguards science and technology. Thanks to Greg Sheppard for 

introducing me to the field and helping me to find a home for my interests when I was 

searching and to Martyn Swinhoe for being an excellent mentor over the years.   

 

 

  



 

iv 

ACKNOWLEDGEMENTS 

 

I would especially like to thank all the members of NEN-1 at Los Alamos 

National Laboratory for their input and ideas throughout this project. Jonathan Thron 

and Martyn Swinhoe in particular were very supportive of these efforts. I would also like 

to thank my committee chair, Dr. Charlton, for his continued input and ideas on project 

direction as well as his advice and suggestions throughout the graduate school process.  

  



 

v 

NOMENCLATURE 

 

A Gate Accidentals Gate 

D/S Doubles Divided by Singles 

DU Depleted Uranium 

DU+p Depleted Uranium with Polyethylene 

FORTRAN Formula Translation 

He-3 Helium-3 

HEU Highly Enriched Uranium 

HEU+p Highly Enriched Uranium with Polyethylene 

INL Idaho National Laboratory 

IO Inspection Object 

LANL Los Alamos National Laboratory 

LINAC Linear Accelerator 

LSF Least Squares Fitting 

MCNP Monte Carlo Neutral Particle Transport 

NAVI Nuclear Arms Verification Instrument 

NMIS Nuclear Material Identification System 

PANDA Passive Nondestructive Assay of Nuclear Materials 

PND Photonuclear Neutron Detector 

PSR Pulsed Shift Register 

Pu Plutonium 



 

vi 

Pu+p Plutonium with Polyethylene  

R+A Gate Reals plus Accidentals Gate 

R&D Research and Development 

SPNS Simple Neutron Simulation 

START Strategic Arms Reduction Treaty 

TTL Transistor-Transistor Logic 

U-235 Uranium-235 

UK  United Kingdom 

US United States of America 

W Tungsten 

W+p Tungsten with Polyethylene  

 

 

 

 

 

 

 

 

 

 

 



 

vii 

TABLE OF CONTENTS 
 

 Page 
 
ABSTRACT ...................................................................................................................... ii 
 
DEDICATION ................................................................................................................. iii 
 
ACKNOWLEDGEMENTS ..............................................................................................iv 
 
NOMENCLATURE ........................................................................................................... v 
 
LIST OF FIGURES .......................................................................................................... ix 
 
LIST OF TABLES .......................................................................................................... xii 
 
CHAPTER 
 
 I INTRODUCTION ................................................................................ 1 
 
 I.A. Motivation ..................................................................................... 1 
 I.B. Treaty Verification Background .................................................... 2 

 I.C. Research Objectives ...................................................................... 3 
 
 II EXPERIMENTAL SETUP .................................................................. 5 
 
 III ANALYSIS METHODS .................................................................... 13 
 
 III.A. Pulsed Histograms .................................................................... 13 
 III.B. Pulsed Shift Register ................................................................ 15 
 III.C. Simple Neutron Simulation ...................................................... 24 
 III.D. Monte Carlo Neutral Particle Transport ................................... 28 
 
 IV PERTURBATION STUDIES AND WINDOW SELECTION ......... 30 
 
 V EXPERIMENT AND ANALYSIS PROCEDURE ........................... 56 
 
 V.A. Experimental Procedure ............................................................ 56 

 V.B. PSR Analysis Method ................................................................ 57 
 V.C. SPNS Analysis Method ............................................................. 60 
  
 



 

viii 

CHAPTER  Page 
 
 VI DATA ANALYSIS ............................................................................ 73 
 
 VI.A. Fissile Content Analysis  .......................................................... 73 
 VI.B. Mass Analysis ........................................................................... 78 
 VI.C. Moderation Analysis ................................................................ 84 
 VI.D. Inspection Object Analysis ...................................................... 89 
 
 VII SUMMARY AND CONCLUSIONS ................................................. 93 
  
REFERENCES ................................................................................................................. 97 
 
APPENDIX A ................................................................................................................ 100 
 
APPENDIX B ................................................................................................................ 112 
 
APPENDIX C ................................................................................................................ 129 
 
APPENDIX D ................................................................................................................ 148 
 
APPENDIX E ................................................................................................................. 196 
 
  



 

ix 

LIST OF FIGURES 

 

FIGURE Page 
 

1 The Varitron electron LINAC2 ............................................................................ 6 
 
2 Bremsstrahlung spectra demonstrating the angular dependence of the 

energy of photons given a 9MeV electron beam incident on tungsten10............. 7 
 
3 The experimental setup for both the US-UK measurement campaign and 

the June 2012 measurement campaign7............................................................. 10 
 
4 Exterior and interior of the PND detectors 12 .................................................... 10 
 
5 LANL list-mode data acquisition module12 ...................................................... 11 
 
6 Log-linear singles pulsed histogram of plutonium for a 60 second total 

measurement time with a pulse rate of 125 Hz ................................................. 14 
 
7 A flow diagram of the Pulsed Shift Register Program ...................................... 16 
 
8 Time domains in a shift register ........................................................................ 20 
 
9 A Rossi-Alpha distribution of neutron events after an induced fission 

followed by a fission chain over time ............................................................... 22 
 
10 Flow diagram of the SPNS Monte Carlo Program ............................................ 24 
 
11 Singles pulsed histogram calculated by SPNS varying the number of 

neutrons per LINAC pulse ................................................................................ 32 
 
12  Doubles pulsed histogram calculated by SPNS varying the number of 

neutrons per LINAC pulse ................................................................................ 33 
 
13 Singles pulsed histogram calculated by SPNS varying the detector die-

away .................................................................................................................. 35 
 
14 Doubles pulsed histogram calculated by SPNS varying the detector die-

away .................................................................................................................. 36 
 
15 Singles pulsed histogram calculated by SPNS varying the channel dead-

time .................................................................................................................... 37 



 

x 

FIGURE Page 
 

16 Doubles pulsed histogram calculated by SPNS varying the channel dead-
time .................................................................................................................... 38 

 
17 MCNP geometry of the PND detectors and the 544g polyethylene 

moderated HEU sample .................................................................................... 40 
 

18 Log-log graph of MCNP data plotted on experimental HEU data with the 
window value denoted with a green line ........................................................... 42 

 
19 Singles pulsed histogram calculated by SPNS varying the neutrons per 

pulse with windows ........................................................................................... 44 
 

20 Doubles pulsed histogram calculated by SPNS varying the of neutrons 
per pulse with windows ..................................................................................... 45 

 
21 Singles pulsed histogram calculated by SPNS varying the detector die-

away with windows ........................................................................................... 46 
 
22 Doubles pulsed histogram calculated by SPNS varying the detector die-

away with windows ........................................................................................... 47 
 
23 Singles pulsed histogram calculated by SPNS varying the probability of 

fission with windows ......................................................................................... 48 
 
24 Doubles pulsed histogram calculated by SPNS varying the probability of 

fission with windows ......................................................................................... 49 
 
25 Singles pulsed histogram calculated by SPNS varying the fission die-

away with windows ........................................................................................... 50 
 
26 Doubles pulsed histogram calculated by SPNS varying the fission die-

away with windows ........................................................................................... 51 
 
27 Singles pulsed histogram calculated by SPNS varying the multiplicity 

distribution with windows ................................................................................. 52 
 
28 Doubles pulsed histogram calculated by SPNS varying the multiplicity 

distribution with windows ................................................................................. 53 
 
29 LSF vs. parameter modified graphs for neutrons per pulse (upper left), 

detector die-away (upper right), and the (α,n) generation rate (bottom) ........... 64 
 



 

xi 

FIGURE Page 
 

30 3D LSF graph with fast thermalization induced fission probability in the 
y-axis, the die-away (µs) in the x-axis, and the LSF values in the z-axis 
coming out of the page ...................................................................................... 65 

 
31 3D graph of the slow thermalization induced fission probability in the y-

axis, the die-away (µs) in the x-axis, and the LSF values in the z-axis 
coming out of the page ...................................................................................... 67 

 
32 Singles pulsed histogram of the best LSF SPNS fit of experimental data ........ 69 

 
33 Doubles pulsed histogram of LSF fit SPNS onto experimental data ................ 70 

 
  



 

xii 

LIST OF TABLES 

 

TABLE Page 
 
 I PSR parameters used during analysis ............................................................... 58 
 
 II PSR analysis parameters used for SPNS fitting ................................................ 60 
 
 III SPNS parameter time domains used for LSF .................................................... 62 
 
 IV Error in LSF time domains due to the SPNS random number generator .......... 63 
 
 V LSF values for the coupled fast thermalization parameters with absolute 

minimum in bold ............................................................................................... 66 
 
 VI LSF values for the probability of fission and die-away parameters of slow 

thermalization with absolute minimum in bold ................................................ 68 
 
 VII Physical descriptions of the measurement objects in the fissile content 

analysis data set ................................................................................................. 74 
 
 VIII Shift register analysis with the PSR and windows ............................................ 75 
 
 IX Doubles pulsed histogram analysis for multiplying material samples .............. 76 
 
 X D/S pulsed histogram analysis for multiplying material samples ..................... 77 
 
 XI SPNS fitting parameters for the multiplying sample data set ........................... 78 
 
 XII Sample descriptions of the mass analysis data set ............................................ 80 
 
 XIII Shift register analysis results from the mass analysis data set .......................... 81 
 
 XIV Doubles pulsed histogram results from the mass study .................................... 82 
 
 XV D/S pulsed histogram results from the mass study ........................................... 82 
 
 XVI SPNS fitting parameters from the mass study ................................................... 83 
 
 XVII Sample descriptions for the moderation data set ............................................... 85 
 
 XVIII Shift register analysis of the moderation data ................................................... 85 



 

xiii 

TABLE Page 
 
 XIX Doubles pulsed histogram analysis results for the moderation data ................. 86 
 
 XX D/S pulsed histogram analysis results for the moderation data ........................ 87 
 
 XXI SPNS fitting parameters for the moderation data set ........................................ 88 
 
 XXII Inspection object physical descriptions ............................................................. 90 

 

 XXIII Shift register analysis of the inspection objects ................................................ 91 
 
 XXIV Pulsed histogram analysis of the inspection objects ......................................... 92 
 

 

 



 

1 
 

CHAPTER I 

INTRODUCTION 

 

I.A. Motivation 

The current administration under President Obama has made it an objective to 

reduce and eliminate nuclear weapons throughout the world. This objective has been 

pursued through a new STrategic Arms Reduction Treaty (START) with Russia that was 

signed on April 8, 2010 and entered into force on February 5, 2011. The START treaty 

is a bilateral agreement that limits the numbers of strategic weapons held by both 

countries. The Obama administration has also been discussing world-wide participation 

in a Fissile Material Cutoff Treaty (FMCT) that would freeze the current global 

stockpiles of nuclear materials for nuclear weapons by prohibiting the production of 

more material.1  

A recent US Nuclear Posture review released on April 6, 2010 has committed the 

US to developing treaty verification and arms control programs to strengthen the R&D 

efforts in these fields in order to support future US treaty obligations1. A pulsed high-

energy photon accelerator coupled with neutron detection capability is one potential 

technology under consideration for future treaty verification applications. This technique 

has shown promise in previous work in detecting shielded nuclear weapons objects, 

which is ideal since many nuclear weapons packages are shielded by material within the 

device as well as by materials within the delivery vehicle2.  

 



 

2 
 

I.B. Treaty Verification Background  

The impetus for treaty verification technologies is to be able to certify the 

disarmament of nuclear weapons in line with treaty obligations1. The exact procedure of 

verifying disarmament is always negotiated on a per treaty basis between the various 

nations involved in the treaty writing process. In order to facilitate this negotiation, it 

helps to have a number of viable verification technologies in reserve should any one 

technology prove unpalatable to any of the negotiators.  

Since all armed nuclear weapons have a radiological signature, this signature is 

often used to acknowledge its disarmament. Until very recently, most significant 

development in arms control and treaty verification technology occurred in the 1990s1. 

Most of the notable development during this period was tied into various verification 

exercises that occurred at the Francis E. Warren Air Force Base as well as at the Los 

Alamos Simulation Facility in Technical Area 18 at Los Alamos National Laboratory 

(LANL)3.  

One of the early prominent nuclear verification devices was the Nuclear Arms 

Verification Instrument (NAVI). This instrument employed both singles neutron and 

gamma counting to verify the disarmament of weapons devices. For neutron counting, 

the device relied on He-3 detectors with polyethylene moderation, and it used a low 

resolution gamma detector for gamma spectral analysis. Gamma spectroscopy in 

particular has a high probability of generating classified data, so the detection equipment 

was coupled with a simplified operator interface and a yes/no light to indicate whether 

an inspection object was a weapon or not. This simplification essentially served as an 



 

3 
 

information barrier to prevent unauthorized individuals from accessing classified 

information. Later technologies continued to utilize the basic concepts incorporated into 

the NAVI design, although several other techniques were investigated, such as 

scintillation technology for neutron detection, infrared imaging systems, and 2D gamma 

imaging technology.3 

More modern efforts have again returned to singles neutron and gamma counting 

techniques, but have more specifically focused on adapting portal monitoring technology 

to fill roles in potential treaty verification regimes4. Another research effort that has been 

ongoing for the past 20 years and is being examined for potential treaty verification 

applications is the Nuclear Material Identification System (NMIS) which uses neutron 

transmission imaging technology 5,6. 

I.C. Research Objectives 

The goal of this thesis is to ascertain the viability of neutron analysis in the 

pulsed region of data generated from a pulsed high-energy photon source for use in 

treaty verification activities. In order to achieve this goal, the physics occurring in the 

pulsed region was examined to correlate measurement object behaviors to perturbations 

in analysis parameters. To assist in this process, a point model Monte Carlo code was 

developed and coupled with Monte Carlo Neutral Particle Transport (MCNP) analysis. 

Once these investigative tools provided greater insight into the physics occurring, a shift 

register analysis tool was developed to analyze experimental neutron data acquired at 

Idaho National Laboratory (INL) as well as simulated neutron data from the point model 

Monte Carlo tool. Both of these tools were then used to determine if neutron data from 



 

4 
 

the pulsed region could determine whether or not there was fissile material present in a 

measurement object. If fissile material was present, then the tools were used to ascertain 

the mass and moderation state of the fissile material. The capabilities of these analysis 

tools as well as the relative state of the technology contributed to the recommendations 

on the viability of this method in the conclusions of the thesis.  



 

5 
 

CHAPTER II 

EXPERIMENTAL SETUP 

 

Data for this research comes from two different measurement campaigns at INL. 

The first set of data comes from a joint US and UK measurement campaign from 20-23 

September 2010. The methodology and setup for these experiments are detailed 

extensively7,8, and the data was provided to assist in the work covered in this thesis. The 

second set of data used in this analysis comes from a measurement campaign undertaken 

from the 25-27 June 2012. The experimental setup for the second measurement 

campaign is detailed in the rest of this section.   

The pulse in this experiment was provided by an electron linear accelerator 

(LINAC) with an S-Band Radio Frequency standing wave design that uses a Varian L-

3000 waveguide. The LINAC is depicted in Figure 1. In the figure, some of the cooling 

equipment can be seen towards the edge of the image. The LINAC’s waveguide is 

enclosed within the yellow box labeled “Varitron.” The two aluminum boxes on the 

front of the Varitron contain two calibrated red lasers that are used to ensure that 

samples are in line vertically and horizontally with the Varitron before data acquisition 

begins. The very end of the collimator can be seen just behind the lead bricks in the 

figure. This LINAC design is capable of producing electrons between 2 and 12 MeV, 

and was operated to produce 10 MeV electrons for all data included in this work. The 

LINAC was characterized as part of the US-UK measurement campaign, and the beam 

current of the LINAC was determined to be around 3 microamperes at 125 Hz. This 



 

6 
 

produces around 1.5 x 1011 electrons per pulse and 125 pulses per second7. The LINAC 

was operated in the same regime for the set of measurements in the June 2012 

measurement campaign, and so the electrons produced in each pulse were comparable to 

the value from the US-UK measurement campaign.  

 

 

Figure 1. The Varitron electron LINAC
2 

 

After production and acceleration, the electrons from the LINAC are sent into a 

tungsten converter to produce Bremsstrahlung photons. The Bremsstrahlung process 

produces gammas as a result of the electric field surrounding an atomic nucleus 



 

7 
 

redirecting the electrons from the LINAC. As the electrons are redirected, they lose 

kinetic energy through photon radiation9. This leads to a photon spectrum as seen in 

Figure 2, where the highest possible photon energy is based on the energy of the 

electrons from the LINAC. In this figure, the 0 o-5o mark indicates production of photons 

that are in the same line as the incident electrons. 

 

 

Figure 2. Bremsstrahlung spectra demonstrating the angular dependence of the 

energy of photons given a 9MeV electron beam incident on tungsten
10

 

 

The photons from the tungsten converter are then collimated toward the 

measurement object. The energy distribution from the photons out of the collimator is 

not uniform. Instead the highest energy photons are preferentially located in the line of 



 

8 
 

the LINAC to the measurement object, and, on average, the photon energy decreases as 

they diverge from this line. Figure 2 also shows the non-uniformity of the photon flux 

from a Bremsstrahlung source depending on the angle. 

The collimator of the LINAC is 1 m from the measurement object. After 

traveling the distance between the LINAC and the measurement object, photons generate 

neutrons in the object through photoneutron and photofission interactions. A 10 MeV 

LINAC electron beam was selected to provide up to 10 MeV photons capable of 

penetrating any shielding surrounding potential nuclear material in a measurement 

object. Another advantage of the 10 MeV beam is that it generates photons that are 

above the photoneutron generation threshold energy in most potential shielding and 

nuclear material11, which ensures that neutrons are created in whatever measurement 

object is placed in front of the LINAC.  

The neutrons from the pulsed photons then interact in different ways depending 

on the composition of the object. If shielding is present in the object, then neutrons will 

tend to thermalize or be absorbed. The thermal neutrons then might travel to nuclear 

material in the measurement object and induce a fission chain reaction. Neutrons are also 

capable of causing a fast fission in the nuclear material in a measurement object, 

although this is significantly less likely than a thermal neutron returning and inducing a 

fission. Some of the neutrons generated from the initial photon burst as well as others 

produced from both prompt and delayed neutrons from induced fission reactions will 

then escape the measurement object and potentially be detected by the detection system. 



 

9 
 

 Figure 3 is a schematic of the overall experimental setup. There are a total of 12 

He-3 INL designed neutron detectors in the experiment. The INL neutron detectors are 

called Photonuclear Neutron Detectors (PNDs) and are specifically designed to recover 

from the strong gamma flash from the LINAC. A more detailed report on their design is 

included in References 12 and 13. Six of them are stationed 50 cm to either side of the 

line from the LINAC to the measurement object. The numbering on the PNDs in the 

figure indicates their channel number in the electronics. 

Figure 4 shows the inside of the PNDs in more detail. The PNDs are 33” long, 

and the He-3 inside the tubes is at 2 atm. The He-3 tube is surrounded by high-density 

polyethylene, boroflex, and cadmium. The cadmium layer ensures that only fast neutrons 

enter into the detector. The boroflex thermalizes and absorbs epithermal neutrons. The 

high-density polyethylene thermalizes the fast neutrons that entered the detector and 

escaped absorption by the cadmium and boroflex such that they can interact in the He-3. 

The PND is designed to limit the number of neutrons reaching the detector so that the 

He-3 tube is able to recover from the pulse quickly.  



 

10 
 

 

Figure 3. The experimental setup for both the US-UK measurement campaign and 

the June 2012 measurement campaign
7 

 

 

 

 

 

Figure 4. Exterior and interior of the PND detectors 
12

 

  



 

11 
 

He-3 proportional counters have He-3 as a fill gas and are held at a high voltage 

when in operation. Neutrons entering the tubes have a chance of interacting with the He-

3 in an (n,p) reaction. This reaction leads to a charge avalanche that results in a pulse. 

Each individual PND contains an electronic package that allows for Transistor-

Transistor Logic (TTL) output. These signals are then collected by a Los Alamos 

National Laboratory (LANL) designed converter box which switches them from TTL to 

a differential signal. These signals are then fed via a ribbon cable into a LANL list-mode 

data acquisition module12. A picture of the LANL modules is included in Figure 5. In the 

figure, the box on the left is the LANL-designed list-mode data acquisition module, 

while the blue box on the right is the LANL-designed TTL-to-differential signal 

converter 

 

Figure 5. LANL list-mode data acquisition module
12 

 

 List-mode data is then sent to a personal computer where it is recorded in binary 

files that preserve the channel of the detector and the time of the neutron detection. 

Preserving the information in this way allows for the original data stream to be recorded 



 

12 
 

so that any form of analysis can be performed on the measurement objects at any point 

after the data has been taken. In addition, the LINAC sends a pulse to the list-mode 

system in the last channel whenever the LINAC fires, which allows for data to be 

analyzed based on the time of the pulse. The list-mode data files of the measurement 

objects from the US-UK measurement campaign and the June 2012 measurement 

campaign are used for all analysis discussed in this thesis.   



 

13 
 

CHAPTER III 

ANALYSIS METHODS 

 

Three different analysis programs were employed in this project to help 

understand the pulsed region of the data from the measurement objects. These programs 

are the Pulsed Shift Register (PSR) Program, the SimPle Neutron Simulation Program 

(SPNS), and Monte Carlo Neutral Particle Transport (MCNP) code. All of these analysis 

programs utilized pulsed histograms of one form or another to help understand the 

measurement object data.  

III.A. Pulsed Histograms 

Figure 6 is a singles pulsed histogram included to demonstrate the time domains 

in the pulsed experiment. Figure 6 is produced by summing all of the counts in a series 

of time bins following each pulse. The first 1000 μs after a pulse is called the pulsed 

region. The neutrons in this region come from photoneutron and photofission 

interactions in the measurement object as well as the neutrons from fission chains 

induced by these initial neutrons. The neutron population in this region is dependent on 

time since most of the neutron creation results from fission chains due to the pulse. This 

means the region exhibits non-steady-state behavior, which in turn reduces the 

applicability of traditional coincidence analysis without special considerations being 

made. The work in this thesis focuses mostly on analyzing the pulsed region. The time 

immediately following the pulse (near t=0) has very few counts due to the gamma flash 

generating dead-time in the detectors. The region from 1000 to 8000 μs exhibits quasi-



 

14 
 

steady-state behavior and is dominated by delayed neutrons produced from -decay of 

fission fragments. Traditional neutron coincidence analysis techniques can be used to 

analyze the data in this region since the neutron background is at a steady rate and the 

effects of the pulse have died away. 

 

 
Figure 6. Log-linear singles pulsed histogram of plutonium for a 60 second total 

measurement time with a pulse rate of 125 Hz 

 

The x-axis in all pulsed histograms is time after a pulse where 0 s is the 

beginning of a LINAC pulse and 8000 s is the time right before another pulse occurs. 

The x-axis of the pulsed histogram is broken up into bins of a set size. For most pulsed 

histograms in this thesis, the x-axis is broken up into 1000 bins each 8 μs wide.  The y-



 

15 
 

axis of a pulsed histogram represents singles counts (S), doubles counts (D), or D/S 

values per bin depending on the pulsed histogram type. Figure 6 is a singles pulsed 

histogram, where ‘singles’ refers to the total number of neutrons counted within a 

particular bin for the entire list mode data file. A ‘doubles’ count in the pulsed histogram 

represents the number of neutrons counted that are correlated in time to a neutron count 

that appears within a particular bin over the course of the entire list mode data file. The 

concept of a ‘doubles’ count is explained further in the Pulsed Shift Register Analysis 

section. The values in the bins of pulsed histograms represent total counts over a data 

file, and are not count rates. Therefore in order to accurately compare histograms from 

different measurement objects, the measurement time for both objects must be the same. 

Unless otherwise noted, pulsed histograms in this thesis are all created from 60 second 

measurement files.  

III.B. Pulsed Shift Register 

The PSR is a post-processing program coded in C++ that can accept list-mode 

binary files as an input and will then perform shift register operations on the data before 

outputting the singles and doubles rates for a file as well as pulsed histograms. A flow 

diagram of the PSR program is included in Figure 7.  

The PSR program first looks for a user input file in the same directory location as 

the executable program. The user input file allows users to specify a pre-delay value, a 

gate-width, a long delay, a trigger offset, a window, and a veto. All of the input 

parameters modify how the doubles analysis and pulsed histogram analysis is performed 

by the PSR program. The input file also allows users to specify the names of all of the 



 

16 
 

list-mode data files they want processed using these parameters. The program will rerun 

for each list-mode data file included in the input file without any additional interaction 

from the user. This allows for the user to process a large number of list-mode files 

efficiently using the same parameters. 

 

 

Figure 7. A flow diagram of the Pulsed Shift Register Program 

 



 

17 
 

  After processing the input file, the program will find and read in the first binary 

list-mode data file. There is not a standardized list-mode data format, so the pulsed shift-

register is programed to read in the LANL list-mode data format in order to couple with 

the LANL list-mode electronics used in the experiment. LANL list-mode electronics 

store channel information in 4 bytes and time information in 4 bytes for each detected 

neutron event, and are recorded in binary files by a computer in the order in which they 

are detected. There are 32 bits in the 4 bytes of channel information, and each bit 

corresponds to one detection channel. A nonzero bit indicates the channel or channels 

that detected a neutron. Time information is stored in big endian format where the first 

byte is the most significant and the last byte is the least significant, and in units of 100 

nanosecond bins. The PNDs each have channels assigned according to Figure 3. In 

addition, trigger pulses, which indicate when the LINAC is pulsing, are fed to the 

computer for output in the same list-mode data file. Trigger pulses are assigned to 

channel number 31, and are all recorded with an expected time delay after a LINAC 

pulse in the list-mode file. This offset is one of the user inputs and is corrected for as the 

binary files are parsed in the PSR program.14 

The PSR program separates the trigger pulses from the neutron pulses as it is 

processing the binary data files, and stores each signal type in a separate queue data 

structure. The queue is a first in-first out data structure, which means that elements 

placed in the queue first are the first elements to come out of the queue. Each element 

has its own location in memory and points to the next element in the queue. Queues are 

much more efficient to use for large amounts of data than the more frequently used 



 

18 
 

arrays because the size of the queue is only limited by the free memory of the computer. 

Additionally memory is allocated as the queue size increases and can be deallocated as 

elements are deleted, while for an array the memory required for something of that size 

is set aside as soon as the array is created and is not deallocated until the end of the 

program. 

 PSR also performs some corrections for electronic noise from the PND 

electronics during data file processing. Occasionally the PND electronics send phantom 

signals after an actual neutron detection event. The PSR program handles this by 

allowing the user to input a veto value. The veto value represents the amount of time the 

PSR program will ignore any neutron events in a specific channel after a detection event 

in that channel. Additionally, the electronics erroneously record noise on occasion across 

multiple channels as a pulse. Some number of these pulses could be true pulses, as it is 

possible for multiple neutron detectors in the system to count neutrons at the same time 

within the 100 nanosecond bin resolution used by the list-mode electronics. The PSR 

program assumes that if a pulse is detected across more than 3 neutron detectors at the 

same time then that data is noise rather than a true neutron signal.  

 After separating the list-mode data into triggers and neutron pulse queues and 

performing some electronic noise corrections, the PSR program performs windows 

subtraction. A window is a period of time after the pulse for which the program removes 

all the neutron data so that it will not be used in the later analysis steps. Windows 

subtraction is intended to correct for the neutron detector’s recovery time after the 

gamma flash from the LINAC. This data is removed because the neutron signal during 



 

19 
 

this time is more indicative of the neutron detector’s recovery from the gamma flash 

than the neutron signatures from the measurement object. The exact size of the window 

is specified by the user in the input file.  

The PSR program also assumes that the time between pulses is 8000 s and will 

remove any pulses that appear more than 8000 s after the most recent trigger. This 

correction is applied because some measurements from the US-UK measurement 

campaign had regions of the data where the trigger pulse either was not recorded 

properly or did not send properly. This left a section of data that could not be window 

corrected. The program indicates how much of the file it has subtracted due to this 

correction as one of the final outputs. 

 Once the PSR program has made these two corrections, the program performs a 

singles calculation. ‘Singles’ refers to the total number of neutron counts in the list-mode 

data file (after the various electronics corrections) divided by the count live time. This 

value is determined by asking for the number of elements in the neutron pulse queue. 

The live time is then divided from this total count value before data output later in the 

program. 

After storing the total counts for singles computations, the program begins shift 

register analysis. In steady-state analysis, shift registers are used to find the doubles, or 

correlated pairs of neutrons. The PSR still computes standard doubles, but also creates 

both singles and doubles pulsed histograms so that users can see when events happen in 

the time after a pulse.  



 

20 
 

Figure 8. Time domains in a shift register 

 

Figure 8 is included to help explain the various time domains in a shift register. 

Each of the time domains in Figure 8 is stored in its own queue in the PSR program. For 

the first shift register operation, each shift register is filled with the number of neutrons 

counts that span the length, in time, of that particular part of the shift register. For 

example, the A gate is filled first starting with the first count from the neutron queue 

until the time of the neutron in the neutron queue is greater than the length in time of the 

A gate. This next count is then placed into the long delay queue and this procedure 

repeats until all of the time domains are filled with the number of counts that span their 

length in time. This operation is performed because in normal shift register operations, 

each time domain will already be filled when data collection starts. The time it takes to 

fill these domains is subtracted from the live time in the file.15  

After the time domains are filled, the count that is next in the neutron queue is 

pulled out of the queue and designated as the first neutron, as seen in Figure 8. The first 

neutron is the neutron count that triggers data to be recorded, and the number of neutron 

counts in each time domain past the first neutron is dependent on when neutrons in the 

data stream were detected and the length of the time domains. When triggered, the shift 



 

21 
 

register ignores any neutron counts that appears in the pre-delay time domain to avoid a 

dead-time effect in the electronics, and the number of neutron counts in the R+A gate 

queue and the A gate queue are counted. By counting the number of neutron counts in 

the R+A gate and the A gate, the shift register is tracking the pairs of two that can be 

made with the first neutron in each gate. The shift register then places the current first 

neutron in the pre-delay queue, and pulls the next neutron count from the neutron queue 

to be the new first neutron. The neutron counts in the time domains queues are then 

adjusted based on the detection time of the new first neutron and the length of the time 

domains specified by the user. This analysis is repeated until the neutron queue is 

empty.15 

In traditional steady-state coincidence analysis, the operation with the R+A and 

A gates will result in doubles values that correlate to the neutrons produced from fission 

in a sample. A double is more formally defined as time correlated pairs of neutrons from 

the same event, typically a fission chain reaction. The R+A minus A gate subtraction is 

able to determine correlated neutron events based on the typical behavior of fission 

chains. This behavior is characterized by the Rossi-Alpha distribution, as seen in Figure 

9. The Rossi-Alpha distribution shows that neutrons generated due to a fission chain are 

most likely to be detected close in time, relative to the neutron lifetime in a sample, to an 

initiating neutron event rather than further away. Based upon this observation, if a gate 

were opened near to a neutron event and then again several neutron lifetimes away from 

that neutron event, the possible pairs of neutrons in the first gate would be statistically 

larger than the possible pairs of neutrons in the second gate if the first or initiating 



 

22 
 

neutron had a time correlation with some of the detection events in the R+A gate. 

Therefore if the A gate were subtracted from the R+A gate, it would only leave the 

“Reals” or true Doubles from fission chains rather than “Accidentals” or incidental 

coincidences from other types of neutron generation with no time-dependence. As this 

operation is performed on all neutrons for the duration of the count time, the resulting 

doubles value is then correlated to the neutrons produced via fission in the measurement 

object.15 

 

 

Figure 9. A Rossi-Alpha distribution of neutron events after an induced fission 

followed by a fission chain over time
16 

 

 This, however, does not work as simply in a pulsed environment because the 

shape of the Rossi-Alpha distribution is unknown whenever the situation is not steady-

state. The main issue in determining a doubles rate in a pulsed environment is that the 

pulse introduces time dependence to the A gate which is not explicitly known. Since the 



 

23 
 

shape of the accidentals curve is unknown it becomes very difficult to subtract a proper 

number of accidentals from the R+A gate in order to determine the true correlated pairs 

of two neutrons from the measurement object. The way this issue is handled with PSR 

analysis is to make the length of the long delay such that the A gate opens on the same 

part of the pulse profile as the R+A gate17. This ensures that the singles profile should be 

around the same in both gates throughout the experiment, which in turn should account 

for the time dependence in the accidentals and allow for true coincidences to be found in 

the data. 

 While performing the shift register analysis, the PSR also populates the singles 

and doubles pulsed histograms. In the internal workings of the program, the doubles 

pulsed histogram is tracked separately as an R+A histogram and an A histogram to avoid 

subtraction error. The program populates pulsed histograms using the first neutrons 

during the shift register analysis. For both singles, R+A, and A pulsed histograms the 

length of time between the current first neutron and the most recent pulse is used to 

determine the appropriate bin in which to place information. For singles pulsed 

histograms, the bin selected is then incremented by one to indicate that a neutron was 

present in that time after a pulse. For R+A and A pulsed histograms, the selected bin is 

incremented by the R+A and A values computed for the current first neutron. 

 Once the program completes the analysis steps, it outputs the information in two 

separate .csv files. Comma separated value files were chosen as the output method to 

facilitate graphing within Microsoft Excel. One .csv file contains the traditional shift 



 

24 
 

register output, including the singles and doubles values, while the second .csv file 

contains the pulsed histogram information. 

III.C. Simple Neutron Simulation 

The SimPle Neutron Simulation (SPNS) program is two neutron energy-group 

point model Monte Carlo simulation that was written in C++ to model the physics of 

interactions within a measurement object. This program was first presented in Reference 

18, and a flow diagram for the program is shown in Figure 10.  

 

Figure 10. Flow diagram of the SPNS Monte Carlo Program 

 



 

25 
 

The first SPNS program operation is to read in input parameters from an input 

file. The user specified inputs determine how neutrons will interact during the simulation 

as well as what is output to the user. A user can control both the type and the time length 

of an output file, as well as the pulsed and steady state neutron creation characteristics 

such as the length of a pulse, numbers of neutrons in a pulse, and the frequency of the 

steady state creation events. The user may also adjust how created neutrons interact with 

a measurement object and are detected in the detection system by modifying the 

probabilities of detection, thermalization, induced fission, fast fission, and escape as well 

as the die-away time of thermalization and detection and the channel dead-time value. 

The user can also specify the average number of neutrons that come from induced, 

spontaneous, and fast fission in order to represent the material type of a measurement 

object accurately. This is implemented by using a multiplicity distribution for each 

fission type. Presently the multiplicity distributions in the input file are set to represent a 

U-235 sample based on data from the PANDA manual16 

  After reading in input parameters, SPNS creates neutron data files through a 

multistep process depicted in Figure 10. Neutron creation is the first step in this process. 

Neutrons can be created either as a group of neutrons in a pulse of a certain width, at a 

certain rate through a typical uncorrelated ‘singles’ event such as an (α,n) process, or 

through spontaneous fission at a certain rate. For the data modeling in this thesis, the 

uncorrelated ‘singles’ events and the neutron pulses were the primary methods of 

neutron creation. Each neutron that is created is then added to a fast neutron bank. 

Neutrons created by a spontaneous fission event share the same creation time, and 



 

26 
 

neutrons created as part of a pulse are tagged with times that are randomly distributed 

over the pulse width.  

  Once neutrons have been created, they can be removed individually from the fast 

neutron bank and processed to determine on average how they would interact based on 

the user input parameters. Upon removal, SPNS rolls on the chance of the neutron 

undergoing fast fission. If the neutron fast fissions, the resulting neutrons are placed 

back in the fast neutron bank. The neutrons from fast fission share the same timestamp 

as the inducing neutron. If a neutron fails to fast fission then it moves into the next loop 

of interaction chances. In this loop, a neutron has a chance of being detected by the 

detection system, escaping the sample, or thermalizing and having a chance of inducing 

fission. If a neutron thermalizes then its thermal diffusion time is simulated by using a 

stable Poisson distribution:  

 

  (   )         (   ) (1) 

   

In this equation, a is the user specified die-away time and b is a random number from 0 

to 1 generated by the random number generator. The stable Poisson distribution is also 

used to model the detector die-away time when a neutron is detected. In the case of both 

thermalization and detection, the die-away time is added to the already existing neutron 

time to simulate the neutron being thermalized.  

After being detected, neutrons are passed to a loop to assign a channel number to 

the neutron. In this thesis work the channel corresponds to the helium-3 detector that 



 

27 
 

detected the neutron. Dead-time is assumed to be non-paralyzable in SPNS and is 

tracked on a per channel basis, so once a neutron is detected in a channel, the channel 

will be unable to detect other neutrons for a fixed period of time. After channel 

assignment, neutrons are sorted according to detection time before being output in the 

user specified output format. 

The random number generator used for this Monte Carlo program comes from 

“Numerical Recipes in C” 19. It is a random number generator of L’Ecuyer with a Bays-

Durham shuffle and added safeguards. This allows for a long period of greater than 2 × 

1018. This recursion relationship for a linear congruential generator is used in the code:  

 

      (      )   ( ) (2) 

 

In this equation, X0 is the seed value, A is known as the multiplier, C is the increment, 

and M is the modulus. The SPNS random number generator is a variation of a linear 

congruential generator. The program adds two different random number sequences with 

different periods, which results in a new sequence whose period is the least common 

multiple of the two periods. After adding the two sequences, the modulus of the modulus 

of either of the two series is taken. The combination of two different random number 

sequences results in a very low incidence of serial correlation in the resulting sequence. 

To further reduce the chance of serial correlations, an additional shuffle is added to the 

new random number sequence. All of these processes result in a random number 



 

28 
 

generator that passes all statistical checks for randomness, which means that the results 

generated from SPNS are not affected by poor statistical randomness.  

III.D. Monte Carlo Neutral Particle Transport 

 The Monte Carlo Neutral Particle Transport (MCNP) code is a FORTRAN-based 

radiation transport code that is maintained by LANL20. MCNP allows for users to 

establish a geometry that is representative of their experiment and select the types of 

initiating particles to create. The code then uses nuclear data cross sections and random 

sampling to determine on average the history of all particles in that particular geometry. 

By history, we mean the location, energy, time, and direction of each particle simulated. 

The user then can ask for different kinds of information from the program using tallies 

that track how many particles passed through a location in a certain energy or time bin as 

well as the expected number of interactions in a certain location in a certain energy or 

time bin.  

 Since MCNP uses well validated continuous-energy cross-sections, it can 

provide a very accurate model of the physics of most kinds of experiments including the 

pulsed photonuclear experiment. The precision of MCNP is due to the number of 

histories sampled. To build statistically significant results, a large number of particle 

histories must be sampled. For a pulsed histogram simulation, events that occur in the 

region past the window subtraction are much lower probability events, so a large number 

of histories need to be run in order to get statistically relevant answers for this time 

domain. MCNP was also configured so that all of the histories were started at time 0 

rather than as a series of pulses. This means that the delayed neutrons are not modeled 



 

29 
 

accurately since they never reach an equilibrium state comparable to what is seen in 

experimental data. MCNP also fails to account for detector electronics effects, and 

reports answers assuming perfect electronics. These limitations and features restricted 

the possible relevant uses of MCNP in this thesis work.  

  



 

30 
 

CHAPTER IV  

PERTURBATION STUDIES AND WINDOW SELECTION 

 

 SPNS was used to generate data with known perturbations in order to understand 

how various changes in pulsed histogram graphs related to physical quantities. The 

SPNS generated list-mode files were analyzed with the PSR to generate singles and 

doubles pulsed histograms. These data sets were plotted using Microsoft Excel.  

Unless specifically perturbed, several SPNS parameters were fixed for all of the 

perturbation studies. These parameters included the count time at 60 s, the pulse length 

at 4 µs, the pulse frequency at 125 Hz, the detector efficiency at 10%, the detector die-

away time at 37 µs, the trigger offset at 70 µs, and the detector dead-time at 2.6 µs. In 

addition, and the channel detection probabilities were set to give each channel an equal 

chance of seeing a neutron. The induced fission multiplicity diagram was always set to 

represent Highly Enriched Uranium (HEU) unless specifically perturbed. Also, 

throughout the perturbation study the lines between data points do not represent a fit of 

the experimental data and are intended only as visual aids to help discern one specific set 

of data from another. 

 The PSR parameters used to analyze this data are the same as the values used to 

analyze experimental data in order to make the perturbation analysis more comparable to 

the experimental data analysis. The values used were 3 µs for pre-delay, 96 µs for gate-

width, 8000 µs for long delay, 70 µs for the trigger offset, and 2 µs for the veto.   



 

31 
 

 The first set of perturbations studied the effect of changing the number of 

neutrons generated per LINAC pulse. This can be caused by changes in the amount of 

nuclear material or changes in the beam current of the LINAC. Figures 11 and 12 are 

singles and doubles histograms that depict the effects of these perturbations. The curves 

lengthen in time in both figures as the number of neutrons per pulse is increased due to 

dead-time in the He-3 tubes. In addition, the curves do not disappear immediately after 

the detector pulse due to the detector die-away time.  

As the neutrons per pulse are increased from 5k to 10k and then again to 20k in 

Figure 12, the maximum doubles value in the bins increases and then decreases 

dramatically with 20k. This effect is again due to the dead-time in the He-3 tubes, and is 

not seen in Figure 11 because singles detection only relies on one detector. In doubles 

detection, more than one detection event is needed to successfully detect the pair of 

correlated neutrons. This means that after reaching some critical value of doubles 

neutrons, increasing the number of neutrons will lead to a decrease in doubles because it 

is more likely that one of a correlated pair of neutrons will be lost due to channel dead-

time. The slightly negative doubles values after the positive peak in Figure 12 are likely 

due to the length of the long delay only being approximately equal to the time between 

pulses, which results in a slight time lag between the max A gate bin and the max R+A 

gate bin. The appearance of a “knee” in Figure 12 for the 20k and 50k graphs is due to 

the same discrepancy between the max A and max R+A gate bins. 

 



 

32 
 

Figure 11. Singles pulsed histogram calculated by SPNS varying the number of 

neutrons per LINAC pulse 

 



 

33 
 

Figure 12. Doubles pulsed histogram calculated by SPNS varying the number of 

neutrons per LINAC pulse 

 

 

The second set of perturbations focused on PND detector effects including the 

detector die-away time in Figures 13 and 14, and the channel dead time in Figures 15 

and 16. The number of neutrons per pulse for these perturbations was held constant at 

20k. Figure 13 demonstrates that the detector die-away time also plays a role in 

lengthening the time that it takes before the neutron curve from the neutron pulse returns 

to zero since as detector die-away increases neutrons are more spread out in time. Figure 

15 shows that as channel dead time increases, the singles count rate is depressed. 

Channel dead time does not impact the time length of the curve.  



 

34 
 

The effect of channel dead time on doubles is again demonstrated in Figures 14 

and 16. In Figure 14, the significant increase in the magnitude of the doubles counts is 

due to the fact that increasing the detector die-away time has spread the neutrons arrival 

time at the helium-3 tubes out more, so less of the doubles pairs are lost to channel dead 

time. In 16, as the channel dead time increases, it reduces the doubles counts at a faster 

rate than it reduces the singles counts in Figure 15. The rate is depressed so significantly 

that by 10.4 µs the curve is virtually flat. The “knee” that appears in some of the cases in 

Figures 14 and16 is likely due to the same effect that was illustrated in Figure 12, and 

the reappearance of the negative doubles continues to be due to the length of the long 

delay not be precisely equal to the time between two pulses. 

 



 

35 
 

Figure 13. Singles pulsed histogram calculated by SPNS varying the detector die-

away time 

 



 

36 
 

Figure 14. Doubles pulsed histogram calculated by SPNS varying the detector die-

away time 



 

37 
 

Figure 15: Singles pulsed histogram calculated by SPNS varying the channel dead-

time 

 



 

38 
 

Figure 16. Doubles pulsed histogram calculated by SPNS varying the channel dead-

time 

 

 Ideally only changes in the measurement object would result in changes in the 

appearance of the data in the pulsed histograms. Of the SPNS parameters studied so far, 

only the pulse height could change due to the composition of the measurement object, 

although even this parameter can be strongly influenced by the detector die-away and the 

channel dead-times, which are solely effects from the design of the PND. The detector 

die-away will be constant throughout the experiment since it is an inherent part of the 

detector design and so it can be corrected for. However, experimental data indicates that 

the performance of the PND electronics immediately after the pulse does not conform to 



 

39 
 

the non-paralyzable dead-time assumption made in the SPNS model. In fact both charge 

deposition and dead-time behavior in the PND electronics immediately after the pulse 

are not well characterized due to the gamma flash. For this reason, the data in this region 

needs to be cut out of the analysis in order to get more accurate results. This is 

performed by using a window in the PSR analysis tool. 

An ideal window in the analysis would be located at a point where the dominate 

effects determining the appearance of the pulsed histograms were from the measurement 

object rather than the PND detector. MCNP was determined to be the ideal tool to 

ascertain this point because it has the most accurate physics modeling of any of the 

analysis tools available for this work and it fails to account for electronics effects in its 

tallies. As a result, an ideal window could be determined by comparing data generated 

from an experimental measurement to a representative simulation of that experiment in 

MCNP.  

For the MCNP simulation of this experiment, the quasi-steady-state delayed 

neutron background was not modeled. Without delayed neutrons, getting enough 

histories to generate statistically useful data in time domains that were far away from the 

pulse becomes difficult for most of the measurement objects. One solution to this 

problem is to choose a measurement object that contains both moderation and fissile 

material, so HEU moderated with polyethylene selected as the experimental data to 

model for this study.  

Two HEU plates of 5.1x10.2x.27cm were used as material in the measurement 

object. Each place contained 272 g of uranium at an enrichment of ~93% U-235. These 



 

40 
 

plates were surrounded by a 1” polyethylene box, and then had an additional 2” of 

polyethylene on all sides in the plane of the detector. Figure 17 shows the MCNP 

geometry of the measurement object as well as the detectors. The image is taken looking 

down on the experimental apparatus so that it is comparable to the experimental setup 

diagram in Figure 3.  

 

 
Figure 17. MCNP geometry of the PND detectors and the 544g polyethylene 

moderated HEU sample 

 

 Spontaneous fission neutrons were started in the HEU over the course of 4 µs as 

the initial source in the MCNP deck. A spontaneous fission neutron tends to be lower in 

energy than a neutron from a photofission, and a more representative neutron energy 

spectrum was not included due to a lack of published information on the flux of photons 

out of the LINAC. In order to generate an accurate neutron energy spectrum, either the 



 

41 
 

energy flux of photons from the LINAC needs to be known, or the energy spectrum of 

the electrons and the shape of the tungsten target as well as the collimator must be 

known. However, no accurate information was available for the electron or photon flux. 

The resulting error from this approximation should over-predict the reactivity of the 

sample slightly. 

The source strength normalized flux of the neutrons reaching the detectors was 

determined by using a combined F4 tally for all of the He-3 detectors. A FM card was 

then used to multiply the F4 tally by the (n,p) interaction cross-section of He-3 to 

convert the source strength normalized flux into a source strength normalized count rate. 

The tally was then split into 400 time bins each with a width of 20 µs to try and replicate 

the pulsed histogram data format.20 

 The resulting data points were then imported into Microsoft Excel to plot on top 

of a singles pulsed histogram of a one minute experimental data run of the polyethylene 

moderated HEU sample. The resulting plot can be seen in Figure 18. Another difficulty 

with the MCNP simulation is that the source strength of the LINAC in terms of neutrons 

generated in the target is unknown since the variables needed to simulate the electron 

conversion to Bremsstrahlung photons in the tungsten were never found in literature. To 

overcome this obstacle, the MCNP points were fit to the experimental data using a 

constant to transform the MCNP data points along the y-axis. This constant was adjusted 

by eye until there was maximum agreement between the MCNP and experimental 

points. This method of fitting the MCNP data to experimental data generated a window 

cutoff value of 260 µs, which is denoted by a green line in Figure 18.  



 

42 
 

 
Figure 18. Log-log graph of MCNP data plotted on experimental HEU data with 

the window value denoted with a green line 

 

 The method of window determination is not very precise; however, the window 

subtraction value does not need to be very precise in order to generate meaningful 

results. While the best results would be generated with an optimal window, a window 

that removes most of the effects from the uncharacterized detector behavior will reduce 

the impact of these effects enough that data analysis results will be indicative of 

measurement object properties. Two methods were employed to determine whether or 

not the window was adequate to generate meaningful results. First, the initial 

perturbation studies for the detector die-away time and the neutrons per pulse were 

reexamined to ensure that the detectors time dependent effects are minimized. The 



 

43 
 

second method involved examining measurement object specific effects to ensure that 

they were predominant when the 260 µs window was used.  

 The detector dependent effects were reexamined in Figures 19, 20, 21, and 22. 

Figures 19 and 20 displays the pulsed histogram results from the perturbation of the 

neutrons per pulse parameter and Figures 21 and 22 shows the resulting pulsed 

histograms from the perturbation of the detector die-away. Channel dead-time is not 

reanalyzed because while its effect on the data is more dramatic in regions with higher 

count rates, it does not have a dominant effect on any particular time region. Figures 19, 

20, 21, and 22 demonstrate that a window of 260 µs significantly reduces the magnitude 

of time dependent detector effects on the analysis in the pulsed region.  

The perturbation methodology employed for this study using the SPNS model 

ensured that the last perturbation of a particular parameter extended past the range of 

values typically seen when SPNS was used to fit experimental data. With this in mind, 

the time dependent effects of the detector die-away time should not have a significant 

impact on measurement object effects with the 260 µs window. The more significant 

effects to escape elimination are seen in Figures 19 and 20 and result from neutron per 

pulse perturbations. Since measurement object characteristics also impact the number of 

neutrons generated per pulse in the SPNS model, the failure of the window to completely 

eliminate effects based on changing neutrons per pulse values is not a major concern.  

 



 

44 
 

 
Figure 19. Singles pulsed histogram calculated by SPNS varying the neutrons per 

pulse with windows 

 

 

 



 

45 
 

 
Figure 20. Doubles pulsed histogram calculated by SPNS varying the neutrons per 

pulse with windows 



 

46 
 

Figure 21. Singles pulsed histogram calculated by SPNS varying the detector die-

away with windows 

 



 

47 
 

Figure 22. Doubles pulsed histogram calculated by SPNS varying the detector die-

away with windows 

 

 
  SPNS model parameters that are impacted by characteristics of the measurement 

object include the probability of a neutron thermalizing and then undergoing fission and 

the associated die-away time of this thermalization as well as the induced fission 

multiplicity distribution. The neutrons generated per pulse were held constant at 20k for 

the perturbations of these parameters. In addition, whenever not being perturbed the 

probability of fission was set to 1% and the die-away time was set to 120 µs. The 

resulting pulsed histograms from these perturbations are Figures 23 and 24 for the 



 

48 
 

probability of fission, Figures 25 and 26 for the fission die-away time, and Figures 27 

and 28 for the induced fission multiplicity distribution.  

 From these figures, it is clear that measurement object effects are dominant when 

the 260 µs window is employed, as a trend from the perturbations is evident in all of the 

graphs. In the singles pulsed histograms from the measurement object perturbations, the 

figures have a single dominate exponential that is generally translated up as the 

magnitude of the perturbation effect is increased. These exponentials also last longer in 

time as they are perturbed. In the doubles pulsed histograms, the increasing magnitude of 

parameter perturbation generally results in translating the curve up the y-axis.  

 

Figure 23. Singles pulsed histogram calculated by SPNS varying the probability of 

fission with windows 



 

49 
 

Figure 24. Doubles pulsed histogram calculated by SPNS varying the probability of 

fission with windows 



 

50 
 

Figure 25. Singles pulsed histogram calculated by SPNS varying the fission die-

away with windows 

 



 

51 
 

Figure 26. Doubles pulsed histogram calculated by SPNS varying the fission die-

away with windows 



 

52 
 

Figure 27. Singles pulsed histogram calculated by SPNS varying the multiplicity 

distribution with windows 

 



 

53 
 

Figure 28. Doubles pulsed histogram calculated by SPNS varying the multiplicity 

distribution with windows 

 

 
The dome-like shape in the doubles pulsed histograms in Figures 24, 26, and 28 

are an artifact of the windows subtraction. For shift register analysis the first neutron 

looks back in time, so first neutrons close to the windows subtraction are looking back at 

no data and so do not record either R+A or A pairs. Since the R+A gate is filled before 

the A gate in time, this also results in a time lag between R+A values appearing and A 

values appearing. The lag results in the A values peaking later in time than the R+A 

values, which exacerbates the previous long delay lagging effect and generates a region 

of negative doubles in 26 and 28. This region is not shown with the scale of the plot in 



 

54 
 

Figure 24, but is still present. The time lag is not an issue for typical shift register 

analysis since this analysis sums the pairs from both gates for the entire data collection 

file before subtracting the A gate value from the R+A gate value. 

As the fission probability is increased in Figure 23, the curves are translated up 

the y-axis because more neutrons are created in the system from a larger number of 

fission reactions which means that more neutrons will be detected. Additionally, as the 

probability of fission increases, the singles curve stretches to the right since more 

neutrons generated means a greater chance that some will undergo additional fissions 

and keep the chain alive for a longer period of time. There is negligible distinction 

between the two lowest fission probability perturbation cases. This is because the 

neutron production difference between the two perturbations is relatively small when 

compared to difference between any of the other perturbations. As more data was 

collected for these two perturbation cases, they would eventually separate from each 

other more distinctly. The doubles pulsed histogram in Figure 24 also is translated up as 

the fission probability is increased because an increased fission probability generates 

more correlated neutron pairs. Again the lowest probability perturbations are hard to 

distinguish in the doubles pulsed histogram due to the fairly small in the number of 

fissions they produce relative to the other perturbation cases.  

In Figure 25, the increase in the number of singles neutrons detected as the 

fission die-away increases is due to less channel dead-time loss since the neutrons from 

fission are more spread out in time. The decrease in neutrons lost to channel dead-time 

also increases the number of doubles detected as the fission die-away is increased in 



 

55 
 

Figure 26 up to a certain point. There are more doubles detected in the 260 µs die-away 

case than the 480 µs die-away case because eventually the larger die-away value will 

lengthen the time between correlated neutron pairs enough that the gains from less 

channel dead-time loss will be negated by the loss from correlated neutron pairs falling 

outside of the gate width from each other. 

 In Figures 27 and 28, the growth in the number of singles and doubles events are 

due to more neutrons being produced per fission event. As the number of neutrons from 

fission increases in the singles pulsed histogram in Figure 27 it will increase the numbers 

of neutrons being detected and increase the probability that fissions will occur later in 

time resulting in a positive translation along the y-axis and a lengthening of the pulse 

curve. In Figure 28, more neutrons per fission results in more correlated neutron pairs 

being detected in the shift register analysis which in turn translates the curves from the 

cases positively on the y-axis.  

The difference between seeing more doubles counts due to an increase in the 

number of fission neutrons in the system versus seeing an increase in the doubles counts 

due to increasing the die-away time can be seen by comparing Figure 28 with Figure 26. 

In Figure 28, an increase in the doubles via more correlated neutron pairs being 

generated in the measurement object results in all of the perturbation curves turning from 

positive to negative at about the same point whereas in Figure 26, the point at which the 

perturbation curves arrive back at zero gradually shifts to the right as the die-away 

increases. 

  



 

56 
 

CHAPTER V 

EXPERIMENT AND ANALYSIS PROCEDURE 

 

 After gaining an understanding of some general physics in the pulsed 

environment and perturbing some pulsed histograms to understand how effects manifest 

themselves in some of the data analysis techniques used in the thesis, experimental data 

was examined to determine the viability of this process for treaty verification activities. 

The experimental procedure for data collection as well as the analysis methodology for 

each technique is explained below. 

V.A. Experimental Procedure 

 For an experimental run, the experimental hall is cleared and then the LINAC 

operator turns on the LINAC. Upon activating the LINAC, the operator ensures that it 

has stabilized at a constant operating beam current. The operating current controls the 

number of electrons and therefore the number of photons that are produced in a pulse. 

This needs to be relatively constant during data acquisition to ensure that differences in 

the neutron data only stem from the differences between measurement objects rather 

than drastic changes in the number of neutrons that the LINAC generates on average in 

the measurement object. All data in this thesis was collected with the LINAC at a 125 

Hz repeat rate and a constant 3 microamperes current.  

For each day of the June 2012 measurement campaign, a background 

measurement was taken in the morning to both check the room background and ensure 

that the LINAC and the data collection electronics were functioning correctly. Data 



 

57 
 

collection only begins once the operator certifies that the beam current from the LINAC 

is constant. Background is then counted for 10 separate runs of 1 minute each, or 10 

minutes of data collection total. After collecting the background a measurement plan was 

created for the day. This measurement plan included measurement objects with varying 

masses of depleted and enriched uranium as well as measurement objects with a fixed 

amount of nuclear material but varying amounts of moderation around the material.  

Once the LINAC was turned on and the LINAC operator indicated that the beam 

current was stable, data collection could begin. For each measurement object, a 

minimum of 10, 1 minute list-mode files were created. Once data collection was 

completed, the data taken was analyzed to ensure that it was of adequate quality and that 

no discernible electronic noise effects had impacted the counts coming from the 

measurement object. Once the data was examined, a decision was made to either 

continue on the previously developed plan or a new measurement object was devised 

that shed light into an effect seen in the previous measurement. This entire process was 

repeated until the end of the day. 

V.B. PSR Analysis Method 

 The PSR was one of the two analysis tools used to analyze the data taken as part 

of the US-UK measurement campaign as well as the June 2012 measurement campaign. 

PSR analyzed each of the 10, 1 minute data files taken per measurement object and then 

generated a singles and doubles value for these files as well as a singles, reals plus 

accidentals (R+A), and accidentals (A) pulsed histogram in a .csv file. The PSR 

parameters used to analyze the data are included in Table I. These individual files were 



 

58 
 

compiled into one large Excel data file for each measurement object. Excel was then 

used to generate the average value of the singles, doubles, and individual bins in the 

pulsed histograms from all the one minute measurements as well as the standard 

deviation between the values to give some indication of the error in the average. The 

first two measurement files were excluded from the average and standard deviation 

calculations because the delayed neutron production was not yet at equilibrium during 

the acquisition of the first two files. In addition, the doubles value was divided by the 

singles value both for the entirety of a measurement and for individual bins to give a 

value that was proportional to the multiplication in a measurement object. The averages 

and standard deviations were then used to compare different measurement objects.  

 

Table I. PSR parameters used during analysis 

Parameter Value 

Pre-Delay 3 µs 
Gate Width 96 µs 
Long Delay 8000 µs 
Trigger Offset 70 µs 
Window  260 µs 
Veto  2 µs 

 

 

 It was determined that the doubles and D/S pulsed histograms provided the most 

distinctive information on the moderation of a measurement object as well as the 

presence of nuclear material in an object since the peaks generated in these graphs are a 

direct result of fissions neutrons in the sample. Therefore another analysis technique was 

devised using these pulsed histograms. This process involved finding the maximum bin 



 

59 
 

value of the curves from the D/S and doubles graphs as well as the average time of the 

curves after the pulse. Only positive bins were included in the mean time computation, 

and it was assumed that the curve terminated as doubles went negative. In principle, 

since the graph was discrete, the time average value was determined by taking leftmost 

and rightmost sums of the neutron count curve and then finding the time location where 

the difference between the two sums was minimized. This minimal distance point 

indicated that the point at which the two sums would be equal would either be the bin to 

the left of the meeting location or the bin to the right of the meeting location. If the error 

on the difference was larger than the difference, then it was impossible to determine if 

the bin on the left or the bin on the right would contain the point at which the two sums 

would be equal. In these cases, the time bin value at the meeting location was taken to be 

the time average for that curve, and the error was set to the size of a bin. If the difference 

between the sums was larger than the error, then it could more specifically indicate 

whether the bin on the left or right would contain the actual point at which the two sums 

would be equal. In these cases the midpoint of the identified bin was used as the time 

average for the curve, and the error was set to half of a bin. 

Background was subtracted from the traditional doubles and singles values from 

shift register analysis as well as each individual bin in the pulsed histogram outputs to 

account for environmental background as well as room activation from the high-energy 

photons. Non-background subtracted doubles and singles values were used to compute 

D/S, before the D/S background value was subtracted to reduce the error in the D/S term.  

 



 

60 
 

V.C. SPNS Analysis Method 

 The SPNS program was also used in conjunction with the PSR program in an 

attempt to generate data from SPNS parameters that matched the pulsed histogram 

output of experimental data. The PSR analysis parameters used in conjunction with 

SPNS fitting are included in Table II. This analysis typically involved guessing initial 

SPNS parameters based on previous experience with the program, processing the 

resulting run with PSR, and then graphing the results in Microsoft Excel on top of the 

experimental data that was to be fit. Various SPNS parameters would then be altered 

until the program eventually generated a fit that was reasonably close to the 

experimental data. The SPNS parameters from this fit could then be compared to the 

SPNS parameters from other experimental data fits in order to analyze the samples. 

SPNS fits were only performed against the data from one of the one minute runs from a 

particular measurement object rather than a plot of the average of eight of the 

measurements used in the PSR analysis. This was to ensure that the statistical variation 

in the SPNS parameters was comparable to the statistical variation of the experimental 

data.   

 

Table II. PSR analysis parameters used for SPNS fitting 

Parameter Value 

Pre-Delay 3 µs 
Gate Width 96 µs 
Long Delay 8000 µs 
Trigger Offset 70 µs 
Window  0 µs 
Veto  0 µs 



 

61 
 

If the parameters from SPNS fitting are going to be compared between different 

measurement objects, then it would be helpful if each measurement object only could be 

best fit by one unique set of SPNS parameters. In order to determine if this was the case, 

a least squares fitting (LSF) analysis was performed with SPNS fitting a non-background 

subtracted polyethylene moderated HEU object. Background is not typically subtracted 

with SPNS fits because the background is accounted for in some of the SPNS 

parameters. The equation for LSF is: 

 
[
       

   
]
 

 
(3) 

In this equation Sim represents SPNS simulated data and Exp represents the 

experimental data. To use LSF to gauge the uniqueness of SPNS parameters for this data 

set, the optimal SPNS fitting parameters for the experimental data were determined and 

then the values were perturbed off of the optimal. The resulting LSF values were then 

plotted versus the SPNS parameter values. If the SPNS parameters represent a unique fit 

of the data, then there should be an absolute minimum LSF value corresponding to the 

SPNS parameter. The initial determination of the uniqueness of SPNS parameters was 

calculated using singles pulsed histograms only, since at that point the doubles pulsed 

histograms had not yet been created. 

SPNS parameters that model a measurement object tend to be dominant in 

specific time domains. For instance, the detector die-away time is most likely to impact 

the LSF value from about 120 µs to 320 µs in a singles pulsed histogram. Table III 

contains a list of all of the time domains considered in the LSF analysis as well as the 

parameters expected to most heavily the specific regions. The LSF values in each region 



 

62 
 

were normalized by the number of bins in that domain to ensure that the LSF values 

were comparable between regions.  

 

Table III. SPNS parameter time domains used for LSF 

Sensitive Parameters Time Domain 

All Bins 120 - 8000 µs  
Pulse Region 120 - 1200 µs  
(α,n) rate 1200 - 8000 µs  
Neutron/Pulse & Detector Die-Away 120- 320 µs  
Fast Probability of Fission & Die-Away 200 - 600 µs  
Slow Probability of Fission & Die-Away 600 - 1200 µs  

  

 

The sensitivity of LSF values to the natural fluctuation of the neutrons in each 

bin for a fixed parameter due to the random number generator in SPNS was also 

considered since the error bars would bound the ability to call a specific point an 

absolute minimum. Essentially these error bars represent the precision of the SPNS 

parameters within the LSF time domains. In order to find this error, 10 SPNS 

simulations with the same parameter set were run and the LSF values for the specific 

time domains were computed for each run. The standard deviation of the LSF values was 

then taken to determine the error. The resulting values are included in Table IV. 

 

 

 

 



 

63 
 

Table IV. Error in LSF time domains due to the SPNS random number generator 

Time Domain Error 

120 - 8000 µs  6E-04 
120 - 1200 µs  3E-04 
1200 - 8000 µs  7E-04 
120- 320 µs  1E-05 
200 - 600 µs  7E-05 
600 - 1200 µs  6E-04 

 

 

In general it was assumed that all SPNS parameters are independent variables, 

which means that the uniqueness of each parameter can be determined independent of all 

the other parameters. The only parameters that egregiously violate this assumption are 

the probabilities of thermal fission coupled with their respective die-away times. In these 

two cases, SPNS parameters had to be perturbed by both the probability of fission and 

the die-away to generate a 3D LSF grid. If there was a minimum LSF value evident on 

this grid, then it could be said that the combination of the fission probability and the die-

away had a unique fit for experimental data.  

 The SPNS parameters studied for this analysis included the neutrons per pulse, 

the detector die-away time, the two probabilities of induced fission and their associated 

die-away times, and the (α,n) generation rate. Figure 29 contains the LSF versus 

parameter modified graphs for the neutrons per pulse, the detector die-away, and the 

(α,n) generation rate. Error bars are included in the figure but are difficult to see due to 

the scale of the graph. Additionally, the lines drawn between points do not represent a fit 

of the points and are only intended to serve as visualization aids. 



 

64 
 

 
Figure 29. LSF vs. parameter modified graphs for neutrons per pulse (upper left), 

detector die-away (upper right), and the (α,n) generation rate (bottom) 

 

 From Figure 29 it is clear that there is an absolute minimum for the neutrons per 

pulse, detector die-away, and (α,n) generation rate parameters, so the SPNS fit of these 

parameters to this experimental data represent a unique solution set. A 3D plot of the fast 

thermalization fission probability vs. die-away time vs. the LSF value for their region of 

sensitivity is included in Figure 30. LSF values greater than 0.04 are cutoff in the figure 

to enable better visualization of the minima region. 

 



 

65 
 

Figure 30. 3D LSF graph with fast thermalization induced fission probability in the 

y-axis, the die-away (µs) in the x-axis, and the LSF values in the z-axis coming out 

of the page 

 

 Figure 30 makes it difficult to ascertain whether or not the coupled fast 

thermalization fission probability and die-away time parameters are a unique 

representation of the measured data, so the numerical LSF values for this region are 

included in Table V. The random error in the LSF value for this region is 7E-5, so all the 

values listed in the table are several orders of magnitude above the random error for this 

region. 

 

 



 

66 
 

Table V. LSF values for the coupled fast thermalization parameters with absolute 

minimum in bold 

 80 µs 90 µs 95 µs 100 µs 105 µs 110 µs 120 µs 130 µs 

0.66% 0.1139 0.0652 0.0431 0.0249 0.0127 0.0051 0.0063 0.0348 
0.76% 0.0932 0.0412 0.0235 0.0103 0.0026 0.0030 0.0250 0.0850 
0.81% 0.0848 0.0334 0.0164 0.0069 0.0022 0.0081 0.0456 0.1289 
0.83% 0.0819 0.0292 0.0135 0.0043 0.0021 0.0112 0.0532 0.1400 
0.85% 0.0768 0.0298 0.0115 0.0032 0.0030 0.0118 0.0582 0.1511 
0.90% 0.0639 0.0214 0.0078 0.0026 0.0082 0.0217 0.0882 0.2127 
1.00% 0.0518 0.0117 0.0054 0.0088 0.0251 0.0560 0.1553 0.3359 

  

  

The 3D graph in Figure 30 demonstrates that the coupled fast thermalization 

parameters exhibit the functional form that is expected in least squares fitting if there is a 

unique fit, while the specific LSF values in Table V show that there is an absolute 

minimum for these two coupled parameters. Based on these two pieces of evidence, the 

coupled fast thermalization probability of fission and die-away SPNS parameters are 

capable of a unique fit of this experimental data. 

 Figure 31 and Table VI are included to determine whether or not the coupled 

slower thermalization fission parameters are unique. Figure 31 is used to demonstrate the 

shape of the region. The least squares fitting values greater than 0.1 are cutoff in the 

figure to give a better picture of the data. With a random error of 6E-4, this fitting region 

has greater statistical fluctuations, which makes it more difficult to see trends in the 

figure; however the general trend in the slow thermalization values is similar to the fast 

thermalization values. Both have a valley of parameters that generate markedly better 

LSF fits, demonstrated with low LSF values. Table VI shows that there is an absolute 



 

67 
 

minimum outside of the random error from the LSF variation, which when combined 

with the shape of Figure 31 lends confidence that the coupled slow thermalization 

parameters are a unique fit of this experimental data. 

 

 
Figure 31. 3D graph of the slow thermalization induced fission probability in the y-

axis, the die-away (µs) in the x-axis, and the LSF values in the z-axis coming out of 

the page 

 

 

 

 

 

 



 

68 
 

Table VI. LSF values for the probability of fission and die-away parameters of slow 

thermalization with absolute minimum in bold 

 175 µs 185 µs 195 µs 200 µs 205 µs 215 µs 

0.05% 0.158 0.122 0.113 0.097 0.095 0.080 
0.09% 0.073 0.069 0.059 0.051 0.034 0.048 
0.11% 0.053 0.038 0.041 0.042 0.046 0.069 
0.13% 0.048 0.035 0.037 0.047 0.044 0.104 
0.15% 0.043 0.038 0.025 0.103 0.092 0.176 
0.17% 0.031 0.077 0.069 0.096 0.143 0.262 
0.19% 0.045 0.056 0.084 0.174 0.265 0.363 
0.25% 0.096 0.199 0.177 0.457 0.546 0.936 

 

 

 The LSF fitting analysis has shown that all of the SPNS parameters are a unique 

fit of this experimental data set. The final SPNS fit of the singles pulsed histogram from 

the experimental data is included in Figure 32. Unfortunately, the ability of SPNS 

parameters to uniquely fit one set of experimental data does not prove that they are 

capable of uniquely fitting all sets of experimental data. Some sets of data could violate 

the point model in a way that invalidates the use of SPNS fitting. In order to truly be 

certain that all data sets are unique, this analysis would need to be performed for every 

set of data fit by SPNS.  



 

69 
 

Figure 32. Singles pulsed histogram of the best LSF SPNS fit of experimental data 

 

At present there is not an automatic fitting algorithm coupled with SPNS fitting 

which generates LSF values, so the process of proving uniqueness is very time intensive. 

For the purposes of this thesis, SPNS ability to uniquely fit one set of experimental data 

is taken as evidence that SPNS fits of other experimental data sets have a high 

probability of also being unique given that other sets of data used in measurement 

objects would also not likely seriously violate the point model assumption. Additionally, 

due to the time cost of SPNS fits without an automated fitter, other SPNS fits included in 

this thesis were fit visually rather than by using LSF values. This is not thought to be a 

truly restrictive problem since the experimental data fit used as part of this uniqueness 

study had been previously fit visually, and only minor changes were made to the SPNS 

fitting parameters due to the LSF values. Also general trends should still be discernible 



 

70 
 

with the use of visual fitting in SPNS, individual terms may just have a higher error than 

they would had LSF fitting been employed.  

After the introduction of the doubles pulsed histograms, the uniqueness study 

was revisited to investigate the comparison between SPNS generated doubles and the 

experimental data doubles. Figure 33 shows this fitting using the same parameters that 

were previously established in the uniqueness study.  There is clearly a significant fitting 

discrepancy in the doubles pulsed histogram even though the SPNS parameters were 

shown to be a unique representation of the data in the singles pulsed histogram.  

 

Figure 33. Doubles pulsed histogram of LSF fit SPNS onto experimental data. 

 



 

71 
 

The only other parameter that was not studied during the uniqueness study that 

represents the measurement object is the induced fission multiplicity distribution. The 

perturbation study with SPNS demonstrated that the induced fission multiplicity 

distribution can significantly impact the doubles pulsed histogram appearance, and so if 

the distribution is not representative of the sample, it may lead to the errors that are 

being seen in Figure 33. The current induced fission multiplicity distribution was set 

according to typical induced fission values for metal HEU, but it is possible that it could 

still be incorrect compared to the sample in front of the LINAC, since that sample would 

not be purely HEU. Another potential source of error could be the channel dead-time 

values. The channel dead-time in the system is known, but it is possible that there is a 

large enough difference between the model for dead-time used in SPNS and the actual 

behavior of the dead-time in the pulsed region that it leads to a large discrepancy 

between the SPNS fit and the experimental data in the doubles pulsed histogram.   

Between the two potential sources of error, the discrepancy is more likely to be 

caused by an induced fission multiplicity distribution that is not representative of the 

measurement object. Due to how the induced fission multiplicity is implemented in 

SPNS, it is not possible to easily perturb the values to easily establish a more 

representative fit because the multiplicity is comprised of up to 20 potential entries. 

Therefore other methods of gaining a more representative fit of the doubles pulsed 

histograms are needed before the fit of these graphs will yield information on the nuclear 

data.  



 

72 
 

Changing the induced fission multiplicity distribution would likely lead to a 

different unique parameter set to fit the singles pulsed histogram since the induced 

fission multiplicity is not independent of the fission terms in the SPNS program. This 

means that a true fitting algorithm for SPNS would need to iterate several times between 

the doubles and singles pulsed histograms to find all of the parameters within acceptable 

error. With the issue in doubles pulsed histogram fitting noted, SPNS fitting of other 

experimental data sets will focus solely on the singles pulsed histogram, and it will be 

assumed that the HEU induced fission multiplicity distribution is representative of the 

induced fission multiplicity of the other samples.  

 

  



 

73 
 

CHAPTER VI 

DATA ANALYSIS 

 

Data analysis has been split into data sets in order to assess the capability of the 

analysis tools to meet the research objectives. The first set of data is intended to test the 

ability of the analysis to distinguish between samples with multiplying nuclear material 

such as plutonium (Pu) and highly enriched uranium (HEU) from non-multiplying 

samples. The second set of data is intended to gauge the ability of the analysis 

methodology to determine the mass of multiplying samples, and the third set of data has 

been constructed to explore what the analysis method can ascertain about the state of 

moderation in the sample. The fourth set of measurement data includes test objects from 

the US-UK measurement campaign. The exact construction of these objects and 

procedures related to the data collection is discussed extensively in 8, and the objects are 

included to get an idea of the analysis methods performance on more realistic 

verification objects.  

VI.A. Fissile Content Analysis 

 The experimental data used to analyze the ability of PSR and SPNS to 

distinguish between samples with multiplying material versus non-multiplying material 

came from the US-UK measurement campaign7. Most of the objects in this part of the 

analysis were standards for comparison during that campaign, so their construction is not 

discussed in any of the literature in detail. In between measurements on an object, a box 

with 2 inches of polyethylene on each side could be added to the experimental setup to 



 

74 
 

provide a known amount of moderator. Additionally, the plutonium and highly enriched 

uranium standards were constructed such that each object had about the same 

multiplication.  Table VII shows the name of each sample in this data set and the 

corresponding physical description. 

 

Table VII. Physical descriptions of the measurement objects in the fissile content 

analysis data set 

Name Physical Description 

DU Depleted Uranium  

W Tungsten 

W+p Tungsten with 2” polyethylene box 

HEU Highly Enriched Uranium 

HEU+p Highly Enriched Uranium with 2” polyethylene box 

Pu Plutonium 

Pu+p Plutonium with 2” polyethylene box 

 

 

 The result of the shift register analysis with windows using the PSR is included 

in Table VIII. An important note on this table is that the D/S values do not represent the 

D column divided by the S column. In all of these tables, the D/S operation is performed 

with non-background subtracted D and S counts before the D/S from the background 

measurement is subtracted. From this table, the tungsten sample is clearly 

distinguishable from the rest of the samples, as it has a low singles and doubles rate both 

with and without moderation added. The depleted uranium (DU) standard was not 

measured with added moderation in this data set, but a different set of data with DU with 



 

75 
 

and without moderation is included in the mass data set. The difference in the singles 

and doubles rates with and without moderation added to both the HEU and the Pu 

sample clearly distinguish these samples from the rest of the measurement objects in the 

series, and indicate that there is multiplying material present in both samples. After 

adding polyethylene, both of these samples are also the only measurement objects with a 

D/S value greater than 1, which is another indicator of the presence of multiplying 

material.  

 

Table VIII. Shift register analysis with the PSR and windows 

 S σS D σD D/S σD/S 

DU 2890 35 217 10 -0.089 0.008 
W 4 5 11 3 0.034 0.011 
W+p -20 4 -3 3 0.003 0.013 
HEU 1985 20 271 6 -0.032 0.008 
HEU+p 11669 93 49146 706 3.940 0.068 
Pu 3805 15 361 14 -0.073 0.008 
Pu+p 9205 104 18907 581 1.823 0.065 

  

 

 The pulsed histogram analysis with the PSR also distinguishes the Pu and HEU 

samples from the rest of the measurement objects based on the observed change in both 

the max peak value and the average time of the peak in the doubles pulsed histogram in 

Table IX and the D/S pulsed histogram in Table X. The pulsed histograms for all the 

data sets are included in Appendix A.  

 

 



 

76 
 

Table IX. Doubles pulsed histogram analysis for multiplying material samples 

 W W+p DU HEU HEU+p Pu Pu+p 

Max 80 25 1303 1540 361558 1443 133142 
σMax 27 18 63 115 6906 62 4057 
Time (µs) 296 272 304 312 332 312 332 
σtime (µs) 8 8 8 8 4 8 4 

 

 

Based on the values in Table IX, the DU, HEU, and Pu samples are distinctly 

different from the Tungsten (W) sample before polyethylene is added based on their max 

doubles rates. The average time in these samples is also identical at this point. Once 

polyethylene is added, the Pu and HEU samples further distinguish themselves from the 

Tungsten since Tungsten shows a decrease in the average peak time of the samples 

doubles peak with the addition of polyethylene whereas both HEU and Pu show a 

significant increase. The average peak time value is expected to increase whenever 

moderation is added to an under moderated multiplying sample since it would return 

slow neutrons to the sample later in time thereby allowing for later fission reactions. The 

increase in fissions would also increase the doubles rate. Without multiplying material 

present, the addition of polyethylene will simply result in a lower count rate due to 

neutron absorption in the sample.  

 

 

 

 

 



 

77 
 

Table X. D/S pulsed histogram analysis for multiplying material samples 

 W W+P DU HEU HEU+P PU PU+P 

Max 0.13 0.02 1.20 1.43 25.86 1.40 15.72 
σMax 0.16 0.02 0.19 0.18 0.64 0.16 0.59 
Time 

(µs) 

320 272 328 328 340 328 340 

σtime 

(µs) 

8 8 8 8 4 8 4 

 

 

The D/S results in Table X also support the results from the doubles pulsed 

histogram analysis. In this table, the HEU and Pu max multiplication values are actually 

higher than the max DU value, but they have overlapping error bars. The tungsten 

sample, on the other hand, has multiplication equivalent to zero both with and without 

the polyethylene moderator. Again both the Pu and HEU samples show a dramatic 

increase in multiplication with polyethylene added, and show an increase in the peak 

times as expected.  

Table XI contains the measurement object fitting parameters from SPNS. In this 

table, the fission probabilities, which signify more fission reactions in a sample, are 

much higher whenever the polyethylene moderator is added to the HEU and Pu samples. 

These samples also demonstrate a notable lengthening of their fast die-away times as 

polyethylene is added. The fission probability cannot be used to distinguish between the 

HEU, PU, and DU samples before the moderator is added. The SPNS fitting also shows 

that the addition of a polyethylene moderator depresses the steady-state rate of samples 

outside of the pulsed region since more of those neutrons are absorbed by the poly. This 

same effect is likely the cause of the depression in the number of neutrons per pulse as 



 

78 
 

polyethylene is added. The addition of the polyethylene does not appear to have a 

consistent effect on the slower thermalization die-away time in this particular data set, 

although this is not really expected since the slower thermalization die-away is more 

often indicative of room conditions.  The SPNS fits of all data are included in Appendix 

B. 

 

Table XI. SPNS fitting parameters for the multiplying sample data set 

 N/pulse Fast Thermal 

Fission Prob. 

Slow Thermal 

Fission Prob. 

Fast 

Die-

Away 

Slow 

Die-

Away 

Steady-

State 

Rate 

DU 30000 0.0008 0 120 0 350000 
W 16667 0.00057 0.00001 120 240 1800 
W+p 16667 0.00054 0.00003 120 240 1500 
HEU 30000 0.0001 0.00075 120 420 20000 
HEU+p 22000 0.044 0.004 180 380 15000 
Pu 30000 0.0008 0.0003 120 240 45000 
Pu+p 25000 0.2 0.0055 200 300 30000 

 

 

VI.B. Mass Analysis 

 The experimental data used for the mass assessment was taken as part of the June 

2012 measurement campaign. There are eight data sets total in this set, four of which 

used depleted uranium and four of which used highly enriched uranium. The four DU 

data sets alternated between one and two plates of uranium in the beam line with and 

without polyethylene moderation, while the HEU repeated this pattern with two plates of 

HEU. Each HEU plate was 272g of uranium with a 93.27% U-235 enrichment, while 

each DU plate was 300g of uranium with a 0.2% U-235 enrichment. When the 



 

79 
 

polyethylene moderation was in place it consisted of 3 inches of polyethylene around the 

nuclear material on all sides in the plain of the LINAC and 1 inch of polyethylene 

moderation between the material and the sample stand on the bottom as well as on top of 

the nuclear material. The moderating structure was built out of 1 inch polyethylene 

blocks. The HEU or DU plates were centered on the LINAC using the LINACs 

alignment lasers for each run with the largest surface of the material facing the LINAC 

and the thinnest part of the material running in parallel to the line of the LINAC. 

Whenever both plates were in the beam line they were either stacked one behind the 

other when moderating material was left out of the beam line or with 1 inch of 

polyethylene between them whenever moderating material was present. This additional 1 

inch of polyethylene was also present whenever only one plate was used, with an air gap 

filling the location where the other plate would reside. The plate closest to the LINAC 

was always the plate left in place. Table XII lists all of the sample descriptions next to 

their data set designations. 

 

 

 

 

 

 

 

 



 

80 
 

Table XII. Sample descriptions of the mass analysis data set 

Name Physical Description 

1DU 1 Depleted Uranium plate (300g) 

2DU 1 Depleted Uranium plates (600g) 

1HEU 1 Highly Enriched Uranium plate (272g) 

2HEU 2 Highly Enriched Uranium plates (544g) 

1DU+p3 1 Depleted Uranium plate with 3” side polyethylene & 1” between, 
top, & bottom 

2DU+p3 2 Depleted Uranium plates with 3” side polyethylene & 1” between, 
top, & bottom 

1HEU+p3 1 Highly Enriched Uranium plate with 3” side poly & 1” between, top, 
& bottom 

2HEU+p3 2 Highly Enriched Uranium plates with 3” side poly & 1” between, 
top, & bottom 

 

 

 The results from the shift register analysis using the PSR are included in Table 

XIII. As expected, the addition of another plate of material always increased the singles 

and the doubles rates. The HEU and DU materials have very similar singles and doubles 

behavior as plates are added without polyethylene, but exhibit very different singles and 

doubles behavior once moderation is added. With polyethylene in the sample a 

comparable amount of HEU produce more singles and doubles counts than DU. Adding 

a second plate of moderated HEU to the HEU measurement object also grows both the 

singles and doubles counts at a faster rate than adding a similar amount of DU to the DU 

measurement object. The D/S values are all lower than background with the exception of 

the larger polyethylene moderated DU measurement object and both moderated HEU 

measurement objects. This does not indicate that D/S is not useful for mass 

determination but may instead show that it is difficult to use D/S as a mass indicator for 



 

81 
 

objects with small amounts of nuclear material since those objects do not generate large 

neutron signals relative to background.  

 

Table XIII. Shift register analysis results from the mass analysis data set 

 S σS D σD D/S σD/S 

1DU 450 13 41 7 -0.23 0.02 
2DU 879 35 113 20 -0.25 0.03 
1HEU 382 14 55 9 -0.18 0.02 
2HEU 745 18 129 11 -0.21 0.02 
1DU+p3 63 7 24 8 -0.01 0.03 
2DU+p3 195 8 127 8 0.08 0.02 
1HEU+p3 472 13 389 17 0.22 0.03 
2HEU+p3 1329 24 1935 53 0.82 0.04 

 

 

 Both singles and doubles values increase whenever mass is added, however more 

measurements would need to be taken to build a calibration curve for the material for 

these rates to be tied back into an actual mass value for the nuclear material in the 

measurement object. The present data set is not sufficient for building a true calibration 

curve because most verification objects in a treaty verification regime would have 

substantially more nuclear material, something on the order of several kilograms rather 

than the 0.5 kg that was measured here, and the measurement objects in this set were not 

representative samples of any weapons object.  

 The PSR doubles pulsed histogram analysis results are presented in Table XIV, 

and the D/S pulsed histogram analysis results are presented in Table XV. The max 

values for both Table XIV and XV approximately double when plates are added to the 



 

82 
 

DU and HEU samples without moderation. Plates added to the moderated samples result 

in a much larger change in the max value, although again the HEU experiences the 

greater change from the addition of a plate. The time values also perform as we would 

like them to, since they stay relatively the same as small amounts of material are 

doubled, but change whenever moderation is added. It may also be possible to build a 

calibration curve out of the max values from the pulsed histogram analysis, although the 

calibration curve analysis would likely benefit from the better statistics in the shift 

register analysis. 

 

Table XIV. Doubles pulsed histogram results from the mass study 

 1DU 2DU 1HEU 2HEU 1DU+p3 2DU+p3 1HEU+p3 2HEU+p3 

Max 355 906 436 975 199 884 2593 12318 
σMax 71 151 77 80 70 80 128 297 
Time 

(µs) 

296 300 304 304 312 308 316 320 

σtime 

(µs) 

8 4 8 8 8 4 4 8 

 

 

Table XV. D/S pulsed histogram results from the mass study 

 1DU 2DU 1HEU 2HEU 1DU+p3 2DU+p3 1HEU+p3 2HEU+p3 

Max 0.23 0.61 0.38 0.68 0.14 0.60 1.55 4.37 
σMax 0.26 0.36 0.26 0.31 0.24 0.27 0.27 0.33 
Time 

(µs) 

320 320 328 328 336 328 336 336 

σtime 

(µs) 

8 8 8 8 8 8 8 8 

 

 



 

83 
 

Table XVI contains the SPNS measurement object fitting parameters for the 

measurement objects in this data set. A nice feature of the SPNS fitting is that the die-

away times do not really change as a function of mass. This agrees with the time results 

seen from the pulsed histogram analysis. The die-away SPNS fitting parameters are 

believed to be indicative of the moderation around the material as well as neutrons 

returning from the detector or the room, and so these values should not substantially 

change due to an increase in the mass of material. Added mass does bring changes in 

each of the other measurement object parameters. These are where the SPNS model 

would expect mass changes to manifest, and it is possible that these parameters could 

each be fitting against a mass calibration curve to determine the nuclear material of an 

object. Again though it would likely make the most sense to do calibration curve fitting 

with the shift register analysis and use SPNS parameters for other sample characteristic 

determinations.  

 

Table XVI. SPNS fitting parameters from the mass study 

 N/pulse Fast Thermal 

Fission Prob. 

Slow 

Thermal 

Fission Prob. 

Fast 

Die-

Away 

Slow 

Die-

Away 

Steady-

State 

Rate 

1DU 30000 0.0004 0.0001 120 240 5800 
2DU 37000 0.0004 0.0001 120 240 9500 
1HEU 34000 0.001 0.0002 80 430 4000 
2HEU 35000 0.0015 0.0003 80 430 7500 
1DU+p3 24000 0.00045 0.000006 180 360 1000 
2DU+p3 32000 0.00051 0.00003 180 360 1500 
1HEU+p3 25000 0.0037 0.0009 100 200 1300 
2HEU+p3 32500 0.0083 0.0015 105 195 3300 

 



 

84 
 

There are also some notable trends with this data set and the first data set in the 

SPNS parameters. SPNS neutrons per pulse and steady-state rate fitting parameters both 

decrease whenever moderation is added, but the fission probabilities tend to increase. In 

addition, the die-away times for the samples from the fast thermalization all increase 

whenever polyethylene is added. The slow die-away time value decreases in both the 

DU and the HEU samples as moderation is added. This effect may be due to the addition 

of a moderator since the moderator will absorb neutrons that might have previously 

returned to the sample after being thermalized by something in the room.  

VI.C. Moderation Analysis 

 The data used as part of the moderation study was also taken during the June 

2012 measurement campaign. This data used both of the 272g HEU plates with 93.27% 

U-235 enrichment for each measurement. The base case has both plates placed back to 

back with no moderation present. Again for all of these runs the plates are centered in 

the LINAC beam line using the lasers provided for alignment. Additionally the widest 

face of the plate always is facing the LINAC. After the no moderation case, 1 inch of 

polyethylene moderation was added on all sides of the HEU, including in between the 

two plates. All cases past this first moderation case add 1 inch of polyethylene on all 

sides of the material in the plate of the detector but not in between the sample stand and 

the material or on top of the material.  Table XVII contains the sample descriptions 

paired with their experimental data designators. 

 

 



 

85 
 

Table XVII. Sample descriptions for the moderation data set 

Name Physical Description 

2HEU 2 Highly Enriched Uranium plates (544g) 

2HEU+p1 2 Highly Enriched Uranium plates with 1” side poly/ 1” between, top, & 
bottom 

2HEU+p2 2 Highly Enriched Uranium plates with 2” side poly/ 1” between, top, & 
bottom 

2HEU+p3 2 Highly Enriched Uranium plates with 3” side poly/ 1” between, top, & 
bottom 

 

 

 The results of the shift register analysis on the moderation data set are included 

in Table XVIII. The analysis shows the highest doubles and singles count rates for the 

sample surrounded by 2 inches of polyethylene moderation. This indicates that 2 inches 

of polyethylene moderation is the closest to an optimal moderation configuration. This 

also indicates that 3 inches of polyethylene moderation over moderates the HEU 

measurement object, which explains the decreased singles and doubles count rates. The 

first moderation case with 1 inch of polyethylene then under moderates the HEU 

measurement object. The D/S values also show an increase in multiplication throughout 

the series as polyethylene is added until the 3rd inch is placed.  

 

Table XVIII. Shift register analysis of the moderation data 

 S σS D σD D/S σD/S 

2HEU 745 18 129 11 -0.21 0.02 
2HEU+p1 884 12 454 15 0.04 0.02 
2HEU+p2 3380 71 5467 213 1.06 0.07 
2HEU+p3 1329 24 1935 53 0.82 0.04 

 

 



 

86 
 

 The pulsed histogram double analysis results are included in Table XIX, and the 

D/S results are included in Table XX. The max bin value results from both of these 

tables support the conclusions from the shift register analysis about the moderation state 

of each of the objects. The time average for the peaks largely behave as expected in both 

the doubles pulsed histogram and the D/S pulsed histogram by increasing as 

polyethylene is added until reaching optimal moderation and then decreasing due to 

moderator absorption rate overcoming the increased rate of fission in longer time periods 

in the 3 inch case.  

 

Table XIX. Doubles pulsed histogram analysis results for the moderation data 

 2HEU 2HEU+p1 2HEU+p2 2HEU+p3 

Max 975 3098 42241 12318 
σMax 80 165 1699 297 
Time (µs) 308 300 332 320 
σtime (µs) 4 4 4 8 

  

 

The decrease in the peak time between the no moderation sample and the 1 inch 

of moderation sample in both of the histograms was not expected but could be due to the 

polyethylene absorption of thermal neutron return from the room having a more 

significant effect in later time domains than the thermalization of neutrons from the 

measurement object. The overall rate of fission still would increase, as seen due to the 

increase in the max value, but the decrease in later time domains would explain the 

slight reduction in the time average since it would lower the correlated neutron signal in 

this time domain. This is quite possible because there were some gaps between the 



 

87 
 

polyethylene moderation that could have allowed neutrons to escape easily with this 

moderation configuration, thus reducing the population of neutrons that was moderated 

by the polyethylene more than would be expected. This chance was significantly 

lessened as more polyethylene blocks were added to the outside of the measurement 

object in the subsequent data runs since those blocks tended to cover the cracks from the 

previous blocks. No matter the cause, the values are within 2 sigma of each other, so it is 

a fairly minor effect. 

 

Table XX. D/S pulsed histogram analysis results for the moderation data 

 2HEU 2HEU+p1 2HEU+p2 2HEU+p3 

Max 0.68 1.69 7.96 4.37 
σMax 0.31 0.30 0.49 0.33 
Time (µs) 328 324 340 336 
σtime (µs) 8 4 4 8 

 

 

 The SPNS fitting parameters for the measurement objects are included in Table 

XXI. As seen in the other data sets, the steady-state rate tends to fall as polyethylene is 

added to a sample, although this effect is not seen as 1 inch of polyethylene is added to 

the bare sample. In this case the additional polyethylene added does not absorb enough 

neutrons past 1000 µs to overcome the increase in the delayed neutrons from more 

thermal fissions. This effect could have been amplified by neutron leakage out of gaps in 

the moderator. The steady-state rate then begins to decrease as another inch of 

polyethylene is added because the polyethylene absorption is enough to reduce the 

neutrons in the quasi-steady-state region.  



 

88 
 

Another unpredicted effect is that the neutrons per pulse in the 3 inch case are 

greater than the neutrons per pulse from the 2 inch case. This is most likely due to the 

fact that these samples were not least squares fit and were instead fit by eye. The 

neutrons per pulse parameter is one of the more difficult to fit with SPNS since SPNS 

does not accurately model the noise effects from the gamma flash, and effects from the 

gamma flash can still be dominant in the time domain most impacted by the neutrons per 

pulse parameter. Another interesting effect is that the fast die-away time increases 

dramatically from the 1 inch case to the 2 inch case, but then decreases in the 3 inch 

case. This may be a result of the polyethylene absorbing the longer lived neutrons out of 

the system so that they are not detected, and it is supported by the appearance of a 

similar effect in the time average data. The fast fission probability behaves as expected 

for these fits by gradually increasing through the optimally moderated case before 

decreasing as the sample becomes over-moderated.   

 

Table XXI: SPNS fitting parameters for the moderation data set 

 N/pulse Fast Thermal 

Fission Prob. 

Slow Thermal 

Fission Prob. 

Fast 

Die-

Away 

Slow 

Die-

Away 

Steady

-State 

Rate 

2HEU 35000 0.0015 0.0003 80 430 7500 
2HEU+p1 40000 0.0025 0.0001 80 430 9000 
2HEU+p2 30000 0.013 0.0002 220 420 3500 
2HEU+p3 32500 0.0083 0.0015 105 195 3300 

 

 

 

 



 

89 
 

VI.D. Inspection Object Analysis 

 This data set contains the test objects that were the focus of the US-UK 

measurement campaign. Their construction is covered in detail in 8. As part of the 

verification exercise, each object was referred to as an “inspection object” followed by a 

number to identify the object. All of the inspection objects were hidden inside equally 

sized aluminum boxes so that scientists involved in the exercise could not see the 

material making up the object. Scientists were allowed to add a 2 inch polyethylene box 

as moderation to the exterior of each inspection object as part of the exercise. For this 

section of the thesis, only the PSR analysis method, including the shift register analysis 

and the pulsed histogram analysis, was applied since it is the more mature of the two 

tools. A table of general descriptions of all the inspection objects is included in Table 

XXII. 

 

 

 

 

 

 

 

 

 

 



 

90 
 

Table XXII. Inspection object physical descriptions 

Name Physical Description 

IO5 4.8kg of HEU shielded by 6.2kg DU and 11 kg LiH 

IO5+P IO5 with a 2 inch polyethylene box added 

IO6 5.5kg of DU with 5.7kg W and 11kg LiH shielding 

IO6+P IO6 with a 2 inch polyethylene box added 

IO7 5.2kg of HEU shielded by 17.3 kg DU 

IO7+P IO7 with a 2 inch polyethylene box added 

IO8 1.6kg of PuAl shielded by 5.6kg DU and 0.04kg W 

IO8+P IO8 with a 2 inch polyethylene box added 

IO9 1.6kg of PuAl with 4.8 kg of HEU shielding 

IO9+P IO9 with a 2 inch polyethylene box added 

IO10 1.6kg of PuAl with 5.3kg of poly, 0.04 kg of W, and 5.7kg of DU shielding 

IO10+P IO10 with a 2 inch polyethylene box added 

 

 

 Table XXIII contains the shift register analysis of the IOs. From these rates 

relative to the standards that were previously measured, the objects that clearly contain 

nuclear material are IO7, IO8, IO9, and IO10. IO5 appears to have similar behavior to 

depleted uranium from the standards and other measurements, and so it is unlikely that 

this would flag as a multiplying object with the shift register analysis technique. IO6 

would also correctly register as not having multiplying material in it. IO7, IO8, and IO9 

would all flag as having multiplying material in them based on the significant increase in 

the doubles count rate in the objects as the polyethylene was added. IO10 would also 



 

91 
 

likely flag as having multiplying material because of the large doubles count rate before 

any moderation was added.  

 There is no way of determining the mass of multiplying material in the various 

IOs without having other similar samples of varying mass. It is possible to say 

something about the moderation of the IOs as the polyethylene box is added to each one. 

IO5, IO6, and IO10 appear to be over-moderated before the addition of the polyethylene 

box while the other samples appear to be under-moderated before the addition of the 

polyethylene box. 

  

Table XXIII. Shift register analysis of the inspection objects 

 S σS D σD D/S σD/S 

IO5 2536 27 169 7 -0.095 0.008 
IO5+p 915 10 43 3 -0.095 0.008 
IO6 323 6 25 3 -0.051 0.008 
IO6+p 84 4 4 3 -0.028 0.009 
IO7 4853 67 403 22 -0.085 0.009 
IO7+p 7573 96 15049 300 1.747 0.045 
IO8 3117 18 221 16 -0.093 0.009 
IO8+p 3863 38 3321 81 0.639 0.022 
IO9 3517 31 385 9 -0.059 0.008 
IO9+p 9422 95 28659 540 2.783 0.063 
IO10 3513 23 8359 111 2.038 0.033 
IO10+p 2014 21 2809 54 1.068 0.027 

 

 

 The PSR histogram analysis for doubles pulsed histograms and for D/S pulsed 

histograms is included in Table XXIV. The pulsed histogram analysis would also 

identify IO5 and IO6 as non-multiplying measurement objects and IO7, IO8, IO9, and 



 

92 
 

IO10 as multiplying measurement objects based on the max values of both the doubles 

and D/S pulsed histograms. Both the max value and the peak time average values 

support the shift register analysis conclusions that IO5, IO6, and IO10 are over 

moderated while the other samples are under moderated. The pulsed histogram analysis 

also could not indicate anything about the samples mass since representative 

measurements of these objects to create a calibration curve were not taken. 

 

Table XXIV. Pulsed histogram analysis of the inspection objects 

 Doubles D/S 

 Max σMax Time (µs) σtime (µs) Max σMax Time (µs) σtime (µs) 

IO5 773 69 304 8 0.82 0.16 328 8 
IO5+P 294 32 304 8 0.38 0.18 320 8 
IO6 159 25 296 8 0.28 0.20 320 8 
IO6+P 62 25 296 8 0.14 0.20 328 8 
IO7 2170 87 308 4 1.78 0.17 328 8 
IO7+P 107482 2932 332 4 14.13 0.51 340 4 
IO8 1022 55 308 4 1.06 0.14 328 8 
IO8+P 23042 692 332 4 6.30 0.27 340 4 
IO9 1840 92 316 4 1.64 0.20 332 4 
IO9+P 199663 4666 332 4 19.57 0.56 340 4 
IO10 43062 599 320 8 10.24 0.32 332 4 
IO10+P 16210 464 324 4 5.77 0.22 332 4 

  

  



 

93 
 

CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

The treaty verification field is of renewed importance as continued nuclear 

weapons disarmament is prioritized nationally in partnership with other nuclear weapons 

states. The renewed interest in the field has led to research and development on 

technologies that could support future US verification missions including a technology 

that employs pulsed high-energy photons to interrogate measurement objects, and 

examines the neutron signal from this interrogation to determine characteristics of the 

object. An assessment of this technique was conducted to determine if analysis tools 

could be written to utilize information from the pulsed region of the neutron data to 

identify objects containing nuclear material, to find the mass of the nuclear material, and 

to determine the moderation state of the material. 

This assessment has shown that the analysis tools developed for this interrogation 

technique are capable of determining whether or not a measurement object contains 

multiplying material in all cases except for when that object is very heavily shielded. 

The analysis tools are also able to determine the moderation state of the object, and 

could be used to determine the mass if the results from the analysis were calibrated to 

known standards representative of the expected measurement objects.  

 Both the shift register technique and the pulsed histogram analysis techniques 

provide adequate information to make determinations for all the categories of interest. 

The shift register technique generally has better statistics because it utilizes all 



 

94 
 

measurement data outside of the window to compute values representative of the sample 

whereas the analysis of the pulsed histograms utilizes values either in just one bin or the 

pulsed region alone. It is highly unlikely that the pulsed histogram plots would be made 

available to any weapons inspectors in a treaty verification regime due to classification 

issues, so the analysis methods employed with this data serves as an information barrier 

for the technique, and makes it easy for alarm levels to be set in any future equipment 

deployed for an actual treaty verification regime.  

 The SPNS tool shows promise as a way to distinguish between different types of 

nuclear material since the fitting is sensitive to the multiplicity distribution of the object. 

However, the distinction between types of nuclear material could usually be made 

through a passive measurement of a verification object since plutonium should passively 

emit a detectable amount of radiation, and so a tool of  SPNS complexity may not be 

needed to be coupled with this technique. SPNS fitting could potentially distinguish 

between the declared measurement object and a spoof in a verification regime, although 

more development would be needed to explore this capability.  

In order for SPNS to be useful for field implementation in an actual verification 

campaign, sensitivity studies need to be performed to show the resolution of the fitting 

parameters, an automated fitter needs to be written for the program, and both the 

automated fitter and SPNS need to be configured to utilize parallel processing. The 

sensitivity studies are needed before a fitter can be designed because it will be important 

to understand the magnitude of change each SPNS parameter creates whenever it is 

modified. This can help an automated fitter more efficiently fit SPNS parameters to a 



 

95 
 

measurement object, and would also help determine the error associated with the SPNS 

parameters.  

Designing an automated fitter is rather simple for the case of fitting singles pulsed 

histograms since least squares fitting has already been used to find a unique parameter 

set for one measurement object, and the SPNS fitting parameters are mostly independent 

of each other. However, the ability to fit doubles pulsed histograms by modifying the 

induced fission multiplicity distribution and remains the biggest obstacle to 

implementing a fitting algorithm. If the process of fitting the multiplicity histogram 

could be automated, then the final result of that fit could serve as a method to identify 

the material within the measurement object since most objects have different rates of 

neutron production from fission. Additionally, the combination of an automated fitter 

with SPNS could become computationally expensive since SPNS is presently written to 

only run on one processor and the program would need to be run multiple times for one 

fitting, so the programs would also need to be modified to operate in parallel.  

Other ways to improve this measurement technique could be made through further 

development of the electronics, specifically by characterizing the He-3 detectors 

behavior during a gamma flash. Most of the doubles neutrons produced by measurement 

objects in the pulsed photon environment occur around and immediately after the pulse, 

and so finding methods of improving the He-3 tubes recovery from the flash, or enabling 

the recovery of neutron signals during the gamma flash would allow for more accurate 

doubles results. At present the PND detectors do give reliable results for shift register 

analysis when a window is employed. Additionally many of the electronic noise issues 



 

96 
 

present in the data during the US-UK measurement campaign did not manifest 

themselves in the June 2012 measurement campaign data.   



 

97 
 

REFERENCES 

 

1. J. Doyle, "Verification Challenges for Future Nuclear Weapons Reductions," 
Proceedings of the 51

st
 Annual Meeting for the Institute of Nuclear Materials 

Management, Baltimore, MD, July 11-15, 2010.  
 
2. D.R. Norman, J.L. Jones, K.J. Haskell, P.E. Vanier, and L. Forman, "Active Nuclear 

Material Detection and Imaging," 2005 IEEE Nuclear Science Symposium 

Conference Record, pp. 1004-1008. 2005. 
 

3. M.W. Johnson, J.E. Doyle, and C.L. Murphy, "Recovering START Institutional 
Knowledge," Proceedings of the 52

nd
 Annual Meeting for the Institute of Nuclear 

Materials Management, Palm Desert, CA, July 17-21, 2011. 
 

4. D.K. Hauck, D.W. MacArthur, M.C. Browne, and R.F. Parker, "The Role of Portal 
Monitors in Arms Control and Development Needs," Proceedings of the 53

rd
 Annual 

Meeting of the Institute of Nuclear Materials Management, Orlando, FL, 15-19 July, 
2012.   

 
5. J.T. Mihalczo, J.A. Mullens, J.K. Mattingly, and T.E. Valentine, "Physical 

Description of Nuclear Materials Identification System (NMIS) Signatures," Nuclear 

Instruments and Methods in Physics Research Section A: Accelerators, 

Spectrometers, Detectors, and Associated Equipment, Vol. 450, pp. 531-555, 2000. 
 

6. E.D. Sword and S.M. McConchie, "Edge Detection and Shape Recognition in 
Neutron Transmission Images," Proceedings of the 53

rd
 Annual Meeting of the 

Institute of Nuclear Materials Management, Orlando, FL, 15-19 July, 2012.  
 
7. D. Norman, J. Jones, K. Haskell, R. Watson, L. Montierth, J. Zabriskie, W. Geist, J 

Thron, C. Freeman, M. Swinhoe, S. McConchie, and E. Sword, "Pulsed, 
Photonuclear-Induced, Neutron Measurements of Nuclear Materials with Composite 
Shielding," Proceedings of the 52

nd
 Annual Meeting for the Institute of Nuclear 

Materials Management, Palm Desert, CA, July 17-21, 2011.  
 

8. R. Neibert, J. Zabriskie, C. Knight, and J.L. Jones, "Passive and Active Radiation 
Measurements Capability at the INL Zero Power Physics Reactor (ZPPR) Facility," 
INL/EXT-11-20876, Idaho National Laboratory, Dec 2010. 

 
9. G.F. Knoll, Radiation Detection and Measurement, Fourth Edition, John Wiley & 

Sons, Inc., River Street, Hoboken, NJ, 2010.  
 



 

98 
 

10. M. King, T. Gozani, J. Stevenson, and T. Shaw, "Simulation of a Photofission Based 
Cargo Interrogation System," AIP Conference Proceedings, 1336, pp. 700-704, 
2011.  

 
11. T. Gozani, "Fission Signatures for Nuclear Material Detection," IEEE Transactions 

on Nuclear Science, Vol. 56, No. 3, June 2009. 
 

12. J.L. Jones, D.R. Norman, K.J. Haskell, M.T. Swinhoe, S.J. Tobin, W.H. Geist, R.B. 
Rothrock, and C.R. Freeman, "Coincidence /Multiplicity Photofission 
Measurements," INL/EXT-09-16971, Idaho National Laboratory, Sep. 2009.  

 
13. J.L. Jones, B.D. Bennett, K.J. Haskell, J.T. Johnson, D.R. Norman, J.W. Sterbentz, 

R.W. Watson, S.M. Watson, W.Y. Yoon, J.M. Zabriskie, C.E. Moss, K.L. Folkman, 
A.W. Hunt, C.C. O'Neil, and R.J. Spaulding, "Pulsed Photonuclear Assessment 
(PPA) Technique: CY-05 Project Summary Report," INL/EXT-05-01020, Idaho 
National Laboratory, Dec. 2005.  

 
14. M.T. Swinhoe, J.B. Marlow, and H.O. Menlove, "Neutron List Mode Data for 

Advanced Safeguards," Proceedings of the Global 2007 Meeting of the American 

Nuclear Society, Boise, Idaho, July 2007.   
 

15. N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pickrell, and J.E. Stewart, 
"Application Guide to Neutron Multiplicity Counting," LA-13422-M, Los Alamos 
National Laboratory, Nov 1998. 

 
16. D. Reilly, N. Ensslin, H. Smith, and S. Kreiner, Passive Nondestructive Assay of 

Nuclear Materials, United States Nuclear Regulatory Commission, Washington, DC, 
1991. 

 
17. P.M.J. Chard and S. Croft, “Preliminary Investigation of Active Neutron 

Coincidence Counting in Differential Die-Away Assay,” Proceedings of the 7
th

 

International Conference on Radioactive Waste Management and Environmental 

Remediation, Sept. 1999. 
 

18. S.L. Stewart, M.T. Swinhoe, J.L. Thron, W.H. Geist, and W.S. Charlton, "Monte 
Carlo Modeling of Correlations in Pulsed Neutron Data," Proceedings of the 53

rd
 

Annual Meeting of the Institute of Nuclear Materials Management, Orlando, FL, 15-
19 July, 2012.  

 
19. W. H. Press, Numerical Recipes in C: The Art of Scientific Computing, Second 

Edition, Cambridge University Press, Cambridge, NY, 1992. 
 



 

99 
 

20. MCNP X-5 Monte Carlo Team, “MCNP—A General Purpose Monte Carlo 
NParticle Transport Code, Version 5,” LA UR 03 1987, Los Alamos National 
Laboratory, April 2003. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

100 
 

APPENDIX A 

 

PSR pulsed histogram graphs for each data set. 

 
 
 

 
 
Figure A.1. Background subtracted singles pulsed histograms for the fissile content 

analysis 

 
 
 
 
 
 
 



 

101 
 

 
 

Figure A.2. Background subtracted doubles pulsed histograms for the fissile 

content analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

102 
 

 
Figure A.3. Background subtracted D/S pulsed histograms for the fissile content 

analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

103 
 

 
Figure A.4. Background subtracted singles pulsed histograms for the mass analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 
 

 
Figure A.5. Background subtracted doubles pulsed histograms for the fissile 

content analysis 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

 
Figure A.6. Background subtracted D/S pulsed histograms for the mass analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

106 
 

 
Figure A.7. Background subtracted singles pulsed histograms for the moderation 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

107 
 

 
Figure A.8. Background subtracted doubles pulsed histograms for the moderation 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

108 
 

 
Figure A.9. Background subtracted D/S pulsed histograms for the moderation 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

109 
 

 
Figure A.10. Background subtracted singles pulsed histograms for the IO analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

110 
 

 
Figure A.11. Background subtracted doubles pulsed histograms for the IO analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 
 

 
Figure A.12. Background subtracted D/S pulsed histograms for the IO analysis 



 

112 
 

APPENDIX B 
 

SPNS Fitting of Singles Pulsed Histograms 

 

 
Figure B.1. SPNS Fitting of W 

  



 

113 
 

 
Figure B.2. SPNS Fitting of W+p 

  



 

114 
 

 
Figure B.3. SPNS Fitting of DU 

  



 

115 
 

 
Figure B.4. SPNS Fitting of HEU 

  



 

116 
 

 
Figure B.5. SPNS Fitting of HEU+p 

  



 

117 
 

 
Figure B.6. SPNS Fitting of Pu 

  



 

118 
 

 
Figure B.7. SPNS Fitting of Pu+p 

 

 

 

 

 

 

 

 

 

 

  



 

119 
 

 
Figure B.8. SPNS Fitting of 1DU 

  



 

120 
 

 
Figure B.9. SPNS Fitting of 2DU 

  



 

121 
 

 
Figure B.10. SPNS Fitting of 1HEU 

  



 

122 
 

 
Figure B.11. SPNS Fitting of 2HEU 

  



 

123 
 

 
Figure B.12. SPNS Fitting of 1DU+p3 

  



 

124 
 

 
Figure B.13. SPNS Fitting of 2DU+p3 

  



 

125 
 

 
Figure B.14. SPNS Fitting of 1HEU+p3 

  



 

126 
 

 
Figure B.15. SPNS Fitting of 2HEU+p3 

  



 

127 
 

 
Figure B.16. SPNS Fitting of 2HEU+p1 

  



 

128 
 

 
Figure B.17. SPNS Fitting of 2HEU+p2 

 

 

 

  



 

129 
 

APPENDIX C 

 

PSR Program C++ Source Code (compiled with Microsoft Visual C++ 2010 

Express) 

 
C.1. PSR Main Program: PulsedSR.cpp (line rollover occurs in MS Word so 

enclosed code cannot be compiled without correction) 

 

// Scott Stewart, 2012 
// Pulsed Shift Register Program for 
// INL Pulsed Neutron Data Analysis 
 
#include "stdafx.h" 
#include "SR_Func.h" 
#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <queue> 
#include <string> 
#include <math.h> 
#include <stdio.h> 
#include <sstream> 
 
using namespace std; 
 
int main() 
{ 
    SR_Func srf; 
 string line,data,filename; //used to parse input parameter file 
 NCDInfo firstn,itern; //used for file parsing 
 size_t comment,datastart; 
 
 long double gatew; //gate width SR param 
 long double triggoff; // offset of trigger pulses from the time the pulse 
occured 
 long double window; // how long after the pulse to ignore data 
 long double predelay; //how long to not count after a neutron pulse is 
detected 
 long double ldelay; //long delay (typically set to the pulse repeat rate) 
 long double tsub=0; //time to subtract from count time (due to how we are 
processing the file) 
 long double dbls=0; //doubles value for the file 
 long double vto=0; //veto value for the ncd file 
 unsigned _int64 pulses=0; //singles value for the file 
 unsigned _int64 RA[1000],A[1000]; //stores R+A and A information for the 
pulses 
 const int tbin=1000; //number of bins for doubles hist analysis 
 long double tbinsize=8E-6; //size of tbin 
 unsigned _int64 tRA[tbin],tA[tbin],tS[1000]; 



 

130 
 

 
 queue<NCDInfo> pd; //stores pulses that are in the pre-delay 
 queue<NCDInfo> rplusa; //stores pulses that are currently in the R+A gate 
 queue<NCDInfo> longdelay; //stores pulses that are in the long delay region 
 queue<NCDInfo> acci; //stores pulses that are in the Accidentals region 
 queue<string> files; //stores file names to process 
  
 ifstream input("PSR_Inp.txt",ios::in); //input parameters file 
 ifstream tester; //used to test the filenames to make sure they work 
  
 if(!input.is_open()) //if someone foolishly deleted the input file, this 
scolds them 
 { 
  cout<<"ERROR: Could not find PSR_Inp.txt. Make sure it is in the 
same directory as this program's .exe"<<endl; 
  exit(0); //no reason to run program if there are no input 
parameters. so the program quits 
 } 
 
 unsigned long int iter=0; 
 long double iparam[6]; 
  
 for(int i=0;i<6;i++) 
 { 
  iparam[i] = 0; 
 } 
 
 while(!input.eof()) 
 { 
  getline(input,line); //input grabbed a line at a time 
  comment = line.find("//"); //finds whether or not there is a // on a 
line. if there is this line is ignored (so don't put // on a line with input 
parameters 
 
  if(comment==string::npos&&line.length()!=0) //if there is no // on a 
line, and if the line is not empty then we look for an input parameter 
  { 
   datastart = line.find("="); 
 
   if(datastart==string::npos) //if there isn't an = sign on an 
input parameter line, the input parameters are screwed up and the program quits 
   { 
    cout<<"ERROR: No equal sign (=) on expected input 
parameter line."<<endl; 
    exit(1); 
   } 
 
   int start=0,end=0; 
   while(isspace((int)line[start+datastart+1])) //finds white 
spaces at front of numbers 
   { 
    start++; 
   } 
 



 

131 
 

   while(isspace((int)line[line.length()-end-1])) //finds white 
spaces at end of numbers 
   { 
    end++; 
   } 
 
   if(iter<6) //shift register parameters written as doubles 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
    istringstream datastream(data,istringstream::in); 
    datastream >> iparam[iter];  
   } 
   else 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
    filename = data; 
    tester.open(filename.c_str(),ios::in); 
 
    if(tester.is_open()) 
    { 
     files.push(filename); 
    } 
    else 
    { 
     cout<<"ATTN: "<<filename<<" was not 
found."<<endl; 
    } 
    tester.close(); 
   } 
   iter++; 
  } 
 } 
 input.close(); 
 
 //specifying input parameters 
 predelay=iparam[0]; //predelay 
 gatew=iparam[1]; //gate width 
 ldelay=iparam[2]; //long delay 
 triggoff=iparam[3]; //trigger offset 
 window=iparam[4]; //window 
 vto=iparam[5]; //veto 
 cout<<endl<<"Input parameters processed."<<endl; 
  
 ofstream summ("summary_out.psr.csv",ios::out); 
 summ<<"filename,singles,doubles"<<endl<<endl; 
 while(!files.empty()) 
 { 
  //initilizations 
  tsub=0; 
  dbls=0;  
  pulses=0;  
  for(unsigned int i=0;i<1000;i++) 
  { 



 

132 
 

   RA[i]=0; 
   A[i]=0; 
   tRA[i]=0; 
   tA[i]=0; 
   tS[i]=0; 
  } 
  srf.msize = 0; 
  srf.tlast = 0; 
  srf.veto=0; 
  srf.exptrig=8000E-6; 
  srf.lowtrig=0; 
  srf.hightrig=0; 
  srf.correcttrig=0; 
  srf.trigtsub=0; 
 
  srf.veto=vto; 
  srf.win=window; 
  srf.toff=triggoff; 
   
  //File handling 
  filename = files.front(); 
  files.pop(); 
  srf.BinaryReadIn(filename); 
  srf.ProcessBinary(); 
  srf.WindowSubtraction(); 
 
  pulses = (int) srf.winsub.size(); 
 
  if(!srf.winsub.empty()) 
  { 
   itern = srf.winsub.front(); 
   srf.winsub.pop(); 
  } 
  else 
  { 
   cout<<"ATTN: No pulses in file."<<endl; 
   exit(1);  
  }  
  
  //this handles the initial filling of the queues. By filling them 
this way, the first pulse is being ignored for R+A - A purposes 
  while(itern.time<gatew&&!srf.winsub.empty()) 
  { 
   acci.push(itern); 
   srf.winsub.pop(); 
 
   if(!srf.winsub.empty()) 
   { 
    itern = srf.winsub.front(); 
   } 
   else 
   { 
    break; 
   } 
  } 



 

133 
 

  while(itern.time<(gatew+ldelay)&&!srf.winsub.empty()) 
  { 
   longdelay.push(itern); 
   srf.winsub.pop(); 
 
   if(!srf.winsub.empty()) 
   { 
    itern = srf.winsub.front(); 
   } 
   else 
   { 
    break; 
   } 
  } 
  while(itern.time<(gatew+ldelay+gatew)&&!srf.winsub.empty()) 
  { 
   rplusa.push(itern); 
   srf.winsub.pop(); 
 
   if(!srf.winsub.empty()) 
   { 
    itern = srf.winsub.front(); 
   } 
   else 
   { 
    break; 
   } 
  } 
  while(itern.time<(gatew+ldelay+gatew+predelay)&&!srf.winsub.empty()) 
  { 
   pd.push(itern); 
   srf.winsub.pop(); 
 
   if(!srf.winsub.empty()) 
   { 
    tsub = itern.time; 
    itern = srf.winsub.front(); 
   } 
   else 
   { 
    break; 
   } 
  } 
  
  //Coincidence Analysis Section 
  int rasize=0,asize=0; 
  itern.ch=0; 
  itern.time=0; 
  int timed=0; 
  NCDInfo trig1; 
  bool timeanalysis=true, tldone=false; 
 
  if(!srf.winsub.empty()) 
  { 
   firstn = srf.winsub.front(); 



 

134 
 

  } 
  else 
  { 
   cout<<"ATTN: Doubles not computed due to input 
parameters."<<endl; 
  } 
  
  if(!srf.outtrig.empty()) 
  { 
   trig1 = srf.outtrig.front(); 
   srf.outtrig.pop(); 
  } 
  else 
  { 
   cout<<"ATTN: Outtrig was empty before coincident 
analysis."<<endl; 
   timeanalysis=false; 
  } 
 
  while(!srf.winsub.empty()) 
  { 
   //selecting neutron for coincidence analysis 
   firstn= srf.winsub.front(); 
 
   //filling rplusa queue 
   if(!pd.empty()) 
   { 
    itern = pd.front(); 
   } 
   while(itern.time<(firstn.time-predelay)&&!pd.empty()) 
   { 
    rplusa.push(itern); 
    pd.pop(); 
 
    if(!pd.empty()) 
    { 
     itern = pd.front(); 
    } 
    else 
    { 
     break; 
    } 
   } 
   
   //filling long delay queue 
   if(!rplusa.empty()) 
   { 
    itern = rplusa.front(); 
   } 
   while(itern.time<(firstn.time-predelay-
gatew)&&!rplusa.empty()) 
   { 
    longdelay.push(itern); 
    rplusa.pop(); 
 



 

135 
 

    if(!rplusa.empty()) 
    { 
     itern = rplusa.front(); 
    } 
    else 
    { 
     break; 
    } 
   } 
 
   //filling accidentals queue 
   if(!longdelay.empty()) 
   { 
    itern = longdelay.front(); 
   } 
   while(itern.time<(firstn.time-predelay-gatew-
ldelay)&&!longdelay.empty()) 
   { 
    acci.push(itern); 
    longdelay.pop(); 
 
    if(!longdelay.empty()) 
    { 
     itern = longdelay.front(); 
    } 
    else 
    { 
     break; 
    } 
   } 
 
   //empty accidentals queue 
   if(!acci.empty()) 
   { 
    itern = acci.front(); 
   } 
   while(itern.time<(firstn.time-predelay-gatew-ldelay-
gatew)&&!acci.empty()) 
   { 
    acci.pop(); 
 
    if(!acci.empty()) 
    { 
     itern = acci.front(); 
    } 
    else 
    { 
     break; 
    } 
   } 
   
   //coincidence computation 
   rasize = (int) rplusa.size(); 
   asize = (int) acci.size(); 
 



 

136 
 

   //time binning coincidence analysis 
   if(timeanalysis) 
   { 
    while(!tldone) 
    { 
     if(firstn.time<(trig1.time+srf.exptrig)) 
     { 
      timed= (int) floor((firstn.time-
trig1.time)/tbinsize); 
 
      if(timed<tbin) 
      { 
       tRA[timed]+=rasize; 
       tA[timed]+=asize; 
       tS[timed]++; 
      } 
      
      tldone=true; 
     } 
     else if(!srf.outtrig.empty()) 
     { 
      trig1 = srf.outtrig.front(); 
      srf.outtrig.pop(); 
     } 
     else 
     { 
      tldone=true; 
     } 
    } 
    tldone=false; 
   } 
 
   if(rasize<1000&&asize<1000) 
   { 
    RA[rasize]++; 
    A[asize]++; 
    dbls+=rasize; 
    dbls-=asize; 
   } 
   else 
   { 
    cout<<"ERROR: Increase size of R+A and A 
histogram"<<endl; 
   } 
 
   //popping first neutron element used for this analysis 
   srf.winsub.pop(); 
 
   //filling predelay queue 
   pd.push(firstn); 
  } 
 
  //computing results and outputing them 



 

137 
 

  long double ctime=(firstn.time)*(1-125*window)-tsub-srf.trigtsub; 
//subtracts the amount of time ignored to properly account for accidentals from 
the count time, also considers only the live time by removing the window 
  long double stime=firstn.time*(1-125*window)-srf.trigtsub; //removes 
the window time to account for livetime 
  long double singleout=(double) pulses/stime; 
  long double doubleout=dbls/ctime; 
  string fn=filename+".psr.csv"; 
 
  remove(fn.c_str()); 
  ofstream output(fn.c_str(),ios::out); //opens output file based on 
name of input file. will append the current data in the file 
  
  output<<"Coincidence analysis for "<<filename<<endl; 
  output<<"Singes:,"<<setprecision(15)<<singleout<<endl; 
  output<<"Doubles:,"<<setprecision(15)<<doubleout<<endl; 
  output<<"Time Loss to Bad Triggers:,"<<srf.trigtsub<<endl; 
  output<<endl; 
  output<<",R+A,A"<<endl; 
  for(int i=0;i<1000;i++) 
  { 
   output<<i<<","<<RA[i]<<","<<A[i]<<endl; 
  } 
  output.close(); 
 
  if(timeanalysis) 
  { 
   string fn2=filename+".tcoinc.csv"; 
   remove(fn2.c_str()); 
   ofstream output2(fn2.c_str(),ios::out); 
  
   output2<<"binstart,S,R+A,A"<<endl; 
   for(int i=0;i<tbin;i++) 
   { 
   
 output2<<i*tbinsize<<","<<tS[i]<<","<<tRA[i]<<","<<tA[i]<<endl; 
   } 
   output2.close(); 
  } 
 
  cout<<endl; 
  cout<<filename<<" processed."<<endl; 
  cout<<"Singes: "<<setprecision(15)<<singleout<<endl; 
  cout<<"Doubles: "<<setprecision(15)<<doubleout<<endl; 
  cout<<"Time Loss to Bad Triggers: "<<srf.trigtsub<<endl; 
 
 
 summ<<filename<<","<<setprecision(15)<<singleout<<","<<doubleout<<endl; 
   
  //destructor section 
  while(!pd.empty()) 
  { 
   pd.pop(); 
  } 
  while(!rplusa.empty()) 



 

138 
 

  { 
   rplusa.pop(); 
  } 
  while(!longdelay.empty()) 
  { 
   longdelay.pop(); 
  } 
  while(!acci.empty()) 
  { 
   acci.pop(); 
  } 
   
  //destructor from srf class 
  delete[] srf.memblock; 
  
  while(!srf.ptrain.empty()) 
  { 
   srf.ptrain.pop(); 
  } 
  while(!srf.triggers.empty()) 
  { 
   srf.triggers.pop(); 
  } 
  while(!srf.outtrig.empty()) 
  { 
   srf.outtrig.pop(); 
  } 
  while(!srf.winsub.empty()) 
  { 
   srf.winsub.pop(); 
  } 
 } 
 summ.close(); 
 
    return 0; 
} 
 
 
 
 
 
 
 
  



 

139 
 

C.2. PSR Class Header File: SR_Func.h (line rollover occurs in MS Word so 

enclosed code cannot be compiled without correction) 

 
#pragma once 
 
#include <iostream> 
#include <iomanip> 
#include <ctime> 
#include <fstream> 
#include <string> 
#include <math.h> 
#include <list> 
#include <queue> 
using namespace std; 
 
struct NCDInfo 
{ 
 int ch; //channel number 
 long double time; //time in seconds 
}; 
 
class SR_Func 
{ 
private: 
 int ReadChannel(void); //determines the ch number and returns it as an int 
 long double ReadTime(void); //determines the time from the ncd binary 
values 
 
public: 
 char * memblock; //stores binary .ncd file in memory 
 int msize; //tracks present location in memblock 
 int intsize; //total size of memblock 
 queue<NCDInfo> triggers; //a queue just storing the trigger information 
 queue<NCDInfo> outtrig; //queue to keep triggers for time analysis 
 queue<NCDInfo> ptrain; //a queue containing the pulse train information 
sans triggers 
 queue<NCDInfo> winsub; //a queue containing the pulse train information 
with the window subtracted out 
 long double toff; // offset of trigger pulses from the time the pulse 
occured 
 long double win; // how long after the pulse to ignore data 
 long double tlast; //last time tracker for time function 
 long double veto; //veto value for the ncd file 
 bool channel[32]; //channel tracker 
 int hightrig; //trigger is greater than expected 
 int correcttrig; //trigger is in the range expected 
 int lowtrig; //trigger is lower than expected 
 long double exptrig; //expected time spacing between triggers 
 long double trigtsub; //time subtracted from errors with trigger pulses 
 
 SR_Func(void); 
 ~SR_Func(void); 
 void BinaryReadIn(string); //reads in binary files 



 

140 
 

 void ProcessBinary(void); //processes the binary input stream into channel 
numbers and time information. also seperates triggers 
 void WindowSubtraction(void); //subtracts the pulses that lie within the 
window 
}; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

141 
 

C.3. PSR Class Function File: SR_Func.cpp (line rollover occurs in MS Word so 

enclosed code cannot be compiled without correction) 

 
#include "StdAfx.h" 
#include "SR_Func.h" 
#include <iostream> 
#include <bitset> 
#include <iomanip> 
#include <fstream> 
#include <queue> 
#include <string> 
#include <cmath> 
using namespace std; 
 
SR_Func::SR_Func(void) // constructor 
{ 
} 
 
SR_Func::~SR_Func(void) // destructor 
{ 
} 
 
void SR_Func::BinaryReadIn(string filename) 
{ 
 ifstream file(filename.c_str(),ios::in|ios::binary|ios::ate); //input file 
 if (file.is_open()) 
 { 
  ifstream::pos_type bytesize; 
  //reads in the file data 
  bytesize=file.tellg(); //gets the number of bytes in the file 
  intsize= (int) bytesize; 
  memblock=new char[intsize]; //sets memblock to the size of the file 
  file.seekg(0,ios::beg); 
  file.read(memblock,bytesize); //sends memblock the memory location 
of the bytes from the file 
  file.close(); //closes the file after reading in the binary data as 
char 
 } 
 else 
 { 
  cout<<"ATTN: Unable to open the ncd file."<<endl; 
  exit(1); 
 } 
} 
 
void SR_Func::ProcessBinary(void) 
{ 
 NCDInfo ni; 
 int cinfo=0; //channel indicator 
 int charconv=0; 
 long double neuttime=0; //for a particular event 
 long double cht[32]; 
 int chcount=0; 
 long double lasttrig=0; 



 

142 
 

  
 for(int i=0;i<32;i++) 
 { 
  cht[i]=0; 
 } 
 
 while(msize<intsize) 
 { 
  cinfo = ReadChannel(); 
  if(cinfo==99999) //two channels hit 
  { 
   for(int i=0;i<32;i++) 
   { 
    if(channel[i]==true) 
    { 
     chcount++; 
    } 
   } 
 
   if(chcount<3) 
   { 
    neuttime = ReadTime(); 
    ni.time = neuttime; 
    for(int i=0;i<32;i++) 
    { 
     if(channel[i]==true) 
     { 
      ni.ch = i; 
      ptrain.push(ni); 
     } 
    } 
   } 
   else 
   { 
    msize+=4; 
   } 
   chcount=0; 
  } 
  else if(cinfo==88888) //message indicator 
  { 
   charconv = (int) memblock[msize]; 
   msize+=(charconv+1); //the additional plus one here accounts 
for the piece of memblock that was consumed by the charconv variable  
  } 
  else 
  { 
   ni.ch=cinfo; 
   neuttime = ReadTime(); 
   ni.time = neuttime; 
 
   if(ni.ch==31) 
   { 
    ni.time-=toff; //subtracts the trigger offset time 
 
    if((ni.time-lasttrig)<(exptrig-exptrig*.1)) 



 

143 
 

    { 
     lowtrig++; 
    } 
    else if((ni.time-lasttrig)>(exptrig)) 
    { 
     hightrig++; 
    } 
    else 
    { 
     correcttrig++; 
    } 
 
    lasttrig=ni.time; 
    triggers.push(ni); 
    outtrig.push(ni); 
   } 
   else if(ni.ch==30) 
   { 
    //for pulsed experiments, this contains beam current 
info. Info ignored for now 
   } 
   else 
   { 
    if(cht[ni.ch]!=0) 
    { 
     if((cht[ni.ch]+veto)<ni.time) 
     { 
      cht[ni.ch]=ni.time; 
      ptrain.push(ni); 
     } 
    } 
    else 
    { 
     cht[ni.ch]=ni.time; 
     ptrain.push(ni); 
    } 
   } 
  } 
 cinfo=0; 
 charconv=0; 
 neuttime=0; 
 } 
} 
 
int SR_Func::ReadChannel(void) 
{ 
 const size_t bits = 8; 
 std::bitset< bits > bit_val; 
 unsigned char value = memblock[msize]; //selects a byte from the file 
 bool twohit=false,hit=false; //indicators for hit channels and failed 
conditions 
 int cnum=0; 
 int ccount=0; 
 



 

144 
 

 for(int i=0;i<32;i++) //sets all channels to false so that true indicates a 
hit from that channel 
 { 
  channel[i]=false; 
 } 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
 
  if(bit_val[i]==1) //indicates that a particular channel was hit 
  { 
   channel[i+24]=true; 
  } 
 } 
 msize++; 
 value=memblock[msize]; 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
 
  if(bit_val[i]==1) //indicates that a particular channel was hit 
  { 
   channel[i+16]=true; 
  } 
 } 
 msize++; 
 value=memblock[msize]; 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
 
  if(bit_val[i]==1) //indicates that a particular channel was hit 
  { 
   channel[i+8]=true; 
  } 
 } 
 msize++; 
 value=memblock[msize]; 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
 
  if(bit_val[i]==1) //indicates that a particular channel was hit 
  { 
   channel[i]=true; 
  } 
 } 



 

145 
 

 msize++; 
 
 for(int i=0;i<32;i++) 
 { 
  if(channel[i]==true) //stores channel number 
  { 
   ccount++; 
   cnum=i; 
  } 
 } 
  
 if(ccount==1) 
 { 
  return cnum; 
 } 
 else if(ccount==0) //indicates that no channels were hit at all (message) 
 { 
  return 88888; 
 } 
 else //this indicates that more than one channel was hit 
 { 
  return 99999; 
 } 
} 
 
long double SR_Func::ReadTime(void) //process time information from binary data 
stream  
{ 
 //***This function does not account for rollover*** 
 const size_t bits = 8; 
 std::bitset< bits > bit_val; 
 unsigned char value = memblock[msize]; 
 int bin[4*8]; 
 long double mult=1; 
 long double retval=0; 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
  bin[i+24]=bit_val[i]; 
 } 
 msize++; 
 value = memblock[msize]; 
  
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
  bin[i+16]=bit_val[i]; 
 } 
 msize++; 
 value = memblock[msize]; 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 



 

146 
 

 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
  bin[i+8]=bit_val[i]; 
 } 
 msize++; 
 value = memblock[msize]; 
 
 for(unsigned int i = 0 ; i < bits ; ++i) 
 { 
  bit_val[i] = (value >> i) & 1; // least significant bit is in 
bit_val[0] 
  bin[i]=bit_val[i]; 
 } 
 msize++; 
  
 for(int i=0; i<32; i++) 
 { 
  retval+=bin[i]*mult; 
  mult*=2; 
 } 
 
 if(retval*100E-9<tlast) 
 { 
  cout<<"ERROR: Rollover has occured."<<endl; 
 } 
 
 tlast = retval*100E-9; 
 return retval*100E-9; //ncd values are stored in 100E-9 bins, this converts 
that info back to seconds 
} 
 
void SR_Func::WindowSubtraction(void) 
{ 
 NCDInfo trig, pulse; 
 bool notrig=true; 
 bool overrun=false; 
 long double oldtrig=0; 
 long double lastptime=0; 
 
 while(!ptrain.empty()) 
 { 
  if(!triggers.empty()) 
  { 
   notrig=false; 
   trig = triggers.front(); 
   pulse = ptrain.front(); 
    
   if(pulse.time>(trig.time+win)) 
   { 
    oldtrig=trig.time; 
    if(overrun) 
    { 
     overrun=false; 
     trigtsub+=(trig.time-lastptime); 



 

147 
 

    } 
    triggers.pop(); 
   } 
   else if(pulse.time<trig.time&&!overrun) 
   { 
    if(pulse.time<(oldtrig+exptrig)) 
    { 
     winsub.push(pulse); 
    } 
    else 
    { 
     overrun=true; 
     lastptime=pulse.time; 
    } 
    ptrain.pop(); 
   } 
   else 
   { 
    ptrain.pop(); 
   } 
  } 
  else 
  { 
   if(notrig) 
   { 
    pulse = ptrain.front(); 
    winsub.push(pulse); 
    ptrain.pop(); 
   } 
   else 
   { 
    pulse = ptrain.front(); 
    if(pulse.time>(trig.time+win)) 
    { 
     if(pulse.time<(oldtrig+exptrig)) 
     { 
      winsub.push(pulse); 
     } 
    } 
    ptrain.pop(); 
   } 
  } 
 } 
} 

 

 
 

  



 

148 
 

APPENDIX D 

 

SPNS Program C++ Source Code (compiled with Microsoft Visual C++ 2010 

Express) 

 
D.1. SPNS Main Program File: NeutronSim.cpp (line rollover occurs in MS Word 

so enclosed code cannot be compiled without correction) 

 
// Scott Stewart 
// NeutronSim.cpp 
 
#include "stdafx.h" 
#include <iostream> 
#include <iomanip> 
#include <ctime> 
#include <string> 
#include <fstream> 
#include <stdio.h> 
#include <sstream> 
#include <math.h> 
#include <queue> 
#include <bitset> 
#include "NeutFunc.h" 
 
using namespace std; 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 //initilizations 
 NeutFunc nf; 
 NeutInfo ni; 
 long double timep,timesf,timea; //neutron times; p = pulse, sf = SF, a = AN 
 long double dataq[110]; //stores input long doubles for later assignment to 
variables 
 long double rnum = 0; //random number roll value 
 string line,data; //used in parsing file 
 size_t comment,datastart; //comment used to say where // is, datastart used 
to say where = is on a line  
 int iter=0,iter2=0; //placeholders while processing input file. iter is # 
of lines read in. iter2 is num stored in dataq so far 
 double sftest=0,fftest=0,iftest=0; //error code tracking variables 
 
 ifstream input("SPNS_Inp2.txt",ios::in); //input parameters file 
 
 if(!input.is_open()) //if someone foolishly deleted the input file, this 
scolds them 
 { 
  cout<<"ERROR: Could not find SNS_Inp2.txt. Make sure it is in the 
same directory as this program's .exe"<<endl; 



 

149 
 

  exit(0); //no reason to run program if there are no input 
parameters. so the program quits 
 } 
 
 //grabs variables from file 
 while(!input.eof()) 
 { 
  getline(input,line); //input grabbed a line at a time 
  comment = line.find("//"); //finds whether or not there is a // on a 
line. if there is this line is ignored (so don't put // on a line with input 
parameters 
   
  if(comment==string::npos&&line.length()!=0) //if there is no // on a 
line, and if the line is not empty then we look for an input parameter 
  { 
   datastart = line.find("="); 
    
   if(datastart==string::npos) //if there isn't an = sign on an 
input parameter line, the input parameters are screwed up and the program quits 
   { 
    cout<<"ERROR: No equal sign (=) on expected input 
parameter line."<<endl; 
    exit(1); 
   } 
 
   int start=0,end=0; 
   while(isspace((int)line[start+datastart+1])) //finds white 
spaces at front of numbers 
   { 
    start++; 
   } 
 
   while(isspace((int)line[line.length()-end-1])) //finds white 
spaces at end of numbers 
   { 
    end++; 
   } 
 
   if(iter==0) //special case for the first line of data 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); //start and end used here to eliminate any potential whitespace  
    nf.filename=data; //keeps the filename to be used 
later 
    remove(nf.filename.c_str()); //removes any other file 
with this name 
   } 
   else if(iter==1) //for the 2nd line of data 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
    istringstream datastream(data,istringstream::in); 
    datastream >> nf.Repeat; //this is not stored in dataq 
like the other numbers because it is an int. 
   } 



 

150 
 

   else if(iter==2) //for the third line of data 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
     
    if(data=="True"||data=="true"||data=="TRUE") //if 
there is any indication of true on the line, sets ncd to true, which will lead to 
an .ncd file output format 
     nf.ncd=true; 
    else //if there is no indication of true on the line, 
then the program assumes false 
     nf.ncd=false; 
   } 
   else if(iter==3) //for the 4th line of data 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
     
    if(data=="True"||data=="true"||data=="TRUE") //any 
indication of true will tell the program to sort the output 
     nf.sort=true; 
    else //otherwise it won't 
     nf.sort=false; 
   } 
   else if(iter==4) //for the 5th line of data 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
     
    if(data=="True"||data=="true"||data=="TRUE") //any 
indication of true will tell the program to sort the output 
     nf.doublefile=true; 
    else //otherwise it won't 
     nf.doublefile=false; 
   } 
   else if(iter==6) //for the 7th line of data 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
    istringstream datastream(data,istringstream::in); 
    datastream >> nf.StartNeut; //this is not stored in 
dataq like the other numbers because it is an int. 
   } 
   else //all other lines are written to dataq 
   { 
    data = line.substr(datastart+1+start,line.length()-
end); 
    istringstream datastream(data,istringstream::in); 
    datastream >> dataq[iter2];  
    iter2++; //times written to dataq (should be 32 by the 
end) 
   } 
   iter++; //number of lines containing data 
  } 
 } 



 

151 
 

 
 if(iter2!=110||iter!=116) //if there was anything other than the values 
expected in iter2 and in iter, then someone messed with the input parameters in 
the file, and the program didn't take in the parameters properly 
 { 
  cout<<"ERROR: Did not read in expected number of parameters."<<endl; 
  exit(1); //if this happened, then the output would be bad anyway, so 
we exit now to save the users time 
 } 
 
 input.close(); 
 
 //Filling variables with info from file that were stored in dataq 
 nf.CountTime = dataq[0]; //count time of detector 
 nf.pulsetime = dataq[1]; //time of one pulse 
 nf.PulseFreq = dataq[2]; //frequency of the pulse in Hz 
 nf.StartExcl = dataq[3]; //start time of first exclusion zone 
 nf.EndExcl = dataq[4]; //end time of first exclusion zone 
 
 nf.SFrate = dataq[5]; //for steady-state; in Hz 
 nf.ANrate = dataq[6]; // for steady-state; in Hz 
 nf.ProbDetect = dataq[7]; 
 nf.ProbThermShort = dataq[8]; 
 nf.ProbThermLong = dataq[9]; 
 nf.ProbFiss = dataq[10]; //probability of fission given that the neutron is 
thermalized 
 nf.ProbFastFiss = dataq[11]; //probability of fast fission 
 
 //Neutrons produced through induced fission 
 for(int i=0;i<21;i++) 
 { 
  nf.IFissN[i]=dataq[i+12]; 
  iftest+=dataq[i+12]; 
 } 
 
 //Neutrons produced through spontaneous fission 
 for(int i=0;i<21;i++) 
 { 
  nf.SFissN[i] = dataq[i+33]; 
  sftest+=dataq[i+33]; 
 } 
  
 //Neutrons produced through fast fission 
 for(int i=0;i<9;i++) 
 { 
  nf.FFissN[i] = dataq[i+54]; 
  fftest+=dataq[i+54]; 
 } 
 
 //Short Thermal / Long Thermal / Detector DieAway 
 nf.detectordieaway = dataq[75]; 
 nf.shortdieaway = dataq[76]; 
 nf.longdieaway = dataq[77]; 
 
 //Pulse Trigger offset 



 

152 
 

 nf.trigoff = dataq[78]; 
 
 //Deadtime in Channels 
 nf.deadch = dataq[79]; 
 
 //Probability of detection in one channel 
 for(int i=0;i<30;i++) 
 { 
  nf.PNch[i]=dataq[i+80]; 
 } 
 
 //Messages alert user to potential sources of error if ATTN. If ERROR they 
state a known source of error and exit program 
 if(iftest!=1) 
  cout<<"ATTN: Induced fission probabilities do not add up to 
1."<<endl; 
 if(sftest!=1) 
  cout<<"ATTN: Spontaneous fission probabilities do not add up to 
1."<<endl; 
 if(fftest!=1) 
  cout<<"ATTN: Fast fission probabilities do not add up to 1."<<endl; 
 if((nf.ProbDetect+nf.ProbThermShort+nf.ProbThermLong)>1) 
  cout<<"ATTN: Probability of Detection, Thermalization, and Escape 
are greater than 1."<<endl; 
 if(nf.ProbFiss>1) 
  cout<<"ATTN: Probability of Fission is greater than 1."<<endl; 
 if(nf.PulseFreq==0&&nf.StartNeut!=0) //if someone has a zero pulse 
frequency, but a non-zero size for a neutron pulse 
 { 
  cout<<"ERROR: PulseFreq is set to 0. Times for neutrons in pulses 
will not be computed correctly."<<endl; 
  exit(1); 
 } 
 if(nf.CountTime>429&&nf.ncd) //if count time is greater than 429 for .ncd 
files, the four byte detector time will rollover 
  cout<<"ATTN: Count Time is larger than what can be stored in 4 
bytes. Binary time values will overflow."<<endl; 
 if((nf.PNch[30]+nf.PNch[29]+nf.PNch[28]+nf.PNch[27]+nf.PNch[26]+nf.PNch[25]
+nf.PNch[24]+nf.PNch[23]+nf.PNch[22]+nf.PNch[21]+nf.PNch[20]+nf.PNch[19]+nf.PNch[1
8]+nf.PNch[17]+nf.PNch[16]+nf.PNch[15]+nf.PNch[14]+nf.PNch[13]+nf.PNch[12]+nf.PNch
[11]+nf.PNch[10]+nf.PNch[9]+nf.PNch[8]+nf.PNch[7]+nf.PNch[6]+nf.PNch[5]+nf.PNch[4]
+nf.PNch[3]+nf.PNch[2]+nf.PNch[1]+nf.PNch[0])!=1.0) 
  cout<<"ATTN: Channel Detection Probabilities do not add up to 
1."<<endl; 
 if(nf.ncd&&!nf.sort) 
  cout<<"ATTN: Deadtime will not work unless the sort option is turned 
on."<<endl; 
 /*if(nf.sort&&(nf.ANrate+nf.SFrate)>0&&nf.StartNeut>0) 
 { 
  cout<<"ATTN: Sorting will not work with SF, AN, and Pulsed neutrons. 
It has been turned off."<<endl; 
  nf.sort=false; 
 }*/ 
 
 for(int m=0;m<nf.Repeat;m++) 



 

153 
 

 { 
  //opening file 
  string temp="",temp2=""; 
 
  if(nf.Repeat!=1) 
  { 
   stringstream yar; 
   yar << (m+1); 
   temp = yar.str(); 
   temp2 = temp; 
   temp=nf.filename+"."+temp; 
   temp2 = nf.filename+"_detfiss."+temp2+".csv"; 
  } 
  else 
  { 
   temp=nf.filename; 
   temp2 = nf.filename+"_detfiss"+".csv"; 
  } 
 
  if(nf.doublefile) 
  { 
   nf.outfiss.open(temp2.c_str()); 
   nf.outfiss<<"Fission time, 1st Generation Fission #, Fission 
Event #"<<endl; 
  } 
 
  if(nf.ncd) 
  { 
   temp=temp+".ncd"; 
   nf.output.open(temp.c_str(),ios_base::binary); 
  } 
  else 
  { 
   temp=temp+".pulse"; 
   nf.output.open(temp.c_str(),ios::out); 
  } 
 
  timep=0; 
  timea=0; 
  timesf=0; 
  //Populates bank with initial neutrons 
 
 while((timesf<nf.CountTime&&nf.SFrate>0)||(timea<nf.CountTime&&nf.ANrate>0)
||(timep<nf.CountTime&&(nf.StartNeut+nf.PulseFreq)>0)) 
  { 
   if(!((nf.StartNeut+nf.PulseFreq)>0)) 
   { 
    timep=nf.CountTime+1.0; 
   } 
   if(!(nf.ANrate>0)) 
   { 
    timea=nf.CountTime+1.0; 
   } 
   if(!(nf.SFrate>0)) 
   { 



 

154 
 

    timesf=nf.CountTime+1.0; 
   } 
 
   //pulse case, if the user put in non-zero start neutrons and 
if timep is less than the count time 
  
 if((nf.StartNeut+nf.PulseFreq)>0&&timep<nf.CountTime&&timep<=timesf&&timep<
=timea)  
   {    
    for(int i=0;i<nf.StartNeut;i++)  
    { 
     long double randpt=nf.unifRand(0,nf.pulsetime); 
//uses uniform random distribution to ensure an even distribution of neutrons over 
the pulse time 
      
     if((timep+randpt)<nf.CountTime) 
     { 
      ni.time = timep+randpt; 
      ni.firstgen = 0; 
      ni.fissnum = 0; 
      nf.bank.push(ni); //bank is populated 
with StartNeut neutrons. 
      nf.bankhits++; //increments up for each 
neutron stored in bank 
     } 
    } 
    if(nf.ncd&&(timep+nf.trigoff)<nf.CountTime) //prints 
trigger channel for pulses in ncd mode 
    { 
     if(nf.sort) //sorted for later output 
     { 
      ni.time = timep+nf.trigoff; 
      ni.firstgen = -1; //triggers will be the 
only events associated with a negative fission number of any kind 
      ni.fissnum = -1; 
      nf.SortOutput(ni); //ATTN: a delay has 
been added to each trigger pulse 
     } 
     else //unsorted, so sent to output ASAP 
     { 
      ni.time = timep+nf.trigoff; 
      ni.firstgen = -1; 
      ni.fissnum = -1; 
      nf.Output_Handler(ni); //ATTN: a delay 
has been added to each trigger pulse 
     } 
    } 
    timep+=1.0/nf.PulseFreq; //increments the timep by the 
pulse frequency 
   } 
   //Alpha,N neut handling 
   else 
if(timea<nf.CountTime&&nf.ANrate>0&&timea<=timesf&&timea<=timep) //if time is less 
than the count time, if the ANrate isn't zero 
   { 



 

155 
 

    timea += nf.StablePoi(nf.ANrate); //increments time by 
steady state equation 
     
    if(timea<nf.CountTime) 
    { 
     ni.time = timea; 
     ni.firstgen = 0; 
     ni.fissnum = 0; 
     nf.bank.push(ni); //adds the one neutron to the 
bank 
     nf.bankhits++; 
    } 
   } 
 
   //SF neut handling 
   else 
if(timesf<nf.CountTime&&nf.SFrate>0&&timesf<=timep&&timesf<=timea) //while less 
than the count time with a nonzero SF rate 
   { 
    rnum = nf.ran2(nf.idum); //rolls a random number to 
determine how many neutrons are generated from the SF event 
    timesf += nf.StablePoi(nf.SFrate); //incrememnts time 
     
    if(timesf<nf.CountTime) 
    { 
     ni.time = timesf; 
     nf.firstgen++; 
     ni.firstgen = nf.firstgen; 
     nf.fissnum++; 
     ni.fissnum = nf.fissnum; 
      
     if(nf.SFissN[1]!=0 && rnum<nf.SFissN[1]) 
//spontaneous fission, 1 neutron produced 
     { 
      nf.bank.push(ni); //neutron pushed onto 
the end of the queue 
      nf.bankhits++; //incremented to indicate 
the neutron was generated 
     } 
     else if(nf.SFissN[2]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2])) //spontaneous fission, 2 neutrons produced 
     { 
      for(int i=0;i<2;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[3]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3])) //spontaneous fission, 3 neutrons 
produced 
     { 
      for(int i=0;i<3;i++) 
      { 
       nf.bank.push(ni); 



 

156 
 

       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[4]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4])) //spontaneous fission, 
4 neutrons produced 
     { 
      for(int i=0;i<4;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[5]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5])) 
//spontaneous fission, 5 neutrons produced 
     { 
      for(int i=0;i<5;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[6]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
])) //spontaneous fission, 6 neutrons produced 
     { 
      for(int i=0;i<6;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[7]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7])) //spontaneous fission, 7 neutrons produced 
     { 
      for(int i=0;i<7;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[8]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8])) //spontaneous fission, 8 neutrons produced 
     { 
      for(int i=0;i<8;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[9]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6



 

157 
 

]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9])) //spontaneous fission, 9 neutrons 
produced 
     { 
      for(int i=0;i<9;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[10]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10])) //spontaneous fission, 10 
neutrons produced 
     { 
      for(int i=0;i<10;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[11]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11])) 
//spontaneous fission, 11 neutrons produced 
     { 
      for(int i=0;i<11;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[12]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
)) //spontaneous fission, 12 neutrons produced 
     { 
      for(int i=0;i<12;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[13]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13])) //spontaneous fission, 13 neutrons produced 
     { 
      for(int i=0;i<13;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[14]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6



 

158 
 

]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14])) //spontaneous fission, 14 neutrons produced 
     { 
      for(int i=0;i<14;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[15]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14]+nf.SFissN[15])) //spontaneous fission, 15 neutrons 
produced 
     { 
      for(int i=0;i<15;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[16]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14]+nf.SFissN[15]+nf.SFissN[16])) //spontaneous fission, 
16 neutrons produced 
     { 
      for(int i=0;i<16;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[17]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14]+nf.SFissN[15]+nf.SFissN[16]+nf.SFissN[17])) 
//spontaneous fission, 17 neutrons produced 
     { 
      for(int i=0;i<17;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[18]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14]+nf.SFissN[15]+nf.SFissN[16]+nf.SFissN[17]+nf.SFissN[1
8])) //spontaneous fission, 18 neutrons produced 
     { 
      for(int i=0;i<18;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 



 

159 
 

      } 
     } 
     else if(nf.SFissN[19]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14]+nf.SFissN[15]+nf.SFissN[16]+nf.SFissN[17]+nf.SFissN[1
8]+nf.SFissN[19])) //spontaneous fission, 19 neutrons produced 
     { 
      for(int i=0;i<19;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else if(nf.SFissN[20]!=0 && 
rnum<(nf.SFissN[1]+nf.SFissN[2]+nf.SFissN[3]+nf.SFissN[4]+nf.SFissN[5]+nf.SFissN[6
]+nf.SFissN[7]+nf.SFissN[8]+nf.SFissN[9]+nf.SFissN[10]+nf.SFissN[11]+nf.SFissN[12]
+nf.SFissN[13]+nf.SFissN[14]+nf.SFissN[15]+nf.SFissN[16]+nf.SFissN[17]+nf.SFissN[1
8]+nf.SFissN[19]+nf.SFissN[20])) //spontaneous fission, 20 neutrons produced 
     { 
      for(int i=0;i<20;i++) 
      { 
       nf.bank.push(ni); 
       nf.bankhits++; 
      } 
     } 
     else 
     { 
      //Zero case, does nothing 
     } 
    } 
   } 
   else 
   { 
    cout<<"ATTN: Unexpected case."<<endl; 
   } 
 
   nf.ProcessNeutronQueue(); // processes neutron queue after 
pulse, AN, and SF generate one set of neutrons 
  } 
 
  if(nf.sort) 
  { 
   nf.PrintSorted(); 
  } 
 
  nf.output.close(); 
  if(nf.doublefile) 
   nf.outfiss.close(); 
 
  //lets the user know the number of neutrons that were ever in the 
bank (thus total neutrons generated) and the number of neutrons successfully 
detected. for one file 
  cout<<endl; 
  cout<<temp<<" created successfully."<<endl; 



 

160 
 

  cout<<"Number of neutrons generated: "<<nf.bankhits<<endl; 
  cout<<"Number of neutrons detected: "<<nf.detectorhits<<endl; //does 
not subtract neutrons that were excluded. so in that case not an indicator of 
events in the file. 
  if(nf.ncd&nf.sort) 
   cout<<"Number of neutrons lost due to deadtime: 
"<<nf.deadtimeneuts<<endl; 
 
  //need to "reinitilize" the variables initilized at the beginning of 
the class here since a new class isn't created for the next file 
  nf.bankhits=0; 
  nf.detectorhits=0; 
  nf.deadtimeneuts=0; 
 
  //continued reseeding of better random num generator. reseeding 
since this is a new file 
  time_t val=0; 
  while(val==0) 
   val=time(NULL); 
 
  nf.idum = (long*) calloc(1,sizeof(long));  
  *nf.idum = (long) val*-1; 
 
  for(int i=0;i<30;i++) 
  { 
   nf.prevtime[i]=0; 
   nf.ncdhit[i]=false; 
  } 
  nf.firstgen = 0; 
  nf.fissnum = 0; 
 } 
 
 return 0; 
} 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

161 
 

D.2. SPNS Class Header File: NeutFunc.h (line rollover occurs in MS Word so 

enclosed code cannot be compiled without correction) 

 
#pragma once 
 
#include <iostream> 
#include <iomanip> 
#include <ctime> 
#include <fstream> 
#include <string> 
#include <math.h> 
#include <list> 
#include <queue> 
using namespace std; 
 
//#define values used in ran2. do not alter 
#define IM1 2147483563 
#define IM2 2147483399 
#define AM (1.0/IM1) 
#define IMM1 (IM1-1) 
#define IA1 40014 
#define IA2 40692 
#define IQ1 53668 
#define IQ2 52774 
#define IR1 12211 
#define IR2 3791 
#define NTAB 32 
#define NDIV (1+IMM1/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
 
struct NeutInfo //neut sort is private because nothing other than functions inside 
the class access this struct. it is only used to store data in the sorted list 
{ 
 long double time; //neutron time 
 long firstgen; //this is the number of the first generation fission that 
created the chain 
 long fissnum; //this is the integer number representing which fission 
number this is sequentially in the program. it will not be sequential in time 
}; 
 
class NeutFunc 
{ 
 public: 
  //This is the order that SPNS_Inputs.txt should be in to work 
  string filename;//input file 
  int Repeat; //number of times to repeat file generation 
  bool ncd; //should the output be in ncd format 
  bool sort; //should the output be sorted 
  bool doublefile; //output file with fission times 
  long double CountTime; //count time of detector 
  int StartNeut; //size of pulse 
  long double pulsetime; //time of one pulse 
  long double PulseFreq; //frequency of the pulse in Hz 



 

162 
 

  long double StartExcl; //start time of first exclusion zone 
  long double EndExcl; //end time of first exclusion zone 
  long double SFrate; //for steady-state; in Hz 
  long double ANrate; // for steady-state; in Hz 
  long double ProbDetect; //probability that neutrons are detected by 
the detector 
  long double ProbThermShort; //prob of a fast thermalization 
  long double ProbThermLong; //prob of a slow thermalization 
  long double ProbFiss; //probability of fission given that the 
neutron is thermalized 
  long double ProbFastFiss; //probability fast fission will occur 
 
  //Neutrons produced through induced fission 
  long double IFissN[21]; 
  //Neutrons produced through spontaneous fission 
  long double SFissN[21]; 
  //Neutrons produced via Fast Fission 
  long double FFissN[21]; 
 
  //Short Thermal / Long Thermal / Detector DieAway 
  long double longdieaway; 
  long double shortdieaway; 
  long double detectordieaway; 
 
  //Offset for Pulse triggers 
  long double trigoff; 
 
  //channel deadtime 
  long double deadch; 
  //probability of seeing a neutron in channel 
  long double PNch[30]; 
 
  //End of SPNS_Inputs file 
   
  ofstream output,outfiss; //output files 
  queue<NeutInfo> bank; //neutron bank; a queue is a first in, first 
out data structure. this basically means that the neutrons wait in line until it 
is their turn to be processed (like the badge office except the people are 
neutrons) 
  list<NeutInfo> neutlist; //sorted neutron time list; you can think 
of this like a really large array, except I can easily write data to anywhere on 
that array. technically this is a doubly linked list 
  long bankhits; //total number of neutrons that have been in the bank 
  long detectorhits; //total number of neutrons detected 
  long deadtimeneuts; //number of neutrons not detected due to 
deadtime 
  long double prevtime[30]; //previous time per channel. tracked for 
ncd output 
  bool ncdhit[30]; //keeps track of when a channel has detected a 
neutron 
  long firstgen, fissnum; 
 
  long * idum; //used for random numbers 
 
  //functions 



 

163 
 

  NeutFunc(void); //cosntructor 
  ~NeutFunc(void); //destructor 
  void seed(); //seeds the pseudo random num generator (should only be 
done once) 
  float ran2(long*); //improved random number generator 
  long double unifRand(long double, long double); //pseudo random num 
generator for range [a,b) 
  long double unifRand(); //pseudo random num generator for range 
[0,1) 
  long double StablePoi(long double); //generates time steps for the 
steady state a,n and SF 
  long double ShortExp(); //short exponential die-away. used for fast 
thermalization 
  long double LongExp(); //long exponential die away. used for slow 
thermalization 
  long double DetExp(); //used to simulate detector die away time 
  void ProcessNeutronQueue(); //called when you want the neutron queue 
to be emptied (neutrons are processed until the queue is empty) 
  void Output_Handler(NeutInfo); //called to write output to a file 
  bool Deadtime_Check(long double); //Handes deadtime per channel 
  void PrintChar(int[8]); //called to write binary for the .ncd files 
  void SortOutput(NeutInfo); //this is where detected neutrons are 
placed in the sorted list based on their time 
  void PrintSorted(); //this dumps what is in the list to an output 
file 
}; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

164 
 

D.3. SPNS Class Function File: NeutFunc.cpp (line rollover occurs in MS Word so 

enclosed code cannot be compiled without correction) 

 
#include "StdAfx.h" 
#include "NeutFunc.h" 
#include <iostream> 
#include <iomanip> 
#include <ctime> 
#include <fstream> 
#include <string> 
#include <math.h> 
#include <stdio.h> 
#include <queue> 
#include <list> 
#include <bitset> 
using namespace std; 
 
NeutFunc::NeutFunc(void) 
{ 
 //Class initilizations 
 bankhits=0; 
 detectorhits=0; 
 deadtimeneuts=0; 
 seed(); 
 
 //uses random num generator to initilize idum for ran2 
 time_t val=0; 
 while(val==0) 
  val=time(NULL); 
 
 idum = (long*) calloc(1,sizeof(long)); 
 *idum = (long) val*-1; 
 
 for(int i=0;i<30;i++) 
 { 
  prevtime[i]=0; 
  ncdhit[i]=false; 
 } 
 
 //initilizing long values to keep track of doubles 
 firstgen = 0; 
 fissnum = 0; 
} 
 
 
NeutFunc::~NeutFunc(void) 
{ 
 delete idum; 
} 
 
// Generates a random number between 0 and 1 (uniformly distributed) 
long double NeutFunc::unifRand() 
{ 
 long double ans=1; 



 

165 
 

 while(ans==1) //this loop makes sure that rand() doesn't return 1. this is 
done because ln(1-1) would throw an error in some of our calculations 
 { 
  ans = rand() / long double(RAND_MAX); 
 } 
    return ans; 
} 
 
//Generates a random number in the interval [a,b) 
long double NeutFunc::unifRand(long double a, long double b) 
{ 
    return (b-a)*ran2(idum) + a; //returns a rand for the range specified. note 
that the range is [a,b) because of how unifRand() has been modified 
} 
 
// Reset the random number generator with the system clock. 
void NeutFunc::seed() 
{ 
    srand(time(NULL)); //seeds the pseudo rand num generator. should only be done 
once per program, otherwise values will not be random 
} 
 
/* 
From numerical recipies:  
 
Long period (> 2 × 10^18) random number generator of L’Ecuyer with Bays-Durham 
shuffle 
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 
(exclusive of 
the endpoint values). Call with idum a negative integer to initialize; thereafter, 
do not alter 
idum between successive deviates in a sequence. RNMX should approximate the 
largest floating 
value that is less than 1. 
*/ 
float NeutFunc::ran2(long *idum) 
{ 
 int j; 
 long k; 
 static long idum2=123456789; 
 static long iy=0; 
 static long iv[NTAB]; 
 float temp; 
 if (*idum <= 0) //Initialize. 
 {  
  if (-(*idum) < 1) *idum=1; //Be sure to prevent idum = 0. 
  else *idum = -(*idum); 
  idum2=(*idum); 
   
  for (j=NTAB+7;j>=0;j--) //Load the shuffle table (after 8 warm-ups). 
  {  
   k=(*idum)/IQ1; 
   *idum=IA1*(*idum-k*IQ1)-k*IR1; 
   if (*idum < 0) *idum += IM1; 
   if (j < NTAB) iv[j] = *idum; 



 

166 
 

  } 
  iy=iv[0]; 
 } 
 
 k=(*idum)/IQ1; //Start here when not initializing. 
 *idum=IA1*(*idum-k*IQ1)-k*IR1; //Compute idum=(IA1*idum) % IM1 without 
 if (*idum < 0) *idum += IM1; //overflows by Schrage’s method. 
 k=idum2/IQ2; 
 idum2=IA2*(idum2-k*IQ2)-k*IR2; //Compute idum2=(IA2*idum) % IM2 likewise. 
 if (idum2 < 0) idum2 += IM2; 
 j=iy/NDIV; //Will be in the range 0..NTAB-1. 
 iy=iv[j]-idum2; //Here idum is shuffled, idum and idum2 are 
 iv[j] = *idum; //combined to generate output. 
 if (iy < 1) iy += IMM1; 
  
 if ((temp=AM*iy) > RNMX) return RNMX; //Because users don’t expect endpoint 
values. 
 else return temp; 
} 
 
long double NeutFunc::StablePoi(long double rate) 
{ 
 return -(log(1-ran2(idum)))/rate; 
} 
 
long double NeutFunc::ShortExp() 
{ 
 return shortdieaway*-log(1-ran2(idum)); 
} 
 
long double NeutFunc::LongExp() 
{ 
 return longdieaway*-log(1-ran2(idum)); 
} 
 
long double NeutFunc::DetExp() 
{ 
 return detectordieaway*-log(1-ran2(idum));  
} 
 
void NeutFunc::ProcessNeutronQueue() 
{ 
 bool excluded = false; 
 long double rnum; //random num roll 
 NeutInfo ni; 
  
 //while loop until the bank is empty 
 while(!bank.empty()) 
 { 
  rnum = ran2(idum); 
 
  if(rnum<ProbFastFiss) 
  { 
   ni = bank.front(); //for fast fission daughters have same 
time as parent 



 

167 
 

 
   //sets first generation fission number if it hasn't been 
already 
   if(ni.firstgen==0) 
   { 
    firstgen++; 
    ni.firstgen = firstgen; 
   } 
 
   //sets fission number which tracks the neutrons created in 
this specific fission event 
   fissnum++; 
   ni.fissnum=fissnum; 
 
   if(ni.time<CountTime) 
   { 
    rnum = ran2(idum); //reroll again to ensure proper 
probability distribution 
    if(FFissN[1]!=0 && rnum<FFissN[1]) //induced fission 
adds 1 neutron 
    { 
     bank.push(ni); 
     bankhits++; //increments int value of bankhits 
to indicate that another neutron was put in the bank 
    } 
    else if(FFissN[2]!=0 && rnum<(FFissN[1]+FFissN[2])) 
//induced fission adds 2 neutrons 
    { 
     for(int i=0;i<2;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[3]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3])) //induced fission adds 3 neutrons 
    { 
     for(int i=0;i<3;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[4]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4])) //induced fission adds 4 neutrons 
    { 
     for(int i=0;i<4;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[5]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5])) //induced fission adds 5 
neutrons 



 

168 
 

    { 
     for(int i=0;i<5;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[6]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6])) //induced 
fission adds 6 neutrons 
    { 
     for(int i=0;i<6;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[7]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7])) 
//induced fission adds 7 neutrons 
    { 
     for(int i=0;i<7;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[8]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]))//induced fission adds 8 neutrons 
    { 
     for(int i=0;i<8;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[9]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]))//induced fission adds 9 neutrons 
    { 
     for(int i=0;i<9;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[10]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]))//induced fission adds 10 neutrons 
    { 
     for(int i=0;i<10;i++) 
     { 
      bank.push(ni); 
      bankhits++; 



 

169 
 

     } 
    } 
    else if(FFissN[11]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]))//induced fission adds 11 neutrons 
    { 
     for(int i=0;i<11;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[12]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]))//induced fission adds 12 neutrons 
    { 
     for(int i=0;i<12;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[13]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]))//induced fission adds 
13 neutrons 
    { 
     for(int i=0;i<13;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[14]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]))//induced 
fission adds 14 neutrons 
    { 
     for(int i=0;i<14;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[15]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]+FFissN[15]))/
/induced fission adds 15 neutrons 
    { 
     for(int i=0;i<15;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 



 

170 
 

    else if(FFissN[16]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]+FFissN[15]+FF
issN[16]))//induced fission adds 16 neutrons 
    { 
     for(int i=0;i<16;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[17]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]+FFissN[15]+FF
issN[16]+FFissN[17]))//induced fission adds 17 neutrons 
    { 
     for(int i=0;i<17;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[18]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]+FFissN[15]+FF
issN[16]+FFissN[17]+FFissN[18]))//induced fission adds 18 neutrons 
    { 
     for(int i=0;i<18;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[19]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]+FFissN[15]+FF
issN[16]+FFissN[17]+FFissN[18]+FFissN[19]))//induced fission adds 19 neutrons 
    { 
     for(int i=0;i<19;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 
    } 
    else if(FFissN[20]!=0 && 
rnum<(FFissN[1]+FFissN[2]+FFissN[3]+FFissN[4]+FFissN[5]+FFissN[6]+FFissN[7]+FFissN
[8]+FFissN[9]+FFissN[10]+FFissN[11]+FFissN[12]+FFissN[13]+FFissN[14]+FFissN[15]+FF
issN[16]+FFissN[17]+FFissN[18]+FFissN[19]+FFissN[20]))//induced fission adds 20 
neutrons 
    { 
     for(int i=0;i<20;i++) 
     { 
      bank.push(ni); 
      bankhits++; 
     } 



 

171 
 

    } 
    else 
    { 
     //zero case; does nothing 
    } 
   } 
   bank.pop(); 
  } 
  else 
  { 
   rnum = ran2(idum); 
 
   if(rnum<ProbDetect) // detect case 
   { 
    ni = bank.front(); //retrieves time from neutron in 
front of queue 
    ni.time+=DetExp(); //adds detector die away to time of 
neutron 
    if(ni.time<CountTime) 
    { 
     detectorhits++; //indicates that a neutron has 
been detected. this does not subtract the neutrons that are excluded. 
     if(StartNeut>0&&(StartExcl+EndExcl)!=0) //if 
the exclusion zone option is selected, this loop handles the exclusions 
     { 
      int iter = 0; 
      excluded=false; //this indicates whether 
or not the value is excluded 
     
 while(ni.time>StartExcl+(1.0/PulseFreq)*iter) //steps through the potential 
exclusion zones within the count time. stops when the start of an exclusion zone 
passes the time of the neutron 
      { 
      
 if(ni.time<(EndExcl+(1.0/PulseFreq)*(iter))) //given that the time is 
greater than the current start of an exclusion zone, if it is also less than the 
end of the exclusion zone it should be excluded 
        excluded = true; //tells 
me that this value should be excluded 
       iter++; 
      } 
      if(!excluded) //if it wasn't excluded 
      { 
       if(sort) //when it needs to be 
sorted 
       { 
        SortOutput(ni); //sends to 
the sorted list 
       } 
       else //otherwise 
       { 
        Output_Handler(ni); 
//sends to output handler to be written to a file 
       } 
      } 



 

172 
 

     } 
     else //if there is no exclusion zone 
     { 
      if(sort) 
      { 
       SortOutput(ni); 
      } 
      else 
      { 
       Output_Handler(ni); 
      } 
     } 
    } 
    bank.pop(); //deletes the neutron in the front of the 
queue 
   } 
   else if(rnum<(ProbDetect+ProbThermShort+ProbThermLong)) // 
thermalize short / long case 
   { 
    ni = bank.front(); //retrieves the neutron information 
from the front of the queue 
    if(rnum<(ProbDetect+ProbThermShort)) // adds a small 
time to neutron time 
    { 
     ni.time += ShortExp(); 
    } 
    else // adds a larger time to neutron time 
    { 
     ni.time += LongExp(); 
    } 
 
    //probability it will fission 
    rnum = ran2(idum); //must reroll random number here, 
otherwise we would use the rnum that got us into this else if statement, thus 
biasing our answer 
    if(rnum<ProbFiss&&ni.time<CountTime) 
    { 
     rnum = ran2(idum); //reroll again to ensure 
proper probability distribution 
      
     //sets first generation fission number if it 
hasn't been already 
     if(ni.firstgen==0) 
     { 
      firstgen++; 
      ni.firstgen = firstgen; 
     } 
 
     //sets fission number which tracks the neutrons 
created in this specific fission event 
     fissnum++; 
     ni.fissnum=fissnum; 
 
     if(IFissN[1]!=0 && rnum<IFissN[1]) //induced 
fission adds 1 neutron 



 

173 
 

     { 
      bank.push(ni); 
      bankhits++; //increments int value of 
bankhits to indicate that another neutron was put in the bank 
     } 
     else if(IFissN[2]!=0 && 
rnum<(IFissN[1]+IFissN[2])) //induced fission adds 2 neutrons 
     { 
      for(int i=0;i<2;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[3]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3])) //induced fission adds 3 neutrons 
     { 
      for(int i=0;i<3;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[4]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4])) //induced fission adds 4 neutrons 
     { 
      for(int i=0;i<4;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[5]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5])) //induced fission adds 5 
neutrons 
     { 
      for(int i=0;i<5;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[6]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6])) //induced 
fission adds 6 neutrons 
     { 
      for(int i=0;i<6;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[7]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7])) 
//induced fission adds 7 neutrons 



 

174 
 

     { 
      for(int i=0;i<7;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[8]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]))//induced fission adds 8 neutrons 
     { 
      for(int i=0;i<8;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[9]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]))//induced fission adds 9 neutrons 
     { 
      for(int i=0;i<9;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[10]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]))//induced fission adds 10 neutrons 
     { 
      for(int i=0;i<10;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[11]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]))//induced fission adds 11 neutrons 
     { 
      for(int i=0;i<11;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[12]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]))//induced fission adds 12 neutrons 
     { 
      for(int i=0;i<12;i++) 
      { 
       bank.push(ni); 
       bankhits++; 



 

175 
 

      } 
     } 
     else if(IFissN[13]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]))//induced fission adds 
13 neutrons 
     { 
      for(int i=0;i<13;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[14]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]))//induced 
fission adds 14 neutrons 
     { 
      for(int i=0;i<14;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[15]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]+IFissN[15]))/
/induced fission adds 15 neutrons 
     { 
      for(int i=0;i<15;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[16]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]+IFissN[16]))/
/induced fission adds 16 neutrons 
     { 
      for(int i=0;i<16;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[17]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]+IFissN[16]+IF
issN[17]))//induced fission adds 17 neutrons 
     { 
      for(int i=0;i<17;i++) 
      { 
       bank.push(ni); 
       bankhits++; 



 

176 
 

      } 
     } 
     else if(IFissN[18]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]+IFissN[16]+IF
issN[17]+IFissN[18]))//induced fission adds 18 neutrons 
     { 
      for(int i=0;i<18;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[19]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]+IFissN[16]+IF
issN[17]+IFissN[18]+IFissN[19]))//induced fission adds 19 neutrons 
     { 
      for(int i=0;i<19;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else if(IFissN[20]!=0 && 
rnum<(IFissN[1]+IFissN[2]+IFissN[3]+IFissN[4]+IFissN[5]+IFissN[6]+IFissN[7]+IFissN
[8]+IFissN[9]+IFissN[10]+IFissN[11]+IFissN[12]+IFissN[13]+IFissN[14]+IFissN[16]+IF
issN[17]+IFissN[18]+IFissN[19]+IFissN[20]))//induced fission adds 20 neutrons 
     { 
      for(int i=0;i<20;i++) 
      { 
       bank.push(ni); 
       bankhits++; 
      } 
     } 
     else 
     { 
      //zero case; does nothing 
     } 
    } 
    // kills the neutron that thermalized and caused 
fission / escaped 
    bank.pop(); //deletes the neutron in the front of the 
queue 
   } 
   else //escape case 
   { 
    bank.pop(); //deletes the neutron from the front of 
the queue 
   } 
  } 
 } 
} 
 
void NeutFunc::Output_Handler(NeutInfo ni) //handles output to file 



 

177 
 

{  
 if(doublefile) //outputs double information file 
 { 
  outfiss << setprecision(15) /*set precision forces all numbers to be 
output without an E. this prevents an error in VBTAP*/<< ni.time*1E8; /*time 
converted to shakes*/ 
  outfiss<<","<<ni.firstgen<<","<<ni.fissnum<<endl; 
 } 
 
 if(ncd) //.ncd file case 
 { 
  int t = (int) (ni.time/100E-9); //this forced conversion limits the 
accuracy of the .ncd output, as all information past the decimal place is 
truncated (.ncd files are stored in 100ns bins) 
  int conv [4*8]; //binary values are stored in reverse in these 
arrays, so least significant bit is in i=0, and most is in i=31 
  int subset[8]; //subsets are also stored in reverse 
  int place = 24; 
  bool dead=false; //has the ncd data been ignored due to deadtime 
  //prints channel information 
 
  if(ni.firstgen==-1) //trigger channels are channel 31 
  { 
   for(int i=0;i<8;i++) 
   { 
    subset[i]=0; 
   } 
   subset[7]=1; //sets channel i=31 
   PrintChar(subset); //print char handles a byte at a time 
   subset[7]=0; 
   PrintChar(subset); 
   PrintChar(subset); 
   PrintChar(subset); 
  } 
  else //non trigger ncd data is handled here 
  { 
   if(sort) //deadtime will only work if the neutrons are sorted 
before being output 
   { 
    dead = Deadtime_Check(ni.time); 
   } 
 
   if(dead) 
   { 
    deadtimeneuts++; 
   } 
   else 
   { 
    for(int i=0;i<8;i++)  
    { 
     subset[i]=0; 
     if(i<6) 
     { 
      if(ncdhit[i+24]) 
      { 



 

178 
 

       subset[i]=1; 
       ncdhit[i+24]=false; 
      } 
     } 
    } 
    PrintChar(subset); //a char is one byte of information 
     
    for(int i=0;i<8;i++)  
    { 
     if(ncdhit[i+16]) 
     { 
      subset[i]=1; 
      ncdhit[i+16]=false; 
     } 
     else 
      subset[i]=0; 
    } 
    PrintChar(subset); 
 
    for(int i=0;i<8;i++)  
    { 
     if(ncdhit[i+8]) 
     { 
      subset[i]=1; 
      ncdhit[i+8]=false; 
     } 
     else 
      subset[i]=0; 
    } 
    PrintChar(subset); 
 
    for(int i=0;i<8;i++)  
    { 
     if(ncdhit[i]) 
     { 
      subset[i]=1; 
      ncdhit[i]=false; 
     } 
     else 
      subset[i]=0; 
    } 
    PrintChar(subset); 
   } 
  } 
 
  //prints time information 
  if(!dead) 
  { 
   for(int i=0;i<4*8;i++) 
   { 
    conv[i]=t%2; //since this method generates a binary 
num that is inverted, rollover will occur when the time exceeds ~429 seconds 
    t/=2; //an additional check for rollover could be done 
here. if this number is greater than 0 by the end of the for loop, then you know 
rollover has occured 



 

179 
 

   } 
 
   for(int j=0;j<4;j++) //bytes are sent to Print char from most 
significant to least significant 
   { 
    for(int i=0;i<8;i++) 
    { 
     subset[i]=conv[i+place]; //remember that bits 
are stored in reverse order 
    } 
    place-=8; //place is an iterator that lets me specify 
the byte to send to print char via the subset array 
    PrintChar(subset); 
   } 
  } 
 } 
 else //if it isn't a .ncd file, output is written to a file with filename 
specified by the user 
  output << setprecision(15) /*set precision forces all numbers to be 
output without an E. this prevents an error in VBTAP*/<< ni.time*1E8 /*time 
converted to shakes*/<< endl; 
} 
 
bool NeutFunc::Deadtime_Check(long double time) 
{ 
 long double crnum = ran2(idum); 
 
 if((PNch[29]!=0)&&crnum<(PNch[29]))//ch 29 
 { 
  if(prevtime[29]==0) 
  { 
   prevtime[29]=time; 
   ncdhit[29]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[29]+deadch)) 
   { 
    prevtime[29]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[29]=time; 
    ncdhit[29]=true; 
    return false; 
   } 
     
  } 
 } 
 else if((PNch[28]!=0)&&crnum<(PNch[29]+PNch[28]))//ch 28 
 { 
  if(prevtime[28]==0) 
  { 



 

180 
 

   prevtime[28]=time; 
   ncdhit[28]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[28]+deadch)) 
   { 
    prevtime[28]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[28]=time; 
    ncdhit[28]=true; 
    return false; 
   } 
     
  } 
 } 
 else if((PNch[27]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]))//ch 27 
 { 
  if(prevtime[27]==0) 
  { 
   prevtime[27]=time; 
   ncdhit[27]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[27]+deadch)) 
   { 
    prevtime[27]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[27]=time; 
    ncdhit[27]=true; 
    return false; 
   } 
     
  } 
 } 
 else if((PNch[26]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]))//ch26 
 { 
  if(prevtime[26]==0) 
  { 
   prevtime[26]=time; 
   ncdhit[26]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[26]+deadch)) 



 

181 
 

   { 
    prevtime[26]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[26]=time; 
    ncdhit[26]=true; 
    return false; 
   } 
     
  } 
 } 
 else 
if((PNch[25]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]))//ch 25 
 { 
  if(prevtime[25]==0) 
  { 
   prevtime[25]=time; 
   ncdhit[25]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[25]+deadch)) 
   { 
    prevtime[25]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[25]=time; 
    ncdhit[25]=true; 
    return false; 
   } 
     
  } 
 } 
 else 
if((PNch[24]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]))//
ch 24 
 { 
  if(prevtime[24]==0) 
  { 
   prevtime[24]=time; 
   ncdhit[24]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[24]+deadch)) 
   { 
    prevtime[24]=time; 
    return true; 
   } 



 

182 
 

   else 
   { 
    prevtime[24]=time; 
    ncdhit[24]=true; 
    return false; 
   } 
     
  } 
 } 
 else 
if((PNch[23]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]))//ch23 
 { 
  if(prevtime[23]==0) 
  { 
   prevtime[23]=time; 
   ncdhit[23]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[23]+deadch)) 
   { 
    prevtime[23]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[23]=time; 
    ncdhit[23]=true; 
    return false; 
   } 
     
  } 
 } 
 else 
if((PNch[22]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]))//ch22 
 { 
  if(prevtime[22]==0) 
  { 
   prevtime[22]=time; 
   ncdhit[22]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[22]+deadch)) 
   { 
    prevtime[22]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[22]=time; 



 

183 
 

    ncdhit[22]=true; 
    return false; 
   } 
     
  } 
 } 
 else 
if((PNch[21]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]))//ch21 
 { 
  if(prevtime[21]==0) 
  { 
   prevtime[21]=time; 
   ncdhit[21]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[21]+deadch)) 
   { 
    prevtime[21]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[21]=time; 
    ncdhit[21]=true; 
    return false; 
   } 
     
  } 
 } 
 else 
if((PNch[20]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]))//ch20 
 { 
  if(prevtime[20]==0) 
  { 
   prevtime[20]=time; 
   ncdhit[20]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[20]+deadch)) 
   { 
    prevtime[20]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[20]=time; 
    ncdhit[20]=true; 
    return false; 
   }   



 

184 
 

  } 
 } 
 else 
if((PNch[19]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]))//ch19 
 { 
  if(prevtime[19]==0) 
  { 
   prevtime[19]=time; 
   ncdhit[19]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[19]+deadch)) 
   { 
    prevtime[19]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[19]=time; 
    ncdhit[19]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[18]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]))//ch18 
 { 
  if(prevtime[18]==0) 
  { 
   prevtime[18]=time; 
   ncdhit[18]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[18]+deadch)) 
   { 
    prevtime[18]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[18]=time; 
    ncdhit[18]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[17]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]))//ch17 



 

185 
 

 { 
  if(prevtime[17]==0) 
  { 
   prevtime[17]=time; 
   ncdhit[17]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[17]+deadch)) 
   { 
    prevtime[17]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[17]=time; 
    ncdhit[17]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[16]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]))//ch16 
 { 
  if(prevtime[16]==0) 
  { 
   prevtime[16]=time; 
   ncdhit[16]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[16]+deadch)) 
   { 
    prevtime[16]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[16]=time; 
    ncdhit[16]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[15]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15])) 
//ch15 
 { 
  if(prevtime[15]==0) 
  { 
   prevtime[15]=time; 



 

186 
 

   ncdhit[15]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[15]+deadch)) 
   { 
    prevtime[15]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[15]=time; 
    ncdhit[15]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[14]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch
[14]))//ch14 
 { 
  if(prevtime[14]==0) 
  { 
   prevtime[14]=time; 
   ncdhit[14]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[14]+deadch)) 
   { 
    prevtime[14]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[14]=time; 
    ncdhit[14]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[13]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch
[14]+PNch[13]))//ch13 
 { 
  if(prevtime[13]==0) 
  { 
   prevtime[13]=time; 
   ncdhit[13]=true; 
   return false; 
  } 



 

187 
 

  else 
  { 
   if(time<(prevtime[13]+deadch)) 
   { 
    prevtime[13]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[13]=time; 
    ncdhit[13]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[12]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch
[14]+PNch[13]+PNch[12]))//ch12 
 { 
  if(prevtime[12]==0) 
  { 
   prevtime[12]=time; 
   ncdhit[12]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[12]+deadch)) 
   { 
    prevtime[12]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[12]=time; 
    ncdhit[12]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[11]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch
[14]+PNch[13]+PNch[12]+PNch[11]))//ch11 
 { 
  if(prevtime[11]==0) 
  { 
   prevtime[11]=time; 
   ncdhit[11]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[11]+deadch)) 



 

188 
 

   { 
    prevtime[11]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[11]=time; 
    ncdhit[11]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[10]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNc
h[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch
[14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]))//ch10 
 { 
  if(prevtime[10]==0) 
  { 
   prevtime[10]=time; 
   ncdhit[10]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[10]+deadch)) 
   { 
    prevtime[10]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[10]=time; 
    ncdhit[10]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[9]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]))//ch9 
 { 
  if(prevtime[9]==0) 
  { 
   prevtime[9]=time; 
   ncdhit[9]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[9]+deadch)) 
   { 
    prevtime[9]=time; 
    return true; 



 

189 
 

   } 
   else 
   { 
    prevtime[9]=time; 
    ncdhit[9]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[8]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]))//ch8 
 { 
  if(prevtime[8]==0) 
  { 
   prevtime[8]=time; 
   ncdhit[8]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[8]+deadch)) 
   { 
    prevtime[8]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[8]=time; 
    ncdhit[8]=true; 
    return false; 
   }   
  } 
 }  
 else 
if((PNch[7]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]))//ch 7 
 { 
  if(prevtime[7]==0) 
  { 
   prevtime[7]=time; 
   ncdhit[7]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[7]+deadch)) 
   { 
    prevtime[7]=time; 
    return true; 
   } 
   else 
   { 



 

190 
 

    prevtime[7]=time; 
    ncdhit[7]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[6]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]+PNch[6]))//ch 6 
 { 
  if(prevtime[6]==0) 
  { 
   prevtime[6]=time; 
   ncdhit[6]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[6]+deadch)) 
   { 
    prevtime[6]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[6]=time; 
    ncdhit[6]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[5]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]+PNch[6]+PNch[5]))/
/ch 5 
 { 
  if(prevtime[5]==0) 
  { 
   prevtime[5]=time; 
   ncdhit[5]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[5]+deadch)) 
   { 
    prevtime[5]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[5]=time; 
    ncdhit[5]=true; 



 

191 
 

    return false; 
   }   
  } 
 } 
 else 
if((PNch[4]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]+PNch[6]+PNch[5]+PN
ch[4]))//ch 4 
 { 
  if(prevtime[4]==0) 
  { 
   prevtime[4]=time; 
   ncdhit[4]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[4]+deadch)) 
   { 
    prevtime[4]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[4]=time; 
    ncdhit[4]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[3]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]+PNch[6]+PNch[5]+PN
ch[4]+PNch[3]))//ch 3 
 { 
  if(prevtime[3]==0) 
  { 
   prevtime[3]=time; 
   ncdhit[3]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[3]+deadch)) 
   { 
    prevtime[3]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[3]=time; 
    ncdhit[3]=true; 
    return false; 



 

192 
 

   }   
  } 
 } 
 else 
if((PNch[2]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]+PNch[6]+PNch[5]+PN
ch[4]+PNch[3]+PNch[2]))//ch 2 
 { 
  if(prevtime[2]==0) 
  { 
   prevtime[2]=time; 
   ncdhit[2]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[2]+deadch)) 
   { 
    prevtime[2]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[2]=time; 
    ncdhit[2]=true; 
    return false; 
   }   
  } 
 } 
 else 
if((PNch[1]!=0)&&crnum<(PNch[29]+PNch[28]+PNch[27]+PNch[26]+PNch[25]+PNch[24]+PNch
[23]+PNch[22]+PNch[21]+PNch[20]+PNch[19]+PNch[18]+PNch[17]+PNch[16]+PNch[15]+PNch[
14]+PNch[13]+PNch[12]+PNch[11]+PNch[10]+PNch[9]+PNch[8]+PNch[7]+PNch[6]+PNch[5]+PN
ch[4]+PNch[3]+PNch[2]+PNch[1]))//ch 1 
 { 
  if(prevtime[1]==0) 
  { 
   prevtime[1]=time; 
   ncdhit[1]=true; 
   return false; 
  } 
  else 
  { 
   if(time<(prevtime[1]+deadch)) 
   { 
    prevtime[1]=time; 
    return true; 
   } 
   else 
   { 
    prevtime[1]=time; 
    ncdhit[1]=true; 
    return false; 
   }   



 

193 
 

  } 
 } 
 else//ch 0 
 { 
  if(PNch[0]!=0) 
  { 
   if(prevtime[0]==0) 
   { 
    prevtime[0]=time; 
    ncdhit[0]=true; 
    return false; 
   } 
   else 
   { 
    if(time<(prevtime[0]+deadch)) 
    { 
     prevtime[0]=time; 
     return true; 
    } 
    else 
    { 
     prevtime[0]=time; 
     ncdhit[0]=true; 
     return false; 
    }   
   } 
  } 
 } 
} 
 
void NeutFunc::PrintChar(int sub[8]) 
{ 
 int ans=0, mult=1; 
 char print; 
 
 for(int i=0;i<8;i++) //converts the binary bit to an integer    
 { 
  ans+=sub[i]*mult;  
  mult*=2; 
 } 
 
 print = (char) ans; //converts the int to a char represented by that int 
value 
 output.write((char *) &print,1); //outputs the char byte to a binary file 
} 
 
void NeutFunc::SortOutput(NeutInfo ni) //list is organized from smallest time to 
largest time 
{ 
 NeutInfo ns,ns1; 
 int size = neutlist.size(); //gets current list size 
 int midpoint = size/2; 
 list<NeutInfo>::reverse_iterator niter; //iterator used to go through the 
list 
 



 

194 
 

 if(neutlist.size()+1>neutlist.max_size()) //checks to ensure that adding 
one more neutron to the list will not exceede the max list size 
 { 
  cout<<"ERROR: There are too many neutrons for the list to sort. 
Please turn off sorting"<<endl; 
  exit(1); //if adding one more neutron to the list does exceede the 
max list size, then the program exits to avoid a fatal error 
 } 
 
 if(neutlist.empty()) //if the list is empty, i simply add the information. 
no need to sort 
 { 
  ns = ni; 
  neutlist.push_front(ns); //adds info to list 
 } 
 else 
 { 
  ns = neutlist.front();  
  ns1 = neutlist.back(); 
  if(ni.time<ns.time) //if the current time is less than the first 
time in the list, the current time is added in front of that time 
  { 
   ns = ni; 
   neutlist.push_front(ns); 
  } 
  else if(ni.time>ns1.time) //if the current time is greater than the 
last time in the list, then the current time is added to the end. it is expected 
that this case occurs the most 
  { 
   ns = ni; 
   neutlist.push_back(ns); 
  } 
  else //looks for where to write time given that the previous 
conditions failed 
  { 
   for(niter=neutlist.rbegin();niter!=neutlist.rend();niter++) 
//iterates starting at the end of the list because it is more likely that the 
current time will be written somewhere close to the end 
   { 
    if(niter->time<ni.time) 
    { 
     ns = ni; 
     neutlist.insert(niter.base(),ns); 
//niter.back() converts niter to a forward iterator, and then points to the niter-
- location. insert then places our current time one in front of the spot indicated 
by niter.base() 
     break; 
    } 
   } 
  } 
 } 
} 
 
void NeutFunc::PrintSorted() //prints all elements in the list, thus emptying the 
list 



 

195 
 

{ 
 NeutInfo ns; 
 
 while(!neutlist.empty()) //while the list isn't empty 
 { 
  ns = neutlist.front(); //gets the element in the front of the list 
(should be smallest time value in the list) 
  Output_Handler(ns); //sends time to output handler for file output 
  neutlist.pop_front(); //deletes first element 
 } 
} 

 
 
 
 

 

 



 

196 
 

APPENDIX E 
 

MCNP deck to find the appropriate window 

 
INL/LANL Photofission Induced Neutron Coincidence/Multiplicity Measurements 
C Scott Stewart June 2012 
C 544g HEU with polyethylene moderation 
C 
C 0 in z is the floor, 0 in x and 0 in y define the point of the PND closest to the Varitron 
on the Left 
C at the cosmic ray shielding polyethylene edge furthest away from the opening for the 
PND. 
C 
C Z = verticle up and down from ground 
C X = distance perpendicular to the photon beam 
C Y = distance parallel to the photon beam 
C 
C 
C 
C 
C -------------------------------- 
C Cell Cards 
C -------------------------------- 
C 
C ==== Detector ==== 
100   1   -0.950    -200 +201 +217                     imp:p=1 imp:n=1 $polyethylene block 
101   4   -2.699    -202 +203 -219 +207                imp:p=1 imp:n=2 $side Al 
102   5   -1.640    -203 +204 -216 +209                imp:p=1 imp:n=2 $side boroflex 
103   3   -8.650    -204 +205 -216 +209                imp:p=1 imp:n=2 $side Cd 
104   4   -2.699    -202 (-207:+219)                   imp:p=1 imp:n=2 $top/bot Al 
105   5   -1.640    -203 ((-219 +218):(+207 -208))     imp:p=1 imp:n=2 $top/bot boroflex 
106   3   -8.650    -203 ((-218 +216):(+208 -209))     imp:p=1 imp:n=2 $top/bot cd 
107   1   -0.950    -205 +221 -215 +209                imp:p=1 imp:n=2 $side poly 
109   1   -0.950    -221 +206 -215 +209                imp:p=1 imp:n=4 $inner side 
polyethylene (different for importance schemes) 
108   1   -0.950    -206 +209 -210                     imp:p=1 imp:n=2 $bot polyethylene plug 
110   4   -1.350    -205 -216 +215                     imp:p=1 imp:n=2 $electronics 
111   4   -2.699    -206 ((-215 +214):(+210 -211))     imp:p=1 imp:n=2 $top/bot caps He3 
112   2   3.294e-4  -206 ((-214 +213):(+211 -212))     imp:p=1 imp:n=2 $top/bot He3 
REF 
113   2   3.294e-4  -206 -213 +212                     imp:p=1 imp:n=8 $He3 active length 
114   7   -0.00119 (-201 +202):(-302 +202):(-217 +202) imp:p=1 imp:n=2 $air in cutout 



 

197 
 

C 
C ==== "Left" of Varitron Translated Detectors ==== 
C Detector 2 
115 LIKE 100 BUT TRCL 100 
116 LIKE 101 BUT TRCL 100 
117 LIKE 102 BUT TRCL 100 
118 LIKE 103 BUT TRCL 100 
119 LIKE 104 BUT TRCL 100 
120 LIKE 105 BUT TRCL 100 
121 LIKE 106 BUT TRCL 100 
122 LIKE 107 BUT TRCL 100 
123 LIKE 108 BUT TRCL 100 
124 LIKE 109 BUT TRCL 100 
125 LIKE 110 BUT TRCL 100 
126 LIKE 111 BUT TRCL 100 
127 LIKE 112 BUT TRCL 100 
128 LIKE 113 BUT TRCL 100 
129 LIKE 114 BUT TRCL 100 
C Detector 3 
130 LIKE 100 BUT TRCL 101 
131 LIKE 101 BUT TRCL 101 
132 LIKE 102 BUT TRCL 101 
133 LIKE 103 BUT TRCL 101 
134 LIKE 104 BUT TRCL 101 
135 LIKE 105 BUT TRCL 101 
136 LIKE 106 BUT TRCL 101 
137 LIKE 107 BUT TRCL 101 
138 LIKE 108 BUT TRCL 101 
139 LIKE 109 BUT TRCL 101 
140 LIKE 110 BUT TRCL 101 
141 LIKE 111 BUT TRCL 101 
142 LIKE 112 BUT TRCL 101 
143 LIKE 113 BUT TRCL 101 
144 LIKE 114 BUT TRCL 101 
C Detector 4 
145 LIKE 100 BUT TRCL 102 
146 LIKE 101 BUT TRCL 102 
147 LIKE 102 BUT TRCL 102 
148 LIKE 103 BUT TRCL 102 
149 LIKE 104 BUT TRCL 102 
150 LIKE 105 BUT TRCL 102 
151 LIKE 106 BUT TRCL 102 
152 LIKE 107 BUT TRCL 102 
153 LIKE 108 BUT TRCL 102 



 

198 
 

154 LIKE 109 BUT TRCL 102 
155 LIKE 110 BUT TRCL 102 
156 LIKE 111 BUT TRCL 102 
157 LIKE 112 BUT TRCL 102 
158 LIKE 113 BUT TRCL 102 
159 LIKE 114 BUT TRCL 102 
C Detector 5 
160 LIKE 100 BUT TRCL 103 
161 LIKE 101 BUT TRCL 103 
162 LIKE 102 BUT TRCL 103 
163 LIKE 103 BUT TRCL 103 
164 LIKE 104 BUT TRCL 103 
165 LIKE 105 BUT TRCL 103 
166 LIKE 106 BUT TRCL 103 
167 LIKE 107 BUT TRCL 103 
168 LIKE 108 BUT TRCL 103 
169 LIKE 109 BUT TRCL 103 
170 LIKE 110 BUT TRCL 103 
171 LIKE 111 BUT TRCL 103 
172 LIKE 112 BUT TRCL 103 
173 LIKE 113 BUT TRCL 103 
174 LIKE 114 BUT TRCL 103 
C Detector 6 
500 LIKE 100 BUT TRCL 104 
501 LIKE 101 BUT TRCL 104 
502 LIKE 102 BUT TRCL 104 
503 LIKE 103 BUT TRCL 104 
504 LIKE 104 BUT TRCL 104 
505 LIKE 105 BUT TRCL 104 
506 LIKE 106 BUT TRCL 104 
507 LIKE 107 BUT TRCL 104 
508 LIKE 108 BUT TRCL 104 
509 LIKE 109 BUT TRCL 104 
510 LIKE 110 BUT TRCL 104 
511 LIKE 111 BUT TRCL 104 
512 LIKE 112 BUT TRCL 104 
513 LIKE 113 BUT TRCL 104 
514 LIKE 114 BUT TRCL 104 
C 
C ==== "Right" of Varitron Detectors ==== 
C Detector 1 
400 LIKE 100 BUT TRCL 110 
401 LIKE 101 BUT TRCL 110 
402 LIKE 102 BUT TRCL 110 



 

199 
 

403 LIKE 103 BUT TRCL 110 
404 LIKE 104 BUT TRCL 110 
405 LIKE 105 BUT TRCL 110 
406 LIKE 106 BUT TRCL 110 
407 LIKE 107 BUT TRCL 110 
408 LIKE 108 BUT TRCL 110 
409 LIKE 109 BUT TRCL 110 
410 LIKE 110 BUT TRCL 110 
411 LIKE 111 BUT TRCL 110 
412 LIKE 112 BUT TRCL 110 
413 LIKE 113 BUT TRCL 110 
414 LIKE 114 BUT TRCL 110 
C Detector 2 
415 LIKE 100 BUT TRCL 111 
416 LIKE 101 BUT TRCL 111 
417 LIKE 102 BUT TRCL 111 
418 LIKE 103 BUT TRCL 111 
419 LIKE 104 BUT TRCL 111 
420 LIKE 105 BUT TRCL 111 
421 LIKE 106 BUT TRCL 111 
422 LIKE 107 BUT TRCL 111 
423 LIKE 108 BUT TRCL 111 
424 LIKE 109 BUT TRCL 111 
425 LIKE 110 BUT TRCL 111 
426 LIKE 111 BUT TRCL 111 
427 LIKE 112 BUT TRCL 111 
428 LIKE 113 BUT TRCL 111 
429 LIKE 114 BUT TRCL 111 
C Detector 3 
430 LIKE 100 BUT TRCL 112 
431 LIKE 101 BUT TRCL 112 
432 LIKE 102 BUT TRCL 112 
433 LIKE 103 BUT TRCL 112 
434 LIKE 104 BUT TRCL 112 
435 LIKE 105 BUT TRCL 112 
436 LIKE 106 BUT TRCL 112 
437 LIKE 107 BUT TRCL 112 
438 LIKE 108 BUT TRCL 112 
439 LIKE 109 BUT TRCL 112 
440 LIKE 110 BUT TRCL 112 
441 LIKE 111 BUT TRCL 112 
442 LIKE 112 BUT TRCL 112 
443 LIKE 113 BUT TRCL 112 
444 LIKE 114 BUT TRCL 112 



 

200 
 

C Detector 4 
445 LIKE 100 BUT TRCL 113 
446 LIKE 101 BUT TRCL 113 
447 LIKE 102 BUT TRCL 113 
448 LIKE 103 BUT TRCL 113 
449 LIKE 104 BUT TRCL 113 
450 LIKE 105 BUT TRCL 113 
451 LIKE 106 BUT TRCL 113 
452 LIKE 107 BUT TRCL 113 
453 LIKE 108 BUT TRCL 113 
454 LIKE 109 BUT TRCL 113 
455 LIKE 110 BUT TRCL 113 
456 LIKE 111 BUT TRCL 113 
457 LIKE 112 BUT TRCL 113 
458 LIKE 113 BUT TRCL 113 
459 LIKE 114 BUT TRCL 113 
C Detector 5 
460 LIKE 100 BUT TRCL 114 
461 LIKE 101 BUT TRCL 114 
462 LIKE 102 BUT TRCL 114 
463 LIKE 103 BUT TRCL 114 
464 LIKE 104 BUT TRCL 114 
465 LIKE 105 BUT TRCL 114 
466 LIKE 106 BUT TRCL 114 
467 LIKE 107 BUT TRCL 114 
468 LIKE 108 BUT TRCL 114 
469 LIKE 109 BUT TRCL 114 
470 LIKE 110 BUT TRCL 114 
471 LIKE 111 BUT TRCL 114 
472 LIKE 112 BUT TRCL 114 
473 LIKE 113 BUT TRCL 114 
474 LIKE 114 BUT TRCL 114 
C Detector 6 
531 LIKE 100 BUT TRCL 115 
516 LIKE 101 BUT TRCL 115 
517 LIKE 102 BUT TRCL 115 
518 LIKE 103 BUT TRCL 115 
519 LIKE 104 BUT TRCL 115 
520 LIKE 105 BUT TRCL 115 
521 LIKE 106 BUT TRCL 115 
522 LIKE 107 BUT TRCL 115 
523 LIKE 108 BUT TRCL 115 
524 LIKE 109 BUT TRCL 115 
525 LIKE 110 BUT TRCL 115 



 

201 
 

526 LIKE 111 BUT TRCL 115 
527 LIKE 112 BUT TRCL 115 
528 LIKE 113 BUT TRCL 115 
529 LIKE 114 BUT TRCL 115 
C ==== Sample ==== 
187   1   -0.950    -253:-254:-255:-256              imp:p=2 imp:n=2 $2" polyethylene 
outside box 
188   1   -0.950    -252 +251 +250                   imp:p=2 imp:n=2 $polyethylene box 
189   9   -19.35    -250:-251                        imp:p=4 imp:n=2 $2 HEU Zipper Plates 
C 
C ==== Floor ==== 
C 190   6   -2.250    -220                             imp:p=1 imp:n=1 $concrete floor 
C 194   10  -7.859    -298                             imp:p=1 imp:n=1 $steel floor 
C 195   6   -2.250    -297                             imp:p=1 imp:n=1 $concrete wall 
C ==== Universe ==== 
191   7   -0.00119  -299 +301 +303 +253 
                    +252 +254 +255 +256              imp:p=2 imp:n=2 $air near detectors 
192   7   -0.00119  +299 -300                        imp:p=1 imp:n=1 $air 
193   0             +300                             imp:p=0 imp:n=0 $void 
 
C -------------------------------- 
C Surface Cards 
C -------------------------------- 
C 
C ==== First "Left" of Varitron Detector ==== 
200   RPP   0.00 12.7   0.00 15.2   0.00 127         $Polyethylene Block 
201   RCC   7.62 7.60 0.00   0.00 0.00 127      5.08 $Cutout 
202   RCC   7.62 7.60 0.00   0.00 0.00 112.88   5.08 $outer Al 
203   RCC   7.62 7.60 0.00   0.00 0.00 112.88   4.86 $outer Boroflex 
204   RCC   7.62 7.60 0.00   0.00 0.00 112.88   3.91 $outer Cd 
205   RCC   7.62 7.60 0.00   0.00 0.00 112.88   3.81 $outer Poly 
221   RCC   7.62 7.60 0.00   0.00 0.00 112.88   2.54 $inner Poly 
206   RCC   7.62 7.60 0.00   0.00 0.00 112.88   1.27 $outer He3 
207   PZ    4.87   $ Al bot/Boroflex bot 
208   PZ    5.82   $ Boroflex bot/Cd bot 
209   PZ    5.92   $ Cd bot/Polyethylene bot plug 
210   PZ    8.46   $ Polyethylene bot plug/He3 bot cap 
211   PZ    12.06  $ He-3 bot cap/bot REF 
212   PZ    13.83  $ bot REF/active he3 
213   PZ    79.29  $ active he3/top REF 
214   PZ    81.06  $ top REF/he3 top cap 
215   PZ    84.66  $ he3 top cap/electronics 
216   PZ    106.96 $ electronics/cd top 
218   PZ    107.06 $ cd top/boroflex top 



 

202 
 

219   PZ    108.01 $ boroflex top/al 
217   RPP   9.84 12.7   3.6 11.6   0.00 127 $air cutout 
C 
C ==== Sample ==== 
250   RPP   60.25 65.35   44.06 44.33   53.4 63.6    $1 HEU Zipper Plate (5.1x10.2x.27 
cm) 
251   RPP   60.25 65.35   46.87 47.14   53.4 63.6    $1 HEU Zipper Plate (5.1x10.2x.27 
cm) 
252   RPP   57.71 67.89   41.52 49.68   50.86 66.14  $1" polyethylene box 
253   RPP   57.71 67.89   36.44 41.52   50.86 66.14  $front 2" poly 
254   RPP   57.71 67.89   49.68 54.76   50.86 66.14  $back 2" poly 
255   RPP   52.63 57.71   41.52 49.68   50.86 66.14  $left side 2" poly 
256   RPP   67.89 72.97   41.52 49.68   50.86 66.14  $right side 2" poly 
C 
C ==== Translation Cutouts ==== 
301   RPP   0.00 12.80    0.00 91.2   0.00 127       $left detectors 
302   RPP   12.7 12.80    0.00 15.2   0.00 127       $air gap in front of detectors 
303   RPP   112.80 125.60 0.00 91.2   0.00 127       $right detectors 
C 
C ==== Room Features ==== 
C 220   RPP   -200 200   -200 316.28   -100 -30         $Concrete floor 
C 297   RPP   216.28 316.28   -200 200   -30 200     $Conrete wall near detectors 
C 298   RPP   -42.8 170.56   -60.445 151.645   -21 0 $Steel floor 
299   RPP   0 125.60   0 91.2     0 127            $air near detectors 
C 
C ==== Universe ==== 
300   RPP   -200 200   -200 200   -200 200 
 
C -------------------------------- 
C Data Cards 
C -------------------------------- 
MODE N 
PRINT 
PHYS:N 20 J J J 21 
C 
C ==== Cutoff Card ==== 
CUT:N 800000 J 0 0 
C 
C ==== Translation Cards ==== 
TR100   0 15.2 0 
TR101   0 30.4 0 
TR102   0 45.6 0 
TR103   0 60.8 0 
TR104   0 76.0 0 



 

203 
 

TR110   125.60 0 0         -1  0  0  0  1  0  0  0  1 
TR111   125.60 15.2 0      -1  0  0  0  1  0  0  0  1 
TR112   125.60 30.4 0      -1  0  0  0  1  0  0  0  1 
TR113   125.60 45.6 0      -1  0  0  0  1  0  0  0  1 
TR114   125.60 60.8 0      -1  0  0  0  1  0  0  0  1 
TR115   125.60 76.0 0      -1  0  0  0  1  0  0  0  1 
C 
C ==== Source Cards ==== 
SDEF PAR=SF X=d2 Y=d1 Z=d3 TME=d4 CEL=189 
SI2   60.25 65.35 
SP2   0 1 
SI1   44.06 47.14 
SP1   0 1 
SI3   53.4 63.6 
SP3   0 1 
SI4   0 400 
SP4   0 1 
C 
C ==== Tallies ==== 
F14:N (113 128 143 158 173 513 
      413 428 443 458 473 528) $He-3 tubes 
T14   2000 398I 800000 
FM14  -1 2 103 
SD14  1 
C 
F24:N 189 $HEU 
T24   2000 398I 800000 
FM24  -1 9 -6 
SD24  1 
FQ0  M T S 
C 
C ==== Material Cards ==== 
C 
C m1 = polyethylene (0.95 g/cc) 
m1    06000.70c   0.33333 
      01001.70c   0.66667 
mt1   poly.60t 
C 
C m2 = He-3 gas (0.001641 g/cc) at 297.2 K (75 degrees F) and 10 atm (3.294e20 
atoms/cc) 
m2    02003.70c   1.0 
C 
C m3 = cadmium (8.65 g/cc) 
m3    48106.70c   0.0125 



 

204 
 

      48108.70c   0.0089 
      48110.70c   0.1249 
      48111.70c   0.1280 
      48112.70c   0.2413 
      48113.70c   0.1222 
      48114.70c   0.2873 
      48116.70c   0.0749 
C 
C m4 = aluminum (2.699 g/cc) 
m4    13027.70c   1.0 
C 
C m5 = boroflex (1.64 g/cc) 
m5    01001.70c   0.327 
      05010.70c   0.281 
      08016.70c   0.196 
      14028.70c   0.181 
      14029.70c   0.009 
      14030.70c   0.006 
C 
C m6 = concrete (2.25 g/cc) 
m6    6000.70c   1.60e-3 
      8016.70c   4.350e-2 
      11023.70c  5.50e-4 
      13027.70c  1.60e-3 
      14000.60c  1.52e-2 
      16032.70c  5.00e-5 
      20000.66c  3.10e-3 
      26000.55c  3.80e-4 
      1001.70c   7.606e-3 
mt6   lwtr.60t 
C 
C m7 = air (0.00119 g/cc) at 297.2 K (75 degrees F) 
m7    07014.70c   .7779 
      07015.70c   .0029 
      08016.70c   .2097 
      18040.70c   .0093 
      06000.70c   .0002 
C 
C m8 = DU (19 g/cc) 
m8    92235.70c  -7.1640E-03 
      92238.70c  -9.9284E-01 
C 
C m9 = ZPPR HEU (19.35 g/cc) 
m9    92235.70c  -9.3300E-01 



 

205 
 

      92234.70c  -9.0600E-03 
      92236.70c  -4.3800E-03 
      92238.70c  -5.3560E-02 
C 
C m10 = Steel (7.859g/cc) 
m10   06000.70c   .020 
      26054.70c   .057 
      26056.70c   .899 
      26057.70c   .021 
      26058.70c   .003 
NPS 1E9 




