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ABSTRACT 

 

 In 1996, scientists discovered a connection between the gene for the human 

protein frataxin (FXN) and the neurodegenerative disease Friedreich’s ataxia (FRDA).  

Decreased FXN levels result in a variety of aberrant phenotypes including loss of 

activity for iron-sulfur containing enzymes, mitochondrial iron accumulation, and 

susceptibility to oxidative stress.  These symptoms are the primary focus of current 

therapeutic efforts.  In contrast our group is pursuing an alternate strategy of first 

defining FXN function at a molecular level then using this information to identify small 

molecule functional replacements.  Recently, our group has discovered that FXN 

functions as an allosteric activator for the human Fe-S cluster assembly complex.  The 

work presented here helps to further define molecular details of FXN activation and 

explain how FRDA missense mutants are functionally compromised.  First, the FRDA 

missense mutants L182H and L182F were investigated.  Unlike other characterized 

FRDA missense mutants, the L182F variant was not compromised in its ability to bind 

and activate the Fe-S assembly complex.  The L182H variant exhibited an altered 

circular dichroism signature; suggesting a change in secondary structure relative to 

native FXN, and rapidly degraded.  Together these studies suggest that L182 variants are 

less stable than native FXN and are likely prone to degradation in FRDA patients.  

Second, as a regulatory role of FXN suggests that its function is likely controlled by 

environmental stimuli, different maturation forms of FXN as well as post-translational 

modification mimics were tested as mechanisms to control FXN regulation.  Here 
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experiments were designed to test if a larger polypeptide form of FXN represents a 

functional form of the protein.  Kinetic and analytical ultracentrifugation studies 

revealed a complex heterogeneous mixture of species some of which can activate the Fe-

S assembly complex.  A previously identified acetylation site was also tested using 

mutants that mimic acetylation.  These mutants had little effect on the ability of FXN to 

bind and activate the assembly complex.  Third, mutagenesis experiments were designed 

in which the FXN surface residues were replaced with alanine and the resulting variants 

were tested in binding and activity assays.  These experiments revealed a localized “hot-

spot” on the surface of FXN that suggests small cyclic peptide mimics might be able to 

replace FXN and function as FRDA therapeutics.  Unexpectedly, one of the FXN 

variants exhibited significantly tighter binding and could have relevance for therapeutic 

development. 



 

iv 
 

 

DEDICATION 

 

I would like to thank my undergraduate chemistry professors and mentors who 

ignited my interest in chemistry, and inspired and supported my pursuits.  Without your 

guidance, I would never have come this far or felt the support that the scientific 

community has to offer its members.   

Over the course of my life I have been blessed with a loving and supportive 

family and loyal friends.  This work is dedicated to each of them, for the specific roles 

they have played in my life and their never failing faith in me.    



 

v 
 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisors, Dr. David Barondeau and Dr. Hong-cai Zhou, 

and my committee members, Dr. Marcetta Darensbourg, Dr. Abraham Clearfield, and 

Dr. James Sacchettini, for their guidance and support throughout the course of this 

research. 

I would like to thank the Barondeau and Zhou group members for their helpful 

insights and discussions during the course of this research.  Additionally, I would like to 

thank my undergraduate student Lusa Yu for her assistance in the laboratory. 



 

vi 
 

 

NOMENCLATURE 

 

DTT Dithiothreitol 

E. coli Escherichia coli 

EXAFS Extended X-ray absorption fine structure spectroscopy 

FRDA Friederich’s Ataxia 

FXN Frataxin (also referred to as Fxn, Yfh1 (yeast frataxin), and CyaY 
 (E. coli frataxin) 
 
HEPES N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid 
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ISCU Human scaffold protein (also referred to as Isu2 and ISCU2) 

ISD11 Auxiliary protein to the human cysteine desulfurase 

NFS1 Human cysteine desulfurase (also referred to as Nfs1) 

PAGE Polyacrylamide gel electrophoresis 

PLP Pyridoxal-5’-phosphate 

ROS Reactive oxygen species 

SD Human NFS1-ISD11 protein complex 

SDU Human NFS1-ISD11-ISCU protein complex 

SDUF Human NFS1-ISD11-ISCU-FXN protein complex 
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CHAPTER I 

 INTRODUCTION 

 

 As suggested by Wächtershäuser iron-sulfur (Fe-S) clusters are a vital 

component of life and likely played a role in the origins of life on Earth [1].  Despite this 

vital role, it was not until the early 1960s that Fe-S clusters were discovered by scientists 

[2-7].  Initial characterization of these newly discovered bioinorganic cofactors in the 

mid-1960s, paved the way for future investigation of these structures both within the 

proteinaceous environment and using synthetic model compounds [2-3, 5, 8].  Today Fe-

S clusters are known to be a vital component of all life forms, with more than 200 

enzyme and protein families containing these ubiquitous cofactors [2-4, 6-10].   

 
 

 
Figure 1-1. Structures of [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters.  Reprinted with 
permission from Nature Chemical Biology, 2(4): 171-174.  Copyright 2006 Nature 
Publishing Group. 
 
 
 
 Although Fe-S clusters exist in several forms, the three most common are the 

[2Fe-2S] rhombic cluster, [3Fe-4S] cluster, and [4Fe-4S]cubane cluster (Figure 1-1) [3].  

Each of these clusters is characterized by a relatively simple composition of iron 

(Fe2+/3+) and inorganic sulfide (S2-), with a tetrahedral coordination of sulfur atoms to the 
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iron sites [4-6].  Since both iron and sulfur can exist in multiple redox states they can 

serve as both electron acceptors and donors [4-5, 7, 10].  This accounts for the wide use 

of Fe-S clusters in electron transfer; as seen in bacterial ferrodoxins, one of the first Fe-S 

cluster proteins to be discovered.  Although Fe-S clusters are typically coordinated to the 

protein scaffold through thiolate ligands, such as cysteine sulfurs, other coordination 

environments, such as histidine, aspartate, glutamine, arginine, serine, and tyrosine are 

possible [3-5, 8].  The combination of these variable ligation environments with the 

chemical properties of iron and sulfur allow for fine tuning of the redox potential of 

individual Fe-S clusters from +300 mV to -500 mV [3, 5].  These seemingly simple, yet 

vast properties of Fe-S clusters that have afforded them a ubiquitous role in biological 

systems, with functions ranging from enzyme catalysis, DNA repair, and gene regulation 

to structural support and environmental sensors of small molecules to iron or sulfur 

donation and sequestration and delivery agents for cofactor assembly [2-5, 7, 10-11]. 

 
 

 
Figure 1-2. Organization of genes in the NIF, ISC, and SUF operons of Azotobacter 

vinelandii (Av), Escherichia coli (Ec), and Thermatoga maritima (Tm).  Reprinted with 
permission from Biochemical Society Transactions, 36: 1112-1119.  Copyright 2008 
Biochemical Society. 
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 Although Fe-S clusters can freely assemble from ferrous iron and sulfide in 

solution, the concentrations needed to facilitate such assembly would be detrimental or 

toxic to biological systems; thus, organisms have developed in vivo assembly systems 

for de novo cluster synthesis [4].  The pioneering work by the Dean and Tokumoto 

groups identified the three Fe-S cluster biosynthesis systems of bacteria (Figure 1-2) 

[12-14].  The first system to be discovered was the NIF or nitrogen fixation system, 

which serves primarily in nitrogen-fixing bacteria as the Fe-S cluster assembly system of 

nitrogenases [5-6, 9].  In contrast the iron sulfur cluster (ISC) and sulfur mobilization 

(SUF) systems can play a general housekeeping role in the iron sulfur cluster assembly 

of bacteria, with the SUF system also specialized for conditions of oxidative stress or 

iron limitation in some organisms.  Regardless of the assembly system(s) used, Fe-S 

cluster biosynthesis can be simplified into three major steps (Figure 1-3) [5-6]: 

1. Conversion of cysteine to alanine and sulfane sulfur by a cysteine desulfurase 

2. De novo cluster assembly on  a scaffold protein 

3. Transfer of the cluster from the scaffold protein to apoprotein targets 

 Although some controversy surrounds the mechanism for cluster assembly on the 

scaffold protein (Figure 1-4), all three assembly systems require multiple protein 

components to facilitate cluster assembly [5, 15].  Specifically, iron-first and sulfur-first 

mechanism have been proposed that invoke dimerization of the scaffold protein.  The 

order of substrate addition and oligomeric state of the scaffold protein for cluster 

synthesis remain unresolved.  
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Figure 1-3. General pathway for Fe-S cluster biosynthesis and transfer to apo target 
proteins. A persulfide forms on the cysteine desulfurase (1), which is then transferred to 
the scaffold protein along with ferrous iron (2) and electrons (3) to build a cluster on the 
scaffold protein (4). Once the cluster is assembled on the scaffold protein it can be 
transferred to apo protein targets (5).  Reprinted with permission from Nature, 
460(7257): 831-838.  Copyright 2009 Nature Publishing Group. 
 
 
 

 
 

 
Figure 1-4. The two models, “Fe first, S second” (top) and “S first, Fe second” (bottom), 
for cluster assembly on the scaffold protein.  Reprinted with permission from Journal of 

Biological Inorganic Chemistry, 10(7): 713-721.  Copyright 2005 Springer Publishing 
Group. 
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 While many prokaryotic systems have been shown to contain two of the three Fe-

S cluster assembly systems, a mitochondrial form of the ISC system is the primary Fe-S 

cluster biosynthesis machinery of eukaryotes [6, 12-14].  In prokaryotes, Fe-S cluster 

assembly components are made in the cytosol and are regulated at the DNA, RNA, and 

protein levels.  In eukaryotes, the genes for Fe-S biosynthesis are nuclear encoded, the 

polypeptides (typically with cleavable targeting sequences) are synthesized in the 

cytosol, and the polypeptides are imported into the mitochondria where the targeting 

sequence is removed to generate the mature proteins [4-6].  The resulting Fe-S 

biosynthetic protein components, which have strong homology to the bacterial ISC 

system, serve the roles of sulfur donor, iron donor, electron source, scaffold protein, and 

accessory/chaperone proteins for cluster transfer.  Defects in many of these eukaryotic 

proteins have been linked to disruption of cellular iron homeostasis, oxidative stress, and 

human disease (Figure 1-5) [7, 16-18]. 

 
 

 
Figure 1-5. Model for iron-sulfur cluster biosynthesis (A) and transfer (B) in the human 
system, with associated diseases and mutations (C).  Reprinted with permission from 
Disease Models & Mechanisms, 5(2): 155-164.  Copyright 2012 The Company of 
Biologists.  
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 In vivo cysteine desulfurase enzymes mobilize sulfur from cysteine, serving as 

the sulfur source for multiple biological pathways [19].  The sulfur donor for cluster 

assembly in humans and eukaryotes is a unique 150 kDa complex, termed SD, of the 

cysteine desulfurase, NFS1, with its 11 kDa auxiliary protein, ISD11, with the sulfur for 

cluster synthesis being produced through the pyridoxal-5’-phosphate (PLP) dependent 

cleavage of L-cysteine to L-alanine (Figure 1-6) [5-6, 20-24].  In contrast to bacterial 

systems where no ISD11 homologue is found, eukaryotes require the presence of this 

auxiliary protein to facilitate the stability and activity of its cysteine desulfurase and 

other ISC components.  Although the crystal structure of human SD has not been 

determined, cysteine desulfurase structures of several homologous proteins from 

prokaryotes have been determined [25-26].  Based on these structures, human NFS1 is 

expected to be a homodimer composed of two domains, with the larger domain 

containing the PLP cofactor and active site and the smaller domain containing the 

catalytic cysteine residue.  Each NFS1 monomer is proposed to form the relevant in vivo 

complex by binding one to two ISD11 per NFS1 monomer [27-28].  The mechanism for 

sulfur release and delivery is initiated by formation of a Schiff base intermediate 

between the cysteine sulfide atom of the substrate cysteine and the PLP cofactor, 

followed by nucleophilic attack of the active site cysteine (C328) on the cysteine-PLP 

ketimine adduct forming a persulfide on C328 and alanine (Figure 1-7) [6, 29]. 
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Figure 1-6. Sulfur-carbon bond cleavage mechanism for the cysteine desulfurase. An 
enzyme-bound persulfide is formed by nucleophilic attack of the thiolate anion by the 
mobile loop cysteine on the sulfur of the substrate cysteine-PLP adduct.  The cysteine is 
shown in blue and the PLP is shown in red.  Reprinted with permission from Annual 

Review of Biochemistry, 74: 247-281.  Copyright 2005 Annual Reviews Publishing 
Group.  
 
 
 

 
Figure 1-7. Mechanism of PLP catalyzed conversion of the cysteine to alanine with 
persulfide formation on the catalytic cysteine of the cysteine desulfurase.  Adapted from 
Zheng et al., Biochemistry 1994 33, 4714-4720. 
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 Extensive biochemical and structural interrogation of the scaffold protein and 

cluster assembly have been performed.  From this the SD complex has been shown to 

directly interact with the scaffold protein ISCU (U) to form a 170 kDa complex, denoted 

SDU [22].  Formation of a covalent interaction between the terminal sulfane atom of the 

NFS1 persulfide with one of the conserved cysteine residues (C104) of ISCU facilitates 

sulfur transfer to the scaffold protein [5-6, 30-32].  Based on structural data from several 

homologues human ISCU is expected to be a highly flexible molten globule-type 

protein, with this flexibility aiding in the multiple protein-protein interactions necessary 

for cluster assembly and transfer [33-38].  As one of the most highly conserved proteins 

in nature ISCU has several invariably conserved residues, including the three cysteine 

residues (C35, C61, and C104) involved in cluster binding.  Based on crystallographic 

and spectroscopic data three residues, the semi-conserved cysteine (C96) and histidine 

(H112) and the invariably conserved aspartate (D37), have been proposed to serve the 

role of the fourth cluster ligand [34-35, 37, 39].  Unpublished data from Barondeau et al 

indicates that Cys96 is dispensable in vitro, thus it is unlikely that this residue serves as 

the fourth cluster ligand [32].  Additionally, mutagenesis data by Cowan et al suggests a 

role for His112 in iron binding and delivery, rather than cluster ligation [40].  Thus the 

D37 aspartate residue, with its proposed role in labilizing the cluster for cluster transfer, 

is likely the fourth cluster ligand [9, 35].  Based on in vitro studies of the A. vinelandii 

ISCU homologue the scaffold protein can assemble both [2Fe-2S] and [4Fe-4S] clusters, 

with the cubane cluster resulting from reductive coupling of two [2Fe-2S] clusters [41-

42].  Such versatility allows ISCU to serve as a scaffold for multiple types of cluster 
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assemblies and could enable it to sense and mediate the cluster distribution of biological 

systems, switching between production of [2Fe-2S] and [4Fe-4S] clusters as needed.   

 Completion of cluster assembly requires two final components, an iron donor and 

an electron source. Once sulfur transfer is complete, the iron donor can supply the 

ferrous iron necessary to complete cluster assembly [5-6].  Although this role was 

initially proposed to belong to the protein frataxin (FXN, F), much dispute remains as to 

the identity of the iron donor (See below for further discussion of frataxin).  More 

recently ISCA has been proposed to serve this function for cluster assembly.  Ferredoxin 

and ferredoxin reductase are proposed to provide the two electrons needed to reduce the 

cysteine sulfane sulfur (S0) to a sulfide (S2-). 

   Upon completion of cluster assembly the human HSCA/HSCB ATP-dependent 

proteins, GRP75/HSP70/mortalin and HSC20, respectively; interact with the ISC 

specific LPPVK binding motif of ISCU to facilitate cluster transfer to apo-protein targets 

[43-46].  In addition to the proteins mentioned above, several other proteins have been 

suggested to serve a role in cluster assembly or transfer; including the glutaredoxin 

GRX5 which has been implicated in the reduction of disulfide bonds within or between 

proteins or as a chaperone for cluster transfer, the alternative scaffold proteins NFU1 and 

ISA, and the HSP70 escort protein HEP1 which has been shown to activate and 

solubilize GRP75 [4, 6, 9, 47-48].  Further investigation will shed more light on the 

specific role of these proteins in human Fe-S cluster biosynthesis. 

 Initial interest in the protein frataxin (FXN, F) was sparked in the mid-1980s, 

when it was identified as the protein responsible for the neurodegenerative disease 
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Friedreich’s ataxia or FRDA (See further discussion of FRDA below) [49-50].  As part 

of the human genome sequencing initiative, expression of frataxin was linked to the 

FRDA or χ25 gene located on chromosome 9q.  Further sequence analysis revealed that 

homologues of human FXN are present in all living organisms, suggesting a vital role 

for this protein [51-52].  Despite this ubiquitous role, wide variability of the protein 

sequence, especially at the N- and C-terminus, and lack of structural data posed 

challenges to elucidating the role of FXN and its homologues.   

 Much needed structural data was obtained in the early 2000s when the human 

FXN and homologous E. coli CyaY structures were determined (Figure 1-8) [51-54].  

Despite having only 25% sequence identity, the structures for the two homologues are 

relatively well conserved and revealed a unique and previously uncharacterized protein 

fold.  The overall tertiary structure of FXN is a compact αβ sandwich with the 

hydrophobic core of the protein being formed from an unique five strand anti-parallel β 

sheet (β1- β5) that packs against two parallel α helices (α1 & α2).  The hydrophobic core 

of the protein is further stabilized by the C-terminal loop of the protein, which fills the 

grove between the two α helices.  Based on structural and biochemical data two unique 

features were identified; the first, an acidic ridge on the α1 helix composed of 12 semi-

conserved acidic residues were proposed as an iron binding site and the second, several 

conserved residues (N146, Q148, Q153, W155, & R165) on the β sheet were suggested 

as a possible location for protein-protein interactions [27, 51-56]. 
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Figure 1-8. Crystal structure of human FXN residues 89-209 (PDB code 3S4M).  Blue 
residues are the 12 semi-conserved acidic residues of FXN.  Pink residues are β-sheet 
residues of FXN proposed to participate in protein-protein interactions.  
 
 
 

 
 

Figure 1-9.  Primary (red) and alternative (blue) processing routes for maturation of 
human FXN.  The numbers indicate the residues present in that form of FXN. 
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 Characterization of FXN was further complicated by the discovery of multiple 

FXN variants and isoforms [57-63].  Frataxin is initially synthesized as a 210 amino acid 

precursor (amino acids 1-210, 23 kDa) which can then be processed via the 

mitochondrial processing peptidase (MPP) or self-proteolysis into one of four forms, 

FXN42-210, FXN56-210, FXN78-210, and FXN81-210.  All four forms have been shown to exist 

in human cells; with FXN81-210, FXN56-210, and FXN78-210 having the ability to replenish 

aconitase activity in frataxin depleted cells.  Additionally while Fxn81-210 and Fxn78-210 

have been shown to exist solely as monomers, both Fxn42-210 and Fxn56-210 have been 

shown to exist in both monomeric and oliogmeric forms.  Although several processing 

routes have been proposed (Figure 1-9), it is now widely accepted that mitochondrial 

processing of FXN occurs in two steps.  The first step is cleavage of the mitochondrial 

targeting sequence (aa 1-41) upon transport of the preprotein (FXN1-210) into the 

mitochondria, followed by further processing to produce the mature form, Fxn81-210 (14 

kDa). 

 Over the past 30 years several roles have been assigned to FXN: (1) iron storage, 

(2) reactive oxygen species (ROS) control, (3) iron chaperone, (4) metabolic switch, and 

(5) iron sensor (Figure 1-10) [64-75].   
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Figure 1-10. Proposed functions of the frataxin protein family.  Reprinted with 
permission from Biochemical Journal, 426(2): e1-e3.  Copyright 2010 Biochemical 
Society Publishing Group. 
 
 
 
Both the iron storage and ROS control roles are attributed to oligomeric states of the 

FXN protein family [69-71, 73-75].  The iron storage role was suggested based on the 

formation of ferrihydrite mineral cores within oligomeric forms of yeast (Yfh1), E. coli 

(CyaY), and human (FXN) frataxin homologues, similar to those seen in the iron storage 

protein ferritin [69-71, 73].  Despite this observation, growing experimental evidence 

contradicts the validity of this role in vivo [76-78].  The ROS control role is directly 

coupled to the iron storage role of FXN stemming from the ability of the ferrihydrite 

core to mediate reactive oxygen species, by employing these species in the reduction of 

Fe2+ to Fe3+ to form the ferrihydrite core [70, 74-75].  As with the role as an iron donor, 

this role has also been brought into question by findings that oligomerization is 

dispensable in vivo and evidence that FXN mediation of ROS causes extensive damage 
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to the protein (See below for further discussion of oligomeric FXN) [75-76].  Until 

recently, the most widely accepted role for FXN was that of an iron chaperone [67-68, 

72].  This role was initially assigned based on the work of Stemmler et al with yeast 

Yfh1 and Cowan et al with human FXN which showed that both monomeric yeast and 

human frataxin bind iron with micromolar affinity [68, 72].  These findings were further 

strengthened when the Cowan group demonstrated that FXN bound iron could be 

transferred to ISCU for in vitro cluster assembly [68].  This was shortly followed by 

results from the Dancis group suggesting that yeast Yfh1 supplied iron for heme 

synthesis [67].  A fourth, metabolic switch, role was proposed for FXN in which FXN 

expression levels served as a switch to govern the flow of iron either for Fe-S cluster 

assembly or for heme synthesis [65].  Frataxin has also been implicated by Pastore et al 

as an iron sensor, based on findings that E. coli CyaY serves as a negative regulator of 

Fe-S cluster biosynthesis in the E. coli system [64].  This regulation would allow CyaY 

to finely tune the amount of Fe-S clusters produced based on the availability of apo 

acceptor proteins.  Finally a general role in iron homeostasis has also been proposed for 

frataxin, due to the ubiquitous observation of increased iron import in the mitochondria 

and decreased cytosolic iron levels upon depletion or deletion of the FXN gene in 

prokaryotes and eukaryotes [79-81].  More recently, frataxin was found to interact with 

both NFS1/ISD11 and ISCU to form a four protein complex, denoted SDUF [22].  

Frataxin binding to SDU dramatically impacts the KM for cysteine from 0.59 to 0.011 

mM and increases the catalytic efficiency (kcat/KM) of Nsf1 more than 300 fold from 25 

(SDU) to 7,900 M-1s-1 (SDUF).  This rate (kcat/KM) is further stimulated to 10,500 M-1s-1 



 

15 
 

 

with the addition of ferrous iron.  These results indicate that frataxin, in combination 

with ferrous iron, acts as an allosteric activator of the SDU complex, suggesting a pre-

equilibrium model for stimulation of sulfur transfer and Fe-S cluster biosynthesis (Figure 

1-11).  These results have recently been confirmed for Fe-S cluster assembly in the 

mouse system [28].  Additionally Pastore et al has also proposed a regulator role for the 

bacterial frataxin homologue CyaY, with CyaY serving as an inhibitor for Fe-S cluster 

biosynthesis in the bacterial system [64].  The use of human FXN as an allosteric 

activator for Fe-S cluster biosynthesis is also supported by data from Barondeau et al 

showing a role reversal between frataxin homologues in the prokaryotic and eukaryotic 

systems [82].   

 
 

 
Figure 1-11. Pre-equilibrium model of FXN regulation of Fe-S cluster assembly. In the 
absence of FXN an “Off” conformation of SDU is favored, which limits the cysteine 
desulfurase and Fe-S cluster activity.  Binding of FXN to SDU stabilizes the complex 
converting it to an “On” state, which promotes cysteine desulfurase activity and Fe-S 
cluster assembly.  Reprinted with permission from Biochemistry, 51(12): 2506-2514.  
Copyright 2012 American Chemical Society. 
 
 
 
 The work presented here builds on the allosteric activator model for FXN, 

providing a map of residues involved in the interaction with SDU.  Additionally the 

properties of FXN variants, including clinical mutant L182F and oligomeric FXN56-210, 
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were interrogated.  Taken together this data has implications for future development of 

therapeutics for the disease Friedreich’s ataxia. 
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CHAPTER II 

KINETIC AND STRUCTURAL INTERROGATION OF THE  

FRIEDREICH’S ATAXIA VARIANTS L182H & L182F AND  

ACETYLATION MIMICS OF K197  

 

INTRODUCTION 

 Several human diseases including sideroblastic anemia, mitochondrial 

encephalomyopathy, and Friedreich’s Ataxia (FRDA) have been linked to mutations in 

Fe-S cluster biosynthesis proteins [6-7, 17, 83].  FRDA is an autosomal recessive 

neurodegenerative disease [84-86].  As the most common form of hereditary ataxia, 

FRDA has an estimated prevalence of 1 in 50,000 and an estimated carrier rate between 

1:60 and 1:120 in the European population.  The disease is characterized by limb and 

gait ataxia (loss of coordination), dysathria (motor speech disorder resulting in poor 

articulation), sensory loss, diabetes, and cardiomyopathy (most frequent cause of death 

in patients).  Onset of symptoms typically occurs before the age of 25 years, with most 

patients presenting symptoms in their pre-teen to early teen years.   

 About 95% of FRDA patients are homozygous for an unstable GAA trinucleotide 

repeat expansion on intron 1 of the FXN gene [86-88].  A strong correlation has been 

determined been the GAA repeat length of the shorter allele of these patients and the age 

of onset and disease progression [85].  These expanded GAA sequences range from 44 

to 1,700 repeats, compared to the range of 6 to 36 repeats seen in unaffected individuals, 

and result in non-B type “sticky” DNA structures [86-87, 89].  These sticky DNA 
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structures limit DNA replication and repair, FXN RNA levels, and protein expression.  

In vivo consequences of the decreased levels of FXN are the loss of Fe-S enzyme 

activity, iron accumulation in the mitochondria, and increased susceptibility to oxidative 

stress (Figure 2-1).   

 
 

 
Figure 2-1. Model of the pathological mechanism of FRDA.  Reprinted with permission 
from Human Molecular Genetics, 19 (R1): R103-R110. Copyright 2010 Oxford 
University Press. 
 
 
 
 The remaining ~5% of patients are heterozygous for a GAA expansion on one 

allele and one of 43 identified mutations on the other allele [86, 88].  Included in these 

mutations are 17 identified point mutants of the FXN gene (Figure 2-2) [86].  The 
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clinical phenotypes of these patients are more complex, lacking the correlation between 

disease phenotype and GAA repeat length seen in homozygous patients [86, 90].  Some 

patients demonstrate typical FRDA symptoms, consistent with those seen in the 

homozygous population (GAA repeat expansion on both FXN alleles), whereas other 

individuals exhibit milder or more severe neurodegenerative symptoms.  Hypotheses to 

define the function of FXN and correlate the point mutants on FXN with the clinical 

phenotype for heterozygous patients is complicated by the inability to separate the 

effects of the GAA expansion from those of the point mutation, which could alter the 

stability and/or function of FXN.    

 
 

 
Figure 2-2. Crystal structure of human frataxin residues 89-209 (PDB code: 3S4M), with 
residues of identified FRDA mutants shown in purple.  Residue labels indicate the 
FRDA point mutant(s) known to occur at each residue. 
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 Coupling in vivo and in vitro characterization of FRDA point mutations (Table 2-

1) will lead to an improved understanding of the function of FXN and may provide 

insight into new therapeutic approaches for FRDA [86-88, 90-100].  Three factors have 

been suggested to play a role in the in vivo phenotypes of FRDA point mutations: 1.) 

processing defects, 2.) kinetic impairment, and 3.) loss of protein stability [54, 57, 86, 

92-94, 99].  In vivo work has identified five mutants (R40C, G130V, I154F, L156P, & 

W173G) with apparent processing defects, resulting in reduced levels of the mature 

FXN81-210 protein [54, 57, 86].  Findings by Barondeau et al suggest an allosteric 

activator role for human FXN with the Fe-S cluster assembly complex (SDU) [22].  This 

role is further supported by findings from the Barondeau group showing kinetic 

impairment of FRDA mutants from the conserved β-sheet region of FXN [92, 99].  All 

five clinical mutants (N146K, Q148R, I154F, W155R & R165C) were found to have 

either defects in binding and/or activation of the cysteine desulfurase and Fe-S cluster 

biosynthesis of the SDU complex.  Finally significant protein instability has been 

demonstrated for three FRDA clinical mutants (D122Y, G130V, & I154F) [93-94].  

 More recently several post-translational modifications, including lysine 

acetylation, carbonylation, nitration, and ubiquitination, have been identified on FXN 

[103-106].  These modifications present additional aspects of FXN for investigation, as 

they likely modulate in vivo functions of FXN such as protein-protein interactions and 

could play a role in disease.  One such post-translational modification was identified by 

Denu et al in a calorie restricted mouse model deleted of the mitochondrial deacetylase 

SIRT3 [104].  Based on these results mouse K194 (K197 in human) is acetylated and is 
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proposed to play an in vivo role in ubiquitin/acetylation cross talk for FXN.  This work 

interrogates the stability and function of FRDA clinical mutants and the function of 

acetylation mimics in the context of the SDU complex. 

 

Table 2-1. In vivo and in vitro characterization of Friedreich’s ataxia point mutants. 
FXN 

Isoform 1 

Mutants

Disease 

Phenotype b

GAA Expansion Size 

of Other Allele

In vivo  Frataxin 

Levels (%)

In vivo  Processing 

Defects

Tm Values 

(°C)

Cysteine 

Desulfurase 

Activity 

(units/min-1)

Fe-S Cluster 

Formation 

(units/min-1)

FXN Kd 

(μM)

kcat 

(min-1)

KM
Cys 

(mM)

kcat/KM 

(M-1s-1)

Wild-type None  6-36 100% 66.3 n,o, 62 p ++ 8.25 + 0.90 s 12.3 + 0.4 s 0.22 + 0.05 s 8.5 + 0.3 s 0.014 + 0.002 s 9800 + 1700 s

R40C+ Typical

normal 

expansion c
mutates MPP cleavage site

FXN1-210 accumulation b,c

L106S Atypical (mild) 832 d, 840 e 5.9 d, ND e

D122Y Atypical (mild) 750 f 50.4 n

G130V Atypical (mild)

800 f, 840(2) d, 

866(3) f, 986 d, 994 g, 

1000 f, 1033 f, 1080 h,  

1330 h

ND f, 14.5 d, 12.4 d,

ND(3) f, 6.6 d, ND g,

ND f, ND f, ND h,

ND h
reduced FXN81-210 levels 

slower processing rate b 43.2 n

N146K Atypical (mild) 820 i 1.08 + 0.08 q 2.8 + 0.3 q 6.25 + 1.40 q 4.0 + 0.1 q 0.019 + 0.004 q 3500 + 700 q

Q148R Typical 1.29 + 0.20 q 2.9 + 0.2 q 0.85 + 0.15 q 2.0 + 0.1 q 0.019 + 0.004 q 1800 + 300 q

I154F Typical

625 b, 633 d, 700 f, 

800 f, 920(2) f, 

960 f, 1010 j

ND b, 17.6 d, ND f 

ND f, ND f, 

ND f, ND j
reduced FXN81-210 levels

slower processing rate b 50.7 o, 50 p ++ 4.14 + 0.20 r 7.6 + 0.5 r 0.63 + 0.14 r 6.6 + 0.4 r 0.025 + 0.004 r 4400 + 800 r

W155R Typical (early onset) 734 d, 750 b 17.9 d, ND b 61.4 o, 55 p ++ 0.60 + 0.07 r 0.9 + 0.1 r 6.73 + 1.28 r 1.8 + 0.1 r 0.013 + 0.003 r 2300 + 500 r

L156P Typical 366 f reduced FXN81-210 levels b

R165C Atypical (mild) 380 h, 1000 k, 1000 d ND h, ND k, 46.4 d 1.26 + 0.10 q 4.1 + 0.9 q 10.40 + 2.26 q 8.1 + 0.1 q 0.012 + 0.001 q 11000 + 1400 q

R165P Typical (early onset) 940 l, 1100 l

W173G Typical

530 j, 570 j, 

620 j, 720 f, 820 j
6.9 j, ND j, 18.9 j, ND f, 

14.3 j
Inhibits 2nd cleavage step

FXN42-210 accumlation b, m  

L182F Atypical (mild) 730 h

L182H Typical 800 f  

H183R Typical 1000 f

L186R Typical 920 i

L198R Typical  

S202C a Typical  
+  Mutation identified in a patient with hypertrophic cardiomyopathy containing normal GAA repeat lengths on the FXN gene. [100]  
++  Used FXN construct containing residues 63-210. [54] 
a.)  Roman & Santos, PLoS ONE, 2012. [101] 
b.)  Santos & Lesuisse, Antioxidants & Redox Signaling, 2010. [86] 
c.)  Van Driest & Acerman, Molecular Genetics and Metabolism, 2005.  [100] 
d.)  Deutsch & Lynch, Molecular Genetics & Metabolism, 2010. [102] 
e.)  Bartolo & Prior, American Journal of Medical Genetics, 1998. [91] 
f.)  Cossée & Pandolfo, Annals of Neurology, 1999. [87] 
g.)  Diehl & Natowicz, Neurogenetics, 2010. [95] 
h.)  Forrest & Nicholson, Neurogenetics, 1998. [96]  
i.)  Zuhlke & Schwinger, European Journal of Human Genetics, 2004. [88] 
j.)  Gellera & Taroni, Neurogenetics, 2007. [97] 
k.)  McCormack & Lynch, Journal of Neurology, Neurosurgery, & Psychiatry, 2000. [98] 
m.)  Cavadini & Isaya, The Journal of Biological Chemistry, 2000. [57] 
n.)  Correia & Gomes, FEBS Journal, 2008. [94] 
o.)  Correia & Gomes, Biochemistry Journal, 2006. [93] 
p.)  Musco & Pastore, Structure, 2000. [54] 
q.)  Bridwell-Rabb & Barondeau, Biochemistry, 2011. [92] 
r.)  Tsai & Barondeau, Biochemistry, 2011. [99] 
s.)  Tsai & Barondeau, Biochemistry, 2010. [22] 
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EXPERIMENTAL PROCEDURES 

 Protein Preparation.  The point mutations (L182H, L182F, K197A, K197Q, 

K197R, and K197C) were introduced into a pET11a plasmid containing a codon 

optimized human FXN gene (FXN Δ1-55), lacking the first 55 amino acids, using the 

QuikChange method (Stratagene) [22].  The individual mutations were confirmed by 

DNA sequencing (Texas A&M University Gene Technology Laboratory).  The plasmids 

containing each mutant were transformed into E. coli BL21(DE3) competent cells and 

grown at 37 °C, until an OD600 of ~0.7 was obtained.  Protein expression was then 

induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and cells were 

incubated at 16 °C for 16 hours.  The cells were then harvested by centrifugation and 

lysed by sonication (Branson Sonifier 450) in 50 mM Tris pH 7.5.  The supernatant for 

the soluble variants (L182F, K197A, K197Q, K197C) was loaded onto an anion 

exchange column (26/20 POROS 60HQ, Applied Biosystems) and eluted with a linear 

gradient from 0 to 800 mM NaCl in 50 mM Tris pH 7.5.  The fractions corresponding to 

monomeric frataxin were collected, concentrated, and loaded onto either a Sephacryl 

S100 or S300 (26/60, GE Healthcare) size exclusion column equilibrated with 50 mM 

HEPES, 150 mM NaCl pH 7.5.  The L182H FXN mutant was isolated using the 

guanidine hydrochloride refolding procedure from Palmer and Wingfield [107].  The 

L182H protein extract was then refolded using the Pierce Protein Refolding Kit protocol 

and dialyzed into 50 mM Tris pH 7.5.  Protein refolding was initially analyzed by 

monitoring the UV-vis absorbance ratio between 260 nm, 270 nm, and 280 nm of each 

refolding condition, and the secondary structure of identified conditions was analyzed by 
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circular dichroism.  Protein concentrations for each mutant were calculated using their 

absorbance at 280 nm using an extinction coefficient of 26030 M-1cm-1 [108].  The 

ISCU2 and NFS1/ISD11 proteins were purified as previously described and their protein 

concentrations determined using extinction coefficients of 10,900 M-1cm-1 (PLP) and 

8250 M-1cm-1 based on their absorbance at 420 nm and 280 nm, respectively [22, 108]. 

 Cysteine Desulfurase Activity Measurements.  Reactions were performed as 

previously described using a total volume of 800 μL [22, 109-110].   The initial reaction 

mixtures containing 0.5 μM NFS1/ISD11 (SD), 1.5 uM ISCU2, 1.5 μM FXN (or FXN 

point mutant), 10 μM pyridoxal-5’-phosphate (PLP), 2 mM dithiothreitol (DTT), 5 μM 

Fe(NH4)2(SO4)2, and 50 mM Tris, 250 mM NaCl pH 8.0 were incubated for 30 minutes 

in an anaerobic glovebox at ~14 °C [22].  The cysteine desulfurase reaction was initiated 

with the addition of 100 μM L-cysteine at 37 °C, and quenched with 100 μL each of 20 

mM N,N-dimethyl-p-phenylenediamine in 7.2 N HCl and 30 mM FeCl3 in 1.2 N HCl.  

Following 20 minute incubation at 37 °C and centrifugation for 5 minutes at 12,000 rpm, 

the methylene blue formation was measured at 670 nm and converted to sulfide 

production using a Na2S standard curve.  The rate is expressed in units of mol sulfide per 

mol SD per minute at 37 °C.  The cysteine desulfurase reaction rates were also 

determined for increasing concentrations of FXN and FXN mutants, in order to 

determine the number of equivalents of each variant required to saturate the cysteine 

desulfurase activity. 

 Michaelis-Menten Kinetics for Frataxin Variants in SDUF Complex.  Saturating 

amounts of the FXN mutants were added to a standard reaction mixture of 0.5 μM (SD), 
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1.5 uM ISCU2, 10 μM pyridoxal-5’-phosphate (PLP), 2 mM dithiothreitol (DTT), 5 μM 

Fe(NH4)2(SO4)2, and 50 mM Tris, 250 mM NaCl pH 8.0 [92, 99].  Reactions were 

incubated for 30 minutes in an anaerobic glovebox before being initiated with the 

addition of 12.5 - 600 μM L-cysteine.  The rate of cysteine desulfurase activity was 

analyzed as above.  The reaction rates were plotted verses L-cysteine concentration and 

fit with the Michaelis-Menten equation in KaleidaGraph.  The kcat was determined at 

varying FXN concentrations and used to determine the binding constant of FXN to the 

SDU complex.  These results were fit as a type II allosteric activator using Eq. 2-1 in 

KaleidaGraph, where the [SDUF] is calculated as shown in Eq. 2-2 [32]. 

 

           (Eq. 2-1) 

 

    (Eq. 2-2) 
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RESULTS 

 Clinical Mutant and Acetylation Mimics have Little Effect on Fe-S Assembly 

Complex Activity.  The L182F, K197A, K197C, K197Q, & K197R mutants were 

expressed in E. coli and purified to >95% homogeneity.  During the protein purification 

process the Δ1-55 FXN construct spontaneously truncated to produce the mature 

(FXN81-210) form of the protein [32, 111].  The ability of the clinical mutant (L182F) and 

acetylation mimics (K197A, K197Q, K197R) to stimulate the cysteine desulfurase 

activity of the SDU complex was investigated.  In order to approximate in vivo cellular 

conditions 100 μM L-cysteine and equal amounts of the FXN variants were used [22].  

All four mutants showed similar cysteine desulfurase activities to that of the wild-type 

protein, with the activity of the K197R variant slightly elevated compared to that with 

the addition of wild-type FXN (Figure. 2-3).     

 Michaelis-Menten Kinetic Parameters for Assembly Complexes with Frataxin 

Variants.  Michaelis-Menten parameters for the cysteine desulfurase reaction were 

determined after the addition of the FXN FRDA L182F variant and the acetylation 

mimicking K197 mutants.  First, the cysteine desulfurase activity was measured as a 

function of added FXN variant to determine the number of equivalents necessary to 

saturate the enzymatic activity and overcome any differences in the ability of the FXN 

variants to bind to the SDU complex and activate the cysteine desulfurase.  The cysteine 

desulfurase activity saturated after the addition of 3eq for FXN, 5eq of the L182F 

variant, and 10 eq for the K197A, K197Q, and K197R variants (data not shown).  

Second, Michaelis-Menten parameters kcat and KM were determined by monitoring the 
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cysteine desulfurase activity as a function of L-cysteine using the previously determined 

saturating amounts of FXN (Table 2-2 & Figure 2-4).  Third, the FXN binding constants 

(Kd) to the SDU complex for the L182F and K197Q FXN variants were determined by 

measuring the kcat as a function of FXN concentration (Figure 2-5 & Table 2-2). 

 

 

 
Figure 2-3. Bar charts of the cysteine desulfurase activity of the L182F mutant (top) and 
the acetylation mutants K197A, K197Q, and K197R (bottom).  Red bars represent 
samples without ferrous iron and blue bars are samples with ferrous iron. 
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Figure 2-4. Determination of the Michaelis-Menten parameters kcat and KM for FXN 
variants L182F and K197Q.  The methylene blue assay rates were determined at 
saturating concentrations of FXN variants and varied cysteine concentrations.  The data 
points and fit to the Michaelis-Menten equation are displayed in red (WT), blue (L182F), 
and green (K197Q).  The R2 values are 0.92 (WT), 0.89 (L182F), and 0.87 (K197Q). 
 

 

 

          Table 2-2. Kinetic parameters for SDU with FXN variants L182F & K197Q 
Complex 
 

FXN Kd  
(μM) 

kcat 
(min-1) 

KM
Cys 

(mM) 
kcat/KM 
(M-1/s-1) 

SDU + FXN 0.07 + 0.04 9.0 + 0.7 0.025 + 0.008 6000 + 1900 
SDU + L182F 0.05 + 0.02 8.2 + 0.7 0.020 + 0.007 6900 + 2400 
SDU + K197Q 0.03 + 0.01 8.6 + 0.9 0.024 + 0.010 6000 + 2500 
SDU NA 0.37 + 0.05 0.514 + 0.212 12 + 5 
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Figure 2-5. Determination of binding constants for FXN variants L182F (blue, top) and 
K197Q (green, bottom).  The kcat values were determined at varying FXN 
concentrations.  The data is fit as a type II allosteric activator using Eq. 2-1.  The R2 
values are 0.97 (L182F) and 0.99 (K197Q). 
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 Circular Dichroism Analysis of the L182H FXN Variant.  As the L182H variant 

expressed in the insoluble fraction, analysis of protein refolding was required.  Initial 

analysis of the refolding conditions through comparison of the UV-vis absorbance ratios 

at 260 nm, 270 nm, and 280 nm was performed.  Folded samples should have a higher 

absorbance level at 280 nm, while unfolded samples will have a higher absorbance level 

at 260 nm.  Based on this, three possible refolding conditions (3, 7, & 8) from the Pierce 

Protein Refolding Kit protocol were identified.  Circular dichroism (CD) analysis of the 

secondary structure of the L182H mutant in all three conditions, determined that only 

condition 8 (55 mM Tris pH 8.2, 21 mM NaCl, 0.88 mM KCl, 1.1 M guanidine 

hydrochloride, and 0.44 M arginine) resulted in folded protein.  When assessing the 

secondary structure of a protein by CD, three distinct features are used.  Within the CD 

spectrum of a folded protein α helices exhibit peaks at about 208 nm and 222 nm, while 

β-sheets show a single peak at about 212 nm.  In contrast proteins completely lacking 

secondary structural elements (random coil), are missing these features.  Instead they 

demonstrate a sharp peak around 200 nm and an essentially baseline spectrum from 210-

250 nm.  Analysis of the secondary structural elements of wild-type FXN, are in good 

agreement with the expected spectral features for a well folded protein containing α 

helices and β-sheets.  Comparison of the spectra of the L182H variant and wild-type 

FXN shows similarities in the overall spectral shape; however the L182H spectrum is 

much broader than that of wild-type FXN.  Although the mutant appears to regain 

secondary structure, the broadened spectrum suggests that a slight difference in overall 

fold is present within the L182H variant (Figure 2-6).  An instability or disruption of the 
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protein fold is further supported by CD analysis revealing loss of the protein fold after 

two days, as evidenced by a CD spectrum corresponding to a random coil structure.   

 
 

 

 
Figure 2-6. Circular dichroism spectra for refolding condition 8 with L182H (top) and 
wild-type FXN (bottom). 
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DISCUSSION 

 The clinical Friedreich’s ataxia (FRDA) mutants N146K, Q148R, I154F, 

W155R, and R165C have previously been shown to exhibit compromised binding to the 

SDU complex and defects in the ability to activate the cysteine desulfurase [92, 99].  

Based on the available biochemical data, four different classifications of FXN mutants 

have been proposed.  The Class I variants are characterized by both a significant binding 

and activation defect of the cysteine desulfurase; with W155R exhibiting a 78-fold 

weaker binding and about 20% of the activity of wild-type FXN.  Class II variants, 

including R165C and N146K, demonstrate weak binding interactions (decreased 144-

fold and 85-fold, respectively), but only modest impairment of activity (95% and 53% 

activity of wild-type, respectively).  In contrast the Class III variant Q148R has only a 

modest 10-fold decrease in binding, but significantly reduced activation of the cysteine 

desulfurase (about 20% of wild-type activity).  Finally the Class IV variants have only 

modest defects in binding and activation of the cysteine desulfurase, where I154F shows 

a 6-fold decrease in binding and 75% of wild-type activity.  Given these classifications 

the FRDA L182F mutant, which exhibits wild-type binding and 91% activation of the 

cysteine desulfurase, belongs to the Class IV FXN mutants. 

 Although the results of Barondeau et al suggest that kinetic parameters play a 

primary role in the FRDA disease phenotype, two other factors have also been identified 

[57, 86, 92-94, 99-100].  The first involves disruption of the processing route of frataxin, 

either at the precursor (FXN1-210) or intermediate (FXN42-210) steps [57, 86, 100].  

Impairment of this process has been demonstrated in several FRDA mutants, including 
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I154F, and is proposed to affect disease phenotype through reduced levels of mature 

protein.  Additionally work by Gomes et al demonstrates that protein stability could play 

a role in the FRDA phenotype [93-94].  Although a difference of only 5 °C is observed 

between the melting temperature of wild-type FXN and W155R, a difference of more 

than 15 °C is observed for the D122Y, G130V, and I154F clinical mutants.  Location of 

FXN residue L182 inside the protein core suggests that mutation of a hydrophobic 

leucine to a bulkier hydrophobic phenylalanine residue could have an impact on the 

overall protein stability [54, 101].  While this conservative mutation would not disrupt 

the hydrophobic nature of the protein core it could cause local distortion or 

rearrangement of the structure, which could alter the function of FXN.  Furthermore 

despite eukaryotic conservation of a leucine at residue 182, in prokaryotes this residue is 

typically replaced by a phenylalanine which forms a π-π stacking interaction with a 

neighboring tryptophan [96].  The presence of W173 near the L182F mutation site could 

facilitate a similar π-π stacking interaction in this group of FRDA patients (Figure 2-7).  

Such an interaction in human FXN would require movement of the loop region 

connecting β5 and α2, which would disrupt the secondary structure of the protein. 
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Figure 2-7. Structural model of the proposed π-π stacking interaction between 
tryptophan 173 and phenylalanine 182 in the FRDA L182F mutant.  Model was made 
using the human FXN crystal structure residues 89-209 (PDB code: 3S4M). 
 
 
 
Further investigation of the overall protein stability and secondary structure of all FRDA 

clinical mutants is required to fully assess the role of protein stability verses kinetic 

inhibition in disease phenotype.  Initial extraction and refolding work with the insoluble 

L182H mutant shows promise for this technique for other FRDA mutants (G130V, 

W173G, and L156P) expressed as inclusion bodies with the Barondeau et al FXN 

construct [22].  However use of a His-tagged FXN construct (residues 91-210) should 

also been considered for these mutants, as soluble expression of the G130V mutant has 

been shown under these conditions [94].  Soluble, truncated expression of these 

mutations would allow for investigation of their protein stability and secondary 

structure, as well as their kinetic properties.  
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 Initial work with the lysine acetylation mimics of K197 suggests that this residue 

does not impact interactions with the SDU complex.  However the mouse frataxin 

homologue only contains three C-terminal lysine residues, while human FXN contains 

four (K192, K195, K197, and K208), suggesting the possibility that this post-

translational modification is located at one of the other sites in the human system (Figure 

2-8).  As a result additional in vitro work is warranted to determine if lysine acetylation 

mimics, at these sites, perturb the FXN/SDU interaction or the interaction of FXN with 

the cluster transfer chaperones.  Analysis of the alanine(A), arginine (R), and glutamine 

(Q) point mutations along with conversion of the cysteine mutant to an acetyl lysine 

mimic using previously published methods will allow for more in-depth analysis of the 

role of this post-translational modification [112-115]. 

 
 

 
Figure 2-8. Crystal structure of human frataxin residues 89-209 (PDB code: 3S4M), with 
the four C-terminal lysine residues shown in orange.
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CHAPTER III 

 ALANINE SCANNING OF THE FRATAXIN (FXN) SURFACE IDENTIFIES A 

HOTSPOT FOR BINDING AND ACTIVATION WITH THE SDU COMPLEX 

 

INTRODUCTION 

 Defects in the frataxin (FXN) protein have been shown to cause the 

neurodegenerative disease Friedreich’s Ataxia (FRDA), a progressive degenerative 

disease of children and adolescents that ultimately leads to premature death [49-50, 84].  

Large research efforts to define the function of FXN and develop therapeutic approaches 

for the treatment of FRDA have been launched since the discovery of the link between 

FRDA and the FXN gene in 1996.  Unfortunately, these efforts have not resulted in an 

effective FRDA therapy and the disease symptoms are often simply managed through 

chelation therapy to restrict mitochondrial iron accumulation and antioxidant treatment 

to limit ROS damage in patients [7, 16].  Although many roles have been proposed for 

the frataxin family of proteins, emerging evidence suggests a regulatory role in Fe-S 

cluster biosynthesis [22, 64, 82, 116].  FXN is required to interact with the Fe-S cluster 

biosynthesis machinery to perform such a regulatory function.  As mutations that 

decrease these protein-protein interactions might be linked to FRDA, it is essential to 

define these interactions both in terms of identifying frataxin binding partners and also 

which residues on those proteins contribute to frataxin-based regulation.   
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Figure 3-1. Cartoon representation of the protein-protein interactions between FXN and 
the components of the Fe-S cluster assembly system.  Reprinted with permission from 
Human Molecular Genetics, 16(8): 929-941.  Copyright 2007 Oxford University Press. 
 
 
 
 Immunoprecipitation and pull-down assays by Cortopassi and coworkers suggest 

FXN interacts with the core components of the human Fe-S cluster assembly system 

NFS1/ISD11 and ISCU; as well as with the chaperones GRP75, HSP60, and HSC20 

(Figure 3-1) [45, 117].  Many of these protein-protein interactions have been confirmed 

by others in the yeast and E. coli Fe-S cluster assembly systems [55-56, 118].  This 

combined with the discovery by Barondeau et al and others of a functional four protein 

complex between FXN, NFS1/ISD11, and ISCU (named SDUF) provides validation to 

the role of frataxin in Fe-S cluster biosynthesis [22, 27-28].  Taken together these results 

suggest that FXN interacts with a preformed NFS1/ISD11/ISCU (SDU) complex, and 

interaction of FXN with this complex significantly increases the rate of the cysteine 

desulfurase and Fe-S cluster assembly on the scaffold protein.  Small-angle X-ray 

scattering data and structural analysis of the analogous E. coli IscS/IscU/CyaY complex 

(IscS, IscU, and CyaY are homologs of human NFS1, ISCU, and FXN, respectively) 
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suggests that CyaY binds near the dimer interface of the cysteine desulfurase IscS, while 

the scaffold protein IscU binds near the periphery of the IscS dimer (Figure 3-2) [119].  

This arrangement not only allows for interaction of IscS with CyaY and IscU, but also 

allows for interaction between IscU and CyaY.   

 
 

 
Figure 3-2. Molecular model of the CyaY/IscS/IscU complex from small-angle X-ray 
scattering data.  Blue and green are the two halves of the IscS dimer, red is IscU, and 
yellow is CyaY.  Reprinted with permission from Nature Communications, 1(7): 95-95.  
Copyright 2010 Nature Publishing Group. 
 
 
 
 Several attempts have been made to identify residues involved in the interaction 

between FXN and either the intact SDU complex or components of the SDU complex.  

Based on pull-down assays Cortopassi et al suggest an interaction between FXN and 

ISD11 that is mediated through FXN residue I154 in the presence of nickel [117].  
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Mutation of the basic residues R220E/R223E/R225E on IscS or the acidic residues 

E18K/E19K/E22K on CyaY have been shown to disrupt the interaction of these two 

proteins, suggesting that the acidic ridge of the frataxin family serves as the binding 

surface for the cysteine desulfurase [119].  Further protein-protein interactions were 

observed by Stemmler et al, who demonstrated that several residues on yeast Yfh1 are 

perturbed upon addition of the yeast scaffold protein Isu1 (Figure 3-3) [120]. 

 
 

 
Figure 3-3. Residues perturbed by the addition of yeast Isu1 to apo-Yfh1.  The structure 
of yeast Yfh1 is shown with labels for the corresponding human FXN residues.  
Reprinted with permission from Biochemistry, 49(40): 8756-8765.  Copyright 2010 
American Chemical Society Publications. 
 
 

Pull-down assays of yeast Yfh1 mutants including N122K (human FXNN146K), 

N122A/K123T/Q124A (human FXNN146K/K147T/Q148A), and W131A (human FXNW155A), 

suggest that the β-sheet region of the protein is involved in interactions with the yeast 

scaffold protein Isu1 and that W131 (human FXNW155) is a hotspot for interaction [55-
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56]. Furthermore in vivo studies of yeast Yfh1 by Foury et al suggest that Q129 (human 

FXNQ153), W131 (human FXNW155), and R141 (human FXNR165) form a cluster of 

functionally important residues on the FXN surface, which could facilitate protein-

protein interactions [55].  Pull-down assays by Puccio et al of 15 FXN mutants (Y95G, 

E96K, D104G, E108K, E111K, D115K, D122Y, D124K, G130V, N146A, N146K, 

I154F, W155A, W155R, & W173G) in the context of the SDU complex further 

confirmed and expanded upon the results seen in yeast and E. coli; identifying six 

mutants (E108K, E111K, D124K, N146K, W155A and W155R) that disrupted or 

abolished the FXN/SDU interaction (Figure 3-4) [27].  The negatively charged acidic 

patch residues E108, E111, and D124 are suggested to interact with the basic residues on 

NFS1/ISD11, while the N146 and W155 β-sheet residues are proposed to interact with 

ISCU.  Furthermore the complete loss of interaction between SDU and the W155R 

mutant or the less severe W155A mutant support the findings in yeast that this residue is 

critical for interaction with ISCU.  The available biochemical, structural, and pull-down 

assay data suggest regions of the FXN β-sheet and α1 helix, which appear to be 

important in protein-protein interactions with SDU (Figure 3-4).  Here we build upon 

these results to quantitate the FXN side-chain contributions for binding to the SDU 

complex and also establish the functional importance of FXN side-chains for the 

activation of the Fe-S assembly complex.  These experiments provide vital information 

towards the design of peptidomimetics as a FXN replacement strategy and potential 

FRDA therapeutic. 
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Figure 3-4. Crystal structure of human frataxin residues 89-209 (PDB code: 3S4M) 
showing residues proposed as the site for NFS1/ISD11 (yellow) and ISCU (cyan) 
binding and the residues perturbed in yeast Yfh1 upon addition of Isu1 (magenta). 
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EXPERIMENTAL PROCEDURES 

 Protein Preparation.  The point mutations (S105A, L106A, D115A, K116A, 

P117G, Y118A, T119A, S126A, K135A, T142A, D178A, L190A, K195A) were 

introduced into a pET11a plasmid containing a codon optimized human FXN gene (FXN 

Δ1-55), lacking the first 55 amino acids, using the QuikChange method (Stratagene) 

[22].  Presence of the mutation was confirmed by DNA sequencing, performed by the 

Texas A&M University Gene Technology Laboratory.  The plasmids containing each 

mutant were transformed into E. coli BL21(DE3) competent cells and grown at 37 °C, 

until an OD600 of ~0.7 was obtained.  Protein expression was then induced with 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG), and cells were incubated at 16 °C for 16 

hours.  The cells were then harvested by centrifugation and lysed by sonication (Branson 

Sonifier 450) in 50 mM Tris pH 7.5.  The supernatant was loaded onto an anion 

exchange column (26/20 POROS 60HQ, Applied Biosystems) and eluted with a linear 

gradient from 0 to 800 mM NaCl in 50 mM Tris pH 7.5.  The fractions corresponding to 

monomeric frataxin were collected, concentrated, and loaded onto a Sepharcyl S100 

(26/60, GE Healthcare) size exclusion column equilibrated with 50 mM HEPES, 150 

mM NaCl pH 7.5.  Protein concentrations for each mutant were calculated using their 

absorbance at 280 nm with an extinction coefficient of 26030 M-1cm-1 used for all 

mutants, except Y118A (ε = 24750 M-1cm-1) [108].  The ISCU2 and NFS1/ISD11 

proteins were purified as previously described and their protein concentrations 

determined using extinction coefficients of 10,900 M-1cm-1 (PLP) and 8250 M-1cm-1 at 

wavelengths of 420 nm and 280 nm, respectively [22, 108]. 
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 Cysteine Desulfurase Activity Measurements.  The number of equivalents of each 

FXN variant required to saturate the cysteine desulfurase activity was determined by 

titrating increasing amounts of each FXN variant into a standard reaction mixture, as 

previously described with a final volume of 800 μL [22, 92, 99, 109-110].  Once the 

saturating about of each variant was determined reaction mixtures containing 0.5 μM 

NFS1/ISD11 (SD), 1.5 μM ISCU2, the saturating amount of FXN (or FXN point 

mutant), 10 μM pyridoxal-5’-phosphate (PLP), 2 mM dithiothreitol (DTT), 5 μM 

Fe(NH4)2(SO4)2, and 50 mM Tris, 250 mM NaCl pH 8.0 were incubated for 30 minutes 

in an anaerobic glovebox at ~14 °C [22].  The cysteine desulfurase reaction was initiated 

with the addition of 100 μM L-cysteine at 37 °C, and quenched with 100 μL each of 20 

mM N,N-dimethyl-p-phenylenediamine in 7.2 N HCl and 30 mM FeCl3 in 1.2 N HCl.  

Following 20 minute incubation at 37 °C and centrifugation for 5 minutes at 12,000 rpm, 

the methylene blue formation was measured at 670 nm and converted to sulfide 

production using a Na2S standard curve.  The rate is expressed in units of mol sulfide per 

mol SD per minute at 37 °C.   

 Michaelis-Menten Kinetics for Frataxin Variants in SDUF Complex.  To a 

standard reaction mixture of 0.5 μM (SD), 1.5 μM ISCU2, 10 μM pyridoxal-5’-

phosphate (PLP), 2 mM dithiothreitol (DTT), 5 μM Fe(NH4)2(SO4)2, and 50 mM Tris, 

250 mM NaCl pH 8.0 was added the saturating amount of the FXN mutants [92, 99].  

Reactions were incubated for 30 minutes in an anaerobic glovebox before being initiated 

with the addition of 12.5 - 600 μM L-cysteine.  The rate of cysteine desulfurase activity 

was analyzed as above.  The reaction rates were plotted verses L-cysteine concentration 
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and fit with the Michaelis-Menten equation in KaleidaGraph.  The kcat was determined at 

varying FXN concentrations and used to determine the binding constant of FXN to the 

SDU complex.  These results were fit as a type II allosteric activator using Eq. 3-1 in 

KaleidaGraph, where the [SDUF] is calculated as shown in Eq. 3-2 [32]. 

 

            (Eq. 3-1) 

 

                 (Eq. 3-2) 

 

 Cysteine Desulfurase Activity of SDU in the Presence of Tryptophan.  To a 

standard reaction mixture of 0.5 μM (SD), 1.5 μM ISCU2, 10 μM pyridoxal-5’-

phosphate (PLP), 2 mM dithiothreitol (DTT), 5 μM Fe(NH4)2(SO4)2, and 50 mM Tris, 

250 mM NaCl pH 8.0 was added 0 – 40 mM L-Tryptophan [22, 109-110].  Reactions 

were incubated for 30 minutes at 14 °C in an anaerobic glovebox before the reactions 

were initiated with the addition of 100 μM L-cysteine.  The reactions were quenched and 

the cysteine desulfurase activity was analyzed as above.  The rate is expressed in units of 

mol sulfide per mol SD per minute at 37 °C. 
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RESULTS 

 Residues of the β-sheet Impair Interactions with the Fe-S Cluster Assembly 

Complex.  A total of 35 alanine or glycine (used for proline residues) point mutants; 

including S105A, L106A, D115A, K116A, P117G, Y118A, T119A, S126A, K135A, 

T142A, D178A, L190A, and K195A, were expressed in E. coli and purified to >95% 

homogeneity (Figure 3-5).  During the protein purification process the Δ1-55 FXN 

construct spontaneously truncated to produce the mature (FXN81-210) form of the protein 

[32, 111].  The number of equivalents necessary to saturate the cysteine desulfurase 

activity of each mutant was determined; with activity saturating at 3eq for WT, 10eq for 

S105A, 3eq for L106A, 25eq for D115A, 10eq for K116A, 5eq for P117G, 10eq for 

Y118A, 3eq for T119A, 3eq for S126A, 3eq for K135A, 10eq for T142A, 5eq for 

D178A, 5eq for L190A, and 10eq for K195A.  The ability of the alanine scanning 

mutants to stimulate the cysteine desulfurase activity of the SDU complex was 

investigated using saturating amounts of each mutant and the physiologically relevant 

cysteine concentration of 100 μM [22].  The cysteine desulfurase activity of 32 mutants 

was determined through a collaborative effort by Melissa Thorstad, Nicholas Fox, and 

Jennifer Rabb (Figure 3-6). 
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Figure 3-5.  Crystal structure of human frataxin residues 89-209 (PDB code: 3S4M), 
viewed from the α-helices (top) and the β-sheet (bottom) regions.  Residues mutated in 
the alanine scanning investigation are indicated as stick models. 
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Figure 3-6. Bar charts of the cysteine desulfurase activity of the FXN alanine scanning 
mutants investigated by Melissa Thorstad (top), Nicholas Fox (middle), and Jennifer 
Rabb (bottom).  Mutants with significantly impaired cysteine desulfurase rates are N146, 
Q148, P150, Q153, W155, and R165.  Blue bars represent samples without ferrous iron 
and red bars are in the presence of ferrous iron. 
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  Mapping Frataxin Binding & Activity Interactions with the Fe-S Cluster 

Assembly Complex.  Michaelis-Menten parameters for all 35 alanine scanning mutants 

were determined through the collaborative efforts of Melissa Thorstad, Nicholas Fox, 

and Jennifer Rabb (Table 3-1).  The Michaelis-Menten parameters kcat and KM were 

determined for all 35 mutants, using the cysteine desulfurase activity at saturating FXN 

variant levels.  The data was fit using KaleidaGraph, as shown for the 13 mutants studied 

by Melissa Thorstad (Figure 3-7).  The binding constants for all 35 alanine scanning 

mutants were determined by plotting the kcat verses FXN variant concentration and 

fitting the data with Eq. 3-1 in KaleidaGraph.  Data for the 13 mutants investigated by 

Melissa Thorstad is provided (Figure 3-8).  

 
 

 
Figure 3-7. Determination of the Michaelis-Menten parameters kcat and KM for FXN 
variants: S105A(red), L106A(green), D115A(lime), K116A(yellow), Y118A(cyan), 
P117G(pink), T119A(purple), S126A(blue), K135A(lavender), T142A(olive), 
D178A(orange), L190A(magenta), K195A(gray). The methylene blue assay rates were 
determined at saturating FXN variant and varied cysteine concentrations. The data was 
fit in KaleidaGraph with the Michaelis-Menten equation.  The R2 values are 0.98 
(S105A), 0.99 (L106A), 0.88 (D115A), 0.99 (K116A), 0.97 (P117G), 0.96 (Y118A), 
0.98 (T119A), 0.92 (S126A), 0.92 (K135A), 0.96 (T142A), 0.96 (D178A), 0.96 
(L190A), and 0.95 (K195A). 



 

48 
 

 

         Table 3-1. Kinetic parameters for SDU with FXN 
        alanine scanning variants. 

 
         Mutants investigated by Melissa Thorstad (no superscript),  
         Nicholas Fox (1), Jennifer Rabb (2). 
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Figure 3-8. Determination of the binding constants for FXN variants: S105A (red), 
L106A (green), D115A (lime), K116A (yellow), P117G (pink), Y118A (cyan), T119A 
(purple), S126A (blue), K135A (lavender), T142A (olive), D178A (orange), L190A 
(magenta), and K195A (gray). Data was fit in KaleidaGraph using Eq. 3-1. 
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 Tryptophan Alone Does Not Activate the SDU Complex.  The cysteine 

desulfurase activity of the SDU complex in the presence of L-Tryptophan was 

determined to be equivalent to that of SDU (Figure 3-9). 

 
 

 

        
Figure 3-9. Titration of L-Tryptophan with SDU (top) and bar chart of the averaged 
cysteine desulfurase activity of SDU with L-Tryptophan (bottom). 
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DISCUSSION 

 Protein-protein interactions between FXN and the SDU complex have been 

demonstrated in the yeast, E. coli, and human systems; where interactions with ISCU 

and NFS1/ISD11 are proposed to occur through the FXN β-sheet and α1-helix, 

respectively [22, 27, 55-56, 92, 99, 117, 120-121].  However, only limited information is 

known about the specific residues of interaction and the kinetic implications of these 

interactions.  While attempts have been made to identify residues involved in the 

FXN/SDU interaction through loss of SDU pull-down or NMR amide backbone 

perturbation analysis, to our knowledge this is the first attempt to assess the functional 

importance of individual FXN residues to map the surface of interaction using the SDU 

complex in vitro.  

 Examination of the kinetic parameters of the 35 point mutants suggests a hotspot 

for FXN interaction with SDU through the β4 and β5 sheets.  Combination of alanine 

scanning with functional assessment through the cysteine desulfurase assay, identified 

14 residues of the FXN α1 helix and β-sheets with significantly to moderately inhibited 

SDU binding or activation.  Comparison of the cysteine desulfurase activity at saturating 

amounts of frataxin, suggests that the β-sheet residues N146, Q148, P150, Q153, W155, 

and R165 are important for either activation or binding of SDU.  Drastic binding defects 

were observed upon mutation of the FXN residues R97, Q153, W155, and R165 to 

alanine, while moderate impairment was seen for six FXN residues (D104, D124, N146, 

P150, N151, and P163) of the α1 helix and β-sheet regions (Figure 3-10).  Significant 

activation defects of the SDU complex were found upon mutation of four residues 
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(N146, Q148, Q153, and W155) of the FXN β-sheet, with five additional residues 

(L106, E121, D124, V131, and P150) showing modest activation defects (Figure 3-10).   

 
 

 
 

 
Figure 3-10. Plots of FXN residues involved in activation (top) or binding (bottom) of 
SDU.  Residues shown in red and orange are significantly or moderately impaired, 
respectively.  Green residues have essentially wild-type character. 
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Impairment of the binding and/or activation of the FXN residues N146, Q148, Q153, 

W155, and R165 is consistent with previous findings by Barondeau et al [82, 99].  

Furthermore pull-down assays in the yeast and human system support the findings that 

W155 and N146 are important for SDU interaction [27, 55-56].  The NMR studies of 

Stemmler et al, showing perturbation of FXN residues Q148 and N151 in the presence 

of Isu1 support the role of these amino acids in SDU interactions [120].  Additionally the 

presence of FRDA clinical mutants at residues L106, N146, Q148, W155, and R165 

provides further support for the importance of these residues in the proper in vivo 

function of FXN [84].  While disruption of the protein secondary structure cannot be 

ruled out as a factor for the kinetic defects of the P150G and P163G mutants, lack of 

such effects with the other proline residue (P117) studied here suggests that these β-sheet 

residues play a role in the binding or activation of SDU.  Despite the presence of modest 

binding or activation defects in three of the acidic patch residues (D104, E121, and 

D124), the level of impairment is significantly lower than expected for mutation of the 

iron binding site of an iron donor protein; thus further supporting the allosteric activator 

role of FXN previously proposed by Barondeau et al [22].   

 This improved understanding of FXN/SDU interactions must be considered in 

the development of new treatments for FRDA.  Identification of the localized binding 

and activation hotspot on the β4 and β5 sheets of FXN (residues N146, Q148, Q153, 

W155, and R165), suggests that future drug design should be targeted to this region of 

the protein.  In addition to the use of commercially available small molecule screening 

kits, the design of small cyclic peptides should be used to target the FXN hotspot.   Since 
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W155 and R165 appear to be the most important residues for activating and binding 

SDU, respectively, they should be included in cyclic peptide design.  However addition 

of tryptophan to SDU demonstrates that the activation process requires more than this 

single amino acid.  Additionally further investigation of the FXN(S126A) mutant should 

be performed, as it appears to bind SDU about ~100-fold tighter than wild-type FXN.  

Finally this bank of FXN alanine scanning mutants should also be applied to elucidating 

the FXN residues involved in interactions with the cluster transfer proteins.   

 

 

 

 



 

55 
 

 

CHAPTER IV 

 INVESTIGATION OF OLIGOMERIC FXN56-210 

 

INTRODUCTION 

 Over the course of the past 13 years, much work has been done to investigate the 

oligomerization properties of three members of the frataxin family yeast Yfh1, E. coli 

CyaY, and human FXN [122].  Initial characterization of the three homologues shows 

that although they are all composed of monomeric subunits with similar secondary 

structures, their oligomerization propensities and properties are vastly different (Table 4-

1) [123]. 

 
 
Table 4-1. Oligomeric properties of ferritin, yeast Yfh1, E. coli CyaY, and human FXN. 

Ferritin Yeast Yfh1 E. coli  CyaY Human FXN

Assembled during 

Protein Expression

Yes No No Yes

Stepwise Assembly Process 

In vitro  with Iron

No Yes Yes No

Assembles under 

Aerobic Conditions

ND Yes Fe2+ - monomer, intermediate, & large oligomers

Fe3+ - monomer & large oligomers

ND

Assembles under 

Anaerobic Conditions

ND No Forms tetramer ND

Assembly Reversible

with Metal Chelators

No Yes Yes No

Monomer Present upon 

Assembly Completion

ND 20% Yes Yes

Diameter of 

Oligomeric Assembly

12-13 nm 180-190 Å ND 16 nm spheres &

chains of these spheres

Oligomeric 

Building Block

monomer composed of 

H- & L-subunits

trimer tetramer monomer

Iron Binding Capacity 

per Monomer

ND 50-75 for 24mer < 26 for dimer to pentamer species 6-10 for preassembled 

oligomer

Overall Iron Storage Capacity < 4500 for 24mer > 3000 for 24mer ND ND

Iron Core Chelatable 

with Metal Chelators

Yes Requires 

reducing agents

Yes Requires reducing agents

Ferroxidase Activity Yes For α → α3 step First 6 iron atoms Fe(II)/monomer ratios < 0.75

Autoxidation Activity Yes For α3 → α6 → α12 → 

α24 → α48 steps

After addition of first 6 iron atoms Fe(II)/monomer ratios > 0.75

Diameter of Mineral Core 7-8 nm 1-2 nm ND smaller than Yfh1 core

Involved in Fe-S 

Cluster Assembly 

No Using only Fe3+
Yes With both Fe2+ and Fe3+

 
  Properties of the iron-binding protein ferritin were obtained from a review by Arosio et al [124].  
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Due to the variability in the N-terminus of the frataxin family of proteins, this region has 

been suggested to play a role in mediating the oligomerization properties [111, 125].  

Two primary roles have been suggested for oligomeric forms of the frataxin family [116, 

122-123].  Initially a role as an iron storage protein, similar to that of the iron storage 

protein ferritin, was proposed.  More recently due to findings that monomeric frataxin 

homologues interaction with components of the Fe-S cluster biosynthesis machinery, a 

similar role has also been proposed for the oligomeric variants. 

 Extensive work has been done by Isaya et al on the assembly process, 

ferroxidase activity, and particle structure of Yfh1 oligomers.  Based on this Yfh1 

assembly appears to occur through the stepwise assembly process α → α3 → α6 → α12 

→ α24 → α48, where the addition of Fe(II) to the monomeric species induces trimer 

formation and it is these trimers that serve as the building blocks for the formation of the 

larger order oligomers (heaxmers, dodecamers, 24-mers, and 48-mers), with α60 and α96 

species also having been observed [69, 126-127].  Formation of a dimer-type 

intermediate (α*) between the α → α3 transition has also been proposed, and possibly 

represents the rate limiting step for oligomer assembly in Yfh1(WT) [127].  Additionally 

Yfh1 oligomerization has been found to be inhibited under anaerobic conditions, 

suggesting that in addition to Fe(II), O2 may also be essential for this process [75]. 

Furthermore, recent findings suggest that initiation of Yfh1 oligomerization can be 

facilitated by Co2+ and glycerol, where the addition of these to Yfh1 solution results in 

an increased level of dimers, trimers, and hexamer species [125].  Several iron-

independent oligomeirization mutations in the N-terminus of the protein have been 



 

57 
 

 

identified; however recent findings suggest that these mutants have decreased stability 

and processing of Yfh1 in vivo [127-128].  The ferroxidase activity and structure and 

composition of the Yfh1 iron core have been investigated with electrode oximetry, 

EXAFS, and electron microscopy [66, 69, 73, 75, 125-130].  The ferroxidase activity has 

been suggested to occur around the 3-fold axis of the trimer and result in the formation 

of a ferrihydrite mineral similar to that seen in the iron storage protein ferritin [75, 129].  

Yfh1 has been shown to bind between 50-75 iron atoms within its ferrihydrite core, with 

the larger oligomers capable of storing more than 3000 iron atoms [126, 129].  Several 

mutations have been identified which limit the ferroxidase activity, while still allowing 

for oligomerization; suggesting Yfh1 has an affinity for autoxidation of Fe(II) even in 

the absence of its ferroxidation sites [66, 131].  Furthermore, the ferrioxidase activity has 

been suggested to facilitate a role for Yfh1 in mediating ROS and oxidative damage 

[66].  Based on electron microscopy and Fe K near-edge X-ray absorption spectroscopy, 

the iron core of the Yfh1 oligomers appears to be about 1-2 nm in diameter and 

composed of a similar dinuclear bridging binding site to that seen in ferritin [73, 126].  

Electrode oximetry suggests that the mineral core is formed in a two step process with 

ferroxidase activity occurring as a slower step during the conversion of monomer to 

trimer (α → α3), followed by a faster autoxidation step once the trimer is converted to 

larger order oligomers  (α3 → α6 → α12 → α24 → α48) [75, 129].  Additionally regardless 

of the iron concentrations used, about 20% of the sample remains as monomer even 

upon completion of the assembly process.  Finally electron microscopy and X-ray 

crystallography have been used to investigate the trimer and 24-mer structures [125, 128, 
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130-131].  Three crystal structures of the Yfh1 trimer have been determine, one apo and 

two holo, with one containing iron and the other cobalt in the proposed iron binding site 

at the 3-fold axis (Figure 4-1) [125, 128, 131].  

 
 

 
Figure 4-1. Crystal structure of the Yfh1 trimer, viewed down the 3-fold axis (PDB 
code: 3OEQ). 
 
 
 
Based on these structures, the Yfh1(Y73A) trimer is stabilized by interactions between 

the N-termini of the three monomeric subunits.  Based on the electron microscopy 

reconstructions of the 24-mer, the trimer serves as the building block of this structure 

with the overall assembly having a diameter of 180-190 Å (Figure 4-2) [128, 130].  

More recently, oligomeric Yfh1 has been suggested to interact with Nfs1/Isd11 and Isu1 

of the yeast system forming a complex capable of producing Fe-S clusters on Isu1 [76, 

127, 132].  Combining the evidence for an iron storage function for Yfh1 with its 

apparent role in Fe-S cluster biosynthesis, Isaya et al has proposed a dual iron storage/ 

ISC biosynthesis function for Yfh1.  
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Figure 4-2. Electron microscopy (EM) model of Yfh1 24-mer. (A) EM reconstruction of 
Yfh1 24-mer viewed along the 2-fold axis of trimer.  The oligomer is composed of eight 
trimer units. (B) Docking of trimer structure into the EM reconstruction with the trimers 
shown as surface representations (green and purple). (C) Stereoview of interactions 
between the N-termini of neighboring trimers in the 24-mer. (D) Surface representations 
of Yfh1 (left) and horse-spleen ferritin (right) 24-mers along the 3-fold axis. The trimer 
subunits are colored based on the electrostatic potentials of their surfaces.  Reprinted 
with permission from Structure, 14(10): 1535-1546.  Copyright 2006 Cell Press. 
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 Similar to Yfh1 in the absence of iron CyaY exists as a single discrete 

monomeric species; however, in the presence of iron the assembly process of CyaY is 

much less complete than that of Yfh1 and appears to proceed through multiple 

mechanisms [70, 123].  In the presence of ferric iron, only monomeric and high 

molecular weight species were observed, with the high molecular weight species 

containing up to 8 iron atoms/monomer.  Under anaerobic conditions in the presence of 

Fe(II), only a gradual shift from monomer to tetramer is observed, where the tetramer 

which binds two Fe2+/protein has been proposed as the primary building block for 

assembly of larger order oligomers (Figure 4-3) [70, 123, 131].  In contrast size 

exclusion and analytical ultracentrifugation (AUC) data in the presence of Fe(II) and 

either O2 or H2O2 indicate that CyaY assembles as a heterogeneous mixture of states 

primarily composed of monomer, intermediate dimer to pentamer, and larger oligomers 

with molecular weights above 600 kDa (Figure 4-4) [70, 123].  While the monomer is 

iron free, the intermediate form contains up to 26 iron atoms/monomer [70, 133].  The 

iron content of the larger oligomers could not be determined, as they precipitate after 

isolation [123].  Further analysis of this assembly mechanism revealed that much like 

Yfh1, the distribution of assembly species is dependent on the protein to iron ratio, with 

a mixture of monomer and intermediate present at a 1:1 ratio followed by increasing 

amounts of intermediate and high molecular weight oligomeric species, until protein 

precipitation occurs at a protein to iron ratio of 1:60.   
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Figure 4-3. Ribbon diagram of the CyaY tetramer structure modeled from small-angle 
X-ray scattering (SAXS) data of CyaY after incubation with ferrous ammonium sulfate 
[Fe(NH4)2(SO4)2].   The Co2+ ions bound to the CyaY monomer crystal structure (PDB 
entry 2EFF) are shown in magenta.  Reprinted with permission from Journal of 

Biological Chemistry.  Copyright 2013 American Society for Biochemistry and 
Molecular Biology.   
 
 
 

 
Figure 4-4. Oligomeric forms of iron-loaded CyaY. Apo CyaY was incubated with iron 
and the oligomeric species distribution was analyzed by Superdex 200 gel filtration 
chromatography.  Reprinted with permission from Journal of Biological Chemistry, 
281(24): 16256-16263.  Copyright 2006 American Society for Biochemistry and 
Molecular Biology. 
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Furthermore oxidation of Fe(II) appears to be non-enzymatic, as the first six Fe(II) ions 

added had distinct reaction properties from those added subsequently [70].  This 

suggests that following the addition of the first six iron atoms, further mineralization 

proceeds not through ferroxidation but autoxidation.  Investigation of the protein’s 

ability to effectively manage Fenton chemistry upon incubation of H2O2 with iron-

loaded CyaY indicates that CyaY decreases hydroxyl radical production; however, under 

aerobic conditions CyaY appears to be less effective at detoxifying iron than Yfh1, as it 

is devoid of ferroxidase activity in the presence of O2.  Upon treatment with metal 

chelators, such as ethylene diamine tetracetic acid (EDTA), ferrous iron can be removed 

from CyaY; whereas, ferric iron remained bound under these conditions and was only 

removed when treated with strong reducing agents, such as dithionite or dithiothreitol 

(DTT) [70, 123].  Thus CyaY binds ferric iron tighter than ferrous iron.  Additionally, 

CyaY assembly was shown to be either reversible or preventable with the addition of 

metal chelators.  Further investigation of the metal binding properties of CyaY, has 

revealed that other metal ions, such as calcium (Ca2+), magnesium (Mg2+), manganese 

(Mn2+), cobalt (Co2+), europium (Eu3+), ytterbium (Yb3+), gadolinium (Gd3+), and 

lutetium (Lu3+) can bind to CyaY in solution [134].  Additionally both Al3+ and Co2+ 

have been shown to induce CyaY assembly, although to a lesser degree than that seen 

with iron [123].  Both calcium and magnesium were found to compete with iron binding 

of CyaY, with aggregation completely reversible at high calcium or magnesium 

concentrations [123, 134].  Based on these results, CyaY appears to have a low binding 

specificity for iron and can accommodate almost any divalent or trivalent metal within 
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the iron binding site.  Based on sedimentation velocity AUC experiments, aggregation is 

more pronounced in the presence of low salt concentrations (10 mM NaCl or KCl); 

whereas, at more physiologically relevant salt concentrations (150 mM) aggregation is 

decreased, with aggregation completely abolished at high ionic strengths [70].  

Additionally, the negative residues Glu18, Glu19, Asp22, and Glu33 appear to be very 

important in the aggregation process, as mutation of these residues results in almost 

complete loss of aggregation [123].  More recently, a role for oligomeric CyaY as the 

iron donor in Fe-S cluster biosynthesis and heme synthesis has been suggested [133, 

135].  In vivo and in vitro pull-down assays, suggest an interaction between iron-loaded 

CyaY oligomers and IscS [133].  These results were confirmed by gel filtration 

chromatography, where the iron-loaded CyaY intermediate species was found to interact 

with IscS, with a similar affinity to that of monomer.  Additionally, the iron core of the 

protein could be reduced by cysteine and serve as the iron source for cluster assembly on 

IscU.  Mössbauer spectroscopy of this IscU sample confirmed the presence of primarily 

[2Fe-2S] clusters with only a minimal amount of [4Fe-4S] clusters, when IscU was 

incubated in the presence of iron-loaded CyaY oligomer.  These findings are further 

supported by in vivo data from Isaya et al showing that while the growth rate and 

cellular stress of ΔYfh1 cells could be rescued by the expression of CyaY, the ability to 

detoxify iron was significantly reduced [135].  Furthermore the CyaY ΔYfh1 strain was 

able to restore the aconitase and succinate dehydrogenase activity to within 80-85% of 

Yfh1(WT); as well as, restore heme synthesis and provide Fe(II) to ferrochelatase.  This 

data suggests that CyaY may play a role in Fe-S cluster and heme synthesis, rather than 
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iron storage, and is consistent with recent findings suggesting a similar role for 

oligomeric Yfh1. 

 Initial characterization of human frataxin FXN56-210 revealed that unlike yeast 

Yfh1 and E. coli CyaY, recombinately expressed human FXN was expressed as two 

forms [71].  The first, which was identified as FXN monomer, eluted in the low salt 

fractions of an ion exchange column, while the second eluted in the high salt fractions 

and correspond to the pre-assembled oligomeric species of human FXN.  Furthermore, 

in contrast to both yeast Yfh1 and E. coli CyaY monomeric FXN was not found to 

assemble in vitro in the presence of iron, except under strong destabilizing conditions 

resulting in protein precipitation [123].  Based on SDS-PAGE gel and ESI-MS analysis, 

the pre-assembled FXN oligomer is composed of the ~17 kDa monomeric species, with 

small amounts of a 14 kDa species also present [71].  Upon incubation of assembled 

FXN with Fe(II), about 6–10 Fe/molecule FXN were bound [71, 74].  As a result, 

electrode oximetry was used to investigate the iron oxidation reaction of oligomeric 

FXN [74].  At Fe(II) to subunit ratios < 0.75 the ferroxidation reaction dominates, while 

at higher Fe(II) to subunit ratios autoxidation occurred.  Coupling the electrode oximetry 

results to those of Fe K Near-Edge X-ray Absorption spectra, oligomeric FXN has an 

iron storage capacity and ferrihydrite mineral core similar to that of ferritin; however 

autoxidation with FXN occurs at a much slower rate than that of ferritin [73-74].  

Additionally the mineral cores of both human FXN and yeast Yfh1 share similar 

properties, with both resulting from aggregation of small ferrihydrite crystals producing 

a less ordered ferrihydrite core than that of ferritin.  This is consistent with the different 
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modes of oligomerization between yeast (iron dependent) and human frataxin (iron 

independent).  Since human FXN purifies as a pre-assembled oligomer, similar to 

ferritin, biomineralization would occur after the assembly process was complete.  

Although this mechanism of iron sequestration decreases the iron storage capacity, it 

allows for faster sequestration and storage of iron within the protein environment; thus 

providing the cellular environment with increased protection from ROS and oxidative 

stress (Figure 4-5).  A role in attenuating Fenton chemistry and preventing oxidative 

damage is further suggested by the ability of oligomeric FXN to prevent supercoiled 

DNA degradation both in the presence of Fe(II) and Fe(II) with H2O2 [74].  Similar to 

Yfh,1 but in contrast to CyaY, the iron core of FXN cannot be chelated by EDTA and 

can only be mobilized in the presence of reducing agents [136].  However unlike its 

homologues, iron mobilization does not mediate oligomer disassembly.  Structural 

characterization of iron-loaded or uranyl acetate stained oligomeric FXN by electron 

microscopy indicates the presence of spheres about 16 nm in diameter, both alone and as 

assembled polymer chains, with iron cores smaller than those of yeast Yfh1 (Figure 4-6) 

[71]. 
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Figure 4-5. Proposed functions for the role of FXN56-210 in vivo. Under conditions of low 
iron flux, Fe(II) bound to FXN monomer could be rapidly transferred to an iron-binding 
ligand, such as ISCU. However under high iron conditions the monomer would not be 
sufficient to prevent the solution chemistry of iron. In this case oligomeric FXN would 
sequester and store Fe(II) in a bioavailable form that could be transferred to ISCU.  
Reprinted with permission from Biochemsitry, 44(2): 537-545.  Copyright 2005 
American Chemical Society.  
 
 
 

 
Figure 4-6. Electron microscopy images of oligomeric FXN56-210 and apo ferritin. 
Samples of ~0.1 mg/mL of either oligomeric FXN or apo ferritin were stained with 2% 
uranyl acetate and imaged with an accelerating voltage of 80 kV and an initial 
magnification of 64,000x.  Reprinted with permission from Human Molecular Genetics, 
11(3): 217-227.  Copyright 2002 Oxford University Press. 
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Size exclusion chromatography and Western blot analysis of these iron-loaded oligomers 

revealed the presence of two distinct species, a faster moving α, which contained more 

individual particles and some rods, and a slower moving β, which contained mostly rod 

shaped particles and few individual particles.  These results are similar to the species 

distribution observed with ferritin and suggest that oligomeric FXN contains some 

sample heterogeneity in its iron-loaded form.  Due to concerns that the oligomeric forms 

of FXN are simply the result of mechanical stress upon over-expression in recombinant 

E. coli systems, several in vivo experiments have been conducted [71, 76, 136].  In vivo 

assembly of oligomeric frataxin was investigated using both a yfh1Δ[FRDA] strain of 

yeast expressing the precursor form of human frataxin and mouse heart samples [71].  

Analysis of whole cell extracts by size exclusion chromatography revealed the presence 

of both monomeric and oligomeric species, as seen with recombinant over expression of 

human frataxin in E. coli.  Additionally expression of human FXN in yeast was able to 

compensate for the lack of Yfh1 in the knockout strain.  Further analysis of the in vivo 

FXN distribution in human heart samples supports the findings in yeast and mouse heart 

cells, with a heterogeneous population of species ranging from monomer to >1 MDa 

oligomers present [136].  This suggests that frataxin assembly is not simply a 

consequence of over expression in E. coli, but occurs endogenously.  These oligomeric 

species were also shown to interact with IscU and possibly IscS .   

 Characterization of the oligomeric species of FXN42-210 in the context of the 

monomeric FXN81-210 form has also been performed to further establish a role for 

oligomeric FXN species in vivo [111].  The FXN42-210 species distribution from 
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lymphoblastoid cells revealed the presence of monomers to large oligomers, similar to 

that seen with the FXN56-210 variant.  Additionally when comparing the levels of FXN42-

210 between FRDA patients, carriers, and controls a significant increase in the amount of 

this species was observed, suggesting the affinity of FXN42-210 increases when the levels 

of FXN81-210 decrease below a certain level in vivo.  While the monomeric form of 

FXN42-210 has only low levels of iron binding, oligomeric FXN42-210 showed an iron 

binding capacity similar to ferritin.  Additionally, oligomeric FXN42-210 was shown to 

interact with both NFS1/ISD11 and ISCU either alone or together, suggesting that the 

oligomer forms extensive and stable interactions with these proteins.  The ability of 

monomeric FXN81-210 and monomeric & oligomeric FXN42-210 to serve as iron donors for 

Fe-S cluster assembly was assessed by UV-vis.  In the presence of Fe(II), the rate of 

cluster assembly was essentially the same for all three FXN forms; however, when 

Fe(III) was used oligomeric FXN42-210 had a significantly increased rate of cluster 

assembly compared to those of monomeric FXN81-210 and FXN42-210.  Based on this data 

a dual role is proposed for the FXN81-210 and FXN42-210 forms depending on the cellular 

conditions (Figure 4-7).   
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Figure 4-7. Proposed functions of FXN42-210 and FXN81-210 in vivo. Processing of FXN 
by MPP results in production of FXN42-210, which can oligomerize or be processed 
further to produce FXN81-210. (A) Under steady state conditions the majority of FXN42-210 
is cleaved to produce FXN81-210 which maintains the labile iron pool and functions in Fe-
S cluster biosynthesis. (B) Under high Fe-S cluster demands and increased 
mitochondrial iron uptake the majority of FXN42-210 forms oligomeric assemblies which 
serve a dual role in iron storage and detoxification and as a site for interaction with the 
components of the Fe-S cluster biosynthesis machinery (ISCU & NFS1/ISD11) for 
cluster synthesis.  Under steady state conditions, FXN42-210 is cleaved to FXN81-210, 
which interacts with NFS1/ISD11 and ISCU to facilitate Fe-S cluster assembly.  
However, under conditions of cell growth and global mitochondrial biogenesis a large 
amount of FXN42-210 is not processed and can assemble to produce oligomeric FXN42-210.  
Under these conditions both the monomeric FXN81-210 and oligomeric FXN42-210 can 
serve to facilitate Fe-S cluster biosynthesis, with the later capable of binding iron and 
maintaining it in a bioavailable and nonreactive form.  Reprinted with permission from 
Journal of Biological Chemistry, 285(49): 38486-38501.  Copyright 2010 American 
Society for Biochemistry and Molecular Biology. 
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 Despite the evidence for oligomerization both in vitro and in vivo in yeast Yfh1, 

E. coli CyaY, and human FXN56-210 and FXN42-210, much controversy still surrounds the 

role of these oligomeric species in vivo [76, 78].  Evidence from Craig et al suggests that 

oligomerization is a dispensable function in vivo for yeast, as oligomerization deficient 

mutants of acidic patch residues do not impact the growth phenotype [76].  As this 

region of Yfh1 has been suggested to be important for iron binding and oligomerization, 

it would be expected, that if oligomerization was a vital in vivo function, mutation of 

these iron binding residues would adversely affect cell growth  Additionally comparison 

of these mutants with wild-type revealed  no difference in their ability to interact with 

the scaffold protein, indicating that these mutants still allow for interaction of Yfh1 with 

components of the Fe-S cluster biosynthesis machinery and thus presumably do not 

affect Fe-S cluster biosynthesis.  Furthermore Lesuisse et al have demonstrated that the 

rate of cell death for ΔYfh1 cells grown under high iron concentrations is not as 

dramatic as expected for a protein serving an iron storage role in vivo [78].  Mössbauer 

spectroscopy of these ΔYfh1 yeast mitochondria further supports this conclusion, as the 

mineral core of Yfh1 has significant differences from that of ferritin.   
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EXPERIMENTAL PROCEDURES 

 Protein Preparation for FXN
56-210.  A pET11a plasmid containing a codon 

optimized human FXN gene (FXN Δ1-55), lacking the first 55 amino acids was 

transformed into E. coli BL21(DE3) competent cells and grown at 37 °C, until an OD600 

of ~0.7 was obtained.  Protein expression was then induced with 0.5 mM isopropyl β-D-

1-thiogalactopyranoside (IPTG), and cells were incubated at 16 °C for 16 hours.  The 

cells were then harvested by centrifugation and lysed by sonication (Branson Sonifier 

450) in 50 mM Tris pH 7.5, 5 mM EDTA.  Ammonium sulfate cuts (50%) were 

performed on the crude cell lysate, followed by two rounds of dialysis into 50 mM Tris 

pH 7.5, 5 mM EDTA to remove the ammonium sulfate.  The supernatant was loaded 

onto an anion exchange column (26/20 POROS 60HQ, Applied Biosystems) and eluted 

with a linear gradient from 0 to 800 mM NaCl in 50 mM Tris pH 7.5, 5 mM EDTA.  The 

fractions corresponding to oligomeric frataxin were collected, concentrated, and loaded 

onto a Sepharcyl S300 (26/60, GE Healthcare) size exclusion column equilibrated with 

50 mM HEPES pH 7.5, 150 mM NaCl, 5 mM EDTA.  Protein concentration was 

calculated using the absorbance at 280 nm with an extinction coefficient of 33,000 M-

1cm-1.   

 Protein Preparation for FXN
42-210.  Megaprimer mutagenesis was performed on 

the codon optimized human FXN gene (FXN Δ1-55) construct to generate pET28a His-

GFP-TEV and pET28a His-GST-TEV plasmids containing the codon optimized human 

FXN gene (FXN Δ1-41), lacking the first 41 amino acids.  DNA sequencing by the 

Texas A&M University Gene Technology Laboratory confirmed the presence of the 
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FXN Δ1-41 construct.  The plasmids containing each construct were transformed into E. 

coli BL21(DE3) competent cells and grown at 37 °C, until an OD600 of ~0.7 was 

obtained.  Protein expression was assessed with varied concentrations of isopropyl β-D-

1-thiogalactopyranoside (IPTG), and cells were incubated at 16 °C for 16 hours.  The 

cells were then harvested by centrifugation and lyzed by sonication (Branson Sonifier 

450) in 50 mM Tris pH 7.5.  Protein expression levels and solubility were analyzed by 

14% SDS-PAGE gel.  

 Cysteine Desulfurase Activity Measurements.  Reactions were performed as 

previously described using a total volume of 800 μL [22, 109-110].  The reaction 

mixtures containing 0.5 μM NFS1/ISD11 (SD), 1.5 uM ISCU2, between 1.5-200 μM 

oligomeric FXN56-210 (o-FXN), 10 μM pyridoxal-5’-phosphate (PLP), 2 mM 

dithiothreitol (DTT), 5 μM Fe(NH4)2(SO4)2, and 50 mM Tris, 250 mM NaCl pH 8.0 

were incubated for 30 minutes in an anaerobic glovebox at ~14 °C [22].  The cysteine 

desulfurase reaction was initiated with the addition of 100 μM L-cysteine at 37 °C, and 

quenched with 100 μL each of 20 mM N,N-dimethyl-p-phenylenediamine in 7.2 N HCl 

and 30 mM FeCl3 in 1.2 N HCl; followed by 20 minutes of incubation at 37 °C and 

centrifugation for 5 minutes at 12,000 rpm.  The methylene blue formation was 

measured at 670 nm and converted to sulfide production using a Na2S standard curve.  

The rate is expressed in units of mol sulfide per mol SD per minute at 37 °C.  

 Analytical Ultracentrifugation of FXN
56-210.  Purified oligomeric FXN56-210 and 

monomeric mature FXN81-210 were dialyzed into 50 mM potassium phosphate pH 7.5, 

150 mM NaCl.  Samples of each variant were prepared at optical densities (OD) of 0.3, 
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0.6 and 0.9, based on the UV-vis absorbance at 230 nm.  Samples were flash frozen in 

liquid nitrogen and shipped on dry ice to the Center for Macromolecular Interactions at 

the University of Texas Health Science Center at San Antonio where sedimentation 

velocity analytical ultracentrifugation (AUC) analysis was performed.  Initial scans were 

performed at 230 nm; however due to the high intensity of the samples, samples were 

run at 280 nm. 

 

 

RESULTS 

 Soluble Protein Expression of FXN
42-210.  The best recombinant expression 

conditions for the FXN42-210 variant in E. coli were determined to occur with the His-

GST-TEV pET28a vector expressed with 0.5 mM IPTG at 16 °C for 16 hours. 

 Oligomeric FXN
56-210

 Activates the Fe-S Cluster Assembly Complex.  The FXN42-

210 variant was expressed in E. coli and purified to about 85% homogeneity.  The ability 

of the oligomeric variant to stimulate the cysteine desulfurase activity of the SDU 

complex was investigated.  In vivo cellular concentrations of cysteine were 

approximated with the addition of 100 μM L-cysteine.  While some activation of the 

cysteine desulfurase activity was observed, it was significantly lower than that seen with 

the mature FXN81-210 variant (Figure 4-8). 

 Oligomeric FXN
56-210

 is a Heterogeneous Mixture of Species.  The species 

distribution and oligomerization properties of the FXN56-120 and FXN81-210 variants were 

analyzed (Figure 4-9).  While the mature FXN81-210 variant exhibited a single monomeric 
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species in solution, the FXN56-210 variant is a heterogeneous mixture of species with 

larger oligomeric and aggregate species forming over time. 

 
 

 
 

 
 

Figure 4-8. Bar chart of SDU with 3 equivalents of either mature FXN81-210, SDUF(WT), 
or oligomeric FXN56-210, SDUF(o-FXN), (top).  Titration of SDU with oligomeric 
FXN56-210 (bottom).  Blue bars or data points are without iron, while red bars or data 
points are in the presence of iron. 
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Figure 4-9. Representation of the analytical ultracentrifuge data with a van Holde-
Weischet Combined Distribution plot, where a vertical line indicates homogeneous 
species and a parabola indicates a heterogeneous mixture of species.  Samples of mature 
FXN81-210 (red OD= 0.3, green OD=0.6, and yellow OD =0.9) and oligomeric FXN56-210 
(magenta OD=0.3, blue OD=0.6, and cyan OD=0.9) were analyzed at 280 nm. 
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DISCUSSION 

 Extensive investigation of the oligomeric frataxin species in the yeast, E. coli, 

and human systems has been performed by Isaya et al, Pastore et al, and others.  

However given the complexities and variability of these systems the studies have proven 

difficult, with the results often met by controversy from the Fe-S cluster biosynthesis 

community.  Given the available data, two scenarios for the role of the oligomeric 

frataxin protein family are proposed: (1) frataxin proteins are iron scavengers and 

transporters under specific cellular conditions or (2) frataxin proteins have a role in 

protein-protein interactions or Fe-S cluster biosynthesis [116, 122-123].  The recent 

discovery of a mitochondrial ferritin protein in the human system, lends support for a 

role of human FXN in Fe-S cluster biosynthesis verses iron storage [70, 77].  Similarly 

the presences of several ferritin or ferritin-type proteins in bacteria, suggests the primary 

role of E. coli CyaY is an iron chaperone or iron sensor for Fe-S cluster biosynthesis 

with the iron storage and assembly properties serving as a secondary side-function of the 

protein [70, 135].  In contrast the yeast system lacks a mitochondrial ferritin, thus the 

ferroxidase activity of Yfh1 is likely an attempt to substitute for this role; ultimately 

supporting an iron storage role for this protein. 

 While the present data supports interactions between oligomeric FXN56-210 and 

the SDU complex, these findings are complicated by the presence of multiple FXN 

species in solution.  Although activation of the cysteine desulfurase is observed with 

SDU in the presence of oligomeric FXN56-210 there does not appear to be iron 

dependence to this activity, as is seen with the mature FXN81-210 variant.  This 
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stimulation suggests an interaction between the oligomeric FXN species and SDU, and 

supports the findings of Isaya et al showing that oligomeric yeast Yfh1 and human 

FXN42-210 can interact with the SDU complex and facilitate the formation of Fe-S 

clusters [111, 132].  Furthermore the lack of saturation of the cysteine desulfurase 

activity, even after the addition of 400 monomeric equivalents would suggest that the 

stimulating form of the FXN oligomer has either very weak binding interacts to the SDU 

complex or is present in very low abundance within the sample.  This is in contrast to the 

findings of Isaya et al where oligomeric FXN42-210 was shown to have about twice the 

Fe-S cluster assembly rate of monomeric FXN81-210 [111].  However it is important to 

note that Fe-S cluster assembly is a thermodynamically driven process and that the 

increased presence of iron on the oligomeric verses monomeric sample with DTT could 

artificially accelerated this rate.  The cysteine desulfurase assay finds are complicated by 

the results of the AUC analysis, showing a heterogeneous distribution of FXN species in 

solution ranging from monomer to large aggregates above 1 MDa.  The presence of a 

heterogeneous mixture of species within oligomeric samples of the frataxin family is 

well documented, although not widely highlighted in the literature, for the yeast, E. coli, 

and human systems.  While an iron dependence has been shown for the oligomeric 

assembly in the yeast and E. coli systems both have been shown to contain multiple 

species, even under highly oligomer favoring conditions, with yeast Yfh1 retaining about 

20% monomer upon assembly completion [69, 126].  Additionally, incomplete assembly 

has been demonstrated for human frataxin both in vivo and in vitro.  Isaya et al has 

demonstrated a varied species composition for frataxin samples from mouse and human 
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heart; as well as in yeast yfh1Δ[FRDA] cells expressing human FXN [71, 74].  In vitro 

analysis of FXN56-210 with electron microscopy shows assembles of oligomers ranging 

from single spheres to chains of spheres of varied lengths [71].  The human FXN56-210 

iron-loaded oligomer has been shown by size exclusion chromatography and Western 

blot analysis to contain two species, a faster moving α, which contains more individual 

particles and some rods, and a slower moving β, which contains mostly rod shaped 

particles and few individual particles.  As the factors governing oligomerization in the 

human system are not currently known nor are procedures for isolate and stabilize of the 

individual species within this oligomeric sample, it is impossible at this time to identify 

which of the species is serving to stimulate the cysteine desulfurase activity of the SDU 

complex.  

 Given the available data, the authors propose a FXN storage function for the role 

of the FXN oligomer in vivo.  In this role, FXN oligomeric species would assemble 

under conditions of FXN overload.  These assembled FXN56-210 oligomers could then 

disassemble to serve as a source of FXN during high protein demand.  As the FXN56-210 

variant is known to truncate and produce the mature form of the protein, FXN81-210, this 

would serve as an effective regulator mechanism within cells [57].  This role is 

supported by the cysteine desulfurase assay and AUC results presented here, as well as 

findings by Isaya et al that under denaturing gel conditions oligomeric FXN56-210 

contains a major 17 kDa band and a smaller amount of a 14 kDa product, which likely 

corresponds to the mature form of the protein [71].  Ultimately the current experimental 

restrains prevent assignment of the observed cysteine desulfurase activity to any specific 
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specie(s) within the FXN56-210 oligomer sample, thus the following model is proposed 

(Figure 4-10).  Oligomer disassembly would produce species capable of interacting and 

activating the SDU complex; whether this is one discrete species, multiple species, 

monomeric or multi-meric species remains to be determined.  

 
 

 
Figure 4-10. Model for the interaction of FXN variants with SDU, where blue arrowhead 
is NFS1, green square is ISD11, red oval is ISCU, and purple is the FXN variants. 
 

  

 

 

 

 

 



 

80 
 

 

CHAPTER V 

 CONCLUSION 

 

 The work presented here further supports the role of FXN as an allosteric 

activator of the SDU complex, and has significant implications for therapeutic 

applications in the treatment of Friedreich’s Ataxia (FRDA).  The α2 helix FRDA mutant 

L182F exhibits essentially wild-type activity and kinetic parameters upon interaction 

with SDU.  This FRDA mutant is therefore impaired in a different manner than the other 

FRDA β-sheet mutants (N146K, Q148R, W155R, R165C) characterized in the 

Barondeau lab that show defects in binding and activation of the SDU complex.  Taken 

together three factors have been identified from in vivo and in vitro experiments that 

appear to contribute to FRDA pathology: impairment in binding and activation of the 

SDU complex, processing defects, and protein instability or misfolding.  There is no 

evidence for a processing defect in L182F making it dissimilar to other FRDA point 

mutants such as G130V, I154F, L156P, and W173G.  It therefore seems likely that the 

L182F mutant is destabilized relative to native FXN.  This mutant may be analogous to 

the D122Y clinical mutant, which exhibits essentially wild-type kinetic behavior and 

decreased protein stability.  Like the L182F mutant, this D122Y mutant also lies outside 

the conserved β-sheet region of the FXN protein.  Speculating from previous results and 

the work presented here, it is likely that FRDA mutants located on the surface of the 

FXN β4 and β5 sheets are affected due to kinetic impairment of the interactions with 

SDU.  Meanwhile FRDA mutants outside of this region, especially those located in the 



 

81 
 

 

protein core, are likely to impact the protein stability and/or processing.  Systematic 

analysis of both the kinetic and stability properties of all 17 FRDA mutants is warranted 

to further identify the factors governing disease phenotype in each case.  Additionally 

this analysis could provide valuable information on the factors governing the second step 

of the FXN truncation process, with current data hinting at protein folding as a possible 

factor.  As FXN has also been shown to interact with several of the Fe-S cluster transfer 

proteins, the affect FRDA mutants have on these interactions should also be interrogated 

using a cluster transfer assay currently under development in our lab.   

 Alanine scanning mutagenesis experiments were designed to identify the 

contribution of specific FXN residues in the activation of the SDU complex, further test 

the model for FXN as an allosteric activator, and  potentially lead to the development of 

improved therapeutics for FRDA.  While a handful of FXN residues have previously 

been suggested as sites of interaction with SDU, to the author’s knowledge, this is the 

first systematic investigation of interaction effects at the residue level for FXN.  While 

the majority of the 35 point mutants studied had little impact on the kinetic parameters 

for the cysteine desulfurase reaction of the SDUF complex, several important differences 

were noted.  A hotspot for SDU interaction was identified on the FXN β4 and β5 sheets; 

with residues Q153, W155, and R165 implicated as vital for SDU binding and residues 

N146, Q148, Q153, and W155 shown to be essential for SDU activation.  The presence 

of FRDA mutants at many of these residues lends further support for their importance in 

FXN/SDU interactions.  Although previous results have suggested an iron donor role for 

the FXN protein in vivo the results of the alanine scanning analysis presented here argue 
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strongly against this function; as acidic patch mutants have little effect on the FXN/SDU 

interaction.  This data further supports the allosteric activator function of FXN as the 

correct in vivo role of the protein.  As with the other mutants presented here analysis of 

the 35 alanine scanning mutants in the context of FXN interactions with cluster transfer 

proteins should also be studied.  An allosteric regulator role implies that FXN levels are 

modulated by some environmental stimuli to control Fe-S cluster biosynthesis.  These 

stimuli could control FXN levels by regulating the expression or degradation of FXN 

protein, by controlling the processing and oligomerization upon import into the 

mitochondria, or through post-translational modifications.  FXN expression levels 

appear to be modulated by iron levels and acetylation, ubiquitination, plus nitration sites 

have been identified on FXN.  Preliminary data presented here reveals acetylation 

mimics do not appear to modulate binding or activation of human FXN to the SDU 

complex.  However differences in the placement of C-terminal lysine residues between 

mouse and human FXN warrants further investigation of all four C-terminal lysine 

residues of human FXN.  Furthermore the effects of acetyl-lysine mimics should be 

determined in the cluster transfer process, as these modifications could mediate FXN 

chaperone interactions.  Finally investigation of the oligomeric FXN56-210 variant 

indicates that minor activation of the cysteine desulfurase activity is present; however 

the heterogeneous species distribution makes further interrogation of this activity 

difficult.  As the observed activity of the oligomeric species can’t be linked to any one 

component of the oligomeric FXN56-210 sample, we hypothesize a possible FXN storage 

function for the oligomeric species in vivo with activation of SDU generated from only a 
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small subset of the disassembled oligomer species.   This role would allow for dynamic 

regulation of FXN concentrations in vivo. 

 FRDA therapeutics have been focused on increasing FXN protein levels and on 

addressing potential secondary effects of FXN depletion such as the addition of chelators 

to combat the iron overload in the mitochondria and antioxidants to treat the increase in 

oxidative stress.  Results generated here suggest a couple of additional avenues to 

approach FRDA therapeutics.  First the further support of a FXN allosteric activator role 

suggests a general strategy of screening small molecule libraries as a mechanism of 

replacing FXN function and stabilizing the active form of the SDU compex.  Second, the 

identified FXN hotspot suggests a rational design approach encompassing small cyclic 

peptide mimics as potential FRDA therapeutics.  Proposed cyclic peptides for 

investigation should include NAQAQAWA, QAWARA, WARA, NLQAQIWL.  The 

NAQAQAWA and NLQAQIWL peptides represent the FXN residues identified as vital 

for SDU activation with either alanine residues or the actual FXN sequence residues 

used as spacers.  The  QAWARA peptide contains the three residues identified as vital 

for FXN binding to SDU.  The final proposed peptide WARA contains the residues 

identified as the most important for activation (W155) and binding (R165), respectively.  

Third, the significant increase in SDU binding (~100-fold tighter) observed with the 

S126A mutant, while unexpected, could have relevance for therapeutic development, as 

only small amounts of this mutant would be required to stimulate the SDU complex.  In 

fact, as soon as the enhanced binding of the S126A FXN mutant is confirmed, it should 
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be considered for substitution of the native FXN in TAT-frataxin fusion proteins that are 

currently being tested as therapeutics.   

  

 

 

 

 

  



 

85 
 

 

REFERENCES 

 

1. Huber, C. and G. Wachtershauser, Peptides by activation of amino acids with CO 

on (Ni,Fe)S surfaces: Implications for the origin of life. Science, 1998. 

281(5377): p. 670-672. 

2. Beinert, H., R.H. Holm, and E. Munck, Iron-sulfur clusters: Nature's modular, 

multipurpose structures. Science, 1997. 277(5326): p. 653-659. 

3. Fontecave, M., Iron-sulfur clusters: ever-expanding roles. Nature Chemical 

Biology, 2006. 2(4): p. 171-174. 

4. Johnson, D.C., et al., Structure, function, and formation of biological iron-sulfur 

clusters. Annual Review of Biochemistry, 2005. p. 247-281. 

5. Lill, R., Function and biogenesis of iron-sulphur proteins. Nature, 2009. 

460(7257): p. 831-838. 

6. Lill, R. and U. Muhlenhoff, Iron-sulfur protein biogenesis in eukaryotes: 

Components and mechanisms. Annual Review of Cell and Developmental 

Biology, 2006. p. 457-486. 

7. Rouault, T.A., Biogenesis of iron-sulfur clusters in mammalian cells: new 

insights and relevance to human disease. Disease Models & Mechanisms, 2012. 

5(2): p. 155-164. 

8. Meyer, J., Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. Journal 

of Biological Inorganic Chemistry, 2008. 13(2): p. 157-170. 



 

86 
 

 

9. Bandyopadhyay, S., K. Chandramouli, and M.K. Johnson, Iron-sulfur cluster 

biosynthesis. Biochemical Society Transactions, 2008. 36: p. 1112-1119. 

10. Brzoska, K., S. Meczynska, and M. Kruszewski, Iron-sulfur cluster proteins: 

electron transfer and beyond. Acta Biochimica Polonica, 2006. 53(4): p. 685-

691. 

11. Dos Santos, P.C. and D.R. Dean, A newly discovered role for iron-sulfur clusters. 

Proceedings of the National Academy of Sciences of the United States of 

America, 2008. 105(33): p. 11589-11590. 

12. Jacobson, M.R., et al., Biochemical and genetic analysis of the nifUSVWZM 

cluster from Azotobacter vinelandii. Molecular & General Genetics, 1989. 219(1-

2): p. 49-57. 

13. Takahashi, Y. and U. Tokumoto, A third bacterial system for the assembly of 

iron-sulfur clusters with homologs in archaea and plastids. Journal of Biological 

Chemistry, 2002. 277(32): p. 28380-28383. 

14. Zheng, L.M., et al., Assembly of iron-sulfur clusters - Identification of an 

iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. Journal of 

Biological Chemistry, 1998. 273(21): p. 13264-13272. 

15. Fontecave, M., et al., Mechanisms of iron-sulfur cluster assembly: the SUF 

machinery. Journal of Biological Inorganic Chemistry, 2005. 10(7): p. 713-721. 

16. Martelli, A., M. Napierala, and H. Puccio, Understanding the genetic and 

molecular pathogenesis of Friedreich's ataxia through animal and cellular 

models. Disease Models & Mechanisms, 2012. 5(2): p. 165-176. 



 

87 
 

 

17. Rouault, T.A. and W.H. Tong, Iron-sulfur cluster biogenesis and human disease. 

Trends in Genetics, 2008. 24(8): p. 398-407. 

18. Sheftel, A., O. Stehling, and R. Lill, Iron–sulfur proteins in health and disease. 

Trends in Endocrinology & Metabolism, 2010. 21(5): p. 302-314. 

19. Shi, R., et al., Structural Basis for Fe-S Cluster Assembly and tRNA Thiolation 

Mediated by IscS Protein-Protein Interactions. Plos Biology, 2010. 8(4). 

20. Adam, A.C., et al., The Nfs1 interacting protein Isd11 has an essential role in 

Fe/S cluster biogenesis in mitochondria. Embo Journal, 2006. 25(1): p. 174-183. 

21. Shi, Y., et al., Human ISD11 is essential for both iron–sulfur cluster assembly 

and maintenance of normal cellular iron homeostasis. Human Molecular 

Genetics, 2009. 18(16): p. 3014-3025. 

22. Tsai, C.L. and D.P. Barondeau, Human Frataxin Is an Allosteric Switch That 

Activates the Fe-S Cluster Biosynthetic Complex. Biochemistry, 2010. 49(43): p. 

9132-9139. 

23. Wiedemann, N., et al., Essential role of Isd11 in mitochondrial iron-sulfur 

cluster synthesis on Isu scaffold proteins. EMBO J, 2006. 25(1): p. 184-195. 

24. Schwartz, C.J., et al., The cysteine desulfurase, IscS, has a major role in in vivo 

Fe-S cluster formation in Escherichia coli. Proceedings of the National Academy 

of Sciences, 2000. 97(16): p. 9009-9014. 

25. Cupp-Vickery, J.R., H. Urbina, and L.E. Vickery, Crystal structure of IscS, a 

cysteine desulfurase from Escherichia coli. Journal of Molecular Biology, 2003. 

330(5): p. 1049-1059. 



 

88 
 

 

26. Turowski, V.R., M.V. Busi, and D.F. Gomez-Casati, Structural and Functional 

Studies of the Mitochondrial Cysteine Desulfurase from Arabidopsis thaliana. 

Molecular Plant, 2012. 5(5): p. 1001-1010. 

27. Schmucker, S., et al., Mammalian Frataxin: An Essential Function for Cellular 

Viability through an Interaction with a Preformed ISCU/NFS1/ISD11 Iron-Sulfur 

Assembly Complex. PLoS ONE, 2011. 6(1): p. e16199. 

28. Colin, F., et al., Mammalian Frataxin Controls Sulfur Production and Iron Entry 

during de Novo Fe4S4 Cluster Assembly. Journal of the American Chemical 

Society, 2012. 

29. Zheng, L.M., et al., Mechanism for the Desulfurization of L-Cysteine Catalyzed 

by the nifS Gene Product. Biochemistry, 1994. 33(15): p. 4714-4720. 

30. Nuth, M. and J.A. Cowan, Iron–sulfur cluster biosynthesis: characterization of 

IscU–IscS complex formation and a structural model for sulfide delivery to the 

[2Fe–2S] assembly site. JBIC Journal of Biological Inorganic Chemistry, 2009. 

14(6): p. 829-839. 

31. Smith, A.D., et al., Sulfur transfer from IscS to IscU: The first step in iron-sulfur 

cluster biosynthesis. Journal of the American Chemical Society, 2001. 123(44): 

p. 11103-11104. 

32. Rabb, J.D., Frataxin (FXN) based regulation of the iron-sulfur cluster assembly 

complex. 2012, Texas A&M University: United States, Texas. p. 270. 



 

89 
 

 

33. Bertini, I., et al., Thermotoga maritima IscU. Structural characterization and 

dynamics of a new class of metallochaperone. Journal of Molecular Biology, 

2003. 331(4): p. 907-924. 

34. Ramelot, T.A., et al., Solution NMR structure of the iron-sulfur cluster assembly 

protein U (IscU) with zinc bound at the active site. Journal of Molecular Biology, 

2004. 344(2): p. 567-583. 

35. Liu, J.Y., et al., Structural characterization of an iron-sulfur cluster assembly 

protein IscU in a zinc-bound form. Proteins-Structure Function and 

Bioinformatics, 2005. 59(4): p. 875-881. 

36. Shimomura, Y., et al., Characterization and crystallization of an IscU-type 

scaffold protein with bound 2Fe-2S cluster from the hyperthermophile, Aquifex 

aeolicus. Journal of Biochemistry, 2007. 142(5): p. 577-586. 

37. Shimomura, Y., et al., The Asymmetric Trimeric Architecture of [2Fe-2S] IscU: 

Implications for Its Scaffolding during Iron-Sulfur Cluster Biosynthesis. Journal 

of Molecular Biology, 2008. 383(1): p. 133-143. 

38. Kim, J.H., M. Tonelli, and J.L. Markley, Disordered form of the scaffold protein 

IscU is the substrate for iron-sulfur cluster assembly on cysteine desulfurase. 

Proceedings of the National Academy of Sciences, 2012. 109(2): p. 454-459. 

39. Foster, M.W., et al., A mutant human IscU protein contains a stable 2Fe-2S (2+) 

center of possible functional significance. Journal of the American Chemical 

Society, 2000. 122(28): p. 6805-6806. 



 

90 
 

 

40. Huang, J. and J.A. Cowan, Iron-sulfur cluster biosynthesis: role of a semi-

conserved histidine. Chemical Communications, 2009(21): p. 3071-3073. 

41. Agar, J.N., et al., IscU as a scaffold for iron-sulfur cluster biosynthesis: 

Sequential assembly of 2Fe-2S and 4Fe-4S clusters in IscU. Biochemistry, 2000. 

39(27): p. 7856-7862. 

42. Chandramouli, K., et al., Formation and properties of 4Fe-4S clusters on the 

IscU scaffold protein. Biochemistry, 2007. 46(23): p. 6804-6811. 

43. Cupp-Vickery, J.R., et al., Crystal Structure of the Molecular Chaperone HscA 

Substrate Binding Domain Complexed with the IscU Recognition Peptide 

ELPPVKIHC. Journal of Molecular Biology, 2004. 342(4): p. 1265-1278. 

44. Luo, W.I., et al., Kinetic and structural characterization of human mortalin. 

Protein Expression and Purification, 2010. 72(1): p. 75-81. 

45. Shan, Y. and G. Cortopassi, HSC20 interacts with frataxin and is involved in 

iron–sulfur cluster biogenesis and iron homeostasis. Human Molecular Genetics, 

2012. 21(7): p. 1457-1469. 

46. Vickery, L.E. and J.R. Cupp-Vickery, Molecular chaperones HscA/Ssq1 and 

HscB/Jac1 and their roles in iron-sulfur protein maturation. Critical Reviews in 

Biochemistry and Molecular Biology, 2007. 42(2): p. 95-111. 

47. Muhlenhoff, U., et al., Components involved in assembly and dislocation of iron-

sulfur clusters on the scaffold protein Isu1p. Embo Journal, 2003. 22(18): p. 

4815-4825. 



 

91 
 

 

48. Zhai, P., et al., The human escort protein hep binds to the ATPase domain of 

mitochondrial Hsp70 and regulates ATP hydrolysis. Journal of Biological 

Chemistry, 2008. 283(38): p. 26098-26106. 

49. Chamberlain, S., et al., Mapping of mutation causing Friedreich's ataxia to 

human chromosome 9. Nature, 1988. 334(6179): p. 248-250. 

50. Chamberlain, S., et al., Genetic recombination events which position the 

Friedreich ataxia locus proximal to the D9S15/D9S5 linkage group on 

chromosome 9q. American Journal of Human Genetics, 1993. 52(1): p. 99-109. 

51. Dhe-Paganon, S., et al., Crystal structure of human frataxin. Journal of 

Biological Chemistry, 2000. 275(40): p. 30753-30756. 

52. Nair, M., et al., Solution structure of the bacterial frataxin ortholog, CyaY: 

Mapping the iron binding sites. Structure, 2004. 12(11): p. 2037-2048. 

53. Cho, S.J., et al., Crystal structure of Escherichia coli CyaY protein reveals a 

previously unidentified fold for the evolutionarily conserved frataxin family. 

Proceedings of the National Academy of Sciences of the United States of 

America, 2000. 97(16): p. 8932-8937. 

54. Musco, G., et al., Towards a structural understanding of Friedreich’s ataxia: the 

solution structure of frataxin. Structure, 2000. 8(7): p. 695-707. 

55. Leidgens, S., S. De Smet, and F. Foury, Frataxin interacts with Isu1 through a 

conserved tryptophan in its beta-sheet. Human Molecular Genetics, 2010. 19(2): 

p. 276-286. 



 

92 
 

 

56. Wang, T. and E.A. Craig, Binding of Yeast Frataxin to the Scaffold for Fe-S 

Cluster Biogenesis, Isu. Journal of Biological Chemistry, 2008. 283(18): p. 

12674-12679. 

57. Cavadini, P., et al., Two-step processing of human frataxin by mitochondrial 

processing peptidase - Precursor and intermediate forms are cleaved at different 

rates. Journal of Biological Chemistry, 2000. 275(52): p. 41469-41475. 

58. Condo, I., et al., In vivo maturation of human frataxin. Human Molecular 

Genetics, 2007. 16(13): p. 1534-1540. 

59. Gordon, D.M., et al., Maturation of Frataxin Within Mammalian and Yeast 

Mitochondria: One-Step Processing by Matrix Processing Peptidase. Human 

Molecular Genetics, 1999. 8(12): p. 2255-2262. 

60. Koutnikova, H., V. Campuzano, and M. Koenig, Maturation of Wild-Type and 

Mutated Frataxin by the Mitochondrial Processing Peptidase. Human Molecular 

Genetics, 1998. 7(9): p. 1485-1489. 

61. Long, S., et al., Mitochondrial localization of human frataxin is necessary but 

processing is not for rescuing frataxin deficiency in Trypanosoma brucei. 

Proceedings of the National Academy of Sciences of the United States of 

America, 2008. 105(36): p. 13468-13473. 

62. Schmucker, S., et al., The in vivo mitochondrial two-step maturation of human 

frataxin. Human Molecular Genetics, 2008. 17(22): p. 3521-3531. 



 

93 
 

 

63. Yoon, T., E. Dizin, and J.A. Cowan, N-terminal iron-mediated self-cleavage of 

human frataxin: regulation of iron binding and complex formation with target 

proteins. Journal of Biological Inorganic Chemistry, 2007. 12(4): p. 535-542. 

64. Adinolfi, S., et al., Bacterial frataxin CyaY is the gatekeeper of iron-sulfur 

cluster formation catalyzed by IscS. Nat Struct Mol Biol, 2009. 16(4): p. 390-

396. 

65. Becker, E.M., et al., Erythroid differentiation and protoporphyrin IX down-

regulate frataxin expression in Friend cells: characterization of frataxin 

expression compared to molecules involved in iron metabolism and 

hemoglobinization. Blood, 2002. 99(10): p. 3813-3822. 

66. Gakh, O., et al., Mitochondrial iron detoxification is a primary function of 

frataxin that limits oxidative damage and preserves cell longevity. Human 

Molecular Genetics, 2006. 15(3): p. 467-479. 

67. Lesuisse, E., et al., Iron use for haeme synthesis is under control of the yeast 

frataxin homologue (Yfh1). Human Molecular Genetics, 2003. 12(8): p. 879-889. 

68. Yoon, T. and J.A. Cowan, Iron-sulfur cluster biosynthesis. Characterization of 

frataxin as an iron donor for assembly of 2Fe-2S clusters in ISU-type proteins. 

Journal of the American Chemical Society, 2003. 125(20): p. 6078-6084. 

69. Adamec, J., et al., Iron-dependent self assembly of recombinant yeast frataxin: 

Implications for Friedreich ataxia. American Journal of Human Genetics, 2000. 

67(3): p. 549-562. 



 

94 
 

 

70. Bou-Abdallah, F., et al., Iron Binding and Oxidation Kinetics in Frataxin CyaY 

of Escherichia coli. Journal of Molecular Biology, 2004. 341(2): p. 605-615. 

71. Cavadini, P., et al., Assembly and iron-binding properties of human frataxin, the 

protein deficient in Friedreich ataxia. Human Molecular Genetics, 2002. 11(3): 

p. 217-227. 

72. Cook, J.D., et al., Monomeric yeast frataxin is an iron-binding protein. 

Biochemistry, 2006. 45(25): p. 7767-7777. 

73. Nichol, H., et al., Structure of frataxin iron cores: An X-ray absorption 

spectroscopic study. Biochemistry, 2003. 42(20): p. 5971-5976. 

74. O'Neill, H.A., et al., Assembly of human frataxin is a mechanism for detoxifying 

redox-active iron. Biochemistry, 2005. 44(2): p. 537-545. 

75. Park, S., et al., The ferroxidase activity of yeast frataxin. Journal of Biological 

Chemistry, 2002. 277(41): p. 38589-38595. 

76. Aloria, K., et al., Iron-induced oligomerization of yeast frataxin homologue Yfh1 

is dispensable in vivo. EMBO Rep, 2004. 5(11): p. 1096-1101. 

77. Levi, S., et al., A human mitochondrial ferritin encoded by an intronless gene. 

Journal of Biological Chemistry, 2001. 276(27): p. 24437-24440. 

78. Seguin, A., et al., Evidence that yeast frataxin is not an iron storage protein in 

vivo. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2010. 1802(6): 

p. 531-538. 



 

95 
 

 

79. Cavadini, P., et al., Human frataxin maintains mitochondrial iron homeostasis in 

Saccharomyces cerevisiae. Human Molecular Genetics, 2000. 9(17): p. 2523-

2530. 

80. Foury, F. and D. Talibi, Mitochondrial Control of Iron Homeostasis: A 

GENOME WIDE ANALYSIS OF GENE EXPRESSION IN A YEAST FRATAXIN-

DEFICIENT STRAIN. Journal of Biological Chemistry, 2001. 276(11): p. 7762-

7768. 

81. Radisky, D.C., M.C. Babcock, and J. Kaplan, The Yeast Frataxin Homologue 

Mediates Mitochondrial Iron Efflux: EVIDENCE FOR A MITOCHONDRIAL 

IRON CYCLE. Journal of Biological Chemistry, 1999. 274(8): p. 4497-4499. 

82. Bridwell-Rabb, J., et al., Effector Role Reversal during Evolution: The Case of 

Frataxin in Fe-S Cluster Biosynthesis. Biochemistry, 2012. 51(12): p. 2506-

2514. 

83. Lill, R. and U. Mühlenhoff, Maturation of Iron-Sulfur Proteins in Eukaryotes: 

Mechanisms, Connected Processes, and Diseases. Annual Review of 

Biochemistry, 2008. 77(1): p. 669-700. 

84. Campuzano, V., et al., Friedreich's Ataxia: Autosomal Recessive Disease Caused 

by an Intronic GAA Triplet Repeat Expansion. Science, 1996. 271(5254): p. 

1423-1427. 

85. Dürr, A., et al., Clinical and Genetic Abnormalities in Patients with Friedreich's 

Ataxia. New England Journal of Medicine, 1996. 335(16): p. 1169-1175. 



 

96 
 

 

86. Santos, R., et al., Friedreich Ataxia: Molecular Mechanisms, Redox 

Considerations, and Therapeutic Opportunities. Antioxidants & Redox 

Signaling, 2010. 13(5): p. 651-690. 

87. Cossée, M., et al., Friedreich's ataxia: Point mutations and clinical presentation 

of compound heterozygotes. Annals of Neurology, 1999. 45(2): p. 200-206. 

88. Zuhlke, C.H., et al., Extension of the mutation spectrum in Friedreich's ataxia: 

detection of an exon deletion and novel missense mutations. Eur J Hum Genet, 

2004. 12(11): p. 979-982. 

89. Schmucker, S. and H. Puccio, Understanding the molecular mechanisms of 

Friedreich's ataxia to develop therapeutic approaches. Human Molecular 

Genetics, 2010. 19(R1): p. R103-R110. 

90. De Michele, G., et al., Atypical Friedreich ataxia phenotype associated with a 

novel missense mutation in the X25 gene. Neurology, 2000. 54(2): p. 496-499. 

91. Bartolo, C., J.R. Mendell, and T.W. Prior, Identification of a missense mutation 

in a Friedreich's ataxia patient: Implications for diagnosis and carrier studies. 

American Journal of Medical Genetics, 1998. 79(5): p. 396-399. 

92. Bridwell-Rabb, J., A.M. Winn, and D.P. Barondeau, Structure-Function Analysis 

of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and 

Activation of the Fe-S Assembly Complex. Biochemistry, 2011. 50(33): p. 7265-

7274. 



 

97 
 

 

93. Correia, A.R., et al., Conformational stability of human frataxin and effect of 

Friedreich's ataxia-related mutations on protein folding. Biochem J, 2006. 

398(3): p. 605-611. 

94. Correia, A.R., et al., Dynamics, stability and iron-binding activity of frataxin 

clinical mutants. FEBS Journal, 2008. 275(14): p. 3680-3690. 

95. Diehl, B., et al., Atypical, perhaps under-recognized? An unusual phenotype of 

Friedreich ataxia. neurogenetics, 2010. 11(2): p. 261-265. 

96. Forrest, S.M., et al., The correlation of clinical phenotype in Friedreich ataxia 

with the site of point mutations in the FRDA gene. neurogenetics, 1998. 1(4): p. 

253-257. 

97. Gellera, C., et al., Frataxin gene point mutations in Italian Friedreich ataxia 

patients. Neurogenetics, 2007. 8(4): p. 289-299. 

98. McCormack, M.L., et al., Frataxin point mutations in two patients with 

Friedreich's ataxia and unusual clinical features. Journal of Neurology, 

Neurosurgery & Psychiatry, 2000. 68(5): p. 661-664. 

99. Tsai, C.L., J. Bridwell-Rabb, and D.P. Barondeau, Friedreich's Ataxia Variants 

I154F and W155R Diminish Frataxin-Based Activation of the Iron-Sulfur Cluster 

Assembly Complex. Biochemistry, 2011. 50(29): p. 6478-6487. 

100. Van Driest, S.L., et al., Molecular and functional characterization of a human 

frataxin mutation found in hypertrophic cardiomyopathy. Molecular Genetics 

and Metabolism, 2005. 85(4): p. 280-285. 



 

98 
 

 

101. Roman, E.A., et al., Protein Stability and Dynamics Modulation: The Case of 

Human Frataxin. PLoS ONE, 2012. 7(9). 

102. Deutsch, E.C., et al., A rapid, noninvasive immunoassay for frataxin: Utility in 

assessment of Friedreich ataxia. Molecular Genetics and Metabolism, 2010. 

101(2-3): p. 238-245. 

103. Correia, A.R., et al., The conserved Trp155 in human frataxin as a hotspot for 

oxidative stress related chemical modifications. Biochemical and Biophysical 

Research Communications, 2009. 390(3): p. 1007-1011. 

104. Hebert, Alexander S., et al., Calorie Restriction and SIRT3 Trigger Global 

Reprogramming of the Mitochondrial Protein Acetylome. Molecular cell, 2013. 

49(1): p. 186-199. 

105. Rufini, A., et al., Preventing the ubiquitin/proteasome-dependent degradation of 

frataxin, the protein defective in Friedreich’s Ataxia. Human Molecular 

Genetics, 2011. 

106. Wagner, G.R., et al., Friedreich's ataxia reveals a mechanism for coordinate 

regulation of oxidative metabolism via feedback inhibition of the SIRT3 

deacetylase. Human Molecular Genetics, 2012. 21(12): p. 2688-2697. 

107. Palmer, I. and P.T. Wingfield, Preparation and Extraction of Insoluble 

(Inclusion-Body) Proteins from Escherichia coli, Current Protocols in Protein 

Science. 2001, John Wiley & Sons, Inc. 



 

99 
 

 

108. Gill, S.C. and P.H. von Hippel, Calculation of protein extinction coefficients 

from amino acid sequence data. Analytical Biochemistry, 1989. 182(2): p. 319-

326. 

109. Marelja, Z., et al., A Novel Role for Human Nfs1 in the Cytoplasm: Nfs1 ACTS 

AS A SULFUR DONOR FOR MOCS3, A PROTEIN INVOLVED IN 

MOLYBDENUM COFACTOR BIOSYNTHESIS. Journal of Biological 

Chemistry, 2008. 283(37): p. 25178-25185. 

110. Siegel, L.M., A direct microdetermination for sulfide. Analytical Biochemistry, 

1965. 11(1): p. 126-132. 

111. Gakh, O., et al., Normal and Friedreich ataxia cells express different isoforms of 

frataxin with complementary roles in iron-sulfur cluster assembly. Journal of 

Biological Chemistry, 2010. 285(49): p. 38486-38501. 

112. Huang, R., et al., Site-Specific Introduction of an Acetyl-Lysine Mimic into 

Peptides and Proteins by Cysteine Alkylation. Journal of the American Chemical 

Society, 2010. 132(29): p. 9986-9987. 

113. Nagahara, N., et al., Protein cysteine modifications: (1) medicinal chemistry for 

proteomics. Current Medicinal Chemistry, 2009. 16(33): p. 4419-4444. 

114. Li, F.P., et al., A Direct Method for Site-Specific Protein Acetylation. 

Angewandte Chemie-International Edition, 2011. 50(41): p. 9611-9614. 

115. Yang, Y.Y. and H.C. Hang, Chemical Approaches for the Detection and 

Synthesis of Acetylated Proteins. Chembiochem, 2011. 12(2): p. 314-322. 



 

100 
 

 

116. Lane, D.J.R. and D.R. Richardson, Frataxin, a molecule of mystery: trading 

stability for function in its iron-binding site. Biochemical Journal, 2010. 426(2): 

p. e1-e3. 

117. Shan, Y., E. Napoli, and G. Cortopassi, Mitochondrial frataxin interacts with 

ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. 

Human Molecular Genetics, 2007. 16(8): p. 929-941. 

118. Gerber, J., U. Muhlenhoff, and R. Lill, An interaction between frataxin and 

Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. Embo Reports, 2003. 

4(9): p. 906-911. 

119. Prischi, F., et al., Structural bases for the interaction of frataxin with the central 

components of iron-sulphur cluster assembly. Nature Communications, 2010. 

1(7): p. 95-95. 

120. Cook, J.D., et al., Molecular Details of the Yeast Frataxin−Isu1 Interaction 

during Mitochondrial Fe−S Cluster Assembly. Biochemistry, 2010. 49(40): p. 

8756-8765. 

121. Prischi, F., et al., Of the vulnerability of orphan complex proteins: The case study 

of the E. coli IscU and IscS proteins. Protein Expression and Purification, 2010. 

73(2): p. 161-166. 

122. Vaubel, R.A. and G. Isaya, Iron–sulfur cluster synthesis, iron homeostasis and 

oxidative stress in Friedreich ataxia. Molecular and Cellular Neuroscience, (0). 



 

101 
 

 

123. Adinolfi, S., et al., A structural approach to understanding the iron-binding 

properties of phylogenetically different frataxins. Human Molecular Genetics, 

2002. 11(16): p. 1865-1877. 

124. Harrison, P.M. and P. Arosio, Ferritins: Molecular properties, iron storage 

function and cellular regulation. Biochimica Et Biophysica Acta-Bioenergetics, 

1996. 1275(3): p. 161-203. 

125. Söderberg, C.A.G., et al., Oligomerization Propensity and Flexibility of Yeast 

Frataxin Studied by X-ray Crystallography and Small-Angle X-ray Scattering. 

Journal of Molecular Biology, 2011. 414(5): p. 783-797. 

126. Gakh, O., et al., Physical evidence that yeast frataxin is an iron storage protein. 

Biochemistry, 2002. 41(21): p. 6798-6804. 

127. Gakh, O., D.Y. Smith, and G. Isaya, Assembly of the iron-binding protein 

frataxin in Saccharomyces cerevisiae responds to dynamic changes in 

mitochondrial iron influx and stress level. Journal of Biological Chemistry, 2008. 

283(46): p. 31500-31510. 

128. Karlberg, T., et al., The structures of frataxin oligomers reveal the mechanism for 

the delivery and detoxification of iron. Structure, 2006. 14(10): p. 1535-1546. 

129. Park, S., et al., Yeast frataxin sequentially chaperones and stores iron by 

coupling protein assembly with iron oxidation. Journal of Biological Chemistry, 

2003. 278(33): p. 31340-31351. 



 

102 
 

 

130. Schagerlof, U., et al., Structural basis of the iron storage function of frataxin 

from single-particle reconstruction of the iron-loaded oligomer. Biochemistry, 

2008. 47(17): p. 4948-4954. 

131. Soderberg, C.A.G., et al., The molecular basis of iron-induced oligomerization of 

frataxin and the role of the ferroxidation reaction in oligomerization. Journal of 

Biological Chemistry, 2013. 

132. Li, H.Q., et al., Oligomeric Yeast Frataxin Drives Assembly of Core Machinery 

for Mitochondrial Iron-Sulfur Cluster Synthesis. Journal of Biological 

Chemistry, 2009. 284(33): p. 21971-21980. 

133. Layer, G., et al., Iron-sulfur cluster biosynthesis - Characterization of 

Escherichia coli CyaY as an iron donor for the assembly of 2Fe-2S clusters in 

the scaffold IscU. Journal of Biological Chemistry, 2006. 281(24): p. 16256-

16263. 

134. Pastore, C., et al., Understanding the binding properties of an unusual metal-

binding protein - a study of bacterial frataxin. FEBS Journal, 2007. 274(16): p. 

4199-4210. 

135. Bedekovics, T., et al., Partial conservation of functions between eukaryotic 

frataxin and the Escherichia coli frataxin homolog CyaY. FEMS Yeast Research, 

2007. 7(8): p. 1276-1284. 

136. O'Neill, H.A., O. Gakh, and G. Isaya, Supramolecular assemblies of human 

frataxin are formed via subunit-subunit interactions mediated by a non-



 

103 
 

 

conserved amino-terminal region. Journal of Molecular Biology, 2005. 345(3): p. 

433-439. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 
 

 

APPENDIX A 

TWO AZIDO-BRIDGED COPPER(II) COORDINATION POLYMERS WITH 

ISONICOTINATE-N-OXIDE AND PICOLINATE-N-OXIDE ACTING AS  

CO-LIGANDS* 

 

ABSTRACT 

 Two one-dimensional coordination polymers [Cu1.5(L1)(N3)2(H2O)]n  (1) and 

[Cu1.5(L2)(N3)2]n (2) were synthesized by hydrothermal reactions  of Cu(II) salt with 

NaN3  in the presence of two secondary ligands, isonicotinate-N-oxide (L1) and its 

isomer, picolinate-N-oxide (L2). Single-crystal X-ray diffraction studies reveal that azide 

anions adopt a μ-1,1 bridging coordination mode linking the metal ions by both double 

and single azide bridges in 1, but they adopt both μ-1,1 and μ-1,1,1 bridging modes in 2. 

The magnetic measurements showed strong ferromagnetic coupling and the onset of 

magnetic ordering in 1 (a metamagnet  with a small glass behaviour),  but 

antiferromagnetic interactions between the ferromagnetic trimers in 2. This result 

indicates that the judicious selection of co-ligands can effectively tune the formation of 

metal-azide coordination polymers and thereby, their magnetic properties. 

 

 

_____________________________________ 

 

 

 

*Reproduced by permission of The Royal Society of Chemistry 
(http://pubs.rsc.org/en/Content/ArticleLanding/2011/CE/c0ce00914h). 

http://pubs.rsc.org/en/Content/ArticleLanding/2011/CE/c0ce00914h
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INTRODUCTION 

 Molecule-based magnetic materials have been actively investigated in the past 

two decades due to their unique physical characteristics, such as slow relaxation and 

large hysteresis of magnetic properties [137-142].  These materials show great promise 

for potential applications in information storage, quantum computation, and so on [143-

145].  Coordination chemistry provides a promising approach to design and prepare 

these materials by combining first-row transition metal ions with suitable ligands to form 

coordination polymers [146-152].  This method has been used to create various magnetic 

materials, such as single-molecule magnets (SMMs) and single-chain magnets (SCMs) 

[153-157].  Obviously, using short bridging ligands, like N3
¯, CN¯, C2H3O2

¯, C6H5O¯, 

and OH¯, allows for the mediation of the near-neighbour magnetic interaction, while the 

bridging or chelating co-ligands (secondary ligands) are able to tune structures and bulk 

magnetic properties [138, 158-163]. 

 Among all these bridging entities, azide plays an important role as a mediator for 

magnetic exchange interaction between metal centers.  The reasons are dual: (i) the 

remarkable ability of the azide ligand to transmit large ferro- or anti-ferromagnetic 

interaction when adopting the μ-1,1 end-on (EO) and μ-1,3 end-to-end  (EE) bridging 

modes [164-165] and (ii) although it is rare, an azide anion can also link metal ions 

through triply bridging (μ3-1,1,1 and μ3-1,1,3) and quadruply bridging (μ4-1,1,1,1, μ4-

1,1,1,3 and μ4-1,1,3,3) modes to give unexpected magnetic behaviors [158, 166-169].  

First-row transition metals have been combined with pyridine carboxylate N-oxide 

secondary ligand and azide anion to form 2D and 3D magnetic architectures [170-171].  
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The varied structures observed in these materials are due to the diverse coordination 

modes of azide anion, a fact which can further be exploited to create new compounds 

[172-173].  In this work the iso-nicotinate-N-oxide (L1) and its isomeric compound, 

picolinate-N-oxide (L2), were employed in the metal-azide system.  Herein, we report 

the synthesis, structure, and magnetic properties of two new Cu(II)-azide coordination 

polymers [Cu1.5(L1)(N3)2(H2O)]n (1) and [Cu1.5(L2)(N3)2]n (2) with the two structurally 

related anionic compounds as co-ligands, respectively. 

 

 

EXPERIMENTAL SECTION 

Materials and measurements 

 All the chemicals used for synthesis are of analytical grade and are commercially 

available.  Elemental analyses (C, H, and N) were performed on a Heraeus CHN-Rapid 

elemental analyzer.  FT-IR spectra (KBr pellet) were obtained on an FT-IR 170 SX 

(Nicolet) spectrometer with KBr pellets.  XRPD patterns were obtained on a Scintag X1 

powder diffractometer system using Cu-Kα radiation with a variable divergent slit, solid-

state detector, and a routine power of 1400 W (40 kV and 35 mA).  Simulation of the 

XRPD spectrum was carried out by the single-crystal data and diffraction-crystal module 

of the Mercury program which is available free of charge via the internet at 

http://www.iucr.org.  Magnetic data were collected using crushed crystals of the sample 

on a Quantum Design PPMS-9T magnetometer.  The data were corrected using Pascal’s 

constants to calculate the diamagnetic susceptibility.  During the magnetic measurement, 
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the powder sample was enwrap by a film, then fixed in the tube for measurement and the 

background of the film was corrected. 

 

Crystallography 

 The single crystal X-ray diffraction measurement was carried out on a Bruker 

Smart 1000 CCD area detector.  Intensities of reflections were measured using graphite-

monochromatized Mo-Kα radiation (λ = 0.71073 Å) with ω scan mode at 293(2) K in the 

range of 2.07 < θ < 27.94° for 1 and 3.79 < θ < 27.46° for 2, respectively.  Unit cell 

dimensions were obtained with least-squares refinements and semi-empirical absorption 

corrections were applied using SADABS program.(ref 10)  The structure was solved by 

the direct method (ref 11) and non-hydrogen atoms were obtained in successive 

difference Fourier syntheses.  Hydrogen atoms of C were included in calculated 

positions and refined with fixed thermal parameters riding on their parent atoms.  

Hydrogen of water were located on difference Fourier maps and refined isotropically 

with Uiso(H) = 1.2Ueq.  The crystallographic data for 1 and 2 are listed in Table 1. 

 

Synthesis of [Cu1.5(L1)(N3)2(H2O)]n (1) 

 A mixture of Cu(NO3)2·3H2O, NaN3, HL1, and H2O at a mole ratio of 4 : 2 : 3 : 

1000 was sealed in a Teflon-lined autoclave, heated to 140 °C for 3 days, and cooled to 

100 °C at a rate of 10 °C h-1; at this temperature the system was held for an additional 12 

hours, and then cooled to room temperature naturally.  The dark-green crystals were 

collected in ca. 20% yield based on copper.  FT-IR (KBr pellet, cm-1): 3322s, 3115m, 
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2551m, 2471m, 2351w, 2101s, 2083s, 1684w, 1628s, 1554s, 1415s, 1295m, 1221m, 

1147m, 1092w, 1026w, 870m, 813w, 783m, 693m, 647m, 573w, 508m. Anal. Calcd for 

C12H12Cu3N14O8: C, 21.48; H, 1.80; N, 29.23.  Found:  C, 21.33; H, 1.75; N, 29.55. 

 

Synthesis of [Cu1.5(L2)(N3)2]n (2) 

 Compound 2 was synthesized in the same manner as described for 1.  The dark-

green crystals collected in ca. 32% yield based on copper.  FT-IR (KBr pellet, cm-1): 

3450m, 3330m, 3123m, 3091m, 2567w, 2384w, 2102s, 2090s, 1624s, 1605s, 1446s, 

1350s, 1271s, 1208m, 1159m, 1096w, 1049w, 985w, 866m, 810m, 762s, 715m, 675m, 

611m, 508m.  Anal. Calcd for C12H8Cu3N14O6: C, 22.70; H, 1.27; N, 30.88.  Found: C, 

22.63; H, 1.32; N, 31.22. 
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RESULTS AND DISCUSSION 

Synthesis and general characterization 

 The two compounds were prepared by the hydrothermal reaction under 

autogenous pressure.  The IR spectra of 1 and 2 display characteristic absorption peaks 

in the range of 2102–2089 cm-1 for the coordinated azides.  The middle strong broad 

peaks centred at ca. 3322 and 3450 cm-1 indicate O–H stretching of aqua molecules.  

The strong peaks at 1684 and 1624 cm-1 can be assigned to the C=O stretching of –COO- 

groups; the peaks at 1628 and 1605 cm-1 belong to the N=O stretching of N-oxide 

groups; and the absorption bands resulting from skeletal vibrations of the aromatic ring 

appear in the 1554–1415 cm-1 region.  XRPD patterns show that most of the peaks in 1 

and 2 are matched with the simulation spectrum.  However, the slight differences 

between simulation spectrum and measurement data indicate that the minor impurity 

happened in these two complexes (ESI, Fig. S1 and S2†). 

 

Crystal structure of 1 and 2 

 Complex 1 crystallized in the triclinic space group P1¯.  A perspective view of a 

trinuclear fragment of the chain is shown in Fig. 1a and the selected bond lengths and 

angles are listed in Table 2.  The common structural feature of 1 is a one-dimensional 

(1D) Cu–N3
¯ /COO¯ chain composed of metal ions linked by double EO azide bridges 

and single EO azide with one syn–syn carboxylate bridges alternatively.  To our 

knowledge, this kind of linkage has scarcely been reported before [171, 174]. 
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Fig. 1  (a) View of the trinuclear unit in 1 (highlighting the coordination environment of 
Cu(II) atom); (b) view of 1D chain in 1; (c) view of 2D layer showing the π-π 
interactions between adjacent chains. 
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 There are two crystallographically independent Cu(II) ions, Cu1 and Cu2 in the 

crystal asymmetric unit.  The Cu1 ion (light blue in Fig. 1a) is located at an inversion 

center, and its coordination environment is an elongated octahedron in which the 

equatorial plane is made up of two carboxylate oxygen atoms from two isonicotiniate-N-

oxide and two nitrogen atoms from two azide anions and the axial sites are occupied by 

two oxygen atoms from coordinated water molecules.  The equatorial Cu1–N/O 

distances of 2.0081(17) and 1.9616(16) Å are significantly shorter than the axial Cu1–O 

distances of 2.500 Å, but match those observed in related compounds [170, 175-176]. 

Except the EO azide anions and the syn–syn carboxylate bridges, one oxygen atom from 
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the coordinated water molecule links the adjacent Cu1 and Cu2 ions additionally with 

the angles of Cu1–N2–Cu2 and Cu1–O4–Cu2 being 102.85° and 79.333°, respectively, 

and the distance between Cu1 and Cu2 is 3.114 Å. 

 Cu2 (cyan in Fig. 1a) is coordinated by three nitrogen atoms from three azide 

anions, one oxygen atom from the carboxylate moiety, and one oxygen atom from a 

coordinated water molecule.  The distances of Cu2–N are slightly different: 1.9749 Å for 

Cu2–N1, 1.9817 Å for Cu2–N4 and 2.0043 Å for Cu2–N4A, which match other Cu–N3 

systems [177-179].  The distance of Cu2–O4 and Cu2–O2 is 2.3757 and 1.9485 Å, 

respectively.  The adjacent Cu2 ions were joined by the double EO azide bridges with 

the same Cu2–N4–Cu2A and Cu2–N4A–Cu2A angles of 99.42°.  The distance between 

Cu2 and Cu2A is 3.0404 Å.  The feature of the chains along the crystallographic axis b 

is exhibited as helices as shown in Fig. 1b.  The shortest Cu(II) ions separation within 

the chains is 9.718 Å, with additional weak interactions presenting between the adjacent 

chains (Fig. 1c) [180-181].  The pyridine rings in adjacent chains are aligned in an off-

set fashion, lying approximately parallel to each other with a center–center distance of 

ca. 4.205 Å, indicating the presence of face-to-face π/π stacking [182-183].  Hydrogen 

bonding of O–H ...O  is observed between the hydrogen of the coordinated water 

molecule and the N-oxide group of isonicotinate-N-oxide.  The hydrogen bond 

parameters are presented in Table 3.  These weak interactions extend the 1D chain 

structure of 1 to a two-dimensional (2D) supramolecular network layer. 
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 2 crystallized in the triclinic space group P1¯ and the common structural feature 

of  2 is also a 1D Cu–N3
¯ /COO¯ chain composed of metal ions linked by both EO (μ-

1,1) and the μ-1,1,1 bridging azides, and one syn–syn carboxylate bridges, but 

structurally is different from that of 1.  The selected bond lengths and angles are listed in 

Table 4.  As shown in Fig. 2a, 2 consists of two Cu(II) ions Cu1 and Cu2.  Each Cu1 

(light blue in Fig. 2a) having a distorted octahedral coordination environment is 

coordinated by three nitrogen atoms from three azide anions, two carboxylate oxygen 

atoms from two picolinate-N-oxide co-ligands and one oxygen from the N-oxide group 

of picolinate-N-oxide ligand.  Comparing the Cu1–N2 (1.987 Å) and Cu1–N5 (2.016 Å) 

bond distances with that of the axial Cu1–N5A (2.657 Å), it is clear that there is a 

distinct difference for the equatorial vs. the axial Cu–N bonds of the structure.  These 

bond distances are consistent with the previously reported value [184].  Cu2 (cyan in 

Fig. 2a) also has an octahedral coordination environment with the four nitrogen atoms 

from four azide anions in the equatorial plane and two carboxylate oxygen atoms from 

two picolinate-N-oxide ligands in the axial positions.  The angle of Cu1–N(N3¯)–Cu2 is 

97.22(10)° for Cu1–N2–Cu2 and 96.05(9)° for Cu1–N5–Cu2.  Thus the 1D chain of 2 
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can be described as two double azide anions bridge of Cu3 trimers linked by the weakly 

coordinated bonds in the axial positions.  Each Cu(II) atom in the trimer, Cu1, Cu2, and 

Cu1A, is ranged in a line; and two Cu1 ions and one Cu2 ion exhibit an alternating 

pattern to form a 1D rhombic chain (Fig. 2b). 

 
 

 
Fig. 2 (a) View of structural unit showing the coordination environment of Cu(II) in 2; 
(b) view of 1D chain in 2. 
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Magnetic properties of 1 and 2 

 Magnetic measurements were carried out on crystalline samples of 1 from 2 to 

300 K.  A plot of χmT vs. T for 1 is shown in Fig. 3, where χm is the magnetic 

susceptibility for three Cu(II) ions.  At 300 K the χmT value is 1.35 cm3 K mol-1, larger 

than the predicted 1.05 cm3 K mol-1 for three isolated Cu(II) ions (S = 1/2) with g = 2.0.  

As temperature decreases, χmT increases smoothly reaching a maximum value of 15.30 

cm3 K mol-1 at 4 K and then decreases to 10.69 cm3 K mol-1.  This kind of curve is a 

typical signature of a strongly coupled ferromagnetic system, with antiferromagnetic 

coupling between the chains, noticeable only at very low temperatures that are identical 

with the similar complexes with the same chain structure but with different carboxylate 

[174].  The rapid increase of the curve at low field indicates strong ferromagnetic 

coupling and the onset of magnetic ordering (Fig. 4). 



 

116 
 

 

 
Fig. 3  Thermal variation of χmT of 1 at 2 kOe. 
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Fig. 4  (a) The magnetization vs. field plot of 1 at 2.0 K. (b) Hysteresis loop of 1 at 2 K. 
 
 
 
 The isothermal field dependent magnetizations M(H) at 2 K and fields up to 70 

kOe were measured for 1.  The field dependence of the magnetization does not follow a 

Brillouin curve.  As shown in Fig. 4a, the curves rise sharply to the saturation value of 

3.2 Nβ for 1 in agreement with three Cu(II) ions.  However at low field a sigmoidal-
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shaped curve is observed with a critical field of 400 Oe.  This indicates that the coupling 

between the chains is antiferromagnetic and 1 is a metamagnet.  In addition, no obvious 

hysteresis loop was observed (Fig. 4b). 

 The ac susceptibilities in a field of 5 Oe oscillating at 1–1000 Hz (Fig. 5) show a 

peak around 3 K in the in-phase curves without the corresponding peak in out-of-phase 

ones, indicating a zero ground state spin in 1.  Namely, 1 is antiferromagnetic under this 

measuring condition, which is consistent with the variable-field magnetization.  At low 

temperature below 2.5 K, a weak frequency dependence of out-of-phase χm” is observed.  

The shift of the peak temperature (Tp) of χm” characterized by a parameter (φ) {(φ) = 

ΔTp/[TpΔ(log ƒ)]} is about 0.07, indicating a canonical spin glass in 1.  It is suggested 

that the frequency-dependent behaviour probably results from the magnetic properties of 

the chain.  This similar situation has been observed in other chain coordination polymers 

[185-187].  In complex 1 the inphase and out-of-phase peaks do not appear at an exact 

temperature which may be due to the moving of the domain wall that is familiar in some 

low dimensional complexes.  It is more likely that in the complex the moments within 

the chain order first and then the 3D ordering takes place.  A plot of χmT vs. T and χm vs. 

T for 2 is shown in Fig. 6, where χm is the magnetic susceptibility for the three Cu(II) 

ions.  At 300 K the χmT value is 1.53 cm3 K mol-1, much larger than the predicted 1.05 

cm3 K mol-1 for three isolated Cu(II) ions (S = 1/2) with g = 2.0, suggesting the 

ferromagnetic coupling between Cu(II) ions in the trimer [188-190].  With the decrease 

of temperature, χmT increases to 1.68 cm3 K mol-1 at about 25 K then drops to 0.75 cm3 

K mol-1 at 2 K which may indicate an antiferromagnetic coupling between the trimers.  2 
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is a 1D structure in which neighbour azide bridged trimers were linked by the weakly 

coordinated bonds in the axial positions of each Cu(II) ion.  And the magnetic behaviour 

is mainly the characteristic of the trimer, for the inter-trimer coupling is weak and is only 

significant at very low temperature.  Thus the ferromagnetic magnetic orbital 

interactions between the Cu(II) ions in the trimer should be mainly conducted by the 

double μ-1,1-azido anions with Cu–N– Cu angles near 98 [191-194].  In order to 

evaluate the magnitude of the interactions conducted by each bridge, a simulation of the 

magnetic data was carried out with a trimer mode based on the Hamiltonian H = -

2J(SCu1SCu2 + SCu2SCu1B), and the interactions between the trimers transferred by weakly 

coordinated carboxylate groups and azide ions in axial positions of Cu(II) atoms were 

taken into account by the molecular field approximation: [195] 

 

 
 
 

The best fitting parameter above 25 K gives JI = 21.78 cm-1, zJ’ = -2.61 cm-1, g = 2.28 

and R = 1.2 x 10-5 (R = [(χmT)obs - (χmT)calc]2/[(χmT)obs]2).  Those values are consistent 

with the structure character of 2 and indicate that the cooperativity of the weakly 

coordinated carboxylate groups and azide ions results in the antiferromagnetic coupling 

between the trimers.  Below 25 K the magnetic data show that this mode for the 

interactions conducted by the weakly coordinated bonds is significant at low temperature 

and 2 behaves as a magnetic chain.  The magnetization at 2 K that increases linearly with 
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the field and reaches saturation of 3 Nβ at 50 KOe (Fig. 7) also confirms the 

antiferromagnetic interaction between the ferromagnetic trimers in 2. 

 In summary, we have synthesized two new Cu(II)-azide 1D coordination 

polymers with different structures, which are tuned by different co-ligands.  1 features a 

μ-1,1 azide coordination mode to link the Cu(II) atoms by both double EO and single EO 

azide bridges.  2 has a μ-1,1 and μ-1,1,1 mixed bridging mode of azide anions.  The 

magnetic measurements show that 1 has strong ferromagnetic coupling and the onset of 

magnetic ordering, while 2 presented antiferromagnetic coupling between the 

ferromagnetic Cu(II) trimers.  This result indicates that the judicious selection of co-

ligands can effectively tune the formation of metal-azide coordination polymers and 

thereby, their magnetic properties. 

 
 

 
Fig. 5  The ac magnetic susceptibility at different frequencies for 1. 
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Fig. 6  Thermal variation of χmT  at 1 kOe for 2 (red line represents the fitting result of 
the data).  
 
 
 

 
Fig. 7  The magnetization vs. field plot of 2 at 2.0 K. 
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SUPPORTING INFORMATION 

 XRPD results of 1 and 2 are shown below.  The slight difference between 

simulation spectrum and measurement data indicate the minor impurity happened in 

these two compounds. 

 
 

 
ESI-figure 1.  The XRPD result of 1. 

 
 



 

123 
 

 

 
ESI-figure 2.  The XRPD result of 2. 
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