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ABSTRACT 

 

Separate domestication events and strong selective pressures have created 

diverse phenotypes among existing cattle populations; however, the genetic 

determinants underlying most phenotypes are currently unknown.  Bos taurus taurus 

(Bos taurus) and Bos taurus indicus (Bos indicus) cattle are subspecies of domesticated 

cattle that are characterized by unique morphological and metabolic traits. Because of 

their divergence, they are ideal model systems to understand the genetic basis of 

phenotypic variation. Here, we developed DNA and structural variant maps of cattle 

genomes representing the Bos taurus and Bos indicus breeds. Using this data, we 

identified genes under selection and biological processes enriched with functional 

coding variants between the two subspecies.  Furthermore, we examined genetic 

variation at functional non-coding regions, which were identified through epigenetic 

profiling of indicative histone- and DNA-methylation modifications. Copy number 

variants, which were frequently not imputed by flanking or tagged SNPs, represented 

the largest source of genetic divergence between the subspecies, with almost half of 

the variants present at coding regions. We identified a number of divergent genes and 

biological processes between Bos taurus and Bos indicus cattle; however, the extent of 

functional coding variation was relatively small compared to that of functional non-

coding variation. Collectively, our findings suggest that copy number and functional non-

coding variants may play an important role in regulating phenotypic variation among 

cattle breeds and subspecies. 
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CHAPTER I 

INTRODUCTION 

TYPES OF GENETIC VARIATION AMONG INDIVIDUALS 

 The structure and composition of genomes has traditionally been considered to 

be constant with very few changes occurring, even among species divergent by millions 

of years. While the long held notion that any two individuals are more than 99.9% 

genetically identical may still apply, recent studies have clearly shown that our theory of 

genetic diversity needs some slight modifications [1-3]. Two individuals have very 

similar general chromosomal structures and coding sequence, but intra-chromosomal 

structural variation affects up to 10% of individual genomes. 

The most well studied type of genetic variants are single nucleotide variants 

(SNVs) caused by mistakes during DNA replication. The characterization of SNVs in 

numerous genomes has identified millions of single nucleotide polymorphisms (i.e., 

SNVs with characterized allelic frequencies known as SNPs). An individual human has 

an average of 3.3 million SNPs [4-6]. These SNPs have the potential to alter critical 

bases in coding and regulatory regions of a genome, thereby causing dramatic 

phenotypic effects. 

Insertion and deletion variants (INDELs) are another type of genetic variant 

caused by errors during DNA replication and retrotransposition of DNA elements. These 

variants are often single base insertions and deletions occurring by polymerase 

slippage. Additionally, INDELs can be formed through LINE/SINE insertions or 

microhomology mediated excision and duplication.  While the definition of an INDEL 

has changed over time, it is generally accepted that they can range in lengths of a 

single base up to 50 base-pairs (bp) [1, 4]. The formation of an INDEL within a coding 
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portion of a gene has the potential to be much more deleterious to the gene’s function. 

Insertion and deletion variants often lead to a frameshift resulting in the formation or 

loss of stop codons. The altered transcripts typically undergo nonsense-mediated 

decay, causing a reduction in functional protein in the cell. The strong negative selective 

pressure against deleterious INDELs resulted in their abundance within intergenic and 

non-coding regions. 

Structural variants (SV) in a genome can be either balanced (no change in DNA 

content) or unbalanced (changes DNA content). Balanced structural rearrangements in 

a genome include inversions and translocations of a segment of DNA to another 

location in the genome. Unbalanced structural rearrangements (i.e., known as copy 

number variants [CNVs]), result in the duplication or deletion of a segment of DNA. 

Over the past decade, CNVs have been intensively studied in humans, revealing that as 

much as 10% of the human genome is affected by CNVs. The size of a CNV was 

traditionally considered a region greater than 1,000 bp (1 kb); however, with the 

increased resolution of detection methods, CNVs can be as small as 50 bp in length. 

The effects of CNVs are dependent on the size and region affected. Copy number 

variants encompassing entire genes can result in overall increases and decreases of 

gene expression. The occurrence of CNVs within single or several exons of a gene may 

lead to the fusion of two adjacently located genes, new exons, or nonsense mediated 

decay. Additionally, CNVs overlapping genic and intergenic regulatory elements can 

alter splicing and the level of gene expression [7, 8]. 

 Ancestral duplications are shared within a population and have, over time, 

acquired mutations resulting in up to 10% sequence divergence between the duplicated 

regions. This class of unbalanced structural variant is known as a segmental duplication 
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(SD) and, while similar to a CNV, they differ in their sequence identity and ancestry. 

Segmental duplications are found throughout the genome but are enriched at regions 

within 1Mb of centromeres (pericentromeric) and subtelomeric regions. While 

segmental duplications are distinct from CNVs, they are often highly enriched for new 

CNVs due to the predisposition to recombination events from the sequence similarly. 

 Overall, the size and distribution of CNVs throughout genomes are highly 

dependent on predisposition due to the presence of repetitive elements and 

homologous regions. The combination of several mechanisms of formation leads to 

CNV enrichments in approximate size groups of 350-, 6,000-, and 50,000-bp. Regions 

containing sequence repeats, extended homology and simple structures predispose the 

regions to the formation of new and recurring structural variants. Additionally, regions of 

ancestral segmental duplications have been shown to contain 20-30% of CNVs in the 

human genome [9, 10]. Comparative analysis has revealed that approximately 27% of 

human CNVs are shared with at least one species of primate [10, 11]. Therefore, CNVs 

are both ancestrally inherited and novel within individuals. 

MECHANISM OF STRUCTURAL VARIANT FORMATION 

The structures of genomes are constantly undergoing alterations in size, content 

and organization. Large-scale changes in genome structure, known as structural 

variation, arise from numerous paths involving recombination and DNA replication. The 

type of variant, mechanism of formation, and prevalence within a population are highly 

dependent on the genetic makeup of the genomic region. The major contributor to the 

formation of structural variation is various types of repetitive content in the genome 

including short interspersed nuclear elements (SINEs), long interspersed elements 
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nuclear (LINEs), variable number tandem repeats (VNTRs), and long terminal repeats 

(LTRs). 

 Approximately 50% of the human genome is repetitive, including more than 

500,000 LINEs and 140,000 SINEs [11]. The most prevalent LINE, L1, is enriched in 

AT-rich regions, while the Alu (SINE) is enriched within GC-rich regions [12-15]. Long 

terminal repeats have been shown to build up within intergenic regions. The activity of 

retrotransposons has drastically reduced over time, with LINEs being the only readily 

active element in the genome even though 99% remain inactive [11]. Also, the rates of 

element activity vary in different genomes, with the largest burst of activity occurring 30-

40 million years ago during primate evolution [10, 11, 16].  

Non-allelic homologous recombination (NAHR) is a crossing over event between 

2 regions with high sequence similarity [17, 18]. Unequal crossing over often occurs 

during homologous recombination in prophase I of meiosis 1 in diploid cells. However, 

NAHR also occurs during mitosis in somatic cells, resulting in mosaicism for structural 

variation. Somatic NAHR occurs in numerous cancers, patients with neurofibromatosis, 

and healthy individuals [17, 19-22]. Non-allelic homologous recombination often results 

in large CNVs due to the size requirements for recombination to occur. The minimal 

efficient processing segments (MEPS) are the minimal length of genomic regions with 

high sequence similarity required for efficient NAHR. The length of MEPS in meiosis 

ranges from 300-500bp, while in mitosis it can be as short as 114bp [17, 22, 23]. The 

recombination between regions of sequence similarity can result in both balanced and 

unbalanced structural changes. The balanced structural changes can lead to 

unbalanced changes in future generations [24, 25]. The formation of ancestral 

unbalanced variants leads to segmental duplications that are shared within a 
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population. The repetitive nature of these regions makes them prone to acquiring further 

CNVs.   

Additionally, the repair of double-strand breaks without the use of sequence 

homology results in translocations and telomere fusions through non-homologous end 

joining (NHEJ) [26, 27]. Non-homologous end joining proceeds through 4 main steps: 

detection of double-stranded break, bridging of broken ends, modification of ends, and 

ligation. Unlike NAHR, MEPS and repeats are not required for NHEJ. However, NHEJ 

results in an ‘information scar’ of several hundred bases at the breakpoint [17]. Errors 

occurring during this mechanism lead to deletion and duplication events. 

The formation of SVs can also occur through replication mechanisms including 

microhomology-mediated break-induced replication (MMBIR) and fork stalling, and 

template switching (FoSTeS) [13, 14, 25, 27-30]. The proposed mechanisms of MMBIR 

and FoSTeS both involve errors at the replication forks. MMBIR involves the breakdown 

of a replication fork, causing a template switch by forming a new fork with another 

template [30]. Eventually the replication returns to the original sister chromatin and 

continues replication as normal, with a new segment of DNA. FoSTeS is similar to 

MMBIR, but the switches occur due to fork stalling not from a break in the DNA [17, 31]. 

Tandem repeats are highly polymorphic and can undergo expansions and 

contractions, leading to their variable numbers. VNTRs may undergo expansion and 

contraction using many methods, including strand-slippage recombination and 

recombination [28]. Strand-slippage recombination occurs when the newly synthesized 

strand denatures from the template and anneals to a different region of the array of 

repeats, resulting in looping of either the template for the new DNA strand. Depending 

on which strand undergoes looping, the repeat array can either expand or contract. 
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Alternatively, inter- and intra- repeat recombination can result in the expansion and 

contraction of VNTRs.  

Retrotransposition of mobile elements in the genome is a major cause of 

structural variation in genomes. While the majority of mobile elements in a genome are 

inactive remnants of ancestral events, a few types of elements (e.g., L1, Alu, and SINE-

VNTR-Alu elements) remain active. The insertion of mobile elements (i.e., mobile 

element insertion, MEI) results in both deletions and insertions in a genome, relative to 

a reference genome [12, 14]. Transposable elements can be classified into three 

groups based on their mechanism of transposition [32]. The first group, DNA 

transposons, contains inverted terminal repeats and a single open reading frame (ORF) 

encoding transposase. The transposase moves the DNA transposons through the 

genome using a ‘cut and paste’ mechanism lacking an RNA intermediate.  Autonomous 

retrotransposons (e.g., LTRs [HERV] and Non-LTRs [L1]) move using a DNA-RNA-DNA 

process through the utilization of an ORF encoding proteins for retrotransposition (e.g., 

nucleic acid binding protein, endonuclease, and reverse transcriptase) [32]. Non-

autonomous retrotransposons (e.g., Alu elements) rely on retrotransposition proteins 

from other elements (e.g., LINES) to move throughout a genome [33].  

Collectively, the formation of small CNVs between 50 and 10,000bp in length 

are likely due to mobile element insertions (MEI), tandem repeats expansion/contraction 

and MMBIR. The enrichments of smaller CNVs (350bp, 6,000bp) have been attributed 

to insertions and deletions of Alu elements and LINEs, respectively [13, 34].  Mobile 

element insertion is considered a major cause of insertion SVs in the human genome 

[12, 35]. Also, the insertion of mobile elements into coding genes leads to novel exons, 

exonization and alternative splicing [36]. Retrotransposition is linked to approximately 
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30% of small insertions and deletions in the human genome [13, 37]. Additionally, the 

expansion and contraction of VNTR account for 2% of SVs in a genome [38]. The 

impact of VNTRs can be significant due to the fact that approximately 17% of coding 

gene possess repeats within coding exons [38]. 

MUTATION RATES OF STRUCTURAL VARIANTS 

 The occurrence of structural variants depends on several conditions such as 

length, sequence complexity and homology. The commonly cited rate for a single base 

change is in the order of 10-8 per base per generation [39, 40]. Regions containing 

tandem repeats, LINES and SINEs, have been shown to have typical mutation rates of 

10-3 to 10-7; however, rates as high as 10-2 have been observed [28, 29, 41, 42]. The 

rates for CNV formation are highly dependent on the structure of the surrounding region 

and the length of the CNV, but are commonly believed to be approximately 10-4 [40, 43]. 

Regions containing CNVs and SD’s increase the likelihood that another event will occur 

in the same region. Overall, there are very few de novo mutations giving rise to CNVs in 

a single genome [34, 43]. The majority of CNVs are inherited from the parents [44]. With 

mutation rates and variant lengths much higher than singe base mutations, CNVs affect 

a larger percentage of the coding and non-coding portions of the genome than any 

other type of genetic variant.  

METHODS TO IDENTIFY STRUCTURAL VARIATION 

 Historically, CNVs were investigated by cytogenetic methods (e.g., fluorescent in 

situ hybridization [FISH], G-banding, etc). Despite limitations in resolution for detecting 

CNVs, these methods were commonly utilized, until array-based methods were 

developed. Since then, the study of CNVs has been highly dependent on comparative 

genomic hybridization (CGH), which was developed in 1992 [45]. The methods have 
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greatly improved since procedures where chromosomal spreads are used as controls to 

which a labeled sample is hybridized. Soon after the creation of the CGH concept, 

focused arrays were developed using cosmids, p1-derived artificial chromosomes, 

yeast artificial chromosomes, and bacterial artificial chromosomes [45-50]. The 

resolution of CGH technology was further reduced by spotting cDNA and PCR 

fragments onto glass slides [46, 51, 52]. The newest CGH arrays can contain more than 

two million oligonucelotides (oligos) on a single 1 inch x 3 inch glass slide. Despite the 

advancements in hybridization and probe generation techniques, the general concept 

remains the same. The basic premise is that a control and test sample are differentially 

labeled, usually with cy3 and cy5 fluorophores, and then competitively hybridized to an 

array containing single-stranded oligos matching the region of interest. Once the 

samples are bound to the oligo spots on the glass slide, an image of the laser-excited 

samples is analyzed to compare the intensities of the cy3 and cy5 dyes at each probe. 

In general, if the control and test samples contain equal copies of the genomic region, 

the intensities will be the same; however, if they do not have equal copies, a difference 

in signal intensities will be observed. 

 Array CGH (aCGH) has become an essential tool in both the research and 

medical industries for the detection of CNVs in a genome. However, there are 

limitations to the array designs. A significant limitation is the placement of the probes: 

their need for unique sequence prevents the placement in a large portion of the 

genome. Also, since aCGH is a comparative analysis, CNVs shared between the 

reference and the control cannot be identified. Additionally, the comparative nature of 

aCGH makes it difficult to determine which sample actually has the gain or loss without 

performing additional investigation. Another limitation is the ability of most arrays to 
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detect small CNVs. Until recently, most arrays were unable to identify CNVs smaller 

than 1kb, which was due to the tiling density of probes within a region. Recent 

advancements in printing technology have allowed for the creation of dense tiling arrays 

and have reduced the minimum resolution to only a few hundred base pairs [53, 54]. A 

final limitation is platform bias, which is due to differences in chemistry used during the 

array manufacturing process [55]. Furthermore, there are different CNV calling 

requirements among the commercially available arrays. For example, an Agilent CGH 

array requires only 3 probes to be accurate while Nimblegen and Illumina arrays require 

10 probes [56, 57]. 

DETECTION OF COPY NUMBER VARIANTS USING SNP ARRAYS 

 SNP arrays for genotyping and performing GWAS studies have been widely 

used since their creation more than a decade ago, with 1,518 human studies being 

published to date ([58], http://www.genome.gov/gwastudies/). Recently, the ability to 

determine copy number variation from SNP arrays has allowed for a new level of data 

analysis from existing studies [59]. With the detection of CNVs by SNP arrays combined 

with the benefits of SNP genotype data, hundreds of studies have performed large-

scale CNV analyses. Additionally, it is thought that CNVs can be imputed using flanking 

or tagging SNPs, thereby eliminating the need for actual CNV detection. The basic 

premise is that if two samples differ in copy number, they are likely to either be tagged 

(i.e., SNP within CNV) or flanked by a SNP that will allow for the prediction of the CNV.   

However, recent studies have demonstrated numerous limitations of SNP arrays 

for CNV detection and imputation. The ability of SNP arrays to tag or impute a CNV 

varies with many different factors. One factor is the number of probes present on an 

array and the resulting resolution for CNVs. SNP arrays have been constantly 
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expanding in their size from a few thousand probes to 4.3 million on the HumanOmni5-

Quad BeadChip. The number of probes on SNP arrays provides lower resolution of 

CNVs than high-density CGH arrays. This lack in resolution partially arises from the 

limitation of only being able to place probes in locations that have a polymorphic variant 

within a population. Also, probes must pass a variety of stringent filters to ensure that 

they are unique in the genome ([24, 60, 61]). These filters often prevent probe 

placement in regions that are enriched for CNVs such as existing CNVs, segmentally 

duplicated regions, and repetitive elements. 

Another limitation of SNP array genotyping for the detection of CNVs concerns 

the type of CNV to be imputed and its population frequency. For example, CNVs within 

SDs are often poorly tagged even when probes are located within the SD, possibly due 

to the repetitive nature of CNVs within the SD [24, 61]. Overall, CNVs located in SDs 

and tandem repeats with high mutation rates are unlikely to be imputed. Also, complex 

(i.e., recurring) CNVs are typically not imputed due to the formation of CNVs on multiple 

SNP alleles. Further analysis of CNVs has demonstrated differences within proportions 

of imputed CNVs depending on type of CNVs (i.e., duplications, deletions and complex 

CNVs). Deletions have the highest level of LD with SNPs because their locations are 

known (65%-81%) [24, 25, 60]. However, duplications and complex regions have much 

lower rates of imputation (24%), possibly because duplicated regions may be located 

non-tandemly with the original sequence. Therefore, SNPs used to impute duplications 

may be megabases (Mb:1 Mb = 1 x 106 bp) from the new copies of the DNA segments. 

Despite these limitations, approximately 61 to 80% of all CNVs are imputed or tagged 

by a SNP [24, 25, 60]. A final limitation of SNP imputation is the definition of LD 

between a SNP and a CNV. The limited number of studies investigating LD between 
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SNPs and CNVs show that very few CNVs have an r2 greater than 0.8 (9%). However, 

approximately 50% of copy number polymorphisms (CNPs), which are polymorphic 

CNVs within a population (allele frequency >1%), have perfect LD with a SNP [24, 25, 

60]. Since approximately 76% of CNVs are rare (i.e., <1% allele frequency), many 

CNVs will not be imputed. The inability to accurately impute CNVs with flanking or 

tagged SNPs leads to inaccurate genotyping of haplotypes.  As a result, integrated 

CGH and SNP arrays are commonly being used [61]. Theoretically, this combined 

approach should increase the accuracy of genotyping, particularly in segmentally 

duplicated and repetitive regions. However, many of the limitations still exist, such as 

the probes placement and tiling density on an array. The inclusion of millions of SNVs 

from genome sequencing on a population level could further expand CNV and SNP 

analyses. 

WHOLE-GENOME SEQUENCING 

 With numerous limitations in both CGH and SNP array analyses, the creation of 

massively parallel sequencing (next-generation sequencing), which is capable of 

generating billions of short sequence reads, may replace the use of arrays for 

genotyping. Whole-genome sequencing data can be quickly mapped to a reference 

genome and analyzed for SNVs, INDELs and CNVs. Massively parallel sequencing 

uses a common sequencing adaptor that is ligated to the ends of fragmented DNA [62, 

63]. These adapters allow sequencing from one end (single-end) or both ends (paired-

end) of the DNA fragments. These short reads (<150bp) can be sequenced on a variety 

of sequencing machines, such as the Illumina GAII and HiSeq. The GAII is older, but 

can achieve around 35 million reads (single-end) or 70 million (paired-end) from a 

single reaction (lane). The reactions occur on a flow cell that can run up to 8 
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independent reactions, allowing for the generation of billions of bp of sequence from a 

single run of the machine. The HiSeq improved the sequence generation by allowing for 

150 million (single-end) or 300 million (paired-end) reads to be generated from a single 

lane. 

 The vast amounts of data collected from next-generation sequencing can be 

mapped to a reference genome using a variety of programs such as CLC Genomics, 

BWA, MrFAST, and Bowtie [64-66]. Once the reads are mapped, the genomes can be 

analyzed for variants (e.g., SNVs and INDELs) relative to the reference genome. Also, if 

paired-end sequencing is performed, programs can identify large INDELs, 

translocations, and inversions in a genome [67]. Many programs have been developed 

to identify CNVs based on independent and comparative analyses of sequence read-

depth. The independent analyses perform depth corrections based on known biases 

such as GC content and masking repetitive regions [64, 68, 69]. The majority of 

programs perform comparative analyses of read-depths by selecting a genome as a 

reference and comparing the other to it. This method is more accurate because it 

accounts for other technical biases that may occur throughout the sequencing process. 

 While the use of next-generation sequencing is useful, it is not without 

limitations. First, a reference genome is needed to map sequencing data. Furthermore, 

because of the high level of repetitive elements and segmental duplications within a 

genome, it is almost impossible to map reads to the entire genome, even if a large 

number of reads are generated [70]. Second, there are the problems associated with 

identifying CNVs. Many CNVs occur in regions that are hard to map, such as repetitive 

regions and SDs. Also, many of the CNV programs lack the resolution to identify small 

CNVs with low false discovery rates (FDRs) [68, 69, 71, 72]. In general, the FDR of 
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structural variants from sequencing is much greater than CGH arrays. Last, most 

variant algorithms cannot detect novel sequences in a genome that may arise from 

MEIs and deletions in the reference genome.  

 The limitations of next-generation sequencing may be somewhat mitigated 

through the generation of de novo assemblies from next-generation sequencing data. 

However, this process is still expensive and requires a variety of libraries with varying 

insert sizes ranging from 0bp to > 40kb. Despite this, the de novo assembly of a 

genome often relies on other genomes to fully assemble the contigs into scaffolds [73, 

74]. Regions of perfect or near perfect sequence duplications (segmental duplications 

and CNVs) add another level of complexity for de novo assembly. SDs, by definition, 

have greater than 90% sequence homology with another region in the genome, with 

some recently formed SDs having greater than 98% similarity [74]. In some cases, it is 

almost impossible to fully assemble these regions, leading to the collapse of many SDs 

into a single copy region. Although next-generation sequencing and de novo 

assemblies may alleviate many of the problems faced by array technologies, limitations 

of sequencing technologies prevent a comprehensive analysis of genome variation and 

structure. 

EPIGENETIC GENE REGULATION 

 While the improvement of sequencing and other DNA techniques facilitates the 

discovery and investigation of genetic variation, these methods lack the ability to 

analyze non-genic differences that have been shown to play a major role in gene 

regulation. The regulation of transcription, silencing, and splicing can occur by a variety 

of post-translational modification to DNA and histone proteins. There are a variety of 

histone modifications (e.g., H3K4, H3K9, H3K27, H3K36, H3K79, and H3K20). Histones 
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can be modified by the presence of one to three methyl groups (monomethylation, 

dimethylation and trimethylation). Each modification is enriched within discrete genomic 

regions with a wide range of functional roles. Histone 3 lysine 4 trimethylation 

(H3K4me3) is one of the most commonly studied modifications due to its enrichment at 

transcriptional start sites (TSSs), promoters and, to some extent, intergenic regulatory 

elements (REs). The presence of H3K4me3 is often used to identify TSSs and is 

associated with rates of gene transcription. While the presence of H3K4me3 often 

indicates active gene transcription, it is also known to be present at inactive genes that 

may become active, such as genes that are silent in the G0 phase but active in G1 [75]. 

This modification binds TBP-associated factor 3 (TAF3) and recruits RNA polymerase 

II, thereby leading to active gene transcription. The presence of H3K4me3 can be cell 

specific and highly variable between individuals. Other histone modifications with both 

active and repressive roles are enriched for 5’ regions of genes (e.g., H3K9me1, 

H3K20me1 and H3K79me1), across the gene with enrichment at 3’ regions of genes 

(e.g., H3K36me3), expressed exons (H3K4me3, H3K36me3, H2BK5me1, H4K20me1, 

and H3K79me1), and introns (H3K4me1 and H3K36me1) [76-81]. 

 In addition to histone methylation, DNA methylation plays a significant role in 

gene regulation. DNA methylation is a repressive modification that is typically 

associated with transcriptionally silenced genes [35, 82-87]. When DNA methylation is 

present at gene promoters, the transcriptional activity depends on the CpG content of 

the methylated promoter. In general, methylation of high CpG promoters leads to gene 

inactivation, while methylation of low CpG promoters can lead to activation or 

repression [88, 89]; however, DNA methylation can also silence transcriptional 

repressors, thereby resulting in enhanced gene transcription. While DNA methylation is 
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associated with repression, its presence within a gene (e.g., intron and exons) is 

indicative of active transcription. DNA methylation can occur over genes, exons, 

promoters, and large genomic regions [35, 82-87]. A commonly known example of DNA 

methylation is the silencing of genes on the inactive X chromosome in females [35, 82-

87]. The role of DNA methylation on transcriptional regulation and splicing can also 

cause a variety of diseases [84-86, 90].  

 Recently, the Encyclopedia of DNA Elements (ENCODE) project released a 

large-scale analysis of epigenetic marks from 147 human cell types and 12 epigenetic 

modifications. Overall, the ENCODE consortium was able to identify 399,124 enhancer-

like and 70,292 promoter-like regions [35]. The large number of regions resulted in 95% 

of the genome lying within 8 kb of protein-DNA interactions and 99% within 1.7 kb of a 

biochemical event. To determine the potential biological role of regulatory regions, 

4,492 SNPs were compared with phenotypes in the National Human Genome Research 

Institute GWAS catalogue. Regulatory regions (e.g., transcription-factor-occupied and 

DNase-hypersensitive sites) were enriched for GWAS SNPs, with up to 31% and 71% 

of SNPs residing within or near the regions. Collectively, the combination of GWAS 

SNPs with regulatory information allows for the fine mapping of casual quantitative traits 

and diseases [35, 91-93]. 

CNVS AND TRAIT ASSOCIATION 

The vast amount of human data demonstrates that both inherited and novel 

CNVs can be causal for disease and traits. In humans, CNVs have been estimated to 

cause at least 18% of the differences in genes expression for both normal and 

pathological samples [94].  CNVs are also suggested to be a major contributor to the 

missing heritability of complex traits in both humans and domestic animals. 
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While there have been many large scale association studies in domestic 

animals, very few have resulted in the identification of causal mutations for quantitative 

traits. The usage of GWAS, CGH, SNP genotyping, and next-generation sequencing 

has resulted in the identification of many disease- and trait-causing variants in domestic 

animals. The majority of these studies have evaluated dogs where more than 30 

structural variants have been linked to diseases. Traits such as skin wrinkling (16.1kb 

complex duplication) and hair ridges (133 kb duplication) in dogs have been linked to 

CNVs [7, 95]. Recent studies are just beginning to identify CNVs linked to traits in other 

species, such as horses (i.e., coat color and early graying) [96, 97]. The limited number 

of known causal variants nevertheless demonstrates that CNVs contribute to 

phenotypes in domestic animals and provide the foundation for future studies in cattle 

populations. 

BOVINE EVOLUTION 

There are approximately 1.3 billion cattle worldwide, with many of the animals 

serving as a major source of beef and milk for millions of people [98]. The modern cattle 

populations existing today are the product of two independent domestication events and 

thousands of years of both natural and artificial selection [99]. These events resulted in 

the creation of multiple species, subspecies, and breeds with a vast array of distinctly 

unique traits.   

The Bos taurus taurus and Bos taurus indicus subspecies of cattle, which 

represent the majority of cattle in existence today, diverged over 250 thousand years 

ago and were then independently domesticated on different continents approximately 

10 to 12 thousand years ago [100-102].  Bos taurus cattle are the primary beef and 

dairy breeds in North America and Europe, whereas Bos indicus cattle are the primary 
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breeds in South America, Africa, and Central and South Asia.  Different effective 

population sizes and selective pressures between Bos taurus and Bos indicus cattle 

resulted in distinct morphological and metabolic traits among cattle of these subspecies.    

Although the traits of cattle vary by breed, Bos indicus cattle typically are 

characterized by a humped back, long face, steep upright horns, large dewlaps, unique 

set of coat colors (white/grey), and often a particular type of coat (slick coat) [103, 104]. 

Bos taurus cattle have their own unique set of morphological characteristics, such as 

diverse coat colors and patterns, absent horns in some breeds, enhanced milk yield, 

and superior carcass quality.  Thermotolerance, parasite and pathogen susceptibility, 

blood pressure, and the onset of sexual maturity also differ between Bos taurus and 

Bos indicus cattle [103, 105-108].  These and other trait difference between the 

subspecies may influence susceptibility to disease. Infectious diseases, such as bovine 

respiratory disease and mastitis, result in large financial losses for the beef and dairy 

industries [109, 110]. Therefore, identifying variants underlying differential susceptibility 

to infectious diseases between Bos indicus and Bos taurus may facilitate genetic 

selection strategies for enhanced immunity and reveal novel immune pathways.    

IMPORTANCE OF UNDERSTANDING TRAITS IN CATTLE 

 The bovine industry in the United States has been rapidly growing in terms of 

retail value even though the numbers of cattle and meat consumption have constantly 

decreased [111]. The increase in demand and loss in supply has placed an emphasis 

on lowering costs while improving production traits in cattle. The traditional focus on 

improving traits led to increases in milk and meat in cattle; however, losses due to 

diseases represent major costs to the agricultural industry. In Europe, the financial 

losses from diseases in cattle cost the cattle industry annually an average of $82 per 
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cow [110]. In the United States, cattle and calf death resulting from illnesses totaled 

$2,352,899,000 in 2010 [109]. The inclusion of costs associated with prevention and 

treatment of diseases in cattle would drastically increase the economic losses. While 

these costs to the agricultural industry are economically significant, the impact on 

human health may be even more significant. General usage of antibiotics, have led to 

agricultural industries collectively being the leading user of antibiotics. The overuse of 

antibiotics has been linked to the rapid increase in antibiotic resistance in pathogenic 

bacteria in humans [112]. The increase in prevalence of antibacterial resistant 

pathogens will continue to make it harder to treat diseases in animals, including people. 

Eventually, disease-causing agents could become resistant to all or a majority of 

antibiotics, making treatment difficult if not ineffective, such as occurs with extensively 

drug-resistant tuberculosis (XDR-TB). Therefore, the ability to improve the immune 

traits in cattle is not only necessary economically and for the welfare of cattle, but also 

for human health. 

 

 

Table 1.1 Trends in the beef cattle industry 

Year # Cattle 
(million) 

Retail Value 
(billion) 

Beef Consumption 
(billion pounds) 

2006 96.3 $71 28.1 
2007 96.6 $74 28.1 
2008 96.0 $76 27.3 
2009 94.5 $73 26.8 
2010 93.9 $74 26.4 
2011 92.7 $79 25.6 
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BOVINE GENOMICS 

 The release of the completed genome assembly for a single Bos taurus cow 

(Hereford) in 2009 provided the first detailed look into the genomic structure of cattle 

[100]. The bovine reference assembly, Baylor version 4.0 (bosTau4.0), was created 

from contigs with an N50 (i.e., 50% of contigs are at least this length) of 48.7 kb and 

was estimated to represent 92% of the actual genomic sequence. Analysis of the 

genomic sequence demonstrated its complex structure, which consists of SDs, 

evolutionary breakpoints, repetitive elements, and transposed repeats. The bovine 

genome contains at least 124 evolutionary breakpoint regions (EBRs), of which 100 

were specific to ruminants. The EBRs are enriched for LINE-L1 and LINE-RTE 

elements. In addition to EBRs, 3.1% of the genome is affected by 1,020 high-

confidence SDs, which are enriched at EBRs. Furthermore, 778 of the SDs overlap 

genic regions. The high sequence identity of these duplications (98.7%) suggests they 

were recently formed [100]. Even though the genes affected by SDs are enriched for 

gene families involved in reproduction, many other genes are also affected. While the 

release of the bovine genome provides a treasure trove of data, it has expanded the 

abilities of genetic and genomic studies in cattle. 

The search for the genetic basis of traits in cattle has spanned decades and 

yielded at least 71 Mendelian traits with underlying causative variants; however, most 

mutations are linked to diseases (http://omia.angis.org.au/). The major traits of interest, 

such as immunity and production, are quantitative traits that are unlikely to be caused 

by a single gene or mutation. Early studies of immunity and production traits have 

identified quantitative trait loci (QTL) that are associated with specific traits. Since the 

first QTL study to identify associations with milk production in 1995, hundreds of studies 
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have investigated more than 407 traits [113]. According to the Cattle QTL database, 

there are currently 5,920 publicly accessible QTLs for 407 traits. While these studies 

provide much insight into regions of the genome controlling complex traits in cattle, 

most studies have been unable to identify a single causative mutation due to the lack of 

resolution. Furthermore, the practice of sequencing exons within QTLs does not 

account for CNVs or variation at non-coding regulatory elements [114]. 

Recently, several studies have used array-based methods to examine CNVs in 

various cattle breeds. The first reports of CNVs in cattle utilized a whole-genome 385K 

CGH array designed by Nimblegen, which has been used in at least four studies [115-

118]. Despite the low level of resolution (CNV > 24 kb), over 200 CNVs have been 

identified using the Nimblegen array, with enrichment of CNVs occurring primarily in 

EBRs and SDs. Collectively, these identified CNVRs account for approximately 1% of 

the genome and most of them (70%) overlap the coding portion of the genome. A 

second-generation, high-density array was recently generated by Nimblegen, consisting 

of 6.3 million probes tiled across the genome [119]. The HD Nimblegen array has a 

resolution of one probe per 420 bp, the highest resolution of any commercially available 

array fabricated to date. Fadista et al. used this HD array to investigate CNVs in 20 

cattle and identified 204 CNVRs ranged in sizes from 1.7 kb to 2 Mb, which were 

enriched at SDs (20%) [119]. While this study was able to improve on the resolution of 

CNVs in cattle, CNVs below 1.7 kb in length still remained undetectable. 

SNP arrays have also been used to identify CNVs in cattle. The bovine 50K 

SNP Beadchip array has been used to identify CNVs in six studies [120-125]. However, 

the large spacing (50 kb) between probes prevents the identification of CNVs smaller 

than 50 kb in length. Due to the poor resolution, the SNP array identified an average of 
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two CNVs per sample. Large scale studies using the 50K SNP array yield hundreds of 

CNVs throughout the bovine genome, with many occurring within SDs and QTLs. The 

majority of CNVs identified by the SNP array are imputed by a flanking SNP on the 

array [120]. As with CGH analyses, there are several programs used to detect CNVs 

from SNP arrays (e.g., PennCNV and CNVPartition). Comparison of these programs 

shows congruent results with 94% of the CNVs overlapping between the algorithms.  

The BovineHD SNP array which contains over 770,000 probes has been used to 

perform two large scale CNV studies in cattle [126, 127]. Collectively 770 cattle have 

been investigated to identify CNVs as small as 1,018 bp in length [126]. Despite the 

small size of a few CNVs, the average and median sizes were much larger, 42 kb and 

16 kb, respectively. Also, it was shown that the false discovery rate (FDR) for these 

CNVs is as high as 23.5% [127]. Therefore, while the BovineHD array provides an 

improvement from the 50K SNP arrays and low density CGH arrays, high FDR and low 

resolution still prevent the identification of small CNVs below 1 kb in length. 

USE OF NEXT-GENERATION SEQUENCING TO EXAMINE GENETIC VARIATION 

IN CATTLE 

In addition to array technologies, next-generation sequencing has been used to 

identify genetic variants in cattle [71, 128-132]. These studies have provided a glimpse 

into genetic variants at a genome level with low coverage analysis of SNVs, INDELs, 

and CNVs. Analysis of a Fleckvieh bull by next-generation sequencing identified over 

2.4 million SNPs and 115,371 INDELs; however CNV analysis was not performed [128]. 

Additional genomic sequences of Angus, Holstein, Kuchinoshima-Ushi, and Nellore 

cattle (4X – 22X) have also been performed to identify SNVs, INDELs, and CNVs [71, 

129-132].  
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There are a number of programs for identifying SNVs, INDELs, and CNVs from 

next-generation sequencing data; however discrepancies exist among the variant 

detecting algorithms [64, 67-69, 72, 133-135]. Zhan et al. used four different pipelines to 

identify variants in a single next-generation sequenced genome and found that only 

48% of the SNVs were consistent among the pipelines [132]. A comparison of CNV 

algorithms has not been performed to date, but several programs exist including, CNV-

Seq, MrFAST, Control-FREEC, and Breakdancer [64, 67-69, 72]. Comparisons among 

sequencing based CNV detection algorithms, SNP, and CGH arrays show little overlap 

among the methods (23%) [132]. Collectively, the use of next-generation sequencing to 

discover genetic variants has revealed high levels of genetic variation among cattle. 

However, there are no published studies that have compared genetic variation between 

breeds of Bos taurus and Bos indicus cattle. 

THE NEED FOR A CENTRALIZED VARIANT DATABASE 

Currently, there is no centralized database of genomic variants in cattle, such as 

the Database for Genomic Variants, the Human Gene Mutation Database and the 1000 

Genomes project. These resources are essential for the investigation of candidate 

causal mutations.  For example, variants from large studies can be filtered to remove 

any that have been previously shown to exist in control individuals because it is unlikely 

that these variants are disease-causing.  Furthermore, variants shared between animals 

with different phenotypes likely do not underlie that particular phenotype.  A centralized 

database would be a place to have all the collective genetic variants for an organism, 

and, if accompanied by phenotypic data, the database could be used to screen 

candidate variants for a myriad of Mendelian and complex traits.   
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DISSERTATION STRATEGY FOR CHARACTERIZING CNVS IN THE BOVINE 

GENOME 

Collectively, the present study represents a comprehensive genetic analysis of 

the bovine genome using our custom analysis pipeline integrating whole-genome 

sequencing, high resolution CGH, CNV imputation by SNP arrays, and epigenetic 

profiling with previously known data (Figure 1.1). Utilizing our pipeline, this study 

demonstrates that CNVs are a major source of genetic variation in cattle populations. 

These variants and novel regulatory elements, along with previously identified variants, 

will become an essential part of future GWAS and linkage studies. In addition, this study 

provides insight into the limitations of CNV imputation by commercially available SNP 

arrays. Understanding these limitations will allow for more comprehensive GWAS and 

linkage studies with the ability to interpret CNVs commonly missed during traditional 

haplotype imputation. Overall, this study demonstrates that CNVs and SNVs within 

regulatory elements may underlie many phenotypic differences between Bos taurus and 

Bos indicus cattle. 
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Figure 1.1 Genomic and epigenomic analysis pipeline 
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CHAPTER II 

CGH ANALYSIS OF CNVS 

INTRODUCTION 

The two subspecies of cattle, Bos taurus taurus (Bos taurus) and Bos taurus 

indicus (Bos indicus), differ in a large number of metabolic and external traits. The 

breeds within these subspecies are known to be highly diverse in production and 

reproduction, leading to numerous genomic studies aimed at better understanding and 

improving these traits. Recently, the discovery that copy number variants (CNVs) 

underlie numerous phenotypes in other species has led to a focus of improving the 

understanding CNVs in cattle. To date, however, the extent to which CNVs exist in the 

bovine genome remains largely unknown.  

The Bos taurus cattle have been the primary focus of CNV studies due to their 

dominance in both the dairy and beef industries in the United States. The previous 12 

studies have used a combination of different CGH designs, SNP arrays, and whole-

genome sequencing [71, 115, 116, 118-121, 123, 125, 126, 131, 132]. While, in theory, 

these methods should capture the majority of variants in a genome, they have a variety 

of limitations with unknown implications. Nearly all of the known 2,579 CNV regions 

(CNVRs) are from Bos taurus cattle with only one study investigating a single Bos 

indicus sample [71].  

The first bovine CNV study utilized a 385K genome tiling array, designed by 

Nimblegen, to identify CNVs in three Holstein bulls [117]. Due to the poor resolution of 

this array design, only large CNVs could be investigated. This study was followed by a 

larger study, also using the 385K CGH array, that identified 229 CNVRs (52 located on 

ChrUn.) within 90 cattle, including 8 Bos indicus and 82 Bos taurus [116].  Despite array 
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resolution limitations, these studies demonstrate that CNVs are located through the 

bovine genome, with enrichment in SDs. Soon after the first reports of CNVs in the 

bovine genome, new studies have expanded the number of known CNVs and improved 

the CNV resolution through the use of 2.1M and 6.3M probe Nimblegen tiling arrays. 

These studies have been combined with lower resolution studies using large numbers 

of cattle in conjunction with the Bovine 50K SNP array. Most recently, a study utilized 

the BovineHD SNP Beadchip to investigate CNVs in cattle. In total over 2,457 cattle, 

predominately Bos taurus, have been studied for large CNVs [71, 115, 116, 118-121, 

123, 125, 126, 131, 132, 136, 137]. 

The focus on Bos taurus cattle has led to only two studies attempting to 

associate CNV’s with immunity. The first study provided an initial look into the role of 

CNVs on parasite resistance by looking at five related Angus samples [115]. The use of 

a 385,000 probe genome tiling CGH array allowed for the determination of large CNVs 

greater than 24 kb in length. The authors conclude that the 20 CNVs, many of which 

overlap immune-related genes, could play a role in parasite resistance and 

susceptibility in Angus cattle. In a follow-up study using the bovine 50K SNP array on 

472 Angus samples, autosomal 2,724 CNVs cluster into susceptible and resistant 

groups [137]. By overlapping the affected genes with those known to be differentially 

expressed due to C. oncophora infections, several candidate gene CNVs including 

ABO, IGLL1, LRRC17, MAMDC4, OAS1, and SERPINA5. CNVs also affect other 

immune related genes including WC1.1, LSP1, ABBC4, and TXNTD2; however the 

selection of these genes is not significant (p>0.05). Collectively, these studies 

demonstrate that CNV genes are enriched for immune-related processes, but various 

26 
 



 

limitations prevent the identification of CNVs causal or associated with parasite 

resistance in the Angus cattle.  

The utilization of SNP arrays for CNV studies, especially the 50K Bovine SNP 

Beadchip, provides an extremely limited understanding of CNVs due to the placement 

of probes in unique regions containing polymorphic SNPs and the low tiling density. The 

50K SNP array has an average probe spacing of nearly 50 kb, thus missing any small 

variants. As an alternate method of CNV detection, CGH arrays are highly accurate, 

while their resolutions have varied [138]. The first bovine array CGH design, tiling the 

entire genome with 385,000 oligos, is unable to detect small CNVs [117]. While later 

designs utilize two million and six million probes, they still lack the ability to detect small 

genic mutations due to poor exon tiling. Also, many studies use the same array designs, 

perpetuating the limitations into future studies. Finally, the design and selection of the 

probes on commercial arrays lead to another set of issues. These designs use 

extremely stringent criteria for probe selection, limiting probe selection within 

segmentally duplicated regions, tandem repeats, and regions of high GC content. 

These filtering criteria result in a loss of coverage across many important functional 

regions such as exonic tandem repeats and gene families. 

We have minimized many of the limitations of previous array based CNV studies 

through the identification of CNVs in four breeds of cattle, belonging to both subspecies, 

with custom CGH designs. Our custom high-resolution exome oligonucleotide array 

provides the highest resolution analysis of coding CNVs to date. This analysis resulted 

in the identification of 754 CNVRs as small as 223 bp in length that were located in 

regions such as exons, exonic tandem repeats, and gene families. Copy number 

variants were significantly enriched in several biological classes including immunity and 
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defense. Additionally, we demonstrated a high level of shared variant genes across 

multiple species, suggesting predisposition to CNVs and potential functional roles.  

METHODS 

DNA Sample 

We collected whole blood from 28 cattle belonging to four breeds: Angus, 

Holstein, Brahman, and Nellore. The white blood cells (WBC) were collected from the 

whole blood using two digestions in a red blood cell lysis solution containing 0.5 mM 

ethylenediaminetetraacetic acid (EDTA) and water. DNA was extracted from the WBCs 

using a standard phenol chloroform method consisting of two washes with phenol-

chloroform-isoamyl (PCI), one wash with chloroform, isopropanol, and a final 

precipitation with 70% ethanol. The samples were suspended in Qiagen EB buffer and 

stored at 4oC (Qiagen Sciences, Germantown, MD) (Appendix 2.1).  

Comparative Genomic Hybridization Array Designs 

In order to identify exonic copy number variants in the bovine genome, we 

developed a high-density, exon focused, tiling array consisting of 418,336 unique 

oligonucleotide probes (Appendix 2.2). The Ensembl56 Biomart web service was used 

to extract the exonic and un-translated region (UTR) sequences with 40 bp of sequence 

flanking both 5’ and 3’ ends (www.ensembl.org). We selected unique oligonucleotides 

(oligos) of 60 bp in length using Oligowiz2 with the following parameters: Aim length = 

60 bp; Max oligo length = 60 bp; Minimum oligo length = 45; cross-hyb minimum 

homology = 75%; cross-hyb length = 15 bp; cross-hyb max homology = 98%; cross-hyb 

length = 80%; and Minimum distance between oligos = 25 bp [139, 140]. Following 

probe selection by Oligowiz2, we stringently filtered the probes placed on the array 

using the following filters: Cross-Hyb > 0.2; Melting Temperature (Co), 72.5 – 84; 
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Folding > 0.26; Complexity > 0.2. Our final 418,336 oligonucleotides were checked to 

ensure uniqueness by random comparison to the reference genome using BLAT [141]. 

The final array design consisted of 418,336 oligos across 5’ UTRs, 3’ UTRs and coding 

exons of 411 micro RNAs (miRNA), 126 miscellaneous RNAs (miscRNA), 264 

ribosomal RNAs (rRNA), 549 small nuclear RNA (snRNA), 460 small nucleolar RNAs 

(snoRNA), and 18,129 protein coding genes. On average, each gene was represented 

by approximately 20 oligonucleotides with one probe every 93 bp. The final array design 

was submitted to Agilent’s eArray webserver for printing via Agilent’s 60-mer SurePrint 

Technology (Agilent Technologies Inc., Santa Clara, Ca.). 

 In order to better define breakpoints of CNVs and identify additional variants 

flanking genes, we designed a CNV tiling array. All CNVs identified using the exome 

array in the Angus and Nellore cattle (Angus1-3, Nellore1-4) were merged into CNVRs. 

An additional 500 kb of flanking sequence was added to all regions. Chromosomal 

coordinates were uploaded into the eArray web service for probe selection against the 

bosTau4.0 assembly. The final probe set consisted of 414,700 unique oligos across 598 

Mb of sequence. The final design was printed on Agilent’s 2 x 400k array format using 

Agilent’s 60-mer SurePrint Technology (Agilent Technologies Inc., Santa Clara, Ca.). 

Array Comparative Genomic Hybridization (aCGH) Methods 

We performed CGH to identify CNVs against a single reference Angus genome 

(Angus-4) (Appendix 2.3). DNA was sheared using a Sonic Dismembrator 500 and 

purified with an Invitrogen Purelink PCR Kit (Invitrogen, Carlsbad, CA).  The sheared 

genomic DNA from the reference was labeled with Alexa Fluor 555 and all other 

samples were labeled with Alexa Fluor 647 fluorescent dyes using the BioPrime Plus 

Labeling module (Invitrogen, Carlsbad, CA). We mixed the reference and experimental 
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DNA and denatured with 25 µl Cot-1 DNA (Invitrogen), 26 µl Agilent 10X Blocking 

Buffer and 130 µl 2X High-RPM hybridization buffer prior to hybridization at 65oC for 20 

hours. Array slides were washed in Agilent wash buffer-1, wash buffer-2 and finally in 

acetonitrile.  We scanned the slides at a 2-µm resolution with an extended dynamic 

range (XDR) of 0.05 using an Agilent High Resolution Microarray Scanner 62505C 

(Agilent Technologies Inc., Santa Clara, CA).  Agilent’s Feature Extraction 10.7 

software was used to extract data from the scanned images and perform quality control 

checks (Agilent Technologies Inc.).  We imported the data into Agilent’s Genomics 

Workbench v5 and used the Aberration Detection Module 2 (ADM-2) with a threshold of 

6, bin of 10 and a centralization threshold of 6 to identify CNVs in respect to the 

reference Angus sample. CNVs were required to have an average log2 ratio of 0.5 

across at least three consecutive probes. The log2 ratios were used to group CNVs into 

three classes: less than a 2:1 ratio, greater than or equal to a 2:1 ratio and homozygous 

deletions. Homozygous deletions were identified using log2 ratios of at least 2.5, at least 

three consecutive probes, and signal intensities equal to the background signal. Those 

CNVs in a heterozygous state (2:1) were identified as having log ratios ranging from 0.7 

to 2.5, based on the average log ratio across the X chromosomes of male vs female 

comparisons. The maximum p value for all call groups was 10-10. CNVs that met the 

previous criteria and at least 223 bp in length were considered high confidence. Any 

CNVs meeting the calling criteria with lengths less than 223 bp were considered low 

confidence (See CNV confirmation section for full explanation).  

The CNV focused tiling array was used to confirm the breakpoints of large CNVs 

and identify additional intragenic variants flanking genes. The CNV tiling array was used 

to further investigate two Angus (Angus-2 and Angus-3), one Holstein (Holstein-2), two 
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Nellore (Nellore-2 and Nellore-3), and one male Brahman (Brahman-1) sample by 

comparison to the same reference used with the exon arrays. The preparation, 

hybridization and analysis procedures from the exon arrays were used for the CNV tiling 

arrays. 

CNV Confirmation  

Small insertion/deletion variants within genes were confirmed through the design 

of standard PCR primers flanking the regions using Primer3Plus and UCSC In-Silico 

PCR tools ([142], www.genome.ucsc.edu ). Standard PCR protocols were used to 

confirm the smallest CNV that can accurately be detected by the exome array. The 

PCR products that possessed and lacked the CNV were inserted into a pCR2.1-TOPO 

plasmid and grown in Top10 chemically competent cells following manufacturer’s TOPO 

TA Cloning protocol (Invitrogen, Carlsbad, CA).  The selected white colonies were 

grown overnight in Lysogeny broth (LB) with kanamycin. Plasmids were isolated from 

the cultures using a QIAprep Spin Miniprep kit (Qiagen Sciences, Germantown, MD). 

The inserts were confirmed using both standard PCR with the CNV primers and EcoR1 

digestions. Plasmids containing and lacking the CNV were sequenced by the Texas 

A&M University DNA Technologies Core Laboratory using Sanger sequencing. The 

sequences were aligned to the bosTau4.0 genome using the UCSC Genome Browser, 

BLAT, and ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

The accuracy of the array designs was determined through several steps of 

confirmation involving 20 affected genes and 16 intergenic regions. Using Primer3 Plus 

and UCSC In-Silico PCR tools, we deigned primers for standard PCR and quantitative 

PCR (qPCR) of genomic DNA (Appendix 2.4). Nine of the genic and sixteen intergenic 
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primers were used to confirm homozygous deletions using standard PCR procedures 

(Appendix 2.5).  

We performed qPCR, using SYBR GreenER qPCR Supermix, to confirm 

differences in copy number and deletions by comparison to a reference gene (GAPDH) 

(Invitrogen). Samples possessing and lacking the CNVs were selected for qPCR 

analysis to determine relative copy number ratios and confirm calls by the exon arrays. 

All samples were analyzed simultaneously in triplicate to ensure an equivalent 

comparison of copy number. All qPCR reactions were performed by creating a 10-µl mix 

with 25 nanograms (ng) DNA, SYBR GreenER, water, and primers (Invitrogen and 

Sigma-Aldrich). The samples were analyzed using an ABI 7900HT Fast Real-Time PCR 

machine to determine the cycle threshold (CT) values. The ∆∆CT method was used to 

determine the relative copy number changes by comparison to GAPDH [143]. 

Genomic Characterization of CNV Content 

 The level of copy number variation within chromosomes and the genome was 

determined from the total bases affected by CNVRs within each group (breeds, 

subspecies, and all samples). We determined enrichment values per chromosome by 

dividing the length of CNVRs by the total length of entire assembled chromosomes, all 

genes, all exons, and regions covered by the array. We chose to use the enrichment of 

genes covered by the array since intergenic regions were not tiled. Then, the total 

length of all CNVRs was divided by the length of the genes tiled to determine the 

genome enrichment. Enriched chromosomes were identified if their percent enrichment 

was greater than the percent enrichment of the entire genome.  

CNVs were compared to known elements including segmental duplications 

(SDs), quantitative trait loci (QTLs), CpG islands, tandem repeats, conserved regions 
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(phastConserved elements), and known CNVs. All CNVs were overlaid with 

segmentally duplicated regions (WSSD, WGAC, and high confidence SDs) in the 

bovine genome using ANNOVAR [144, 145]). The CNVs were compared to QTLs from 

the Cattle and Bovine QTL databases [146, 147], 

http://genomes.ersa.edu.au:8080/bovineqtl_v2/). All CpG islands, tandem repeats, and 

conserved regions were downloaded from the UCSC genome browser. Known CNVs 

were compiled from all published cattle CNV studies and overlapping regions were 

merged to create a database of known CNVRs in cattle. 

Analysis of CNV Content in the Bovine Umd3.1 Assembly 

 The bosTau4.0 chromosomal locations of all probes on the exome CGH array 

were converted to Umd3.1 positions using the liftOver tool from the UCSC genome 

browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver). The conversion caused 2,358 

probes to be either unmapped or placed on un-assembled contigs. The remaining 

415,978 probes were successfully placed on assembled chromosomes. A new exome 

array map file for the Umd3.1 genome was created in eArray. Using the new map file, 

all array images were re-extracted in Feature Extraction in order to create new data files 

with Umd3.1 coordinates. 

 The remapped data were analyzed in Genomics Workbench using the 

procedure from the bosTau4.0 analysis. Genomic content of CNVs in the Umd3.1 

assembly was characterized as in bosTau4.0 analysis. Additionally, assembly related 

differences in CNV content were determined through the comparison between the 

bosTau4.0 and Umd3.1 analyses. 
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Functional Analysis of CNVs 

We annotated the CNVs against the Ensembl, RefSeq and Human orthologous 

genes using the ANNOVAR software program [145]. The genic and exonic content 

within each CNV was ascertained from the annotation. The biological functions of genes 

affected by CNVs were characterized using the DAVID Functional Annotation Tool with 

the default settings [148, 149]. The resulting biological process terms were further 

grouped by similarities in function to identify enriched biological processes. Statistical 

significance (p value) of enriched groups was determined with the Fisher’s combined 

probability test from the DAVID Functional Annotation Tool’s p value (Equation 2.1). 

 

 

 

 

 

 

 

 

 
Equation 2.1 Fishers’ combined probability test 

 

 

All genes affected by CNVs were converted to RefSeq gene symbols and 

compared to the Online Mendelian Inheritance in Animals (OMIA) and Online Mendelian 

Inheritance in Man (OMIM) databases (http://www.ncbi.nlm.nih.gov/omia ; 

http://www.ncbi.nlm.nih.gov/omim). The genes with known phenotypic associations 

were identified for future studies into traits influenced by CNVs.  

 

 

𝑋2 = −2�𝑙𝑜𝑔𝑒(𝑝𝑖)
𝑘

𝑖=1

 

k=number of p values being combined 

Degrees of freedom = 2k 

pi= p = p value of sample ‘i’ to be combined 
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Population Analysis of CNVs 

We performed cluster analysis of all samples using the Genesis clustering 

software [150]. The log2 signals for all probes within CNVs for each sample were 

imported into the Genesis software for clustering using the following parameters: 

Pearson correlation, hierarchical clustering, and complete linkage (Graz University of 

Technology: Institute for Genomics and Bioinformatics). The level of CNVs shared 

among the samples was determined through the comparison of CNVs from each 

sample. Sharing of CNVs was classified by the number samples with each CNV; for 

example, a CNV was classified as being unique if it was present in a single sample. 

Next, we compared the sharing of CNV genes among the samples and breeds by 

overlapping the gene lists from each sample and determining the total number of 

samples with CNVs in each gene.  

We then performed separate global fixation index-statistic (FST) analyses of all 

CNV RefSeq and ensembl genes using the GenePop software 

(http://genepop.curtin.edu.au). The genotypes for CNV genes were predicted in all 

samples as follows: no CNV, Wt/Wt; 0.5 ≤ log2 ≤ 2.5, Wt/Dup; log2 ≥ 2.5, Dup/Dup; -0.5 

≥ log2 ≥ -2.5, Wt/Del; log2 ≤ -2.5, Del/Del. The inter-population differentiation and global 

FST values were calculated for breeds and subspecies using the following parameters: 

Option 6; allele identity (F-statistics) for all populations (global FST) and for all 

population pairs (inter-population differentiation FST); fit to Ln(distance); convert F-

statistics to F/(1-F)-statistics; minimum distance between samples, 0.0001; number of 

permutations for Mantel test, 1000; and, diploid. Fixation Index-Statistic values were 

compared to genes known to be selected for in Bos taurus and Bos indicus cattle [102, 

151]. 
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 Since it has been shown that many genes and regions may be predisposed to 

copy number changes, we further investigated those genes in cattle. A custom 

database of known CNVs and affected genes in cattle, horses, dogs, mice, and humans 

was created compared to our bovine CNV genes ([71, 115, 116, 118-120, 123, 131, 

132, 137, 152-161], Doan et. al. unpublished, and http://projects.tcag.ca/variation/).  All 

genes from each species were converted to human ensembl gene IDs for comparison 

among the species. The genes were overlapped to determine the extent of sharing 

between each group using Microsoft Excel and the Venny online tool 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). Functional groups with genes 

commonly affected by CNVs (i.e., present in three or more species) were identified 

using the DAVID Functional Annotation Tool. 

RESULTS 

CGH Array Design 

 Given the preponderance of CNVs identified between the Angus and Nellore 

cows and the potential of these variants to have large effects on phenotypes, we 

examined CNVs occurring in cattle representing two Bos taurus (Angus and Holstein) 

and two Bos indicus (Nellore and Brahman) breeds. A combination of high-density 

exome and CNV tiling CGH arrays were used to identify and characterize CNVs in the 

cattle. 

 A custom exome focused CGH array was designed using ensembl annotated 

exons and UTRs in the bosTau4.0 reference assembly. The 418,336 unique probes 

densely tiled more than 95% of protein- and 75% of RNA-coding genes in the 

ensembl56 annotation database (411 micro RNAs [miRNA], 126 miscellaneous RNAs 

[miscRNA], 264 ribosomal RNAs [rRNA], 549 small nuclear RNA [snRNA], 460 small 
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nucleolar RNAs [snoRNA], and 18,129 protein coding genes (Figure 2.1, Table 2.1). 

The focus on tiling one probe every 93 bp across the exome resulted in an average of 

41bp between each probe. On average, each gene was represented by approximately 

20 oligonucleotides, providing the highest resolution of the bovine exome via aCGH. 

Furthermore, all probes were annotated against ensembl genes, CpG islands and 

tandem repeats and compared against the commonly used bovine 385K and 6.3M CGH 

designs by Nimblegen. These data clearly confirmed the advantage of our design in the 

identification of exonic CNVs, including those within in potential regulatory CpG islands 

and tandem repeats (Table 2.2). 

 

 

 
Figure 2.1 Gene coverage of bovine exome CGH array 
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Table 2.1 Statistics of exome CGH array design 

Total 
Probes 

Average 
Probe 
Length 

Max 
Probe 

Overlap 

Average 
Melting 

Temperature 
Regions 
Covered 

Exon 
Resolution 

EnsGene 
Coverage 

Protein 
Coding 
Genes 

RNA 
Genes 

418,336 52 bp 25 bp 79.6o C Exons 93 bp 19,939 18,129 1,810 
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Exome CGH Accuracy and Resolution 

The identification of CNVs throughout the exomes of 28 cattle (Angus, n=16; 

Nellore, n=4; Holstein, n=4; and Brahman, n=4) was initially performed using the 

custom exome CGH array (Figure 2.2). The array data were filtered to remove probes 

with saturated and abnormally high signal intensities. These regions consisted of highly 

repetitive elements such as pseudogenes, retrotransposons, LINES, SINES, and 

tandem repeats. For example, a CNV identified in the 3’ UTR of the ensembl annotated 

GPR137B gene was entirely composed of a SINE (ART2A). Due to the errors 

associated with identifying and mapping highly repetitive probes to a specific location, 

probes were removed using a signal cutoff at three standard deviations above the 

average signal (100,000). The ADM-2 algorithm was tested to determine the best 

settings by increasing: the minimum number of continuous probes required in a CNV (3 

to 10), the minimum log2 ratio for a CNV (0.25-0.5), and bin sizes (6, 8, and 10). These 

tests revealed that increased filtering and detection settings resulted in a much greater 

loss of CNVs than did loosening the stringency.  
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Figure 2.2 Samples used on exome CGH analysis 
 

 

The accuracy and resolution of our custom array design, using the selected 

settings (3 consecutive probes, bin size of 6, and minimum log2 ratio of 0.5), was 

further tested using several methods. First, a self-self hybridization of the reference 

Angus cow predicted the false discovery rate (FDR) ranged from 0% to 6.2% (Table 

2.3). The average log2 ratio across the X chromosomes of male versus female 

hybridizations (0.75 averaged over 12,196 probes) was used to determine the value of 

a 2:1 ratio of gene content.   Homozygous deletions were characterized as CNVs with 

an average log2 ratio ± 2.5 [162]. The minimum size of CNVs confidently identified was 

determined by PCR and Sanger sequencing of six small variants ranging in lengths 

from 98 bp to 364bp. Of the variants, those with lengths of 98, 122, 223, and 364 bp 

were confirmed, while CNVs with lengths of 100 and 105 bp were unable to be 

confirmed (Figure 2.3-2.5). Despite two of four variants around 100 bp in length being 
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correctly identified, we chose to increase the minimum length for high confidence CNVs 

to 223 bp. Smaller variants were retained and analyzed separately. The accuracy of 

CNV calling was further tested by qPCR confirmation 100% of (20 of 20) CNV genes, 

including nine affected by homozygous deletions.  

 

 

Table 2.3 False discovery rates of CNVs by classification 

Length Criteria # Probes Log2 Range p value # of Calls FDR 

100bp - 222 bp 

3-4 Probes 0.5 ≤ log ratio ≤ 0.7 10-10 11 

6.2% 

> 4 Probes 0.5 ≤ log ratio ≤ 0.7 10-10 53 

3-4 Probes 0.7 ≤ log ratio ≤ 2.5 10-10 196 

> 4 Probes 0.7 ≤ log ratio ≤ 2.5 10-10 66 

3-4 Probes 2.5 ≥ log ratio 10-10 34 

> 4 Probes 2.5 ≥ log ratio 10-10 3 

≥ 223 bp 

3-4 Probes 0.5 ≤ log ratio ≤ 0.7 10-10 16 

3.2% 
5 Probes 0.5 ≤ log ratio ≤ 0.7 10-10 1,268 

3-4 Probes 0.7 ≤ log ratio ≤ 2.5 10-10 325 

5 Probes 0.7 ≤ log ratio ≤ 2.5 10-10 1,123 

3-4 Probes 2.5 ≥ log ratio 10-10 54 
0% 

5 Probes 2.5 ≥ log ratio 10-10 134 
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Figure 2.3 Identification and Sanger sequencing confirmation of a 98bp loss 
within 3’ UTR of CYYR1 in Nellore-1 
 

 

 
Figure 2.4 Confirmation of CNV used as smallest size for CGH analysis 
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Figure 2.5 Confirmation of 264bp homozygous deletion affecting the majority of a 
single exon. 
 

 

 The ability of the exome array to identify large and complex CNVs was tested 

through the analysis of two large tandem CNVs on chromosome five. The variants were 

identified as being two regions totaling nearly 500,000 bp (Figure 2.6A). Combined, the 

CNVs affected 13 known and predicted protein coding genes belonging predominately 

to olfactory receptors. The deletion of the first region (chr5:63,170,402-63,504,768) was 

found in 17 samples (15 Angus, 2 Holstein), while the second region (chr5:63,802,864-

63,979,026) was found in nine (8 Bos indicus, 1 Angus) samples. Additionally, based on 

the log2 ratios, Angus-2 and Nellore-1 were heterozygous for the CNVs.  

 The analysis of the complex CNVR on chromosome five began by determining 

the approximate breakpoints of the CNVs. Therefore, through the standard PCR using 

18 intergenic and four genic primer sets, we confirmed the homozygous deletions and 

better defined the breakpoints (Figure 2.6B). Additionally, Angus-2 and Nellore-1 were 

confirmed to be heterozygous for the deletion and produced a product by PCR. 
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Quantitative PCR confirmed the presence of both homozygous and heterozygous 

deletions (Figure 2.6C).  

 

 
Figure 2.6 (A.) Identification and confirmation through (B.) PCR and (C.) qPCR of 
a large, complex CNV region on chromosome 5 of Angus and Nellore cattle 
 

 

Genome Distribution of CNVs 

 Analysis of the 28 cattle samples revealed CNVs across all chromosomes with 

greatest significant (p<0.05) enrichments on chr27, chr29, and chr7. Overall, it was 

estimated that CNVs affected approximately 4.9% of the bovine genome. Several types 
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of chromosomal regions were found to contain significantly increased enrichments of 

CNVs such as the MHC (p=9x10-52). We identified 754 (2,920 CNVs) high- and 162 

(363 CNVs) low-confidence CNVRs. A slight increase in deletion regions was observed 

over duplications and an additional 58 complex CNVRs were identified (Table 2.4). 

While many of the small CNVs were likely real, we excluded them from the remainder of 

the analysis to decrease the FDR (Appendix 2.6). CNVRs were found to vary widely in 

length from 223 bp to 3,873 kb. The mean size of CNVs was 62.5 kb; however, CNVs 

were enriched for lengths of 632 bp and 32 kb (Figure 2.7). Additionally, 66% (497) of 

the CNVRs identified were novel. Finally, the comparison of average CNV densities by 

breed revealed that Nellore cattle possessed approximately a threefold increase in CNV 

content over the Angus cattle, when compared to an Angus reference. 

 

 

Table 2.4 Identification of CNVs and affected genes across the bovine exome 

Sample CNVs 
(Genes) 

2:1 CNVs 
(Genes) 

Deletion CNVs 
(Genes) 

CNVRs 
(Gain:Loss: 
Complex) 

Common 
CNVRs 

Angus (15) 1,157 (708) 565 (364) 86 (24) 375 (154:198:23) 5 

Holstein (4) 267 (332) 112 (125) 15 (9) 179 (85:92:2) 9 

Brahman (4) 370 (413) 182 (221) 24 (14) 226 (120:100:6) 11 

Nellore (4) 1,126 (809) 589 (403) 63 (18) 515 (233:276:6) 95 

Bos taurus (19) 1,424 (808) 677 (394) 101 (26) 414 (168:214:32) 2 

Bos indicus (8) 1,496 (972) 771 (522) 87 (27) 585 (265:300:20) 8 

Total (27) 2,920 (1,352) 1,448 (752) 188 (37) 754 (318:378:58) 2 
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Figure 2.7 Enrichment plot of exome CNVs based on the log10 of variant lengths. 
 

 

 To better understand the genetic elements underlying copy number variation, 

CNVRs were compared to several regions known to affect genome structure and 

phenotypes. First, the comparison of SDs identified by WSSD and WGAC with CNVRs 

revealed that 39.4% overlapped at least one SD, while 50% of homozygous deletions 

were located within SDs. In addition, we found larger CNVRs were positively correlated 

with their overlap of SDs (Figure 2.8). While 44% of CNVRs contained tandem repeats, 

22 were predicted to be a direct result of deletion/duplication events within a single 

exon. Interestingly, 79% of the CNVRs contained conserved regions, while only 26.5% 

contained CpG islands. Finally, nearly all CNVRs (96%) overlapped known cattle QTLs. 
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Figure 2.8 Plot of percentage exome CNVs overlapping segmental duplications 
 
 
 CNVs affected 1,352 protein- and RNA-coding genes from all biotypes, while the 

effects on the genes varied from a portion of a single element (UTR or exon) to entire 

gene clusters (Appendix 2.7). Of the single element CNVs, coding exons (418), 5’ UTR 

(49) and 3’ UTR (426) were affected. Additionally, tandem repeats were predicted to 

cause single element copy number differences in 22 genes. Homozygous deletions 

affected 37 genes, with single element deletions in 3’ UTRs and coding exons of three 

and seven genes, respectively.  

We investigated six animals (Angus, n=2 cows; Nellore, n=2 cows; Holstein, n=1 

cow; and Brahman, n=1 steer) using the second-generation CNV tiling array. The array 

design covered nearly 600 Mb of sequence and included 483 CNVRs from the exome 

array (Table 2.5). The final array design covered 7,134 ensembl genes; however, unlike 

the exome array, the majority of the probes were located within intronic and intergenic 

regions and very few were located in CpG islands or tandem repeats (Table 2.6). The 

lower resolution of the array design allowed for the inclusion of more sequence regions. 
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Therefore we were able to investigate CNVs missed by the exome array (e.g., intronic 

CNVs and CNVs flanking genes).   

 

 

Table 2.5 Probe statistics for CNV tiling array 

Total 
Probes 

Average 
Probe 
Length 

Regions 
Covered Resolution EnsGene 

Coverage 
Protein 

Coding Genes 
RNA 

Genes 

414,700 56 bp +/-500kb CNVRs 1,443 bp 7,134 7,090 44 

 

 

Table 2.6 Annotation of CNV tiling array probes 

  Total Probes Probes Overlapping CpG 
Islands 

Probes Overlapping 
Tandem Repeats 

Exon 15,950 1,173 109 

5' UTR 6,471 745 46 

3' UTR 8,939 163 61 

Intron     154,985        1,340      1,179  

Intergenic 228,355 1,223 1,871 

Total 414,700 4,644 3,266 

 

 

Using the focused CVN tiling array, we identified 411 CNVs (210 CNVRs), 

including 43 homozygous deletions. Given the resolution and lack of exon coverage of 

the CNV tiling array, many small CNVs were missed. However, the comparison of 

breakpoints of large CNVs between the exome array and the CNV tiling array indicated 

many were accurately predicted by the exome array with few large differences due to 

probe placement in the array designs. Of the 299 protein- and RNA-coding genes 

identified as CNVs with the tiling array, 80% were identified by the exome array. The 
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remaining 61 genes represented CNVs in regions not covered by the exome array (e.g., 

introns) or were removed due to stringent filtering. In total, 23 regions were located 

completely within introns. We identified 87 intergenic regions flanking genes that could 

not be identified using the exome array (Figure 2.9).  

 

 

 
Figure 2.9 Identification of a complex CNV flanking the 5’ region of a gene 
consisting of: (A.) flanking loss and gain, (B.) gains, and (C.) no CNV 

 

 

Umd3.1 Analysis 

 The conversion of all bosTau4.0 (Baylor) exome probes to Umd3.1 (Maryland) 

coordinates resulted in the loss of 2,358 probes, but still allowed for the analysis of 

CNVs throughout the exonic portion of the assembly. In total, 725 CNVRs (2,742 CNVs) 

affecting 1,220 protein- and RNA-coding genes were identified in the Umd3.1 assembly. 

The comparison of these variants with those from bosTau4.0 revealed the majority of 

CNVs were present in both analyses, which resulted in the threefold increase of CNVs 

in the Nellore cattle over the Angus cattle. Overall, 376 genes did not overlap those 

from the Baylor assembly analysis. However, after accounting for CNVs filtered based 
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on our stringent criteria and genes not on assembled autosomes in the bosTau4.0 

assembly, only 23 genes were unique to the Umd3.1 assembly.  

 Further comparison of CNVs and affected genes between bosTau4.0 and 

Umd3.1 assemblies revealed structural differences that prevented the identification of 

all CNVs in either assembly. For example, the CNV of the CATHL1 and CATHL4 

antimicrobial genes was very different between the two assemblies (Figure 2.10). The 

CNV in the Baylor assembly consisted of CATHL1 and CATHL4; however, the Umd3.1 

assembly lacked the CATHL4 gene. Within the cathelicidin region, the Umd3.1 

assembly was nearly 20 kb shorter and lacked a predicted cathelicidin gene and 

CATHL4. Therefore, analyses on the Maryland assembly cannot identify a CATHL4 

CNV, which possibly prevented its association to immune traits. Furthermore, analyses 

on the Baylor assembly also missed genes affected by CNVs. For example, one major 

difference in the Umd3.1 assembly was the length of the X chromosome, where it was 

approximately 60.3 Mb larger than in bosTau4.0. Further investigation found that much 

of the unassembled Baylor sequence was actually located on the X chromosome of the 

Maryland assembly. While we were unable to ascertain copy numbers for these genes, 

some were actually identified within Umd3.1 CNVs because of densely tiled flanking 

genes. Despite the ability to identify some of these genes, it appeared that a 

comprehensive analysis of exonic CNVs would require assembly specific array designs. 
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Figure 2.10 Comparison of the cathelicidin locus in the (A.) bosTau4.0 and (B.) 
Umd3.1 genome assemblies. 
 

 

Functional Analysis 

We found protein-coding genes, small nucleolar (snoRNA) genes, microRNA 

(miRNA) genes, small nuclear (snRNA) genes, miscellaneous RNA (miscRNA) genes, 

and ribosomal RNA (rRNA) genes were among the 1,352 genes affected by CNVs 

(Figure 2.11A). Overall, the majority (94.67%) of the genes with CNVs were protein-

coding (Figure 2.11B). Additionally, genes affected by CNVs and homozygous deletions 

were both primarily enriched in processes involving immunity and defense, signal 

transduction, and sensory perception (Figure 2.11D-D). All statistics for BP analyses 

are reported in Appendix 2.8. We also found that unique CNVs were primarily enriched 

in processes involved in sensory perception (P=0.005) (Figure 2.11E). In comparison, 

we found an even greater enrichment for CNV genes in immunity and defense 

processes in the exome Umd3.1 analysis (Appendix 2.9). Collectively, these data 

indicated that CNVs were present in all biotypes and that biological processes 

regulating immunity and defense and signal transduction were enriched for CNVs. 
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Figure 2.11 Functional analysis of genes affected by CNVs in the exome CGH 
array. (A.) Percentage of analyzed genes within each biotype affected by a CNV. 
(B) Distribution of biotypes within CNV genes. Biological process enrichment of: 
(C.) all CNV genes, (D.) homozygous deletion genes, and (E.) unique genes. 
 

 

Next, we examined whether the CNVs were present at genes associated with 

Mendelian traits in animals and humans. Cross-reference of the genes affected by 

CNVs with the Online Mendelian Inheritance in Animals (OMIA) database returned 16 

genes (Table 2.7). However, the comparison with the Online Mendelian Inheritance in 

Man (OMIM) database revealed that 135 genes were present in the morbidity map and 

342 had OMIM terms (Appendix 2.10). 
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 The cathelicidin-1 (CATHL1) and cathelicidin-4 (CATHL4) antimicrobial genes 

were found to be duplicated in all four Nellore cattle and three Angus cattle using the 

exome CGH array. The 16-kb duplication of CATHL1 and CATHL4 was confirmed by 

qPCR. These genes belong to a family of cathelicidin genes that originated from 

expansions from a single cathelicidin gene. The cathelicidin genes don’t appear in 

OMIA; however, CAMP (the human orthologue of cathelicidin) was listed in OMIM. 

Cathelicidin is described to be an antimicrobial peptide that, upon maturation by 

cleavage between the signal and antimicrobial domains, is secreted by leukocytes and 

epithelial cells to promote inflammation, angiogenesis, wound healing, and tumor 

metastasis [163]. While more studies are needed, we suspect that the effects of gene 

duplications within this family would contribute to heightened innate immunity in cattle. 

Additionally, growth differentiation factor 9 (GDF9) was affected by a duplication 

of exon 2 in a single Angus sample (Figure 2.12). GDF9 is expressed in oocytes and is 

essential for ovarian folliculogenesis. Heterozygous mutations in this gene cause an 

increase in fertility while homozygous mutations cause sterility [164]. It is not clear 

whether the heterozygous duplication will have the same effect as a deletion on 

fecundity or if the sample has any distinct fecundity traits. 
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Figure 2.12 Exon resolution analysis of single exon CNV in GDF9. Identification of 
samples (A.) without and (B.) with exonic CNV.  Confirmation using qPCR through 
the comparison of (C.) exon 2 with GAPDH, exon 2 with exon 1, and exon 1 with 
GAPDH. 

 

 

The superoxide dismutase 1 gene (SOD1), encodes a protein that binds copper 

and zinc ions and is responsible for removing free superoxide radicals from the body. 

The SOD1 gene contained a loss in the 3’ UTR and exon-5 in all Nellore samples. 

Mutations in this gene are causal for degenerative myelopathy in dogs [165]. SOD1 is 

also located within the polled locus in cattle and could be a candidate for polling in cattle 

[166-168].  

We identified a small CNV in all Nellore samples located within the 3’ UTR of the 

bone morphogenetic protein receptor, type IB (BMPR1B). This gene (BMPR1B) 

encodes a bone morphogenetic protein receptor involved in bone formation and 
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embryogenesis. Mutations in BMPR1B are associated with multiple ovulations and 

sterility in sheep [169]. Nellore cattle are slower to reach sexual maturity and have 

longer calving intervals; therefore, this CNV could play a role in fecundity traits of 

Nellore cattle [170]. However, these preliminary findings will require more investigation 

to elucidate the true effects on phenotypes. 

Population Analysis 

 Hierarchical clustering of all probes within CNVRs indicated that CNVs were 

shared among animals and within breeds; however, further investigation of the variants 

revealed that 41% were unique to individual animals (Figure 2.13 A). Also, few variants 

were shared among all samples of a breed; Nellore contained the most shared regions 

(95) (Figure 2.13 B). Additionally, CNV lengths were positively correlated with the level 

of sharing observed between cattle (Figure 2.13 C). Regions less than 1 kb in length 

were more likely to be unique (60%) while CNVRs greater than 1 kb were more likely to 

be shared with another sample (70%). 
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Figure 2.13 Population structures of CNVs among each breed. (A.) Hierarchical 
clustering of all probes within CNVs. (B.) Plot of overlap among CNVs of samples 
within each breed. (C.) Positive correlation of shared CNVs with increasing 
lengths. 
 

 

As final step in the understanding the functional role of CNVs between breeds 

and subspecies, a global FST analysis of CNV genotypes identified genes (RefSeq and 

Ensembl) under selection. The global FST between the four breeds revealed numerous 

CNVs potentially under selection in different groups. The greatest FST values resulted 

from 21 genes with CNVs present only in the Nellore samples (e.g., PSMB7). Bos 

taurus samples possessed several genes with elevated FST values (e.g FANCC and 

IGLL1). Immune related genes (e.g., YWHAZ, KLRF1, CATHL1, and CATHL4) were 

under positive selection and existed at heightened frequencies in Bos indicus cattle 

(Appendix 2.11 - 2.12). Furthermore, several of the genes with high FST values were 

previously identified as regions of selection in cattle, including both Bos taurus and Bos 

indicus subspecies. However, many of the genes potentially under selection were 
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previously undetected, possibly due to previous limitations in identifying and genotyping 

CNVs. 

Comparative Analysis 

 The phenotypic differences of recurring and unique CNVs could drive breed and 

individual specific traits in cattle. Therefore, in order to identify genes predisposed to 

copy number changes, we compared CNV genes in horses, dogs, cattle, and humans. 

Given the lack of CNV information for horses and the limited data available for dogs, we 

created custom CGH arrays for both species. The horse array was designed like the 

bovine array and focussed on the ensembl annotated exome [155]. In order to 

maximize the CNVs identified, we selected 15 divergent breeds and a donkey as an 

evolutionary outlier. Overall, 775 CNVRs ranging in sizes from 187 bp to 3.5 Mb 

affected 1,707 ensembl genes [155].  

 Our analysis of canine CNVs utilized a 400K array design focused on genes, 

including both exons and introns. While this design limited our resolution, we 

demonstrated the presence of intronic CNVs among the 252 CNVRs. Unlike the cattle 

and horse analyses, relatively few CNVs were found in each sample, suggesting much 

less structural differences in the breeds. Despite the lower level of CNVs, 437 genes 

were affected by CNVs. 

 All CNV genes we identified in horses, dogs, and cattle were combined with 

known CNV genes to create a database of CNVs and affected genes in humans, dogs, 

horses, mice, and cattle. The conversion of all genes into human ensembl orthologs 

resulted in the loss of highly divergent and species-specific genes. There were over 

35,000 human genes affected by CNVs, but less than 4,000 for the other species, which 

suggested that many more shared genes have yet to be identified 
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(http://dgvbeta.tcag.ca/dgv/app/home?ref=NCBI36/hg18). Despite the possibility of 

numerous unknown CNVs and up to 95 million years of divergence between the 

species, 20 genes were found to be copy number variant in four species (Human, Dog, 

Cow, and Horse) and 4,335 are shared between cattle and at least one other species 

(Figure 2.14). Many of the genes (34%) that were shared with at least one other species 

were located within segmental duplications in the cattle genome. The remaining 537 

genes possibly represented CNVs specific to cattle. The genes shared in all species 

were members of gene families such as olfactory clusters, immunoglobulins, and 

amylases. Genes shared between cattle and at least two species were enriched for 

biological processes involved in sensory perception (40%, p=3.3x10-12) and cellular 

processes (15%, p=1.5x10-6). The high level of CNV gene overlap between species and 

the apparent enrichment of specific classes of genes suggested a predisposition of 

genes to copy number changes.  

 

 

 
Figure 2.14 Sharing of genes affected by CNVs among diverse species 
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DISCUSSION 

 The bovine genomics field has spent billions of dollars attempting to identify 

causal mutations underlying economically important traits in dairy and beef cattle. While 

production traits have obvious benefits to agriculture and the economy, disease 

prevention and treatment costs the industry billions each year and is a contributor to 

antibiotic resistance. Unfortunately, in cattle, there has been a lack of success in 

identifying mutations including both single base and copy number variants. Therefore, 

the role of CNVs on phenotypes (e.g., immune function) remains largely unknown. 

The previous attempts to identify CNVs in cattle through array CGH have largely 

focused on whole genome tiling methods. While these methods were good for 

identifying large genic and intergenic CNVs over 10 kb in length, they often lack the 

ability to identify variants below 1 kb and lack exonic coverage. While variation within 

intergenic regions may be functionally relevant, variants affecting the coding portions of 

genes may be more likely to affect proteins and phenotypes. Therefore we created the 

first exome focused tiling array specifically designed to cover the majority of coding and 

non-coding exons in the bovine genome with an average resolution of 93 bp. Our 

resolution and ability to identify variants arising from tandem repeats far exceeded 

previous studies. The benefits from our exome design allowed for the identification of 

many novel variants in the bovine genome.  

 Through the use of our custom exome CGH array, we characterized genetic 

variation within cattle breeds accounting for 4.9% of the genome. Unlike previous 

findings, we clearly described copy number changes enriched for sizes well below the 

previous resolutions. The positive correlation of CNV length with uniqueness suggests 

that smaller CNVs are occurring at much greater mutation rates than large CNVs. 
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Therefore, while many mutations may exist at predisposed sites such as tandem 

repeats and SDs, small novel CNVs may be influencing individual traits within breeds. 

Further study may elucidate the role of these variants on intra-population differences.  

The role of CNVs on traits in cattle has yet to be determined however, with 

CNVs affecting regions as small as a portion of a single exon and tandem repeats 

within exons, the potential effects on phenotypes are drastically increased. Smaller 

CNVs have the potential to create novel proteins from in-frame mutations. Given the 

numerous methods in which a CNV can affect expression, the 1,352 genes affected by 

CNVs have the potential alter a wide range of phenotypes, including immune function. 

Further analysis of CNVs using FST, biological processes, and OMIA revealed many 

potential candidate genes such as the CATHL1, CATHL4, and YWHAZ genes for 

immune function. The extent of small exonic and whole gene CNVs suggests a vital role 

in phenotypic diversification both within and between breeds of cattle. 

With costs of disease prevention and treatment rising, the understanding of the 

genetic differences influencing traits like immune function will be critical to the 

agricultural community as well as to the world’s economy and food supply. While our 

study does not definitively identify causal variants for specific traits, we have clearly 

shown that CNVs of all sizes exist throughout the bovine genome. Until high resolution 

and focused studies characterizing genomic variation are completed, the utility of large 

level association and functional testing of candidate CNVs will be hindered. Therefore, 

we expect that this study will become a basis for future descriptive studies leading to 

large scale scans for specific traits. These technologies, in combination with whole-

genome sequencing, will lead to rapid growth in bovine genomics. 
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CHAPTER III 

WHOLE GENOME ANALYSIS OF Bos taurus AND Bos indicus COWS 

INTRODUCTION 

The divergence of Bos taurus and Bos indicus cattle more than 250,000 years 

ago led to adaptations for specific climates and agricultural functions [100-102].  The 

majority of cattle breeds used for milk and meat production in the United States belong 

to the Bos taurus subspecies, including the Angus and Holstein breeds. However, in 

regions with tropical climates, breeds belonging to the Bos indicus subspecies have 

become the predominate cattle. While all of these breeds belong to the same species, 

they are highly divergent in ancestry and phenotypes. Holstein cattle, the predominate 

dairy breed in the United States, are experiencing a rapidly increasing level of 

inbreeding due to a combination of artificial insemination and the desire to improve 

specific milk production traits [171-173]. Angus and other beef breeds were selected for 

meat quality and feed-efficiency traits. In contrast to human selective pressures for 

production, the Nellore cattle (Bos indicus) originated in India and were imported into 

Brazil. In Brazil, Nellore cattle were exposed to a large range of pathogens due to the 

tropical climate, resulting in a heightened immunity and an increased tolerance for 

extreme heat [105-107]. Overall, cattle breeds have been the target of a wide range of 

natural and human selective pressures, leading to a high level of phenotypic 

divergence. 

The costs related to diseases account for major economic losses for the 

agricultural industry throughout the United States. For example, bovine respiratory 

disease (BRD) and Johne’s disease are collectively estimated to cost the agricultural 

industry over one billion dollars annually from production losses, treatments and deaths 
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[174, 175]. Therefore, identifying the variants underlying disease susceptibility between 

Bos indicus and Bos taurus may allow for a better understanding of immunity and 

possibly better breeding strategies. 

Despite over 400 genome-wide association studies (GWAS) in the past 20 

years, the vast majority phenotypic differences in Bos taurus and Bos indicus cattle 

have no known causal mutations, but over 5,920 quantitative trait loci (QTLs) [146, 147, 

176]. Prior to next-generation sequencing, many of these studies relied on SNP 

genotyping arrays and microsatellites. However, recent advancements in next-

generation sequencing technologies allowed seven studies to sequence a total of ten 

Bos taurus (Angus, Holstein, Fleckvieh, and Kuchinoshima-Ushi) and two Bos indicus 

(Nellore) genomes [71, 128-132, 177]. The amounts of analyses in these projects have 

varied; however, the majority of studies focused on single animals for SNP detection.  

Additionally, one of the Nellore cows was used in the creation of a rough de novo 

assembly, not a reference mapping [178]. Recently, a study performed a comparative 

analysis of three Angus, one Holstein, and one Nellore genome using whole-genome 

sequencing; however, this study focused primarily on differences in copy number [71]. 

Despite the limited number of samples sequenced, it is clear that a large amount of 

genetic variation has yet to be identified. 

Whole-genome sequencing allows for the identification of genic and intergenic 

variation that cannot be identified by CGH or SNP arrays [57, 74, 179]. The limited 

number and incomplete analyses of cattle genomes clearly demonstrates the need for a 

combined approach that includes the comparison of subspecies. Therefore, we 

performed whole-genome sequencing of a single Angus and Nellore cow to identify 

single base, small insertion/deletion, and copy number variants within each genome. 
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Through a functional and evolutionary analysis we were able to gain insights into the 

role of genetic variation underlying phenotypic differences between Angus and Nellore 

cattle. 

METHODS 

Whole-Genome Sequencing  

DNA was isolated from ear notches of an Angus and Nellore cow using a 

standard phenol chloroform method consisting of two washes with phenol-chloroform-

isoamyl (PCI), one wash with chloroform, one wash with isopropanol, and a final 

precipitation with 70% ethanol. The samples were suspended in Qiagen EB buffer 

(Qiagen Sciences, Germantown, MD). For the construction of sequencing libraries, we 

first sonicated high-quality genomic DNA by pulsing 3 times for 15 seconds per pulse at 

14% power using a Sonic Dismembrator 500 (Fisher Scientific, Pittsburg, PA) and 

purified with an Invitrogen Purelink PCR Kit (Invitrogen, Carlsbad, CA) (Appendix 3.1). 

The DNA was blunt end-repaired, adenylated, and ligated with paired-end adaptors, 

according to the manufacturer’s protocol (Illumina, San Diego CA). The prepared library 

was resolved on a 2% low range agarose gel and a 2-mm section of DNA with an insert 

size of 231 bp was extracted from the gel (Qiagen Sciences, Germantown, MD). The 

library was enriched according to the manufacturer’s protocol (Illumina, San Diego CA). 

The size and concentration of the sequencing library was determined by PCR, 

polyacrylamide gel electrophoresis (PAGE), and through the use of the Agilent 2100 

Bioanalyzer DNA kit (Agilent Technologies, San Diego CA). Cluster generation and 

paired-end sequencing was performed according to the manufacturer’s protocols 

(Illumina) at the Texas A&M AgriLife Genomics and Bioinformatics Center (College 
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Station, TX). In total, we performed 21 lanes of 75 bp paired-end and 2 lanes of 75 bp 

single-end sequencing using the Illumina Genome Analyzer II. 

Sequence Mapping 

Quality filtering was performed to remove reads and terminal bases with poor 

quality scores using the trim function in the CLC Genomics Workbench 4 (CLC Bio, 

Aarhus, Denmark) with the following parameters: ambiguous limit, 2; ambiguous trim, 

yes; quality limit, 0.1; quality trim, yes; and, remove 3´ nucleotide, no; remove 5´ 

nucleotide, no. The CLC Genomics Workbench Reference Mapping function was used 

to assemble the trimmed reads to the bosTau4.0 reference assembly using the 

following parameters: similarity score = 0.8; and, length fraction = 0.5. Paired-end reads 

were mapped using an insert range of 180-bp to 500-bp and reads matching multiple 

locations in the reference genome were placed using the random setting. 

We created a de novo assembly of all reads that did not align to the reference 

genome (including ChrMt and ChrUn) with CLC Genomics’ De Novo Assembly tool 

using the following parameters: similarity = 0.8; length fraction = 0.5; insertion cost = 3; 

deletion cost = 3; mismatch cost = 3; minimum paired distance = 180 bp; and, maximum 

paired distance = 500 bp. The resulting contigs were further analyzed by BLAST 

mapping to all complete genomes and chromosomes from RefSeq.  

Variant Detection 

We used the SNP detection function in CLC Genomics Workbench, based on 

the neighborhood quality standard (NQS) algorithm, using the following parameters: 

minimum coverage = 5; minimum central base quality = 30; average base quality over a 

window length of 11 nucleotides = 15; and, minimum allele frequency = 35%. Next, we 

used the deletion and insertion polymorphism (DIP) function in CLC Genomics 
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Workbench using the following parameters: minimum coverage = 5; minimum allele 

frequency = 35%; and, maximum expected variations = 2. Variants were further filtered 

to remove any located within the pseudo autosomal region (PAR) or within 10 bp of 

another variant. 

In order to identify CNVs by sequence read-depth, we first used the Control-

FREE Copy number (FREEC) program to identify CNVs in the mapped sequence data 

[68, 69]. CNVs were detected using two methods in FREEC; comparative (Angus vs 

Nellore) and independent (i.e., sample vs reference assembly). The Angus was 

selected as the reference and CNVs in the Nellore were detected by comparisons of 

read-depths across the genome. The comparison of CNVs identified by sequencing and 

array comparative genomic hybridization (CGH) allowed for the optimization of the 

following FREEC’s parameters: breakpoint threshold = -0.001; window length = 10,000 

bp; and, step = 5,000 by comparing. The independent calling of CNVs used the 

following parameters: bosTau4.0 reference genome; breakpoint threshold = -0.002; 

window length = 10,000 bp; and, step = 5,000 bp. 

Next, the comparison of the Nellore against the Angus sequence data allowed 

for the identification of CNVS using CNV-Seq [72]. For running the CNV-seq script, we 

used the following settings: --log2-threshold = 0.6, --p value = 0.00001, --bigger-window 

= 3, --genome-size = cattle chromosome sizes (bp). These settings allowed for different 

windows sizes to be selected based on the read-depths and chromosome lengths. 

Finally, we used MrFAST as an independent method to identify CNVs in the 

Angus and Nellore genomes [64]. The reference genome was masked using 

RepeatMasker (http://repeatmasker.org) and Tandem Repeat Finder (TRF) [180]. The 

raw data from each cow was mapped to all possible positions in the genome. Finally, 
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mrCaNaVar was used to report the GC corrected absolute copy numbers. A command 

line script was used to summarize the copy numbers. Duplications and deletions were 

identified using the following criteria: duplication, at least seven windows with a 

minimum copy number of 3; and deletion, at least 5 windows with a copy number less 

than one. 

Variant Confirmation 

The minimum read-depth used for variant analysis was determined by 

overlapping all SNVs from the Angus and Nellore with the samples’ genotypes from the 

770K BovineHD SNP BeadChip. The raw BovineHD SNP data Angus and Nellore from 

samples (Nellore 1-4 and Angus 1-4) were provided, as a service, by GeneSeek 

(NeoGen Corp, Lincoln, NE). All probes from the BovineHD array were converted to the 

bosTau4.0 genome assembly using the liftover tool in UCSC genome browser. The 

SNPs were then overlapped with repetitive regions masked by RepeatMasker and all 

bovine sequencing variants within 25 bp flanking each SNP. Additionally, all SNPs 

within homopolymers were identified by examining the base immediately before and 

after all SNPs. Finally, all SNPs were overlapped with tandem repeats downloaded from 

the UCSC genome browser. The Angus SNP genotypes were converted from AB allelic 

information to actual bases using the strand information from each probe. Using custom 

databases in ANNOVAR, the annotated BovineHD SNPs were overlaid with SNV data 

from the Angus genome.  

Informative variants, those where the Angus’ genotype is either homozygously 

or heterozygously different from the reference, were filtered using several different sets 

of filters to compare the false discovery rates (FDR), heterozygous undercall, and false 

negative rates (FNRs) by sequencing (Table 3.1).  The BovineHD probes were first 
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filtered to remove all SNPs within 25 bp of other sequencing variants, homopolymers, 

repetitive regions, and unknown bases. A less stringent filtering method removed SNP 

array genotypes within 25 bp of another sequencing variant or where the probe contains 

an unknown base, N. Using these criteria, the accuracy of the SNP calling settings were 

compared to minimum read-depths between 5-10X for both heterozygous and 

homozygous variants.  

 

 

Table 3.1 Definitions of terms used for the evaluation of accuracy SNV 
identification 

Type Definition Calculation 

HSNPHSeq 

Number of homozygous 
SNPs (HSNP) correctly 

identified as homozygous by 
sequencing (HSeq) 

Sum of all HSNPHSeq 

HSNPHeSeq 

Number of homozygous 
SNPs incorrectly identified 

as heterozygous by 
sequencing (HeSeq) 

Sum of all HSNPHeSeq 

HeSNPHSeq 

Number of heterozygous 
SNPs (HeSNP) incorrectly 

identified as homozygous by 
sequencing 

Sum of all HeSNPHSeq 

HeSNPHeSeq 

Number of heterozygous 
SNPs correctly identified as 

heterozygous by 
sequencing 

Sum of all HeSNPHeSeq 

HSNPXSeq 
Number of homozygous 
SNPs not identified by 

sequencing 
Sum of all HSNPXSeq 

HeSNPXSeq 
Number of heterozygous 
SNPs not identified by 

sequencing 
Sum of all HeSNPXSeq 

FDRHom 
Error rate of correctly 

identifying homozygous 
SNPs 

 
(H𝑆𝑁𝑃He𝑆𝑒𝑞)

𝐻𝑆𝑁𝑃𝐻𝑒𝑆𝑒𝑞 +𝐻𝑆𝑁𝑃𝐻𝑆𝑒𝑞 
 

Heterozygous Undercall HeSNP that are incorrectly 
genotyped as HSeq 

 
(He𝑆𝑁𝑃H𝑆𝑒𝑞)

𝐻𝑒𝑆𝑁𝑃𝐻𝑆𝑒𝑞 + 𝐻𝑒𝑆𝑁𝑃𝐻𝑒𝑆𝑒𝑞 
 

FNRHom Proportion of HSNPs missed 
by sequencing 

 
(H𝑆𝑁𝑃X𝑆𝑒𝑞)

H𝑆𝑁𝑃X𝑆𝑒𝑞 +𝐻𝑆𝑁𝑃𝐻𝑒𝑆𝑒𝑞 + 𝐻𝑆𝑁𝑃𝐻𝑆𝑒𝑞 
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Table 3.1 Continued 
 

Type Definition Calculation 

FNRHet Proportion of HeSNPs missed 
by sequencing 

 
(He𝑆𝑁𝑃X𝑆𝑒𝑞)

He𝑆𝑁𝑃X𝑆𝑒𝑞 + 𝐻𝑒𝑆𝑁𝑃𝐻𝑒𝑆𝑒𝑞 +𝐻𝑒𝑆𝑁𝑃𝐻𝑆𝑒𝑞 
 

FNRT Proportion of (HSNPs+HeSNPs) 
missed by sequencing 

 
(H𝑆𝑁𝑃X𝑆𝑒𝑞 + He𝑆𝑁𝑃X𝑆𝑒𝑞)

H𝑆𝑁𝑃 +𝐻𝑒𝑆𝑁𝑃  
 

GC 

Genotypic concordance, the 
portion of BovineHD SNPs 

correctly genotyped by 
sequencing 

 
(H𝑆𝑁𝑃H𝑆𝑒𝑞 + He𝑆𝑁𝑃He𝑆𝑒𝑞)

𝐻𝑆𝑁𝑃 + 𝐻𝑒𝑆𝑁𝑃  
 

 

 

In addition to error predictions, we designed primers using Primer3Plus to 

amplify regions containing 34 SNVs in the Angus and Nellore (Appendix 3.2 [142]). 

Using standard PCR, regions containing SNVs were amplified. Amplicons were purified 

by gel purification (Qiagen) and Sanger sequenced by the Texas A&M DNA 

Technologies Lab. Sequences were aligned to the reference using both BLAT and 

ClustalW [181, 182]). All identified SNVs were compared to calls made from the next-

generation sequencing data. 

The CNVs identified by sequencing (all algorithms) were compared back to 

CNVs identified by aCGH to determine the amount of overlap and discrepancies 

between the variants. CNVs located within intergenic regions, terminal 1 Mb of 

chromosomes, and overlapping variants between the Angus and Nellore were removed 

from the comparison, as these would be less likely to have been identified by 

competitive hybridization of coding regions. 
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Genetic Variant Annotation and Analysis 

We re-annotated the variant calls from CLC Genomics using both Galaxy 

(http://galaxy.psu.edu/) and ANNOVAR software programs [145, 183, 184]). The join 

and merge functions in Galaxy were used to annotate the SNVs and INDELs. We used 

these functions to compare the SNVs to all known SNVs in dbSNP. The ANNOVAR 

program used the Ensembl and RefSeq annotation databases to create an mRNA 

library, allowing for the determination of amino acid changes. The program was used to 

determine the locations of all variants within the genome. Variants identified as being 

unique to Angus and Nellore were combined to represent differences between the 

Angus and Nellore, while the total variants in each sample represent differences 

between the sample and the reference Hereford genome. The SNVs were divided into 

groups based on radical and conservative amino acid changes, where radical SNVs 

result in a difference in polarity or charge when the amino acid is changed while 

conservative SNVs cause no change in polarity or charge. Additionally, similar groups 

were created for variants representing differences between the Angus and Nellore. The 

biological functions of the genes affected by SNVs, INDELS, and CNVs were analyzed 

using the DAVID Functional Annotation Tool with the default settings [148, 149]. The 

resulting biological process terms were further grouped by similarities in function to 

determine enrichment for specific biological processes (Appendix 3.3). Statistical 

significance (p value) of enrichment in the defined groups was determined using 

Fisher’s combined probability test with the p value created from the DAVID Functional 

Annotation Tool. 
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Genotyping for Known Mutations 

A custom database was created with 88 known variants associated with 

phenotypes including production and disease. Using ANNOVAR, all variants in both the 

Angus and Nellore were compared to the custom phenotypic variant database. 

Overlapping variants were checked to determine whether the samples were carriers of 

the traits. 

Evolutionary Analysis 

Predicted coding sequences (CDS) for the cattle were created by incorporating 

all homozygous SNVs identified into the bovine genome assembly (bosTau4.0). Protein 

coding sequences were aligned using the clustalw software [185]. We used the 

PAML4.0 software package to determine the non-synonymous substitution rate (dN) 

and synonymous substitution rate (dS) of each protein [186]. These analyses involve 

pairwise comparison of two models and apply likelihood ratio test (LRT) to evaluate the 

significance. Two types of tests have been used in our study: a branch-specific test and 

a site-specific model. The branch-specific test (free ratio model vs. one ratio model) 

identifies positive selection signatures on specific evolutionary lineages in the 

phylogenetic tree. The site specific model compares the positive selection model with a 

nearly neutral model to identify the particular portion regions potentially positively 

selected. The statistical significance threshold was set to p<0.05. 

RESULTS 

Genome Sequencing 

 The sequencing reactions yielded 1,402,540,397 sequence reads, totaling 98.3 

Gb of DNA. The reads from the Nellore and Angus genomes were independently 

mapped to approximately 91% of the assembled autosomes and X chromosome of the 
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reference Hereford genome (bosTau4.0). Mapping resulted in the 18.6X and 17X read-

depths of the Angus and Nellore genomes, respectively, with individual chromosome 

depths ranging from 14.3X to 31.6X (Table 3.2, Figure 3.1). However, the depth of 

ensembl annotated exons was much lower, with only 33% and 28% having at least 5X 

coverage in the Angus and Nellore, respectively. Approximately 76% of the reads from 

each animal mapped to unique positions, which is greater than previous reports of next-

generation sequencing in cattle [129]. Reads not mapped to the assembled 

chromosomes were then mapped to the unassembled chromosomes (ChrUn), where 

approximately 40% of the contigs were covered in both genomes. Additionally, we 

generated 2,802X and 2,316X coverage of the Angus and Nellore mitochondrial 

genomes, respectively. The de novo assembly of 4,358,553 of the 11,241,919 

unmapped Nellore reads resulted in 77,636 contigs with a minimum length and N50 of 

200 bp and 336 bp, respectively. (Table 3.2) 

 

 

Table 3.2 Overview of whole-genome sequencing data 

Sample Method Lanes Reads Bases 
Mapped (Gb) 

Average Depth 
of Coverage 

Average Exome 
Depth of 
Coverage 

% of 
Reference 
Mapped 

Angus 75 SE 1 28,839,216 
50,861,502,387 18.6 X 6.3 X 91% 

Angus 75 PE 10 692,053,232 

Nellore 75 SE 1 20,783,003 
47,471,311,170 17.3 X 5.5 X 91% 

Nellore 75 PE 11 660,864,946 
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Figure 3.1 Read-depths across assembled chromosomes 
 

 

Variant Identification and Annotation 

The BovineHD SNP array was used to determine the FDR, FNR, and 

heterozygous undercall of the SNV calling parameters. The use of strict filtering of the 

BovineHD SNP genotypes, including the removal of SNPs overlapping repeat masked 

regions and homopolymers, was not found to improve the calling rates. With only 

73,196 SNPs overlapping with strict filtering, the FDRHom was 1.9%. Therefore, the 

number of SNPs overlapping SNVs was increased by relaxing the filtering criteria to 

only remove probes with: an unknown base (N), within 25 bp of other sequencing 

variants, within the PAR, and shared genotypes with the reference genome. Increasing 

the minimum fold coverage required for SNV detection led to a significant loss of 

variants, without improving the FDR. Thus, a minimum of 5X coverage was used for the 

identification of SNVs in each animal. At 5X coverage, 99% of the overlapping array and 

sequencing genotypes were concurrent (Table 3.3). Additionally, the stringent minimum 
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allele frequency (35%) combined with an average coverage below the recommended 

30X resulted in a heterozygous under-call rate of 23% [70]. Based on our average 

coverage between 15 and 20X, it would be expected that approximately 65% of the 

BovineHD SNP positions could be called by sequencing [70]. Additionally, the estimated 

65% and 45% of callable genomic and coding regions appear to correspond well with 

our data. Finally, Sanger sequencing confirmed 33 of 34 randomly (97%) selected 

SNVs. 

 

 

Table 3.3 Evaluation of accuracy of SNV identification using relaxed filtering 

Type 5X 6X 7X 8X 9X 10X 

HSNPHSeq 75,444 64,753 55,846 48,375 42,307 37,198 

HSNPHeSeq 821 722 682 632 557 528 

HeSNPHSeq 14,134 11,994 8,826 7,057 6,009 4,702 

HeSNPHeSeq 48,204 42,019 39,522 35,738 31,690 29,371 

HSNPXSeq 29,731 42,562 54,637 63,877 70,993 77,409 

HeSNPXSeq 63,732 72,057 77,722 83,275 88,371 91,997 

FDRHom 1.08% 1.10% 1.21% 1.29% 1.30% 1.40% 
Heterozygous 
Undercall 22.67% 22.21% 18.26% 16.49% 15.94% 13.80% 

FNRHom 36.77% 45.73% 53.19% 59.45% 64.54% 68.82% 

FNRHet 61.76% 66.67% 68.65% 71.65% 74.86% 76.70% 

FNRT 43.51% 51.30% 57.27% 62.59% 67.17% 70.74% 

GC 53.28% 45.61% 40.20% 35.20% 30.84% 27.60% 
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Genomic variant maps, including SNVs, INDELS, and CNVs were generated by 

comparisons made with the reference bovine assembly and by identifying variants 

between each genome. Using uniquely mapped reads with a coverage ≥ 5 and a quality 

score >30, we identified 3,925,205 SNVs in the Angus genome and 6,931,681 SNVs in 

the Nellore genome (Table 3.4). Comparison of identified SNVs in each genome to the 

bovine SNP database (dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/) revealed 

that 2,007,578 and 5,077,454 SNVs were novel in the Angus and Nellore genomes, 

respectively (Table 3.4). Of the SNVs identified, 6,454 were complex (i.e., heterozygous 

with both alleles different from the reference genome) in the Angus and Nellore 

genomes. Additionally, we identified 14 and 23 SNVs in the Angus and Nellore 

mitochondrial genomes, respectively. The comparison of SNVs in the Angus and 

Nellore revealed 7,255,802 variants between them (Table 3.5). The complete 

annotation analyses, with minimum read-depths from 5 to 10X, are listed in Appendix 

3.4. 
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Table 3.5 Annotation of SNVs identified between the Angus and Nellore genomes 

  
Total Homozygous Heterozygous Novel Ensembl 

Genes 

All SNPs 7,255,802 3,011,415 4,244,387 5,557,121 21,153 

Intergenic 5,320,761 2,172,514 3,148,247 4,104,740 17,317 
Intergenic (Upstream w/in 
1 kb) 41,990 17,763 24,227 30,684 11,674 

Intergenic (Downstream 
w/in 1 kb) 43,650 18,366 25,284 32,066 13,165 

Intergenic (Up/Down w/in 
1 kb) 738 329 409 512 348 

Genic 1,848,663 802,443 1,046,220 1,389,119 17,751 

Intron 1,799,630 782,389 1,017,241 1,354,046 15,996 

Non-Coding Exon 2,554 850 1,704 2,076 453 

5' UTR 1,360 593 767 950 343 

3' UTR 10,691 4,767 5,924 7,458 4,301 

Intron Splice Site 383 142 241 288 447 

Exon Splice Site 677 265 412 490 715 

Coding Exon 33,368 13,437 19,931 23,811 10,281 

Synonymous 17,486 7,783 9,703 12,057 7,583 

Non-Synonymous 16,098 5,809 10,289 11,862 6,173 

Radical 10,438 3,711 6,727 7,760 4,757 

Conservative 5,660 2,098 3,562 4,102 3,401 

Stop Gain 442 100 342 368 384 

Stop Loss 19 10 9 14 19 
 

 

The identification of small (1-8bp) INDELs in the Angus and Nellore genomes 

revealed over 250,000 variants. The majority of the variants affected non-coding 

regions of the genome (introns and intergenic regions) (Table 3.6). The INDELs were 

predominately single base mutations, with very few 8 bp INDELs being identified 

(Figure 3.2). Unique INDELs identified only in one sample represent the genetic 

variation between the Angus and Nellore (Table 3.7).   
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Table 3.6 Annotation of INDELs identified in comparison to the reference 
Hereford 

  Total Homozygous Heterozygous 

  Nellore Angus Nellore Angus Nellore Angus 

INDELs (1 bp - 8 bp) 159,794 117,813 62,609 47,964 97,185 69,849 

Intergenic 118,640 87,335 46,679 35,797 71,961 51,538 

Intergenic ( Upstream w/in 1 kb) 813 697 326 290 487 407 

Intergenic ( Downstream w/in 1 kb) 820 661 293 239 527 422 

Intergenic ( Up/Down w/in 1  kb) 14 12 4 3 10 9 

Genic 39,507 29,108 15,307 11,635 24,200 17,473 

Intron 39,128 28,682 15,201 11,538 23,927 17,144 

Non-Coding Exon 20 15 4 7 16 8 

5' UTR 12 22 5 6 7 16 

3' UTR 138 141 55 38 83 103 

Intron Splice Site 11 13 5 4 6 9 

Exon Splice Site 16 23 7 10 9 13 

Coding Exon 182 212 30 32 152 180 

Frameshift Deletion 68 74 12 19 56 55 

Frameshift Insertion 109 137 20 20 89 117 

Frameshift Substitution 0 1 0 0 0 1 

Non-Frameshift Insertion 4 4 1 2 3 2 

Non-Frameshift Substitution 13 13 4 1 9 12 

Stop-Gain 4 6 0 0 4 6 
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Figure 3.2 Distribution of INDELs by variant length 
 

 

Table 3.7 Annotation of INDELs between the Angus and Nellore genomes 

  Total Homozygous Heterozygous 

INDELs (1 bp - 8 bp) 228,448 77,864 150,584 

Intergenic 168,559 57,718 110,841 

Intergenic ( Upstream w/in 1 kb) 1,217 426 791 
Intergenic ( Downstream w/in 1 
kb) 1,242 396 846 

Intergenic ( Up/Down w/in 1 kb) 26 7 19 

Genic 57,404 19,317 38,087 

Intron 56,669 19,151 37,518 

Non-Coding Exon 31 8 23 

5' UTR 28 8 20 

3' UTR 260 84 176 

Intron Splice Site 22 9 13 

Exon Splice Site 29 9 20 

Coding Exon 365 48 317 

Frameshift Deletion 126 24 102 

Frameshift Insertion 225 27 198 

Frameshift Substitution 1 0 1 

Non-Frameshift Insertion 6 1 5 
Non-Frameshift 

Substitution 26 5 21 

Stop-Gain 10 0 10 
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Copy number variants (CNVs) were identified using four read-depth (RD) based 

methods, consisting of independent and comparative RD measurements within each 

genome. Method-1 consisted of an independent CNV analysis of read-depths in the 

Angus and Nellore genomes using FREEC. Due to the errors associated with 

independent CNV detection from GC corrected read-depths, we chose a large window 

size and removed all variants within 1Mb of the chromosomal ends. These stringencies 

resulted in equal numbers of large CNVs in the Angus and Nellore, affecting over 

200Mb of each genome (Table 3.8). The CNVs were present in over 1,700 genes and 

over 200 intergenic regions. Comparison of the 796 CNVs resulted in 135 CNVs 

between the Angus and Nellore. The large amount of CNVs sharing between the Angus 

and Nellore genomes suggests that many variants may in fact be segmental 

duplications. The Angus and Nellore genomes were further analyzed for CNVs by a 

comparison of read-depths using FREEC (Method-2) (Table 3.8). The resulting CNVs 

were further filtered as in method-1. The resulting 701 CNVs affected 18.5 Mb.  The 

third method uses CNV-Seq to perform comparative analysis of CNVs by read-depths 

(Method-3, Table 3.8). The windows in this method were much smaller, but with more 

stringency on levels of differences required to identify a CNV. The resulting 330 CNVs 

were located in both genic and intergenic regions, while affecting 4.4 Mb of sequence. 

Finally, Method-4 utilized the MrFAST algorithm to perform independent CNV analyses 

on repeat masked genome sequences (Method-4, Table 3.8). The masking and 

differences in window sizes resulted in nearly equivalent numbers of CNVs in both 

genomes, with approximately 70% of the total CNVs being found in both samples.  

In a comparison between the programs, we found that approximately 30% of 

CNVs were identified using both independent methods (Method-1 and -4), while only 
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23% were shared using comparative methods (Method-2 and -3). The CNVs from each 

method were compared to those identified by the exome CGH array (comparative 

methods) and BovineHD SNP array (independent methods). See Chapter V for CNV 

analysis using BovineHD SNP array. Due to differences in probe spacing and 

resolutions of methods, CGH CNVs were filtered to remove any below the minimum 

resolution of the sequencing method. Additionally, intergnic CNVs by sequencing were 

removed, as these regions were not analyzed by the exome array. The comparison of 

the CNVs indicated that more CNVs were concurrent between the comparative 

methods (Method-2:42.6%, and Method-3:33.3%) than in the independent methods 

(Method-1:20%, and Method-4:30%). We also found that the majority of independently 

identified CNVs were located in segmental duplications (72-81%), while less of the 

comparative CNVs were located in SDs (46-65%). In all cases, as was seen with the 

CGH analyses, larger CNVs were more likely to be located within SDs.   

 
 
Table 3.8 Independent and comparative CNV analyses using sequence read-depth 

  Method 1 

Sample  # CNVs 
(Genes) Size Range Affected BP 

Angus 398 (1707) 15 - 11,475 kb 224.5 Mb 
Nellore 398 (1611) 15 - 11,300 kb 208.4 Mb 

Angus vs Nellore 135 (1030) 15 - 11,300 kb 72.3 Mb 
  Method 2 

Sample   # CNVs 
(Genes) Size Range Affected BP 

Angus - - - 
Nellore - - - 

Angus vs Nellore 701 (506) 10-815 kb 18.6 Mb 
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Table 3.8 Continued 

  Method 3 

Sample   # CNVs 
(Genes) Size Range Affected BP 

Angus - - - 
Nellore - - - 

Angus vs Nellore 330 (134) 5.1-168.5 kb 4.4 Mb 
  Method 4 

 Sample  # CNVs 
(Genes) Size Range Affected BP 

Angus 541 (341) 4 - 131.6 kb 13.7 Mb 
Nellore 576 (381) 4 - 131.6 kb 14.1 Mb 

Angus vs Nellore 316 (190) 4 - 91.5 kb 4.2 Mb 
 

 

Functional Analysis of Variants 

Analysis of the coding portion of the genome revealed that approximately 67.6% 

of the protein-coding genes were identical between the Angus and Nellore genomes, 

while 7% and 25% had similar (e.g., containing only conservative amino acid changes) 

and divergent (e.g., containing radical amino acid changes) amino acid sequences, 

respectively. Coding variants (i.e., nonsynonymous) in the Nellore were primarily 

enriched in immunity and defense (p = 5.1 x 10-5), signal transduction (p = 1.6 x 10-6) 

and sensory perception (p = 6.4 x 10-9) pathways (Figure 3.3). Conversely, coding 

variation between the Angus and reference Hereford genome was primarily enriched in 

signal transduction (p = 5.8 x 10-5), sensory perception (p = 1.1 x 10-8) and immunity 

and defense (p = 6.5 x 10-2). CNVs were primarily enriched in immunity and defense (p 

= 4.1 x 10-8) pathways, however, INDELs were not significantly enriched (P < 0.05) in 

any biological process. Further comparison of radical nsSNVs indicated the Nellore 

sample possessed a significantly higher enrichment for immunity and defense 
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processes when compared to both Bos taurus samples (Figure 3.4). However, the 

enrichment for immunity and defense processes affected by conservative nsSNVs were 

not significantly different between the samples. 

 

 

 
Figure 3.3 Biological process (BP) analysis of SNVs, INDELs, and CNVs. BP 
enrichment of genes with nsSNVs between (A.) Nellore and Hereford, (B.) Angus 
and Hereford, and (C.) Nellore and Angus. BP enrichment of genes with coding 
INDELs between (D.) Nellore and Hereford, (E.) Angus and Hereford, and (F.) 
Nellore and Angus. BP enrichment of genes with CNVs between (G.) Nellore and 
Hereford, (H.) Angus and Hereford, and (I.) Nellore and Angus. 
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Figure 3.4 Biological process (BP) analysis of radical and conservative nsSNVs. 
BP enrichment of genes with radical nsSNVs between (A.) Nellore and Hereford, 
(B.) Angus and Hereford, and (C.) Nellore and Angus. BP enrichment of genes 
with conservative nsSNVs between (D.) Nellore and Hereford, (E.) Angus and 
Hereford, and (F.) Nellore and Angus 

 

 

Genotyping for Known Mutations 

In order to further understand the biological significance of identified variants, a 

database of known variants with association to specific phenotypes was created. The 

comparison of all variant locations with the sequencing data using the Pileup function of 

SAMTOOLs revealed that approximately 30% of causal mutation positions could be 

accurately genotyped using a minimum coverage of 5X. Of the genotypes that could be 

determined, the Angus was found to possess a heterozygous mutation associated with 

coat color spotting in Holstein and Simmental cattle [187]. Further attempts to genotype 

variants with read-depths below 5X were carried out using the data from the 

SAMTOOLs pileup file. This resulted in the identification of a heterozygous dinucleotide 

variant in the DGAT1 gene of the Nellore. The DGAT1 mutation is known to affect milk 

fat and protein production [188] (Table 3.9). The samples did not contain any of the 
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disease causing mutations. Furthermore, no nsSNVs were identified in regions 

previously found to be under selection within Bos indicus and other cattle [102, 151]. 

 

 

Table 3.9 Genotyping for known casual and associated mutations for diseases 
and traits in cattle 

PMID Chr Coordinate Gene Phenotype Associated 
Genotype 

Angus 
Genotype 

Nellore 
Genotype 

8486364 chr1 70,332,664 UMPS 
Deficiency of uridine 
monophosphate 
synthase 

T/T ND ND 

12047224 chr1 78,468,640 CLDN16 Renal dysplasia 56,002 bp Del Wt Wt 

10995564 chr1 78,469,113 CLDN16 Renal dysplasia 36,910 bp Del Wt Wt 

1384046 chr1 146,773,988 ITBG2 Bovine leukocyle 
adhesion deficiency G/G A/A A/A 

1384046 chr1 146,773,988 ITGB2 Leukocyte adhesion 
deficiency, type I G/G A/A A/A 

15776436 chr10 63,509,608 FBN1 Marfan syndrome A/A ND ND 

19714378 chr11 15,379,543 SPAST Spinal dysmyelination A/A ND ND 

2813370 chr11 104,500,479 ASS1 Citrullinaemia T/T ND ND 

17033029 chr11 107,166,537 PAEP Beta-lactoglobulin, 
aberrant low expression A/A ND ND 

16935476 chr12 52,552,849 CLN5 Neuronal ceroid 
lipofuscinosis, 5 GG/GG G/G G/G 

11827942 chr14 445,086 DGAT1 Milk fat, protein% AA/AA ND GC/AA 

3472203 chr14 7,873,527 TG Goitre, familial A/A ND ND 

19398771 chr15 20,782,835 BCO2 Yellow fat A/A A/G G/G G/G 

16963222 chr15 77,142,483 LRP4 Syndactyly (mule foot) T/T G/G ND 

16859890 chr15 77,150,869 LRP4 Syndactyly (mule foot) AT/AT ND ND 

16714095 chr17 21,442,628 SLC39A4 Acrodermatitis 
enteropathica A/A ND ND 

23029151 chr17 56,496,012 KDM2B 
Lethal multi-organ 
developmental 
dysplasia 

A/A ND ND 

19374945 chr18 9,764,190 WFDC1 Multiple ocular defects ins C/C ND ND 

11467827 chr18 13,777,466 MC1R Coat colour, extension 
in Bos taurus (cattle) C/C T/C ND ND 

8661706 chr18 13,777,481 MC1R Coat colour, extension Del G/G ND G/G 

10425233 chr18 50,234,296 BCKDHA Maple syrup urine 
disease T/T ND C/C 

10425233 chr18 50,243,638 BCKDHA Maple syrup urine 
disease T/T ND ND 

19016676 chr18 52,796,321 PPP1R13L 
Cardiomyopathy and 
woolly haircoat 
syndrome 

Dup 
CGCCTGT Wt/Wt Wt/Wt 

20923700 chr18 52,901,555 OPA3 Cardiomyopathy, dilated A/A G/G ND 

21152099 chr18 64,409,296 MIMT1 Abortion and stillbirth 106kb Del Wt Wt 

12481987 chr19 26,860,160 CHRNE Myasthenic syndrome, 
congenital 20 bp Del Wt/Wt Wt/Wt 

8621763 chr19 45,488,394 SLC4A1 Spherocytosis A/A G/G G/G 
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Table 3.9 Continued 
PMID Chr Coordinate Gene Phenotype Associated 

Genotype 
Angus 

Genotype 
Nellore 

Genotype 

19779552 chr19 48,636,985 MRC2 Tail, crooked */* AG/AG ND 

19524387 chr19 49,660,133 GH1 Dwarfism, growth-
hormone deficiency T/T ND ND 

1072372 chr19 54,001,954 GAA Glycogen storage 
disease II **/** ND ND 

1072372 chr19 54,005,930 GAA Glycogen storage 
disease II A/A ND ND 

1072372 chr19 54,009,386 GAA Glycogen storage 
disease II **/** ND ND 

9356471 chr2 6,533,052 MSTN Muscular hypertrophy 
(double muscling) A/C A/A C/C ND 

11105210 chr2 6,535,208 MSTN Muscular hypertrophy 
(double muscling) T/T ND C/C 

9288100 chr2 6,537,448 MSTN Muscular hypertrophy 
(double muscling) 

Hom 11 bp 
Del Wt/Wt Wt/Wt 

9356471 chr2 6,537,568 MSTN Muscular hypertrophy 
(double muscling) A/A ND ND 

23152852 chr2 51,537,189 ZEB2 Polled and 
multisystemic syndrome 

3,740,690 bp 
Del Wt Wt 

17952705 chr21 20,191,991 ACAN Dwarfism, Dexter GGCA Ins Wt/Wt ND 

10357109 chr21 20,197,816 ACAN Ehlers-Danlos 
syndrome A/A ND ND 

22952632 chr21 20,537,018 FANCI Brachyspina Del 3,329bp Wt Wt 

22174915 chr22 32,364,257 MITF Dominant white with 
bilateral deafness A/A C/A ND ND 

22486495 chr22 32,386,957 MITF Coat colour, white 
spotting T/T A/T A/A 

22715415 chr22 52,504,015 COL7A1 Epidermolysis bullosa, 
dystrophic T/T C/C C/C 

21255426 chr23 14,398,230 MOCS1 Arachnomelia, BTA23 Hom Del CA ND ND 

9784594 chr24 59,105,614 FECH Protoporphyria A/A ND ND 

17420465 chr24 64,249,133 KDSR Spinal muscular atrophy T/T C/C C/C 

18344998 chr25 27,746,956 ATP2A1 Congenital muscular 
dystonia 1 A/A G/G ND 

23046865 chr25 27,752,641 ATP2A1 Pseudomytonia 
congenital A/A A/C C/C ND 

23046865 chr25 27,752,866 ATP2A1 Pseudomytonia 
congenital A/A A/C ND ND 

18786632 chr25 27,753,942 ATP2A1 Pseudomytonia 
congenital T/T C/C C/C 

17458708 chr26 32,389,019 NAGLU Mucopolysaccharidosis 
IIIB A/A ND ND 

Unpublish
ed chr26 37,027,031 GFRA1 Forelimb-girdle 

muscular anomaly A/A G/G G/G 

16104386 chr27 17,619,151 F11 Factor XI deficiency 15 bp Ins ND ND 

15566468 chr27 17,623,837 F11 Factor XI deficiency Ins 76bp Wt Wt 

10594238 chr28 6,945,386 LYST Chediak-Higashi 
syndrome C/C T/T T/T 

Unpublish
ed chr29 300,100 HEPHL1 Hypotrichosis A/A ND ND 

14727143 chr29 6,536,066 TYR Coat colour, albinism C/C ND ND 

18344998 chr29 25,553,812 SLC6A5 Congenital muscular 
dystonia 2 G/G A/A A/A 

18039909 chr29 44,762,749 RASGRP2 Thrombopathia G/G A/A A/A 

8845714 chr29 44,775,330 PYGM Glycogen storage 
disease V A/A ND ND 

16344554 chr3 46,229,040 SLC35A3 Complex vertebral 
malformation A/A ND ND 

22438830 chr3 101,805,195 RNF11 
Dwarfism, proportionate, 
with inflammatory 
lesions 

C/C ND T/T 

21814570 chr4 29,020,047 TWIST1 Scurs, type 2 11bp Dup 
(cgggccccgcg) ND ND 
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Table 3.9 Continued 

PMID Chr Coordinate Gene Phenotype Associated 
Genotype 

Angus 
Genotype 

Nellore 
Genotype 

21526202 chr4 38,428,047 MFN2 Axonopathy A/A G/G G/G 

20507629 chr4 117,916,428 SLC4A2 Osteopetrosis 2,781 bp Del Wt Wt 

10384045 chr5 20,591,714 KITLG Coat colour, roan, white A/A, A/C ND ND 

15955091 chr5 30,270,142 KRT5 Epidermolysis bullosa A/A G/G ND 

20865119 chr5 61,881,761 SUOX Arachnomelia, BTA5 insG Wt/Wt ND 

18408794 chr5 61,910,340 PMEL Hypotrichosis with coat-
colour dilution 3bp Del (Het) Wt/Wt Wt/Wt 

17302792 chr5 61,910,352 PMEL Coat colour, dilution in 
Bos taurus A/A G/A G/G ND 

18408794 chr5 61,918,184 PMEL Hypotrichosis with coat-
colour dilution A/C C/C ND 

10594236 chr6 23,801,171 MANBA Mannosidosis, beta A/A G/G ND 

19887637 chr6 99,298,982 PRKG2 Dwarfism, Angus A/A G/G G/G 

12354143 chr6 107,836,847 EVC2 Chondrodysplasia T/T ND ND 

12354143 chr6 107,852,627 EVC2 Chondrodysplasia Del CA Ins G ND CA/CA 

10417273 chr7 1,885,655 ADAMTS2 
Ehlers-Danlos 
syndrome, type VII 
(Dermatosparaxis) 

17 bp Del ND ND 

9491457 chr7 11,109,933 MAN2B1 Mannosidosis, alpha A/A G/G G/G 

9491457 chr7 11,111,242 MAN2B1 Mannosidosis, alpha C/C T/T ND 

11178872 chr7 62,833,910 GLRA1 Myoclonus T/T ND G/G 

18557975 chr8 33,475,363 TYRP1 Coat colour, brown A/A ND ND 

19456318 chrUn.0
04.16 354,250 F8 Haemophilia A T/T ND ND 

16827753 chrUn.0
04.288 9,628 ASIP Coat colour, agouti 8404 bp ins ND ND 

18344998 chrUn.0
04.3 1,131,276 ABCA12 Ichthyosis congenita G/G ND ND 

12466292 chrUn.0
04.3 1,737,477 FMO3 Trimethylaminuria T/T ND ND 

21410470 chrUn.0
04.31 197,320 EDA Anhidrotic ectodermal 

dysplasia 19bp Del ND ND 

22497423 chrUn.0
04.31 197,553 EDA Anhidrotic ectodermal 

dysplasia 
ins 
AGGG/AGGG ND ND 

11591646 chrUn.0
04.31 437,834 EDA Anhidrotic ectodermal 

dysplasia ~300bp Del ND ND 

12021844 chrUn.0
04.31 448,839 EDA Anhidrotic ectodermal 

dysplasia G/G ND ND 

 

 

Evolutionary Analysis 

The SNVs in the Angus and Nellore samples were further analyzed using the 

dN/dS test on 11,521 RefSeq genes to determine if the identified coding SNVs were 

under positive selection in the Bos indicus or Bos taurus cow. The resulting branch-

specific analysis revealed few genes (11) being identified as significantly under 
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selection in the Bos indicus vs Bos taurus cattle (Table 3.10). Using the site-specific 

model to identify genes under positive selection yielded only 11 and 27 genes with 

dN/dS scores greater than 1 in the Angus and Nellore, respectively (Appendix 3.5) 

(Table 3.11). The genome-wide average dN/dS for the Angus and Nellore cows were 

0.10 and 0.19, respectively (Table 3.11). These data suggest a high level of sequence 

conservation between the subspecies. 

 

 

Table 3.10 Genes with significant positive selection using the branch-specific 
model. 

Gene omega Log Ratio Test (LRT) 
DNAH9 0.56794 10.581282 
BLA-DQB 0.12491 7.50576 
TRAF3IP1 0.4753 7.630062 
THNSL2 0.91139 8.36848 
CP 0.15226 6.731074 
ATP2C1 0.20061 6.780098 
ASPM 0.23355 7.261786 
ERCC5 0.39295 8.298822 
MGC134066 0.37398 6.733036 
HERC2 0.0001 6.877404 
CD46 0.14997 6.748846 
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Table 3.11 Effects of selection using homozygous SNVs within RefSeq genes 

Method Genes Angus Nellore 

Site-
Specific 

dN/dS >1 11 27 
          Average dN 0.00051 0.000349 
          Average dS 0.0034 0.00417 
Average dN/dS 0.1029 0.1925 
Identical 10,754 8,787 

Branch-
Specific 

RefSeq 12,615 
Analyzed 11,521 
Significant 11 
Identical 7,518 

 

 

DISCUSSION 

Angus and Nellore cattle represent phenotypically diverse subspecies of cattle. 

The Angus breed was selected for meat production traits such as carcass quality, 

tenderness, and feed efficiency. The Nellore breed was selected for heat tolerance and 

disease resistance due to tropical origins. The hundreds of studies investigating these 

differences have identified over 5,000 QTLs but no causal mutations [146, 147, 176]. 

The recent advancements in next-generation sequencing technologies allowed for a 

burst in whole-genome sequencing of various species. Prior to this study, there have 

only been twelve published cattle sequences using next-generation technology. These 

descriptive studies have mostly focused on a single genome or have compared Bos 

taurus samples. The only study comparing a Nellore genome to Bos taurus samples 

focused primarily on CNVs and provided limited analysis of SNVs. 

Our analysis of genetic variants across a single Angus and Nellore genome 

provides the first comparative insight into the genetic differences between Bos indicus 

and Bos taurus cattle. The massively parallel next-generation sequencing generated 
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98.3 Gb (billion bp) (50.8 Gb from the Angus and 47.4 Gb from the Nellore), resulting in 

18.6X and 17.3X coverage of the Angus and Nellore genomes, respectively. The de 

novo assembly of unmapped reads created 77,636 contigs spanning 26 Mb in the 

Nellore genome. The combination of our previous analysis of CNVs in horses [155, 

189], as well as those in humans and mice, demonstrate that large homozygous 

deletions are common in the genome of healthy individuals. Therefore, we suggest that 

some of the contigs represent novel sequence that is absent from the Hereford genome 

due to homozygous deletions. 

 The accuracy and ability to identify SNVs throughout the bovine genomes using 

the BovineHD SNP array indicated that our strict calling criteria increased the level of 

accuracy in identified SNVs, but reduced the accuracy of distinguishing between 

homozygous and heterozygous SNVs. Due to our stringency, we found that some 

heterozygous SNVs were incorrectly genotyped homozygous. The SNVs with the 

second allele frequency below our 35% threshold were excluded from the list. However, 

despite a fairly high heterozygous under-call rate, we were able to demonstrate a low 

FDR for genotyping homozygous SNVs. The high FNR, representing SNVs missed by 

sequencing, was found to be a result of stringent frequency thresholds, depth of 

coverage and the repetitive nature of many regions in the bovine genome. The fact that 

our exonic coverage was much lower than that of intergenic regions suggests that 

biases and variability in sequencing using the GAII platform exist. However, the 

introduction of Illumina’s HiSeq technology may reduce these biases, resulting in a 

more even distribution of read coverage. Despite these limitations, we were able to 

identify over 10 million SNVs and 300,000 INDELs. 
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We identified CNVs by comparative and independent analyses of read-depth, 

including a duplication of cathelicidin 4 (CATHL4). An increase in copies of CATHL4 is 

suspected to result in an increase in peptides and host resistance against pathogens, 

making this CNV an excellent candidate for further studies into the disease resistance 

of Nellore cattle. We confirmed CNVs by a comparison to known CNVs identified in the 

animals by a custom exon tiling array.  The low percentage of overlap between the 

CNVs and those identified by CGH are due to differences in resolutions of the studies, 

existing duplications in the reference genome, and the known inconsistencies with 

depth of coverage tools [68]. This study, combined with human studies of copy number 

variation, demonstrates the need for the development of more accurate algorithms to 

detect CNVs by sequencing to minimize false discoveries and to identify all types of 

copy number variation. 

Both SNVs and CNVs were shown to be enriched for biological processes of 

immunity and defense, signal transduction, and sensory perception. However, further 

investigation revealed that the Nellore possesses a threefold gain in enrichment of 

immunity and defense processes in radical SNVs over conservative SNVs, while levels 

remain similar in the Angus. Radical amino acid changes are thought to more drastically 

affected protein function than conservative changes due to the changes in charge and 

polarity [190, 191]. The increase in radical changes of immune genes could be a major 

factor in the increased disease resistance of the Nellore breed. However, the true link 

between the radical SNVs and immunity phenotypes will require further investigation. 

Additionally, we created a custom bovine mutation database containing 88 

known mutations that are causal and associated with traits in cattle. Using our 

database, we were able to genotype both animals for 88 known mutations, with the 
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majority causing severe diseases. However, the previously mentioned limitations of 

read coverage allowed us to only genotype 40 and 33 of the mutations in the Angus and 

Nellore genomes, respectively. The healthy animals did not carry any disease 

genotypes. Interestingly, the Angus was found to carry a heterozygous SNV that has 

been linked to spotting in other breeds [187]. However, the association to this specific 

intronic SNP was only found in Holstein and Simmental cattle. However, another non-

spotted breed (Reggiana) did not reveal any association with this specific SNP. 

Therefore, it is unlikely that this SNP is actually predictive of the spotting in our Angus 

cow. Decreasing the depths required to call a SNV revealed that the Nellore possessed 

a heterozygous dinucleotide substitution in the diacylglycerol O-acyltransferase 1 

(DGAT1) gene causing a K232A change in the protein. The K allele is responsible for a 

decrease in milk production but an increase in milk fat yield, percentage of fat, and 

percentage of protein [188, 192, 193]). Recent studies have shown that Holstein cattle 

have the highest frequency of the A allele, resulting in an increase in milk production. 

While our Nellore sample was heterozygous, studies show that only 1% of Nellore 

possess the A allele, while the remaining are homozygous for the K allele [194, 195].   

The use of global dN/dS values for all genes by incorporating the Angus and 

Nellore SNVs into their genomes allowed for the identification of genes under 

differential selection in the breeds. The evolutionary analysis of coding variation 

revealed that the majority of coding genes remain identical or similar, with only 11 

appearing to be under selection in one breed vs another. Additionally, when these 

genes along with nsSNVs were compared with known regions of selection in cattle, no 

overlap was identified, suggesting that while significant enrichment exists for immune 

processes, these nsSNVs are representative of a very small fraction of variants. 
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Therefore, many of the known quantitative traits may be controlled by other types of 

variation (i.e., CNVs) or by non-coding regions (i.e., regulatory elements). 

Whole genome analysis revealed over 10 million SNVs, 300,000 INDELs, and 

900 CNVs in the Angus and Nellore genomes. A combined functional analysis relying 

on biological processes and known mutations revealed enrichment for immunity 

processes and candidate immune related mutations in the Nellore sample. Despite the 

level of variation between the Angus and Nellore, dN/dS analyses indicate that very few 

genes possess significant divergence for positive selection between the breeds. These 

findings, combined with the lack of coding variants within known regions of selection, 

suggest that many quantitative traits may be controlled by other types of variation (i.e., 

CNVs) or by non-coding regions (i.e., regulatory elements). In order to better 

understand the underlying genetics of phenotypes in cattle, these data will need to be 

combined with epigenetic maps of the bovine genome. 
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CHAPTER IV  

VARIATION AT REGULATORY ELEMENTS 

 

INTRODUCTION 

 In the past 20 years, hundreds of studies have strived to identify the causal 

coding variants responsible for both Mendelian and complex traits in cattle. These 

studies have progressed from using single microsatellites to high-density SNP arrays to 

whole-genome sequencing. Despite these efforts, only approximately 88 causal 

mutations have been identified, with the majority leading to diseases or changes in coat 

color in Bos taurus cattle. However, the underlying causal genetic elements for 

quantitative traits such as fecundity, immunity, and production remain unknown. Recent 

attempts to narrow the over 5,000 known QTLs and regions of selection through the use 

of whole-genome sequencing have revealed a vast amount of unknown variation in 

cattle, further complicating the ability to identify causal variants. Despite the 

identification of more than 13 million SNPs and 2,000 CNVRs, many regions under 

selection lack known coding variants. These findings suggest that many traits in cattle 

may be controlled by variation at regulatory elements. Even with the existence of 

extensive gene annotations in the bovine genome, there are no publicly available 

regulatory element maps outside of 5’ and 3’ UTRs. The lack of epigenetic maps has 

limited the investigation of variants within cis-acting elements.   

 The identification and understanding of regulatory elements and genetic 

variation has proven to be a difficult task even within the well annotated human 

genome. The reason for the complexity is that regulation can occur at several stages 

including transcriptional, post-transcriptional, translational, and post-translational [196]. 
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The transcriptional regulation of genes can be controlled by several types of cis-acting 

transcriptional DNA elements occurring around the promoter region or at distances of 

hundreds of kb or greater from the promoter. The promoters and proximal promoters 

(usually within 1 kb of the promoter) may have the greatest effect on transcription. 

However, the harder to identify intergenic and intronic regions such as enhancers, 

silencers, and locus control regions also have significant effects on the regulation of 

transcription. All of these regions can contain binding sites for specific transcription 

factors and, therefore, genetic variation within the elements could lead to alterations in 

gene transcription [197]. 

 The recent advancements in human regulatory elements, including the 

ENCODE project, have demonstrated that several histone modifications and DNA 

methylation can be used not only  to quantitatively identify active and repressed gene 

transcription, but also to identify genic and intergenic cis-acting regulatory elements. 

The usage of these modifications has resulted in the identification of nearly 400,000 

enhancers and 70,292 promoter regions in the human genome [35]. Despite previous 

methods that used sequence conservation between species to identify regulatory 

elements, recent studies have shown that only 40 to 60% of regulatory elements and 

transcription factor binding sites are actually conserved between species [196, 198, 

199]. The combination of these regions with structural variation and GWAS data 

suggests that many quantitative traits are controlled by regulatory element variation, 

while Mendelian traits are more likely to be controlled by coding variation [91-93]. 

Therefore, previous attempts that focused on coding regions for traits and complex 

diseases may have missed important underlying variation. 
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 The importance of complex diseases and traits in cattle genomics led to the 

release of the bovine 50K SNP Beadchip, followed by the BovineHD SNP Beadchip. 

The utilization of these designs has led to thousands of cattle being genotyped, 

resulting in numerous regions thought to control traits, but very few causal variants. 

Based on the recent findings of non-coding variants causing traits and diseases in 

humans and other species, it is likely that many regions of selection and QTLs possess 

causal regulatory variants instead of coding variants. However, to date, there have been 

no studies in cattle to map regulatory elements using ChIP-seq or DNA methylation 

sequencing and subsequently overlay these regions with SNVs from whole-genome 

sequencing. 

 Therefore, we performed epigenetic profiling through a combination of chromatin 

immunoprecipitation (H3K4me3) and methyl-binding domain (5Mc) sequencing to 

identify putative regulatory elements in bovine WBCs.  The combination of identified 

regulatory elements with SNVs from our whole-genome sequencing and previous 

studies provides the first glimpse into the extent and potential role of regulatory element 

variation on phenotypic differences between Bos indicus and Bos taurus cattle. 

METHODS 

Epigenetic Profiling 

DNA modified with histone 3 lysine 4 tri-methylation (H3K4me3) was isolated 

from WBCs using an adapted version of a standard ChIP protocol for histone 3 lysine 4 

tri-methylation (H3K4me3) [200]. Additionally, methylated CpG islands within WBCs 

were enriched using the MethylCollector Ultra kit (Active Motif, Carlsbad, Ca). All 

captured H3K4me3 and methylated DNA were used to create Illumina single-end 

sequencing libraries using the standard manufacturer’s protocol. Each library was 
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sequenced on two 36 bp single-end lanes using an Illumina GAII at the Texas A&M 

AgriLife Genomics and Bioinformatics Center (College Station, TX). 

All of our raw data, in FASTQ format, were mapped to the reference genome 

(bosTau4.0) using BWA within the Galaxy webserver using default settings [65]. 

Enriched regions were identified throughout the genome using MACS software with the 

following settings: band size, 150; Pvalue cutoff,1e-05; MFOLD, 10; build model, 

create_model; and, futurefdr, no. Annovar was used to annotate all resulting peaks for 

SNVs, INDELs, CNVs, ensembl genes, RefSeq genes, repetitive elements, QTLs, 

regions of selection (FST), conserved regions, and CpG islands. 

Furthermore, all SNVs from our Angus and Nellore, along with those previously 

identified in a single Angus and Holstein, were annotated using the bovine ensembl 

database and our newly created bovine regulatory map [131]. The variant densities 

were determined for intergenic (IGR), intronic (INR), genic (introns, exons [except first 

or last exon], and 3’UTR), proximal promoter (PPR, [1kb upstream, 5’ UTR, and exon 

1]), transcriptional termination region (TTR, [1kb downstream, 3’ UTR, and last exon]), 

coding exon (ER, [without first or last exon]), synonymous coding changes (ER(syn)), 

nonsynonymous coding changes (ER(NS)), regulatory elements (RE, [intergenic 

regions with H3K4), and differentially modified CpG islands (DMC). The densities were 

compared between our single Bos taurus (Angus) and Bos indicus (Nellore) genomes, 

as well as a single sheep genome (Doan et. al. unpublished data). The OR of the 

Nellore vs the Angus was compared to the ORs of a sheep vs the Angus (Doan et. al. 

unpublished data) and the Holstein vs the Angus [131]. 

 

 

98 
 



 

RESULTS 

Identification of Regulatory Elements in the Bovine Genome 

To identify regulatory elements in the bovine genome, we performed ChIP- and 

MBD-sequencing of captured DNA isolated from circulating lymphocytes. Regulatory 

elements were characterized as regions containing tri-methylated histone H3 lysine 4 

(H3K4me3), a mark of active promoters and enhancers [93, 201]. Of the 17,005 

modified regions identified, 62% and 60% overlapped CpG islands (CGIs) and 

conserved regions, respectively. However, only 48% of the regions overlapped both 

CGIs and conserved regions. The remaining 40% of regions without conservation were 

presumed to be regulatory elements unique to bovids. Regions enriched with H3K4me3 

were annotated as being present at IGR, PPR, ER, INR, or TTR (Figure 4.1). While the 

majority of modified regions were located at PPRs (5,817) and IGRs (6,960), many 

were identified at ERs (431), INRs (3,388), and TTRs (246) (Appendix 4.1, Table 4.1). 

Further annotation revealed that 5,368 genes possess H3K4me3 at their PPR, 

suggesting active transcription. Additionally, many genes were affected by histone 

methylation at INRs (2,755), ERs (420), and TTRs (232). Interestingly, 7 genes have 

histone modifications at both PPR and TTR, while lacking it within the gene.  
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Figure 4.1 (A.) Definition of genomic regions used to identify regions (B.) with 
H3K4me3, (C.) DNA methylation, and (D.) with differential modifications 
 

 

Table 4.1 Summary of epigenetic profiling for H3K4me3 and DNA methylation 

Modification Total IGR PPR ER INR TTR 

H3K4me3 17,005 6,960 5,811 436 3,388 250 
DNA Methylation 44,486 19,576 2,871 10,340 8,618 2,826 
DMC 718 200 318 38 111 25 
Unique H3K4me3  15,087 5,872 5,459 373 3,060 210 
Unique DNA  42,547 18,470 2,562 10,165 8,287 2,771 

 

 

Given the functional roles of regions modified by H3K4me3, genetic variation at 

these regions could have a large effect on gene transcription. Therefore, we overlapped 

all genetic variants from sequencing and CGH analyses of the Angus and Nellore cow 

to determine the extent of the variation within IGRs, PPRs, ERs, INRs, and TTRs 

(Figure 4.2). We found of the 9,617 regions with 37,197 SNVs, the majority were 

located at IGR (3,642) and PPRs (3,501). Additionally, 1,948 INDELs were found to 
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affect 1,151 modified regions. While SNVs and INDELs would affect the binding of 

transcription factors, CNVs have the potential to duplicate or remove entire regulatory 

elements, leading to large changes in transcription. Overlapping of CNVs from our 

exome CGH experiments revealed 288 CNVs affecting 247 H3K4me3 regions, 

including 84 PPRs. Overall, despite the important functional role of H3K4me3, a large 

level of underlying genetic variation exists throughout many modified regions. 

 

 
Figure 4.2 (A.) SNVs located within genomic regions (B.) with H3K4me3, (C.) DNA 
methylation and (D.) with differential modifications 
 

 

In addition to active H3K4me3 histone methylation, enrichment of DNA 

methylation, an indicator of repression, was investigated throughout the bovine 

genome. The detection of peaks (regions) enriched for DNA methylation revealed 

44,486 regions throughout the bovine genome. Approximately, 33% of DNA methylation 

regions occurred at CGIs, accounting for 40% of annotated CGIs in the genome. 

Additionally, 47% of the regions occurred at conserved regions, while only 21% 

overlapped both CGIs and conserved regions. The methylated regions were annotated 
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as being present at IGRs, PPRs, ERs, INRs, or TTRs (Appendix 4.2). Unlike the 

H3K4me3, the majority of DNA methylation regions were present at IGRs (19,576) and 

ERs (10,340) (Table 4.1). The remaining regions were distributed across INRs (8,618), 

PPRs (2,871) and TTRs (2,826). Further investigation of genes revealed 2,691 genes 

with PPR methylation, suggesting long term repression. Additionally, many genes are 

methylated at INRs (3,426), ERs (5,474) and TTRs (2,597). Several genes (15) lacked 

methylation within the gene but were methylated at both PPR and TTR.  

Given the repressive role of DNA methylation, genetic variants could alter 

repression, resulting in changes in transcription. Therefore, like the H3K4me3 analysis, 

we overlapped all genetic variants to determine the underlying variation. We found the 

majority of the 18,768 regions with 61,554 SNVs were located at IGRs (8,438), ERs 

(4,149), and INRs (4,116). Additionally, 1,616 INDELs affected 987 methylated regions. 

While SNVs and INDELs would affect the binding of transcription factors, CNVs have 

the potential to duplicate or remove entire regulatory elements, thus enhancing or 

preventing the repressive effects. In total, 490 CNVs were found to affect 586 

methylated regions, including 66 PPRs. Overall, despite potential evolutionary 

constraints on methylated regions, many regulatory regions are affected by a variety of 

types of genetic variation. 

The combination of DNA methylation and H3K4me3 data allows for the analysis 

of differentially modified CGIs (DMC) in which CGIs are overlapping with H3K4me3 and 

DNA methylation (e.g., some imprinting control regions, X-inactivated genes, and genes 

undergoing allelic exclusion). Annotation of all 718 DMCs, as with previous steps, 

revealed that the majority occurred at PPRs (318), while the remainder was spread 

across IGRs (200), INRs (111), ERs (38), and TTRs (25) (Table 4.1). After removing the 

102 
 



 

overlapping H3K4me3 and DNA methylation peaks from the total for each modification, 

we found that the majority were at unique locations in the genome. The unique 

H3K4me3 regions were distributed across IGRs (5,872), ERs (373), INRs (3,060), 

PPRs (5,459), and TTRs (210). In total, 5,344 genes possessed unique H3K4me3 

overlapping CGIs at PPRs. Alternatively, unique methylation regions were distributed 

across IGRs (18,470), ERs (10,165), INRs (8,287), PPRs (2,562), and TTRs (2,771). 

Given that females were used in this study, we further investigated the DMCs on 

the X chromosome. Interestingly, 152 (21%) of the DMCs occurred on the X 

chromosome, accounting for 28% of the CGIs on the chromosome. In comparison, only 

1.5% of the CGIs on other chromosomes possessed differential modifications, clearly 

demonstrating the detection of X-inactivation. Additionally, several genes known to 

undergo X-inactivation were identified as being affected by DMCs including MAOA and 

FMR (Figure 4.3). While many genes on the X chromosome undergo X-inactivation, 

some are able to escape inactivation. Analysis of several of these genes revealed that 

UTX, ZFX, CRSP2, UBE1, and JARID1C possess H3K4me3 at their PPRs, but lack 

DNA methylation (Figure 4.4). Outside of the X chromosome, DMCs are also an 

indicator of imprinting control regions and allelic exclusion of genes. The comparison of 

potentially imprinted genes in cattle and mice revealed several overlapping genes, 

respectively (Figure 4.5). Additionally, DMCs were identified in gene clusters such as a 

BoLA gene (chr23:27,748,581-27,806,566), and over 700 uncharacterized regions 

(Figure 4.6).  
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Figure 4.3 Identification of gene known to undergo X-inactivation (MAOA) by 
overlapping histone and DNA methylation 
 

 

 
Figure 4.4 Identification of a gene known to escape X-Inactivation in humans 
(KDM6A) by histone and DNA methylation analysis in cattle 
 

 

 
Figure 4.5 Confirmation of gene that is known to be imprinted (SNRPN) by 
overlapping histone and DNA methylation in cattle 
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Figure 4.6 Potential allelic exclusion of BoLA gene indicated by overlapping 
histone and DNA methylation in cattle 
  

 

Characterization of Variant Densities 

Next, we examined the SNV densities of each genome at (IGR), intronic (INR), 

genic (synonymous [ER(Syn)] and nonsynonymous [ER(NS)]), PPR, RE, and DMC 

regions. For comparison of genetic divergence between two closely related breeds of 

Bos taurus, we determined the SNV densities of separate Angus and Holstein (Bos 

taurus) genomic sequences ([131] (Figure 4.7, Appendix 4.3). Comparative SNV 

densities within each annotated region revealed that the OR of SNVs at functional 

coding regions (i.e., ER(NS)) and DMCs were only slightly different between the Nellore 

and Angus genomes relative to the Angus and Holstein genomes. As expected from the 

divergence of the subspecies, the highest OR of SNVs was present in IGRs. However, 

the SNV densities between the Nellore and Angus genomes at PPRs, REs, and TTRs 

were increased relative to those observed between the Angus and Holstein genomes. 

Collectively, these data indicate that most of the functional variation between Nellore 

and Angus genomes is present within regulatory elements and not at coding regions. 
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Figure 4.7 Comparison of SNVs at genetic elements. (A.) Variant densities in the 
Angus and Nellore genomes. (B.) Odds ratios of densities between the Angus and 
Nellore genomes and published Angus and Holstein genomes. 
 

 

DISCUSSION 

 The identification of regulatory elements and their underlying genetic variation is 

crucial for the advancement of our understanding of complex diseases and traits in 

cattle. We describe the first genome-wide mapping of H3K4me3 and DNA methylation 

in bovine WBCs. While other histones and additional tissues would increase the 

numbers of elements identified, we were able to identify 6,960 intergenic regulatory 

elements and 5,817 actively modified PPRs. Interestingly, nearly 40% of regulatory 

elements fell outside of CGIs and conserved regions. This finding suggests that 

previous methods predicting REs based on sequence conservation and CGIs would 

miss a large fraction of existing elements, especially bovine-specific regions. 
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 In addition to active modification, the repressive modification, DNA methylation, 

has the potential for large and long-term repression of genetic elements. These 

changes can lead to either enhanced or repressed gene expression. Therefore, our first 

analysis of more than 44,000 methylated regions in the bovine genome provided a 

glimpse into the repressive regulation in cattle. As seen in other species, DNA 

methylation was enriched for coding exons and intergenic regions due their lower 

repressive function and the potential role of splicing and elongation [87, 202, 203]. DNA 

methylation was also enriched across the X chromosome due to X-inactivation, 

providing the first insight into chromosomal inactivation and genes escaping the 

inactivation. While the functional roles of the regions will require further investigation, 

these data provide a starting point for better understanding of diseases and traits. 

 The overlap of histone and DNA methylation are linked to imprinting and allelic 

exclusion. DMCs often exist in highly regulated, developmentally important genes. The 

comparison of our histone and DNA methylation data allowed for the identification of 

over 700 DMCs that not only demonstrate the widespread level of differential 

modification in the bovine genome but provide evidence for allelic exclusion in the MHC 

region of cattle. 

 The regulatory and functional importance of promoters, intergenic regulatory 

elements, and DMCs also suggest a significant functional change due to any underlying 

genetic variation. The presence of SNVs and small INDELs within these regions could 

prevent or enhance the binding of factors specific for the element. These changes 

would in turn change the gene expression, potentially altering a trait including 

susceptibility to disease. Also, CNVs have the potential to cause even more dramatic 

expression differences due to the complete removal or duplication of regulatory 
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elements. Therefore, our finding that many of these regions possess SNVs, INDELS, 

and CNVs in the Angus and Nellore samples may help explain the lack of coding 

mutations, despite the large number of phenotypic differences observed in cattle.  

 To further understand the extent and potential role of genetic variation 

underlying regulatory regions, we compared the Angus and Nellore variant densities 

across IGRs, INRs, PPRs, TTRs, ERs, REs (intergenic H3K4me3), and DMCs. As 

expected, ERs and DMCs had the lowest densities, while IGR, INRs, PPRs, and REs 

were affected by more variants. However, ORs of the Nellore and Angus densities 

demonstrated that the Nellore possessed greater enrichment of SNVs in all regions 

except ER(NS)s and DMCs, where there was no significant difference in densities. 

Furthermore, the comparison of the densities of publicly available SNVs from a single 

Angus and Holstein cow demonstrated no significant differences in ORs at any region. 

Together, these data suggest that regulatory element variation may play a larger role in 

diversification of the subspecies than coding variation. Therefore, the focus on coding 

changes within QTLs and regions of selection in previous studies may have prevented 

the identification of true causal mutations within regulatory regions. 
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CHAPTER V 

CNV IMPUTATION 

 

INTRODUCTION 

 The recent surges in genotyping and CNV analyses using the bovine 50K and 

BovineHD SNP beadchips have resulted in thousands of cattle being genotyped for 

linkage and CNV studies. The inclusion of over 770,000 probes on the BovineHD array 

has led to several high-density CNV and genotyping studies in cattle [126, 204, 205]. 

Results of human studies have identified at least a few limitations of SNP arrays. First, 

SNP arrays only contain probes where a polymorphic SNP occurs in a unique sequence 

[24, 60, 61]. Given the repetitive nature and level of segmental duplications, these 

regions are underrepresented with very low SNP densities [24, 61]. Second, 

approximately 20% of all CNVs are not imputed by SNPs in humans and not all types of 

CNVs are equally imputed. Multi-allelic CNVs, where several copy numbers exist, are 

rarely tagged due to the recurring and complex events [24, 61]. Third, duplications tend 

to have lower LD with SNPs than deletion events, with rare variants having even less 

LD [24, 60, 61]. Despite the ability to genotype nearly 80% of CNVs, the majority of LD 

values are below 1 [24, 60, 61]. Taken together, these limitations suggest that a 

combined approach using additional methods should be used when determining 

individuals’ genotypes in order to account for variation from both SNPs and CNVs. 

Despite the recent human data demonstrating the limitations of SNP arrays, 

bovine genomics studies remain highly dependent on SNP arrays. The original 50K 

SNP array, with a limited resolution across the entire genome, has been used to 

genotype thousands of cattle for SNPs and CNVs. The analysis of CNVs using this 
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array has been reported in 6 studies looking at over 8,000 cattle [120-125]. However, 

these studies are only able to identify an average of two CNVs per cow. Also, the 50K 

SNP array can only identify CNVs down to 50 kb, with an average length of over 200 

kb. The release of the BovineHD SNP beadchip has led to two large scale studies 

investigating CNVs at a higher resolution than the 50K array [126, 127]. The higher 

resolution of the BovineHD array has made it possible to detect CNVs as small as 1,018 

bp in 770 cattle. Despite the wide usage of bovine SNP arrays, their major limitations 

have largely been ignored in cattle research. First, the design of the array allows for 

probes to only be placed in highly unique regions that contain a polymorphic SNP. 

Second, the probe spacing, like prior aCGH, lacks the resolution to detect small coding 

variants. Third, the many CNV genotypes cannot be imputed by SNP genotypes such 

as reoccurring and complex CNVs. While the extent of these limitations is still unknown 

in cattle, their utilization likely results in missing genotypic differences that may underlie 

phenotypes. 

 Through the comparison of BovineHD SNP genotypes and CNVs with CGH 

data, we demonstrated that nearly 30% of CNVs cannot be accurately imputed by the 

SNP array. These missed genotypes are often within exons and would be expected to 

cause differences in RNA expression. Furthermore, we demonstrated a combined 

approach that merged whole-genome sequencing, CGH, and SNP arrays that resulted 

in the identification of additional regions of selection and potential candidate regions for 

traits in cattle.  
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METHODS 

BovineHD BeadChip CNV Analysis 

The BovineHD SNP beadchip (Illumina, San Diego CA) was used to genotype 

all 8 Angus and Nellore samples. We received RAW data from the experiments 

performed by GeneSeek of Neogen Corporation (GeneSeek, Lincoln, NE). We 

analyzed the raw data using the Genotyping module of Illumina’s GenomeStudio 

software (Illumina, San Diego CA). All samples were clustered based on their SNP 

genotypes, using Absolute Clustering. We also imported custom columns with Baylor 

4.0 mapping positions for the SNPs. All genotype data were exported from 

GenomeStudio using the Final Report function to create a single file per sample.  

Next, we identified CNVs across the bovine genome using CNVPartition 3.1.6 

plugin in GenomeStudio using the following parameters: minimum probe count, 3; 

minimum homozygous region size, 1000000; confidence threshold, 35; include sex 

chromosomes, true, Detect extended homozygosity, true; and exclude intensity only, 

false. The CNVs identified were exported using the CNV region report function in 

GenomeStudio. The resulting CNVs were annotated and overlapping CNVs were 

merged using the join and merge functions in Galaxy (https://main.g2.bx.psu.edu/). All 

CNVs were converted from the University of Maryland Assembly 3.0 (Umd3) to Baylor 

4.0 (Btau4.0) using the batch coordinate conversion (liftOver) tool on the University of 

California Santa Cruz’s Genome browser with the following parameters: minimum ratio 

of bases that must remap, 0.4; allow multiple output regions, no; and If 

thickStart/thickEnd is not mapped, use the closest mapped base, no 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). 
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PLINK Analysis 

 PLINK-formatted files were created from genome studio using the PLINK plugin. 

The files were processed into a binary file (BFile) using PLINK (Appendix 5.1, [206], 

http://pngu.mgh.harvard.edu/purcell/plink/ ). The –het option was used in PLINK to 

determine the inbreeding coefficients of each sample. Furthermore, the –homozyg 

option with default settings was used to determine the runs of homozygosity (ROH) 

within each sample. The ROHs were compared between samples to identify common 

regions within each breed using the --homozyg-group option in PLINK. 

CNV Imputation by SNPs  

We analyzed CNV imputation using SNPs within identified CNVs, as well as 

using the nearest flanking SNPs. We extracted all CNVs in the 8 Angus and Nellore 

samples with the overlaid SNP genotypes. We excluded all heterozygous SNPs from 

this analysis due to the problems with determining which chromosome contains the 

SNP. The SNP genotypes of samples with CNVs were compared against the Angus 

reference sample. A combination of SNPs within and flanking CNVs were used to fully 

impute a CNV. First, the ability of a SNP to tag (predictive SNP within CNV) a CNV was 

determined by overlapping all SNPs from all samples with the CNVs (Figure 5.1). Only 

CNVs containing homozygous SNPs were able to be investigated. Of the CNVs 

containing homozygous SNPs, those where the reference Angus and the sample have 

the same genotype were considered non-tagged. To expand on the ability to tag CNVs, 

we investigated the genotypes of the closest flanking SNPs (Figure 5.2). Without using 

a distance filter, we were able to assign SNP genotypes to each side for all CNVs from 

the 8 samples. Any CNVs where both flanking genotypes were shared between the 

reference and the samples were classified as non-imputed. As a final method of CNV 
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imputation by SNP genotypes, the data from SNPs within and flanking the CNVs were 

combined, allowing for a CNV to be imputed if at least one of the SNPs were different 

between the reference and the sample (Figure 5.3). Finally, while a CNV may appear to 

be imputed in one sample, it may in fact be non-imputed in another sample. In order to 

correct for multiple samples, any groups of CNVs or CNVRs where at least one sample 

was non-imputed were collectively classified as non-imputed. 

 

 

 
Figure 5.1 Diagram of method used to identify CNVs tagged by homozygous 
SNPs within the variant 
 

 

 

113 
 



 

 
Figure 5.2 Diagram of method used to impute CNVs by homozygous SNPs 
flanking the variants 
 

 

 

 
Figure 5.3 Diagram of complete CNV imputation through the combination of SNPs 
within and flanking CNVs 
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RESULTS 

Genotype Analyses 

 The genotypic data from the BovineHD SNP beadchip were compared across all 

4 Angus and 4 Nellore cattle. On average, approximately 1,000 more probes failed in 

the Nellore than the Angus samples. However, more than 770,000 probes yielded 

genotypic data in all samples. The comparison of genotypes between the breeds 

revealed that while more than 450,000 genotypes were shared in the Angus samples, 

less than 300,000 were shared between the Angus and Nellore samples (Table 5.1). 

Additionally, the Nellore possessed more homozygous BB alleles (~60,000) than the 

Angus samples. Furthermore, hierarchical cluster analysis of the genotypes 

demonstrated the array’s ability to cluster the samples into their respective breeds 

(Figure 5.4). 

 

 

Table 5.1 SNP genotype distributions from BovineHD array 

  

AA AB BB Total 
Comparison with Angus-4 

Unique 
AA 

Unique 
AB 

Unique 
BB 

Total 
Shared 

Angus-4 259,833 227,149 288,257 775,239 - - - - 

Angus-2 263,900 219,857 291,252 775,009 90,032 126,094 93,917 466,178 

Angus-3 267,047 213,730 294,577 775,354 92,528 123,688 97,038 463,194 

Angus-1 270,074 207,912 297,351 775,337 90,160 118,167 93,965 474,144 

Nellore-2 259,829 149,442 364,763 774,034 158,148 104,045 213,230 299,595 

Nellore-3 259,149 151,255 363,722 774,126 157,582 106,137 212,444 298,923 

Nellore-4 260,839 147,207 365,929 773,975 158,494 102,567 213,598 300,278 

Nellore-1 258,801 151,109 363,168 773,078 156,576 106,682 211,453 299,223 
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Figure 5.4 Hierarchical clustering of cattle using BovineHD SNP genotypes 
 

 

 To further analyze the SNP genotypes, the inbreeding coefficient was 

determined for each sample using PLINK. The Angus samples had a low average F 

value of 0.10 while the Nellore cattle appeared to be more inbred with an F of 0.39. The 

level of homozygosity in the samples was further investigated based on the presence of 

runs of homozygosity. In general, the Nellores’ genomes contained nearly double the 

level of homozygosity (3 Mb versus 6 Mb) despite a lower number of regions per 

samples in the Nellore cattle (70 versus 100) (Appendix 5.2). The majority of the 697 

ROH were shared with at least 1 sample, with 5 and 10 being found only in all Nellore 

or Angus samples, respectively 

CNV Analysis 

 The CNVPartition script was used in GenomeStudio in order to identify 991 

CNVs (608 CNVRs) in the 8 samples, 450 (328 CNVRs) of which were intergenic. The 

comparison the CNVs with those from the exome array highlighted the lower resolution 

of the SNP array, with median and minimum lengths of 21 kb and 2 kb. Overall, the 

CNVs were found to affect 795 ensembl genes. Unlike the results from CGH or 
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sequencing, functional analysis of the CNVs indicated enrichment for sensory 

perception and signal transduction processes.  

CNV Imputation by SNP Genotyping Array 

Given the extent of copy number variation throughout the bovine genome and 

the increasing usage of SNP genotyping arrays in bovine association studies, we 

investigated correlations between SNP genotypes and CNVs. SNP positions were 

converted to Btau4.0 coordinates and overlaid with CNVs identified by the exome array. 

We found that only 42% (584 of 1,376) of the CNVs identified in the Angus and Nellore 

cattle (n=8) had SNPs located within the boundaries of the CNVs. Using homozygous 

SNPs located within the CNV region, we found that the Angus had a greater percentage 

of missed genotypes (43% to 71%) than the Nellore (33% to 42%). The incorrect 

imputation of CNVRs by flanking homozygous SNPs occurred for 34% of the regions. 

However, the inclusion of homozygous SNPs flanking CNVs with tagged CNVs 

decreased the number of non-imputed CNVs to 29% (19% of CNVRs). As seen in 

human studies, complex regions and duplication CNVs have the lowest percentages of 

imputed CNVs. However, nearly 45% homozygous deletions were unable to be imputed 

by SNP genotypes. Therefore, while the 71% of CNVs may be predicted by SNPs, they 

will contain a bias toward heterozygous deletion variations.  

Further analysis of non-imputed regions found that the majority lie within 

segmental duplications (61%) (Table 5.2). Also, while the ability of a CNV to be imputed 

was not found to be correlated with the length of the variant, there is a correlation when 

an overlap of SDs is taken into account. Of the non-imputed CNVs, 95% of those over 

10 kb were found to overlap SDs (Table 5.2). Overall, 834 and 256 genes were affected 

by imputed and non-imputed CNVs, respectively. Functional analysis of biological 
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processes found enrichment for processes involved with signal transduction, sensory 

perception, and immunity and defense for imputed genes, while non-imputed genes 

were enriched for signal transduction and sensory perception (Appendix 5.3).  Of the 

non-imputed genes, several were under selection in cattle such as PSMB7, CATHL1, 

CATHL4, FANCC, and IGLL1, further demonstrating the importance of these missed 

genotypes (Figure 5.5). 

 

 

Table 5.2 Complete CNV imputation using genotypic data from the BovineHD SNP 
array 

 CNVs Imputed (%) Non-Imputed (%) 

Lengths Total Overlap 
SDs Total Overlap  

SDs Total Overlap  
SDs 

Total 1,387 677 
(48.8%) 

980 
(70.7%) 

428 
(43.7%) 

407 
(29.3%) 

249 
(61.2%) 

< 10 Kb 994 353 
(30.5%) 

703 
(70.7%) 

214 
(30.5%) 

291 
(29.3%) 

139 
(47.8%) 

> 10 Kb 393 324 
(82.4%) 

277 
(70.5%) 

214 
(77.3%) 

116 
(29.5%) 

110 
(94.8%) 
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Figure 5.5 Example of CNV that is not accurately imputed by BovineHD SNP array 
genotypes 

 

 

 To further determine whether the ability to impute CNVs based on SNP 

genotypes could be improved through the inclusion of additional or more informative 

SNPs, we compared the SNVs identified by sequencing to the CNVs identified in 

Nellore-1 by exome aCGH. The combination of homozygous SNVs within and flanking 

the 321 CNVs allowed for 74% to be accurately imputed.  

DISCUSSION 

 The recent advances in bovine genomics have largely relied on the release of 

the 50K SNP beadchip and more recently, the 770K BovineHD SNP beadchip. 

Thousands of samples and millions of dollars were spent on these designs, based on 

the premise the arrays capture the majority of variation in the genome. To investigate 

the applicability of relying solely on SNP arrays for genotypic analysis and CNV 

identification we compared SNP data from 8 cattle (4 Angus and 4 Nellore) with CNV 

data from a high-density exome array. 

 Based on the SNP data, the Nellore were much more inbred with 3 times more 

homozygous SNPs. Additionally, the Nellore cattle were found to contain fewer, but 
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larger, regions of homozygosity, resulting in a greater overall fraction of the genome. 

Together, these data correspond with known ancestral bottle-necks and inbreeding in 

the Nellore breed. Furthermore, CNV analysis using the SNP array revealed nearly 

1,000 CNVs in the samples, with more in the Nellore than the Angus. However, when 

compared to the exome CGH data, we found that the resolution of the SNP array 

prevents the identification of CNVs less than 2,000 bases in length. Therefore, given 

that the median size of CNVs is less that 1 kb, a larger number of CNVs are 

undetectable by the SNP array. Additionally, CNVs within tandem repeats and other 

repetitive regions were often missed due to the lack of probe coverage in these regions. 

The analysis of CNV imputation using homozygous flanking and tagging SNPs 

demonstrated that nearly 30% of CNVs identified by a dense exome array are not 

accurately imputed by the BovineHD genotypes. Regions with complex variants and 

duplications were less likely to be imputed than regions with heterozygous deletions. 

Therefore, the probe placement is not the only bias introduced by SNP arrays, 

differences in the ability to identify specific types of CNVs will create a preference 

toward deletions. Despite the elimination of probe bias through SNV detection by whole-

genome sequencing, many CNVs were still unable to be accurately imputed by SNV 

genotypes. Given the small number of samples tested, it is very likely that even more of 

the potentially imputed CNVs will be shown not to be imputed in future studies. 

Therefore, the reliance of bovine genomics studies on SNP arrays appears to risk not 

detecting existing genetic variation. However, these limitations could easily be 

overcome through the incorporation of whole-genome sequencing and high-density 

CGH analyses. 
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CHAPTER VI 

CATHELICIDIN ANALYSIS 

INTRODUCTION 

 Copy number variants have been linked to a variety of traits and diseases in 

human and domestic animals. Duplications and deletions within immune related gene 

regions (e.g., defensin clusters and the MHC) have been linked to a variety of 

phenotypes and disease in several species [207-212]. CNVs cause at least 18% of the 

expression differences observed between individuals [213]. Therefore, duplications of 

immune related genes are likely to result in an increase of gene expression. If additional

 

regulation controls are not present in the affected pathway, an increase of expression 

can result in a biological change. However, expression of genes producing antimicrobial

 

peptides affects the immune traits directly, without further downstream steps in the 

functional pathway. 

The human cathelicidin gene (CAMP) possesses broad-spectrum anti-microbial 

properties against bacteria, viruses (e.g., vaccina, HSV), and yeast (e.g., Candida 

albicans) [214]. The expression of cathelicidin increases in response to external stimuli 

such as microbial and physical stresses [215]. The mRNA is translated into an inactive 

peptide and proteolytically cleaved into a small active peptide consisting of 37 amino 

acids and stored in lamellar bodies of keratinocytes and neutrophils [214, 215]. The 

antimicrobial properties CAMP led to numerous studies linking the active peptide to 

disorders affecting the skin and digestive tract, as well as general immunity [216]. 

Cathelicidin gene expression is predominately controlled by the combination of an Alu 

SINE and a vitamin D response element (VDRE) in the 5’ UTR region of CAMP [217, 

218]. The existence of the VDRE region allows for the induction of expression in 
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response to an increase in the active form of vitamin D3 (1,25(OH)2D3) [217, 219].  The 

induction of CAMP through this pathway is well documented in humans and can be 

achieved using a variety of stimuli.  

Recently, studies in humans and mice have revealed two more distinct and 

independent pathways that can regulate the expression of cathelicidin without utilizing 

the VDRE. The farnesoid receptor (FXR) is a ligand activated transcription factor that 

regulates the expression of many genes in response to concentrations of bile acids 

[220]. The farnesoid receptor exists in many species with varying levels of conservation 

leading to differences in induction by several bile acids. The presences of a FXR 

element in the 5’ region of the CAMP gene in humans allows for the induction of 

cathelicidin using a variety of different bile acids including chenodeoxycholic acid, 

lithocholic acid, and ursodeoxycholic acid [220, 221]. Additionally, activation of 

cathelicidin expression with a combination of 1,25(OD)2D3 and bile acids results in a 

greater induction than with the individual stimuli [220].  

In addition to the FXR element, endoplasmic reticulum (ER) stress induces 

cathelicidin expression via the NF-kB-C/EBPa pathway [219, 222]. The C/EBP 

transcription factors are a family of leucine zippers that regulate cell growth and 

differentiation in response to ER stress. The presence of the C/EBP transcription factor 

in the CAMP UTR region allows for induction of expression through a VDR-independent 

pathway. Treatment of human and mouse cells and tissues with thapsigargin and 

tunicamycin result in an increase of cathelicidin expression [219, 222, 223]. While much 

less is known about the mechanism of CAMP induction via the C/EBP, its existence 

leads to the question of other currently unknown inducers existing in humans and other 

species. 
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In cattle, the cathelicidin gene is an expanded gene family with at least 11 

different genes. While the function of each gene is unknown, it is predicted that the 

genes possess antimicrobial properties for different groups of pathogens or work 

collectively toward increasing the level of immune defense in cattle. There are a few 

preliminary studies that link the active cathelicidin peptides to antimicrobial properties, 

but the regulation and expression patterns are still unknown. In a recent study using 

monocyte cell lines from cattle, the VDRE pathway did not result in the induction of 

CATHL4, CATHL5, and CATHL6 [224, 225]. The lack of induction by 1,25(OH)2D3 is 

due to cattle missing the VDRE and Alu SINE in the UTR regions of these genes [224, 

225]. However, it is not clear if the lack of induction is tissue specific, if other stimuli 

induce the pathway, or if the other cathelicidin genes (e.g., CAMP, CATHL1, CATHL2, 

or CATHL3) utilize the VDR pathway. Additionally, CATHL4 is expressed in blood, lung, 

trachea, liver and lymph node tissues [226, 227]. While the small numbers of existing 

studies of bovine CATHL4 demonstrate expression in a few tissues, the effect of 

duplications on cathelicidin gene expression has yet to be determined. 

METHODS 

Population Analysis of the Cathelicidin Duplication 

 The population structure of the CATHL4 duplication was determined by 

investigating 52 Bos taurus and 40 Bos indicus cattle. The cattle were determined to be 

Bos indicus based on physical characteristics, not on known pedigrees. Therefore, it is 

possible that the cattle were crossed with Bos taurus. DNA was isolated from white 

blood cells, as previously described (Appendix 2.1). Custom Taqman primers were 

created for CATHL4 and a control gene, TFRC, by selecting a region free of SNVs and 

INDELs. The genomic sequences were then repeat masked and imported for probe 
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selection in Applied Biosystems’ (ABI) Custom Copy Number Assay Tool. The primers 

for both genes were tagged with FAM and manufactured by ABI. The TaqMan assays 

were performed in 10 µL reactions consisting of 5 µL of 2X TaqMan Genotyping Master 

Mix (ABI), 0.5 µL of TaqMan Copy Number Assay, 20X working, 1 µL genomic DNA (10 

ng), and 3.5 µL H2O. The qPCR reactions were performed using the recommended 

settings and copy number changes were calculated, as previously described [143]. 

 

 

Table 6.1 Taqman PCR primers for genomic analysis of CNV 

Gene Forward Primer Reverse Primer Reporter Reporter 
 Dye 

CATHL4 AGAAGCTTGTGGCCTCCTTTT GACAGCTCTTCTCCATCAACCT CCATTTCCAGGGTAGGATGACAC FAM 

TFRC CTGAATAGGTTCATTTCCTTC 
ACAAACC 

GCCGGTCAGCTTGTGATTAAA 
CTTA 

CTACGAGATGTATAATGACGAAA 
TAC FAM 

 

 

RNA Isolation 

Blood was collected from 5 Angus (Angus-2, Angus-3, Angus-4, Angus-17, 

Angus-18) and 4 Nellore (Nellore-1 to 4) and immediately lysed using RBC lysis 

solution (as used in previous sections) to collect white blood cells. The WBC from 5mL 

aliquots of blood were flash frozen using dry ice. Total RNA was isolated from frozen 

WBCs using the Ambion RNA mini extraction kit (Invitrogen). In order to ensure 

complete removal of DNA from the samples, both on-column and off-column DNAse 

treatments were performed. DNA contamination was removed using two incubations of 

30 minutes each at 37oC with the TURBO DNA-free kit (Invitrogen). 

Tissues from two Angus steers were collected during the slaughter process and 

flash frozen in liquid nitrogen. Samples were obtained from the following organs Liver, 

bone marrow, lung, heart, esophagus, skin, lymph node, and tongue.  All tissues, 
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except for the lymph node, were from a single Angus steer. RNA was isolated from 50 

mg of each tissue using the recommended Trizol method (Invitrogen). First, 50 mg of 

tissue was homogenized in 1 mL of Trizol. The samples were homogenized for 5 

minutes at room temperature, followed by a chloroform extraction. The RNA was 

purified using isopropanol and ethanol washes. The RNA was resuspended in RNAse 

free H2O. DNA contamination was removed using the same off-column DNAse 

treatment as in the WBCs. 

Expression Analysis 

 RNA from WBCs and tissues were converted to cDNA using the High Capacity 

RNA-cDNA Kit by ABI. Negative real-time reactions (-RT) were performed using RNA, 

except the enzyme was replaced with RNAse free H2O. All reactions were diluted to 40 

ng/µl based on the starting RNA concentrations. The ability to amply RNA from 

cathelicidin genes (CATHL1 and CATHL4) was tested by standard PCR, in conjunction 

with a control gene (TFRC) (Table 6.2). The ability to amplify products from the cDNA, 

but not in the –RT reactions, confirmed the lack of DNA contamination. 

 

 

Table 6.2 Primers for expression analysis 

Gene 
Name Forward Primer Reverse Primer cDNA 

Product Size Location 

TFRC ctgggaacaggtgaccctta ttccccaaatacgaggacag 169 bp chr1:71,817,801-71,819,618 

CATHL1 cgagcagtgtgacttcaagg ccatggctgctttgtaatcc 133 bp chr22:52,820,035-52,820,900 

CATHL4 aatgaagatctgggcactcg gtgactgtccccacacactg 136 bp chr22:52,813,814-52,814,087 
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The expression profiles of all tissues and WBCs were determined through SYBR 

green qPCR of cDNA. The concentration of 40 ng of cDNA was tested by comparing 

sample dilutions ranging from 8 ng to 80 ng. The average fold changes of CATHL1 and 

CATHL4 were determined through the comparison to the reference gene, TFRC, using 

the ∆∆CT method. Quantitative PCR used the Luminaris Color HiGreen High ROX 

Master mix with the recommended protocol (Table 6.3) (Thermo-Fisher). 

 

 

Table 6.3 Reaction mixture for expression analysis 

Reagent Volume per Reaction 
Forward Primer (10 µM) 0.3 µL 
Reverse Primer (10 µM) 0.3 µL 
Water 3.15 µL 
Luminaris Master Mix (2X) 5 µL 
cDNA (40 ng/µL) 1 µL 
Yellow Buffer (40X) 0.25 µL 
Total Reaction Volume 10 µL 

 

 

Induction of Cathelicidin Expression in Fibroblasts 

Fibroblast cultures were created from ear notches of 2 cattle, an Angus-Holstein 

cross (#668) and Hereford (#669), using a modified fibroblast protocol [228]. The ear 

notches were recovered post-slaughter and shipped in sterile saline. Any large 

contaminants were removed by washing the samples in 1X PBS for 2 minutes with 

agitation. The samples were treated with 70% ethanol while all hair was removed from 

the skin using sterile scalpels. The cleaned skin samples were soaked in 10% 

Providone-Iodine for 1 minute followed by four rinses in HEPES-Buffered saline [228]. 

The epidermis of the skin was removed by soaking 4- to 6-mm-wide slices of skin in 
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0.25% trypsin for 2 hours at 37oC. The epidermis was removed from the skin when it 

became an opaque film. The dermal layer of skin was cut into groups of 8- 2 x 2mm 

squares using a sharp scalpel and placed into 6-well culture plates. A sterile glass 

coverslip was placed on the arranged dermal tissues. Drops of cold Dulbecco's Modified 

Eagle Medium (DMEM) media were placed under the coverslip. The samples were 

submerged in 2 mL of complete medium and grown for 7 days at 37oC with 5% CO2 

[228]. Growth medium was changed every two days.  On day 12, the coverslips and 

tissues were removed from all wells and cells were rinsed 2 times in 4oC 1X PBS. The 

cells were incubated in 1 mL of 0.25% Trypsin/EDTA for 5 minutes to remove confluent 

cells. Approximately 60,000 cells were plated with 5 mL of complete medium in 25-cm2 

flasks.   

Inductions were set up by plating 45,000 cells from the first passage in 2 6-well 

plates. The next day, cells were treated with 10- and 100-nM concentrations of vitamin 

D3 (D3) (1,25,(OH)2)D3), retinoic acid (RA), RA+D3, and a control using Dimethyl 

sulfoxide (DMSO). A 100uM D3 stock solution was created by dissolving 50 µg D3 with 

1,200 µL DMSO. A total of 3 µl of 100 µM D3 and RA was added to 3 mL of media for 

the 100 nM treatments. The 10 nM treatments used 0.3 µL of the stock D3 and RA with 

2.7 µL of DMSO. After 2 days, cells were harvested for RNA isolation using the Ambion 

RNA Mini kit. Expression of CATHL4 was characterized using the previously mentioned 

Luminaris qPCR method. 

RESULTS 

Population Analysis of Cathelicidin CNV 

 The duplication of CATHL4 was found to be present in several copy number 

states in both Bos taurus and Bos indicus cattle (Figure 6.1A). While copy numbers in 
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both subspecies ranged from 2 to 5, there was an increased prevalence of higher copy 

numbers in the Bos indicus cattle. The normalized fold changes were able to be 

grouped using visual inspection and standard deviations. Overall, the copy numbers 

were grouped into 4 copy number states (Figure 6.1B). The median copy number 

groups in the Bos taurus and Bos indicus were 2.5 and 4, respectively.  

 

 

 
Figure 6.1 Population analysis of cathelicidin CNV in Bos indicus and Bos taurus 
cattle. (A.) Normalized fold changes CATHL4 in all samples. (B.) Predicted 
clustering of samples into copy number groups. 
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 Expression Profile of CATHL1 and CATHL4 

 The expressions of CATHL1 and CATHL4, both located within the cathelidicin 

duplication, were tested in lung, liver, tongue, esophagus, heart, skin, bone marrow, 

and lymph node tissues. The testing of PCR primers suggested that the expression 

among many of the tissues was at a basal level. Therefore, a series of cDNA dilutions 

from 8 ng to 80 ng per qPCR reaction demonstrated the accuracy of 40 ng 

concentrations. Additionally, CT values of the dilutions were much higher than the 

control gene, ranging from 28 to 35; however, the fold changes among the dilutions 

were consistent. The quality of the cDNA was confirmed by the ability to amply the 

control gene in all samples. The CATHL1 gene was expressed at high levels in the lung 

tissues, while at basal levels in the esophagus, heart, liver, and tongue (Figure 6.2 A). 

The skin was not expressing CATHL1. The CATHL4 gene was highly expressed in 

bone marrow, with lower but elevated expression in lung, liver, and lymph node tissues. 

The esophagus, heart, skin, and tongue basally expressed CATHL4 (Figure 6.2 B). The 

cultured fibroblasts were not found to express CATHL4. Also, the expression of 

CATHL4 was not induced through treatments of vitamin D3 or retinoic acid. 
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Figure 6.2 Expression profiles of (A.) CATHL1 and (B.) CATHL4 across several 
tissues from Angus cattle 
 

 

Association CATHL1 and CATHL4 Duplication with Expression 

 The expression of CATHL1 and CATHL4 occurred at basal level in WBCs in 

both the animals with (Nellore) and without (Angus) the duplication. At basal levels, 

there was no correlation with differences in gene expression with the copy number 

states. Cathelicidin-1 was expressed at higher levels in Angus-3 and Angus-17, while 

Angus-3, Angus-17 and Nellore-2 had elevated expression of CATHL4 (Figure 6.3). 

These slight differences could have been due to many factors such as the health of 

each animal at the time of blood collection, animals’ ages, or the time of collection.  
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Figure 6.3 Expression profile of (A.) CATHL1 and (B.) CATHL4 in white blood cells 
of cattle with (Nellore) and without (Angus) the cathelicidin CNV 
 

 

DISCUSSION 

 Cathelicidin is a known antimicrobial gene in humans that has undergone 

expansions into a gene family in cattle. The antimicrobial properties of these genes and 

the presence of further duplications in a portion of cattle make this region a candidate 

for differences in immunity observed in cattle. The limited number of cattle tested in this 

study suggests that Bos indicus have a higher frequency of gene duplications than Bos 

taurus cattle. Furthermore, the CATHL1 and CATHL4 genes existed in several copy 
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number states in both subspecies, which suggested that the CNV is recurrent in 

populations and was under positive selection. 

 The expression profiling expanded on previous studies that demonstrated the 

presence of gene expression by comparing relative gene expression levels between 

several tissues. Both genes, CATHL1 and CATHL4, were basally expressed in the 

majority of tissues tested, which suggested that expression may need to be induced by 

a stressor. However, the bone marrow and lungs expressed the genes at a much higher 

level.  The expression of cathelicidin in the lung tissue could be the result of a mild 

infection in the sample or a heightened defense mechanism against infection. With 

respiratory disease being prevalent in cattle, the expression of cathelicidin in the lungs 

would be an important candidate for improving resistance. 

 The differences in expression of genes due to the cathelicidin CNV could not be 

confirmed in WBCs of Angus and Nellore cattle. The genes were basally expressed in 

the cells and differences observed were unlikely to be a result of the CNV. Furthermore, 

the isolation of WBCs did not select for a single cell type, therefore, it is possible that 

expression is much higher in specific cell types. The resulting dilution of expression by 

other cell types could result in the lower level of expression.  

 The basal levels of expression in WBCs will need to be overcome through the 

use of other cell populations, such as lung or bone marrow. Alternatively, expression 

could be induced in cultured cells. However, we demonstrated that vitamin D3 and 

retinoic acid were unable to induce cathelicidin expression in fibroblasts. Therefore, it is 

possible that cattle possess a novel mechanism of induction. Further experiments will 

require testing of other compounds for their ability to induce expression in various cell 

lines.  
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 Collectively, our characterization of CATHL1 and CATHL4 expression profiles in 

a several cell types revealed basal levels of expression in most samples. Additionally, 

we were unable to determine a correlation between expression and the presence of the 

cathelicidin duplication. Finally, the inability to include expression in fibroblasts, 

suggests that novel regulatory mechanisms control the expression of CATHL1 and 

CATHL4 in cattle.  
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CHAPTER VII 

CONCLUSIONS 

Bos taurus and Bos indicus represent phenotypically diverse subspecies of 

cattle. The Bos taurus subspecies consists of the predominate breeds for both milk and 

meat production in the United States (i.e., Angus and Holstein). The Bos indicus 

subspecies (i.e., Nellore and Brahman) was selected for heat tolerance and disease 

resistance due to their tropical origins. In the present study, we demonstrated a high 

level of variation between the Angus, Holstein, Nellore, and Brahman breeds through an 

integrated genomic variation study using aCGH, SNP BeadChips and next-generation 

sequencing.  

While our integrated analysis was able to minimize many of the existing limitations 

of previous studies, we acknowledge several limitations in our array and sequencing 

analyses. The CGH analyses were limited due to the majority of the cattle only being 

analyzed using the exome array and not on the tiling array. The exome array design 

focused on coding regions of the genome, thereby missing any variation lying 

completely within introns or intergenic regions. Also, while we were able to far exceed 

any previous studies in terms of CNV resolution, we were still unable to confidently 

identify CNVs below 223 bp in length. Also, despite our dense tiling across the majority 

of genes in the genome, the exome array did not cover several protein- and RNA-

coding genes in the bovine genome.  Finally, since the array was designed using the 

bosTau4.0 genome assembly, genes that were unique to the Umd3.1 assembly or 

missing from the assembled genome were not analyzed by the CGH arrays. Similar to 

the CGH array analyses, the SNP analysis was limited due to the previously mentioned 

limitations with the BovineHD SNP array, such as the lack of probes within coding 
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regions and low-density tiling. Also, as we only investigated 8 of the 28 samples on the 

BovineHD SNP array, we were unable to perform population analyses from the SNP 

genotypes. 

 There are several limitations of our whole-genome sequencing analyses. 

Because we only looked at 2 samples, we cannot determine whether our results were 

truly representative of the breeds or simply these specific samples. Therefore, we were 

unable to determine population frequencies of any variant. While this is a limitation, to 

date, there are no large-scale genomic sequencing studies in cattle. The analysis of 

SNVs was limited because our depth of coverage was below the recommended 30X 

coverage. Also, as seen in human studies, our exome coverage was lower than within 

intergenic regions, making it more difficult to identify variants within coding regions. 

Overall, our stringent criteria resulted in large heterozygous under-call and false 

negative rates. However, these issues would equally affect both of the samples in our 

analysis and previous studies would be expected to have similar limitations. 

 The identification of CNVs by sequencing read-depth had several limitations that 

were also likely to exist in previous studies, even if they were not addressed. First, none 

of the programs (MrFAST, Control-FREEC, and CNV-Seq) could identify CNVs as small 

as our exome CGH array. The low level of overlap between the algorithms for detecting 

CNVs from sequencing data and with array-based CNVs suggests limitations with the 

algorithms. The differences in CNVs were, in part, due to uniformity and depth of read 

coverage, resulting in a much higher FDR and FNR than CGH methods. Despite these 

limitations, we were still able to identify a large number of intergenic and genic CNVs by 

whole-genome sequencing. 
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The final set of limitations occurred in our epigenetic analysis of DNA 

methylation and H3K4me3 in WBCs. It is likely that many regulatory regions were 

missed and could be detected by the inclusion of additional histone modifications and 

tissue types. Also, the addition of more cattle would allow for the comparison of 

epigenetic profiles among cattle. Finally, the analysis of DNA methylation could be 

improved to a base-pair-level-resolution through the use of bisulfite sequencing. 

Despite several limitations from our analyses, we were able to perform a 

comprehensive comparative analysis of genomic variation between Bos taurus and Bos 

indicus genomes. We created and utilized the first high resolution exome tiling array. 

The probe selection allowed for an analysis of small CNVs within exons and tandem 

repeats that far exceeds previous studies. The analysis clearly showed a high level of 

structural variation between cattle with over 700 CNVRs affecting more than 1,300 

genes. In addition, we found that CNVs are highly enriched for lengths well below the 

resolution of previous CGH and SNP array designs. Functional analysis of genes 

affected by CNVs identified significant enrichment for several processes including 

immune and defense processes. Furthermore, many genes were found to be under 

selection within the breeds and subspecies, resulting in several candidate genes for the 

diversification of traits. 

The use of SNP arrays for CNV studies is rapidly increasing due to lower costs 

and the potential benefits of combining SNP and CNV analyses. However, the 

numerous potential limitations with these analyses are largely ignored despite 

numerous reports of these limitations identified in human studies. Therefore, we used 

the BovineHD SNP array to analyze 8 samples for CNVs and the ability to impute CNVs 

from our CGH analyses. While the SNP array identified numerous CNVs, many of the 
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CNVs did not overlap with known CNVs from the CGH analyses. The poor overlap 

between the platforms highlights the limitations from probe placement, density, and 

genome assemblies. Also, the ability of SNP genotypes to impute CNVs (from exome 

array) was tested using the closest flanking SNPs and those within the CNVs. The 

combination of these methods resulted in nearly 30% of the CNVs being incorrectly 

imputed by the SNP array. There are many potential reasons for these discrepancies. 

The first possible error could be a result of the FDR in the exome array; however, given 

the low FDR of the array, false discoveries were unlikely to result in the large 

discrepancy of CNV imputation. Furthermore, CNVs, such as the cathelicidin 

duplication, that were confirmed using qPCR, were found to be incorrectly imputed by 

the SNP array. Another possible error could be linked to the ability of probes to 

accurately genotype regions within repetitive and segmentally duplicated regions, as 

was observed in human studies. We predict that SDs and probe placement are the 

main issues with CNV imputation, given the majority (95%) of incorrectly imputed CNVs 

that were > 10 kb were located within segmentally duplicated regions. In conjunction 

with SDs, recently duplicated regions and commonly duplicated regions affect 

imputation because the SNP may have arose before the CNV or the CNV occurs on 

several allelic backgrounds. Finally, given that we only investigated 8 samples, it is 

possible that many of the CNVs that we defined as being imputed, will not be imputed 

through the investigation of additional samples. Given these and many other possible 

sources of mis-imputation of CNVs by SNP arrays, it is likely that relying solely on these 

arrays for large-scale GWAS and linkage studies could potentially lead to problems due 

to missing genotypic differences from CNVs. Collectively, this study demonstrates the 
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need for integrated CNV approaches combined with whole-genome sequencing data to 

identify novel variants that remain undetected by both array methods. 

Our genome-wide analysis of a single Angus and Nellore cow allowed for the 

expansion of our CNV analyses by identifying more than 10 million SNVs, 300,000 

INDELs, and 900 CNVs across the entire genomes. The biological process enrichment 

of SNVs and CNVs between the Bos indicus and Bos taurus comparisons identified 

processes involved in immunity and defense, suggesting an important role in the 

diversification of immune traits. Despite the enrichment for immune related genes, the 

majority of genes were identical at the amino acid level between the subspecies. This 

suggests that while coding changes play a role in phenotypes, the low level of variation 

is unlikely to account for all of the differences observed between the subspecies.  

 To further identify variation underlying phenotypes in cattle, we investigated non-

coding regulatory regions, such as promoters and intergenic regulatory elements. The 

combination of H3K4me3 and DNA methylation sequencing provided the first epigenetic 

maps of regulatory regions in WBCs of cattle. While previous studies have utilized 

comparative genetic approaches to identify regulatory regions, we found that nearly 

40% of regulatory regions were located outside of conserved regions. Therefore, we 

suggest that while comparative approaches may capture conserved regulatory regions, 

bovine specific elements may be missed. Using an unbiased approach of epigenetic 

profiling, we were able to identify nearly 7,000 intergenic regulatory elements and 

thousands of genic regions that are actively, repressively or differentially modified. 

Additionally, we were able to demonstrate the first genome-wide mapping of putative 

imprinted and allelically excluded regions. Because the analysis was performed on a 
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female sample, we were also able to identify genes undergoing and escaping X-

inactivation. 

 The annotation the non-coding regions of the genome using our epigenomic 

maps allowed for the comparisons of variant densities across the genome. As expected, 

we observed an increase in variant density in the Nellore across all regions of the 

genome. Also, regions known to have strong selective pressures, coding regions and 

differentially-modified CpG islands, have extremely low variant densities in both 

subspecies. A comparison of the odd ratios between the Angus and Nellore 

demonstrated that nsSNVs and DMCs have no significant differences in variant 

densities, while REs and PPRs have significant increases in variant densities in the 

Nellore. In order to determine if the difference in ORs represent differences between 

individuals or actual differences between the subspecies, SNVs from a previously 

published Angus and Holstein, both Bos taurus, were annotated and ORS were 

compared to the Angus vs Nellore ORs. The variant densities at all regions were nearly 

identical between the Angus and Holstein, with no significant differences. Collectively, 

these findings, combined with our dN/dS analysis, suggested that non-coding regions 

may be playing a greater role in phenotypic variation between subspecies than coding 

variants. These findings were further supported by the vast amount of data from the 

recently released human ENOCDE project. The ENCODE project suggested 

quantitative traits are usually caused by regulatory element variation while Mendelian 

traits are caused by coding mutations.  

 We placed all of our data on a public server to facilitate access by other 

investigators. All of the data can be visualized using an IGV viewer and any of the 

custom tracks can be downloaded for further analysis. Additionally, we have created a 
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database of known mutations that are causal and associated with traits and diseases. 

This database will be a valuable resource for quickly genotyping cattle using whole-

genome sequencing data. 

CNVs were found to affect the largest amount of genetic variation in the bovine 

genome with over 60 Mb being affected, while SNVs only affected 7 Mb. Additionally, 

we provided the first epigenetic maps of histone and DNA methylation across the 

bovine genome.  CNVs affected both coding and regulatory regions of the bovine 

genome. Despite the enrichment for immune processes affected by nsSNVs, analyses 

of variant densities suggest that non-coding variation at regulatory elements may 

underlie many of the diverse traits between the two subspecies. We expect that these 

findings will become a valuable resource for directing future studies aimed at better 

identifying genetic causes underlying traits in cattle. We also provide numerous 

candidate regions and mutations for a variety of traits in cattle. While the aim of this 

study was not to identify causal mutations, future studies should investigate their 

functional role.  
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APPENDIX 2.1  

DNA ISOLATION PROTOCOL 

 

WBC Isolation from Blood: 
 Remove serum from blood (clear layer) 

 Place ~500 µl of remaining blood into 2 mL tubes 

 Add 1 mL red blood cell lysis (RBC) solution to each tube 

 Rotate at room temperature (RT) for 3 minutes 

 Centrifuge at RT for 1 minute at 17,000xg 

 Pour off liquid (ensuring pellet remains in tube) 

 Add 1mL red blood cell lysis (RBC) solution to each tube 

 Rotate at RT for 3 minutes 

 Centrifuge at RT for 1 minute at 17,000xg 

 Pour off liquid (ensuring pellet remains in tube) 

 Freeze at -80oC or proceed to DNA isolation 

DNA Isolation: 
 Add 500 µl of NTES and 1 µl of Proteinase K to isolated WBC (~400 µl) or small 

amount of tissue in 1.5 ml tube 

 Wrap top of tubes with parafilm 

 Rock overnight at 55oC 

 Add 500 µl PCI (Phenyl-Chloroform-Isoamyl) to the tube containing digested 

DNA. 

 Rock at room temp for 10 minutes 

 Centrifuge samples at 12000xg for 10 minutes 

 Prepare Phase Lock tubes by centrifugation at 12000xg for 1 minute 

 Carefully remove top layer without disturbing the bottom layer. 

 Place top layer into phase lock tubes 

 Add 500 µl PCI 

 Rock 10 min at room temp. 

 Spin at 12000xg for 5 minutes 
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 (If phase tubes are full, remove top layer of liquid and place into new phase tube 

before continuing) 

 Add 500 µl Chloroform 

 Rock 10 minutes at room temp. 

 Spin at 12000xg for 5 minutes 

 Remove top aqueous layer and place into new 1.5 ml or 2 ml (depending on 

volume) tube 

 Add 850 µl 100% Isopropanol 

 Mix by rocking in hand until DNA is visible and forms a loose ball (may have to 

vortex gently or add more isopropanol if using larger volumes 

 Spin at 18000xg for 3 minutes 

 Remove all liquid by pouring or pipetting, while ensuring that DNA pellet remains 

in tube 

 Add 1 ml of 70% ethanol 

 Rock at least 30 minutes, if DNA appears any color other than white, rock longer 

possibly overnight. 

 Spin at 18000xg for 3 min 

 Remove excess ethanol, while ensuring pellet remains in tube 

 Place tube with caps open on heat block set at 37oC (up to 55oC) until all 

ethanol is evaporated. 

 Re-suspend in Elution Buffer (EB) (any manufacturer) (usually 200 µl work but 

this will be adjusted based on the size of pellet. If unsure start small (100 µl) and 

add more EB later, if the DNA is too thick. 

 Place on heat block at 37oC for several hours to ensure that the DNA is in 

solution (may vortex gently throughout process) 

 DNA should now be pure and of concentrations at least 500 ng/µl (depending on 

starting volumes) 
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APPENDIX 2.2 

ARRAY DESIGN USING OLIGOWIZ2.0 

 

Selection of sequence for oligonucleotides by two methods: 
1. UCSC Genome Browser: 
 Determine type of region to include on array (gene, exons, intergenic, etc.) 

o If exonic: (typically ensembl) – go to UCSC Genome browser: 

http://genome.ucsc.edu/  

o Select  from menu button along top of screen 

o A new screen will appear. (See image below) 

 Within screen select: 

• Genome = Cow (change if wanting a different species) 

• Assembly = Oct. 2007 Baylor 4.0 (change for different 

assembly) 

• Group = Genes and Gene Prediction Tracks 

• Track = Ensembl Genes (change for different annotation) 

• Region = position = chrXX:start-end to download all genes on 

chr 

• Output format = sequence 

• Output file: Type in a name for your fasta formatted text file 

 Click: “get output” button at bottom of page 
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o A new screen will appear. (See image below) 

 
 Select genomic 

 Click ‘submit’ 

o A new window will appear (See image below) 

 Check the boxes for genic elements  to be covered by array 

• For exome array: select: 

o 5’ UTR Exons 

o 3’ UTR Exons 

o CDS Exons 

 One fasta record per region 

• Add 40 bp upstream and downstream 

 All Upper case 

 Click ‘get sequence’ to begin file download 
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2. Ensembl BioMart: 

 Determine type of region to include on array (gene, exons, intergenic, etc.) 

o If exonic: (typically ensembl) – go to Ensembl BioMart: 

http://uswest.ensembl.org/biomart/martview (for older annotations, including 

bosTau4.0, use archive site: 

http://apr2011.archive.ensembl.org/biomart/martview/ 

o Select Ensembl Genes 62 (or newest version available if not using archive) 

 
o Select Species: Bos taurus genes (Btau 4.0) 
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o Select Filters from Options along left side (See image below) 

 
o Select GENE (See image below) 

 Under Gene Type, select types of genes (usually exclude pseudo 

and retro genes) 
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o Select REGION (See image below) 

 Under Region, select chromosome and start-end of chromosome 

 
o Select Attributes from options along left side (See image below) 

 Select Sequences 

 Select Exon sequences (for exome array) 

 Add 40bp of flanking sequence upstream AND downstream 
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o Scroll down and select Header information (See image below) 

 Select the following boxes: 

• Ensembl Gene ID 

• Ensembl Exon ID 

• Chromosome Name 

• Gene Start 

• Gene End 

• Ensembl Exon Start 

• Ensembl Exon End 

• Select Results and save fasta file 

 
 

OligoWiz Probe Selection: 
 Download current version of OligoWiz (protocol based on version 2.1.3) 

169 
 



 

o http://www.cbs.dtu.dk/services/OligoWiz/ 

o Will need to have newest version of java installed: 

 http://www.java.com/en/ 

 Open OligoWiz program (no installation) (See image below)  

 Enter your email address, you will receive email with link to download your data if 

the program is closed 

 Select you input fasta file 

 Select location and name of the output file to be created by OligoWiz 

 Select reference from drop-down list – B. Taurus Unigene or Whole genome 

 Select: long-mers (45-55) Eukaryotic 

 General settings: 

o Check: Optimize oligo length to fit Tm 

o Aim Oligo Length = 60bp 

o Min Oligo Length = 45bp 

o Max Oligo Length = 60bp 

  
 Select Tm Tab (See image below) 

o Uncheck: Let OligoWiz find the most optimal Tm 

o Preferred Tm = 80.0 
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o Tm model = DNA:DNA 

 

  
 

 Select: Cross Hybridization Tab (See image below) 

o Maximum similarity = 75% 

o Minimum length of similarity region = 15bp 

o Maximum similarity = 97% 

o % total Max Length Cutoff = 80% 
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  
 

 Select Position tab (See image below) 

o Position preference = Poly-T primed 

o Click Submit 
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  
 

 Once the job has been completed, Status will be Complete 

o Select completed query from Query List to open results (See image below) 

o Alternatively, an email will provide a link to download the results 

 Download and open oligowiz 

 File – Open OWZ data file – select file and open (See image below) 

 Select Score management settings: 

• Cross-Hyb = 3.0 

• Delta Tm = 2.0 

• Folding = 1.0 

• Position = 0.0 

• Low-complexity = 0.7 
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  
 Select Place Oligos (See image below) 

o Min distance between oligos = 25 bp (allows ~half of a probe to overlap 

another probe (do not go below this for 45-60bp probes) 

o Check Unlimited 

o Minimum total score = 0.0 (allows for selection of all probes) 

o Uncheck: Only consider regions annotated as exons 

o Oligo Exclude = N 

o Select: Search Sequences 

o Check: Ignore case 

o Click: Apply to All to predict probes for all fasta sequences 

174 
 



 

  
 Once search is completed a pop-up window will state “Search Completed” 

o Click OK 

 
 Select Export Oligos (See image below) 
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o Select  

 Tab delimited 

 Sense 

 Include material and methods section 

 Click OK to save probe file 

 
 Exported file will be a tab delimited file 

 Open file within Microsoft excel for custom sorting and filtering 

Custom Probe Sorting and Selection: 
 Open oligo file in excel (only use tab delimiters when opening) 

o Select the View tab (See image below) 

 Select Macros 

• Click View Macros 
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o A new window will open (See image below) 

 Type the name of the new macro 

 Click on Create 

 
o A new window will open (See image below) 

 Copy and Paste the entire macro into window (see macro below) 

• Be sure to include everything from Sub to End Sub 

• Replace existing empty Macro text (Sub to End Sub) 

o  
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o Once the macro is pasted you should see a complete macro (See image 

below) 

 You can close the entire visual basic screen (no saving required) 

o  
 

o To run the new macro 

 Go back to the macro option (where you typed the macro name and 

clicked create) (See image below) 

• Select the macro name and click Run 

• The screen will rapidly change as it processes the file 

o  
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Custom Macro (Copy everything below through End Sub) 
Sub UCSC_OligoWiz_Formatting() 
' 
' UCSC_OligoWiz_Formatting Macro 
' 
 
' 
    Rows("1:25").Select 
    Selection.Delete Shift:=xlUp 
     
    Columns("B:N").Select 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Columns("A:A").Select 
    Selection.TextToColumns Destination:=Range("A1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        ":", FieldInfo:=Array(Array(1, 1), Array(2, 1), Array(3, 1), Array(4, 1), Array(5, 1), _ 
        Array(6, 1), Array(7, 1)), TrailingMinusNumbers:=True 
    Columns("G:G").Select 
    Selection.Cut Destination:=Columns("J:J") 
    Columns("D:E").Select 
    Selection.ClearContents 
    Columns("C:C").Select 
    Selection.TextToColumns Destination:=Range("C1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "-", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Columns("C:D").Select 
    Selection.Cut Destination:=Columns("D:E") 
    Columns("B:B").Select 
    Selection.TextToColumns Destination:=Range("B1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "=", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Columns("F:F").Select 
    Selection.TextToColumns Destination:=Range("F1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "=", FieldInfo:=Array(1, 1), TrailingMinusNumbers:=True 
    Columns("F:F").Select 
    Selection.Delete Shift:=xlToLeft 
    Columns("C:F").Select 
    Selection.Cut Destination:=Columns("E:H") 
    Columns("I:I").Select 
    Selection.TextToColumns Destination:=Range("I1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "=", FieldInfo:=Array(1, 1), TrailingMinusNumbers:=True 
    Columns("I:I").Select 
    Selection.Delete Shift:=xlToLeft 
    Selection.TextToColumns Destination:=Range("I1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "-", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Columns("J:J").Select 
    Selection.Cut Destination:=Columns("K:K") 
    Columns("I:I").Select 
    Selection.TextToColumns Destination:=Range("I1"), DataType:=xlDelimited, _ 
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        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("B:B").Select 
    Selection.Delete Shift:=xlToLeft 
    Columns("B:C").Select 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Columns("A:A").Select 
    Selection.TextToColumns Destination:=Range("A1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=True, OtherChar:= _ 
        "_", FieldInfo:=Array(Array(1, 1), Array(2, 1), Array(3, 1), Array(4, 1)), _ 
        TrailingMinusNumbers:=True 
    Columns("A:B").Select 
    Selection.Delete Shift:=xlToLeft 
    Range("A3").Select 
    Columns("A:A").EntireColumn.AutoFit 
    Range("C1").Select 
    Selection.End(xlDown).Select 
    Selection.End(xlUp).Select 
    Range("B1").Select 
    Selection.End(xlDown).Select 
    Range("B376").Select 
    Selection.End(xlUp).Select 
    Selection.End(xlToLeft).Select 
    Selection.End(xlUp).Select 
    Selection.End(xlUp).Select 
    Selection.End(xlUp).Select 
    Columns("e:f").Select 
    Selection.Cut 
    Columns("c:c").Select 
    Selection.Insert Shift:=xlToRight 
    Columns("h:i").Select 
    Selection.Cut 
    Columns("e:e").Select 
    Selection.Insert Shift:=xlToRight 
    Columns("i:i").Select 
    Selection.Cut 
    Columns("g:g").Select 
    Selection.Insert Shift:=xlToRight 
    Columns("i:i").Select 
    Selection.Cut 
    Columns("h:h").Select 
    Selection.Insert Shift:=xlToRight 
    Range("i1").Select 
    ActiveWindow.ScrollColumn = 2 
    ActiveWindow.ScrollColumn = 3 
    ActiveWindow.ScrollColumn = 4 
    ActiveWindow.ScrollColumn = 5 
    ActiveWindow.ScrollColumn = 6 
    Range("L:L,M:M,N:N,O:O,P:P,Q:Q,R:R,S:S").Select 
    Range("S1").Activate 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Columns("v:v").Select 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Columns("m:m").Select 
    Selection.TextToColumns Destination:=Range("m1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
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        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("n:n").Select 
    Selection.TextToColumns Destination:=Range("n1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("o:o").Select 
    Selection.TextToColumns Destination:=Range("o1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("p:p").Select 
    Selection.TextToColumns Destination:=Range("p1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("q:q").Select 
    Selection.TextToColumns Destination:=Range("q1"), DataType:=xlFixedWidth, _ 
        OtherChar:="_", FieldInfo:=Array(Array(0, 1), Array(5, 1), Array(9, 1)), _ 
        TrailingMinusNumbers:=True 
    Columns("q:r").Select 
    Range("r1").Activate 
    Selection.Delete Shift:=xlToLeft 
    Columns("r:r").Select 
    Selection.TextToColumns Destination:=Range("r1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("s:s").Select 
    Selection.TextToColumns Destination:=Range("s1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Columns("t:t").Select 
    Selection.TextToColumns Destination:=Range("t1"), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, OtherChar _ 
        :="_", FieldInfo:=Array(Array(1, 1), Array(2, 1)), TrailingMinusNumbers:=True 
    Selection.Delete Shift:=xlToLeft 
    Selection.End(xlToLeft).Select 
    Columns("l:l").Select 
    Selection.Delete Shift:=xlToLeft 
    Range("j1").Select 
    Selection.End(xlToLeft).Select 
    Selection.End(xlToLeft).Select 
    Selection.End(xlToLeft).Select 
    Selection.End(xlToLeft).Select 
    Columns("j:j").Select 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Range("i1").Select 
    ActiveCell.FormulaR1C1 = "=IF(RC[-2]=""+"",RC[-6]+RC[-4]-1,RC[-5]-RC[-3]+1)" 
    Range("j1").Select 
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    ActiveCell.FormulaR1C1 = "=RC[-1]+RC[4]-1" 
    Range("k1").Select 
    ActiveCell.FormulaR1C1 = "=RC[-3]&"":""&RC[-2]&""-""&RC[-1]" 
    Range("i1:k1").Select 
    Range("k1").Activate 
    Selection.Copy 
    Range("h1").Select 
    Selection.End(xlDown).Select 
    Selection.End(xlUp).Select 
    Range("h1:k1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Range("h1").Select 
    Selection.End(xlDown).Select 
    Range(Selection, Selection.End(xlUp)).Select 
    ActiveSheet.Paste 
    Selection.End(xlUp).Select 
    Selection.End(xlUp).Select 
    Selection.End(xlToLeft).Select 
     
    Rows("1:1").Select 
    Selection.Insert Shift:=xlDown, CopyOrigin:=xlFormatFromLeftOrAbove 
    Range("A1").Select 
    ActiveCell.FormulaR1C1 = "Transcript ID" 
    Range("B1").Select 
    ActiveCell.FormulaR1C1 = "Exon #" 
    Range("c1").Select 
    ActiveCell.FormulaR1C1 = "Range Start" 
    Range("d1").Select 
    ActiveCell.FormulaR1C1 = "Range End" 
    Range("e1").Select 
    ActiveCell.FormulaR1C1 = "S" 
    Range("f1").Select 
    ActiveCell.FormulaR1C1 = "E" 
    Range("g1").Select 
    ActiveCell.FormulaR1C1 = "Strand" 
    Range("h1").Select 
    ActiveCell.FormulaR1C1 = "Chr" 
    Range("i1").Select 
    ActiveCell.FormulaR1C1 = "Start" 
    Range("j1").Select 
    ActiveCell.FormulaR1C1 = "End" 
    Range("k1").Select 
    ActiveCell.FormulaR1C1 = "Position" 
    Range("l1").Select 
    ActiveCell.FormulaR1C1 = "Sequence" 
    Range("m1").Select 
    ActiveCell.FormulaR1C1 = "TM" 
    Range("n1").Select 
    ActiveCell.FormulaR1C1 = "Length" 
    Range("o1").Select 
    ActiveCell.FormulaR1C1 = "Total Score" 
    Range("p1").Select 
    ActiveCell.FormulaR1C1 = "Cross Hyb" 
    Range("q1").Select 
    ActiveCell.FormulaR1C1 = "Delta TM" 
    Range("r1").Select 
    ActiveCell.FormulaR1C1 = "Folding" 
    Range("s1").Select 
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    ActiveCell.FormulaR1C1 = "Position" 
    Range("t1").Select 
    ActiveCell.FormulaR1C1 = "Low Complexity" 
     
    Rows("1:1").Select 
    Selection.Font.Bold = True 
    Columns("a:V").Select 
    Columns("a:V").EntireColumn.AutoFit 
     
End Sub 

 

 

o Once the macro is complete you will see a formatted file (See image below) 

 Save your excel file and proceed to filtering 

o  
 

Custom filtering of probes 
 Initial filtering by chromosome 

o Removing duplicated regions 

 Select Remove Duplicates in excel 

• Remove duplicates based only on Position (Column K) 

 Select Column for Sequence 

 Select Conditional Formatting (See image below) 

• Select Highlight Cell Rules 

• Select Duplicate Value 

• Popup will appear – any option that fills cells with a color 

works 

• Click OK 
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  
o Now sort the spreadsheet by the sequence column 

 Sort based on cell color 

 Delete all rows that have colored sequence cells 

o It is recommended that you copy the remaining probes into a new sheet 

for further filtering 

 This provides a master list of potential probes, just in case you 

need to add more at the end 

o In the new sheet filter the probes based on their properties as follows: 

 Sort by values on: 

• Total Score –  remove below 0.2 

• Cross Hyb –   remove below 0.2 

• TM –    remove below 74 and above 86 

• Complexity –   remove below 0.2 

• Folding –   remove below 0.2 

 Complete Filtering for each chromosome 

 Copy and paste all filtered probes into a single excel file for final filtering 

o Save this File, we will use this later 

Preparation of eArray account for array design submission: 
 Open internet explorer (Google chrome is not compatible with eArray) 

o Navigate to https://earray.chem.agilent.com/earray/ 

o Select Request for Registration and complete account 

 Once the account is setup and you are logged in: 
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o You should see a Home screen (See image below) 

 Make sure that Application Type is set to CGH 

o  
o Select the Microarray Tab (see image below) 

 Click on Array Calculator 

o  
o A new window will appear (See image below) 

 Select the species 

 Select the Design format 

 Click on Show Details 

• A new popup will show the number of control probes and 

available feature on the array. 

• The available features are the total probes you can place 

on the array 

o  
o Write down the number of probes for your design 

 This will be the number of probes to select from your excel sheet 
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 Close out of all eArray windows 

 Final Probe sorting: 

o Open excel file that contains all filtered probes for all chromosomes in a 

single sheet. 

o Further filter the probes by increasing the cutoffs of the properties 

 TM – remove if >84 or <73 

 Continue filtering until all probes fit on the array design 

o Create a new sheet for the final probe list 

 This will be formatted and uploaded into eArray 

o Formatting to “Complete Array Format” 

 Add Column IDs as follows: 

 GeneSymbol, ID, Location, Sequence, Description, Target ID, 

Accessions 

 Copy and paste values: 

• Transcript ID from probe list into GeneSymbol column 

• Position into Location column 

• Sequence into Sequence column 

• Create a unique ID for each probe (i.e., chromosome and 

start position (chr20:34567) 

• Leave remaining columns blank 

 Copy/paste formatted file into text file and save 

 Log into eArray  

o Select Probe Tab (See image below) 

 Select Upload 

 Select Species 

 Create probe group – enter ID for group 

 File format = Complete 

 File Type = TDT 

 Select Remove replicate probes from upload 

 Choose your file 

 Click Next 
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 A new window will open (See image below) 

 Select: File contains header line 

 Match labels with columns 

• Gene ID = GeneSymbol 

• ID = ProbeID 

• Location = ChromosomalLocation 

• Sequence = Sequence 

• Description, TargetID, Accessions are the remaining black 

columns 

 Select Upload 

 You will receive an email when the group is created 

 
 Log into eArray 

o Select the Home Tab 

o Select Create a Microarray Design from Existing Probe Group(s) 

o Click Next 

o A new window will open (See image below) 

 Select Standard CGH 
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 Select Species 

 Click Next 

  
o A new page will open (See image below) 

 Enter a name for the array 

 Select Design format 

 Check “Append linker to 3’ end” 

• This will make all probes 60bp in length 

• Use the Agilent linker 

 Click next 

 
o A new window will open to select probes for the design (See image 

below) 

 Click on Add under the Biological CGH Probe Group(s) 
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o A new window will open to locate probe groups 

 In the search box type your group name or leave blank 

 Click search 

 Locate and select your group 

 Click Add to place it into the box to the right 

 Click Done 

 Click Next 

 
o A window will open to select the status 

 If the array is complete – select Submitted 
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 Select Design Checklist 

• A window will open, check all of the items, click ok 

 Make sure the checkbox beside Design Checklist is now checked 

 Submit array 

 You will get an email when it is completed 

 Once the design is ready, you can use the AMID number to get 

quotes or order the array 

 
 

End of Array Design! 
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APPENDIX 2.3 

Array CGH Protocol 

 

Shearing genomic DNA: 
 Dilute genomic DNA to 7 µg in 120 µl of elution buffer (Qiagen or Invitrogen) 

o You can use more or less (at least 5 µg), too much DNA will alter the 

shearing 

 Shear DNA using Sonic Dismembrator 500 keeping samples on ice. Adjust 

setting to reach desired length. Start with 3 – 15 sec pulses at 12% power with a 

30 sec break between pulses. 

 Run 10 µl of sample on gel to confirm size (should see a smear of DNA with the 

majority at the size desired. Once a setting is chosen, this does not need to be 

completed for every sample 

 Purify DNA using the Invitrogen Purelink PCR Kit and elute in 30 µl EB (perform 

2 washes (600 µl followed by 300 µl)) 

 Determine quantity of DNA using NanoDrop 

Cy3 and Cy5 Labeling: 

 Add 4 µg of sheared/purified DNA in 24 µl to PCR tube and add 20 µl cy3 (Alexa 

Fluor 555) or cy5 (Alexa Fluor 647) labeled panomers to the tubes. Use 555 for 

control and 647 for sample. 

 Mix and spin down briefly. 

 Place in thermocycler for 10 minutes at 95oC.  

 Place samples on ice for 5 minutes 

 Add 5 µl 10X nucleotide mix with the same dye label as the panomers added. 

 Mix and spin down briefly. 

 Place in thermocycler at 37oC overnight. 

 Purify with Invitrogen Purelink PCR Kit and elute in 30 µl EB (perform 2 washes 

(600 µl followed by 300 µl)) 

 Quantitate DNA and labeling efficiency using the microarray function on the 

NanoDrop 
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o The DNA should be several hundred nanograms/µl and the labeling 

should be at least 5 pmol/µl  

Hybridization: Follow steps below for specific array format. 

8x60K Array: 

o Mix 2 µg of control labeled DNA (555) with 2 µg of sample (647) with a 

total volume of 16 µl 

o Add to each reaction: 

 2 µl Cot-1 DNA 

 4.5 µl Agilent 10X Blocking Buffer 

 22.5 µl 2X HiRPM Buffer 

o Mix gently, trying to avoid bubbles 

o Spin down briefly 

o Place on heat block at 95oC for 3 minutes 

o Place in 37oC hot water bath for 30 minutes 

o Briefly spin down 

o Place gasket slide in hybridization clamp with rubber side up 

o Slowly add 40 µl of sample to array gasket slide (avoid liquid contact with 

rubber gasket) 

2x400 thousand array: 

o Mix 2 µg of control labeled DNA (555) with 2 µg of sample (647) with a 

total volume of 79 µl 

o Add to each reaction: 

  25 µl Cot-1 DNA 

 26 µl Agilent 10X Blocking Buffer 

 130 µl 2X HiRPM Buffer 

o Mix gently, trying to avoid bubbles 

o Spin down briefly 

o Place on heat block at 95oC for 3 minutes 

o Place in 37oC hot water bath for 30 minutes 
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o Briefly spin down 

o Place gasket slide in hybridization clamp with rubber side up 

o Slowly add 240 µl of sample to array gasket slide (avoid liquid contact 

with rubber gasket) 

1x1 million array: 

o Mix 4 µg of control labeled DNA (555) with 4 µg of sample (647) with a 

total volume of 158 µl 

o Add to each reaction: 

 50 µl Cot-1 DNA 

 52 µl Agilent 10X Blocking Buffer 

 260 µl 2X HiRPM Buffer 

o Mix gently, trying to avoid bubbles 

o Spin down briefly 

o Place on heat block at 95oC for 3 minutes 

o Place in 37oC hot water bath for 30 minutes 

o Briefly spin down 

o Place gasket slide in hybridization clamp with rubber side up 

o Slowly add 490 µl of sample to array gasket slide (avoid liquid contact 

with rubber gasket) 

 

 Apply array slide with side labeled “Agilent” down to the gasket.  

 Place top of clamp on slide and tighten.  

 Slowly turn slide/clamp unit to ensure no bubbles are stuck in place, if so, tap 

them loose 

 Place in 65oC hybridization oven for 24 hours with a rotational speed of 20 RPM 

 Place 500 mL of Wash Buffer 2 in bottle a warm overnight in 37oC water bath. 

Washing array 

 Add 400 mL of Wash Buffer 1 into two clean glass dishes. 

 Remove clamp from slide and gasket 
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 Submerse array slide with array gasket in wash buffer 1 and slide plastic forceps 

between the two slides with gasket on the bottom, twist and allow gasket to fall 

to bottom of dish 

 Place slide in slide rack submersed in 2nd dish of wash buffer 1 for 5 minutes 

 Pour wash buffer 2 into new glass dish 

 Quickly transfer slide and rack to wash buffer 2, minimizing air contact – 5 

mintues with gentle agitation for 30 seconds, every 30 seconds 

 Remove and place in 4th glass dish with acetonitrile 30 sec 

 Slowly remove from acetonitrile, avoiding any bubbles or spots on the glass 

 Place slide in slide holder with Agilent label facing up 

 Place ozone barrier on top of slide and close holder 

 Scan slides using the following setting: 

o 2 µm resolution 

o 0.05 XDR 

 2 Color CGH 

 Export data from array images using Agilent Feature Extraction software 

Reagent Used: 

1.  Invitrogen Purelink PCR Purification Kit (50 rxns)   

 $92.00 

The PCR purification system is used for both post-sonication and DNA labeling 

purifications.  

2. Invitrogen Bioprime Plus CGH Genomic Labeling Module (30 rxns) 

 $752.00 

The genomic labeling kit from Invitrogen is required to label the DNA samples prior to 

hybridization on the arrays. Each array will require two labeling reactions, cy3 and cy5. 

The control sample will be labeled the same color to allow multiple arrays to be 

compared against each other.  

3. Oligo aCGH/Chip-Chip Hybridization Kit (Agilent)     $361.50 
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The hybridization kit provides the necessary solutions to ensure that each sample is 

able to bind to the array. The kit is provides enough reagent to perform hybridizations 

on 25 slides.  

4. Agilent SurePrint G3 Custom CGH Microarray 1 x 1M   $535.50 

4.1 Agilent SurePrint G3 Custom CGH Microarray 2 x 400K  ~$650* 

These slides will be used a total of 2 times to allow for 2 experiments from a single 

array.  

5. 1 x 1M Backings (pack of 5) (or 2x400k)      $114.00 

The backings are required to seal the arrays during hybridizations. Each backing will be 

used 1 time. Therefore, the total of 1 slide hybridizations will require 2 packs of 

backings. 

6. Oligo aCGH/ChIP-on-chip Wash Buffer Kit    $246.75 

The wash buffer kit is required to clean the array slides following hybridization. A single 

kit will wash 40 array slides.  

7. Cot-1 Human DNA (Invitrogen)      $180.90 

The Cot-1 is used during hybridization to reduce noise on the array from repetitive DNA 

8. Ozone-Barrier Slide Cover Kit (Agilent) 25 covers   $503.00*  

Ozone barrier slides are placed over the array during the scanning process to prevent 

degradation of the array by ozone during scanning. 
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APPENDIX 2.4 

CNV PCR PRIMERS 

 

Index Forward Primer Reverse Primer Product 
Length Gene ID 

1 CAGCATTATCAAGCCCAGGT GGAGGGTGGTAGTGGTGTTT 217 bp ENSBTAG00000022376  
2 GAATACCCCCATGCTTCAGA CCACCTGGACACTGGTTAGC 212 bp ENSBTAG00000033381 
3 CCCTGATTTTGGATGTCTGG CCCACACCAAATCTGACCAT 289 bp ENSBTAG00000000120  
4 CCCCTTCAGGTTACTCCACA CCTGCTTCCTCTCCTCCTTC 205 bp ENSBTAG00000019524 
5 GTCTGACCTCCAGGCTCCTC CCTCAGAATGGGCCAGATAG 218 bp ENSBTAG00000006630 
6 GCTTCATCTTGGGAGCTGAG CCTCTGTGCGAGACCTTCA 205 bp ENSBTAG00000021747 
7 TCTGCTTTTTGGTTTGAGCA GTTGACAAGGCAGCTTCTCC 251 bp ENSBTAG00000024826 
8 AGCAGCAATTTTCACCGTGT CAAGAAACGTGCTGCCTATG 206 bp ENSBTAG00000017743  
9 CCCAAAGGAAGAAGTCGATG CCATGTCCTTTTTCCCCTCT 258 bp ENSBTAG00000015780 

10 GGATCGCACAACCAATAACC GCACACATCTGGCTGTTCTG 213 bp ENSBTAG00000011932 
11 TGCTCAGGATGGTGGTGATA CTTTCTGGACGCACTCATCA 227 bp ENSBTAG00000016317 
12 TTCTGGCAAAGTGGACATCG GCCTTGACTGTGCCGTTGA 205 bp ENSBTAG00000030368 
13 GCTTTGTGAAGCTCCCTGTC TCCCATAGGATTCTGGCTTC 415 bp ENSBTAG00000005742 
14 CATTACCCAAATTGGTGCTTT CATCAATTCTTCGGTGCTCA 832 bp ENSBTAG00000033169 
15 CCTCAAACCCTGAAGCAAAA GAGGCCCAGTGACTACCAGA 711 bp ENSBTAG00000007644 
16 AAGGCTCAAGGAGCTCATCA TGCACCATGCTCACAATTTC 122 bp ENSBTAG00000014402 
17 AGGCCATTACTGCGAGAAGA ACAACCACGATCCCAAAGAT 135 bp ENSBTAG00000023623 
18 ATCCTAGCCGCAAACACATC ATGCGAGGGATGACTACCAC 130 bp ENSBTAG00000038245 
19 ATTCAGCTGATCTGGCTGGT CAGGGATGGTTGTCCTCTTC 105 bp ENSBTAG00000043673 
20 CACGGTGTTCCCTGAAAAGT GGAACCTCATTGGAGCTGAA 122 bp ENSBTAG00000005941 
21 CCAGCCTCAAGAGAGTCACC ACTGGCCCATGTTGAAGAAC 122 bp ENSBTAG00000020385 
22 CGTCATACGAGGGGTAGTCG GCCTGTCCGGAGGATATTTT 143 bp ENSBTAG00000009556 
23 GACCTCCTTCCTACCCAACG GCTCACAAGAGGACCTCGAA 151 bp ENSBTAG00000031685 
24 GCACATCTCCACCTTCATCA CCTCCTCCACTTTCTTCACG 118 bp ENSBTAG00000006059 
25 GCCATAGAGGAGTGGTGGAA ATGACCGCTATGTTGCCATC 130 bp ENSBTAG00000031097 
26 GGAGCCAGCTGTAAATGAGG TGTGGACCAAATCGAGTCAA 110 bp ENSBTAG00000025994 
27 GGGGAAGTGTCACAGAGGAA CTGCCATCTGTAAGCCATTGT 177 bp ENSBTAG00000031100 
28 GGGGCAGTAATCACAGGAGA CATGGCTAGGGGGATTTCTT 106 bp ENSBTAG00000009999 
29 GTGCCATGTTAGTGGTCACG CAAGGAAGAAAGCCCACAGA 127 bp ENSBTAG00000038953 
30 TCAAGTAGGTGCAAAGCTCAAA CAGACGTTTGTTGGGTTGTG 150 bp ENSBTAG00000038720 
31 TGTGGGGATTTTCCAGTTTC TGTGAAGGCTGTGATTGAGC 128 bp ENSBTAG00000037384 
32 TTCCTCTGAGTAGCCGATGG TTTGCGACTCTCATGCTCAG 152 bp ENSBTAG00000015219 
33 ATGGCCAAAACACTCAAAGG CATCGGTATGGCTCTCCAGT 122 bp ENSBTAG00000009478 
34 GCTTCAGCAAGGACCAAGTC TCCTTTGGTTTTGCTGCTTT 132 bp ENSBTAG00000009478 
35 TTCTGGCAAAGTGGACATCG GCCTTGACTGTGCCGTTGA 205 bp GAPDH 
36 CTGGGAAACCAAACTTGCAT TTGCAGCAGCATGGATAGAC 145 bp Intergenic 
37 TGGGCCACCAGGTAACTTAG TCACGTATGGCAAAAACCAA 107 bp Intergenic 
38 ATGTATGCCAACCCTTCAGC GCTTCACTTGCTGGTTCCTC 123 bp Intergenic 
39 AGCATAAGGGGCGAGAAAAT GCCCCTGCATTATAGAACCA 101 bp Intergenic 
40 GCTACTGAGCCACTGGGAAC GCTACCTGCTCCTTGTCTGG 99 bp Intergenic 
41 CCTGCAGAAGGAAATGGAAA CACTGTGCTGTGGAAGTGGT 139 bp Intergenic 
42 CCATCACCCACAACTCCTCT CCTTGCTTTGGCTTTTTGAG 134 bp Intergenic 
43 TGGGGTGACTACCTTTCTGC GGATAGCTGGTCCCTCAACA 142 bp Intergenic 
44 GCCATAAGGGTGGTGAAGAA GCCTTCTCCCAAATGCTGTA 123 bp Intergenic 
45 TCAGCCCTCTCCTACCTCAA GGAGGATTTCCCAGTGGATT 112 bp Intergenic 
46 TAAGGCATTGCATCAACCAA TGAGCAACAACAACACAGCA 123 bp Intergenic 
47 ACGGGACTTCCCATATTTCC GTTTTGGATTTTTGCCAGGA 120 bp Intergenic 
48 CAACATGGGTGCAACAGAAG GGTGGCTGTGTCCATTTCTT 120 bp Intergenic 
49 GCAGGAAGGTAGTTGGGTCA GTTGTTGGATTGCTGGCTTT 116 bp Intergenic 
50 CGCAGTGGGATGGAAGTATT GCTATGATCCGCTCTGGAAC 102 bp Intergenic 
51 TGCCACAAGAGAGGTCACTG ATTTTGGCTGTGCTGAATCC 113 bp Intergenic 
52 GAGCACACGGTCTCCTTCAC GGAGCAGAGACACAGAGCAGA  130 bp Cathl1 
53 CCATTTCCAGGGTAGGATGAC GAGGTGTGGTGTGTGTGTGG  114 bp Cathl4 
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APPENDIX 2.5 

QPCR PROTOCOL 

 

SYBR Green Protocol: 
SYBR GreenER qPCR SuperMix for ABI PRISM = 11760-500 

 

Reagent Volume (1 Reaction 

SYBR GreenER 5 µl 

Forward Primer 0.2 µl 

Reverse Primer 0.2 µl 

Water 3.1 µl 

DNA (25 ng) 1.5 µl 

 

 Run all samples in triplicate  

 Data analysis: ∆∆CT Method 
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APPENDIX 2.6 

LOW CONFIDENCE CNVS 

 

 n 
Copy 

Number 
Variants 
(CNVs) 

CNV 
Regions 
(CNVRs) 

CNVs / 
Animal 

CNVR 
Gains 

CNVR 
Losses 

Complex 
CNVRs 

Variant 
Genes 

Deletion 
Variant 
Genes 

Total 27 363 162 13 53 109 0 213 8 
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APPENDIX 2.7 

CNV GENES 

 
Please see attached Microsoft Excel file for appendix 2.7 containing a list of all 

genes affected by CNVs from CGH CNV analyses. The table contains columns for: 

ensembl gene ID, chromosome, start, end, status, and biotype. 
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APPENDIX 2.8 

CNV CGH BP STATISTICS 

 
Exome CNV Gene BP 

Term Genes Fishers Method p value 
Immunity and Defense 96 52.58070803 1.30E-08 
Signal Transduction 135 22.90512888 1.70E-06 
Sensory Perception 127 32.6157858 8.27E-08 
Regulation of Cell Cycle 27 7.355582061 0.061387616 
Cellular Process 13 4.518775466 0.104414395 
Metabolism 8 3.475547636 0.062282103 
Protein processing - - - 
Nucleic Acid Metabolism - - - 
Miscellaneous - - - 
Developmental Process - - - 

Exome Deletion Gene BP 
Term Genes Fishers Method p value 
Immunity and Defense 12 19.00214713 0.00027312 
Signal Transduction 7 3.166895484 0.075145159 
Sensory Perception 7 4.078825867 0.043423823 
Cellular Process - - - 
Metabolism - - - 
Nucleic Acid Metabolism - - - 
Protein processing - - - 
Miscellaneous - - - 
Regulation of Cell Cycle - - - 
Developmental Process - - - 

Exome Taurus CNV Gene BP 
Term Genes Fishers Method p value 
Immunity and Defense 98 68.28944398 9.4744E-11 
Signal Transduction 83 16.0209536 6.26453E-05 
Sensory Perception 80 23.52345158 7.79736E-06 
Miscellaneous - - - 
Metabolism - - - 
Protein processing 3 2.578468508 0.108326425 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle - - - 
Cellular Process - - - 

Exome Indicus CNV BP 
Term Genes Fishers Method p value 
Immunity and Defense 62 39.49631401 5.72E-07 
Signal Transduction 112 29.85900834 4.65E-08 
Sensory Perception 109 39.95211377 1.09E-08 
Miscellaneous - - - 
Metabolism - - - 
Protein processing 3 2.312912233 0.128303466 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle 52 16.71794767 0.010377683 
Cellular Process 16 7.407706929 0.059977884 
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Appendix 2.8 Continued 
Exome Angus CNV BP 

Term Genes Fishers Method p value 
Immunity and Defense 78 63.29236914 1.05E-10 
Signal Transduction 75 15.30688248 9.14E-05 
Sensory Perception 72 21.97821752 1.69E-05 
Miscellaneous - - - 
Metabolism - - - 
Protein processing 3 2.768717952 0.096123121 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle - - - 
Cellular Process - - - 

Exome Holstein CNV BP 
Term Genes Fishers Method p value 
Immunity and Defense 26 25.23259145 1.38E-05 
Signal Transduction 37 13.89559858 0.00019325 
Sensory Perception 35 16.62028393 4.57E-05 
Miscellaneous - - - 
Metabolism - - - 
Protein processing - - - 
Developmental Process - - - 
Nucleic Acid Metabolism 3 2.274520494 0.131515795 
Regulation of Cell Cycle - - - 
Cellular Process - - - 

Exome Nellore CNV BP 
Term Genes Fishers Method p value 
Immunity and Defense 69 48.7376226 7.14E-08 
Signal Transduction 92 23.33079185 8.59E-06 
Sensory Perception 88 29.64924845 1.64E-06 
Miscellaneous 3 2.032164743 0.15400112 
Metabolism 5 2.222841578 0.135982576 
Protein processing 3 2.572738694 0.108719365 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle 12 4.021338627 0.133899024 
Cellular Process 3 2.328856145 0.126995166 

Exome Brahman CNV BP 
Term Genes Fishers Method p value 
Immunity and Defense 4 2.644934083 0.103880466 
Signal Transduction 64 33.79041152 6.14E-09 
Sensory Perception 63 42.34781581 7.64E-11 
Miscellaneous - - - 
Metabolism - - - 
Protein processing - - - 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle 9 6.441646575 0.091992446 
Cellular Process - - - 

Fisher Exact Test 2-sided p value Exome CNVs 
Term Taurine Genes Indicine Genes p value 
Immunity and Defense 98 62 3.92E-05 
Signal Transduction 83 112 1 
Sensory Perception 80 109 0.933306 
Miscellaneous - - - 
Metabolism - - - 
Protein processing 3 3 0.704745 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle 0 52 1.60E-12 
Cellular Process 0 16 0.000173103 
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Appendix 2.8 Continued 
Fisher Exact Test 2-sided p value  Exome CNVs 

Term Angus Genes Nellore Genes p value 
Immunity and Defense 78 69 0.110415 
Signal Transduction 75 92 1 
Sensory Perception 72 88 1 
Miscellaneous 0 3 0.255853 
Metabolism 0 5 0.0678283 
Protein processing 3 3 1 
Developmental Process - - - 
Nucleic Acid Metabolism - - - 
Regulation of Cell Cycle 0 12 0.00161931 
Cellular Process 0 3 0.255853 

All CNV Genes BP 
Term Genes Fishers Method p value 
Immunity and Defense 190 34.11575456 3.87E-05 
Signal Transduction 293 22.63587265 1.22E-05 
Sensory Perception 250 25.09718707 5.45E-07 
Regulation of Cell Cycle - - - 
Cellular Process 8 2.08394325 0.148855201 
Metabolism 34 7.726892954 0.052006439 
Protein processing 4 2.389751815 0.122133017 
Nucleic Acid Metabolism - - - 
Miscellaneous 68 7.456127419 0.058696507 
Developmental Process 17 4.099309178 0.128779378 

All Taurus CNV Genes BP 
Term Genes Fishers Method p value 
Immunity and Defense 170 53.19609523 6.85E-08 
Signal Transduction 221 28.63521331 8.74E-08 
Sensory Perception 202 39.29604703 2.93E-09 
Regulation of Cell Cycle - - - 
Cellular Process - - - 
Metabolism - - - 
Protein processing - - - 
Nucleic Acid Metabolism - - - 
Miscellaneous - - - 
Developmental Process - - - 

All Indicus CNV Genes BP 
Term Genes Fishers Method p value 
Immunity and Defense 147 30.36319814 8.14E-05 
Signal Transduction 223 17.44666697 0.000162744 
Sensory Perception 193 20.29308567 3.92E-05 
Regulation of Cell Cycle 18 2.107396493 0.146588527 
Cellular Process 5 2.497279133 0.114043174 
Metabolism 28 7.26031032 0.064047732 
Protein processing - - - 
Nucleic Acid Metabolism - - - 
Miscellaneous 24 7.168947686 0.06670341 
Developmental Process 30 7.527378776 0.056859132 
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APPENDIX 2.9 

CNV UMD3.1 CNV STATISTICS 

 

CNV Gene BP 

Term Genes p value 

Immunity and Defense 116 1.69381E-09 

Signal Transduction 98 0.000802219 

Sensory Perception 97 0.000125488 

Regulation of Cell Cycle 0 - 

Cellular Process 9 0.095763784 

Metabolism 6 0.130279399 

Protein processing 11 0.113480573 

Nucleic Acid Metabolism 6 0.130279399 

Miscellaneous 0 - 

Developmental Process 0 - 
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APPENDIX 2.10 

CNV GENES WITH ASSOCIATED OMIM TERMS 

 

OMIM # 
Morbidity 

Map 
Gene ID Phenotype 

131244 EDNRB ABCD syndrome, 

605080 CNGB3 Achromatopsia-3, 

607008 ACADM Acyl-CoA dehydrogenase, medium chain, deficiency of, 

610613 CYP11B1 Adrenal hyperplasia, congenital, due to 11-beta-hydroxylase deficiency, 

146770 IGLL1 Agammaglobulinemia 2, 

601920 JAG1 Alagille syndrome, 

100650 ALDH2 Alcohol sensitivity, acute, 

147450 SOD1 Amyotrophic lateral sclerosis, due to SOD1 deficiency, 

607465 CDAN1 Anemia, congenital dyserythropoietic, type I, 

602322 TERC Aplastic anemia, 

605010 SPINK5 Atopy, 

602617 TTF2 Bamforth-Lazarus syndrome, 

170261 TAP2 Bare lymphocyte syndrome, type I, due to TAP2 deficiency, 

134370 CFH Basal laminar drusen, 

120250 COL6A3 Bethlem myopathy, 

608614 CYP4V2 Bietti crystalline corneoretinal dystrophy, 

603248 BMPR1B Brachydactyly, type A2, 

190080 MYC Burkitt lymphoma, 

607844 LEMD3 Buschke-Ollendorff syndrome, 

604283 PRG4 Camptodactyly-arthropathy-coxa vara-pericarditis syndrome, 

176872 MAP2K1 Cardiofaciocutaneous syndrome, 

610897 CHMP4B Cataract, posterior polar, 3, 

610933 LRSAM1 Charcot-Marie-Toothe disease, axonal, type 2P, 

600635 TTF1 Chorea, hereditary benign, 

608512 NCF1 Chronic granulomatous disease due to deficiency of NCF-1, 

600678 MSH6 Colorectal cancer, hereditary nonpolyposis, type 5, 

614123 TMCO1 
Craniofacial dysmorphism, skeletal anomalies, and mental retardation 
syndrome 

191740 UGT1A1 Crigler-Najjar syndrome, type I, 

130160 ELN Cutis laxa, AD, 

611716 ATP6V0A2 Cutis laxa, autosomal recessive, type IIA, 

607657 CTH Cystathioninuria, 

604175 RPL11 Diamond-Blackfan anemia 7, 
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Appendix 2.10 Continued 
OMIM # 

Morbidity 
Map 

Gene ID Phenotype 

605849 DMGDH Dimethylglycine dehydrogenase deficiency, 

602880 GDF1 Double-outlet right ventricle, 

182860 SPTA1 Elliptocytosis-2, 

107400 SERPINA1 Emphysema due to AAT deficiency, 

602208 KCNJ10 Enlarged vestibular aqueduct, digenic, 

607566 EPM2A Epilepsy, progressive myoclonic 2A, 

608072 EPM2A Epilepsy, progressive myoclonic 2B, 

602926 STXBP1 Epileptic encephalopathy, early infantile, 4, 

601011 CACNA1A Episodic ataxia, type 2, 

604579 FZD4 Exudative vitreoretinopathy, 

612309 F5 Factor V deficiency, 

613899 FANCC Fanconi anemia, complementation group C, 

138160 SLC2A2 Fanconi-Bickel syndrome, 

600968 SLC12A3 Gitelman syndrome, 

238300 GLDC Glycine encephalopathy, 

610860 AGL Glycogen storage disease IIIa, 

150000 LDHA Glycogen storage disease XI, 

603868 RAB27A Griscelli syndrome, type 2, 

602365 CTSC Haim-Munk syndrome, 

606857 GCLC Hemolytic anemia due to gamma-glutamylcysteine synthetase deficiency, 

603401 AP3B1 Hermansky-Pudlak syndrome 2, 

607521 HPS5 Hermansky-Pudlak syndrome 5, 

138130 GLUD1 Hyperinsulinism-hyperammonemia syndrome, 

601199 CASR Hyperparathyroidism, neonatal, 

109700 B2M Hypoproteinemia, hypercatabolic, 

164050 PNP Immunodeficiency due to purine nucleoside phosphorylase deficiency, 

147200 IGKC Kappa light chain deficiency, 

606890 GALC Krabbe disease, 

116897 CEBPA Leukemia, acute myeloid, 

606686 EIF2B1 Leukoencephalopathy with vanishing white matter, 

611966 TRAPPC9 Mental retardation, autosomal recessive 13, 

300646 ZDHHC9 Mental retardation, X-linked syndromic, Raymond type, 

605452 ABCB6 Microphthalmia, isolated, with coloboma 7, 

602153 KRT81 Monilethrix, 

602765 KRT83 Monilethrix, 

601928 KRT86 Monilethrix, 

205 
 



 

Appendix 2.10 Continued 
OMIM # 

Morbidity 
Map 

Gene ID Phenotype 

605073 TRIM37 Mulibrey nanism, 

607939 SUMF1 Multiple sulfatase deficiency, 

156225 LAMA2 Muscular dystrophy, congenital merosin-deficient, 

102565 FLNC Myopathy, distal, 4, 

607215 NPHP4 Nephronophthisis 4, 

602716 NPHS1 Nephrotic syndrome, type 1, 

614297 C19orf12 Neurodegeneration with brain iron accumulation 4, 

608581 RP1L1 Occult macular dystrophy, 

148042 KRT6B Pachyonychia congenita, Jackson-Lawler type, 

148041 KRT6A Pachyonychia congenita, Jadassohn-Lewandowsky type, 

601501 VPS35 Parkinson disease 17, 

609007 LRRK2 Parkinson disease-8, 

609023 PNKD Paroxysmal nonkinesigenic dyskinesia, 

607751 TAS2R38 Phenylthiocarbamide tasting, 

603390 PDE8B Pigmented nodular adrenocortical disease, primary, 3, 

600565 NRXN1 Pitt-Hopkins-like syndrome 2, 

606938 UROS Porphyria, congenital erythropoietic, 

314310 TFE3 Renal cell carcinoma, papillary, 1, 

603345 SLC4A5 Renal tubular acidosis, proximal, with ocular abnormalities, 

613596 FAM161A Retinitis pigmentosa 28, 

609507 TOPORS Retinitis pigmentosa 31, 

608400 USH2A Retinitis pigmentosa 39, 

600342 RGR Retinitis pigmentosa 44, 

180430 RPIA Ribose 5-phosphate isomerase deficiency, 

300642 SRPX2 Rolandic epilepsy, mental retardation, and speech dyspraxia, 

606000 BTNL2 Sarcoidosis, susceptibility to, 

603005 PAPSS2 SEMD, Pakistani type, 

605837 HERC2 Skin/hair/eye pigmentation 1, blond/brown hair, 

607642 RAI1 Smith-Magenis syndrome, 

610844 SPG11 Spastic paraplegia-11, 

611605 ERLIN2 Spastic paraplegia-18, 

612641 ANK1 Spherocytosis, type 1, 

614154 NOP56 Spinocerebellar ataxia 36, 

151443 LIFR Stuve-Wiedemann syndrome/Schwartz-Jampel type 2 syndrome, 

601284 ACVRL1 Telangiectasia, hereditary hemorrhagic, type 2, 

606370 TPK1 Thiamine metabolism dysfunction syndrome 5, 

206 
 



 

Appendix 2.10 Continued 
OMIM # 

Morbidity 
Map 

Gene ID Phenotype 

612025 IYD Thyroid dyshormonogenesis 4, 

613715 POLR1D Treacher Collins syndrome 2, 

600221 TEK Venous malformations, multiple cutaneous and mucosal, 

609506 CYP27B1 Vitamin D-dependent rickets, type I, 

602357 WIPF1 Wiskott-Aldrich syndrome 2, 

611507 CISD2 Wolfram syndrome 2, 

601593 BARD1 Breast cancer, susceptibility to 

614295 BICC1 Renal dysplasia, cystic, susceptibility to 

602452 BUB1 Colorectal cancer with chromosomal instability 

134371 CFHR1 Hemolytic uremic syndrome, atypical, susceptibility to 

605336 CFHR3 Hemolytic uremic syndrome, atypical, susceptibility to 

604332 CHIC2 Leukemia, acute myeloid 

609512 CHMP2B Amyotrophic lateral sclerosis, CHMP2B-related 

118503 CHRNA3 Lung cancer susceptibility 2 

124080 CYP11B2 Aldosterone to renin ratio raised 

124030 CYP2D6 Codeine sensitivity 

606518 HAVCR1 Atopy, resistance to 

146880 HLA-DQA1 Celiac disease, susceptibility to 

604305 HLA-DQB1 Celiac disease, susceptibility to 

142857 HLA-DRB1 Multiple sclerosis, susceptibility to 

602376 IFNAR2 Hepatitis B virus, susceptibility to 

147620 IL6 Crohn disease-associated growth failure 

609269 KIAA0319 Dyslexia, susceptibility to, 2 

150270 LAP Laryngeal adductor paralysis 

603025 LAP Leukemia, acute T-cell lymphoblastic 

153245 LEF1 Sebaceous tumors, somatic 

108962 NPR3 Hypertension, salt-resistant 

164350 OAS1 Diabetes mellitus, type 1, susceptibility to 

600632 OPCML Ovarian cancer, somatic 

168820 PON1 Coronary artery disease, susceptibility to 

107280 SERPINA3 Alpha-1-antichymotrypsin deficiency 

603028 TLR2 Colorectal cancer, susceptibility to 

191342 UCHL1 Parkinson disease 5, susceptibility to 
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APPENDIX 2.11 

CNV GENES WITH FST GREATER THAN 0.25 

 

Gene Total Angus Holstein Brahman Nellore Taurus Indicus CNV Location Breeds 
Fst 

Subspecies 
Fst (Pop) 

PSMB7 4 0 0 0 4 0 4 Muliple_Exons 0.6829 0.4055 
FAM53C 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
ACVRL1 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
TAX1BP1 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
ASZ1 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
CDC27 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
UFM1 4 0 0 0 4 0 4 Muliple_Exons 0.5766 0.3407 
CERS5 4 0 0 0 4 0 4 Muliple_Exons 0.5766 0.3407 
PPP1R14C 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
ACADM 4 0 0 0 4 0 4 Muliple_Exons 0.5766 0.3407 
ARF1 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
CEBPG 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
IFT27 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
LYPLAL1 4 0 0 0 4 0 4 Muliple_Exons 0.5766 0.3407 
PNKD 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
PON1 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
SRPX2 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
TM7SF3 4 0 0 0 4 0 4 Exon 0.5766 0.3407 
TMBIM1 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
TNMD 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
UNC5D 4 0 0 0 4 0 4 Genes 0.5766 0.3407 
FANCC 14 12 0 2 0 12 2 Genes 0.5371 0.1794 
IGLL1 14 12 0 2 0 12 2 Genes 0.5371 0.1794 
TSPY 14 12 0 2 0 12 2 Genes 0.5371 0.1794 
ZNF280A 14 12 0 2 0 12 2 Genes 0.5371 0.1794 
ZNF280B 14 12 0 2 0 12 2 Genes 0.5371 0.1794 
MARCKSL1 5 0 0 1 4 0 5 Exon 0.4673 0.4203 
YWHAZ 5 0 0 1 4 0 5 Genes 0.4673 0.4203 
KIF20B 5 0 0 1 4 0 5 Genes 0.4673 0.4203 
KLRF1 5 0 0 4 1 0 5 Genes 0.4673 0.4203 
DMGDH 5 1 0 0 4 1 4 Exon 0.4419 0.2282 
NUDT7 5 1 0 0 4 1 4 Exon 0.4419 0.2282 
BIRC5 6 0 0 2 4 0 6 Exon 0.4407 0.4944 
GOLPH3L 6 0 0 2 4 0 6 Genes 0.4407 0.4944 
SPINK5 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
CLK2 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
NES 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
SMG5 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
TSN 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
CSNK2B 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
ANAPC13 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
FLNC 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
ARMC2 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
BARD1 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
BMPR1B 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
C14H8orf47 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
C8H9orf85 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
CCR9 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
CLDND1 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
CNN2 3 0 0 0 3 0 3 Genes 0.4284 0.2548 
CTH 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
EEF2K 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
FOLH1 3 0 0 0 3 0 3 Exon 0.4284 0.2548 

208 
 



 

FRMD5 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
GNG7 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
HNRNPM 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
JOSD1 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
KCNAB1 3 0 0 0 3 0 3 Genes 0.4284 0.2548 
PCMTD1 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
SET 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
SOD1 3 0 0 0 3 0 3 Genes 0.4284 0.2548 
UGT2B10 3 0 0 0 3 0 3 Genes 0.4284 0.2548 
VTA1 3 0 0 0 3 0 3 Muliple_Exons 0.4284 0.2548 
ZC3H11A 3 0 0 0 3 0 3 Exon 0.4284 0.2548 
ZNF804B 4 0 0 0 4 0 4 Muliple_Exons 0.4284 0.2548 
CFH 3 0 3 0 0 3 0 Genes 0.4284 0.0162 
LOC790886 3 0 3 0 0 3 0 Genes 0.4284 0.0162 
BLA-DQB 7 3 0 0 4 3 4 Genes 0.4039 0.1712 
SIRPB1 6 0 0 3 3 0 6 Genes 0.3797 0.4944 
ABCF2 6 0 1 1 4 1 5 Muliple_Exons 0.3797 0.3145 
ATP6V1E1 7 0 2 1 4 2 5 Muliple_Exons 0.3615 0.2312 
NXF3 6 1 1 0 4 2 4 Muliple_Exons 0.3565 0.1471 
CHORDC1 6 2 0 0 4 2 4 Exon 0.3501 0.1471 
AOX1 7 1 0 2 4 1 6 Muliple_Exons 0.341 0.3963 
LOC618367 3 0 0 3 0 0 3 Muliple_Exons 0.3221 0.1938 
SERPINE2 5 0 0 3 2 0 5 Exon 0.322 0.4203 
SON 5 0 0 2 3 0 5 Genes 0.322 0.4203 
ZNF548 5 0 0 2 3 0 5 Muliple_Exons 0.322 0.4203 
OR12D2 4 0 0 1 3 0 4 Genes 0.322 0.3407 
SDCBP 4 0 0 1 3 0 4 Genes 0.322 0.3407 
ACLY 4 0 0 1 3 0 4 Exon 0.322 0.3407 
KCTD10 4 0 0 3 1 0 4 Muliple_Exons 0.322 0.3407 
SLC28A1 4 0 0 1 3 0 4 Exon 0.322 0.3407 
TRAPPC9 4 0 0 1 3 0 4 Genes 0.322 0.3407 
FAM151B 4 0 1 0 3 1 3 Muliple_Exons 0.322 0.1384 
CDCA8 4 1 0 0 3 1 3 Exon 0.3018 0.1656 
RCC2 4 1 0 0 3 1 3 Exon 0.287 0.1384 
MAP2K1 4 1 0 0 3 1 3 Exon 0.287 0.1384 
SSR3 4 1 0 0 3 1 3 Genes 0.287 0.1384 
CATHL1 7 3 0 0 4 3 4 Genes 0.287 0.0879 
CATHL4 7 3 0 0 4 3 4 Genes 0.287 0.0879 
EIF2S1 7 2 0 1 4 2 5 Genes 0.2771 0.2312 
RNF220 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
ITGAD 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
FKBPL 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
JSP.1 2 0 0 0 2 0 2 Genes 0.2665 0.162 
JAM2 2 0 0 0 2 0 2 Exon 0.2665 0.162 
COG6 2 0 0 0 2 0 2 Exon 0.2665 0.162 
POLR1D 2 0 0 0 2 0 2 Genes 0.2665 0.162 
WDR75 2 0 0 0 2 0 2 Exon 0.2665 0.162 
TMEM41A 2 0 0 0 2 0 2 Exon 0.2665 0.162 
ZHX2 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
ENKUR 2 0 0 0 2 0 2 Exon 0.2665 0.162 
AP3B1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
BOD1L 2 0 0 0 2 0 2 Exon 0.2665 0.162 
C4H7orf62 2 0 0 0 2 0 2 Exon 0.2665 0.162 
C8H9orf125 2 0 0 0 2 0 2 Exon 0.2665 0.162 
C8H9orf80 2 0 0 0 2 0 2 Exon 0.2665 0.162 
CD300A 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
CGRRF1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
CHMP2B 2 0 0 0 2 0 2 Exon 0.2665 0.162 
CHMP4B 2 0 0 0 2 0 2 Exon 0.2665 0.162 
COA5 2 0 0 0 2 0 2 Genes 0.2665 0.162 
CYP2D14 2 0 0 0 2 0 2 Genes 0.2665 0.162 
DSC1 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
EIF4A2 2 0 0 0 2 0 2 Genes 0.2665 0.162 
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FABP2 2 0 0 0 2 0 2 Genes 0.2665 0.162 
FTMT 2 0 0 0 2 0 2 Genes 0.2665 0.162 
GAS7 2 0 0 0 2 0 2 Exon 0.2665 0.162 
HDHD3 2 0 0 0 2 0 2 Exon 0.2665 0.162 
HIAT1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
IP6K3 2 0 0 0 2 0 2 Exon 0.2665 0.162 
KCNK2 2 0 0 0 2 0 2 Exon 0.2665 0.162 
LIX1L 2 0 0 0 2 0 2 Exon 0.2665 0.162 
LYAR 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
MCOLN3 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
MPTX 2 0 0 0 2 0 2 Exon 0.2665 0.162 
MRAS 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
NANOG 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
NARG2 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
PDIA3 2 0 0 0 2 0 2 Exon 0.2665 0.162 
PGM2L1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
PIH1D2 2 0 0 0 2 0 2 Exon 0.2665 0.162 
POU2AF1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
RALY 2 0 0 0 2 0 2 Genes 0.2665 0.162 
RNF38 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
SETMAR 2 0 0 0 2 0 2 Exon 0.2665 0.162 
SLC13A4 2 0 0 0 2 0 2 Exon 0.2665 0.162 
SNHG12 2 0 0 0 2 0 2 Exon 0.2665 0.162 
TERC 2 0 0 0 2 0 2 Exon 0.2665 0.162 
TEX14 2 0 0 0 2 0 2 Genes 0.2665 0.162 
TMEM66 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
TPD52L2 2 0 0 0 2 0 2 Exon 0.2665 0.162 
TTF1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
TTF2 2 0 0 0 2 0 2 Muliple_Exons 0.2665 0.162 
URB2 2 0 0 0 2 0 2 Exon 0.2665 0.162 
VSTM1 2 0 0 0 2 0 2 Exon 0.2665 0.162 
ZFX 2 0 0 0 2 0 2 Exon 0.2665 0.162 
C11H9orf78 2 0 2 0 0 2 0 Exon 0.2665 -0.0056 
IFNT 2 0 2 0 0 2 0 Genes 0.2665 -0.0056 
IFNT2 2 0 2 0 0 2 0 Genes 0.2665 -0.0056 
IFNT3 2 0 2 0 0 2 0 Genes 0.2665 -0.0056 
TRPC2 2 0 2 0 0 2 0 Genes 0.2665 -0.0056 
UBN1 2 0 2 0 0 2 0 Exon 0.2665 -0.0056 
MMRN1 8 2 2 0 4 4 4 Exon 0.2659 0.0448 
LHFPL1 8 2 3 0 3 5 3 Genes 0.2512 0.036 
GPBP1 4 0 0 2 2 0 4 Exon 0.2241 0.3407 
CCDC43 3 0 0 1 2 0 3 Exon 0.1788 0.2548 
MAPRE1 3 0 0 1 2 0 3 Muliple_Exons 0.1788 0.2548 
NDUFV3 3 0 0 1 2 0 3 Exon 0.1788 0.2548 
NLRP9 3 0 0 1 2 0 3 Genes 0.1788 0.2548 
RNF146B 3 0 0 1 2 0 3 Exon 0.1788 0.2548 
RRP36 3 0 0 1 2 0 3 Muliple_Exons 0.1788 0.2548 
SUB1 3 0 0 1 2 0 3 Exon 0.1788 0.2548 
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APPENDIX 2.12 

FST ANALYSIS OF ENSEMBL CNV GENES 

 

Gene Total Angus Holstein Brahman Nellore Taurus Indicus Known/
Novel 

Breeds 
Fst 

ENSBTAG00000033169 7 0 3 0 4 3 4 Novel 0.8412 
ENSBTAG00000002913 8 0 0 4 4 0 8 Known 0.8236 
ENSBTAG00000034378 4 0 0 0 4 0 4 Novel 0.6829 
ENSBTAG00000037384 4 0 0 0 4 0 4 Novel 0.6829 
ENSBTAG00000026826 4 0 0 0 4 0 4 Novel 0.6829 
ENSBTAG00000038245 4 0 0 0 4 0 4 Novel 0.6829 
ENSBTAG00000018855 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000039437 4 0 0 0 4 0 4 Known 0.5766 
ENSBTAG00000003936 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000003935 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000024240 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000015654 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000000169 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000019020 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000013843 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000017395 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000004181 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000026657 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000008137 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000006985 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000007725 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000030529 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000001257 4 0 0 0 4 0 4 Known 0.5766 
ENSBTAG00000038720 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000026586 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000025994 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000024633 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000015534 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000018546 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000017560 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000037699 4 0 0 0 4 0 4 Known 0.5766 
ENSBTAG00000002726 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000005639 4 0 0 0 4 0 4 Known 0.5766 
ENSBTAG00000034850 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000038054 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000021059 4 0 0 0 4 0 4 Known 0.5766 
ENSBTAG00000019705 4 0 0 0 4 0 4 Known 0.5766 
ENSBTAG00000019739 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000033749 4 0 0 0 4 0 4 Novel 0.5766 
ENSBTAG00000031517 14 12 0 2 0 12 2 Novel 0.5371 
ENSBTAG00000031516 14 12 0 2 0 12 2 Novel 0.5371 
ENSBTAG00000031515 14 12 0 2 0 12 2 Novel 0.5371 
ENSBTAG00000031160 14 12 0 2 0 12 2 Known 0.5371 
ENSBTAG00000001005 14 12 0 2 0 12 2 Known 0.5371 
ENSBTAG00000033890 14 12 0 2 0 12 2 Known 0.5371 
ENSBTAG00000022339 3 0 0 0 3 0 3 Novel 0.5364 
ENSBTAG00000024692 8 0 0 4 4 0 8 Known 0.5294 
ENSBTAG00000031100 7 0 0 3 4 0 7 Known 0.5069 
ENSBTAG00000031099 7 0 0 3 4 0 7 Known 0.4681 
ENSBTAG00000026078 7 0 0 3 4 0 7 Known 0.4681 
ENSBTAG00000031097 7 0 0 3 4 0 7 Known 0.4681 
ENSBTAG00000031096 7 0 0 3 4 0 7 Known 0.4681 
ENSBTAG00000033768 5 0 0 4 1 0 5 Known 0.4673 
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ENSBTAG00000020385 5 0 0 1 4 0 5 Novel 0.4673 
ENSBTAG00000000236 5 0 0 1 4 0 5 Novel 0.4673 
ENSBTAG00000040474 5 0 0 1 4 0 5 Novel 0.4673 
ENSBTAG00000038995 5 0 0 1 4 0 5 Novel 0.4673 
ENSBTAG00000005708 5 0 0 1 4 0 5 Known 0.4673 
ENSBTAG00000030630 5 0 0 1 4 0 5 Novel 0.4673 
ENSBTAG00000020790 5 0 0 1 4 0 5 Known 0.4673 
ENSBTAG00000004082 5 1 0 0 4 1 4 Novel 0.4537 
ENSBTAG00000002110 5 1 0 0 4 1 4 Novel 0.4419 
ENSBTAG00000016117 5 1 0 0 4 1 4 Known 0.4419 
ENSBTAG00000026922 5 1 0 0 4 1 4 Known 0.4419 
ENSBTAG00000039322 5 1 0 0 4 1 4 Known 0.4419 
ENSBTAG00000002043 5 1 0 0 4 1 4 Known 0.4419 
ENSBTAG00000000953 5 1 0 0 4 1 4 Known 0.4419 
ENSBTAG00000007184 5 1 0 0 4 1 4 Novel 0.4419 
ENSBTAG00000007750 5 1 0 0 4 1 4 Known 0.4419 
ENSBTAG00000018446 6 0 0 2 4 0 6 Novel 0.4407 
ENSBTAG00000020357 6 0 0 2 4 0 6 Novel 0.4407 
ENSBTAG00000023171 6 0 0 2 4 0 6 Known 0.4407 
ENSBTAG00000025201 6 0 0 2 4 0 6 Known 0.4407 
ENSBTAG00000012026 6 0 0 4 2 0 6 Known 0.4407 
ENSBTAG00000013573 6 0 0 2 4 0 6 Novel 0.4407 
ENSBTAG00000024691 9 1 0 4 4 1 8 Known 0.4392 
ENSBTAG00000026029 9 1 0 4 4 1 8 Known 0.4392 
ENSBTAG00000022939 9 1 0 4 4 1 8 Known 0.4392 
ENSBTAG00000018854 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000020996 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000018465 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000014461 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000006059 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000033690 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000015794 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000009435 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000014393 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000014791 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000020685 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000015800 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000006253 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000010171 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000013495 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000002081 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000040337 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000037613 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000031700 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000021039 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000007644 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000020764 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000019140 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000006831 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000036087 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000005851 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000020959 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000013167 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000027221 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000017492 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000018493 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000038317 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000017352 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000023177 3 0 3 0 0 3 0 Known 0.4284 
ENSBTAG00000039995 3 0 3 0 0 3 0 Known 0.4284 
ENSBTAG00000024545 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000031348 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000008837 3 0 0 0 3 0 3 Novel 0.4284 
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ENSBTAG00000005208 3 0 3 0 0 3 0 Novel 0.4284 
ENSBTAG00000017662 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000020193 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000022715 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000019537 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000034891 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000034921 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000039697 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000034915 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000009197 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000007397 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000003668 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000042421 3 0 0 0 3 0 3 Novel 0.4284 
ENSBTAG00000042821 3 0 0 0 3 0 3 Known 0.4284 
ENSBTAG00000019588 7 3 0 0 4 3 4 Known 0.4039 
ENSBTAG00000009656 7 3 0 0 4 3 4 Known 0.4015 
ENSBTAG00000015219 11 1 2 4 4 3 8 Known 0.3953 
ENSBTAG00000009000 9 1 0 4 4 1 8 Known 0.3902 
ENSBTAG00000030360 8 1 0 3 4 1 7 Known 0.3898 
ENSBTAG00000038890 8 1 0 3 4 1 7 Known 0.3898 
ENSBTAG00000003182 8 1 0 3 4 1 7 Known 0.3898 
ENSBTAG00000000607 6 0 1 1 4 1 5 Novel 0.3797 
ENSBTAG00000039520 6 0 0 3 3 0 6 Known 0.3797 
ENSBTAG00000038357 6 0 0 3 3 0 6 Known 0.3797 
ENSBTAG00000000763 6 0 1 1 4 1 5 Known 0.3797 
ENSBTAG00000039763 6 0 1 1 4 1 5 Known 0.3797 
ENSBTAG00000040294 6 0 0 3 3 0 6 Known 0.3797 
ENSBTAG00000038824 6 0 1 1 4 1 5 Known 0.3797 
ENSBTAG00000014238 7 0 2 1 4 2 5 Known 0.3615 
ENSBTAG00000009999 11 1 2 4 4 3 8 Known 0.3582 
ENSBTAG00000036091 6 1 0 4 1 1 5 Known 0.3565 
ENSBTAG00000013626 6 1 1 0 4 2 4 Novel 0.3565 
ENSBTAG00000022501 6 1 1 0 4 2 4 Known 0.3565 
ENSBTAG00000031166 6 2 0 0 4 2 4 Novel 0.3501 
ENSBTAG00000013615 6 2 0 0 4 2 4 Novel 0.3501 
ENSBTAG00000009725 7 1 0 2 4 1 6 Known 0.341 
ENSBTAG00000030839 3 0 0 0 3 0 3 Known 0.3221 
ENSBTAG00000018840 3 0 0 0 3 0 3 Novel 0.3221 
ENSBTAG00000011019 3 0 0 3 0 0 3 Known 0.3221 
ENSBTAG00000008482 5 0 0 2 3 0 5 Novel 0.322 
ENSBTAG00000008862 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000008717 5 0 0 3 2 0 5 Known 0.322 
ENSBTAG00000007632 4 0 1 0 3 1 3 Known 0.322 
ENSBTAG00000013955 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000034416 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000019910 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000037950 4 0 3 0 1 3 1 Known 0.322 
ENSBTAG00000040409 4 0 3 0 1 3 1 Known 0.322 
ENSBTAG00000033252 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000002697 4 0 0 3 1 0 4 Novel 0.322 
ENSBTAG00000037814 5 0 0 2 3 0 5 Known 0.322 
ENSBTAG00000030410 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000036215 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000011262 5 0 0 2 3 0 5 Novel 0.322 
ENSBTAG00000013270 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000016740 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000020250 4 0 0 1 3 0 4 Novel 0.322 
ENSBTAG00000031832 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000038122 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000031833 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000031835 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000039390 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000040188 4 0 0 1 3 0 4 Known 0.322 
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ENSBTAG00000039683 4 0 0 1 3 0 4 Known 0.322 
ENSBTAG00000032597 8 2 0 2 4 2 6 Novel 0.3088 
ENSBTAG00000014326 4 1 0 0 3 1 3 Novel 0.3018 
ENSBTAG00000012816 7 1 1 1 4 2 5 Novel 0.3011 
ENSBTAG00000039038 7 1 1 4 1 2 5 Known 0.3011 
ENSBTAG00000015910 8 2 2 0 4 4 4 Novel 0.2986 
ENSBTAG00000018471 4 1 0 0 3 1 3 Novel 0.287 
ENSBTAG00000008579 4 1 0 0 3 1 3 Novel 0.287 
ENSBTAG00000009444 4 1 0 3 0 1 3 Novel 0.287 
ENSBTAG00000033983 4 1 0 0 3 1 3 Novel 0.287 
ENSBTAG00000013356 7 3 0 0 4 3 4 Known 0.287 
ENSBTAG00000020072 7 3 0 0 4 3 4 Known 0.287 
ENSBTAG00000039016 7 1 0 3 3 1 6 Known 0.2831 
ENSBTAG00000032787 7 1 1 1 4 2 5 Known 0.2831 
ENSBTAG00000038449 7 1 1 1 4 2 5 Known 0.2831 
ENSBTAG00000038932 7 2 0 1 4 2 5 Novel 0.2771 
ENSBTAG00000040300 7 2 0 1 4 2 5 Novel 0.2771 
ENSBTAG00000001945 7 2 0 1 4 2 5 Novel 0.2771 
ENSBTAG00000016311 7 2 0 1 4 2 5 Novel 0.2771 
ENSBTAG00000023912 7 2 0 1 4 2 5 Known 0.2771 
ENSBTAG00000023244 11 1 2 4 4 3 8 Known 0.2724 
ENSBTAG00000043157 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000042107 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000043673 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000007444 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000000603 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000007939 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000014724 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000017115 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000001497 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000003002 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000019232 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000012884 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000008367 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000015392 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000015776 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000016982 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000012355 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000032393 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000003864 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000005483 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000024607 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000020916 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000037632 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000026501 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000010900 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000017045 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000039431 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000003653 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000005779 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000037583 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000003018 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000020155 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000039069 2 0 2 0 0 2 0 Known 0.2665 
ENSBTAG00000034282 2 0 2 0 0 2 0 Known 0.2665 
ENSBTAG00000034285 2 0 2 0 0 2 0 Known 0.2665 
ENSBTAG00000034289 2 0 2 0 0 2 0 Known 0.2665 
ENSBTAG00000005519 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000016750 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000019275 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000000250 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000005016 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000012378 2 0 0 0 2 0 2 Known 0.2665 
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ENSBTAG00000005328 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000017141 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000015805 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000014873 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000020307 2 0 2 0 0 2 0 Novel 0.2665 
ENSBTAG00000018710 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000016635 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000008642 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000035333 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000025720 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000015569 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000027412 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000011638 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000021232 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000013387 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000016524 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000000241 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000026309 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000040351 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000037488 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000006282 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000005156 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000024759 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000011549 2 0 2 0 0 2 0 Known 0.2665 
ENSBTAG00000000770 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000031030 2 0 0 2 0 0 2 Known 0.2665 
ENSBTAG00000012549 2 0 0 2 0 0 2 Known 0.2665 
ENSBTAG00000005874 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000008126 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000004407 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000002596 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000003267 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000019107 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000003003 2 0 0 2 0 0 2 Known 0.2665 
ENSBTAG00000000812 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000011405 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000006363 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000017196 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000017716 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000004679 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000016456 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000018935 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000033603 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000037781 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000020116 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000037619 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000002069 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000019876 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000037750 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000034176 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000001736 2 0 2 0 0 2 0 Known 0.2665 
ENSBTAG00000019524 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000013579 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000010241 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000010180 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000031410 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000007730 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000026992 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000020844 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000024788 2 0 0 2 0 0 2 Known 0.2665 
ENSBTAG00000008379 2 0 0 2 0 0 2 Known 0.2665 
ENSBTAG00000011122 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000015551 2 0 0 0 2 0 2 Novel 0.2665 
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ENSBTAG00000038596 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000037630 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000039665 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000038383 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000038964 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000042475 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000043261 2 0 0 2 0 0 2 Novel 0.2665 
ENSBTAG00000042181 2 0 0 2 0 0 2 Novel 0.2665 
ENSBTAG00000043315 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000028359 2 0 0 0 2 0 2 Novel 0.2665 
ENSBTAG00000042158 2 0 0 0 2 0 2 Known 0.2665 
ENSBTAG00000010285 8 2 2 0 4 4 4 Novel 0.2659 
ENSBTAG00000032485 8 2 3 0 3 5 3 Novel 0.2512 
ENSBTAG00000022175 8 2 3 0 3 5 3 Novel 0.2512 
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APPENDIX 3.1 

SEQUENCING LIBRARY PREPARATION PROTOCOL 

 

 Sonication 

o Sonicate 8 µg of clean genomic DNA diluted in 120 µl elution buffer or 

H2O 

 Place tubes on ice during sonication 

 3-15 second pulses at 12% power, with 30 seconds pauses 

between pulses 

o Test sonication results on gel 

 Run 2% gel at 100V for 1.5 hours with 1Kb+ ladder 

 Visualize gel (Figure 3.1.1) 

• The majority of DNA should range from 200-400 bp 

 
 

o Perform PCR purification to cleanup sonicated DNA 

 Purelink PCR Kit – Invitrogen 

 Add 400 µl Binding buffer 

 Place on column 

 Centrifuge 10,000xg for 1 minute 

 Pour off liquid 

 Add 600 µl Wash buffer 

 Centrifuge 10,000xg for 1 minute 

 Pour off liquid 

 Add 300µl Wash buffer 
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 Centrifuge 10,000xg for 1 minute 

 Pour off liquid 

 Spin 2 ½ min at 14,000xg 

 Place column in new 1.7 mL tube 

 Add 35 µl elution buffer 

 Incubate 1min at room temperature 

 Spin 2 ½ min at 14,000xg 

 Nanodrop the collected liquid with the purified DNA 

o Proceed to Blunt repair if more than 4 µg DNA in remainder of sample 

 Blunt End Repair 

o Reaction components: 

 45 µl  milliQ H2O 

 30 µl  DNA 

 10 µl  T4 DNA Ligase Buffer w/ 10 mM ATP 10x (NEB# B0202S) 

 4 µl 10mM dNTPs    (Promega U151B) 

 5 µl T4 DNA Polymerase    (NEB# M0203S) 

 1 µl  Klenow Enzyme (large fragment) (NEB# M0210S) 

 5 µl  T4 PNK     (NEB# M0201S) 

o Mix reaction gently, spin down 

o Place on thermocycler for 30 minutes at 20oC 

o Purify with Qiagen PCR purification kit – elute in 34 µl EB 

 Adenylation 

o Reaction components: 

 32 µl  DNA 

 5 µl  10X Klenow Buffer (NEB2)  (NEB# 7002S) 

 10 µl  1mM dATPs   (NEB# N0440S) 

 5 µl  Klenow 3’5’ exo   (NEB# M0212S) 

o Mix reaction gently, spin down 

o Place on thermocycler for 30 minutes at 37oC 

o Purify with Qiagen MinElute purification kit – elute in 11.5 µl EB 

 Ligation 

o Reaction components: 
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 6 µl  H2O 

 10 µl  DNA 

 25 µl  2X T4 Quick DNA Ligase Buffer (NEB# ) 

 4 µl Genomic adapter mix (PE adapter) (15 µM)  

 PE_t_Adapter: (*=Phosphorothioate, HPLC purification of primer) 

• ACACTCTTTCCCTACACGACGCTCTTCCGATc*T 

 PE_b_Adapter: (P- =Phosphate, HPLC purification of primer)  

• P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 

 5 µl  T4 Quick DNA Ligase   (NEB# M0212S) 

o Mix reaction gently, spin down 

o Place on thermocycler for 15 minutes at 20oC 

o Purify with Qiagen MinElute purification kit – elute in 18 µl EB 

 Size Selection 

o Gel – Pour 2% agarose gel (Certified Low Range Ultra Agarose) 

 125 mL 1x TAE + 2.5 g Agarose + 1.3 µl Ethidium bromide 

o Add 4 µl 5x Loading buffer to ligation product 

o Add 1 kb+ ladder, samples, 1 kb+ Ladder to gel with at least 1 empty 

lane between each 

o Run at 100 V for 1 ½ hours 

o Visualize gel and record image 

o Size select 3 sizes (250, 350, 425 bp) (gel excision tips, 6.5 mm x 1.0 

mm) 

o Gel purify with Qiagen Gel Purification kit 

 Elute in 30 µl EB 
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 Enrichment 

o Reagents: 

 3 µl ~25 ng DNA 

 1 µl 25 µM PCR Primer PE1.0: (P- =Phosphate, HPLC 

purification of primer) 

• AATGATACGGCGACCACCGAGATCTACACTCTTTCCC

TACACGACGCTCTTCCGATC*T 

 19 µl H2O 

 25 µl Phusion DNA Mastermix 

 1 µl 25 µM PCR Primer PE2.0: (P- =Phosphate, HPLC 

purification of primer) 

• CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCAT

TCCTGCTGAACCGCTCTTCCGATC*T 

o Make 2 reactions per sample 

o PCR Settings: 

 98oC -  30” 

 98oC -  40”  \\\ 

 65oC -  30”  --- 12X 

 72oC -  30”  /// 

 72oC -  5’ 

 4oC -  Hold 

o Combine replicates and PCR Purify with Minelute – Elute in 20 µL EB 

 Size selection 

o Gel – Pour 2% agarose gel (Certified Low Range Ultra Agarose) 

 125 mL 1x TAE + 2.5 g Agarose + 1.3 µl Ethidium bromide 

o Add 5 µl 5x Loading buffer to ligation product 

o Add 1 kb+ ladder, samples, 1 kb+ Ladder to gel with at least 1 empty 

lane between each 

o Run at 100 V for 1 ½ hours 

o Visualize gel and record image 

o Size select (see figure below with pre & post selection gel)  (gel excision 

tips, 6.5 mm x 1.0 mm) 
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o Gel Purify – MinElute – elute in 15 µl EB 

 

 
    

 

 PAGE Confirmation of Size 

o 5% Gel: 

 1.2 mL 10X TBE 

 2 mL 29:1 Acrylamide/Bis-Acrylamide 

 8.8 mL H2O 

 Vortex 

 Add 6.8 µl Temed 

 50 µl 10% APS in H2O (0.1g + 1mL H2O)  

o Mix 3 µl library + 5ul H2O + 3uL 5X Loading Buffer 

o Add library and 1 Kb+ ladder to gel and run at 80 V, 45 minutes 

o Soak Gel in 80 mL 1X TBE + 9 µl Ethidium Bromide or 30 min 

o Visualize, discard gel 

o Estimate library size from gel 
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 Use the Qubit with HS buffer to determine concentration of library 

 Based on length and concentration, dilute to 10 nM in H2O 

 Bioanalyzer – confirm size and concentration 
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APPENDIX 3.2 

SNV CONFIRMATION PRIMERS 

 

Index Forward Primer Reverse Primer Product 
Length Gene ID 

1 ACTGAATCCCAAGACCGTGA CGTGGTAGGAGGTTTCCAGA 235 bp GRP75_BOVIN 
2 CAGCATTATCAAGCCCAGGT GGAGGGTGGTAGTGGTGTTT 217 bp LOC507269 
3 CCCACTCCCACTCACACA CCTCCGGAAATTCTAACGTG 405 bp ENSBTAG00000032597 
4 GAATACCCCCATGCTTCAGA CCACCTGGACACTGGTTAGC 212 bp SLC35F2 
5 CCCTGATTTTGGATGTCTGG CCCACACCAAATCTGACCAT 289 bp USP43 
6 GAATGACCTGGAATGGGCTA TTGAGATGCTGTCTCCCTCA 266 bp USP40 
7 AACTCTGGGGGCTACACTGA ATGGGGGTCTCGAAGGTATC 200 bp ENSBTAG00000018840 
8 CACAACATTGGGACCACAGA ATGCATGGCCCAGATTTTT 235 bp OR4K17 
9 CTCTCAGGCAGGCAGGAC CTCTTGTCTCCCCACATTCC 215 bp MGC166429 

10 GCACAGGAGGCATTGTAGGT AGCCAGCATAGGAACAGCTC 206 bp RBM12 
11 CATGAGGCATGTGGGATCTA GAATTGGGATTGCTTTCCAG 241 bp NEK5 
12 CCCCTTCAGGTTACTCCACA CCTGCTTCCTCTCCTCCTTC 205 bp ITGAD 
13 TGCAACAGACCAAGATGAGC GATCGCAGAGTTGAACACGA 216 bp DSC2 
14 CGCTCTCTCGAGCTCTCTTC AAGCTCCTACAGCCATCCAA 245 bp GIMAP4 
15 CCAGGCACTTGTGTGCAATA CCCACCCATCTATCCATCTG 253 bp ENSBTAG00000037840 
16 GTCTGACCTCCAGGCTCCTC CCTCAGAATGGGCCAGATAG 218 bp O97740_BOVIN 
17 CTCCGTGTCTCAGCCTCTTT CCTCTCCAAGCACCAAAAAC 294 bp BAT2L 
18 GCTTCATCTTGGGAGCTGAG CCTCTGTGCGAGACCTTCA 205 bp LOC521950 
29 TCTGCTTTTTGGTTTGAGCA GTTGACAAGGCAGCTTCTCC 251 bp TECRL 
20 AGCAGCAATTTTCACCGTGT CAAGAAACGTGCTGCCTATG 206 bp XIRP2 
21 CCAGCCAAACAAATGGACTT TTCAGGTGTCGTTCAAGGAA 200 bp HIAT1 
22 CCCAAAGGAAGAAGTCGATG CCATGTCCTTTTTCCCCTCT 258 bp RCN2 
23 GGATCGCACAACCAATAACC GCACACATCTGGCTGTTCTG 213 bp ENSBTAG00000011932 
24 TGCTCAGGATGGTGGTGATA CTTTCTGGACGCACTCATCA 227 bp OR8S1 
25 GTGGCTGGGGAGGAAGTAAT CCTTTGCCACATCTGGAGTT 214 bp ENSBTAG00000032145 
26 TGGCTTTATCCTAATCGTAGCC GCAGCCGGATAAGAAAATCA 260 bp UBE2D3P 
27 CCCTGATGTCACCCCTTCT GTGTCGCTCTCGTGCAGTAA 235 bp RCN3_BOVIN 
28 CCCTGAAGTTCCTCCCAACT CCGCTCCAAGTTTTCAGAAG 286 bp BTN3A2 
29 CTGCCAAGAACCATGTGATG TGACAAGGTTCCGTTATCCTG 261 bp FZD3 
30 CATCCCTGATTGTCCTTTTCA CGTACACGTCCCCATAAGAAA 245 bp ENSBTAG00000021830  
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APPENDIX 3.3 

BILOGICAL PROCESS CLASSIFICATIONS 

 
Please see attached Microsoft Excel file for Appendix 3.3 containing a list of all 

biological process terms and manually curated functional groups. 
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APPENDIX 3.4 

ANGUS AND NELLORE SNV ANALYSIS WITH MINIMUM DEPTHS OF 5 TO 10X 

 
Please see attached Microsoft Excel file for Appendix 3.4 complete SNV 

annotations against ensembl genes. The analyses are per sample with minimum read-

depths ranging from 5 to 10. SNVs are annotated based on their genic locations and on 

predicted effects on amino acids. The annotations are divided into 24 tables, 2 for each 

sample at each read-depth.  
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APPENDIX 3.5 

GENES WITH DN/DS > 1 IN ANGUS AND NELLORE 

 

Genes dN/dS >1 
Angus Nellore 

PRG4 3.2347 AOX1 2.0988 
GIMAP4 2.6353 CD163L1 1.7441 
PARK2 1.6939 NEIL3 1.6624 
GIMAP7 1.4697 STOX1 1.6376 
MCM2 1.408 DSG2 1.583 
SLC26A2 1.3159 HAVCR2 1.4066 
GSDMB 1.2306 LOC786254 1.38 
MRPL2 1.2234 LRRC6 1.3682 
KIR2DS1 1.1544 LOC534155 1.3358 
UBE2D3 1.1081 LOC100125266 1.2408 
GIMAP5 1.0165 RPS3 1.2372 
    C16H1orf170 1.2206 
    RTTN 1.1945 
    DPYD 1.1859 
    COX20 1.1798 
    ZBTB40 1.1191 
    MYT1 1.1161 
    ZSCAN26 1.1037 
    ZNF280A 1.0851 
    UBE2B 1.074 
    ITGB1BP2 1.0684 
    NBAS 1.0543 
    ADGB 1.0187 
    SGOL2 1.0165 
    TTF2 1.0134 
    ALPK2 1.0119 
    ULBP3 1.0038 
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APPENDIX 4.1 

CHIP ANNOTATION 

 

Please see attached Microsoft Excel file for Appendix 4.1 containing complete 

annotations of H3K4me3 regions. The analyses include annotations using both RefSeq 

and ensembl gene IDs. Summary tables are included for regions overlapping CpG 

islands, conserved regions, tandem repeats, CNVs, INDELs, SNVs, and regions 

enriched with DNA methylation. The annotations are divided into 8 tables: H3K4me3, 

H3K4me3 overlapping CpG islands, H3K4me3 overlapping Conserved regions, H3K4me3 

overlapping CpG islands and conserved regions, H3K4me3 overlapping DNA 

methylation, H3K4me3 overlapping CpG islands and DNA methylation, H3K4me3 

overlapping Conserved regions and DNA methylation, H3K4me3 overlapping CpG 

islands, conserved regions and DNA methylation. 
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APPENDIX 4.2 

DNA METHYLATION ANNOTATION 

 
Please see attached Microsoft Excel file for Appendix 4.2 containing complete 

annotations of DNA methylation regions. The analyses include annotations using both 

RefSeq and ensembl gene IDs. Summary tables are included for regions overlapping 

CpG islands, conserved regions, tandem repeats, CNVs, INDELs, SNVs, and regions 

enriched with DNA methylation. The annotations are divided into 2 tables: DNA 

methylation regions, DNA methylation regions not overlapping H3K4me3. 
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APPENDIX 4.3 

CHIP AND METHYLATION SNV DENSITIES AND ORS 

 

Please see attached Microsoft Excel file for Appendix 4.3 containing complete 

annotations SNV densities and ORs overlapping genomic regions including intergenic, 

intronic, exonic, 3’ UTR, and PPRs. SNV ORs were calculated for all regions in the 

presence of: H3K4me3; H3K4me3 overlapping CpG islands; H3K4me3 overlapping 

conserved regions; H3K4me3 at non-conserved regions; H3K4me3 overlapping CpG 

islands and conserved regions; H3K4me3 overlapping DNA methylation; H3K4me3 

overlapping CpG islands and DNA methylation; H3K4me3 overlapping conserved 

regions and DNA methylation; H3K4me3 overlapping CpG islands, conserved regions 

and DNA methylation; DNA Methylation overlapping CpG islands; DNA Methylation 

overlapping conserved regions; and DNA Methylation H3K4me3 overlapping CpG 

islands and conserved regions 
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APPENDIX 5.1 

PLINK ANALYSIS BATCH FILE 

 
cd C:\plink-1.07-dos 

 

plink --file BovineHD\BovineHD_9_17_2011 --make-bed --cow 

 

plink --bfile BovineHD\BovineHD_9_17_2011 --blocks --cow 

 

plink --bfile BovineHD\BovineHD_9_17_2011 --hap plink.blocks --hap-freq --cow 

 

plink --bfile BovineHD\BovineHD_9_17_2011 --het --cow 

 

plink --bfile BovineHD\BovineHD_9_17_2011 --homozyg --cow 

 

plink --file BovineHD/BovineHD_9_17_2011 --homozyg --homozyg-group --cow 
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APPENDIX 5.2 

RUNS OF HOMOZYGOSITY 

 
Please see attached Microsoft Excel file for Appendix 5.2 containing 692 runs of 

homozygosis identified by the BovineHD SNP Beadchip in four Angus and four Nellore 

cows. All locations are in respect to the bovine Umd3 genome assembly. 
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APPENDIX 5.3 

BP ANALYSIS OF IMPUTED AND NON-IMPUTED CNV GENES 

 

BP of Imputed CNV Genes 

Term Genes Fishers Method p value 

Immunity and Defense 34 25.06828014 4.87442E-05 

Signal Transduction 79 33.16667437 6.27983E-08 

Sensory Perception 79 43.11128085 2.33069E-09 

Regulation of Cell Cycle - - - 

Cellular Process 4 2.548042538 0.110430998 

Metabolism 5 3.288467146 0.069768127 

Protein processing 3 3.209985472 0.073190133 

Nucleic Acid Metabolism - - - 

Miscellaneous 6 4.812474773 0.090153871 

Developmental Process - - - 

BP of Non-Imputed CNV Genes 

Term Genes Fishers Method p value 

Immunity and Defense 8 7.22996575 0.026917386 

Signal Transduction - - - 

Sensory Perception - - - 

Regulation of Cell Cycle - - - 

Cellular Process - - - 

Metabolism - - - 

Protein processing - - - 

Nucleic Acid Metabolism - - - 

Miscellaneous - - - 

Developmental Process - - - 
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