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ABSTRACT

Stochastic approximation has been widely used since first proposed by Herbert

Robbins and Sutton Monro in 1951. It is an iterative stochastic method that attempts

to find the zeros of functions that cannot be computed directly. In this thesis, we

used the technique in several different aspects. It was used in the analysis of large

geostatistical data, in the improvement of simulated annealing algorithm also, as well

as for NMR protein structure determination.

1. We proposed a resampling based Stochastic approximation method for the

analysis of large geostatistical data. The main difficulty that lies in the analysis of

geostatistical data is the computation time is extremely long when the sample size

becomes large. Our proposed method only use a small portion of the data at each

iteration. Each time, we update our estimators based on a randomly selected subset

of the data using stochastic approximation. In this way, we use the information from

the whole data set while keep the computation time almost irrelevant to the sample

size. We proved the consistency of our estimator and showed by simulation study

that the computation time is much reduced compared to other existing methods.

2. Simulated Annealing algorithm has been widely used for optimization prob-

lems. However, it can not guarantee the global optima to be located unless a logarith-

mic cooling schedule is used. However, the logarithm rate is so slow that no one can

afford such a long cpu time. We proposed a new stochastic optimization algorithm,

the so-called simulated stochastic approximation annealing (SAA) algorithm, which

is a combination of simulated annealing and the stochastic approximation Monte

Carlo (SAMC) algorithm. It is shown that the new algorithm can work with a cool-

ing schedule that decreases much faster than in the logarithmic cooling schedule
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while guarantee the global optima to be reached when temperature tends to zero.

3. Protein Structure determination is a very important topic in computational

biology. It aims to determine different conformations for each protein, which helps

to understand biological functions such as protein-protein interactions, protein-DNA

interactions and so on. Protein structure determination consists of a series of steps

and peak picking is a very important step. It is the prerequisite for all other steps.

Manually pick the peaks is very time consuming. To automate this process, several

methods have been proposed. However, due to the complexity of NMR spectra, the

existing method is hard to distinguish false peaks and true peaks perfectly. The main

difficulty lies in identifying true peaks with low intensity and overlapping peaks.

We propose to model the spectrum as a mixture of bivariate Gaussian densities

and used stochastic approximation Monte Carlo (SAMC) method as the computa-

tional approach to solve this problem. Essentially, by putting the peak picking prob-

lem into a Bayesian framework, we turned it into a model selection problem. Because

Bayesian method will automatically penalize including too much component into the

model, our model will distinguish true peaks from noises without pre-process of the

data.
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1. INTRODUCTION: STOCHASTIC APPROXIMATION

1.1 Stochastic Approximation

Stochastic approximation methods are a series of methods that tries to find the

minima or zeros of a integration function. The problem can be written as finding

the global minima of the following expectation

min
θ∈Θ

v(θ) , E{V (θ, x)}. (1.1)

Or, equivalently, finding the zeros of the integration equation

h(θ) =

∫
X
H(θ, x)gθ(x)dx = 0, (1.2)

if we define h(θ) = v′(θ) and H(θ, x) = ∂V (θ,x)
∂θ

. Here, θ is the parameter vector,

x is the random variable, and gθ(x) is the density function for x that depends on

parameter θ. The important thing here is that we don’t get to observe the function

v(θ) or h(θ) directly, instead, we observed their noisy version V (θ) or H(θ) respec-

tively. In the literature of stochastic approximation, h(θ) is known as the mean field

function and the difference between h(θ) and its noisy version H(θ, x) is known as

observational noise, which is defined as follows:

ξt+1 = Hτt+1(θt, xt+1)− hτt+1(θt),

In 1951, Robin and Monro introduced the so-called Robbins - Monro algorithm

(1951) to solve the integration equation and the algorithm works as follows:

Algorithm 1.1.1. Stochastic Approximation
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a. Generate Xt+1 ∼ gθt(x), where t indexes the iteration.

b. Set θt+1 = θt + atH(θt, Xt+1), where at is the gain factor.

This Robbins â Monro algorithm is the most popular stochastic approximation

method used. There is also another stochastic approximation method called Kiefer-

Wolfowitz algorithm proposed by Kiefer and Wolfowitz in 1952, which is applied to

the problem of finding minima. In this thesis, we will focus the stochastic approxi-

mation method proposed by Robbins and Monro.

In the case where it is not easy to directly sample from the density function gθt(x),

people suggest to substitute step a. by the following:

a’. Generate Xt+1 from a Markov transition kernel Pθt that admit gθt(x) as the

invariant distribution.

One basic criteria for the above described algorithms to converge is that the gain

factor satisfies the following condition

∞∑
t

at =∞, and
∞∑
t

a2
t <∞. (1.3)

The first part of 1.3 says that the algorithm will not be influenced by the start point

and the second part of 1.3 says that the method is bounded in variance which makes

the algorithm converge.

1.2 Varying Truncation Stochastic Approximation MCMC

To ensure the convergence of Stochastic Approximation algorithm, some strong

conditions need to be put on the mean field function, which are usually not very

easy to verify. To loosen the conditions, several authors have proposed truncated

version of stochastic approximation. A varying truncation stochastic approximation

algorithm (Andrieu et al, 2005) works as follows:
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Algorithm 1.2.1. Varying Truncation Stochastic Approximation MCMC

(i) Generate Xt+1 that admit gθt(x) as the invariant distribution, where t indexes

the iteration.

(ii) Set θt+ 1
2

= θt + atH(θt, Xt+1), where at is the gain factor.

(iii) If ‖θt+ 1
2
− θt‖ ≤ bt and θt+ 1

2
∈ Kπk , then set θt+1 = θt+ 1

2
and πt+1 = πt;

otherwise, set θt+1 = T(θt) and πt+1 = πt + 1. Here T and πt are defined as in

algorithm 2.2.1.

Conditions for Convergence of Algorithm 1.2.1

Theoretical properties of algorithm 1.2.1 are studied under the following condi-

tions:

(A1) The function h : Θ 7→ Rd is continuous, and there exists a continuously differ-

entiable function v : Θ 7→ [0,∞) such that:

(i) There exists C0 > 0 such that

L = {θ ∈ Θ, 〈∇v(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, v(θ) < C0}, (1.4)

where 〈x, y〉 denotes the Euclidean inner product.

(ii) There exists C1 ∈ (C0,∞] such that VC1 is a compact set, where VC =

{θ ∈ Θ, v(θ) ≤ C}.

(iii) For any θ ∈ Θ \ L, 〈∇v(θ), h(θ)〉 < 0.

(iv) The closure of v(L) has an empty interior.

(A2) There exists a function V : X → [1,∞) such that for any compact subset

K ⊂ Θ, there exists a constant c such that
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(i) supθ∈K ‖H(θ, ·)‖V ≤ c;

(ii) sup(θ,θ′)∈K×K ‖H(θ, ·)−H(θ′, ·)‖V ≤ c‖θ − θ′‖.

(A3) The mean field function h(θ) is measurable and locally bounded. There exist a

stable matrix F (i.e., all eigenvalues of F are with negative real parts), ρ > 0,

and a constant c such that, for any θ∗ ∈ L (defined in (1.4)),

‖h(θ)− F (θ − θ∗)‖ ≤ c‖θ − θ∗‖2, ∀θ ∈ {θ : ‖θ − θ∗‖ ≤ ρ}.

(A4) The sequences {at} and {bt}, which are defined to be a(t) and b(t) as functions

of t and are exchangeable with a(t) and b(t), respectively, are non-increasing,

positive, and satisfy the conditions:

lim
t→∞

at = 0,
∞∑
t=0

at =∞, at+1 − at
at

= O(aτ1t+1),

lim
t→∞

bt = 0,
∞∑
t=1

{aτ2t + (at/bt)
τ3 + atb

τ4
t } <∞,

(1.5)

for some values of τ1 ∈ (1, 2], τ2 ∈ (1, 2], τ3 ∈ [2,∞) and τ4 ∈ (0, 1].

Moreover, we assume that the function a(t) is differentiable, with either (i) or

(ii) holding:

(i) a(t) varies regularly with exponent (−β), 1
2
< β < 1; that is, for any

z > 0, a(zt)/a(t)→ z−β as t→∞.

(ii) For t ≥ 1, a(t) = t0/t with t0 > −1/(2λF ), where λF denotes the largest

real part of the eigenvalue of the matrix F (defined in condition A3) with

λF < 0.

Condition (A4) can be applied to the usual gains at = t0/t
β and bt = t′0/t

β′ by
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choosing β ∈ (1
2
, 1], β′ ∈ (1

2
, β − 1

τ3
), τ3 ∈ (2,∞) and τ4 = 1. Following Pelletier

(1998), we deduce that (
at
at+1

)1/2

= 1 +
β

2t
+ o(

1

t
). (1.6)

In terms of at, (1.6) can be rewritten as

(
at
at+1

)1/2

= 1 + ζat + o(at), (1.7)

where ζ = 0 for the case (i) of (A4) and ζ = β
2t0

for the case (ii) of (A4). Clearly, the

matrix is F + ζI is still stable.

1.3 Stochastic Approximation Monte Carlo

Given a positive integrable function f(x) : x ∈ X , f ∈ L1, the corresponding

energy function is defined as U(x) = −log(f(x)). We partition the sample space X

into m disjoint subregions according to the energy function, and they can be written

as: E1 = {x : U(x) < u1}, E2 = {x : u1 < U(x) < u2},· · · , Em−1 = {x : um−2 <

U(x) < um−1} and Em = {x : U(x) > um−1}. Here u1, u2, · · · , um−1 are pre-specified

values. If we can find two values umin and umax such that umin < U(x) < umax for

all x ∈ X . Then usually we set u1, u2, · · · , um−1 to be equally spaced between umin

and umax, so we have Ui = i
m
umax + m−i

m
umin for i = 1, · · · ,m− 1. SAMC algorithm

(Liang et al., 2007) aims to sample from the following distribution:

pθ(x) ∝
m∑
i=1

f(x)

eθi
I(x ∈ Ei), (1.8)

where θ = (θ1, · · · , θm) and θi = log
∫
Ei
φ(x)dx.

Because
∫
Ei
φ(x)dx usually does not have an explicit form so we need to estimate

it. We let θti be the estimate of log
∫
Ei
φ(x)dx at iteration t. Then at time t, the

5



distribution can be estimated as:

pθt(x) ∝
m∑
i=1

f(x)

eθti
I(x ∈ Ei), (1.9)

where θt = (θt1, · · · , θtm). Then a general SAMC works as follows:

1) At iteration t, simulate a sample x(t+1) from the proposal distribution q(x(t), ·)

that admits equation (1.9) as the invariant distribution

2) Set θt+1 = θt + γt+1(et+1 − π). Where et+1 = (et+1,1, · · · , et+1,m), et+1,i = 1 if

x(t) ∈ Ei and 0 otherwise. γt+1 is called the gain factor and it is a positive non-

decreasing sequence satisfying
∑
γt =∞ and

∑
γζt <∞ for some ζ ∈ (1, 2).

6



2. A RESAMPLING-BASED STOCHASTIC APPROXIMATION APPROACH

FOR ANALYSIS OF LARGE GEOSTATISTICAL DATA ∗

In this chapter, we will introduce the method for analysis of large geostatistical

data, especially for Gaussian geostatistical model. This is a quite general method

which can be applied to any large data set that we need to model the dependency

structure between data points. we will first introduce the Gaussian geostatistical

model, then describe in detail about what does our algorithm do and why will it work.

We give theoretical prove of the asymptotic properties of our estimator. Finally, we

will show the power of this method using both simulation studies and real data

examples.

2.1 Background

A Gaussian geostatistical model can be written as follows:

Y (si) = µ(si) +X(si) + εi, εi
iid∼ N

(
0, τ 2

)
. (2.1)

Here, si, i = 1, · · · , n are the locations on a spatial region, si ∈ R2. Y (si) denotes

the observation at location si, µ(si) denotes the mean of Y (si), {X(si)} denotes

a spatial Gaussian process with E(X(si)) = 0, V ar(X(si)) = σ2, and corr(X(si),

X(sj)) = ρ(‖si− sj‖) Basically, this means that the observation can be decomposed

into a spatial process and some observational noise. And if we assume the noises

follow normal distribution, then its called Gaussian geostatistical model.

The Gaussian geostatistical model is a very popular choice for modeling spatial

∗Parts of this chapter are reprinted with permission from “A Resampling-based Stochastic Ap-
proximation Method for Analysis of Large Geostatistical Data” by Liang, F., Cheng, Y., Song, Q.,
Park, J., and Yang, P., 2013. J. Amer. Statist. Assoc., 108, 325-339. Copyright [2013] by American
Statistical Association.
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data. The key characteristic is that we assume the observations from different loca-

tion to be correlated with each other. So a very important part of the model is to

model the structure of covariance matrix. When the sample size is n, the covariance

matrix will be a n × n matrix. The computation becomes very time consuming for

large data, because we need to calculate the determinant as well as the inverse of

such a big matrix.

There are some existing methods that try to alleviate the computational burden

by finding a good approximation. For example, the covariance tapering tries to

approximate the covariance matrix by a sparse matrix with lots of zeros, see, for

example, Furrer et al. (2006), Kaufman et al. (2008) and Du et al. (2009). The

lower dimensional space process approximation tries to approximate the underlying

spatial process by find a lower dimensional representation of the spatial process,

for example, using smoothing techniques. The likelihood approximation start from

the likelihood function and find approximation directly for the likelihood function

instead of the covariance structure or the spatial process, see, for example, Fuentes

(2007), Matsuda et al. (2009) and Stein et al. (2004). And some others propose

to approximate using Markov Random Field (Rue and Tjelmeland, 2002 and Rue

and Held, 2005). However, one concern is with how good the approximation is and

how much dimension it will reduce. Secondly, even if we assume the approximation

is good and it reduces the computational time a lot, still, it will introduce loss of

information.

In order to overcome this bottleneck, we propose to use stochastic approximation.

So in order to get the parameter estimator, we only use part of the information at

each iteration. At each step, we sample a small subset of the large data set. Then

we do update of the estimator using stochastic approximation based on that subset

we sampled.

8



Another problem is about the asymptotic behavior of the estimators. A well

known fact is that the model is non-identifiable for Gaussian geostatistical data.

That is, there exists equivalent probability measures. (Stein, 2004; Zhang, 2004)

This means some parameters of the model can not be consistently estimated. This

may become an obstacle when studying the asymptotics. For geostatistical data,

there are two types of asymptotics, the expanding-domain asymptotics and the infill

asymptotics. The former describes the case when we increase the number of samples,

we also expand the region to sample from. That is, we keep the sampling density

as constant. Infill asymptotics describes the case where we fix the region to sample

from. So as we increase the sample size, the sampling density is increased as well.

Theories have been established under the expanding-domain situation. The max-

imum likelihood estimator was shown to be consistent and asymptotically normal

for different covariance models. However, the asymptotic behavior is different under

infill asymptotics. First of all, not all parameters related with covariance structure

are consistently estimated, although they will be consistently estimated after some

reparameterization. Secondly, it is not clear about the asymptotic behaviors under

infill asymptotics even after the reparameterization (Lahiri, 1996).

In this paper, we set up a series of conditions and showed that under those

conditions, the RSA estimator will be consistent and normally distributed after a

reparameterization. We achieved this goal by studying two fold of approximations.

Firstly, we studied the properties of the stochastic approximation estimator when t

goes to infinity. This can be done by following the proof of stochastic approximation.

Secondly, we examined the asymptotic properties for estimators of our estimating

equation when the sample size goes to infinity. This is done by observing our esti-

mating equation has the form of U statistic.

9



2.2 Method

We proposed the so-called resampling-based stochastic approximation (RSA)

method to solve the estimating problem. We used Y (si), i = 1, · · · , n to denote

the complete data with n observation. Suppose each time, we sample m locations

from the complete data and write it as S = (s∗1, . . . , s
∗
m). Then write the observation

for those m locations as Z(s) = (Y (s∗1), . . . , Y (s∗m))T . Since Y follows a multivariate

normal distribution, we have:

Z|S ∼ Nm(µz,Σz). (2.2)

Here, µz = (µ(s∗1), . . . , µ(s∗m))T , Σz = σ2Rz + τ 2I, and Rz is an m ×m correlation

matrix with the (i, j)-th element given by a correlation function ρ(‖s∗i − s∗j‖). For

simplicity we will just assume that

ρ(h) = exp(−h/φ), (2.3)

µ(s∗i ) = β0, where φ > 0 and β0 are some unknown parameters. The parameter

phi determines the strength of the correlation. The bigger phi is, the stronger the

correlation is. It can be easily extend to the case where we have some covariates

that is believed to affect the mean trend over locations. Assume we have p covariate

c1, · · · , cp, then we can model the mean as

µz = β01m +

p∑
j=1

βjcj, (2.4)

where 1m denotes a m-vector of 1’s.

The goal is the find the solution of the following estimating equation:

10



(
n

m

)−1 (nm)∑
i=1

H(θ, zi, si) ,

(
n

m

)−1 (nm)∑
i=1

∂ log fθ(zi|si)
∂θ

= 0, (2.5)

where fθ(z|s) is a multivariate normal density given by (2.2). The above estimating

equation can be viewed as derivative of the mean maximum log-likelihood function

defined as follows: (
n

m

)−1 (nm)∑
i=1

log fθ(zi|si). (2.6)

Or, it can also be defined as derivative of the kullback-Leibler divergence,

KL(fθ, g) = −
∫ ∫

log

(
fθ(z|s)

g(z|s)

)
g(z|s)g(s)dzds, (2.7)

Note that equation (2.5) forms a U statistics with kernel H(θ, zi, si), which is a

vector of dimension that is the same as the number of parameters. This gives very

nice properties for the estimator as we will discuss in the following section.

The respective components of H(θ, z, s) in (2.5) are given by



Hβ0(θ, z, s) = 1TmΣ−1
z (z − µz),

Hφ(θ, z, s) = −1
2
tr(Σ−1

z σ2 dRz
dφ

) + σ2

2
(z − µz)TΣ−1

z
dRz
dφ

Σ−1
z (z − µz),

Hσ2
(θ, z, s) = −1

2
tr(Σ−1

z Rz) + 1
2
(z − µz)′Σ−1

z RzΣ
−1
z (z − µz),

Hτ2
(θ, z, s) = −1

2
tr(Σ−1

z ) + 1
2
(z − µz)TΣ−2

z (z − µz),

(2.8)

where dRz
dφ

is a m×m-matrix with the (i, j)-th element given by

(
dRz

dφ

)
ij

=
hij
φ2
e−hij/φ,

hij denotes the Euclidean distance between site i and site j and Hβ0(θ, z, s) denotes

11



the element in H(θ, z, s) with respect to β0

We can rewrite equation (2.5) as follows:

h(θ) , E{H(θ, z, s)} = 0, (2.9)

Then it has the same form as for the stochastic approximation. Here, each time we

draw a subset of size m from the complete data set, we observed one realization of

H(θ, z, s).

So following the varying truncation stochastic approximation method, the RSA

algorithm follows:

Algorithm 2.2.1. Resampling-based Stochastic Approximation (RSA) Algorithm

(i) Draw (Zt+1,St+1) from the set {Y (s1), . . . , Y (sn)} at random and without re-

placement.

(ii) Update each component of θt in the following equations:



ξ
(t+ 1

2
)

0 = ξ
(t)
0 + at+1Hξ0(θt,Zt+1,St+1),

ξ
(t+ 1

2
)

1 = ξ
(t)
1 + at+1Hξ1(θt,Zt+1,St+1),

...

ξ
(t+ 1

2
)

p = ξ
(t)
p + at+1Hξp(θt,Zt+1,St+1),

φ(t+ 1
2

) = φ(t) + at+1Hφ(θt,Zt+1,St+1),

(σ2)(t+ 1
2

) = (σ2)(t) + at+1Hσ2(θt,Zt+1,St+1),

(τ 2)(t+ 1
2

) = (τ 2)(t) + at+1Hτ2(θt,Zt+1,St+1).

(iii) If ‖θt+ 1
2
− θt‖ ≤ bt and θt+ 1

2
∈ Kπk , then set θt+1 = θt+ 1

2
and πt+1 = πt;

12



otherwise, set θt+1 = T(θt) and πt+1 = πt + 1.

Here, ‖·‖ denote the Euclidean norm of a vector, at and bt are two non-increasing

positive sequences that goes to zero. {Ks, s ≥ 0} be a sequence of compact subsets

of Θ that satisfies

⋃
s≥0

Ks = Θ, and Ks ⊂ int(Ks+1), s ≥ 0, (2.10)

where int(A) denotes the interior of set A.

For the RSA Algorithm described above, we adopted a slightly different version

of stochastic approximation method, the so-called varying truncation stochastic ap-

proximation algorithm proposed by Andrieu et. al. in 2005. The main difference is

that at iteration t, we preset a certain boundary that is conditional on the previous

estimator θt−1. If θt is out of that boundary, then we set θt as a project of θt−1. And

this is called a truncation. So using this method, if we can show that the number

of truncation is finite, then the series θt is bounded by its definition. In practice, we

can set the boundary to be very large such that when do computation, there is no

need for truncation.

2.3 Theoretical Results

To show the RSA algorithm will be consistent estimator, we need to do it two fold.

Firstly, it is necessary to show that equations (2.5) will give consistent estimator.

So if we denote the estimator by θ̃n and the true parameter is θ0 then we would like

to show that as the sample size n increases, θ̃n will converge to θ0 and study what

is the convergence rate. Secondly, let θ̂
(t)
n be the estimate obtained at step t using

RSA. Then we would like to show that as the number of iterations t increases, θ̂
(t)
n

will converge to θ̃n and we are interested at the convergence rate. In the following

13



subsections we will give theorems to show the asymptotic properties for θ̃n and θ̂
(t)
n

respectively. All proofs for this section is given in Appendix A.

2.3.1 Infill Asymptotics of θ̃n

In this subsection we show the theoretical properties of θ̃n. The motivation for

the prove is based on the observation that estimating equation (2.5) has the form

of a U statistics. So we give general results for U statistics in lemma 2.3.1 - lemma

2.3.4 and results for θ̃n are given in theorem 2.3.1 - theorem 2.3.2.

Let

Un =

(
n

m

)−1 (nm)∑
i=1

ψ(X
(i)
1 , . . . , X(i)

m ), (2.11)

be a U -statistic defined on the random sample {X1, . . . , Xn}, where ψ(·) is called the

kernel of the U -statistic.

The following lemma shows the convergence of the U -statistic when X1, · · · , Xm

are dependent.

Lemma 2.3.1. Let {X1, . . . , Xn} be a random sample drawn from a bounded, sta-

tionary random field. If the mapping (x1, . . . , xm) 7→ ψ(x1, . . . , xm) is continuous

(a.e.) and E|ψ(X1, . . . , Xm)|2 <∞, then, as n→∞,

Un → E(ψ(X1, . . . , Xm)) in probability.

For RSA, the U statistic depends on a set of parameters θ, so in order to show

the dependence on θ, we define the following:

Un(θ) =

(
n

m

)−1 (nm)∑
i=1

ψθ(X
(i)
1 , . . . , X(i)

m ) and U(θ) = E(ψθ(X1, . . . , Xm)). (2.12)

Lemma 2.3.1 shows that Un(θ) → U(θ) in probability for each fixed θ. We are
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going to show that the value that minimizes Un(θ) will converge to that of U(θ)

under some mild conditions.

Lemma 2.3.2. Let {X1, . . . , Xn} be a random sample drawn from a bounded, sta-

tionary random field. Let Θ0 = {θ∗ ∈ Θ : U(θ∗) = supθ U(θ)} denote the set of global

maximizers of U(θ). Assume the following conditions hold:

(i) The mapping θ 7→ ψθ(X1, . . . , Xm) is continuous for almost all (X1, . . . , Xm)

and satisfies

E|ψθ(X1, . . . , Xm)|2 <∞. (2.13)

(ii) The mapping (x1, . . . , xm) 7→ supθ∈O ψθ(x1, . . . , xm) is measurable for every

sufficiently small ball O ⊂ Θ and satisfies

E| sup
θ∈O

ψθ(X1, . . . , Xm)|2 <∞. (2.14)

Then for any estimators θ̃n such that Un(θ̃n) ≥ Un(θ∗) + op(1) for some θ∗ ∈ Θ0, for

every ε > 0 and every compact set K ⊂ Θ,

P (d(θ̃n,Θ0) ≥ ε and θ̃n ∈ K)→ 0,

where d(·, ·) denotes a distance metric.

To study the infill asymptotics of θ̃n, we define

lθ(z, s) = log fθ(z|s), M(θ) = E[lθ(z, s)], Mn(θ) =

(
n

m

)−1 (nm)∑
i=1

lθ(zi, si).

(2.15)

Thus, Mn(θ) forms a U -statistic estimator of M(θ) with the kernel lθ(z), and mini-

mizing (2.5) is equivalent to maximizing Mn(θ).
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The following theorem shows that θ̃n will converge to the set Θ0 = {θ∗ : Elθ∗(Z,S) =

supθ∈ΘElθ(Z,S)} in probability. Not that it is a result that is independent of the

subset sample size m.

Theorem 2.3.1. Let {Y (s1), . . . , Y (sn)} denote a random sample drawn from the

spatial Gaussian model (2.1) defined on a bounded region, let θ̃n denote a solution to

(2.5), and let Θ0 = {θ∗ ∈ Θ : Elθ∗(Z,S) = supθ∈ΘElθ(Z,S)}, where (Z,S) denotes

a random sample of size m drawn from model (2.1). Assume Θ is compact, then for

every ε > 0,

P (d(θ̃n,Θ0) ≥ ε)→ 0

as n→∞, where d(·, ·) denotes a distance metric.

The following lemma shows normality of the U -statistic when X1, · · · , Xm are

dependent. To prove this lemma, we assume that the function ψ(x1, . . . , xm) is con-

tinuous (a.e.) and E|ψ(X1, . . . , Xm)|2 <∞. In addition, we impose some constraints

on the sampling procedure of Sn = {X1, . . . , Xn}: Sn is drawn through a procedure

which ensures that for 1 ≤ k ≤ m− 1 and any α > 0,

E|ψk,n(X1, . . . , Xk)|2 is uniformly bounded w.r.t. n and nασ2
k,n →∞ as n→∞,

(2.16)

where ψk,n(x1, . . . , xk) = E{ψ(X1, . . . , Xm)|X1 = x1, . . . , Xk = xk,Sn} is the condi-

tional expectation of ψ(X1, . . . , Xm) based on the finite population Sn, and σ2
k,n =

Var(ψk,n(X1, . . . , Xk)). Let ψk(x1, . . . , xk) = E{ψ(X1, . . . , Xm)|X1 = x1, . . . , Xk =

xk}. Be aware that E(|ψk,n(X1, . . . , Xk)|2) is actually the second-order sample mo-

ments of ψk and σ2
k,n the sample variance of ψk. This assumption essentially requires

that the sample {X1, . . . , Xn} resembles the underlying random field such that σ2
k,n

converges to a constant as n→∞. This assumption is satisfied except that the sam-
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pling procedure is degenerated to drawing samples from a single site or the function

ψk(·) is degenerated to taking a constant value.

Lemma 2.3.3. Let Sn = {X1, . . . , Xn} be a random sample drawn from a bounded,

stationary random field. Consider the U-statistic defined in (2.11). Assume the

following conditions hold:

(i) The function ψ(x1, . . . , xm) is continuous (a.e.), and E|ψ(X1, . . . , Xm)|2 <∞.

(ii) Sn satisfies the condition (2.16).

Then, as n→∞,

(Un − E(ψ(X1, . . . , Xm)))/
√

Var(Un)⇒ N(0, 1),

where ⇒ denotes the convergence in distribution, and N(0, 1) denotes the standard

normal distribution.

Lemma 2.3.4 shows the asymptotic normality of the estimator θ̃n, which maxi-

mizes Un(θ) defined in (2.12).

Lemma 2.3.4. Let {X1, . . . , Xn} be a random sample drawn from a bounded sta-

tionary random field. Assume the following conditions hold:

(i) The parameter space Θ is compact.

(ii) The kernel ψθ(·) is twice continuously differentiable on the interior of Θ, and

satisfies

E|ψθ(X1, . . . , Xm)|2 <∞, E‖ ∂
∂θ
ψθ(X1, . . . , Xm)‖2 <∞,

E‖ ∂
2

∂θ2
ψθ(X1, . . . , Xm)‖2 <∞. (2.17)
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(iii) The mapping (x1, . . . , xm) 7→ supθ∈O ψθ(x1, . . . , xm) is measurable for every

sufficiently small ball O ⊂ Θ and satisfies

E| sup
θ∈O

ψθ(X1, . . . , Xm)|2 <∞. (2.18)

(iv) Sn satisfies the condition (2.16); that is, there exists a constant C such that

for 1 ≤ k ≤ m− 1,

sup
n
E(‖ ∂

∂θ
ψθ,k(X1, . . . , Xk)‖2|Sn) < C, a.s.,

where ∂
∂θ
ψθ,k(x1, . . . , xk) = E

{
∂
∂θ
ψθ(X1, . . . , Xm)|X1 = x1, . . . , Xk = xk)

}
. In

addition, for any α > 0 and 1 ≤ k ≤ m− 1, nα‖Σk,n‖ → ∞ as n→∞, where

Σk,n denotes the sample covariance matrix of ∂
∂θ
ψθ,k(X1, . . . , Xk).

Then for any estimators θ̃n such that Un(θ̃n) ≥ Un(θ∗) + op(1) for some θ∗ ∈ Θ0,

θ̃n − θ∗ ⇒ N(0, H−1
∗ ΣH−1

∗ ),

where H∗ = E
{
∂2ψθ(X1,...,Xm)

∂θ∂θ′
|θ=θ∗

}
is the expected Hessian of ψθ(X1, . . . , Xm) at θ∗,

and Σ is the covariance matrix of the U-statistic defined by the kernel ∂ψθ(X1,...,Xm)
∂θ

|θ=θ∗.

Theorem 2.3.2 concerns the asymptotic normality of the minimizer of the Kullback-

Leibler divergence.

Theorem 2.3.2. Let {Y (s1), . . . , Y (sn)} be a random sample drawn from the spatial

Gaussian model (2.1) defined on a bounded region, let θ̃n denote a solution to (2.5),

and let Θ0 = {θ∗ ∈ Θ : Elθ∗(Z,S) = supθ∈ΘElθ(Z,S)}, where (Z,S) denotes a

random sample of size m drawn from model (2.1). Assume that Θ is compact, the

model is identifiable, and the sampling procedure of {Y (s1), . . . , Y (sn)} satisfies the
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condition (iv) of Lemma 2.3.4 (with ψθ(·) = lθ(·)). Then

θ̃n − θ∗ ⇒ N(0, H−1
∗ ΣH−1

∗ ), (2.19)

where H∗ = E
{
∂2lθ(Z ,S)

∂θ∂θ′
|θ=θ∗

}
is the expected Hessian of lθ(z) at θ∗, and Σ is the

covariance matrix of the U-statistic defined by the kernel ∂lθ(z,s)
∂θ
|θ=θ∗.

2.3.2 Stochastic Approximation Asymptotics of θ̂
(t)
n

Algorithm 2.3.1. Varying Truncation Stochastic Approximation

(i) Generate Xt+1 ∼ gθt(x), where t indexes the iteration.

(ii) Set θt+ 1
2

= θt + atH(θt, Xt+1), where at is the gain factor.

(iii) If ‖θt+ 1
2
− θt‖ ≤ bt and θt+ 1

2
∈ Kπk , then set θt+1 = θt+ 1

2
and πt+1 = πt;

otherwise, set θt+1 = T(θt) and πt+1 = πt + 1. Here T and πt are defined as in

algorithm 2.2.1.

The varying truncation stochastic approximation algorithm can been seen as a

special case of varying truncation stochastic approximation MCMC algorithm given

in Andrieu et al. (2005). Since the only difference is that at each iteration the new

sample Xt+1 is generated through an exact sampler instead of a MCMC sampler.

The following two lemmas are a restatement of what’s given in their paper that can

be applied to the above algorithm.

Lemma 2.3.5. Assume the conditions (A1), (A2) and (A4) (given in Introduction)

hold. Let kπ denote the iteration number at which the π-th truncation occurs in the

simulation. Let X0 ⊂ X be such that supx∈X0
V (x) < ∞ and K0 ⊂ VC0, where VC0

is defined in (A1). Let {θt} be given by Algorithm 2.3.1. Then there exists almost
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surely a number, denoted by πs, such that kπs <∞ and kπs+1 =∞; that is, {θt} can

be kept in a compact set almost surely. In addition,

d(θt,L)→ 0, a.s.,

where L is defined in (A1), and d(θ,L) = infθ′{‖θ − θ′‖ : θ′ ∈ L} denotes a distance

measure induced by the Euclidian norm.

Lemma 2.3.6. Assume the conditions (A1), (A2), (A3), and (A4) (given in Appendix

B) hold. Let the simulation start with a point (θ0, X0) ∈ K0 × X , where K0 ⊂ VC0

(defined in (A1)) and supX∈X V (X) < ∞. Let {θt} be given by Algorithm 2.3.1.

Conditioned on Λ(θ∗) = {θt → θ∗},

θt − θ∗√
at
⇒ N(0,Σsa), (2.20)

where θ∗ ∈ L as defined in (A1), N(·, ·) denotes the Gaussian distribution and

Σsa =

∫ ∞
0

e(F ′+ζI)tΓe(F+ζI)tdt, (2.21)

where F is defined in (A3), ζ is defined in (A.4), and Γ is defined by

1

N

N∑
t=1

E(εt+1ε
T
t+1|Ft)→ Γ,

with εt+1 = H(θt, Xt+1) − h(θt), and Ft = σ{θ0, X0, . . . , θt, Xt} being a σ-algebra

formed by {θ0, X0, . . . , θt, Xt}.

Based on the above results for algorithm 2.3.1. It is easily to get the following

theorems by checking that the conditions (A1), (A2), (A3), and (A4) hold for RSA

algorithm.
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Theorem 2.3.3. Let {Y (s1), . . . , Y (sn)} be a random sample drawn from a spatial

Gaussian model (2.1), which is defined on a bounded region and has an exponential

correlation function. Let L = {θ : ∂KL(fθ, g̃)/∂θ = 0} denote the set of solutions

to the system of equations (2.5). Assume Θ is compact and let {θ̂(t)
n } be given by

Algorithm 2.2.1. Then limt→∞ d(θ̂
(t)
n ,L) = 0 a.s. as t→∞.

Theorem 2.3.4. Let {Y (s1), . . . , Y (sn)} be a random sample drawn from a spatial

Gaussian model (2.1), which is defined on a bounded region and has an exponential

correlation function. Let L = {θ : ∂KL(fθ, g̃)/∂θ = 0} denote the set of solutions

to the system of equations (2.5). Assume the model (2.1) is identifiable and Θ is

compact. Let {θ̂(t)
n } be given by Algorithm 2.2.1. Then, given Λ(θ∗) = {θ̂(t)

n → θ∗},

θ̂
(t)
n − θ∗√
at

⇒ N(0,Σsa), (2.22)

where θ∗ ∈ L and Σsa is as defined in Lemma 2.3.6.

As a summary of Theorem 2.3.2 and Theorem 2.3.4, we note that θ̂
(t)
n is asymp-

totically normally distributed, and its asymptotic distribution is given by

θ̂(t)
n ⇒ N(θ∗, atΣsa +H−1

∗ ΣH−1
∗ ),

where H∗ and Σ are given in Theorem 2.3.2 and Σsa is given in Theorem 2.3.4. The

term atΣsa of the covariance matrix represents the part of Monte Carlo error in θ̂
(t)
n .

2.4 Simulation Examples

2.4.1 A Comparison with MLE

In this example, we consider a geostatistical model with measurement errors.

The model is specified by (2.1) with β0 = β1 = 1, φ = 25, σ2 = 1, τ 2 = 1.0, and
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Table 2.1: A comparison with MLE for 50 simulated datasets with nugget effect.

Estimator m β̂0 β̂1 φ̂/σ̂2 τ̂ 2 CPU(m)
100 1.022(0.068) 0.998(0.009) 19.278(0.768) 0.939(0.010) 0.3

RSA 300 1.016(0.065) 1.000(0.007) 22.046(0.684) 0.974(0.009) 6.4
500 1.013(0.064) 1.001(0.007) 23.084(0.675) 0.977(0.008) 29.3
700 0.997(0.063) 0.999(0.006) 24.023(0.659) 0.993(0.007) 81.5

MLE — 1.000(0.061) 1.000(0.006) 25.269(0.72) 0.999(0.007) 19.4
True — 1.000 1.000 25.000 1.0 —

the explanatory variable c1 is generated from a Gaussian distribution with mean 0

and standard deviation 0.5. Using the package geoR (Ribeiro Jr and Diggle, 2010),

we simulated 50 datasets of size n = 2000 with the sampling sites being uniformly

distributed in a bounded region of [0, 100]×[0, 100]. We use this example to illustrate

how the RSA estimator is related to the MLE.

For each dataset, RSA was run four times with m = 100, 300, 500 and 700,

respectively. We set a0 = 0.01 for the runs with m = 100, 300 and 500 and a0 = 0.001

for the run with m = 700. Each run consisted of 2500 iterations. The numerical

results are summarized in Table 2.1.

2.5 Data Examples

We consider the precipitation data from the National Climatic Data Center for the

years 1895 to 1997. It available at /www.image.ucar.edu/GSP/Data/US.monthly.met/.

In this analysis, we analyze the monthly total precipitation anomalies, which are

defined as the monthly totals standardized by the long-run mean and standard de-

viation for each station. The data we considered is the precipitation anomalies of

April 1948. The reason why we choose to work on this dataset is two fold. Firstly,

the dataset is large, consisting of 11,918 stations. Note that part of the data was
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Table 2.2: Numerical results of RSA for monthly precipitation in April 1948.

Method m β̂0 φ̂ σ̂2 τ̂ 2 CPU(m)
0.163 183.71 0.825 0.059 29.6

500
(0.000) (0.45) (0.003) (0.000)

RSA
0.161 179.38 0.829 0.057 84.1

700
(0.001) (1.15) (0.001) (0.000)

MLE 0.138 164.20 0.807 0.057 10,340.4

imputed by Johns et al. (2003), but for the purpose of illustration, we follow Furrer

(2006) to treat all data as real observations. Secondly, the data show no obvious non-

stationarity or anisotropy. Otherwise, it would require a more complicated model,

such as a mixture spatial model, than is considered here.

In our analysis, we first divide the data into two parts, a random subset of 11,000

observations as the training set and the remaining 918 observations as the test set.

RSA was applied to the training data with m = 500 and m = 700. For each setting

of m, RSA was run for 5 times with a0 = 0.001 and each run consisted of 2500

iterations. The results are summarized in Table 2.2. It indicates that RSA works

very stable for this example. The standard deviations of all parameters are quite

small. We also used krigging (Stein, 1999) to do prediction on the test set, and the

prediction performance is quite well.
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3. SIMULATED STOCHASTIC APPROXIMATION ANNEALING FOR

GLOBAL OPTIMIZATION WITH A SQUARE ROOT COOLING

SCHEDULE

In this chapter, We will introduce a new global optimization method, the so-called

simulated stochastic approximation annealing (SAA) algorithm. This is a general

optimization method, which can be applied to functions with high dimensional pa-

rameters. We will first describe the simulated annealing algorithm (Kirkpatrik et al.,

1983 and Cerny, 1985), then introduce the proposed new method. We will discuss

intuitively why our method is valid and show the theoretical results. Finally, We

will show some numerical results to demonstrate the effect and advantages of SAA

algorithm.

3.1 Background

Simulated annealing is a Monte Carlo method that aims to find the global optima.

It was independently described by Scott Kirkpatrick, C. Daniel Gelatt and Mario

P. Vecchi in 1983 and by Vlado Cerny in 1985. After its introduction, it has been

widely used in many different area. Given a function U(x) that we want to minimize,

simulated annealing method aims to sample from the following distribution

fτ (x) ∝ exp{−U(x)

τ
} (3.1)

with τ being a changing parameter that is nonincreasing. The function U(x) is called

the energy function. The parameter τ is called temperature and the nonincreasing

path it follows is called a cooling schedule. If we make the temperature to be a pos-

itive number close to 0, then essentially sampling from distribution 3.1 is equivalent
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to locating the global minima of function U(x). The simulated annealing algorithm

works as follows:

Algorithm 3.1.1. (Simulated Annealing)

1. Initialize the simulation at temperature τ1 and an arbitrary sample x0 ∈ X .

2. At each temperature τi, simulate the distribution fτi(x) for ni iterations using

the MH sampler. Pass the final sample to the next lower temperature level as

the initial sample.

This method is easy to work with. And when the temperature decreases slowly,

it is guaranteed that the global minima will be reached. However, as already dis-

cussed, the problem lies in the strict restriction put on the cooling schedule to ensure

convergence.

3.2 The Simulated Stochastic Approximation Annealing Algorithm

Now let’s introduce the set up for simulated stochastic approximation annealing

(SAA) algorithm. SAA algorithm tries to solve the exact same problem as simulated

annealing, that is, to minimize the energy function U(x). The difference is that we

proposed a slightly different sampling scheme.

Be reminded that when the temperature is very close to zero, the shape for

density function fτ (x) described in equation 3.1 will be very spiky so them sample

can easily get trapped. So inspired by stochastic approximation monte carlo (SAMC)

method, we devide the sample space X into m disjoint subregions and adjust the

density function based on its volume within each subregions. Denote the subregions

as E1, · · · , Em, and define them as follows: Let E1, ..., Em denote a partition of the
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sample space X , which are made according to the energy function as follows:

E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤ u2}, . . . , Em−1 = {x : um−2 < U(x)

≤ um−1}, Em = {x : U(x) > um−1},

(3.2)

where u1 < u2 < . . . < um−1 are pre-specified numbers. We define the weight vector

wτ = (w
(1)
τ , . . . , w

(m)
τ ), w

(i)
τ =

∫
Ei
e−U(x)/τdx. Then SAA algorithm aims to sample

from the following distribution.

fwτ ,τ (x) ∝
m∑
i=1

πie
−U(x)/τ

w
(i)
τ

I(x ∈ Ei), (3.3)

Here πi’s satisfy the constraints: πi > 0 for all i and
∑m

i=1 πi = 1. If we integrate

equation 3.3 on each subregion, then it is easy to see that the sampling frequency on

subregion Ei will be equal to πi. This gives SAA very good properties even when the

temperature is very close to zero. So if we know the weight vector wτ , then we can

simply use a NH sampling scheme and get the global optima. Although the weight

vector is unknown to us, in the process of sampling, we do know the actual sampling

frequencies for each subregion, which is somehow an indicator for the area of each

subregion. In order to accommodate the fact that all wi’s are greater than zero, we

set θ
(i)
τ = log(w

(i)
τ /πi) for i = 1, . . . ,m, let θτ = (θ

(1)
τ , . . . , θ

(m)
τ ), let θt denote the

working estimator of θτ at iteration t, and let Θ denote the space of θt. Then the

SAA algorithm works as follows:

Let {Mk, k = 0, 1, . . .} be a sequence of positive numbers increasingly diverging

to infinity, which work as truncation bounds of {θt}. Let σt be a counter for the

number of truncations up to iteration t, and σ0 = 0. Let θ̃0 be a fixed point in Θ.

Fix an arbitrary initial value θ0, then SAA iterates as follows:
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Algorithm 3.2.1. (SAA Algorithm)

1. (Sampling) Simulate a sample Xt+1 with a single MH update, which starts with

Xt and leaves the following distribution invariant:

fθt,τt+1(x) ∝
m∑
i=1

exp
{
−U(x)/τt+1 − θ(i)

t

}
I(x ∈ Ei), (3.4)

where I(·) is the indicator function.

2. (θ-updating) Set

θt+ 1
2

= θt + γt+1Hτt+1(θt, xt+1), (3.5)

where Hτt+1(θt, xt+1) = et+1 − π, et+1 = (I(xt+1 ∈ E1), ..., I(xt+1 ∈ Em)), and

π = (π1, . . . , πm).

3. (Truncation) If ‖θt+ 1
2
‖ ≤ Mσt, set θt+1 = θt+ 1

2
; otherwise, set θt+1 = θ̃0 and

σt+1 = σt + 1.

Using SAA algorithm described above, we achieved two goals at the same time.

1. We used samples to estimate weights or θ for each subregion.

2. Based on the estimates of θi’s we sampled from the desired distribution 3.3

It is reasonable to believe that under some mild condition, SAA algorithm gives

estimator θ that converges to the true value and provide a sampling scheme that

helps to avoid local trap problem. We will give formal statement and proof for the

above assertion.
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3.3 Convergence

We can view SAA in a different perspective. It can be views as a SAMCMC

algorithm that solves the following integration equation:

hτ∗(θ) =

∫
Hτ∗(θ, x)fθ,τ∗(x)dx = 0, (3.6)

where fθ,τ∗(x) denotes a density function dependent on θ and the limiting temper-

ature τ∗. And we use θ∗ to denote a solution to the target equation (3.6). Because

the temperature is changing over time, so actually, we can write the working target

sampling distribution at iteration t as:

hτt(θ) =

∫
Hτt(θ, x)fθ,τt(x)dx = 0, t = 1, 2, . . . . (3.7)

Here fθ,τt(x) is a density function dependent on θ and the temperature τt.

In order to show the convergence of SAA algorithm, we follow the general proce-

dure for any stochastic approximation algorithm. That is, we want to show the mean

field function, the observational noise and the step size to have some nice properties.

1. We want to make sure the mean function is stable enough that if our sample

is at a place that is close to the true values, then there is a big chance that it

will go toward the right direction.

2. The observational noise can be canceled out during iterations in some sense.

3. The gain factor is large at the beginning that make the algorithm to be able

to search through the whole parameter space. Also, it should be small enough

when number of iterations become large such that the estimator will not jump

around towards the end of the iteration.
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We will describe each of the conditions sufficient for the SAA algorithm to con-

verge. Those conditions are not the necessary conditions.

It is easy to get that the mean field function of SAA is given by

hτ (θ) =

∫
Hτ (θ, x)fθ,τ (x)dx =

(
S

(1)
τ (θ)

Sτ (θ)
− π1, . . . ,

S
(m)
τ (θ)

Sτ (θ)
− πm

)
, (3.8)

where S
(i)
τ (θ) =

∫
Ei
e−U(x)/τdx/eθ

(i)
, and Sτ (θ) =

∑m
i=1 S

(i)
τ (θ). And following Liang

et. al. (2007), we define

vτ (θ) =
1

2

m∑
i=1

(
S

(i)
τ (θ)

Sτ (θ)
− πi

)2

, (3.9)

which is the same function as in equation (1.1). Again, hτ (θ) is the derivative of

vτ (θ) It is known as Lyapunov function in the literature of stochastic approximation.

In the setting of SAA algorithm, both hτ (θ) and vτ (θ) have very nice properties by

noticing that they are both bounded on the space Θ× T

Conditions on mean field function

(A′1) (Stability conditions)

(i) The function hτ (θ) is bounded and continuously differentiable with respect

to both θ and τ , and there exists a non-negative, upper bounded, and

continuously differentiable function vτ (θ) such that for any ∆ > δ > 0,

sup
δ≤d((θ,τ),L)≤∆

∇T
θ vτ (θ)hτ (θ) < 0, (3.10)

where L = {(θ, τ) : hτ (θ) = 0, θ ∈ Θ, τ ∈ T} is the zero set of hτ (θ), and

d(z, S) = infy{‖z − y‖ : y ∈ S}. Further, the set v(L) = {vτ (θ) : (θ, τ) ∈

L} is nowhere dense.
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(ii) Both ∇θvτ (θ) and ∇τvτ (θ) are bounded over Θ×T. Here ∇θ denotes the

gradient with respect to theta and ∇τ denotes the gradient with respect

to tau In addition, for any compact set K ⊂ Θ, there exists a constant

0 < c <∞ such that

sup
(θ,θ′)∈K×K,τ∈T

‖∇θvτ (θ)−∇θvτ (θ
′)‖ ≤ c‖θ − θ′‖,

sup
θ∈K,(τ,τ ′)∈T×T

‖∇θvτ (θ)−∇θvτ ′(θ)‖ ≤ c|τ − τ ′|,

sup
θ∈K,(τ,τ ′)∈T×T

‖hτ (θ)− hτ ′(θ)‖ ≤ c|τ − τ ′|.

(3.11)

Conditions on observation noise

In the literature, conditions put on observation noise can be categorized into two

approaches. One approach put conditions on the observation noise directly and the

other approach put conditions through the Markov transition kernel.

In this paper, we assume that for any θ ∈ Θ and τ ∈ T, the Markov transition

kernel Pθ,τ satisfies the Doeblin condition, which is equivalent to assuming that the

resulting Markov chain is uniformly ergodic (Nummelin, 1984, Theorem 6.15).

(A′2) (Doeblin condition) For any given θ ∈ Θ and τ ∈ T, the Markov transition

kernel Pθ,τ is irreducible and aperiodic. In addition, there exist an integer l,

0 < δ < 1, and a probability measure ν such that for any compact subset

K ⊂ Θ,

inf
θ∈K,τ∈T

P l
θ,τ (x,A) ≥ δν(A), ∀x ∈ X , ∀A ∈ BX ,

where BX denotes the Borel set of X ; that is, the whole support X is a small

set for each kernel Pθ,τ , θ ∈ K and τ ∈ T.

Note that if the drift function V (x) ≡ 1, then V -uniform ergodicity is reduced
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to uniform ergodicity. To verify (A′2), one may assume that X is compact, U(x)

is bounded in X , and the proposal distribution q(x, y) satisfies the local positive

condition:

(Q) There exists δq > 0 and εq > 0 such that, for every x ∈ X , |x − y| ≤ δq ⇒

q(x, y) ≥ εq.

Then the condition (A′2) holds following from Roberts and Tweedie (1996, The-

orem 2.2), where it is shown that if the target distribution is bounded away from 0

and ∞ on every compact set of its support X , then the MH chain with a proposal

satisfying (Q) is irreducible and aperiodic, and the every non-empty compact set is

a small set.

The proposals satisfying the local positive condition can also be easily designed

for both continuous and discrete systems. For continuous systems, q(x, y) can be set

to a random walk Gaussian proposal, y ∼ N(x, σ2Idx), where σ2 can be calibrated to

have a desired acceptance rate, e.g., 0.2 ∼ 0.4. For discrete systems, q(x, y) can be

set to a discrete distribution defined on a neighborhood of x. Besides the single-step

MH move, the multiple-step MH move, the Gibbs sampler, and the Metropolis-

within-Gibbs sampler can also be shown to satisfy condition (A2) under appropriate

conditions, see e.g. Rosenthal (1995; Lemma 7) and Liang (2009b) for the proofs.

Note that to satisfy (A2), X is not necessarily compact. Rosenthal (1995) gave one

example for which the sample space is unbounded, yet the Markov chain is uniformly

ergodic.

Conditions on gain factor and temperature sequences

(A′3) (Conditions on {γt} and {τt})

(i) The sequence {γt} is positive, non-increasing and satisfies the following
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conditions:

∞∑
t=1

γt =∞, γt+1 − γt
γt

= O(γιt+1),
∞∑
t=1

γ
(1+ι′)/2
t √

t
<∞, (3.12)

for some ι ∈ [1, 2) and ι′ ∈ (0, 1).

(ii) The sequence {τt} is positive and non-increasing and satisfies the following

conditions:

lim
t→∞

τt = τ∗, τt − τt+1 = o(γt),
∞∑
t=1

γt|τt − τt−1|ι
′′
<∞, (3.13)

for some ι′′ ∈ (0, 1), and

∞∑
t=1

γt|τt − τ∗| <∞, (3.14)

As shown in Chen (2002, p.134), the condition
∑∞

t=1
γ
(1+ι′)/2
t √

t
<∞ implies

∞∑
t=1

γ1+ι′

t <∞, (3.15)

which is often assumed in studying the convergence of stochastic approximation

algorithms. The condition (3.13) implies that {τt} cannot decrease too fast, and it

should be set according to the gain factor sequence {γt}. The condition (3.14) also

rules out the settings that {τt} converges to a point with a big gap to τ∗. For the

sequences {γt} and {τt}, one can typically set

γt =
C1

tς
, τt =

C2√
t

+ τ∗, (3.16)

for some constants C1 > 0, C2 > 0, and ς ∈ (0.5, 1]. Then it is easy to verify that
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(3.16) satisfies (A′3).

Under the above conditions, we have the following theorems concerning the con-

vergence of {θt}. Theorem 3.3.1 shows that {θt} remains in a compact subset of

Θ.

Theorem 3.3.1. Assume that T is compact and the conditions (A′1)-(A′3) holds. If

θ̃0 used in the SAA algorithm is such that supτ∈T vτ (θ̃0) < inf‖θ‖=c0,τ∈T vτ (θ) for some

c0 > 0 and ‖θ̃0‖ < c0, then the number of truncations in SAA is almost surely finite;

that is, {θt} remains in a compact subset of Θ almost surely.

The proof of Theorem 3.3.1 follows the proof of Theorem 2.2.1 of Chen (2002)

but with some modifications related with the observation noise, mean field function,

and Lyapunov function. The details of the proof can be found in the Appendix B.

Theorem 3.3.2. Assume the conditions of Theorem 3.3.1 hold. Then, as t→∞,

d(θt,Lτ∗)→ 0, a.s.,

where Lτ∗ = {θ ∈ Θ : hτ∗(θ) = 0} and d(z, S) = infy{‖z − y‖ : y ∈ S}.

The proof of theorem 3.3.2 is a reproduction of the proof of Theorem 5.5 of An-

drieu et al. (2005) but with some modifications for accommodating the temperature

sequence {τt}. The details of the proof can be found in Appendix B. As one can

see from the proofs of these two theorems, the expanding truncation weakens the

condition of the Markov transition kernel for SAA. Without this technique, a more

restrictive condition may need to be assumed. For example, one may assume that

Θ is compact or the Doeblin condition holds uniformly over the space Θ × T. The

former is usually less acceptable and the latter is usually difficult to verify.
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Let θ̃∗ ∈ Lτ∗ be the convergence point of {θt} in a run of SAA. The value of θ̃∗

may be different from the true value θ∗ by a constant vector. Since the probability

density/mass function fθ,τ (x) is invariant to the transformation θ∗ ← θ∗ + c for a

constant vector c, in what follows we will denote by θ∗ the point that θt converges

to. Since fθ,τ (x) is a continuous function of θ and τ , Theorem 3.3.2 implies that as

t→∞,

fθt,τt+1(x)→ fθ∗,τ∗(x), a.s. (3.17)

However, for stochastic optimization problems, the above convergence is not enough.

Moreover, since SAA falls into the class of adaptive MCMC algorithms, it is unclear

if Xt+1 ∼ fθt,τt+1(x) holds. To address this issue, we establish the following strong

law of large numbers.

Theorem 3.3.3. (SLLN) Assume the conditions of Theorem 3.3.1 hold. Let x1, . . . , xn

denote a set of samples simulated by SAA in n iterations. Let g: X → R be a mea-

surable function such that it is bounded and integrable with respect to fθ,τ (x). Then

1

n

n∑
k=1

g(xk)→
∫
X
g(x)fθ∗,τ∗(x)dx, a.s.

The proof of this theorem can be found in the Appendix B. Let u∗i = minx∈Ei U(x)

denote the minimum of U(x) on the subregion Ei. Then u∗1 corresponds to the global

minimum value of U(x) over X , provided that E1 is nonempty. Let J(xk) denote

the index of the subregion that the sample xk belongs to, i.e., J(xk) = i if xk ∈ Ei.

Then we have the following corollary.

Corollary 3.3.1. Assume the conditions of Theorem 3 hold. Let x1, . . . , xt denote
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a set of samples simulated by SAA in t iterations. Then, for any ε > 0, as t→∞,

1∑t
k=1 I(J(xk) = i)

t∑
k=1

I(U(xk) ≤ u∗i+ε & J(xk) = i)→

∫
{x:U(x)≤u∗i+ε}∩Ei e

−U(x)/τ∗dx∫
Ei
e−U(x)/τ∗dx

,

(3.18)

almost surely for i = 1, . . . ,m, where I(·) denotes an indicator function.

3.4 Examples

Consider the function U(x) = −{x1 sin(20x2)+x2 sin(20x1)}2 cosh{sin(10x1)x1}−

{x1 cos(10x2) − x2 sin(10x1)}2 cosh{cos(20x2)x2} that we want to minimize, where

x = (x1, x2) ∈ [−1.1, 1.1]2. This example is modified from Example 5.3 of Robert

and Casella (2004). Figure 3.1(a) shows that U(x) has a multitude of local energy

minima separated by high-energy barriers. The global minimum energy value is

-8.12465, which is located at (-1.0445, -1.0084) and (1.0445, -1.0084).

To apply SAA to this example, the sample space was partitioned as in (3.2) with

m = 41, where ui’s form an arithmetic sequence with u1 = −8.0 and u40 = −0.2.

The proposal distribution is a Gaussian random walk q(xt, ·) = N2(xt, 0.252I2). The

gain factor sequence is set with T0 = 2000 and ς = 1.0, and the temperature sequence

is set with τh = 0.5, T ′0 = 200, and τ∗ = 0.01. To make the problem more difficult,

τh was set to a very small value. SAA was initialized at (1.0,1.0), which is close to a

local minimum of U(x), and run for 105 iterations. After thinning by a factor of 100,

1000 samples were collected from the run. Figure 3.1(b) shows the evolving path of

the 1000 samples.

For comparison, simulated annealing was also applied to this example. Two dif-

ferent cooling schedules were tried, the square-root and geometric cooling schedules.

The former was exactly the same as the one used in SAA. With this cooling sched-

ule, the temperature ladder consisted of 105 levels and there was only one iteration
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performed at each temperature level. The run started at the same point (1.0,1.0)

as SAA. Figure 3.1(c) shows the evolving path of 1000 samples collected at equally

spaced time points from the run. For the geometric cooling schedule, the temperature

ladder was set as follows:

τi+1 = %τi, i = 1, 2, . . . ,m,

where τ1 = τh , % = 0.997244 and the number of temperature levels m = 1000. This

is a rather common setting for simulated annealing, especially for the value of %.

The resulting lowest temperature from this schedule is the same as in the square-

root cooling schedule. The algorithm started at the same point (1.0,1.0) as SAA

and then iterated for 100 iterations at each of the 1000 temperature levels. Figure

3.1(d) shows the evolving path of 1000 samples collected at the last iteration of each

temperature level.

Figure 3.1: Simulation study to compare SAA with SA.

The comparison indicates that simulated annealing tends to get trapped into local
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Table 3.1: Comparison of SAA and simulated annealing.

Average of Minimum Energy Values
20000 40000 60000 80000 100000 prop cpu

SAA -8.1145 -8.1198 -8.1214 -8.1223 -8.1229 92.0 0.17
(3.0× 10−4) (1.5× 10−4) (1.0× 10−4) (7.5× 10−5) (5.9× 10−5)

SA(sr) -5.9227 -5.9255 -5.9265 -5.9269 -5.9271 3.5 0.14
(1.3× 10−2) (1.3× 10−2) (1.3× 10−2) (1.3× 10−2) (1.3× 10−2)

SA(geo) -6.5534 -6.5598 -6.5611 -6.5617 -6.5620 30.7 0.13
(3.3× 10−2) (3.3× 10−2) (3.3× 10−2) (3.3× 10−2) (3.3× 10−2)

energy minima while SAA does not. For this example, even though the starting

temperature is very low, SAA can still transverse over the energy landscape and

locate the two global minima very quickly.

Later, each of the above three algorithms was run 1000 times for this example.

The numerical results are summarized in Table 3.4. In column 2−6, the average (over

1000 runs) of minimum energy values found during the first 20000, 40000, 60000,

80000, and 100000 iterations are given and the standard deviations of the averages

are given in the parentheses. In column 7, we give in percentage the proportion of

the runs with minimum energy values less than −8.12. The three listed methods

are SAA, simulated annealing with a square-root cooling schedule and simulated

annealing with a geometric cooling schedule respectively. The comparison indicates

that SAA is superior to simulated annealing for this example. Even with only 20000

iterations, SAA can produce much lower energy values than simulated annealing with

105 iterations.
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4. IMPROVING NMR PROTEIN STRUCTURE DETERMINATION USING

ADVANCED MONTE CARLO METHOD

4.1 Introduction

In this chapter, We applied SAMC algorithm for model selection on the peak

picking problem, which is a very hot topic in protein structure determination. In

the peak picking problem, nuclear magnetic resonance is applied to a protein and an

NMR spectrum gives us the intensities for chemical shifts on nitrogen and hydrogen

dimension. Each peak on the NMR spectrum corresponds to a nitrogen-hydrogen

bond. And identification of those bond is the first step for any other structure

calculation. We model the intensities on the spectrum as the distribution density

and each peak can be treated as a component of the mixture distribution. So this

is easily turned into a model selection problem that asks the question: how many

components are included in the mixture model, while most of the other existing

methods try to treat the spectrum as a surface and use machine learning technique

to solve the problem. See, for example, Corne et al., (1992) and Alipanchi et al.,

(2009) for successful examples among others. The main part the existing method fail

to solve is how to identify true peaks and from false peaks. And numerical results

show that our algorithm works better in terms of identifying true peaks while being

able to exclude false peaks with high intensity.

The rest of this chapter is structured as follows: in section 2, we introduce the

model and bayesian setup for NMR spectrum data. In section 3, we describe in detail

the general SAMC algorithm and SAMC for peak picking. In section 4, results are

given for both simulation study and real NMR data which show the benefit of our

algorithm.
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4.2 Model for NMR Spectrum

For simplicity, in this section, we only describe the model in the case that NMR

spectrum is in 2D space. Extensions to higher dimensions follow easily from our

discussion.

Suppose the NMR spectrum consists of a total of L×W (= n) grid points and we

use g(i, j) to denote the intensity of grid point (i, j), i = 1, · · · , L, j = 1, · · · ,W .

Then we model g(i, j) as a mixture of bivariate Gaussian densities. We have:

g(i, j) =

|M |∑
k=1

akφk(i, j|µk,1, µk,2, τ 2
k,1, τ

2
k,2) + εij, i = 1, · · · , L, j = 1, · · · ,W, (4.1)

where φ(·)k is the kth bivariate Gaussian density function, it has (µk,1, µk,2)′ as its

mean and diag(σ2
k,1, σ

2
k,2) as its covariance matrix. ak is the volume (or amplitude) of

the kth Gaussian density component. And εij is the error term for grid point (i, j),

which is assumed to be normally distributed with mean 0 and variance σ2. We use

M to denote the model and |M | to denote the size of model M, which is the number

of Gaussian components or the number of peaks. So essentially, we changed the peak

picking problem into a variable selection problem. We want to figure out how many

components are in the model and where are the centers, i.e. what are the values of

(µk,1, µk,2), k = 1, · · · , |M |.

By lining up all those n data points, the above expression can be written in matrix

form as follows:

Y = ΦA + ε, (4.2)

where
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Y =



g(1, 1)

...

g(1,W )

...

g(L, 1)

...

g(L,W )



, Φ =



φ1(1, 1) · · · φm(1, 1)

...

φ1(1,W ) · · · φm(1,W )

...

φ1(L, 1) · · · φm(L, 1)

...

φ1(L,W ) · · · φm(L,W )



,

A =


a1

...

am

 , and ε =



ε11

...

ε1W
...

εL1

...

εLW



.

Y is a vector of length n, representing the spectrum intensity for each grid point.

Φ is a n×m matrix that carries the information of those m Gaussian density func-

tion on each grid point, with each column corresponding to one Gaussian density

component. A is a vector of length m, consists of the volume for each component.

And ε is a vector of length n, denoting the error term.

According to Raftery et. al. (1997) and Liang et al. (2013b), we use the following
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prior distribution for the unknown parameters.

A ∼ N (0, σ2V ),

µi,1 ∼ U(0, L), µi,2 ∼ U(0,W ),

τ 2
i,1 ∼ IG(α, β), τ 2

i,2 ∼ IG(α, β),

ν

σ2
∼ X 2

ν .

Where IG(·, ·) denotes Inverse-Gamma distribution. U(·, ·) denotes uniform dis-

tribution. ν, V are hyperparameters to be chosen. Here we set V = (Φ′Φ)−1, ν = 1

as in Raftery et. al., and α = β = 0.05 which forms a vague priors for τi,1’s and τi,1’s.

Because positions of peak can not exceed the region for a given spectrum, so we put

a uniform prior between 0 and the length/width on µi,1’s and µi,1’s. The problem is

to determine m and the locations (µ11, µ12), · · · , (µm1, µm2).

Furthermore, we assume the prior distribution of (|M | = m) follows a Poisson

distribution with mean λ. Here, λ is another hyperparamter to be chosen, and we

want to set it to be a small number because we don’t want to discover many false

peaks. In this paper, we set λ to be 1 for all computations and the results seems to

be good.

Let ϑ = (ϑ1, · · · , ϑn), ϑi = (µi1, µi2, log(τ2
i1), log(τ2

i2)), then likelihood function is:

f(Y|ϑ,A, σ2,M = m) =
1

(2π)
n
2 |σ2Im|

n
2

exp

{
−1

2
(Y −ΦA)T(σ2In)−1(Y −ΦA)

}
.

Here, Ik means a k by k indentity matrix.
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The prior density functions are:

P (A) =
1

(2π)
m
2 |σ2V |m2

exp

{
−1

2
AT (σ2V )−1A

}
,

P (µi1) =
1

L
I[0, L] , P (µi2) =

1

U
I[0, U ],

P (τ 2
i1) =

βα

Γ(α)
(τ 2
i1)−α−1 exp

(
− β

τ 2
i1

)
, P (τ 2

i2) =
βα

Γ(α)
(τ 2
i1)−α−1 exp

(
− β

τ 2
i2

)
,

P (σ2) =
1

2
ν
2 Γ
(
ν
2

) (−ν
σ4

)( ν
σ2

) ν
2
−1

exp
{
− ν

2σ2

}
,

P (|M | = m) =
1

C

λm

m!
e−λ, m ∈ {0, 1, · · · ,Mmax}.

Here, C =
∑Mmax

i=1
λm

m!
e−λ. And Mmax is the maximum number of components

allowed in our model. So it is equal to the total number of local maxima on a

spectrum.

Integrating out A and σ2 gives us:

f(Y|ϑ, |M| = m)

=

∫ ∫
P (Y|ϑ,A, σ2, |M| = m)P(A)P(σ2)dAdσ2

=
Γ(ν+n

2
)(ν)ν/2

πn/2Γ(ν
2
)|In + ΦV ΦT |1/2

× {ν + YT (I + ΦV ΦT )−1Y}−(ν+n)/2.

Then the posterior distribution is:

f(ϑ, |M| = m|Y) ∝ f(Y|ϑ, |M| = m)P(ϑ||M|)P(|M| = m)

∝
λm

m!
e−λ

1

LmWm

m∏
i=1

{ βα

Γ(α)
(τ 2
i,1)−α−1 exp(

−β
τ 2
i,1

)}
m∏
i=1

{ βα

Γ(α)
(τ 2
i,2)−α−1 exp(

−β
τ 2
i,2

)}P (Y|ϑ,M).

In order to rank the peaks according to their volumes and intensities, we also need

to get estimates of ak, i = 1, · · · , |M | for each component. Note that the posterior

distribution of A given everything else is normal with mean (ΦTΦ + V −1)−1ΦTY
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and covariance matrix σ2(ΦTΦ + V −1)−1. So we can estimate A at each step by its

expectation.

4.3 Algorithm

It’s not known how may peaks exist for a certain NMR spectrum, but at the posi-

tion around the peaks, the intensity should be large. So according to this observation,

we propose following algorithm.

For a L × W grid NMR spectrum, select N poles as the ’peak candidates’.

This can be done by selecting the first N largest poles according to their inten-

sities, or selecting points that are local maxima of if we have the results from

some other methods, we can set them to be the candidates as well. In our pa-

per, we did the simulation study by using the poles with large intensities. We use

(P1,1, P1,2), (P2,1, P2,2), · · · , (PN,1, PN,2) to record the position of each pole. We use

the so-called (annealing) stochastic approximation Monte Carlo (SAMC (Liang et

al., 2007), ASAMC (Liang, 2007)) model selection method (Liang, 2009a) to esti-

mate both the number and the positions of the peaks. It is an advanced MCMC

sampling method which has self-adjusting mechanism and is immune to local trap

problems. Because of that, it can be applied for situation where the dimension of

parameter space is high. Also, it is similar to reversible jump markov chain Monte

Carlo (RJMCM (Green, 1995)) in their ability to deal with dimension mismatch.

At each step, SAMC method randomly choose to change the dimension by either

add one component (Birth Move), delete one component (Death Move) or change a

component (Invariant Move). We use P tI to denote the peaks already included in the

model at iteration t, and P tR to denote the remaining peak candidates that are not in-

cluded in the current sample. So P tI
⋃
P tR = {(P1,1, P1,2), (P2,1, P2,2), · · · , (PN,1, PN,2)}.

The birth Move creates a new component by randomly select from the remaining
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peak candidates P tR and generate a proposal position based on the selected peak.

The death move removes one component from the existing list of peaks P tI . And

the invariant move randomly picks one component and propose a new component to

substitute the old one. That is, it randomly select one component in P tI and propose

to add a random vector to that component. So the invariant move does not change

the dimension.

In this chapter, we follow the general SAMC algorithm described in Introduction

and set γt = δt0
max(t0,t)

, t0 = 500, δ = 0.1 for all of our real data example. In the

following subsections, we listed the proposals and acceptance probabilities for model

selection problem using SAMC. We use M∗ to denote the proposed model, M(t) to

denote the current model in iteration t, ϑ∗ to denote the proposed parameter, ϑ(t)

to denote the parameter at iteration t. Also, we use J(ϑ) to denote the region index

that contains ϑ.

4.3.1 Dimension Invariant Move (M∗ = M(t))

SAMC algorithm chooses to do one of the following with equal probability: di-

mension invariant move, birth move and death move. Suppose at iteration t, m

components are in the sample. And further assume that at iteration t+1 SAMC

chooses to do a dimension invariant move. Then we randomly select one compo-

nent that are one of the m components from step t. Denote the selected com-

ponent as ith component and write the corresponding samples from iteration t as

ϑ
(t)
i = (µ

(t)
i,1, µ

(t)
i,2, log(σ2

i,1)(t), log(σ2
i,2)(t)).

Then the invariant move proposes ϑ∗i based on the current value of ϑi.

ϑ∗i,j = ϑi,j + un× S ×Rj , j = 1, 2, 3, 4, (4.3)

where ϑ∗i = (µ∗i,1, µ
∗
i,2, log(σ2

i,1)∗, log(σ2
i,2)∗). It denotes the proposed sample of com-
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ponent i for iteration t+1. And un is a random sample drawn from a standard

normal distribution. S is called the step size. It determines the level of variation

between two iterations. As t increases, we decrease S. In our simulation study, we

set S = 0.5 at t = 1 and S = 0.01 at t = 200, 000. And Rj is the range of the jth

parameter. Then:

α = min

{
1,
exp{θJ(ϑ(t))}P (Y|ϑ∗, |M(t)|)P(ϑ∗||M(t)|)T(ϑ∗ → ϑ)

exp{θJ(ϑ∗)}P (Y|ϑ, |M(t)|)P(ϑ||M(t)|)T(ϑ→ ϑ∗)

}
(4.4)

4.3.2 Birth Move (M(t) →M∗)

Similarly, if the move for iteration t+1 is chosen to be a birth move and the m

components are included in iteration t. Then for the birth move, we randomly choose

a position from the ‘peak candidates’ that are not being included in the components

right now. If say, the ith peak candidates were chosen, i.e. {Pi,1, Pi,2}, then we

propose to move in the following way:

µ∗i,1 = Pi,1 + un1 × S ×R1,

µ∗i,2 = Pi,2 + un2 × S ×R2,

log(σ∗2i,1) = U(log(L3), log(U3)),

log(σ∗2i,2) = U(log(L4), log(U4)),

where un1 and un2 are random samples drawn from standard normal distribution.

The acceptance rate can be written as:

α = min

{
1,

exp{θJ(ϑ(t))
}

exp{θJ(ϑ∗)}
P (Y |ϑ∗,|M∗|)P(ϑ∗||M∗|)P(|M∗|)Q(|M∗|→|M(t)|)T(ϑ∗→ϑ)

P (Y |ϑ∗,|M(t)|)P(ϑ∗||M(t)|)P(|M(t)|)Q(|M(t)|→|M∗|)T(ϑ→ϑ∗)

}
(4.5)
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For a detailed explanation of θt and induction of the above formula, please refer to

Liang et. al. (2007).

Figure 4.1: A simulated figure with 5 peaks.
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left: a noisy image, middle: a recovered image, right: a pure image.

4.3.3 Death Move (M(t) →M∗)

For the death move, we randomly choose one existing component and delete it.

So if there are m components at step t, then at step t+1, we randomly choose one

of the m components and delete it. Then the proposed sample for step t+1 would

include m-1 component. The equation for calculating acceptance rate α is the same

as (4.5).

For all of the above move, generate u from a standard normal distribution and

accept the proposed parameters if α > u. Then set θ∗t = θt + δt+1(et+1 − π), where

et+1 = (e1,t+1, · · · , eG,t+1), (π) = (1/G, · · · , 1/G), and G is the number of subregions

defined in SAMC. Then at the end of the iterations, choose the model with greatest
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posterior likelihood.

4.3.4 Annealing Stochastic Approximation Monte Carlo

Sometimes when the dimension is high or when the sampling space is too large

that it takes an extremely long time to visit randomly through the whole energy

space, then it is preferred to use a modified version of SAMC, i.e., the so-called

annealing stochastic approximation Monte Carlo. The only difference is that at each

iteration, we shrink the sampling space based on the energy function. So at each

iteration, SAMC samples from

pθt(x) ∼
m∑
i=1

f(x)

exp(θt,i)
I(x ∈ Ei). (4.6)

While ASAMC samples from the follow distribution

pθt(x) ∼
κ(U

(t)
min+κ)∑
i=1

f(x)

exp(θt,i)
I(x ∈ Ei), (4.7)

where U
(t)
min is the best value of U(x) obtained by iteration t, κ > 0 is a user defined

parameter which determines the broadness of the sample space, and κ(u) denotes the

index of subregion based on the energy function, so if ui−1 < u < ui, then κ(u) = i.

There is a trade off when choosing κ. If we set κ to be a large number, then the

convergence will be still, however, if we set κ to be too small, then ASAMC is prone

to get trapped because that the shrunk region may be well separated. According the

oscam’s window (Madigan and Raftery, 1994), it is suffice to set κ(u) = 20, but we

set κ(u) = 1000 just to be safe and avoid the algorithm being trapped.
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4.4 Results

4.4.1 Simulation Study

In the simulation study, we generated an image of size 50 × 50 with 5 peaks.

Extra noises were added to the image. The noise follows a normal distribution with

mean 0 and standard deviation 4000, which makes the peaks quite hard to find using

naked eyes. As shown in Figure 4.1, using the SAMC model selection method, the

image was de-noised automatically and recovered the underlining structure quite

well. From the left to the right are the image with noise added, the recovered image

and the original pure image. In this case, although we managed to find all 5 peaks

but the recovered image does not has as strong signals as the original image.

Figure 4.2: Illustration of the 2D NMR spectra data.

4.4.2 NMR Peak Picking

We utilized our method on real protein NMR data. In figure 4.2 we ploted the 3D

NMR data and its contour plot. To check the accuracy of our algorithm, we applied

SAMC to 6 proteins and compared its recall and precision percentages with other
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Table 4.1: Performance on 6 proteins in percentage.

PICKY SAMC for model selection
Protein Length recall precision average recall precision average
TM1112 89 96 89 92.5 94 89 91.5
RP3384 64 94 86 90 93 91 92

ATC1776 101 78 82 80 83 84 83.5
COILIN 98 97 70 83.5 94 80 87
VRAR 72 87 93 90 93 98 95.5
HACS1 74 95 67 81 98 80 89
Average 91.2 81.2 86.2 92.5 (0.22) 87 (0.02) 89.8 (0.02)

existing methods. We used 2D 15N −HSQC spectrums for the experiment. For N

dimension, we say the results is correct if the difference between our solution to the

truth is less than 0.5. And for H dimension, a difference less than 0.05 is considered

correct. And we say a peak that we picked is correct if both its N dimension and H

dimension are with in the range when compared to the truth.

Assume the number of true peaks for a given spectrum is NT , the number of

peaks being picked is NP and TP of them are true peaks. Then the recall percentage

is defined as NP/NT , which is the probability of identifying a peak when it is actually

a true peak. The precision percentage is defined as NP/TP , which corresponds to

the probability of a spot being a true peak when our algorithm said it is a peak.

Usually there is a trade-off between the recall and precision percentages. Using

the same method, increasing one percentage will make the other one decrease. Be-

cause of this, we also calculated the average of precision and recall percentages and

included it in the comparison. It shows in table 4.1 that our method gives more

accurate solutions as compared to others.

In table 4.1, we give the comparison of using our method and PICKY (Alipanahi

et. al., 2009). Column 2 gives the length for each protein, which is the true number
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Figure 4.3: Result for protein VRAR.

of peaks. Column 3-5 correspond to the performance of PICKY, column 6-8 corre-

spond to the performance of SAMC. And results show that our method gives better

performance in terms of both recall accuracy and performance accuracy. We give the

p-value for a paired t-test that compares our method and PICKY. And it showed

that on average, our method performs better at a .05 level with such a small sample

size.

In Figure 4.3, we showed the result for protein VRAR using our method. We

used red dot to denote the true position of peaks and used circles to denote the

peaks our algorithm found. And as shown in the picture, our method obtained a

good recovery rate by producing both a good recall percentage and a good precision

percentage.
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5. CONCLUSION

In conclusion, in this dissertation we explored the benefit of using stochastic

approximation in MCMC. We applied stochastic approximation in three different

aspects.

• We applied the stochastic approximation method successfully to geostatistical

data under the framework of Gaussian geostatistical model. It helps to alleviate

the computational burden encountered when calculating maximum likelihood

estimator. And the the same time, it keeps the nice asymptotic properties

usual MLE owns.

• We applied stochastic approximation for Monte Carlo sampling method that

improves the behavior of simulated annealing algorithm. And we showed the-

oretically that the proposed method will allow a cooling schedule much faster

than the logarithmic rate, which is a requirement for simulated annealing al-

gorithm to locate the global minimum almost surely.

• We applied stochastic approximation Monte Carlo method to the peak pick-

ing problem in protein structure determination. We tried our method on 6

proteins and calculate the precision and recall percentages. Results show that

our method will perform better than the competing methods, especially about

the precision, which shows that our method can identify the true peaks while

including less false peaks in the list.
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APPENDIX A

PROOFS FOR RSA

In appendix A, we give the supplimentary proofs for theorems ralated to

resampling-based stochastic approximation method.

A.1 Conditions for Convergence of Algorithm 2.3.1

Theoretical properties of Algorithm 2.3.1 are studied under the following conditions:

(A1) The function h : Θ 7→ Rd is continuous, and there exists a continuously differ-

entiable function v : Θ 7→ [0,∞) such that:

(i) There exists C0 > 0 such that

L = {θ ∈ Θ, 〈∇v(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, v(θ) < C0}, (A.1)

where 〈x, y〉 denotes the Euclidean inner product.

(ii) There exists C1 ∈ (C0,∞] such that VC1 is a compact set, where VC =

{θ ∈ Θ, v(θ) ≤ C}.

(iii) For any θ ∈ Θ \ L, 〈∇v(θ), h(θ)〉 < 0.

(iv) The closure of v(L) has an empty interior.

(A2) There exists a function V : X → [1,∞) such that for any compact subset

K ⊂ Θ, there exists a constant c such that

(i) supθ∈K ‖H(θ, ·)‖V ≤ c;

(ii) sup(θ,θ′)∈K×K ‖H(θ, ·)−H(θ′, ·)‖V ≤ c‖θ − θ′‖.
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(A3) The mean field function h(θ) is measurable and locally bounded. There exist a

stable matrix F (i.e., all eigenvalues of F are with negative real parts), ρ > 0,

and a constant c such that, for any θ∗ ∈ L (defined in (A.1)),

‖h(θ)− F (θ − θ∗)‖ ≤ c‖θ − θ∗‖2, ∀θ ∈ {θ : ‖θ − θ∗‖ ≤ ρ}.

(A4) The sequences {at} and {bt}, which are defined to be a(t) and b(t) as functions

of t and are exchangeable with a(t) and b(t), respectively, are non-increasing,

positive, and satisfy the conditions:

lim
t→∞

at = 0,
∞∑
t=0

at =∞, at+1 − at
at

= O(aτ1t+1),

lim
t→∞

bt = 0,
∞∑
t=1

{aτ2t + (at/bt)
τ3 + atb

τ4
t } <∞,

(A.2)

for some values of τ1 ∈ (1, 2], τ2 ∈ (1, 2], τ3 ∈ [2,∞) and τ4 ∈ (0, 1].

Moreover, we assume that the function a(t) is differentiable, with either (i) or

(ii) holding:

(i) a(t) varies regularly with exponent (−β), 1
2
< β < 1; that is, for any

z > 0, a(zt)/a(t)→ z−β as t→∞.

(ii) For t ≥ 1, a(t) = t0/t with t0 > −1/(2λF ), where λF denotes the largest

real part of the eigenvalue of the matrix F (defined in condition A3) with

λF < 0.

Condition (A4) can be applied to the usual gains at = t0/t
β and bt = t′0/t

β′ by

choosing β ∈ (1
2
, 1], β′ ∈ (1

2
, β − 1

τ3
), τ3 ∈ (2,∞) and τ4 = 1. Following Pelletier
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(1998), we deduce that

(
at
at+1

)1/2

= 1 +
β

2t
+ o(

1

t
). (A.3)

In terms of at, (A.3) can be rewritten as

(
at
at+1

)1/2

= 1 + ζat + o(at), (A.4)

where ζ = 0 for the case (i) of (A4) and ζ = β
2t0

for the case (ii) of (A4). Clearly,

the matrix is F + ζI is still stable.

A.2 Proof of Lemma 2.3.5.

In Algorithm 2.3.1, the sample Xt is generated at each iteration in an exact

manner. Since the exact sampling procedure can be viewed as a special case of the

Markovian sampling procedure, the convergence theorem established by Andrieu et

al. (2005) for the varying truncation stochastic approximation MCMC algorithm

can be applied to Algorithm 2.3.1. If we let Pθ denote the transition kernel

corresponding to the exact sampling procedure, then it is irreducible, aperiodic,

and admits gθ(x) as the invariant distribution. In addition, it admits the whole

sample space as a small set and satisfies the drift condition. The remaining part of

the proof follows from from Theorem 5.4, Theorem 5.5 and Proposition 6.1 of

Andrieu et al. (2005).

A.3 Proof of Theorem 2.3.3.

By Lemma 2.3.5, it suffices to show that Algorithm 2.2.1 satisfies the conditions

(A1), (A2) and (A4).
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(A1) As implied by (2.5), we have

h(θ) =

(
n

m

)−1 (nm)∑
i=1

∂ log fθ(zi|si)
∂θ

,

which is continuous in θ. Define

v(θ) = KL(fθ, g̃) = −
∫ ∫

log

(
fθ(z|s)

g̃(z|s)

)
g̃(z, s)dzs, (A.5)

which is continuously differentiable with respect to θ. By Jensen’s inequality,

we have v(θ) ≥ 0. In addition,

〈∇v(θ), h(θ)〉 = −〈h(θ), h(θ)〉,

which implies that (A1)-(iii) holds.

For any θ ∈ L, it corresponds to a local minimizer of v(θ). In addition, v(θ) is

continuous. Hence, there exists a constant C0 ≥ supθ∈K0
v(θ) such that (A1)-(i)

holds and K0 ⊂ VC0 . Note that at the true values of the parameters, v(θ) = 0,

so the set {θ ∈ Θ, v(θ) < C0} always contains the true parameters for any

C0 > 0.

Since Θ is compact, we can set C1 = supθ∈Θ v(θ). Thus, (A1)-(ii) is satisfied.

Since, for any θ ∈ L, it corresponds to a local minimizer of v(θ). It is obvious

that the set v(L) is nowhere dense. This verifies (A1)-(iv).

(A2) Set V (x) ≡ 1 for all x ∈ X , where X denotes the sample space of Xt and it

contains only
(
n
m

)
elements. Since H(θ, x) is continuous in θ, for each xi ∈ X
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and any compact set K ⊂ Θ, we let

H(xi) = max{sup
θ∈K
‖H(θ, xi)‖, sup

(θ,θ′)∈K×K
‖θ − θ′‖−1‖H(θ, xi)−H(θ′, xi)‖}.

Hence, (A2) is satisfied by setting c = maxxi∈X H(xi).

(A4) This condition can be satisfied by choosing appropriate sequences {at} and

{bt}.

Since V (x) ≡ 1, the condition supx∈X0
V (x) <∞ is trivially satisfied. This means

that the algorithm will converge for any starting sample X0 ∈ X .

A.4 Proof of Theorem 2.3.4.

By Lemma 2.3.6, it suffices to verify the conditions (A1)–(A4). Since the model has

been assumed to be identifiable, the condition (A3) is satisfied by choosing F to be

the Hessian matrix of v(θ). The conditions (A1), (A2) and (A4) can be verified as

in Theorem 2.3.3.
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APPENDIX B

PROOFS FOR SAA

In appendix B, we give the supplimentary proof for theorems ralated to simulated

stochastic approximation annealing algorithm

B.1 Proof of Theorem 3.1

Lemma B.1.1. Assume that T is compact and the condition (A2) holds. Then the

following results hold for the SAA algorithm:

(B1) For any θ ∈ Θ and τ ∈ T, the Markov kernel Pθ,τ has a single stationary

distribution fθ,τ . In addition, H : Θ×X → Θ is measurable for all θ ∈ Θ and

τ ∈ T,
∫
X ‖Hτ (θ, x)‖fθ,τ (x)dx <∞.

(B2) For any θ ∈ Θ and τ ∈ T, the Poisson equation uθ,τ (X) − Pθ,τuθ,τ (X) =

Hτ (θ,X)−hτ (θ) has a solution uθ,τ (X), where Pθ,τuθ,τ (X) =
∫
X uθ,τ (y)Pθ,τ (X, y)dy.

For any constant η ∈ (0, 1) and any compact subset K ⊂ Θ, the following results

hold:

(i) sup
θ∈K,τ∈T

(‖uθ,τ (·)‖+ ‖Pθ,τuθ,τ (·)‖) <∞,

(ii) sup
θ,θ′∈K,τ∈T

‖θ − θ′‖−η {‖uθ,τ (·)− uθ′,τ (·)‖+ ‖Pθ,τuθ,τ (·)− Pθ′,τuθ′,τ (·)‖} <∞.

(iii) sup
θ∈K,τ,τ ′∈T

‖τ − τ ′‖−η‖Pθ,τuθ,τ (·)− Pθ,τ ′uθ,τ ′(·)‖ <∞.

Proof. Since T is compact and (A2) holds, then it is easy to verify that the following

condition holds for the SAA algorithm by choosing C = X , V (x) ≡ 1, 0 < λ < 1,

b > 1 and κ > 1:
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There exist a function V : X → [1,∞), a constant α ≥ 2, a set C ⊂ X , 0 < λ < 1,

b > 0 and κ > 0 such that for any compact subset K ⊂ Θ,

sup
θ∈K,τ∈T

P l
θ,τV

α(x) ≤λV α(x) + bI(x ∈ C), ∀X ∈ X ,

sup
θ∈K,τ∈T

Pθ,τV
α(x) ≤κV α(x), ∀x ∈ X ,

where I(·) is the indicator function and Pθ,τV
α(X) =

∫
X Pθ,τ (X, y)V α(y)dy.

As in Liang et al. (2007), we can verify that the following condition holds for the

SAA algorithm: There exists a constant c > 0 such that for all (θ, θ′) ∈ K ×K,

‖Pθ,τg − Pθ′,τg‖ ≤ c‖g‖‖θ − θ′|, ∀g ∈ G,

‖Pθ,τg − Pθ,τ ′g‖ ≤ c‖g‖|τ − τ ′|, ∀g ∈ G,

where G = {g : X → Rd, ‖g‖ <∞}.

In addition, it is easy to see that SAA satisfies the following conditions:

sup
θ∈K,τ∈T

‖Hτ (θ, ·)‖ ≤ c,

sup
(θ,θ′)∈K×K,τ∈T

‖θ − θ′‖−1‖Hτ (θ, ·)−Hτ (θ
′, ·)‖ ≤ c.

sup
θ∈K,(τ,τ ′)∈T×T

|τ − τ ′|−1‖Hτ (θ, ·)−Hτ ′(θ, ·)‖ ≤ c,

(B.1)

where c denotes a constant. For the first equation, we can set c = 2. The other two

equations hold because Hτ (θ,X) is independent of τ and θ for a given value of X.

Then, following from Proposition 6.1 of Andrieu et al. (2005), we have (B1), (B2)-(i)

and (B2)-(ii) hold. (B2)-(iii) can be proved following the same line of the proof of

(B2)-(ii).

Lemma B.1.2. (Noise decomposition) For the SAA algorithm, there exist Rdθ-valued
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random processes {εt}t≥0, {ε′t}t≥0 and {ε′′t }t≥0 such that

γt+1ξt+1 = εt+1 + ε′t+1 + ε
′′

t+1 − ε
′′

t + ε
′′′

t , t ≥ 0, (B.2)

where ξt+1 = Hτt+1(θt, Xt+1)− hτt+1(θt) is the observation noise.

Proof. Apply Poisson equation to ξt and let ε0 = ε′0 = 0,

εt+1 = γt+1

[
uθt,τt+1(xt+1)− Pθt,τt+1uθt,τt+1(xt)

]
,

ε′t+1 = γt+1

[
Pθt+1,τt+1uθt+1,τt+1(xt+1)− Pθt,τt+1uθt,τt+1(xt+1)

]
+ (γt+2 − γt+1)Pθt+1,τt+1uθt+1,τt+1(xt+1),

ε
′′

t+1 = −γt+2Pθt+1,τt+1uθt+1,τt+1(xt+1),

ε
′′′

t = γt+1

(
Pθt,τt+1uθt,τt+1(xt)− Pθt,τtuθt,τt(xt)

)
.

It is easy to verify that (B.2) is satisfied.

Proof of Theorem 3.1

Proof. The proof is completed in four steps by considering convergent subsequences

of a sample path.

• Step 1. We show that there are constants M > 0, K > 0 such that for any

k ∈ [0, K] there exists a constant tk > 0 such that for any t > tk∥∥∥∥∥
m∑
i=nt

γi+1Hτi+1
(θi, Xi+1)

∥∥∥∥∥ ≤M, ∀m : nt ≤ m ≤ m(nt, k), (B.3)

if {θnt} is a convergent subsequence of {θt}: as t → ∞, nt → ∞ and θnt →

θ̄, where m(t, k) is defined by m(t, k) = max{m :
∑m

i=t γi ≤ k}, and M is

independent of k and t.
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Since ‖Hτ (θ, x)‖ ≤ 2 holds for the SAA algorithm, we have

∥∥∥∥∥
m∑
i=nt

γi+1Hτi+1
(θi, Xi+1)

∥∥∥∥∥ ≤ 2k ≤ 2K, ∀m : nt ≤ m ≤ m(nt, k),

which implies (B.3) holds for M = 2K.

• Step 2. We show that for all t large enough, there exists a constant c1 such

that

‖θm+1 − θnt‖ ≤ c1k, ∀m : nt ≤ m ≤ m(nt, k), ∀k ∈ [0, K], (B.4)

if K is small enough.

If the number of truncations in SAA is finite, then for large enough t there is

no truncation and thus

‖θm+1 − θnt‖ ≤ ‖
m∑
i=nt

γi+1Hτi+1
(θi, Xi+1)‖ ≤ 2k,

because ‖Hτ (θ, x)‖ is bounded by 2. Hence, it suffices to prove (B.4) for the

case σt →∞ as t→∞.

It follows from (B.3) that for any k ∈ [0, K],

∥∥∥∥∥θnt +
m∑
i=nt

γi+1Hτi+1
(θi, Xi+1)

∥∥∥∥∥ ≤M+‖θ̄‖+1 ≤Mσt , ∀m : nt ≤ m ≤ m(nt, k),

if t is large enough. That is, there are no truncations for nt ≤ m ≤ m(nt, k),

and thus

θm+1 = θm + γm+1Hτm+1(θm, Xm+1), ‖θm+1‖ ≤M + 1 + ‖θ̄‖. (B.5)

65



Since Hτ (θ,X) is bounded over Θ× T, there exists a constant c1 such that

‖θm+1 − θnt‖ =

∥∥∥∥∥
m∑
i=nt

γi+1Hτi+1
(θi, Xi+1)

∥∥∥∥∥ ≤ c1k (B.6)

for large enough t and and small enough K. This concludes Step 2.

• Step 3. We show the assertion: For any interval [δ1, δ2] with δ1 < δ2 and

d([δ1, δ2], v(L)) > 0, the sequence {vτt+1(θt)} cannot cross [δ1, δ2] infinitely many

times with {‖θnt‖} bounded, where “crossing [δ1, δ2] by vτnt+1(θnt), . . . , vτmt+1(θmt)”

means that vτnt+1(θnt) ≤ δ1, vτmt+1(θmt) ≥ δ2, and δ1 < vτi+1
(θi) < δ2 for

nt < i < mt.

Assume the converse: there are infinitely many crossings by the sequence

{vτt+1(θt)} and {‖θnt‖} is bounded. By the boundedness of {‖θnt‖}, with-

out loss of generality, we may assume θnt → θ̄ as t → ∞. Therefore, by the

continuity of vτ (θ),

vτnt+1(θnt)→ δ1 = vτ∗(θ̄) and d(θ̄,L)
∆
= δ > 0, (B.7)

as t→∞. While, from (B.4), one can see that if k is sufficiently small, then

d(θm,L) ≥ δ

2
, ∀m : nt ≤ m ≤ m(nt, k), (B.8)

for sufficiently large t.
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By (B.5) and (B.4), for large t we have

vτm(nt,k)+2
(θm(nt,k)+1)− vτnt+1(θnt)

=

m(nt,k)∑
i=nt

[vτi+2
(θi+1)− vτi+1

(θi+1) + vτi+1
(θi+1)− vτi+1

(θi)]

=

m(nt,k)∑
i=nt

γi+1Hτi+1
(θi)

T∇θvτi+1
(θi) +

m(nt,k)∑
i=nt

|τi+2 − τi+1|∇τvτi+1
(θi+1) + o(k)

=

m(nt,k)∑
i=nt

γi+1hτi+1
(θi)

T∇θvτi+1
(θi) +

m(nt,k)∑
i=nt

γi+1ξ
T
i+1∇θvτi+1

(θi)

+

m(nt,k)∑
i=nt

|τi+2 − τi+1|∇τvτi+1
(θi+1) + o(k).

It follows from Step 2 that for all t large enough, there exists a constant c1

such that

‖θm‖ ≤ c1K+‖θ̄‖+1
∆
=M, ∀m : nt ≤ m ≤ m(nt, k)+1, ∀k ∈ [0, K], (B.9)

if K is small enough.

Consider the decomposition of γt+1ξt+1 given in Lemma B.1.2. Since

E(uθt,τt+1(xt+1)|Ft) = Pθt,τt+1uθt,τt+1(xt),

{εt+1I(‖θt‖ ≤ M)} forms a martingale difference sequence, where {Ft}t≥0 is

a family of σ-algebras of F satisfying σ{εt, ε′t, ε
′′
t , ε

′′′
t } ⊆ Ft ⊆ Ft+1, t ≥ 0 and

σ{θ0} ⊆ F0. Further, it follows from (B2)-(i) that
∑∞

t=0 ‖εt+1‖2I(‖θt‖ ≤ M) <

∞. Then, by the martingale convergence theorem (Hall and Heyde, 1980;

Theorem 2.15),
∑∞

t=0 εt+1I(‖θt‖ ≤ M) converges almost surely. This, together
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with (B.9), implies that for any k,

lim
t→∞
‖
m(nt,k)∑
i=nt

εi+1‖ = 0. (B.10)

For the term ε′t+1 in (B.2), it follows from (B.9) and (B2)-(ii) that

‖ε′m+1‖ ≤ c2γm+1‖θm+1 − θm‖η + c3γ
1+ι
m+1 ≤ c4γ

1+η
m+1, ∀m : nt ≤ m ≤ m(nt, k),

for some constants c2 > 0, c3 > 0, c4 > 0, and 1 > η > max{ι′, ι′′} (ι, ι′ and ι
′′

are defined in (A3)). Therefore,

lim
t→∞
‖
m(nt,k)∑
i=nt

ε′i+1‖ = o(k), (B.11)

For the term ε
′′
t+1 in (B.2), it follows from (B.9) and (B2)-(i) that for any k,

lim
t→∞
‖
m(nt,k)∑
i=nt

(ε
′′

i+1 − ε
′′

i )‖ = lim
t→∞
‖ε′′m(nt,k)+1 − ε

′′

nt‖ = 0. (B.12)

For the term ε
′′′
t , it follows from (B.9) and (B2)-(iii) that

‖ε′′′m‖ ≤ c5γm+1(τm − τm+1)η, ∀m : nt ≤ m ≤ m(nt, k),

for some constants c5 > 0 and 0 < η < 1. Therefore, by (A3),

lim
t→∞
‖
m(nt,k)∑
i=nt

ε
′′′

i ‖ = o(k). (B.13)
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It follows from (B.10)–(B.13) and the boundedness of ∇θvτ (θ) that

lim
t→∞

∥∥∥∥∥∥
m(nt,k)∑
i=nt

γi+1ξ
T
i+1∇θvτi+1

(θi)

∥∥∥∥∥∥ = o(k). (B.14)

Following from (A3)-(ii) and the boundedness of ∇τvτ (θ) over the compact set

T, we have

lim
t→∞

∥∥∥∥∥∥
m(nt,k)∑
i=nt

|τi − τi+1|∇τvτi+1
(θi+1)

∥∥∥∥∥∥ = o(k). (B.15)

Then, by (B.8) and condition (A1), there exist α > 0 and k such that

vτm(nt,k)+2
(θm(nt,k)+1)− vτnt+1(θnt) ≤ −αk,

for sufficiently large t. Further, by (B.7), we derive

lim sup
t→∞

vτm(nt,k)+2
(θm(nt,k)+1) ≤ δ1 − αk. (B.16)

However, by (B.4) we have

lim
k→0

max
nt≤m≤m(nt,k)

|vτm+2(θm+1)− vτnt+1(θnt)| = 0,

which implies vτm(nt,k)+2
(θm(nt,k)+1) ∈ [δ1, δ2). This contradicts (B.16).

• Step 4. We now show that the number of truncations is bounded.

Since v(L) is nowhere dense, a nonempty interval [δ1, δ2] exists such that

[δ1, δ2] ⊂ (supτ∈T vτ (θ̃0), inf‖θ‖=c0,τ∈T vτ (θ)) and d([δ1, δ2], v(L)) > 0. If σt →

∞, then θt, starting from θ̃0, will cross the sphere {θ : ‖θ‖ = c0} infinitely

many times. Consequently, vτt+1(θt) will cross [δ1, δ2] infinitely often with {θnt}
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bounded. In step 3, we have shown this process is impossible. Therefore, start-

ing from some t0, the SAA algorithm will have no truncations and {θt} is

bounded.

B.2 Proof of Theorem 3.2

Using Lemma B.1.1, we can prove the following Lemma, which is an extension of

Theorem 4.1 and Lemma 2.2 of Tadić (1997).

Lemma B.2.1. Assume that T is compact and the conditions (A1)–(A3) hold. Then

the following results hold:

(C1) The series
∑∞

t=1 ‖ε′t+1‖,
∑∞

t=1 ‖ε
′′
t+1‖2,

∑∞
t=1 ‖εt+1‖2 and

∑∞
t=1 ‖ε

′′′
t ‖ all converge

a.s. and

E(εt+1|Ft) = 0, a.s., n ≥ 0, (B.17)

where {Ft}t≥0 is a family of σ-algebras of F satisfying σ{εt, ε′t, ε
′′
t , ε

′′′
t } ⊆ Ft ⊆

Ft+1, t ≥ 0 and σ{θ0} ⊆ F0.

(C2) Let Rt = R′t +R
′′
t , t ≥ 0, where R′t = γt+1∇T

θ vτt+1(θt)ξt+1, and

R
′′

t =

∫ 1

0

[
∇θvτt+1(θt + s(θt+1 − θt))−∇θvτt+1(θt)

]T
(θt+1 − θt)ds.

Then
∑∞

t=1 γt+1ξt+1 and
∑∞

t=1Rt converge a.s..

Proof. By Theorem 3.1, the number of truncations in SAA is finite. Hence, for

simplicity, this lemma can be proved by assuming that the number of truncation is

0 and {θt} remains in a compact set.

(C1) Since

E(uθt,τt+1(xt+1)|Ft) = Pθt,τt+1uθt,τt+1(xt),
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which concludes (B.17). The conditions (B2) and (A3) imply that there exist

constants c1, c2, c3, c4, c5, c6 ∈ R+ and η ∈ (0, 1) such that

‖εt+1‖2 ≤ 2c1γ
2
t+1,

‖ε′t+1‖ ≤ c2γt+1‖θt+1 − θt‖η + c3γ
1+ι
t+1 ≤ c4γ

1+η
t+1 ,

‖ε′′t+1‖2 ≤ c5γ
2
t+1,

‖ε′′′t ‖ ≤ c6γt+1(τt − τt+1)η,

(B.18)

where ι is defined in (A3). Setting 1 > η ≥ max{ι′, ι′′} (ι′ and ι′′ are defined in

A3), it follows from (A3) that the series
∑∞

t=0 ‖εt+1‖2,
∑∞

t=0 ‖ε′t+1‖,
∑∞

t=0 ‖ε
′′
t ‖2

and
∑∞

t=0 ‖ε
′′′
t ‖ all converge almost surely.

(C2) Let M = supt{‖hτt+1(θt)‖, ‖∇θvτt+1(θt)‖}. It follows from (A1) that M <∞.

Since σ{θt} ⊂ Ft, the condition (C1) implies that E(∇T
θ vτt+1(θt)εt+1|Ft) = 0.

In addition, we have

∞∑
t=0

E
(
|∇T

θ vτt+1(θt)εt+1|
)2 ≤M2

∞∑
t=0

E
(
‖εt+1‖2

)
<∞.

It follows from the martingale convergence theorem (Hall and Heyde, 1980;

Theorem 2.15) that both
∑∞

t=0 εt+1 and
∑∞

t=0∇T
θ vτt+1(θt)εt+1 converge almost

surely. Since

∞∑
t=0

|∇T
θ vτt+1(θt)ε

′
t+1| ≤M

∞∑
t=1

‖ε′t‖,

∞∑
t=1

γ2
t ‖ξt‖2 ≤5

∞∑
t=1

‖εt‖2 + 5
∞∑
t=1

‖ε′t‖2 + 10
∞∑
t=0

‖ε′′t ‖2 + 5
∞∑
t=0

‖ε′′′t ‖2

it follows from (C1) that
∑∞

t=0 |∇T
θ vτt+1(θt)ε

′
t+1|,

∑∞
t=1 |∇T

θ vτt+1(θt)ε
′′′
t | and

∑∞
t=1 γ

2
t ‖ξt‖2
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all converge.

Following from (A1), there exists a constant c such that

‖R′′t ‖ ≤ c‖θt+1−θt‖2 = c‖γt+1hτt+1(θt)+γt+1ξt+1‖2 ≤ 2c
(
M2γ2

t+1+γ2
t+1‖ξt+1‖2

)
,

which implies

∞∑
t=1

|R′′t | ≤ 2cM2

∞∑
t=1

γ2
t+1 + 2c

∞∑
t=1

γ2
t+1‖ξt+1‖2 <∞,

i.e.,
∑∞

t=1R
′′
t converges. In addition, following from (A1), there exists a con-

stant c′ such that

∣∣∣(∇θvτt+1(θt)−∇θvτt(θt−1)
)T
ε
′′

t

∣∣∣
=
∣∣∣(∇θvτt+1(θt)−∇θvτt(θt) +∇θvτt(θt)−∇θvτt(θt−1)

)T
ε
′′

t

∣∣∣
≤ [c‖θt − θt−1‖+ c′|τt − τt+1|] ‖ε

′′

t ‖

≤ [cγt‖hτt(θt−1)‖+ cγt‖ξt‖+ c′|τt − τt+1|] ‖ε
′′

t ‖.

Consequently, by Cauchy-Schwarz inequality,

∞∑
t=1

∣∣∣(∇θvτt+1(θt)−∇θvτt(θt−1)
)T
ε
′′

t

∣∣∣
≤

(
3c2M2

∞∑
t=1

γ2
t + 3c2

∞∑
t=1

γ2
t ‖ξt‖2 + 3c

′2
∞∑
t=1

|τt − τt+1|2
)1/2( ∞∑

t=1

‖ε′′t ‖2

)1/2

<∞.

where the last inequality follows from the condition τt − τt+1 = o(γt) given in
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(A3)-(ii). Since

n∑
t=0

γt+1ξt+1 =
n∑
t=0

εt+1 +
n∑
t=0

ε′t+1 + ε
′′

n − ε
′′

1 +
n∑
t=1

ε
′′′

t ,

n∑
t=0

R′t+1 =
n∑
t=0

∇T
θ vτt+1(θt)εt+1 +

n∑
t=0

∇T
θ vτt+1(θt)ε

′
t+1 +∇T

θ vτt+1(θt)ε
′′

t+1

−
n∑
t=1

(
∇θvτt+1(θt)−∇θvτt(θt−1)

)T
ε
′′

t −∇T
θ vτ1(θ0)ε

′′

0

+
n∑
t=0

∇T
θ vτt+1(θt)ε

′′′

t ,

and ε′′n converges to zero by (C1), it is obvious that
∑∞

t=1 γtξt and
∑∞

t=1Rt =∑∞
t=1R

′
t +
∑∞

t=1R
′′
t converge almost surely.

The proof for Lemma B.2.1 is completed.

Proof of Theorem 3.2

Proof. Let M ′ = supt{‖hτt+1(θt)‖, ‖vτt+1(θt)‖} and Vε = {θ : d(θ,Lτ∗) ≤ ε}. It

follows from (A1) that M ′ <∞. It follows from Taylor’s expansion formula (Folland,

1990) that

vτt+1(θt+1) = vτt+1(θt) + γt+1∇T
θ vτt+1(θt)[hτt+1(θt) + ξt+1]

+

∫ 1

0

[∇θvτt+1(θt + s(θt+1 − θt))−∇θvτt+1(θt)]
T (θt+1 − θt)ds

= vτt+1(θt) + γt+1v̇τt+1(θt) +R′t+1 +R
′′

t+1,

where v̇τt+1(θt) = ∇θvτt+1(θt)hτt+1(θt), R
′
t+1 = γt+1∇T

θ vτt+1(θt)ξt+1 and R
′′
t+1 =∫ 1

0
[∇θvτt+1(θt+s(θt+1−θt))−∇θvτt+1(θt)]

T (θt+1−θt)ds are as defined in (C2). There-
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fore,

t∑
i=0

γiv̇τi+1
(θi+1) =vτt+1(θt+1)− vτ1(θ0) +

t∑
i=1

(
vτi(θi)− vτi+1

(θi)
)
−

t∑
i=0

Ri+1

≥− 2M ′ − L(τ1 − τt+1)−
t∑
i=0

Ri+1,

where Ri+1 = R′i+1 +R
′′
i+1, and L is the Lipschitz constant of vτ (θ) (with respect to

τ), i.e.,

sup
θ∈K,(τ,τ ′)∈T×T

|vτ (θ)− vτ ′(θ)| ≤ L|τ − τ ′|.

Since
∑t

i=0Ri+1 converges (owing to Lemma B.2.1),
∑∞

i=0 γi+1v̇τi+1
(θi+1) also con-

verges.

Furthermore, for t ≥ 0, we have

vτt(θt) = vτ1(θ0) +
t−1∑
i=0

γi+1v̇τi+1
(θi) +

t−1∑
i=1

(
vτi+1

(θi)− vτi(θi)
)

+
t−1∑
i=0

Ri+1.

Suppose that limt→∞ d(θt,Lτ∗) > 0. Then there exists ε > 0 and n0 such that

d(θt,Lτ∗) ≥ ε, t ≥ n0. Since
∑∞

t=1 γt = ∞ and p = sup{v̇τ∗(θ) : θ ∈ Vcε} < 0, there

exists a constant K ′ such that

∞∑
t=n0

γt+1v̇τt+1(θt) =
∞∑
t=n0

γt+1v̇τ∗(θt) +
∞∑
t=n0

γt+1

(
v̇τt+1(θt)− v̇τ∗(θt)

)
≤p

∞∑
t=1

γt+1 + c
∞∑
t=1

γt+1|τt+1 − τ∗| = −∞,

where the last equality holds due to the condition (A3)-(ii). This contradicts with

the convergence of
∑∞

i=0 γi+1v̇τi+1
(θi+1). Hence, limt→∞ d(θt,Lτ∗) = 0.

Suppose that limt→∞ d(θt,Lτ∗) > 0. Then, there exists a constant ε > 0 such that

limt→∞ d(θt,Lτ∗) ≥ 2ε. Let t0 = inf{t ≥ 0 : d(θt,Lτ∗) ≥ 2ε}, while t′k = inf{t ≥
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tk : d(θt,Lτ∗) ≤ ε} and tk+1 = inf{t ≥ t′k : d(θt,Lτ∗) ≥ 2ε}, k ≥ 0. Obviously,

tk < tk′ < tk+1, k ≥ 0, and

d(θtk ,Lτ∗) ≥ 2ε, d(θt′k ,Lτ∗) ≤ ε, and d(θt,Lτ∗) ≥ ε, tk ≤ t < t′k, k ≥ 0.

By the definition of p = sup{v̇τ∗(θ) : θ ∈ Vcε}, we have

p

∞∑
k=0

t′k−1∑
i=tk

γi+1 +
∞∑
k=0

t′k−1∑
i=tk

γi+1

(
v̇τi+1

(θi)− v̇τ∗(θi)
)

≥
∞∑
k=0

t′k−1∑
i=tk

γi+1v̇τi+1
(θi) ≥

∞∑
t=0

γt+1v̇τt+1(θt) > −∞,

where the second to the last inequality follows from the condition (A1) that v̇τ (θ) ≤ 0

for all θ ∈ Θ and τ ∈ T, and the last inequality holds because
∑∞

t=0 γt+1v̇τt+1(θt)

converges.

Since, by (A1) and (A3)-(iii), there exists a constant K ′ such that

∣∣∣∣∣∣
∞∑
k=0

t′k−1∑
i=tk

γi+1

(
v̇τi+1

(θi)− v̇τ∗(θi)
)∣∣∣∣∣∣ ≤ K ′

∞∑
t=1

γt+1|τt+1 − τ∗| <∞,

we conclude that
∑∞

k=0

∑t′k−1
i=tk

γi+1 < ∞, and consequently, limk→∞
∑t′k−1

i=tk
γi+1 = 0.

Since
∑∞

t=1 γtξt converges (owing to Lemma B.2.1), as k →∞,

ε ≤ ‖θt′k − θtk‖ ≤M ′
t′k−1∑
i=tk

γi+1 +

∥∥∥∥∥∥
t′k−1∑
i=tk

γi+1ξi+1

∥∥∥∥∥∥ −→ 0,

recalling the definition of M ′. This contradicts with our assumption ε > 0. Hence,

limt→∞ d(θt,Lτ∗) > 0 does not hold. Therefore, limt→∞ d(θt,Lτ∗) = 0 almost surely.
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B.3 Proof of Theorem 3.3

Proof. By Poisson equation,

uθ,τ (x)− Pθ,τuθ,τ (x) = g(x)− fθ,τ (g),

where Pθ,τ denotes the joint Markov transition kernel as defined previously, x de-

notes a sample generated by Pθ,τ , Pθ,τuθ,τ (x) =
∫
X uθ,τ (x

′)Pθ,τ (x, x
′)dx′, fθ,τ (g) =∫

g(x)fθ,τ (x)dx, and fθ,τ (x) denotes the stationary distribution of Pθ,τ . Consider the

decomposition

γt+1[g(Xt+1)− fθt,τt+1(g)] = εt+1 + ε′t+1 + ε
′′

t+1 − ε
′′

t + ε
′′′

t ,

where εt+1, ε′t+1, ε
′′
t+1 and ε

′′′
t are defined as in Lemma B.1.2, and ε

′′
0 = 0. As a result,

we have

n∑
t=0

γt+1[g(Xt+1)− fθt,τt+1(g)] =
n∑
t=0

εt+1 +
n∑
t=0

ε′t+1 +
n∑
t=0

ε
′′′

t+1 + ε
′′

n+1 − ε
′′

0 .

Since g is bounded, we can show, as in Lemma B.2.1, that {εt+1} forms a martingale

difference sequence and
∑∞

t=0 εt+1 converges almost surely. Similarly, it follows from

(B.18) that

‖
∞∑
t=0

ε′t+1 +
∞∑
t=0

ε
′′′

t+1‖ <∞.

Since ‖ε′′n+1 − ε
′′
0‖ is also upper bounded, we have

n∑
t=0

γt+1[g(Xt+1)− fθt,τt+1(g)] <∞, a.s. (B.19)
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Applying Kronecker’s Lemma to equation (B.19), we obtain

1

n

n∑
t=1

[
g(Xt+1)−

∫
X
g(x)fθt,τt+1(x)dx

]
→ 0, a.s. (B.20)

By Theorem 3.1, which implies that Xt+1 will converge in distribution to a random

variable distributed according to fθ∗,τ∗(x), and the boundedness of g(x), we have

∫
X
g(x)fθt,τt+1(x)dx→

∫
X
g(x)fθ∗,τ∗(x)dx, as t→∞. (B.21)

Then, the proof is concluded by combining equations (B.20) and (B.21).
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