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ABSTRACT

This dissertation develops sophisticated data analytic methods to analyze struc-

tural loads on, and power generation of, wind turbines. Wind turbines, which con-

vert the kinetic energy in wind into electrical power, are operated within stochastic

environments. To account for the influence of environmental factors, we employ a

conditional approach by modeling the expectation or distribution of response of in-

terest, be it the structural load or power output, conditional on a set of environmental

factors. Because of the different nature associated with the two types of responses,

our methods also come in different forms, conducted through two studies.

The first study presents a Bayesian parametric model for the purpose of esti-

mating the extreme load on a wind turbine. The extreme load is the highest stress

level that the turbine structure would experience during its service lifetime. A wind

turbine should be designed to resist such a high load to avoid catastrophic structural

failures. To assess the extreme load, turbine structural responses are evaluated by

conducting field measurement campaigns or performing aeroelastic simulation stud-

ies. In general, data obtained in either case are not sufficient to represent various

loading responses under all possible weather conditions. An appropriate extrapola-

tion is necessary to characterize the structural loads in a turbine’s service life. This

study devises a Bayesian spline method for this extrapolation purpose and applies

the method to three sets of load response data to estimate the corresponding extreme

loads at the roots of the turbine blades.

In the second study, we propose an additive multivariate kernel method as a new

power curve model, which is able to incorporate a variety of environmental factors in

addition to merely the wind speed. In the wind industry, a power curve refers to the

functional relationship between the power output generated by a wind turbine and
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the wind speed at the time of power generation. Power curves are used in practice

for a number of important tasks including predicting wind power production and

assessing a turbine’s energy production efficiency. Nevertheless, actual wind power

data indicate that the power output is affected by more than just wind speed. Several

other environmental factors, such as wind direction, air density, humidity, turbulence

intensity, and wind shears, have potential impact. Yet, in industry practice, as well

as in the literature, current power curve models primarily consider wind speed and,

with comparatively less frequency, wind speed and direction. Our model provides,

conditional on a given environmental condition, both the point estimation and den-

sity estimation of the power output. It is able to capture the nonlinear relationships

between environmental factors and wind power output, as well as the high-order inter-

action effects among some of the environmental factors. To illustrate the application

of the new power curve model, we conduct case studies that demonstrate how the

new method can help with quantifying the benefit of vortex generator installation,

advising pitch control adjustment, and facilitating the diagnosis of faults.
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CHAPTER I

INTRODUCTION

I.1. Motivation

Wind energy is one of the fastest growing renewable energy sources. According to a

report issued by American Wind Energy Association (AWEA), wind power installa-

tions in the U.S. increased to 46,919 MW by the end of 2011 (AWEA, 2012). The

U.S. Department of Energy advocates working toward the goal for wind power to ac-

count for 20% of the U.S. total electricity generation by 2030 (DOE, 2008) as shown

in Figure 1.

Fig. 1. Graphic illustration of U.S. DOE 20% Wind Energy by 2030 [Source: DOE

(2008)]

1



Wind energy has numerous advantages compared to conventional sources in terms

of environmental and economic benefits, such as reduced greenhouse gas emissions,

and free fuel. Despite the advantages, a number of challenges arise in the development

of wind energy, including:

• Operational costs of electricity systems: Efficient integration of wind energy into

electric power system is an important issue in the wind industry. For exam-

ple, to balance fluctuations and uncertainties in wind output, system operators

must dynamically schedule other types of generation as operational reserves.

Consequently, the variability and uncertainty in wind power generation leads

to higher costs in energy scheduling and dispatching.

• Operation and maintenance (O&M) costs: A key factor for enhancing the mar-

ketability of wind energy is to reduce O&M costs. According to Walford (2006),

O&M costs can account for 10 - 20% of the total energy production costs. As a

wind turbine comes to the end of its service life, it is expected that failure rates

or O&M costs will increase drastically.

• Wind turbine system reliability: Poor reliability of wind turbines leads directly

to reduced wind power generation as well as increased O&M costs. Catas-

trophic failures due to careless design parameter selections can result in im-

mense economic loss. Thus, manufacturers are interested in assessing extreme

wind turbine loads for more reliable designs.

Therefore, studies concerning structural reliability analysis, wind power forecast-

ing, and performance assessment play a critical role in addressing the aforementioned

challenges.

Wind turbines convert the kinetic energy in the wind into electrical power, so

wind speed is the most important factor influencing the power generation of a wind
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turbine. At the same time, it is also the most essential element in quantifying struc-

tural loads on a wind turbine. Hence, when evaluating structural loads and wind

power generation, wind speed must always be measured. In order to better under-

stand the relationship between wind speed and wind turbine operation, we present

two scatter plots obtained from an observed dataset. Figures 2(a) and (b) show that

both loads and power outputs have nonlinear relationships with wind speed. We also

observe the presence of a great amount of uncertainty in both relationships. Although

the shape or pattern of these curves may change depending on the size or type of the

wind turbines, the nonlinearity in the relationship with wind speed and the presence

of uncertainty are common characteristics in wind energy research. In addition, a sig-

nificant portion of uncertainty arises from other environmental factors such as wind

direction, turbulence intensity, air density, wind shear, and the like. Because of this

uncertainty, we are interested in the conditional distribution of y given x, p(y|x) or

the conditional expectation of y given x, E(y|x). Here, y represents a dependent

variable of interest such as structural loads or power outputs and x refers to one or

more of the previously mentioned environmental factors.

I.2. Overview of wind turbine design and operations

In this section, we introduce some basic concepts and terminologies related to wind

turbine design and operations. Then, the research problems are identified and defined.

I.2.1. Extreme load estimation

A wind turbine operates under various loading conditions in stochastic weather en-

vironments. The increase in size, weight, and length of components of utility-scale

wind turbines escalates the stresses/loads/responses imposed on the structure. As a
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(a) Structural load and wind speed (b) Power output and wind speed

Fig. 2. Scatter plots of the response variables versus average wind speed: structural

load and power output

result, modern wind turbines are prone to structural failures. Of particular interest in

a wind turbine system are the extreme events under which loads exceed a threshold

called a “nominal design load” or “extreme load.” Upon the occurrence of a load

higher than the nominal design load, a wind turbine could experience catastrophic

structural failures.

Mathematically, an extreme load is defined as an extreme quantile value in a

load distribution corresponding to a turbine’s service time of T years (Sørensen and

Nielsen, 2007). Let y denote the maximum load, in the unit of mill-Newton-meters

(MN-m), during a specific time interval. Then, we define the load exceedance proba-

bility as follows:

PT = P [y > lT ], (1.1)
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where PT is the target probability of exceeding the load level lT (in the same units

as that of y).

In structural reliability analysis of wind turbines, people collect load response

data and arrange them in 10-minute intervals because wind speeds are considered

stationary over a 10-minute duration (Fitzwater and Winterstein, 2001). Given this

data arrangement in the wind industry, y commonly denotes the maximum load

during a 10-minute interval. The unconditional distribution of y, p(y), is called the

long-term distribution and is used to calculate P [y > lT ] in (1.1).

In (1.1), the extreme event, {y > lT}, takes place with the exceedance probability

PT . During the service time of a wind turbine, it is considered ideal to prevent

the occurrence of such an extreme event. Differently stated, the optimal amount of

waiting time before the occurrence of an extreme event should be longer than, or

equal to, the service time. Therefore, a reasonable estimation of PT can be done in

the following way (IEC, 2005a, Peeringa, 2003):

PT =
10 min

T years× 365.25 days× 24 hours× 60 min
. (1.2)

Note that PT is the reciprocal of the number of 10-minute intervals in T years. For

example, when T is 50 years, PT becomes 3.8× 10−7.

Estimating the extreme load implies finding an extreme quantile lT in the 10-

minute maximum load distribution, given a target service period T , such that (1.1)

is satisfied. Wind turbines should be designed to resist the lT load level to avoid

structural failures during its desired service life.

Since loads are highly affected by wind profiles, we consider the marginal distri-

bution of y obtained by using the distribution of y conditional on a wind profile as

5



follows:

p(y) =

∫
p(y|x)p(x)dx. (1.3)

Here, p(x) is the joint probability density function of wind characteristics in vector

x. The conditional distribution of y given x, p(y|x) in (1.3), is called the short-term

distribution. The long-term distribution can be computed by integrating out wind

characteristics in the short-term distribution.

For inland turbines, the wind characteristic vector x in general is comprised of

two elements: (1) a steady state mean of wind speed and (2) the stochastic variability

of wind speed (Bottasso et al., 2010, Manuel et al., 2001, Ronold and Larsen, 2000).

The first element can be measured by the average wind speed (in the unit of meters

per second, or m/s) during a 10-minute interval, and the second element can be

represented by the standard deviation of wind speed, or the turbulence intensity, also

during a 10-minute interval. Here, turbulence intensity is defined as the standard

deviation of wind speed divided by the average wind speed for the same duration.

For offshore turbines, weather characteristics other than wind may be needed, such

as the wave height (Agarwal and Manuel, 2008).

I.2.2. Power curve estimation and application

To manage wind turbines and to plan wind energy production, it is critical to assess

wind power generation under a given weather profile. The so-called power curve plays

a central role in this task (Giebel et al., 2011, Monteiro et al., 2009). In the wind

industry, the power curve measures the relationship between the power output of a

turbine and the wind speed.

We first explain the basics of the power curve. Denote by y the power output

from a wind turbine and by x the vector of explanatory variables. v is the wind speed.
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In wind power production, as illustrated in the left panel of Figure 3, a turbine starts

to produce power after the wind reaches the cut-in speed, vci. A nonlinear relationship

between y and v then ensues, until the wind reaches the rated wind speed, vr. When

the wind speed is beyond vr, the turbine’s output power will be restricted at the

rated power output, yr, also known as the nominal power capacity of the turbine,

using control mechanisms such as pitch control and rotor speed regulation. The

turbine will be halted when the wind reaches the cut-out speed, vco, because high

wind is deemed harmful to the safety of a turbine. For the power curve shown in the

left panel of Figure 3, x := (v).

Wind speed 𝑉 (m/s)

𝑉𝑐𝑖 𝑉𝑟 𝑉𝑐𝑜
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Fig. 3. An example of a power curve: Vci is the cut-in wind speed, Vco is the cut-out

wind speed, Vr is the rated wind speed, and yr is the corresponding rated

power output. In the right panel where real power production data are shown,

the power outputs are normalized by the rated power output, to protect the

identity of the turbine manufacturer. The same treatment is applied to all

power curve plots throughout the paper.

The curve shown in the left panel of Figure 3 is an ideal power curve, also known
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as the nominal power curve, typically provided by a turbine manufacturer. The

right panel of Figure 3 shows the actual power output and wind measurement data

associated with a turbine, which presents a more complicated picture. Even though

the general trend shown in the data tends to agree with the nominal power curve,

there appears to be a considerable amount of information that cannot be accounted

for by a simple v-versus-y curve. Between 5 meters per second (m/s) and 15 m/s,

there are large amounts of power data for any given wind speed. This implies is that if

v is used as the sole explanatory variable, the prediction of wind power suffers from a

high degree of uncertainty. We investigate the possibility and the means of including

more explanatory variables to present a better fit to the power data.

In fact, the meteorological mast on each wind farm included a wide array of

sensors that measure more than just wind speed. Other environmental variables

measured include wind direction, d, temperature, tm, air pressure, ap, and humidity,

hm. Based on the wind speed measurements, it is also possible to calculate turbulence

intensity, tb (equal to the standard deviation of short-duration wind speeds divided by

the average wind speed of the same duration) and wind shear, ws (using wind speeds

measured at different heights). If we expand our input variable set to include these

environmental factors, we could have x := (v, d, tm, ap, hm, tb, ws). Then, our techni-

cal objective would be to estimate the conditional density, p(y|x), or the conditional

expectation, E(y|x). Technically, E(y|x) is no longer a power curve when x includes

multiple elements; it becomes a power response surface. For the sake of being consis-

tent with industrial convention, we use the term “power curve” in its broad definition,

covering the cases of both one-dimensional power curves and multi-dimensional power

response surfaces.

The wind industry makes use of power curves for at least two important purposes.

The first is to forecast wind power, which requires two steps (Giebel et al., 2011,
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Monteiro et al., 2009). First, wind speeds are forecast and then this forecast is

converted to a power forecast using a power curve. We note that wind forecasting is

beyond the focus of this study, given that it is a subfield of its own. For details on

wind forecasting, interested readers should refer to Gneiting et al. (2006), Monteiro

et al. (2009), Hering and Genton (2010), and Zhu and Genton (2012). The second

purpose of power curves is for turbine performance assessment and turbine health

monitoring (Albers et al., 1999, Stephen et al., 2011, Uluyol et al., 2011), in which a

power curve is used to characterize a turbine’s power production efficiency by noting

the changes in the position and slope of the turbine’s power curve. For an illustration,

see Figure 3, right panel. Under the assumption that future wind speeds are given,

the procedure of wind power forecasting is very simple and straightforward. On the

other hand, for the latter application, we should address an additional issue related

to test procedures.

For performance assessment, the general approach is to use the so-called endoge-

neous power output excluding environmental effects, also known as the power residual

and denoted by r. It can be expressed as in the following:

r = y − ŷ, (1.4)

where y is the observed power output, and ŷ is the power output estimated by a

power curve model. Given this difference, the next step is to distinguish between

the normal and abnormal behavior of a turbine by making use of the power residual.

Here, abnormal behaviors can be caused by a variety of physical changes in wind

turbines including intentional retrofit, natural degradation, or system faults. It is

important to study effective methods that can detect the occurrence of anomalies.
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I.3. Research objective and outline

Due to uncertainty and stochastic issues, the wind industry has been greatly interested

in explaining the relationship between environmental factors x and maximum load

or power output y. However, it is generally difficult to precisely characterize the

relationship between environmental factors and structural loads or power outputs by

using physical law-based dynamic equations. For example, a power curve provided by

manufacturers is often different from the observed curves. Therefore, we are interested

in understanding and explaining these relationships by using a data-driven statistical

approach with field data.

For addressing uncertainty in observed data, the International Electro-technical

Commission (IEC) recommends the assessment of structural loads (extreme load lev-

els) or power outputs with reference to site-specific conditions (IEC, 2005a,b). The

basic idea of the recommended method, called the binning method, is to discretize the

domain of a few environmental factors and to estimate within each bin. The detailed

explanation can be found in Chapter II. The current industrial practices follow the

IEC recommendation because of the simplicity of its idea and procedure. However,

the current method has several serious shortcomings. It often results in low accuracy

and high uncertainty because most bins have limited data, or sometimes no data at

all. Also, it is not easy to extend the binning method to include more environmen-

tal factors. Thus, the objective of this dissertation research is to develop and apply

new conditional models for estimating extreme load levels and power curves under

stochastic weather conditions.
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I.3.1. Bayesian spline method for assessing extreme loads on wind tur-

bines

In this study, we present a new extreme load analysis model estimating the site-specific

structural design load (extreme load levels). This model allows us to calculate the

structural design load for the same kind of wind turbine that will be built at a different

site. Our new procedure consists of two sub-models, which are the short-term dis-

tribution, p(y|x) and the distribution of environmental variables, p(x), respectively.

The novelty of the new procedure primarily concerns the ways of modelling the short-

term distribution p(y|x). Particularly, we establish a parametric load distribution for

y|x using spline models. As such, we label the resulting method a Bayesian spline

method for extreme loads.

I.3.2. Power curve estimation and turbine performance assessment with

multivariate environmental factors

In this study, we estimate the power curve associated with individual turbines at

both inland and offshore wind farms using turbine-specific power output data and

environmental data measured from a meteorological mast on the corresponding farm.

Our research shows that inclusion of the extra environmental factors in a power curve

model can indeed improve wind power predictions. A power curve model that incor-

porates multiple environmental factors also provides a useful tool for studying the

relative importance of these environmental variables on wind power generation. To

fulfill the objective of developing a power curve method with multivariate depen-

dencies, we expanded the kernel-based methodology developed by Jeon and Taylor

(2012). The main challenge to overcome was to find a novel way of handling the

extra variables in x, because a typical kernel density estimation method easily runs
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into computational problems when the number of explanatory variables exceeds two

or three. Our approach is to devise an additive multivariate kernel model that can

handle the multi-dimensional power curve estimation problem in a reasonable com-

putational time.

To demonstrate how the resulting new power curve model can facilitate the mis-

sion of turbine performance assessment, we present three case studies in which wind

turbines are either upgraded or had experienced faults. To detect a turbine change

resulting from either upgrades or faults, we incorporate the power curve models and

suggest a new procedure for performance testing.

I.4. Organization of this dissertation

This dissertation is organized as follows. Chapter II surveys the methods available

in the literature on wind turbine design and on operations. In addition, this chapter

includes an explanation of the current models used in the wind industry. Then,

the limitation of the existing approaches for wind turbine design and operations is

discussed and arguments for the necessity of developing new models are presented.

Chapter III presents a Bayesian spline method for estimating the extreme load

level lT , using load data collected in a period much shorter than a turbine’s service life.

The spline method is applied to three sets of a turbine’s load response data to estimate

the corresponding extreme loads at the roots of the turbine blades. Compared to the

current industry practice or the unconditional existing method, the spline method

appears to provide better extreme load assessment.

Chapter IV presents an additive multivariate kernel method that can include a

variety of environmental factors as a new power curve model. Our model provides,

conditional on a given environmental condition, both the point estimation and density
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estimation of the power output. It is able to capture the nonlinear relationships

between environmental factors and wind power output, as well as the high-order

interaction effects among some of the environmental factors. Using operational data

associated with four turbines on an inland wind farm and two turbines on an offshore

wind farm, we demonstrate the improvement achieved by our kernel method.

Chapter V presents a new procedure for performance testing or monitoring by

using the new power curve model presented in Chapter IV. Then, we compare the per-

formance assessment results provided by both the additive multivariate kernel method

and the binning method. The new procedure is illustrated by its application to three

operational datasets of wind turbines that underwent different physical changes.

Chapter VI summarizes the contribution of this dissertation with its broad im-

pact on wind turbine design and operations. The chapter also discusses future research

directions and possible extensions to this dissertation study.
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CHAPTER II

LITERATURE REVIEW

This chapter reviews the current practice and existing methods related to extreme

load analysis and power generation analysis. The first section reviews deterministic

and statistical approaches for extreme load assessment, and discusses the limitations

of existing methods. The second section explains the current industrial practices for

power generation forecasting or turbine assessment.

II.1. Studies on extreme load analysis

II.1.1. Deterministic approaches for extreme load analysis

The previous edition of the international standard, IEC 61400-1:1999, offers a set

of design load cases with deterministic wind conditions such as annual average wind

speeds, higher and lower turbulence intensities, and extreme wind speeds (IEC, 1999).

In other words, the loads in the IEC 61400-1:1999 are specified as discrete events based

on design experiences and empirical models (Moriarty et al., 2002). Veers and Butter-

field (2001) point out that these deterministic models do not represent the stochastic

nature of structure responses, and suggest using statistical modeling to improve de-

sign load estimates. Moriarty et al. (2002) examine the effect of varying turbulence

levels on the statistical behavior of a wind turbine’s extreme load. They conclude

that the loading on a turbine is stochastic at high turbulence levels, significantly

influencing the tail of the load distribution.

In response to these developments, the new edition of IEC 61400-1 standard (IEC

61400-1:2005), issued in 2005, replaces the deterministic load cases with stochastic

models, and recommends the use of statistical approaches for determining the ex-
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treme load level in the design stage. Freudenreich and Argyriadis (2008) compare

the deterministic load cases in the IEC 61400-1:1999 with the stochastic cases in IEC

61400-1:2005, and observe that when statistical approaches are applied, higher ex-

treme load estimates are obtained in some structural responses, such as the blade tip

deflection and flap-wise bending moment.

II.1.2. Statistical approaches for extreme load analysis

After IEC 61400-1:2005 was issued, many studies reported focusing on devising and

recommending statistical approaches for extreme load analysis (Agarwal and Manuel,

2008, Fogle et al., 2008, Freudenreich and Argyriadis, 2008, Moriarty, 2008, Natarajan

and Holley, 2008, Peeringa, 2009, Regan and Manuel, 2008). These studies adopt a

common framework, which we refer to as the binning method. The basic idea of the

binning method is to discretize the domain of a wind profile vector x into a finite

number of bins. For example, one can divide the range of wind speeds, from the

cut-in speed to the cut-out speed, into multiple bins and set the width of each bin

to, say, 2 m/s. Then, in each bin, the conditional short-term distribution of y|x is

approximated by a stationary distribution, with the parameters of the distribution

estimated by the method of moments or the maximum likelihood method. Then,

the contribution from each bin is summed over all possible bins to determine the

final long-term extreme load. In other words, integration in (1.3) for calculating the

long-term distribution is approximated by the summation of finite elements as follows:

1− PT ≈
∫ lT

−∞

∑
x

p(y|x)p(x)∆xdy. (2.1)

According to the classical extreme value theory (Coles, 2001, Smith, 1990), the

short-term distribution of y|x can be approximated by a generalized extreme value
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(GEV) distribution. The probability density function of the GEV is

p(y) =
1

σ
exp

[
−
(

1 + ξ

(
y − µ
σ

))− 1
ξ

](
1 + ξ

(
y − µ
σ

))−1− 1
ξ

if ξ 6= 0,

=
1

σ
exp

[
−y − µ

σ
− exp

(
−y − µ

σ

)]
if ξ = 0. (2.2)

for {y : 1 + ξ(y − µ)/σ > 0}, where, µ ∈ < is the location parameter, σ > 0 is the

scale parameter, and ξ ∈ < is the shape parameter that determines the weight of the

tail of p(y). ξ > 0 corresponds to the Fréchet distribution with a heavy upper tail,

ξ < 0 to the Weibull distribution with a short upper tail and light lower tail, and

ξ = 0 (or, ξ → 0) to the Gumbel distribution with a light upper tail. The main focus

of interest in extreme value theory is in deriving the quantile value (which, in our

study, is defined as the extreme load level lT ), given the target probability PT . The

quantile value can be expressed in terms of the function of parameters as follows:

lT = µ− σ

ξ

[
1− (− log (1− PT ))−ξ

]
if ξ 6= 0

= µ− σ log [− log (1− PT )] if ξ = 0. (2.3)

The virtue of the binning method is that by modeling the short-term distribution

with a homogeneous GEV distribution (i.e. keep the parameters therein constant),

it provides a simple way to handle the overall non-stationary load response across

different wind speeds. The binning method is perhaps the most common method

used in the wind industry and is also recommended by IEC (2005a). For example,

Agarwal and Manuel (2008) use the binning method to estimate the extreme loads for

a 2MW offshore wind turbine. In each weather bin, they use the Gumbel distribution

to explain the probabilistic behavior of the mudline bending moments of the turbine

tower. The data were collected for a period of 16 months. However, most bins have

a small number of data, or sometimes, no data at all. For the bins without data,
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the authors estimate the short-term distribution parameters by using a weighted

average of all non-empty bins with the weight related to the inverse squared distance

between bins. They quantify the uncertainty of the estimated extreme loads using

a bootstrapping technique and report 95% confidence intervals for the short-term

extreme load given specific weather conditions (weather bin). Because bootstrapping

resamples the existing data for a given weather bin, it cannot precisely capture the

uncertainty for those bins with limited data or without data.

II.1.3. Limitations of the binning method

Despite its popularity, the binning method has obvious shortcomings in estimating

extreme loads. A major limitation lies in that the short-term load distribution in

one bin is constructed separately from the short-term distributions in other bins.

This approach requires an enormous amount of data to define the tail of each short-

term distribution. In reality, the field data can only be collected in a short duration

(e.g., one year out of the 50-year service period), and consequently, some bins do not

have enough data. Then, the binning method may end up with inaccuracies or big

uncertainties in the estimate of extreme loads. In practice, how many bins to use

is also under debate, and there is not yet a consensus. The answer to the action of

binning appears to depend on the amount of data – if one has more data, more bins

can be used; otherwise, fewer bins.
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II.2. Studies on power curve estimation and turbine performance assess-

ment

II.2.1. Current industrial method

As in the extreme load analysis, the current industrial practice of estimating the

power curve relies again on binning (IEC, 2005b). For power curve estimation, the

binning method is to discretize the domain of wind speed into a greater number of

bins, say, using a bin width of 0.5 m/s. Then, the value to be used for representing

the power output for a given bin is simply the sample average of all the data points

falling within that specific bin, namely:

yi =
1

Ni

Ni∑
j=1

yi,j, (2.4)

where yi,j is the power output of the jth data point in bin i, and Ni is the number of

data points in bin i. In the binning method, almost all other environmental variables

are ignored, except for the so-called air density adjustment, for which we will present

a detailed expression later.

II.2.2. Studies on power curve estimation

Many existing methods of fitting a power curve are similar to the binning method

in the sense that only wind speed is used as the sole explanatory variable, although

the specific techniques used for curve fitting were quite different (Hayes et al., 2011,

Kusiak et al., 2009, Osadciw et al., 2010, Uluyol et al., 2011, Yan et al., 2009). For

instance, Yan et al. (2009) and Osadciw et al. (2010) use a polynomial fitting, a

symmetric sigmoid function and a Gaussian cumulative density function (CDF) for

curve fitting, and Kusiak et al. (2009) use a logistic function. These methods are of a

parametric flavor. Kusiak et al. (2009) also suggest a nonparametric approach, which

18



is to use the k-nearest neighborhood (k-NN) method to make a power prediction.

Wan et al. (2010) extend to the binning method. In one aspect, they study the

wind direction effect, but their approach is simply to divide wind direction into a few

disjoint sub-directions; doing this is, in fact, an action of binning. Another extension

is that they try a neural network model that took both wind speed and air density

as inputs. However, their study concluded that doing so does not appear beneficial.

When comparing a few different options, including curve fitting (they do not specify

which curve fitting method they used) and binning, Wan et al. (2010) conclude that

the binning method with air density correction produced the best power curve fitting

outcome.

A handful of studies do explicitly include both wind speed and wind direction

in their models (Jeon and Taylor, 2012, Nielsen et al., 2002, Pinson et al., 2008,

Sánchez, 2006). The inclusion of wind direction is not surprising because of the

physical intuition that the turbine’s wind power production is directly influenced by

how the wind blows. The specific approaches employ in these studies are different:

Nielsen et al. (2002) use a local polynomial regression; Sánchez (2006) present a

dynamic combination of several prediction models based on time-varying coefficients

and a recursive solution procedure; Pinson et al. (2008) use a total least squares

criterion (i.e., orthogonal distance least squares), together with a Huber M-estimator,

to achieve a certain degree of robustness. Jeon and Taylor (2012) present inarguably

the most sophisticated approach; they employed a conditional kernel density method

to estimate p(y|x). Not only does their model consider both wind speed and wind

direction, but it also produces a density estimation that can be used to account for

uncertainty in wind power prediction. Unlike Jeon and Taylor (2012), nearly all the

other studies produce only a point estimation.

As a side note, we commented earlier on the two primary utilities of power curves,
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namely for wind power estimation and for turbine performance assessment. Among

the literature discussed, the works where power curves are used principally for power

prediction include Nielsen et al. (2002), Sánchez (2006), Pinson et al. (2008), Wan

et al. (2010), Hayes et al. (2011) and Jeon and Taylor (2012), and the works where

power curves are used principally for assessing turbine performance include Yan et al.

(2009), Kusiak et al. (2009), Uluyol et al. (2011), Osadciw et al. (2010), and Stephen

et al. (2011).

II.2.3. Studies on turbine performance assessment

In this section, we summarize the works on turbine performance assessment under

the assumption that the power curve is already estimated. Keep in mind that most

studies regarding turbine performance tests only consider wind speed as the sole

environmental variable in x affecting power output y.

Yan et al. (2009) and Osadciw et al. (2010) compare the measured data to the

fitted nominal power curve for anomaly detection. In the studies concerning anomaly

detection, a general solution is to specify a common threshold of deviation over the

whole domain of wind speed. However, Yan et al. (2009) show that power residuals

calculated by power curve estimation indicate a heavy-belly pattern. For this reason,

using a common threshold is not applicable to the power residuals. Thus, instead

of using power residuals, Yan et al. (2009) propose to use the wind residuals and

then specify a threshold over the whole domain of wind speed. Here, the wind speed

residuals are calculated by using the inverse functions of different power curve esti-

mation models such as a polynomial fitting, a sigmoid function, or a Gaussian CDF

fitting function. Osadciw et al. (2010) point out the limitations of the inverse func-

tion method using a polynomial fitting or a sigmoid function fitting. They suggest

employing the Inverse Diagnostic Curve Detector (IDCD) method , which is based
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on the Gaussian CDF function. They demonstrate the superiority of their method

by using data with a major component failure as well as with a faulty anemometer.

Uluyol et al. (2011) calculate their power residuals by using the nominal power

curve provided by the turbine manufacturer. In the absence of a manufacturer-

provided power curve, they use a polynomial fitting to estimate the power curves.

Then, instead of using a common threshold, they recommend a condition indicator

(CI) method, which is to generate various statistics of the power residuals such as

mean, skewness, and kurtosis. Collectively, all these statistics are called the CI. To

calculate these CIs, they use the same idea as the binning method, which is to di-

vide the power residuals into a number of bins and then to compute the statistics

for each bin. When compared to a universal threshold method, their method has the

advantage of being robust.

For the purpose of on-line monitoring, Kusiak et al. (2009) use the statistics of

power residuals such as mean and standard deviation from a bin. They subsequently

calculate the upper and lower control limits in each bin, and then use the control

limits for anomaly detection.

II.2.4. Limitations of existing studies

Based on the findings from the literature review, it seems evident that despite the

availability of other environmental measurements and their potential impact on power

curve estimation, the current methods predominately made use of wind speed only,

and wind speed and direction with less frequency. Consequently, their models have

high uncertainty caused by other environmental factors. Moreover, the need to de-

velop power curve methods with multivariate dependency has been recently noted,

both directly by Stephen et al. (2011) and indirectly in the studies by Tindal et al.

(2008) and Albers et al. (1999).
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Particularly, for turbine performance assessment, the power curve plays a critical

role. The power residuals calculated by the current methods with speed only reveal

a non-random pattern and high variance due to the effects of other environmental

factors. These characteristics of the residuals hinder us from detecting small changes

in turbine performance. Although such changes can be found, they make it difficult

to identify where the changes come from.
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CHAPTER III

BAYESIAN SPLINE METHOD FOR ASSESSING EXTREME LOADS

ON WIND TURBINES

In this chapter, we first provide some background information regarding wind turbine

load responses and the datasets used in this study. Then, we proceed to present the

details of our spline method in Section III.2. In Section III.3, we compare the spline

method with the current industry practice or the unconditional existing method,

arguing that the spline method produces better estimates. Finally, we end this study

with some concluding remarks in Section III.4.

III.1. Background and datasets

Figure 4 shows examples of mechanical loads at different components in a turbine

system. The flap-wise bending moments measure the loads at the blade roots that

are perpendicular to the rotor plane, while the edge-wise bending moments measure

the loads that are parallel to the plane. Shaft- and tower- bending moments measure,

in two directions, the stresses on the main shaft connected to the rotor and on the

tower supporting the wind power generation system (i.e., blades, rotor, generator

etc.), respectively.

We only study inland turbines (ILTs) in this work, and use the datasets from

three ILTs located at different sites. These datasets were collected by Risø-DTU

(Technical University of Denmark) (WindData, 2010). Table 1 summarizes the spec-

ifications of the datasets.

We would like to first explain a few terms used in the table as well as in the rest

of the paper:
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Edge-wise bending moment Flap-wise bending moment 

Tower bending moment 

Tower  torsion 

Shaft bending moment Shaft torque 

Fig. 4. Illustration of structural loads at different components [Source: The illustra-

tion is modified based on a figure originally available at WindData (2010)]

• Pitch control : To avoid production of excessive electricity, turbines hold its rotor

at an approximately constant speed in high wind speeds. A pitch controlled

turbine turns its blades to regulate its rotor speed.

• Stall control : This serves the same purpose as in pitch control. But the blade

angles do not adjust during operation. Instead the blades are designed and

shaped to increasingly stall the blade’s angle of attack with the wind to protect

the turbine from excessive wind speeds.

• Cut-in wind speed : The lowest wind speed at a hub height at which a wind

turbine starts to produce power.

• Cut-out wind speed : The speed beyond which a wind turbine shuts itself down

to protect the turbine.
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• Rated wind speed : The speed beyond which the turbine’s output power needs

to be limited, and consequently, the rotor speeds are regulated, by using, for

example, a pitch control mechanism.

Among the structural load responses, we consider only the flap-wise bending

moments measured at the root of blades. In other words, y in this study is the

maximum blade-root flap-wise bending moment. But please note that our method

applies to other load responses as well. Regarding weather characteristics, since we

consider only the ILTs, we include in x the average wind speed v and the standard

deviation of wind speed s; namely x := (v, s).

The data are recorded at different frequencies on the ILTs, as follows:

• ILT1 : 25Hz (measuremets/sec) = 15,000 measurements/10-min

• ILT2 : 32Hz (measurements/sec) = 19,200 measurements/10-min

• ILT3 : 35.7Hz (measurements/sec) = 21,420 measurements/10-min

The raw measured variables are vij and yij, where i = 1, · · · , n represents a 10-

minute block of data and j = 1, · · · , N is the index of the measurements. We use

N to represent the number of measurements in a 10 minute block, equal to 15,000,

19,200, and 21,420 for ILT1, ILT2, and ILT3, respectively, and use n to represent the

total number of the 10-minute intervals in each dataset, taking the value of 1,154, 595,

and 5,688, respectively, for ILT1, ILT2, and ILT3. For these variables, the statistics

of the observations in each 10-minute block are calculated as follows:
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vi =
1

N

N∑
j=1

vij, (3.1)

si =

√√√√ 1

N − 1

N∑
j=1

(vij − vi)2 and (3.2)

yi = max {yi1, yi2, · · · , yiN} . (3.3)

Table 1. Specifications of wind turbines in three datasets

Wind turbine model NEG-Micon/2750 Vestas V39 Nordtank 500

(Name of dataset) (ILT1) (ILT2) (ILT3)

Hub height (m) 80 40 35

Rotor diameter (m) 92 39 41

Cut-in wind speed (m/s) 4 4.5 3.5

Cut-out wind speed (m/s) 25 25 25

Rated wind speed (m/s) 14 16 12

Nominal power (kW) 2,750 500 500

Control system Pitch Pitch Stall

Location Alborg, Tehachapi Pass, Roskilde,

Denmark California Denmark

Terrain Coastal Bushes Coastal
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III.2. Bayesian spline method for extreme loads

In this section, we present two sub-models used in our new procedure of estimating

the extreme load. The first sub-model (in Section III.2.1) is the conditional maximum

load model p(y|x), and the second sub-model (in Section III.2.3) is the distribution

of wind characteristics p(x). Our major undertaking in this study is on the first

sub-model, where we present an alternative to the current binning method.

We begin by presenting some scatter plots for the three datasets. Figure 5 shows

the scatter plots between the 10-minute maximum loads and 10-minute average wind

speeds. We observe nonlinear patterns between the loads and the average wind speeds

in all three scatter plots, while individual turbines exhibit different response patterns.

ILT1 and ILT2 are two pitch controlled turbines, so when the wind speed reaches or

exceeds the rated speed, the blades are adjusted to reduce the absorption of wind

energy. As a result, we observe that the loads show a downward trend after the rated

wind speed. But different from that of ITL1, the load response of ILT2 has a large

variation beyond the rated wind speed. This large variation can be attributed to the

less capable control system since ILT2 is one of the early turbine models using a pitch

control system. ILT3 is a stall controlled turbine, and its load pattern in Figure 5(c)

does not have an obvious downward trend beyond the rated speed.

Figure 6 presents the scatter plots between the 10-minute maximum load and

the standard deviation of wind speed during the 10-minute interval. We also observe

nonlinear relationships between them, especially for the new pitch-controlled ITL1.

Figure 7 shows scatter plots of 10-minute standard deviation versus 10-minute average

wind speed. Some previous studies (Fitzwater et al., 2003, Moriarty et al., 2002)

suggest that the standard deviation of wind speed varies with the average wind speed,

which appears consistent with what we observe in Figure 7.
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(a) ILT1 (b) ILT2 (c) ILT3

Fig. 5. Scatter plots of 10-minute maximum load versus 10-minute average wind

speed

(a) ILT1 (b) ILT2 (c) ILT3

Fig. 6. Scatter plots of 10-minute maximum load versus 10-minute standard devia-

tion of wind speed

(a) ILT1 (b) ILT2 (c) ILT3

Fig. 7. Scatter plots of 10-minute average wind speed versus 10-minute standard

deviation of wind speed
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III.2.1. Sub-model 1: Bayesian spline model for conditional maximum

load

Recall that in the binning method, a homogeneous GEV distribution is used to model

the short-term load distribution, for it appears reasonable to assume stationarity if

the chosen weather bin is narrow enough. A finite number of the homogeneous GEV

distributions are then stitched together to represent the non-stationary nature of the

loads across the entire wind profile. What we propose here is to get rid of the bins and

instead use a non-homogeneous GEV distribution whose parameters are not constant

but depend on weather conditions.

Our research starts with trying simple approaches based on polynomial models.

It turns out that polynomial-based approaches lack the flexibility of adapting to the

datasets from different types of turbines. Moreover, due to the nonlinearity around

the rated wind speed and the lack of data under high wind speeds, polynomial-

based approaches performed poorly in those regions that are generally important for

capturing the maximum load. Spline models, on the other hand, appear to work better

than a global polynomial model, because they have more supporting points spreading

over the input domains. In the sequel, we present two flexible Bayesian spline models

for the purpose of establishing the desired non-homogeneous GEV distribution.

Suppose we observe 10-minute maximum loads y1, · · · , yn with corresponding

covariate variables x1 = (v1, s1), · · · ,xn = (vn, sn). We choose to model yi with a

GEV distribution:

yi|xi ∼ GEV (µ(xi), σ(xi), ξ), σ(·) > 0, (3.4)

where the location parameter µ and scale parameter σ in this GEV distribution are a

nonlinear function of wind characteristics x. The shape parameter ξ is fixed across the
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wind profile, while its value will still be estimated using the data from a specific wind

turbine. The reason that we keep ξ fixed is to keep the final model from becoming

overly complicated. Let us denote µ(xi) and σ(xi) by

µ(xi) = f(xi), (3.5)

σ(xi) = exp(g(xi)), (3.6)

where in the second expression above, an exponential function is used to ensure the

positivity of the scale parameter.

Our strategy of modeling f(·) and g(·) is to use a Bayesian MARS (multivariate

adaptive regression splines) model (Denison et al., 2002, 1998) for capturing the non-

linearity between the load response and the wind-related covariates. The Bayesian

MARS model has a high flexibility. It includes the number and locations of knots

as part of its model parameters and decides them from observed data. In addition,

interaction effects among input factors can be modeled if choosing appropriate basis

functions.

More specifically, the Bayesian MARS models f(x) and g(x) for the location

parameter µ and the scale parameter σ are represented as a linear combination of the

basis functions Bµ
k (x) or Bσ

k (x):

f(x) =

Kµ∑
k=1

βkB
µ
k (x), (3.7)

g(x) =
Kσ∑
k=1

θkB
σ
k (x), (3.8)

where βk, k = 1, · · · , Kµ and θk, k = 1, · · · , Kσ are the coefficients of the basis func-

tions Bµ
k (·) and Bσ

k (·), respectively, and Kµ and Kσ are the number of basis functions

for the location parameter µ and the scale parameter σ, respectively. According to

the study by Denison et al. (1998), which proposed the Bayesian MARS, its basis
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function is specified as follows:

Bk(x) =

 1, k = 1∏Jk
j=1

[
hjk(xr(j,k) − tjk)

]
+
, k = 2, 3, · · · , K·

(3.9)

Here, [·]+ = max(0, ·), Jk is the degree of interactions modeled by the basis function

Bk(x), hjk is the sign indicators, taking the value of either −1 or +1, r(j, k) produces

the index of the predictor variable which is being split on tjk, commonly referred to

as the knot points.

In this study, because we only consider two predictors for inland turbines, namely

v and s, Jk takes the value of either 1 or 2. When Jk = 1, two types of basis functions

are used and defined in each of the predictors, represented by Tk = 1 and Tk = 2,

respectively, and no interaction effects between the predictors are modeled. When

Jk = 2, three types of basis functions are used, represented by Tk = 1, Tk = 2,

and Tk = 3, respectively. The three types of basis functions are used to model each

predictor as well as their interaction. In our model, we set Jk = 2 in the model of the

location parameter µ for ILT1 and ILT3 data to allow the interaction to be modeled.

For ILT2, however, due to its relatively smaller data amount, a model setting Jk = 2

produces unstable and unreasonably wide credible intervals. So for ILT2, only two

types of basis functions are used to model its location parameter µ. For the scale

parameter σ, we always set Jk = 1.

Let Ψa = (Ψµ,Ψσ, ξ) denotes all the parameters used in model (3.4), where

Ψµ and Ψσ include the parameters in function f(·) and g(·), respectively. Those

parameters are grouped into two sets: (1) the coefficients of the basis functions in

β = (β1, · · · , βKµ) or θ = (θ1, · · · , θKσ), and (2) the number and locations of the
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knots, and the types of basis function in φµ or φσ, as follows:

φµ =
(
Kµ,Λ

µ
2 , · · · ,Λ

µ
Kµ

)
,

where Λµ
k =

 (T µk , h
µ
1k, t

µ
1k), when T µk = 1, 2;

(T µk , h
µ
1k, h

µ
2k, t

µ
1k, t

µ
2k), when T µk = 3,

(3.10)

and

φσ =
(
Kσ,Λ

σ
2 , · · · ,Λσ

Kσ

)
,

where Λσ
k = (T σk , h

σ
1k, t

σ
1k), when T σk = 1, 2. (3.11)

Using the above notation, we have Ψµ = (β,φµ) and Ψσ = (θ,φσ).

To complete the Bayesian formulation for the model in (3.4), priors of the pa-

rameters involved should be specified. In this paper, we use uniform priors on φµ and

φσ as follows;

p(K) =
1

n
, K = {1, · · · , n}

p(Tk) =


1, Tk = {1}
1
2
, Tk = {1, 2}

1
3
, Tk = {1, 2, 3}

(3.12)

p(h·k) =
1

2
, h·k = {+1,−1}

p(t·k) =
1

n
, t·k = {v1, . . . , vn} or {s1, . . . , sn} .

Given φµ and φσ, we specify the prior distribution for the parameters (β,θ, ξ) as the

unit-information prior, i.e., UIP (Kass and Wasserman, 1995). The UIP is a multi-

variate normal prior distribution with its mean at the maximum likelihood estimate

and its covariance matrix equal to the Fisher information of one observation.
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III.2.2. Sub-model 1: Posterior distribution of parameters

The Bayesian MARS model treats the number and locations of the knots as random

quantities in a posterior sampling procedure. When the number of knots changes, the

dimension of the parameter space changes with it. To handle a varying dimensionality

in the probability distributions in a random sampling procedure, we use a reversible

jump Markov chain Monte Carlo (RJMCMC) algorithm developed by Green (1995).

To allow for dimensional changes, there are three actions in a RJMCMC algorithm:

BIRTH, DEATH and MOVE, which adds, deletes, or alters a basis function, respec-

tively. Accordingly, the number of knots as well as the locations of some knots are

changed. The detailed definitions of the three actions are given in Denison et al.

(2002, p. 53), so we need not repeat them here. They suggest the following: use

the equal probability (i.e., 1
3
) to propose any of the three moves, and then, use the

following acceptance probability α for a proposed move from a model having k basis

functions to a model having kc basis functions:

α = min {1, the ratio of marginal likelihood×R} , (3.13)

where R is a ratio of probabilities defined as:

• For a BIRTH action, R =
probability of DEATH in model kc

probability of BIRTH in model k
;

• For a DEATH action, R =
probability of BIRTH in model kc

probability of DEATH in model k
;

• For a MOVE action, R =
probability of MOVE in model kc

probability of MOVE in model k
.

R = 1 for most cases, because those probabilities are equal, except when k reaches

either the upper or the lower bound.
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In our study, the marginal likelihood can be expressed as follows:

p
(
Dy|φµ,φσ

)
=∫

p
(
Dy|β,θ, ξ,φµ,φσ

)
p
(
β,θ, ξ|φµ,φσ

)
dβdθdξ. (3.14)

where Dy = (y1, · · · , yn) represents a set of observed load data. Kass and Wasserman

(1995) and Raftery (1995) showed that when the UIP priors are used, the above

marginal log-likelihood can be reasonably approximated by the Schwarz information

criterion (SIC) (Schwartz, 1978). The SIC is expressed as:

SICφµ,φσ = log
(
p(Dy|β̂, θ̂, ξ̂,φµ,φσ)

)
− 1

2
dk log(n).

where β̂, θ̂, ξ̂ are the maximum likelihood estimators (MLEs) of the corresponding pa-

rameters obtained conditional on φµ and φσ, and dk is the total number of parameters

to be estimated. In this case, dk = Kµ +Kσ + 1.

Recall that we have two dimension-varying states φµ and φσ in the RJMCMC

algorithm. Depending on which state vector is changing, two marginal log-likelihood

ratios are needed, and they are approximated by the corresponding SICs, such as:

log
p
(
Dy|φcµ,φσ

)
p
(
Dy|φµ,φσ

) w SICφcµ,φσ − SICφµ,φσ , and (3.15)

log
p
(
Dy|φµ,φcσ

)
p
(
Dy|φµ,φσ

) w SICφµ,φcσ − SICφµ,φσ . (3.16)

Then, we use two acceptance probabilities αµ and ασ, respectively, for accepting

or rejecting a new state in φµ and φσ. Using the SICs, αµ and ασ are expressed as:

αµ = min
{

1, exp
(

SICφcµ,φσ − SICφµ,φσ

)
×R

}
, and (3.17)

ασ = min
{

1, exp
(

SICφµ,φcσ − SICφµ,φσ

)
×R

}
. (3.18)
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As such, we sequentially draw samples for φµ and φσ by using the two acceptance

probabilities, while marginalizing out (β, θ, ξ); and then, conditional on the sampled

φµ and φσ, draw samples for (β, θ, ξ) using a Normal approximation based on the

maximum likelihood estimates and the observed information matrix. This RJMCMC

algorithm produces the samples from the posterior distribution of parameters in Ψa.

The detailed simulation procedure can be found in Step I of Subsection III.2.5.

III.2.3. Sub-model 2: Distribution of wind characteristics

To find a site-specific load distribution, the distribution of wind characteristics p(x)

in (1.3) needs to be specified. Since a statistical correlation is noticed between the

10-minute average wind speed v and the standard deviation of wind speed s in Figure

7, the distribution of wind characteristics p(x) can be written as a product of the

average wind speed distribution p(v) and the conditional wind standard deviation

distribution p(s|v). In this section, we separately discuss how to specify each model.

For modeling the 10-minute average wind speed v, the IEC standard suggests

using a 2-parameter Weibull distribution (W2) or Rayleigh distribution (RAY) (IEC,

2005a). These two distributions are arguably the most widely used ones for this

purpose. Carta et al. (2008) and Li and Shi (2010) note that under different wind

regimes other distributions may fit wind speed data better, including the 3-parameter

Weibull distribution (W3), 3-parameter log-Normal distribution (LN3), 3-parameter

Gamma distribution (G3), and 3-parameter inverse-Gaussian distribution (IG3). We

take a total of six candidate distribution models for average wind speed (W2, W3,

RAY, LN3, G3, IG3) from Li and Shi (2010), and conduct a Bayesian model selection

to choose the best distribution fitting a given average wind speed dataset.

We assume UIP priors for the parameters involved in the aforementioned models,

and our approach is again based on maximizing the SIC. Once the best wind speed
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model is chosen, we denote it by Mv. Then, the 10-minute average wind speed v is

expressed as:

vi ∼ Mv(ν), (3.19)

where ν is the set of parameters specifying Mv. For instance, if Mv is W3, then

ν = (ν1, ν2, ν3), where ν1, ν2 and ν3 represent the shape, scale, and shift parameter,

respectively, of a 3-parameter Weibull distribution.

For modeling the standard deviation of wind speed s, given the average wind

speed v, the IEC standard recommends using a 2-parameter Truncated Normal dis-

tribution (TN2) (IEC, 2005a), which appears to be what people have commonly used;

see, for example, Fitzwater et al. (2003). The distribution is characterized by a loca-

tion parameter η and a scale parameter δ. In the literature, both η and δ are each

treated as a constant. But we observe that datasets measured at different sites have

different relationship between the average wind speed v and the standard deviation

s. Some of v-versus-s scatter plots show nonlinear pattens.

Motivated by this observation, we decide to employ a Bayesian MARS model for

modeling η and δ, similar to what we did in Sub-model 1. The standard deviation of

wind speed s, conditional on the average wind speed v, can then be expressed as:

si|vi ∼ TN2(η(vi), δ(vi)), (3.20)

where η(vi) = fη(vi) and δ(vi) = exp(gδ(vi)),

where fη and gδ, like their counterpart in (3.7) and (3.8), are a linear combination of

the basis functions taking the general form of (3.9). Notice that both of the functions

have only one input variable, which is the average wind speed.

Let Ψη = (βη,φη) and Ψδ = (θδ,φδ) denote the parameters in function fη(·)
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and gδ(·). Since the basis functions fη and gδ in (3.20) have only one input variable,

only one type of basis function (i.e., Tk = 1) is needed. Hence, φη and φδ are much

simpler than φµ and φσ, their counterparts in (3.10) and (3.11), and are expressed

as follows:

φη =
(
Kη,Λ

η
2, · · · ,Λ

η
Kη

)
,

where Λη
k = (T ηk , h

η
1k, t

η
1k) and T ηk = 1; (3.21)

and

φδ =
(
Kδ,Λ

δ
2, · · · ,Λδ

Kδ

)
, (3.22)

where Λδ
k = (T δk , h

δ
1k, t

δ
1k) and T δk = 1.

We choose the prior distribution for (βη,θδ) as UIP and the prior for (φη,φδ)

as uniform distribution in (3.12), and solve this Bayesian MARS model by using

a RJMCMC algorithm, same as in the preceding two subsections. The predictive

distributions of the average wind speed ṽ and the standard deviation s̃ are

p(ṽ|Dv) =

∫
p(ṽ|ν)p(ν|Dv)dν (3.23)

p(s̃|ṽ,Dv,Ds) =

∫ ∫
p(s̃|ṽ,Ψη,Ψδ)p(Ψη,Ψδ|Dv,Ds)dΨηdΨδ (3.24)

where Dv and Ds are the datasets of the observed average wind speeds and the

standard deviations. The detailed simulation procedure is included in Step II in

Subsection III.2.5.

III.2.4. Empirical predictive distribution of the extreme load level lT

We are interested in getting the empirical predictive distribution of the quantile value

lT , based on the observed load and wind data D := (Dy,Dv,Ds). In order to do so,
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we need to draw samples, ỹ’s, from the predictive distribution of the maximum load

given parameters, p [ỹ|D,Ψa], which is

p [ỹ|D,Ψa] =

∫ ∫
p[ỹ|ṽ, s̃,Ψa,D]p[ṽ, s̃|Dv,Ds]dṽds̃, (3.25)

where p[ṽ, s̃|Dv,Ds] can be expressed as the product of (3.23) and (3.24).

To calculate a quantile value of the load for a given PT (as in (1.2)), we go

through the following steps:

• Draw samples from the joint posterior predictive distribution p [ṽ, s̃|Dv,Ds] of

wind characteristics (ṽ, s̃) (Step II in in Section III.2.5);

• Draw a set of samples from the posterior distribution of model parameters

Ψa = (Ψµ,Ψσ, ξ); this is realized by employing the RJMCMC algorithm in

Section III.2.2 (or Step I in Section III.2.5);

• Given the above samples of wind characteristics and model parameters, one can

calculate (µ, σ, ξ) that are needed in a GEV distribution; this yields a short-term

distribution p [ỹ|ṽ, s̃,Ψa];

• Integrating out the wind characteristics (ṽ, s̃), one obtains the long-term distri-

bution p [ỹ|D,Ψa].

• Draw samples from p [ỹ|D,Ψa], so that one can compute a quantile value lT [Ψa]

corresponding to PT .

In fact, the predictive mean and Bayesian credible interval of the extreme load

level lT is realized when running the RJMCMC algorithm. The RJMCMC runs

through Ml iterations, and at each iteration, we obtain a set of samples of the model

parameters Ψa and calculate a lT [Ψa]. Once Ml values of lT [Ψa] are obtained, its

mean and credible intervals can then be numerically computed.
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III.2.5. Implementation details

In this section, we provide the detailed implementation procedure for the spline

method. The procedure consists of two major steps: (1) construct the empirical

predictive distribution of the extreme load level lT and (2) obtain the joint posterior

predictive distribution of wind characteristics (v, s).

1. Step I : Construct the empirical predictive distribution of the extreme load level

using the Bayesian spline models.

(a) Set t = 0 and the initial φ(t)
µ and φ(t)

σ both to be a constant scalar.

(b) At iteration t, Kµ and Kσ are equal to the number of basis functions

specified in φ(t)
µ and φ(t)

σ . Find the MLEs of β(t),θ(t), ξ(t) and the inverse

of the negative of Hessian matrix, given φ(t)
µ and φ(t)

σ .

(c) Generate u1µ uniformly on [0, 1] and choose a move in the RJMCMC pro-

cedure. In the following, bKµ , rKµ ,mKµ are the proposal probabilities as-

sociated with a move type, and they are all set as 1
3
.

• If (u1µ ≤ bKµ) then go to BIRTH step, denoted by φ∗µ = BIRTH-

proposal(φ(t)
µ ), which is to augment φ(t)

µ with a

Λµ
Kµ+1 that is selected uniformly at random;

• Else if (bKµ ≤ u1µ ≤ bKµ + rKµ)

then goto DEATH step, denoted by

φ∗µ = DEATH-proposal(φ(t)
µ ), which is to remove from φ(t)

µ a Λµ
k , where

1 ≤ k ≤ Kµ is selected uniformly at random;

• Else go to MOVE step, denoted by φ∗µ =MOVE-proposal(φ(t)
µ ), which

first do φ†µ = DEATH-proposal(φ(t)
µ ) and then do φ∗µ = BIRTH-

proposal(φ†µ).
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(d) Find the MLEs (β∗,θ∗, ξ∗) and the inverse of the negative of Hessian ma-

trix, given φ∗µ and φσ.

(e) Generate u2µ uniformly on [0, 1] and compute the acceptance ratio αµ in

(3.17), using the results from (b) and (d).

(f) Accept φ∗µ as φ(t+1)
µ with probability min(αµ, 1). If φ∗µ is not accepted, let

φ(t+1)
µ = φ(t)

µ .

(g) Generate u1σ uniformly on [0, 1] and choose a move in the RJMCMC pro-

cedure. In the following, bKσ , rKσ ,mKσ are the proposal probabilities as-

sociated with a move type, and they are all set as 1
3
.

• If (u1σ ≤ bKσ) then go to BIRTH step, denoted by φ∗σ = BIRTH-

proposal(φ(t)
σ ), which is to augment φ(t)

σ with a

Λσ
Kσ+1 that is selected uniformly at random;

• Else if (bKσ ≤ u1σ ≤ bKσ + rKσ)

then goto DEATH step, denoted by

φ∗σ = DEATH-proposal(φ(t)
σ ), which is to remove from φ(t) a Λσ

k where

1 ≤ k ≤ Kσ is selected uniformly at random;

• Else go to MOVE step, denoted by φ∗σ =MOVE-proposal(φ(t)
σ ), which

first do φ†σ = DEATH-proposal(φ(t)) and then do φ∗σ = BIRTH-

proposal(φ†σ).

(h) Find the MLEs (β∗,θ∗, ξ∗) and the inverse of the negative of Hessian ma-

trix, given φt+1
µ and φ∗σ.

(i) Generate u2σ uniformly on [0, 1] and compute the acceptance ratio ασ in

(3.18), using the results from (d) and (h).

(j) Accept φ∗σ as φ(t+1)
σ with probability min(ασ, 1). If φ∗σ is not accepted, let

φ(t+1)
σ = φ(t)

σ .
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(k) After initial burn-ins (in our implementation, initial burn-in is 1,000), draw

a posterior sample of (β(t+1),θ(t+1), ξ(t+1)) from the approximated multi-

variate normal distribution at the maximum likelihood estimates and the

inverse of the negative of Hessian matrix. Depending on the acceptance or

rejection that happened in (f) and (j), the MLEs to be used are obtained

from either (b), (d), or (h).

(l) Take the posterior sample of Ψa, obtained in (f),(j), and (k), and one pair

of the Nw ×Nsw samples of (v, s), obtained in Step II, calculate a sample

of µ and σ using (3.7) and (3.8), respectively. Repeat this for all Nw×Nsw

samples of (v, s) to get Nw ×Nsw samples of µ and σ.

(m) Draw Nl samples for the 10-minute maximum load ỹ from each GEV dis-

tribution with µi, σi, and ξi, i = 1, · · · , Nw × Nsw, where µi and σi are

Nw ×Nsw samples obtained in (l), and ξi is always set as ξ(t+1).

(n) Get the quantile value (that is, the extreme load level lT [Ψa]) correspond-

ing to 1− PT from the Nw ×Nsw ×Nl samples of ỹ.

(o) To obtain a credible interval for lT , repeat (b) through (n) Ml times.

2. Step II : Obtain the joint posterior predictive distribution of wind characteristics

(v, s)

(a) Find the MLEs of ν for all candidate distributions listed in Section III.2.3.

(b) Use the SIC to select the “best” distribution model for the average wind

speed v. The chosen distribution is used in the subsequent steps to draw

posterior samples.

(c) Draw a posterior sample of ν from the approximated multivariate normal
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distribution at the maximum likelihood estimates and the inverse of the

negative of Hessian matrix.

(d) Draw Nw samples of ṽ using the distribution chosen in (b) with the pa-

rameter sampled in (c).

(e) Implement the RJMCMC algorithm again, namely (a) through (k) in Step

I, to get one posterior sample of Ψη = (βη,φη) and Ψδ = (θδ,φδ).

(f) Take the posterior sample of Ψη and Ψδ, obtained in (e), and one sample

of ṽ, calculate a sample of η and δ using (3.20). Repeat this step for all

Nw samples of ṽ to get Nw samples of η and δ.

(g) Draw a sample for the standard deviation of wind speed s̃ from each trun-

cated normal distribution with ηi, δi, i = 1, · · · , Nw. Using the Nw samples

of η and δ obtained in (f), we obtain Nw samples of s̃.

(h) To get Mw ×Nw samples of ṽ and s̃, repeat (c) through (g) Mw times.

In our implementation, we use Mw = 1, 000, Ml = 10, 000, Nw = 100, and Nl = 100.

III.3. Results

III.3.1. Model selection

Table 2 presents the SIC values of the six candidate average wind speed models using

different ILT datasets. In Table 2, the boldfaced values indicate the largest SIC

for a given dataset, and consequently, the corresponding models are chosen for that

dataset.

Regarding the average wind speed model, all candidate distributions except RAY

provide generally a good model fit for ILT1, with a similar level of fitting quality, but

W3 edges out slightly. For the ILT2 data, W2, W3, LN3 and G3 produce similar
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SIC values. In the ILT3 data, W3, LN3, G3 and IG3 perform similarly. Still W3 is

slightly better. So we choose W3 as our average wind speed model.

Table 2. SIC for the average wind speed model

Datasets W2 W3 RAY LN3 G3 IG3

ILT1 -2984.472 -2941.11 -3120.00 -2989.03 -2974.11 -2986.38

ILT2 -1666.826 -1663.26 -1778.61 -1665.73 -1665.56 -2312.63

ILT3 -12287.11 -11242.02 -13395.62 -11443.59 -11289.79 -11410.18

III.3.2. Point-wise credible intervals

As a form of checking the conditional maximum load model, we present in Figures 8

and 9 the 95% point-wise credible intervals under different wind speeds and standard

deviations. To generate these figures, we take a dataset and fix v or s at one specific

speed or standard deviation at a time and then draw the posterior samples for ỹ from

the posterior predictive distribution of conditional maximum load, p(ỹ|x). Suppose

that we want to generate the credible intervals at wind speed v∗ or standard deviation

s∗. The posterior predictive distributions are computed as follows:

p(ỹ|(v, s) ∈ Dv∗ ,Dy) =

∫
p(ỹ|(v, s) ∈ Dv∗ ,Ψa)p(Ψa|Dy)dΨa,

p(ỹ|(v, s) ∈ Ds∗ ,Dy) =

∫
p(ỹ|(v, s) ∈ Ds∗ ,Ψa)p(Ψa|Dy)dΨa,

where Dv∗ and Ds∗ are subsets of the observed data such that Dv∗ = {(vi, si) :

v∗ − 0.5 < vi < v∗ + 0.5, and, (vi, si) ∈ Dv,s} and Ds∗ = {(vi, si) : s∗ − 0.05 < si <
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s∗+ 0.05, and, (vi, si) ∈ Dv,s}. Given these distributions, samples for ỹ are drawn to

construct the 95% credible intervals at v∗ or s∗. The result is shown as one vertical

bar in either a v-plot (Figure 8) or a s-plot (Figure 9). To complete those figures, the

process is repeated in the v-domain with 1 m/s increment and in the s-domain with

0.2 m/s increment. These figures show that the variability in data are reasonably

captured by the spline method.

(a) ILT1 (b) ILT2 (c) ILT3

Fig. 8. 95% point-wise credible intervals for different 10-min average wind speeds

III.3.3. Comparison between the binning method and spline method for

conditional maximum load

In our procedure for estimating extreme load level, two different distributions are

considered for maximum loads y: one is the conditional maximum load distribution

p(y|x), In our procedure for estimating the extreme load level, two different dis-

tributions of maximum load y are involved: one is the conditional maximum load

distribution p(y|x), a.k.a. the short-term distribution, and the other is the uncondi-

tional maximum load distribution p(y), a.k.a. the long-term distribution. Using the

observed field data, it is difficult to assess the estimation accuracy of the extreme load
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(a) ILT1 (b) ILT2 (c) ILT3

Fig. 9. 95% point-wise credible intervals for different standard deviations

levels based on the long-term distribution, because of the relatively small amount of

observation records. What we undertake in this subsection is to evaluate a method’s

performance of estimating the tail of the short-term distribution p(y|x). We argued

before that the short-term distribution underlies the difference between the proposed

Bayesian spline method and the binning method. The comparison is intended to show

the advantage of the Bayesian spline method. In the next subsection, we employ a

simulation study that generates a much larger dataset, allowing us to compare the

different methods in terms of their performances in estimating the extreme load level

based on the long-term distribution.

To evaluate the tail part of a conditional maximum load distribution, we need

to compute a set of upper quantile estimators and assess their estimation qualities

using the generalized piecewise linear (GPL) loss function (Gneiting, 2011). A GPL
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is defined as follows:

Sτ,b(l̂(xi), y(xi))

=


(
1(l̂(xi) ≥ y(xi))− τ

)
1
|b|([l̂(xi)]

b − [y(xi)]
b) if b 6= 0,(

1(l̂(xi) ≥ y(xi))− τ
)

log
(
l̂(xi)
y(xi)

)
if b = 0,

(3.26)

where l̂(xi) is the τ -quantile estimation of p(y|xi) for a given xi, y(xi) is the observed

maximum load in the test dataset, given the same xi, b is a power parameter, and 1

is an indicator function. The power parameter b usually ranges between 0 and 2.5.

When b = 1, the GPL loss function is the same as the piecewise linear (PL) loss

function.

For the above empirical evaluation, we randomly divide a dataset into a partition

of 80% for training and 20% for testing. We use the training set to establish a short

term distribution p(y|x). For any xi in the test set, the τ -quantile estimation l̂(xi)

can be computed using p(y|x). And then, the GPL loss function value for a method

is taken as the average of all Sτ,b values over the test set, as follows:

Sτ,b =
1

nt

nt∑
i=1

Sτ,b(l̂i(xi), yi), (3.27)

where nt is the number of data points in a test set, and yi is the same as y(xi). We

call Sτ,b the mean score. We repeat the training/test procedure 10 times, and the

final mean score is the average of the ten mean scores. For notational simplicity, we

still call the final score the mean score and use Sτ,b to represent it, as long as its

meaning is clear in the context.

In this comparison, we use two methods to establish the short term distribution:

the binning method and the proposed Bayesian spline method. In our RJMCMC

algorithm in Section III.2.5, we draw Nl = 100 samples from the short term distribu-

tion. Accordingly, we evaluate the quality of quantile estimations of the short term
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distribution for a τ to be from 0.9 to 0.99.

We first take a look at the comparisons in Figure 10, which compares the PL

loss (i.e., b = 1) of both methods as τ varies in the above-mentioned range. The

left vertical axis shows the values of the mean score of the PL loss, while the right

axis is the percentage values of the reduction in mean scores when the spline method

is compared with the binning method. For all three datasets, the spline method

maintains lower mean scores than the binning method.

When τ is approaching 0.99 in Figure 10, it looks like that the PL losses of the

spline and binning methods are getting closer to each other. This is largely due to

the fact that the PL loss values are smaller at a higher τ , so that their differences are

compressed in the figure. If one looks at the dotted line in a plot, which represents

the percentage of reduction in the mean score, the spline method’s advantage over

the binning method is more evident when τ gets larger in the cases of ILT1 and ILT3

datasets; the spline method produces a PL loss 33% ∼ 50% lower than the binning

method. The trend is different when using the ILT2 dataset. But still, the spline

method can reduce the mean scores of the PL loss from 8% ∼ 20%. Please note that

ILT2 dataset is the smallest set, having slightly fewer than 600 data records. We

believe that the difference observed over the ILT2 case is attributable to the scarcity

of data.

Furthermore, we compute the mean scores of the GPL loss under three different

power parameters b = 0, 1, 2 when using the two methods to estimate the conditional

maximum load. Tables 3 presents the results under τ = 0.9, while Tables 4 is for

τ = 0.99. In Table 3, the spline method has a mean score 20% to 42% lower than

the binning method. In Table 4, the reductions in mean scores are in a similar range.

Overall, the above sets of results show clearly the improvement achieved by employing

the Bayesian spline method.

47



(a) ILT1 (b) ILT2 (c) ILT3

Fig. 10. Comparison of PL function: left and right Y-axis represents mean score

values and percentage values, which are the reduction in terms of mean

scores compared with those of the binning method, respectively.

In order to understand the difference between the spline method and binning

method, we compare the 0.99 quantiles of the 10-minute maximum load conditional

on a specific wind condition. This is done by computing the difference in the quantile

values of maximum load from the two methods for different weather bins. The wind

condition of each bin is approximated by the median values of v and s in that bin.

Figure 11 shows the standardized difference of the two 0.99 quantile values in each bin.

The darker the color is, the bigger the difference. Note that we exclude comparisons in

the weather bins with very low likelihood; namely low wind speed and high standard

deviation or high wind speed and low standard deviation.

We can observe that the two methods produce similar results at the bins having

a sufficient number of data points (mostly weather bins in the central area), and the

results are different when the data are scarce – this tends to happen at the two ends

of the average wind speed and standard deviation. This echoes the point we made

earlier that without binning the data, the spline method is able to make better use
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Table 3. Mean scores of GPL/PL for the 0.9-quantile estimators

Power parameter
ILT1 ILT2 ILT3

Binning Spline Binning Spline Binning Spline

b = 0 0.0185 0.0108 0.0129 0.0103 0.0256 0.0171

b = 1 0.0455 0.0265 0.0040 0.0031 0.0042 0.0028

b = 2 0.1318 0.0782 0.0013 0.0010 0.0008 0.0005

Table 4. Mean scores of GPL/PL for the 0.99-quantile estimators

Power parameter
ILT1 ILT2 ILT3

Binning Spline Binning Spline Binning Spline

b = 0 0.0031 0.0018 0.0022 0.0020 0.0045 0.0027

b = 1 0.0086 0.0045 0.0007 0.0006 0.0008 0.0005

b = 2 0.0270 0.0135 0.0003 0.0002 0.0002 0.0001

of the available data and overcome the limited data problem for rare weather events.

III.3.4. Simulation of extreme load

In this subsection, a simulation study is undertaken to assess a method’s estimation

accuracy of extreme load level based on the long-term distribution. The simulations

use one single covariate x, mimicking the wind speed, and a dependent variable y,

corresponding to the maximum load. We use the following procedure to generate the

simulated data:
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(a) ILT1 dataset (b) ILT2 dataset (c) ILT3 dataset

Fig. 11. Comparison of the 0.99-quantiles between the binning method and spline

method

1. Generate a sample xi from a 3-parameter Weibull distribution. Here the 3-

parameter Weibull distribution is chosen since x is supposed to be the wind

speed. Then sample xij, j = 1, · · · , 1, 000, from a normal distribution with its

mean as xi and having a unit variance. The set of xij’s is supposed to be the

different wind speeds within a bin.

2. Draw the samples yij from a normal distribution with its mean as µsij and its

standard deviation as σsij, which are expressed as follows:

µsij =


1.5

[1+48×exp(−0.3×xij)] if xi < 17

1.5
[1+48×exp(−0.3×xij)] + [0.5− 0.0016× (xi + x2i )] if xi ≥ 17

σsij = 0.1× log(xij).

The above set of equations is used to create a y response resembling the load

data we observe. The parameters used in the equations are chosen through

trials-and-errors so that the simulated y looks like the actual mechanical load

response. While many of the parameters used above do not have any physical
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meaning, some of them do; for instance, the “17” in “xi < 17” bears the same

meaning of the rated wind speed.

3. Find the maximum value yi = max{yi,1, · · · , yi,1000}, corresponding to xi. Ac-

cording to the classical extreme value theory (Coles, 2001, Smith, 1990), yi

produced in such a way can be modeled by a GEV distribution.

4. Repeat (a) through (c) for i = 1, ..., 1000 to produce the training dataset with

n = 1, 000 data pairs, and denote this dataset by

DTR = {(x1, y1), · · · , (x1000, y1000)}.

Once the training dataset DTR is simulated, both the binning method and spline

method are used to estimate the extreme load levels lT corresponding to two prob-

abilities: 0.0001 and 0.00001. This estimation is based on drawing samples from

the long-term distribution of y, as described in Section III.2.4, which produces the

empirical predictive distribution of lT . To compare the estimation accuracy of the

extreme quantile values, we also generate 100 simulated datasets; each dataset con-

sists of 100, 000 data points, which are obtained by repeating the above (a) through

(c). For each dataset, we find the observed quantile values l0.0001 and l0.00001. Using

the 100 simulated datasets, we end up with 100 different quantile values l0.0001 and

l0.00001 and then use them to calculate the 95% empirical confidence intervals.

The methods used for estimating extreme load levels are the binning method, the

spline method, and and a Peak Over Threshold (POT) method based on a Generalized

Pareto (GP) distribution. The GP-based POT method is another popular approach

to estimate extreme quantiles. It uses the large-valued observations which exceed a

high threshold after fitting a GP distribution. The POT method assumes that the

observations above the threshold are independent and identically distributed, so that

the parameters in the GP distribution do not depend on wind covariates. For this
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reason, POT can be applied to the observations of y directly, and is an unconditional

extreme value method. Please see Coles (2001) and Smith (1990) for more details of

the POT method.

Conditional modeling is necessary for extreme load assessment of wind turbines.

But POT is an unconditional method. In this study, however, since we use the wind

data from a given site and then estimate the extreme load for the same site, POT as

an unconditional method is applicable, and can be compared to the spline method

and binning method, both of which use conditional models. We hope that including

POT in our comparison can offer additional insights.

Figure 12(a) shows a scatter plot of the simulated x’s and y’s in DTR, which

resembles the load responses we see previously. Figures 12(b) and (c) present the

extreme load levels estimated by the three methods as well as the observed extreme

quantile values under the two selected probabilities. We observe that the binning

method tends to overestimate the extreme quantile values and yield wider confidence

intervals than the spline method. On the other hand, the POT method tends to

underestimate the extreme quantile values. Furthermore, the degree of overestimation

and underestimation appear to be more pronounced as the probability corresponding

to an extreme quantile value goes higher. This observation will be confirmed by what

will be observed in the next subsection using the field data. This simulation result

suggests that using the binning method for extreme load estimation is not a good

practice.

III.3.5. Estimation of extreme load

Finally, Tables 5 and 6 show the estimates of the extreme load level lT , corresponding

to T = 20 and T = 50 years, respectively. The values in parenthesis are the 95%

credible (or confidence) intervals. Figure 13 presents a graphic illustration of the
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(a) Simulation dataset (b) l0.0001 (c) l0.00001

Fig. 12. Simulation dataset, estimated and observed extreme quantile values: For

the binning method and spline method, the middle point in (b) and (c)

represents the mean of the extreme quantile estimate in the long-term dis-

tribution, while the two ending points correspond to the 95% credible (or

confidence) intervals. For the observed extreme quantile values, the middle

point and the two ending points represent, respectively, the average and

the 95% empirical confidence intervals of the 100 observed extreme quantile

values.

results in Table 5, facilitating the comparison.

We observe that the extreme load level lT obtained by the binning method is gen-

erally higher than those obtained by the other two methods. This appears consistent

with what we see in Figures 12(b) and (c). This should not come as a surprise. As

we push for a high quantile, more data would be needed in each weather bin but the

amounts in reality are limited due to the binning method’s compartmentalization of

data. The binning method also produces a wider confidence interval than the spline

method, as a result of the same rigidity in data handling. The POT method on ILT1

and ILT3 still seems to underestimate the extreme load levels and this observation

is consistent to our simulation result. However, the extreme loads estimated by the
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spline and POT methods have overlapping credible (or confidence) intervals in gen-

eral, although less significant in the case of ILT3 data. The spline method produces,

on average, an estimation closer to that of POT than that of the binning method.

Based on the above observations, one can conclude a significant difference in the

estimations obtained by the spline method and binning method but not so significant

between the results from the spline method and POT method. That, however, does

not mean that the POT method can be used to substitute for the spline method in the

extreme load assessment. Recall that the unconditional POT method is not practical

because it requires the load and wind data to be obtained for every new turbine site,

while the spline method (or the binning method) does not need this costly proposition

and can make use of the conditional load model obtained elsewhere. The detailed

procedures for computing confidence intervals in the POT method and the binning

method are included in Appendix A and B, respectively.

Table 5. Estimates of extreme load level (lT , T = 20 years), unit: MN-m

Datasets POT method Binning method Spline method

ILT1 4.485 (4.285, 4.748) 6.455 (6.063, 7.092) 4.750 (4.579, 4.955)

ILT2 0.581 (0.495, 0.722) 0.752 (0.658, 0.903) 0.576 (0.538, 0.627)

ILT3 0.369 (0.343, 0.400) 0.505 (0.465, 0.584) 0.428 (0.398, 0.463)

III.4. Discussion

This study presents a Bayesian spline method for estimating the extreme load on

wind turbines. The spline method essentially supports a non-homogeneous GEV

54



Table 6. Estimates of extreme load level (lT , T = 50 years), unit: MN-m

Datasets POT method Binning method Spline method

ILT1 4.492 (4.287, 4.767) 6.710 (6.240, 7.485) 4.800 (4.611, 5.019)

ILT2 0.589 (0.498, 0.742) 0.786 (0.682, 0.957) 0.589 (0.547, 0.646)

ILT3 0.370 (0.344, 0.404) 0.527 (0.480, 0.621) 0.438 (0.405, 0.476)

distribution to capture the nonlinear relationship between the load response and the

wind-related covariates. Such treatment avoids binning the data. The underlying

spline models instead connect all the bins across the whole wind profile, so that load

and wind data are pooled together to produce better estimates. This is demonstrated

by applying the spline method to three sets of inland wind turbine load response data

and making comparisons with the binning method.

Popularity of the binning method in industrial practice is due to the simplicity

of its idea and procedure. But engineers in the wind industry sometimes mistake the

simplicity of a procedure as simplicity of a model. Suppose that one uses a 6 × 10

grid to bin the two-dimensional wind covariates (as we did in this study) and fixes

the shape parameter ξ across the bins (a common practice in the industry). The

binning method yields 60 local GEV distributions, each of which has two parameters,

translating to a total of 121 parameters for the overall model (counting the fixed ξ as

well). By contrast, the spline method, although conceptually and procedurally more

involved, produces an overall model with fewer parameters. To see this, consider the

following: for the three ILT datasets, the average (Kµ + Kσ) from the RJMCMC

algorithm is between 12 and 18. The number of model parameters dk in (3.15) is
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(a) ILT1 dataset (b) ILT2 dataset (c) ILT3 dataset

Fig. 13. Graphic illustration of the results in Table 5. The middle point represents

the mean of the extreme load estimate, while the two extreme points corre-

spond to the 95% credible (or confidence) intervals.

generally less than 20, a number far smaller than the number of parameters in the

binning method. In the end, the spline method uses a sophisticated procedure to find

a simpler model that is more capable.
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CHAPTER IV

POWER CURVE ESTIMATION WITH MULTIVARIATE

ENVIRONMENTAL FACTORS

In this chapter, we first describe the datasets used in this study. We proceed in

Section IV.2 to present the details of our additive multivariate kernel model. In

Section IV.3, we compare our method with some alternative methods reviewed here,

arguing that the resulting kernel method produces better estimates. Finally, we end

this study with some discussion in Section IV.4. Note that different from Chapter III,

y in this chapter means the power output from a turbine.

IV.1. Datasets

We study both inland wind turbines (ILTs) and offshore turbines (OSTs) in this

study, and have in possession two datasets corresponding to an inland wind farm

(ILWF) and an offshore wind farm (OSWF), respectively. The datasets are denoted

generally by D or specifically by DILWF or DOSWF, respectively. Table 7 summarizes

the specifications of the datasets.

We choose four wind turbines and two meteorological masts from DILWF, and two

wind turbines and the single meteorological mast from DOSWF. The six turbines are

denoted as WT1 to WT6, respectively, where the first four are inland turbines, while

the last two are offshore ones. The environmental data in x were collected by sensors

on a meteorological mast, while the power output y was measured at a wind turbine.

Each meteorological mast has two wind turbines associated with it, meaning that the

x’s measured at this mast are paired with the y’s of those associating turbines. For

the turbines/masts layout and turbine-to-mast distances, please refer to Figure 14.
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Table 7. Specifications of the two wind farms

Wind farm DILWF DOSWF

Number of meteorological masts Multiple Single

Number of wind turbines 200+ 30+

Hub height (m) 80 70

Rotor diameter (m) about 80 about 90

Cut-in wind speed (m/s) 3.5 3.5

Cut-out wind speed (m/s) 20 25

Rated wind speed (m/s) around 13 around 15

Rated power (MW) 1.5 - 2.0 around 3

Location Inland, U.S. Offshore, Europe

For WT1 and WT2 of the ILWF, the data were collected from July 30, 2010

through July 31, 2011; for WT3 and WT4 (still of the ILWF), the data were from

April 29, 2010 through April 30, 2011, and for WT5 and WT6 of the OSWF, the

data were from January 01, 2009 through December 31, 2009.

In the current practice, data collected at wind farms are arranged in 10-minute

blocks because wind speeds were considered stationary, and other environmental fac-

tors nearly constant, over a 10-minute duration. As a result, the power output y as

well as the environmental factors v, d, tm, ap, hm are the averages of the recording in

a 10-minute duration. Moreover, a few other variables can be computed as follows:

• Wind velocities under the Cartesian coordinates: Wind direction d is a circular

variable so that extra cares are needed when calculating the difference between

58



ILWF OSWF 
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Fig. 14. Layout of the turbines and masts and turbine-to-mast distances: ILWF and

OSWF

two wind direction values. An alternative approach that can avoid potential

wind direction miscalculation is to convert wind speed and direction into two

wind velocities under the Cartesian coordinates, namely vd1 = v cos(d) and

vd2 = v sin(d).

• Turbulence intensity tb: First compute the standard deviation of the wind speed

in a 10-minute duration and denote it by tb. Then tb = s
v
, where v is the average

wind speed of the same 10-minute duration.

• Wind shear ws: Given wind speeds v1 and v2, measured at heights g1 and g2,

respectively. Then, ws = ln(v2/v1)
ln(g2/g1)

(Rehman and Al-Abbadi, 2005). For DILWF,

wind speeds are measured at two heights of 80 m and 50 m, where 80 m is

the hub height. Given this instrumentation capability, one wind shear value

is calculated, which is a below-hub wind shear. For DOSWF, wind speeds are

measured at the heights of 116 m, 70 m, 21 m, respectively, where 70 m is the

hub height. So two wind shear values can be calculated: using the 116 m/70
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m pair produces an above-hub wind shear, while using the 70 m/21 m pair

produces a below-hub wind shear. We denote the above-hub wind shear by was

and the below-hub wind shear by wbs.

• Air density ρ (kg/m3): Given air temperature T expressed in Kelvin and air

pressure ap expressed in Newtons/m2, ρ = ap
R·tm , where R = 287 (Joule)(kg)−1

(Kelvin)−1 is the gas constant (Uluyol et al., 2011). In the subsequent analysis,

the air density ρ, instead of tm and ap, is included as an explanatory variable

in x. The reason will be explained shortly in the next section.

Considering the descriptions presented above, one can see that for DOSWF, there

are seven explanatory variables, i.e., x = (vd1, vd2, ρ, hm, tb, w
a
s , w

b
s). In DILWF, hu-

midity measurements are not available, and the dataset has only the below-hub wind

shear. Consequently, DILWF has five explanatory variables, namely x = (vd1, vd2, ρ,

tb, w
b
s), two fewer than what DOSWF has. Throughout the paper, by “a data point”

we refer to a pair of (x, y), and we denote the total number of data points associated

with a turbine by N .

IV.2. An additive multivariate kernel method for power curve estimation

In this section, we first provide some background information on the physical under-

standing of wind power generation. This physical understanding helps motivate our

modeling approach undertaken subsequently.
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IV.2.1. The physics behind wind power generation

The physical law of wind power generation (Ackermann, 2005, Belghazi and Cherkaoui,

2012) states that:

y =
1

2
· Cp(β, λ) · ρ · πR2 · v3, (4.1)

where R is the radius of the rotor and Cp is the so-called power coefficient, which

is believed to be a function of (at least) the blade pitch angle, β, and the turbine’s

tip speed ratio, λ. What else might affect Cp is still a matter under investigation.

Currently no formula exists to express Cp analytically in terms of its influencing

factors. Cp is therefore empirically estimated and turbine manufacturers usually

provide for a specific turbine its nominal power curve with the corresponding Cp

values under different combinations of wind speed, v, and air density, ρ. The above

expression also provides the rationale why temperature, tm, and air pressure, ap, are

converted into air density, ρ, rather than used individually, to explain wind power.

Even though the expression in (4.1) on the surface suggests that the electrical

power that a wind turbine extracts from the wind is proportional to v3, an actual

power curve may exhibit a different nonlinear relationship. This happens because of

the tip speed ratio, λ = ω·R
v

, where ω is the rotor speed. Consequently, Cp is also a

function of wind speed, v.

The power law in (4.1) governs the wind power generation before the rated wind

speed, vr. The use of the pitch control mechanism levels off, and ultimately caps, the

power output when it reaches the rated power output, yr. Recall the shape of power

curve shown in Figure 3. The power curve has an inflection point somewhere nearby

the rated wind speed, so that the whole curve consists of a convex segment, between

vci and the inflection point and a concave segment, between the inflection point and

61



vco.

Given the physical relation expressed in (4.1), the wind industry recognizes the

need to include air density as a factor in calculating the power output, and does

so through a formula known as the air density correction. If v is the raw average

wind speed measured in a 10-minute duration, the air density correction is to adjust

the wind speed based on the measured average air density, ρ, in the same 10-minute

duration, namely

v′ = v
( ρ
ρ0

) 1
3
, (4.2)

where ρ0 is the sea-level dry air density (=1.225 kg/m3) per ISO atmosphere standard.

The binning method with air density correction uses this corrected wind speed, v′,

and the power output, y, to establish a power curve. In the subsequent analysis,

as well as in Section IV.3 where we conduct comparisons of methods, by “binning

method” we refer to this air density corrected version, unless otherwise noted.

IV.2.2. Additive multivariate kernel density estimation

The underlying physics of wind power generation expressed above provides some

clues concerning a preferable power curve model. The following summarizes our

observations:

• There appear at least three important factors that affect wind power genera-

tion: wind speed v, wind direction d, and air density ρ. This does not exclude

the possibility that other environmental factors may also influence the power

output.

• The functional relationships between the environmental factors and the power

response are generally nonlinear. The complexity partially comes from the lack
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of understanding of Cp, which is affected by many environmental factors (v, d,

and ρ included). We also stated above that there is no analytical expression

linking Cp to any of the influencing factors. As a result, the functional form of

a potential power curve is not known either.

• The environmental factors appear in a multiplicative relationship in the power

law equation (4.1), indicating interactions among the factors.

The last observation suggests that purely additive models or generalized additive

models (GAM) are unlikely to work well in modeling a power curve. The advantage

of GAM is that they can be easily expanded to include extra environmental factors,

if any, but the interactions among the factors cannot be adequately captured.

To illustrate the need to capture the interaction among the factors, we present the

following plots in Figures 15 and 16. Figure 15 uses the data fromDILWF and shows the

scatter plots between the power output y and air density ρ, turbulence intensity tb and

wind shear wbs, respectively. There seems to be no apparent meaningful relationship

between the power output and these factors. So unconditional on wind speed v and

wind direction d, these environmental factors have no obvious effect on the power

output. Including them in a GAM in addition to v and d does not make a power

prediction better than the GAM having only v and d as its inputs. On the other hand,

Figure 16 presents the scatter plots between the power output and environmental

factors under different wind speed v and wind direction d. We do observe nonlinear

relationships in these plots, and the relationships appear to be different depending

on the wind conditions. This implies that interaction effects exist among wind speed

v, wind direction d, and other environmental factors. A power curve model should

characterize not only the nonlinear effects of wind speed and wind direction, but also

the nonlinear interaction effects among the environmental factors.
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(a) Air density (b) Turbulence intensity (c) Wind shear

Fig. 15. Scatter plots of the power output versus environmental factors for

3.5 < v < 20, 0 < d < 360

Because of the complexity of the functional relationships between environmen-

tal factors and the power output, nonparametric approaches have been popular in

modeling the power curves. Among them, the multivariate conditional kernel density

estimation (CKD), introduced by Rosenblatt (1969) and Hyndman et al. (1996), or

the multivariate kernel regression described by Nadaraya (1964) and Watson (1964),

appear to be a capable statistical modeling tool, not only capturing the complicate

higher order interaction effects but also avoiding the need to specify a functional form

of the power curve relationship. Using the CKD, one can also model the distribution

aspect of the power curve for the purpose of quantifying the uncertainty in wind

power prediction. A bivariate CKD including wind speed and direction is indeed the

choice of Jeon and Taylor (2012) when they modeled the power curve.

Specifically, using the Rosenblatt’s CKD (Rosenblatt, 1969), the density of y

conditional on x can be expressed as

f̂(y|x) =
N∑
i=1

wi(x)Khy(y − yi), (4.3)
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where

wi(x) =
Khx(||x− xi||)∑N
i=1Khx(||x− xi||)

, (4.4)

hx = (h1, . . . , hq) and hy are bandwidth parameters controlling the smoothness in,

respectively, the environmental factors x and the power output y, and q is the number

of explanatory variables in x. In our study, q = 7 for DOSWF and q = 5 for DILWF.

The above formulation contains kernel functions of two different dimensions

Khy(l) and Khx(||l||). Khy is a scaled kernel function and takes the form of h−1y K( l
hy

),

where K(·) is assumed to be a real valued, integrable and non negative even function.

In our study, K is chosen to be a univariate Gaussian kernel function. Khx(||l||) is a

multivariate kernel function and is composed of a product kernel that is a multipli-

cation of univariate kernel functions such as

Khx(||l||) := Kh1(l1)Kh2(l2) · · · Khq(lq), (4.5)

where Khj(lj) = h−1j K(
lj
hj

) for j = 1, ..., q.

In addition, the mean of the conditional density estimator in (4.3) provides an

estimator of the conditional mean function m(x) := E(y|x) as

m̂(x) =

∫
yf̂(y|x)dy. (4.6)

Hyndman et al. (1996) note that the estimator in (4.6) is equivalent to the Nadaraya-

Watson (NW) regression estimator and only depends on hx, the smoothing parameter

related to x. The Nadaraya-Watson estimator is

m̂(x) =
N∑
i=1

wi(x)yi. (4.7)

In the rest of the paper, we will use the expression in (4.7) as our mean function

estimator.
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(a) Air density (b) Turbulence intensity (c) Wind shear

(d) Air density (e) Turbulence intensity (f) Wind shear

(g) Air density (h) Turbulence intensity (i) Wind shear

Fig. 16. Scatter plots of the power output versus environmental factors under specific

wind speeds and wind directions. Top Panel: 6.1 < v < 6.2, 270 < d < 300;

Middle Panel: 9.1 < v < 9.2, 270 < d < 300; and Bottom Panel:

11.1 < v < 11.2, 270 < d < 300.
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If all the environmental factors (q = 7 for DOSWF and q = 5 for DILWF) are

included in the Rosenblastt’s CKD or the NW estimator through a product kernel,

the resulting model will be very expensive to use computationally. Not only that,

the method’s performance will not be good, either, because data will easily become

sparse in a high-dimensional input space. This is to say that even though we have

multiple years of environmental and power data, once they are dispersed into a seven

dimensional space, certain combinations of environmental conditions could have very

little data or even no data at all. If a technology innovation makes additional mea-

surements available so that the model could entertain more than seven explanatory

variables, the current CKD approach will clearly run into scalability problems. In

fact, Jeon and Taylor (2012) included only two variables in their CKD. Generally, we

believe that a CKD having three inputs can still be practically handled but anything

more than that will hardly be practical.

Our solution of addressing the multivariate kernel density estimation problem is

to use an additive multivariate kernel. Let us present the mathematical expression

of the kernel first and then elaborate its merit. Recall that wind direction d is a

circular variable that may cause troubles in numerical computation. For this reason,

we convert v and d into two wind velocities vd1 and vd2 and will use vd1 and vd2 in

our model as a way to incorporate the information embedded in v and d. We want

to note that Jeon and Taylor (2012) took the same approach.

For notation simplicity, we designate the first two elements of x of both DILWF

and DOSWF, namely x1 and x2, as vd1 and vd2, respectively. We introduce a new

symbol xj, j = 3, ..., q, such that xj := (x1, x2, xj). With this notation, we propose

to estimate the density of y, conditional on an x, by using

f̂(y|x) =
N∑
i=1

1

(q − 2)

[
wi(x

3) + . . .+ wi(x
q)
]
Khy(y − yi), (4.8)
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and the conditional mean function by

m̂(x) =
1

(q − 2)

[
m̂(x3) + . . .+ m̂(xq)

]
. (4.9)

As in the above expression, our resulting model keeps the multivariate kernels but

we limit them to be product kernels of three inputs. Based on the observations from

Figures 15 and 16, we decide to include vd1 and vd2, incorporating wind speed and

direction information, in every multivariate kernel so that the three-variable kernel can

capture the interaction effect between the third environmental factor with wind speed

and wind direction. Then, all the multivariate kernels constitute an additive model

such that the resulting model has good scalability. The resulting model can be used

for high-dimensional data without causing computational or data sparsity problems.

When additional explanatory variables become available, we would envision to add

extra additive terms, each of which has the same structure as the current terms,

namely a three-variable multivariate kernel having inputs of vd1, vd2, and a third

explanatory variable.

IV.2.3. Bandwidth selection

The key parameters in our kernel model are the bandwidths hy and hx. In this study,

we employ a data-driven selection criterion proposed by Hall et al. (2004) and Fan

and Yim (2004), known as the integrated squared error (ISE) criterion, as follows:

ISE(hx, hy) =

∫ ∫ (
f(y|x)− f̂(y|x)

)2
f(x)dydx (4.10)

=

∫ ∫
f̂(y|x)2f(x)dydx− 2

∫ ∫
f̂(y|x)f(y|x)f(x)dydx

+

∫ ∫
f(y|x)2f(x)dydx

= I1 − 2I2 + I3.
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With this criterion, one would choose the bandwidths that minimize the ISE. Because

I3 in the ISE expression does not depend on the bandwidth selection, it can be omitted

during the minimization of ISE.

Fan and Yim (2004) suggested a cross-validation estimators of I1 and I2 as

Î1 =
1

N

N∑
i=1

∫ (
f̂−i(yi|xi)

)2
, and (4.11)

Î2 =
1

N

N∑
i=1

f̂−i(yi|xi),

where f̂−i(y|xi) is the estimator f̂(y|xi) with observation i omitted. Practically, the

data-driven bandwidth selection is simply to choose the bandwidths hx and hy that

minimize Î1 − 2Î2.

The above data-driven procedure works well with low-dimensional multivariate

kernels (one or two dimensions, for example). Our kernel model is a little more com-

plex because of the mixed additive and product kernels where the product kernels have

three variables. Using the above-expressed leave-one-out cross-validation algorithm

runs into a serious computational challenge. In this study, we devise two heuristic

procedures for selecting the bandwidths, which are described in the following.

1. Algorithm I : Simple kernel bandwidth selection

(a) Only consider a simple univariate kernel regression corresponding to indi-

vidual environmental variables;

(b) Calculate the bandwidth for each univariate kernel following the direct

plug-in (DPI) approach by Ruppert et al. (1995). This DPI approach

provides an optimal bandwidth formula, expressed below, that is supposed
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to minimize the asymptotically weighted integrated squared error.

ĥDPI =

(
1

2
√
π

)1/5 [
σ̂2(b− a)

Nθ̂22

]1/5
, (4.12)

where [a, b] is the range of each environmental variable, and σ̂2 and θ̂22 are

estimated from the data using the DPI algorithm; for details, please refer

to Ruppert et al. (1995);

(c) Denote the resulting bandwidths as (hSIM1 , hSIM2 , . . . , hSIMq );

(d) Use the most basic power curve model that includes only the two wind ve-

locities vd1 and vd2 as inputs, and fix the bandwidths for the two univari-

ate kernels corresponding to vd1 and vd2 as hSIM1 and hSIM2 , respectively.

Then, find the bandwidth hSIMy that minimizes Î1 − 2Î2.

2. Algorithm II : Forward stepwise bandwidth selection

(a) Start with a bivariate kernel model including only wind velocities (vd1,

vd2);

(b) Find the bandwidths (h1, h2, hy), corresponding to vd1, vd2 and y, respec-

tively, by using the leave-one-out cross validation algorithm in (4.12);

(c) Fix the bandwidths (h1, h2, hy) obtained in (b) and let Q := {m̂(x3), . . . ,

m̂(xq)} be the set of additive terms;

(d) Choose from Q one additive term m̂(x∗) and find the corresponding band-

width h∗ that minimizes Î1 − 2Î2;

(e) Let Q = Q \ m̂(x∗), and fix all the bandwidths so far determined;

(f) Repeat (d) and (e) until all bandwidths are decided.

Being heuristic, these algorithms cannot guarantee the optimality of the chosen band-

widths. But, as we will show in the subsequent section, our kernel model with these
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heuristically chosen bandwidths is able to produce remarkable error reduction as com-

pared with the current power curve methods.

IV.3. Results

In this section, we evaluate the performance of our kernel method using the wind farm

measurements in DILWF and DOSWF and compare its performance with the existing

methods.

IV.3.1. Performance criteria

We evaluate the performance of our method in terms of point estimation as well as

density estimation. We therefore use two criteria: for point estimation, we use the root

mean square error (RMSE), and for density estimation, we use the mean continuous

ranked probability score (CRPS) (Gneiting and Raftery, 2007). We randomly divide

each dataset into a partition of 80% for training and 20% for testing, and use the

test dataset to empirically evaluate the above two criteria. Specifically, RMSE is

computed as

RMSE =

√√√√ 1

NTS

NTS∑
i=1

(m̂(xi)− yi)2, (4.13)

where NTS is the number of data points in a test dataset. The CRPS compares

the estimated cumulative distribution function (CDF) with the observed value. It is

computed as

CRPS =
1

NTS

NTS∑
i=1

∫ (
F̂ (y|xi)− yi

)2
dy, (4.14)
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where F̂ (y|xi) is the estimated CDF, given a setting of the environmental variable

xi.

We test both Algorithm I and II for bandwidth selection. It turns out that for

the point estimation, Algorithm I gives slightly better selections than those selected

by Algorithm II, while for the density estimation, Algorithm II is slightly better.

However, the results obtained from the two algorithms are not much different. In

the following, we report RMSE values based on bandwidth selection using Algorithm

I and CRPS values based on bandwidth selection using Algorithm II. A final note

is that to determine the bandwidths, we use only 20% of a training dataset because

otherwise the computation time is too long.

IV.3.2. Important environmental factors affecting power output

From the physical understanding presented in Section IV.2.1, we believe that wind

speed, direction, and air density should be important factors to be included in a

power curve model. The question is what else may also need to be included. This

section sets out to find what set of environmental factors makes the best prediction

for a given dataset. In the following, we present the results of using point estimates

and RMSE values.

Our first set of results is to show the RMSE values when the additive multivariate

kernel model include a single additive term from x3 to xq. Recall that each additive

term is a three-variable multivariate kernel with two of the variables always being the

two wind velocities vd1 and vd2.

We choose the baseline model for comparison as the kernel model that has only

the two wind velocities (vd1, vd2) in a product kernel. In fact, this bivariate kernel

(BVK) model is the same as the one used by Jeon and Taylor (2012). The results are

shown in Table 8.
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Table 8. Impact on RMSE when including different environmental

factors. The notation of (·, ·, ρ) means that the additive

term included in the model has the two wind velocities

vd1, vd2 and air density ρ as its inputs, where the two

wind velocities are shorthanded as two dots. Other no-

tations follow the same convention. The percentages in

the parentheses are the reduction in terms of RMSE when

the corresponding model’s point estimation is compared

with that of BVK.

WT BVK (·, ·, ρ) (·, ·, tb) (·, ·, wbs) (·, ·, was ) (·, ·, hm)

WT1 148.2
124.7 144.3 142.2 · ·

(15.8%) (2.6%) (4.0%) · ·

WT2 146.1
130.4 155.9 169.9 · ·

(10.8%) (-6.7%) (-16.2%) · ·

WT3 149.8
122.2 135.4 134.7 · ·

(18.4%) (9.6%) (10.1%) · ·

WT4 199.0
175.3 199.5 191.2 · ·

(11.9%) (-0.3%) (3.9%) · ·

WT5 279.7
252.6 265.2 266.3 265.0 261.6

(9.7%) (5.2%) (4.8%) (5.2%) (6.5%)

WT6 293.7
261.6 309.2 292.3 293.9 276.5

(10.9%) (-5.3%) (0.5%) (-0.1%) (5.8%)
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Based on the above results, we make the following observations:

• In both the inland wind farm and offshore wind farm, air density ρ is indeed,

after the two wind velocities, the most significant factor on wind power gen-

eration. Including ρ in the model delivers a reduction in RMSE from nearly

10% to 18% across the board. This outcome is consistent with the physical

understanding expressed earlier.

• For the offshore wind turbines, humidity hm appears to be another important

factor for explaining the variation of power outputs. Unfortunately, we will not

be able to know for sure whether humidity is also a significant factor in the

inland wind farm because its measurements were not available in our dataset.

Given its significance in the offshore farm, this should provide strong enough

motivation for practitioners to make measurements at some inland wind farms

and test the hypothesis.

• For the remaining three factors, namely turbulence intensity and the two wind

shears, which all represent some other aspects of wind dynamics, they show

mixed outcomes, oftentimes depending on the distance between a turbine and

its associated mast. For the turbines next to a mast (WT1, WT3, and WT5),

the other factors all play some positive roles in explaining the variation in

power outputs, although their impact is much less significant than air density,

while for the turbines that have some distance from their mast (WT2, WT4,

and WT6), these factors appear to have much less appreciable effect on power

outputs. This may not necessarily mean that the other wind dynamics measure

does not impact a turbine’s power output. What it could mean is that when

a turbine is more than 1,000 meters away from a mast, the wind dynamics

measured by the mast does not represent the actual wind dynamics in front of
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that specific turbine, and consequently, the mast measurements do not have a

sufficient explanatory power.

The next step we undertake is to determine which other factors may impact the

power output when we include more than one additive term in our model, conditional

on the factors that have already been included. Based on the observations expressed

above, for both inland and offshore turbines, the first additive term included is always

(vd1, vd2, ρ). For the inland turbines, in addition to this first term, there are two more

terms that have either turbulence intensity, tb, or the below-hub wind shear, Sb. For

the offshore turbines, we also always include a second additive term (vd1, vd2, hm).

Then, in addition to the first two terms, there are three more terms that have either

the two wind shears, was , w
b
s, or turbulence intensity, tb. The two wind shears are al-

ways included or excluded together in the numerical analysis to keep the total number

of model comparisons manageable. Tables 9 and 10 present the model comparison

results.

For some of the inland turbines, the best additive multivariate kernel model

explaining their power output includes the input factors of the two wind velocities

(vd1 and vd2), air density (ρ), and turbulence intensity (tb), while some others include

the two wind velocities (vd1 and vd2), air density (ρ), and wind shear (wbs), or some

others include all the environmental factors. These versions differ very marginally.

In the next subsection where the additive multiplicative kernel model is compared

with other methods, we choose the model with four factors, vd1, vd2, ρ, and tb, as the

“best model” for the inland turbines, because when it does not produce the smallest

RMSE, the difference between its RMSE and the smallest RMSE is less than one

percentage point.

For the offshore turbines, it is rather clear that the model with the two wind
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Table 9. Model comparisons using data in DILWF.

RMSE values are reported in the table. Bold-

face values represent the smallest RSME for

its row.

WT (·, ·, ρ) (·, ·, ρ, tb) (·, ·, ρ, wbs) (·, ·, ρ, tb, wbs)

WT1 124.7 124.2 124.3 125.5

WT2 130.4 128.0 128.1 128.4

WT3 122.2 118.9 118.7 119.0

WT4 175.3 171.3 171.2 170.4

Table 10. Model comparisons using data in DOSWF. RMSE values are reported in

the table. Boldface values represent the smallest RSME for its row.

WT (·, ·, ρ, hm) (·, ·, ρ, hm, tb) (·, ·, ρ, hm, was , wbs) (·, ·, ρ, hm, tb, was , wbs)

WT5 248.2 252.4 254.1 257.2

WT6 256.7 264.4 263.8 270.9

velocities (vd1 and vd2), air density (ρ), and humidity (hm) produces the lowest

RMSE. Including other environmental factors in the model could increase the RMSE.

The increase in RMSE is noticeable and can be as much as 5% for turbine WT6. In

the next section, we choose the model with vd1, vd2, ρ, and hm as the “best model”

for the offshore turbines.

If we repeat the above analysis using the CRPS measure, the insights remain the
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same. We therefore omit the presentation of the detailed CRPS results.

IV.3.3. Comparison of estimation accuracy of different models

In this subsection, we compare the “best” additive multivariate kernel model, selected

in the preceding subsection, with two existing methods: the binning method (BIN),

popular in the wind industry and arguably the most widely used method in practice,

and the BVK by Jeon and Taylor (2012). Recall that the binning method we use here

is the version having incorporated the air density adjustment. To make this explicit,

we use the notation BINa.

It is not difficult to notice that BINa conceptually makes use of two pieces of

information to fit the power data: wind speed and air density, while BVK makes

also use of two pieces of information: wind speed and wind direction. To the best

of our knowledge, no power curve model before ours has made use of all three pieces

of information. But one straightforward extension of BVK could possibly accomplish

that. This extension is to let the BVK model use the air density adjusted wind speed,

instead of the original wind speed, as an input. That way, the air density information

is utilized at least in the same fashion as in the binning method. The resulting air

density-adjusted extension is labeled as BVKa.

The comparison results using the inland turbines are included in Table 11. Note

that the binning method can produce only point estimations, while BVK and BVKa

produce both point and density estimations. In the RMSE-based comparisons, the

baseline model used in the table is BINa, and in the CRPS-based comparison, the

baseline model is BVK. The percentage values in the parentheses are the reduction

in terms of a performance measure when a given method is compared with the cor-

responding baseline model.

We notice that the BVK model produces a significant improvement over the
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Table 11. Comparing RMSE and CRPS using data from DILWF

Measure Turbine BINa BVK BVKa

Additive multivariate kernel

(·, ·, ρ) (·, ·, ρ, tb)

RMSE

WT1 218.7
148.2 148.6 124.7 124.2

(32.3%) (32.0%) (43.0%) (43.2%)

WT2 194.3
152.2 148.8 130.4 128.0

( 24.8%) (26.2%) (32.9%) (34.1%)

WT3 209.2
149.8 144.7 122.2 118.9

(28.4%) (30.9%) (41.6%) (43.2%)

WT4 267.9
199.0 195.8 175.3 171.3

(25.7%) (26.9%) (34.6%) (36.1%)

CRPS

WT1 ·
99.7 98.6 93.4 92.6

(1.1%) (6.3%) (7.1%)

WT2 · 100.6
98.9 93.7 92.9

(1.7%) (6.9%) (7.7%)

WT3 · 104.4
102.5 93.4 92.3

(1.9%) (10.5%) (11.6%)

WT4 · 134.4
133.5 120.9 119.1

(0.7%) (10.1%) (11.4%)

industry standard binning method, with a reduction of RMSE ranging from 25% to

32%. Our additive multivariate kernel method improves further from BVK another
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9% to 15%. In other words, the additive multivariate kernel method can reduce

RMSE from the binning method by 34% to 43%. We believe that the improvement

is the result of including the additional environmental factors in the model.

Comparing BVK and BVKa, we find that the straightforward extension to include

the air density adjustment does not produce much benefit to reduce errors in wind

power prediction. This does not, however, imply that the air density is not important.

If comparing BVK and BVKa with our method with only the (·, ·, ρ) term, we see

an improvement made by our method, already accounting for the majority portion of

the 9% to 15% error reduction as mentioned above. What this suggests is that the

additive multivariate kernel method captures the relationship and interactions among

the key factors in a better away.

As we have seen from the preceding subsection, there are some benefits from

including tb and wbs but the benefit appears to be marginal, at least for the inland

wind farm data we have at hand.

Table 12 presents the comparison results for the offshore turbines. The results

show a level of improvement consistent with what we have seen in the inland turbines.

Comparing BVK, BVKa, and our method using the CRPS values, we also see

good improvements. Figure 17 presents an illustration of density estimations using

BVK and our method. To produce the result in Figure 17, we used WT5’s data and

the additive multivariate kernel model with (·, ·, ρ, hm). The left panel of Figure 17

shows the predictive distributions of the power output from the two models, when

their CRPS values are not much different. The two distributions are similar and either

model produces a good estimate. The right panel presents the predictive distributions

of the two models, when their CRPS values differ considerably. We can see that the

distribution from the BVK model is centered incorrectly. On average, the additive

multivariate kernel model produces a CRPS that is 7% to 12% better than the BVK
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Table 12. Comparing RMSE and CRPS using data from the DOSWF

Measure Turbine BINa BVK BVKa

Additive multivariate kernel

(·, ·, ρ) (·, ·, ρ, hm)

RMSE

WT5 332.1
279.7 278.1 252.6 248.2

(15.8%) (16.2%) (23.9%) (25.6%)

WT6 376.0
293.7 292.2 261.6 256.7

(21.9%) (22.3%) (30.4%) (31.7%)

CRPS

WT5 ·
154.3 153.6 135.9 135.4

(0.4%) (4.3%) (9.7%)

WT6 · 160.3
159.7 153.3 144.7

(0.5%) (11.9%) (12.3%)

model.

IV.4. Discussion

This study presents an additive multivariate kernel method for modeling power curves

with a variety of environmental factors. It is an appealing approach because this

new power curve model can capture the nonlinear relationships between environmen-

tal factors and the wind power output, as well as the high-order interaction effects

among some of the environmental factors. As compared with existing approaches

that consider only wind speed and direction, the new power curve model can make

further reductions in terms of prediction errors for both mean estimation and den-

sity estimation. The resulting method has good scalability and can easily include
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(a) Two models produce similar results

(b) Two models produce different results

Fig. 17. Comparison of the predictive distributions of power output when the two

models produce similar CRPS values versus when the two models produce

different CRPS values. BVK: Bivariate kernel, AMK: Additive multivariate

kernel.
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extra explanatory variables should technology innovation make their measurements

available.
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CHAPTER V

TURBINE PERFORMANCE ASSESSMENT BY USING THE POWER

CURVE

This chapter presents our work on turbine performance assessment, which is an ap-

plication of the power curve estimation with multivariate environmental factors pre-

sented in Chapter IV. Turbine performance assessment helps wind farm operators or

manufacturers make informed decisions. For example, in the wind industry, people

sometimes retrospectively add an additional device or adjust certain operation logic

to improve the power production efficiency of the turbines; examples of such would in-

clude adjusting the pitch angle, installing vortex generators, and increasing the rated

power. However, such upgrades are generally quite expensive, and this motivates the

wind farm operators to decide whether or not there are enough benefits to justify

such action. Another line of potential applications is on turbine fault diagnosis. To

reduce O&M cost caused by unexpected failures, the wind farm operators are inter-

ested in preventive maintenance or conditioned-based maintenance (Chattopadhyay,

2004, Zhang et al., 2009). In doing so, information about the health of wind turbines

is needed for fault diagnosis. For that purpose, the power curve can serve as an

indicator of a wind turbine’s health.

In the remainder of this chapter, we first describe some background informa-

tion regarding wind turbine upgrades, faults, and the datasets used in this study.

We modify the additive multivariate model for turbine performance assessment in

Section V.2. In Section V.3, the details of our testing procedure is presented. In

Section V.4, our procedure is verified and tested by using three different cases, which

include a case of vortex generator installation, a case of pitch angle adjustment, and a
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case of fault occurrence. Finally, we end this chapter with a discussion in Section V.5.

V.1. Background and datasets

We only study inland wind turbines (ILTs) in this work, and use the datasets ob-

tained from the same inland wind farm (ILWF) described in Chapter IV. For the

characteristics of wind turbines used in this study, please refer to Table 7. For turbine

performance assessment, we choose three sets of wind turbines, each set consisting of

two wind turbine pairs; one is an experimental wind turbine (EWT) and the other is

a control wind turbine (CWT) in the vicinity of the EWT.

ILWF 

EWT1 

MAST2 

MAST1 

CWT1 

EWT2 

CWT2 

EWT3 
CWT3 

Fig. 18. Layout of the turbines and masts and turbine-to-mast distances: EWTs and

CWTs

Figure 18 shows the turbines/masts layout and EWT-to-mast distance. For

EWT1 and CWT1, the data were collected from April 29, 2010 through October 30,

2011; for all the other wind turbines, data were collected from June 10, 2010 through
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October 31, 2011. The wind farm operator installed vortex generators on the blades

of EWT1 on June 19, 2011. Since data are not available from those with pitch angle

adjustment and faults, we generate synthetic data based on data measured on EWT2

and EWT3, and physical knowledge regarding pitch angle adjustment and faults. The

detailed explanation on generating synthetic data can be found in Section V.4.

Listed below are explanations of the background information regarding upgrades

and faults employed in this study:

• Vortex generator installation: Figure 19 shows an example of a blade equipped

with vortex generators. Vortex generators are often used in the wind energy

industry in order to improve the performance of blades. They enhance the

mixing of the outer flow at the blade’s boundary layer. However, fitting a wind

turbine blade with the right set of vortex generators is not a simple task since

each wind turbine blade design requires different vortex generator designs and

positioning in order to achieve optimal performance. Figure 20 presents an

empirical study comparing power curves of 1000kW wind turbine before and

after installing vortex generators.

• Pitch angle adjustment: One of the design parameters Cp in (4.1) depends on the

blade pitch angle β. Understandably, the pitch angle is an important variable in

maximizing power outputs captured from the wind. Wind farm operators mod-

ify pitch angles. Figure 21 depicts the rotor power performances corresponding

to different pitch angels. Here, the power performances are calculated by using

a GHBladed aerodynamic model (Bossanyi, 2003).

• Faults: Many studies already show that degradation in power generation per-

formance is a good indication of problems such as blade faults, yaw system

faults, pitch system faults, and gear or bearing faults (Gill et al., 2012, Kusiak
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et al., 2009, Uluyol et al., 2011). Figure 22 shows the abnormal status of a wind

turbine detected by a reference power curve. The reference power curve is built

with the k -nearest neighbor (k -NN) algorithm and the residual mean control

chart.

Fig. 19. Blade equipped with vortex generators [Source: Smart Blade (2013)]

On real wind farms, it is difficult to quantify performance changes caused by

the aforementioned modifications or by faults on a single wind turbine because their

effect is dependent on the type of turbine and the site. Plus, the power outputs have

many variations resulting from environmental factors in addition to the wind speed.

But the power curve method described in Chapter IV can help the effort of turbine

performance assessment here.

V.2. Kernel plus method

For assessing turbine performance, we consider the power residual r in (1.4), which

is the difference between the observed power output y and the predicted power out-
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Fig. 20. Example of the application of vortex generators on wind turbine blades:

ELKRAFT 1000kW wind turbine at Averdore [Source: Øye (1995)]

Fig. 21. Power output simulation based on different pitch angles [Source: Wang

et al. (2012)]: for the expression ‘a**na7v80’, ‘a’ represents attack angle,

a55 means attach angle of 5.5o; na7 means design tip speed ratio of 7; v80

means design wind speed of 8.0 m/s.
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Fig. 22. Anomalies detected by the reference power curve [Source: Kusiak et al.

(2009)]

put ŷ. In this study, for calculating the power residual, the binning method and a

modified additive multivariate kernel model are both employed. Let yBIN and yAMK

denote the binning method estimator and the additive multivariate kernel estimator,

respectively. Furthermore, the power residuals calculated by yBIN and yAMK are

referred to as rBIN and rAMK . More specifically, as mentioned in Chapter II, the

binning method is to discretize the domain of wind speed with a bin width of 0.5

m/s. In the additive multivariate kernel model, we consider four explanatory vari-

ables, namely, x = (vd1, vd2, ρ, tb) based on the results in Table 9. As a result, our

additive multivariate kernel estimator can be expressed as follows:

ŷAMK(vd1, vd2, ρ, tb) =
1

2
[m̂(vd1, vd2, ρ) + m̂((vd1, vd2, tb)] , (5.1)

where the bandwidth hx is selected by employing Algorithm I presented in Section

IV.2.3.

Figure 23 illustrates the variations in the two power residuals rBIN and rAMK
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with respect to wind speed. For this figure, we use the data obtained from CWT1

and CWT2; for training sets and testing sets, data were collected from August 2010

through July 2011 and from August 2010 through October 2011, respectively. We

observe three things from this figure:

• Notice that all residual plots are divided into a below and above the rated wind

speed region. The above regions in all plots show a small variation and random

pattern, while in the below regions, we observe that all residual plots have large

variations. The variation in Figure 23(b) is a little smaller than those of the

other three plots. We believe that the below-rated region residual plots contain

more useful information.

• Please note that CWT1 is located close to MAST1 and CWT2 is relatively

distant from MAST2. In Figures 23(c) and (d), the long distance between

CWT2 and MAST2 appears to lead a high variance due to wake effects. Please

also note that the IEC recommends that the distance between the wind turbine

and the meteorological mast shall be 2.5 × rotor diameter (IEC, 2005b). The

distance between CWT1 and MAST1 is therefore more preferred.

• Figures 23(a) and (b) show that there are apparent differences between the pat-

terns of rBIN and rAMK . rAMK appears random, while rBIN forms a non-random

bird-like shape. The non-random pattern indicates that the sole explanatory

variable in the binning, namely the wind speed, is not capable of capturing all

the systematic information in the power output data.

• In Figures 23(b) and (d), the horizontal dotted line indicates a residual value of

0. rAMK is not symmetric with respect to the horizontal dotted line. This shows

that the additive multivariate kernel estimator based on the Nadaraya-Waston
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kernel method has bias.

The occurrence of bias is problematic because it can negatively affect the results

of the turbine performance test. To address the bias issue of the Nadaraya-Watson

kernel estimator, we propose a self-calibration procedure, which we call the kernel plus

method. Before the procedure is presented, a few terminologies must be explained.

To quantify changes in a turbine’s performance, three datasets are used: The

training dataset, denoted by DTR, is used to fit a power curve. Notice that a whole

year’s worth of historical data are preferred for training the power curve model. The

two testing datasets, denoted by DBF and DAF, were collected for the same length of

time before and after an upgrade or a fault occurrence, respectively. They are used

to detect and quantify changes in a turbine’s performance caused by an upgrade or a

fault occurrence. In addition, let rBF and rAF denote power residuals calculated from

these two groups, respectively.

The self calibration procedure is done primarily by using subsets of the training

data in DTR. To select a calibration set of data that has similar weather conditions

to those in DBF and DAF, we define a distance measure, which is in spirit similar to

the Mahalanobis distance (Mahalanobis, 1936), a measure weighted distance between

two multidimensional points based on the corresponding covariance matrix. Our

defined distance measure is still a weighted distance but instead of using the covariance

matrix, we employ a diagonal matrix whose diagonal elements are from the bandwidth

vector hx. Specifically, we denote this diagonal matrix as H , so that H i,i = hi and

H i,j = 0 ∀i 6= j. The distance of a training data point xi ∈ DTR and a testing data

point xj in either DBF or DAF is

D(xi,xj) =

√
(xi − xj)TH−1(xi − xj). (5.2)
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(a) CWT1: BIN (b) CWT1: AMK

(c) CWT2: BIN (d) CWT2: AMK

Fig. 23. Scatter plots of the power residual (kW) versus 10-min average wind speed

(m/s) for CWT1 and CWT2. Left Panel: BIN is the residual plot calculated

by the binning method; Right Panel: AMK is the residual plot calculated

by the additive multivariate kernel method. Vertical dashed lines and hor-

izontal dotted lines indicate the rated wind speed (13 m/s) and a residual

value of 0, respectively.
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The reason we choose this distance measure to define the similarity between x’s is

as follows. A simple Euclidean distance does not reflect the similarity between x’s

well because different elements in x have different physical units, leading to differ-

ent value ranges. To define a sensible similarity measure, a key issue is to weight

different elements in x consistently with their relative importance pertinent to the

power output. The original Mahalanobis distance does not serve this purpose because

the squared distance associated with an input variable is weighted by the inverse of

its variance. In a power curve model, wind speed is arguably the most important

variable, yet it has a large variance in the same time. Because of this large variance,

using the Mahalanobis distance will in fact diminish the importance of wind speed in

a relative sense to other variables which have a smaller variance. Our choice of using

the kernel bandwidth parameter as the weighting coefficients in H is consistent with

our goal of weighting each element according to their relative importance. Recall that

the bandwidth is selected based on how sensitive the power output changes in a unit

change in the corresponding input variable. If an input variable has a small band-

width, it means that the power output could produce an appreciable difference with

a small change in the corresponding input, suggesting that this variable is relatively

important, while on the other hand, a large bandwidth indicates a less important

input variable.

For any testing data point xj, we can choose a calibration point xjcal from DTR,

which has the minimum D(xi,xj) distance. Then, we employ the self calibration

procedure as follows:

• For xjcal ∈ DTR, compute ŷAMK(xjcal)

• Compute the calibration value rjcal = y(xjcal)− ŷAMK(xjcal)

• For xj, the final power estimate from the kernel plus method is ŷKP (xj) =
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ŷAMK(xj) + rjcal; the power residual is rKP (xj) = y(xj)− ŷKP (xj).

After the self calibration, the bias resulting from a kernel estimator is greatly allevi-

ated but not completely eliminated.

V.3. Performance test procedure

Figure 24 outlines the procedure for detecting and quantifying changes caused by an

upgrade or a fault occurrence using the kernel plus method and the three sets of data

as described in the previous section.

KP
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Training Dataset  Before group After group 
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Decide a calibration set of the training 

dataset  using  the                      distance 

Fit an initial power curve using AMK 
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Fig. 24. Overview of the proposed turbine performance testing procedure

We first establish a power curve using the kernel plus method. This step includes
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the use of both the additive multivariate method and the self calibration. Then, this

power curve model is used to make a prediction/estimation of power output under a

new weather profile x in either DBF or DAF. Consequently, the corresponding power

residuals can be computed, and the result is denoted as rKPBF and rKPAF for DBF and

DAF, respectively.

Had a turbine undergone an upgrade or a fault, we would expect the power

residuals rBF and rAF to be different. To detect a potential difference in the power

residuals, it is necessary to invoke a statistical test because the power output data are

noisy; specifically a Student’s t-test (Snedecor and Cochran, 1989) is used. Suppose

that NBF and NAF are the number of data points in DBF and DAF, respectively. The

statistical test procedure is as follows:

• Compute the power residuals before and after an upgrade rBF and rAF;

• Compute the two sample means and the corresponding standard deviations by

using the following formula:

r̄BF =

∑NBF

j=1 r(x
j)

NBF

and SBF =

√∑NBF

j=1 (r(xj)− r̄BF)2

NBF − 1
xj ∈ DBF

r̄AF =

∑NAF

j=1 r(x
j)

NAF

and SAF =

√∑NAF

j=1 (r(xj)− r̄AF)2

NAF − 1
xj ∈ DAF

(5.3)

• Then, the pooled estimated of standard deviation σr is calculated:

σr =

√
(NBF − 1)S2

BF + (NAF − 1)S2
AF

NBF +NAF − 2

• The t statistic is calculated:

t =
r̄BF − r̄AF

σr ·
√

1
NBF

+ 1
NAF
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• Finally, calculate the p-value of the t statistic. A p-value is a probability, taking

values between 0 and 1. The smaller a p-value is, the more significant the

difference is.

The above procedure is devised to confirm a detectable difference resulting from

an upgrade or a fault. The output is binary: either the upgrade produces a statis-

tically significant difference in a turbine’s performance or it does not. For a EWT,

a method is supposed to produce a small p-value to indicate a significant difference

when comparing the residuals, while for a CWT, a large p-value is expected. In the

statistical inference, the threshold of a p-value to declare significance is sometimes

0.01; we use the 0.01 threshold in this analysis.

Another practical question is that if the t-test above does declare a significant

difference, how much a difference in terms of power generation an upgrade or a fault

produces? To find an increment rate, we define a quantifier as follows:

DIFF(x) =

∑
xj∈Dtest

(
y(xj)− ŷ(xj)

)∑
xj∈Dtest y(xj)

× 100%, (5.4)

where Dtest is a test dataset and can be either DBF or DAF, so that DIFF(x) can

be either DIFFBF or DIFFAF accordingly. Similar to the residual analysis described

above, comparing DIFFBF with DIFFAF quantifies the increment rate. Denote further

that DIFF = DIFFAF −DIFFBF, which quantifies the difference in power generation

between before and after an upgrade or a fault occurrence when effects of weather

profile are controlled for. The positive DIFF refers to an upgraded wind turbine that

produces more power output under the same weather profile; the negative DIFF refers

to the occurrence of a fault on a wind turbine.
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V.4. Test cases

We employ our procedure of turbine performance assessment for three different case

studies: a case of vortex generator installation, a case of pitch angle adjustment,

and a case of fault occurrence. The case study of vortex generator installation uses

the datasets measured at EWT1 and CWT1. The second and third case studies use

synthetic datasets generated by following the characteristics of real data observed

from other wind turbines.

V.4.1. Vortex generator installation

To test whether or not vortex generator installation changes power generation perfor-

mance, we employ the testing procedure presented in Figure 24. Here, the training

data DTR were collected from April 29, 2010 through June 03, 2011. The before-

upgrade data DBF were collected from June 4, 2011 through June 18, 2011, and the

after-upgrade data DAF were collected from June 20, 2011 through June 4, 2011. The

vortex generators were installed on the blades of EWT1 on June 19, 2011.

Figure 25 presents the scatter plots between the power output y and the average

wind speed v of EWT1 and CWT1. In this figure, blue circles and red triangles

represent the data in DBF and DAF, respectively. We cannot observe any obvious

changes caused by wind turbine modification in these speed-versus-power plots.

Table 13 presents the t-test results based on residuals rBIN and rKP . If the power

curve fitting model is perfectly unbiased, then r̄BF can be expected to have a zero

average. Furthermore, if the upgrade is successful, then the mean of r̄AF would be a

positive value. However, the third column in Table 13 shows that both the binning

method and the kernel plus method do not guarantee zero averages for r̄BF. For

this reason, instead of using the one-sample t-test, we suggest using the two-sample
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(a) EWT1 (b) CWT1

Fig. 25. Scatter plots of power output versus 10-minute average wind speed: blue

circles and red triangles represent, respectively, data points in DBF and DAF

t-test, which is to compare the residuals obtained from before and after an upgrade.

The last two columns in Table 13 are the t-statistics and p-value calculated by using

rAF and rBF. For EWT1, the binning method cannot detect any difference, while

the kernel plus method can detect a statistically significant difference between the

residuals associated with data in DAF and DBF for EWT1. When we quantify the

differences of the power output by the vortex generator installation using (5.4), the

power output appears to have increased by around 2.04%.

V.4.2. Pitch angle adjustment

We simulate data for the case of pitch angle adjustment based on Figure 21. Figure 21

illustrates that pitch angle adjustment increases turbine performance at wind speeds

above 9 m/s. We assume that the pitch angle of EWT2 was adjusted on October

17, 2011. The before-upgrade data DBF were collected from October 2, 2011 through
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Table 13. Comparing t-test results between two groups: before and

after vortex generator installation

Model Turbine r̄BF r̄AF r̄AF − r̄BF t-statistics p-value

BIN
EWT1 -5.54 -8.48 -2.94 -0.55 0.5816

CWT1 -4.86 -21.19 -16.33 -2.57 0.0104

KP
EWT1 -0.08 12.45 12.53 2.97 0.003

CWT1 6.60 11.61 5.01 1.07 0.2836

October 16, 2011, and the after-upgrade data DAF were collected from October 17,

2011 through October 31, 2011. For the after-upgrade data DAF, we multiply the

original power outputs by a factor of 1.03 for those corresponding to wind speeds

above 9 m/s. Denote by DS1AF the resulting synthetic dataset. Here, the real increment

rate for data in DAF is not 3% because only some of power outputs y are increased by

less than 3% (for example, under wind speeds from 4 m/s to 8 m/s, there is almost

no increase in the power output). Thus, we calculate the real increment rate directly

based on the differences between original and simulated power outputs, and the result

is 2.19%.

Figure 26 presents scatter plots between the power output y and the average

wind speed v of EWT2 and CWT2. In Figure 26(a), we observe that rated power is

changed, while improvements in power efficiency corresponding to rated wind speed

below (9 m/s − 13 m/s) are not obvious.

Table 14 shows the performance testing results of EWT2 and CWT2. The find-

ings from this case study appear to be consistent with that from the vortex generator

installation: the kernel plus method detects the change successfully, while the binning
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(a) EWT2 (b) CWT2

Fig. 26. Scatter plots of power output versus 10-minute average wind speed: for

EWT2, blue circles and red triangles represent, respectively, data points

corresponding to DBF and DS1AF; for CWT2, blue circles and red triangles

represent, respectively, data points corresponding to DBF and DAF

method does not. If we increase the multiplication factor from 1.03 to a bigger value

when simulating the data for pitch angle adjustment, the binning method could also

detect a more pronounced change. But we believe that a moderate change as simu-

lated here is more realistic, and a more sensitive method like the kernel plus should

be useful.

The average power outputs by our modification seems to be increased by around

2.50%, which is not much different from the real increment rate of 2.19%.

V.4.3. Fault detection

For fault detection, we simulate two datasets based on original testing dataset DAF of

EWT3 by stipulating that a fault took place on October 1, 2011. The first simulated

dataset, denoted by DS2AF, contains serious faults, which decreases turbine performance
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Table 14. Comparing t-test results between two groups: before and

after pitch angle adjustment

Model Turbine r̄BF r̄AF r̄AF − r̄BF t-statistics p-value

BIN
EWT2 -16.39 -17.13 -0.74 -0.13 0.8949

CWT2 -22.14 -24.86 -2.42 -0.43 0.6696

KP
EWT2 -11.46 5.95 17.41 2.91 0.0040

CWT2 -6.25 -8.56 -2.31 -0.40 0.6926

by 50%, and the second dataset, denoted by DS3AF, has soft faults, which lowers turbine

performance by only 5%. Figure 27 and 28 show power curves and power residuals

using the simulated datasets. As seen in Figure 27(a), the serious faults are not

difficult to detect by visual inspection. When employing the existing outlier detection

methods (Kusiak et al., 2009, Osadciw et al., 2010, Yan et al., 2009), the first fault can

easily be detected. The existing methods, however, become ineffective in detection of

the soft faults of much smaller magnitude.

Table 15 presents the performance testing results using the kernel plus model

and the binning model. The kernel plus method appears to be effective for detecting

the soft faults, while the binning method is not. The average power outputs in the

two simulated datasets DS2AF and DS3AF appear to be decreased by around −50.51%

and −6.2%, respectively. This is very similar to −50% and −5%, which are used for

simulating the faults.
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(a) Serious faults DS2AF (b) Soft faults DS3AF

Fig. 27. Scatter plots of power output versus 10-minute average wind speed: blue

circles and red triangles represent, respectively, data points corresponding

to DBF and DS2AF or DS3AF

Table 15. Comparing t-test results between two groups: before and after fault

occurrence

Model Turbine r̄BF r̄AF r̄AF − r̄BF t-statistics p-value

BIN

EWT3S1 -14.36 -317.40 -303.05 -40.60 0.2200 ×10−15

EWT3S2 -14.36 -19.06 -4.70 -0.85 0.3943

CWT3 -35.23 -6.64 28.59 3.99 0.6639 ×10−4

KP

EWT3S1 -1.65 -342.48 -340.83 -45.00 0.2200 ×10−15

EWT3S2 -1.65 -44.17 -42.52 -8.98 0.2200 ×10−15

CWT3 -8.43 -1.39 7.04 1.11 0.2686
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(a) BIN:50% reduction (b) KP: 50% reduction

(c) BIN: 5% reduction (d) KP: 5% reduction

Fig. 28. Scatter plots of power output versus 10-minute average wind speed: blue

circles and red triangles represent, respectively, power residuals rBF and rAF

calculated from DBF and DS2AF or DS3AF

V.5. Discussion

In this chapter, we use the kernel plus method based on the additive multivariate

kernel method, described in Chapter IV, for the purpose of turbine performance as-

sessment. This kernel plus method (additive multivariate kernel method) serves as a

useful tool in producing the so-called endogenous power curve where the influence of
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environmental factors can be controlled for so that the energy production efficiency

of a turbine can be much better quantified. We present a new procedure including

the kernel plus method to quantify the changes in turbine power generation associ-

ated with three different cases of upgrades or occurrence of faults. We found that

the findings from the kernel plus method (additive multivariate kernel method) are

consistent with the action of upgrading or occurrence of faults, while the findings

from the binning method appears random, due to the large, uncontrolled uncertainty

associated with this method. We want to note that even though we include four

weather covariates in this chapter, the resulting kernel plus method (additive multi-

variate kernel method) is scalable and can easily incorporate many more covariates

without running into the curse of dimensionality or data scarcity problems.
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CHAPTER VI

CONCLUSION

In this chapter we first summarize the methods developed in this dissertation and

highlight the contributions. We then provide some thoughts on future directions,

including immediate extensions of the current work and other related problems.

VI.1. Summary

The objective of this dissertation research is to construct new conditional models

for estimating extreme load levels and power curves under stochastic weather con-

ditions. In modeling loads or power outputs, one challenge is to address stochastic

uncertainty caused by a variety of environmental factors. In the wind industry, the

current practice is to use the binning method, which is to discretize the domain of

a few environmental factors and to estimate with each bin. The major limitation of

the binning method lies in its rigid compartmentalization of data and its separate use

of the data for each individual bin instead of borrowing strength from other bins. A

binning method is effective when applied to single dimensional data but runs into the

curse of dimensionality and loses its effectiveness when used for handling multivari-

ate data. To address the issue, we develop a Bayesian spline model and an additive

multivariate kernel model for the extreme load level and power curve, respectively.

In Chapter III, we provide a new extreme load analysis model estimating the site-

specific structural design load (extreme load levels). Mathematically, the extreme load

level is defined as an extreme quantile of the turbine’s maximum load distribution. We

consider the marginal maximum load distribution by using the conditional short-term

distribution given weather profiles due to the non-stationary nature of the loads across
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the entire wind profile. The novelty of our approach is in our proposed treatment

to model the short-term distribution. To establish the desired non-homogeneous

GEV distribution for the short-term distribution, we use a flexible Bayesian spline

model. The location parameter and scale parameter in the short-term distribution

are adequately modeled by the Bayesian MARS models. We also employ the Bayesian

MARS model for estimating the distribution of wind characteristics. Finally, based

on both the short-term distribution and wind characteristics distribution, we obtain

an empirical predictive distribution of the extreme load level by using a RJMCMC

algorithm. Our case study using one set of simulated data and three sets of real data

show that the current industry method tends to overestimate the extreme quantile

values.

In Chapter IV, we provide a new model to estimate the power curve more ac-

curately. In the power curve estimation, the main challenge is to control for the

influence from environmental effects such as wind direction, air density (temperature,

pressure), standard deviation of wind speed, wind shear, and humidity. For handling

the multi-dimensional power curve estimation problem in a reasonable computation

time, we devise an additive multivariate kernel model. The advantage of our model

is to capture the nonlinear relationships between environmental factors and the wind

power output, as well as the high-order interaction effects among some of the en-

vironmental factors. The additive multivariate kernel model includes three-variable

product kernels, which can capture the interaction effects between another environ-

mental factor with wind speed and wind direction. Subsequently, all the multivariate

kernels constitute an additive model. Then, we provide the point estimation and

density estimation for power outputs by employing heuristic bandwidth algorithms.

Finally, we evaluate the performance of our additive multivariate kernel with the

RMSE and CRPS measure using real field data.
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The power curve can be applied in practice for a variety of important tasks

including wind power forecasting and assessing turbine performance efficiency. In

Chapter V, we incorporate the power curve estimation model and present a new

procedure for turbine performance assessment. Most of the existing studies use a

constant threshold of power residuals over the whole wind speed region. Such an

approach is usually ineffective in detecting small changes due to the high variance

in the residuals. To address this issue, we suggest the use of the modified additive

multivariate kernel model (kernel plus method) in computing the residuals, and then

conduct a Student’s t-test on the difference between the residuals before and after an

upgrade or a fault occurrence. We evaluate the new procedure on three different case

studies and substantiate the claim of benefit made earlier.

We believe that the proposed models contribute to wind power research in the

following ways:

1. We provide a new extreme load analysis model estimating the site-specific struc-

tural design load (extreme load levels). This model allows us to calculate the

structural design load for the same kind of wind turbine that will be built at

a different site. The conditional distribution modeling for the structural design

load is a necessary practice in the wind industry. A turbine needs to be assessed

for its ability to resist the extreme loads under the specific wind profile at the

site it will be installed. Turbine manufacturers usually test a small number

of representative turbines at their own testing site, producing p(y|x). When a

turbine is to be installed at a commercial wind farm, the wind profile at the

proposed installation site can be collected and substituted into (1.3) as p(x),

so that the site-specific extreme load can be assessed. Without the conditional

distribution model, a turbine test would have to be done for virtually every new
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wind farm. Doing so is very costly and thus uncommon.

2. We provide a new additive multivariate kernel model to estimate the power

curve more accurately. This model includes more explanatory variables such as

wind direction, air density (temperature, pressure), standard deviation of wind

speed, wind shear, and humidity, which will eventually need to be controlled

for and excluded from the final estimate of the endogeneous power curve. The

contribution of this new power curve model is that it can help examine the

relative importance of the environmental factors in terms of their ability to affect

the operation efficiency of wind turbines, and to make wind power prediction

more accurate.

3. We present case studies to showcase how the new kernel-based power curve

model can be used to inform decision making for turbine performance assess-

ments. This is done for quantifying production gain from turbine upgrades as

well as production loss from turbine faults. Our case studies demonstrated the

benefit of the enhanced power prediction capabilities of the new power curve

model, as it can detect subtle, small changes associated with a turbine where

the conventional binning method cannot.

VI.2. Suggestions for future research

In the first study of extreme load assessment, we employ a Bayesian approach which

uses the SIC criterion to guide the selection of the model. Then, to evaluate the tail

part of a conditional maximum load distribution, we apply a different criterion, the

GPL. In the approach of the Bayesian decision theory, it is possible to incorporate the

GPL loss function in the given problem and to find optimal estimators minimizing the

posterior expected loss. Doing so will lead to a coherent, unified framework, which
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also may give better results. It is worth exploring this new estimation framework in

a future study.

In the second study of power curve estimation, whether or not we should have

used wind measurements obtained right at the turbine site, as opposed to those

obtained at the mast site, is a valid question. On commercial wind farms, almost every

turbine is indeed equipped with an in-situ anemometer, which in theory can measure

the wind speed and direction specific to that turbine. In practice, however, turbine-

based anemometer data are not commonly used for power curve estimation or wind

power prediction purposes. There have been some discussions concerning the pros

and cons of using turbine-based anemometer data (Albers et al., 1999, Hayes et al.,

2011). The main obstacle is that turbine-based anemometers are not calibrated to the

industry standard, and as a result, their wind measurements tend to be inaccurate.

Manually calibrating all the turbine anemometers is a very costly proposition for

a commercial wind farm, spread over tens of miles and housing over hundreds of

turbines. It is also the case that turbine anemometers can measure wind speed only at

a single height (i.e., the hub height) and are thus useless in computing wind dynamics

measures like wind shear. The wind measurements obtained from a mast are generally

considered to be accurate, or at least as accurate as they can be, since the industry

standard does require the masts to be calibrated periodically (IEC, 2005b). But

entirely depending on wind measurements from a handful of meteorological masts is

not ideal, either, especially when the turbines are located several kilometers away

from the mast. We are not aware of a solution to address this problem, but this issue

definitely deserves future research attention.
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APPENDIX A

OBTAINING CONFIDENCE INTERVALS FOR THE POT METHOD

In this appendix, a procedure to calculate the confidence intervals for the POT method

is presented. The POT method employs a Generalized Pareto (GP) distribution to

model the tail of unconditional maximum loads. The cumulative distribution of the

GP is

Gγ,χ(y) = 1−
(

1 +
γ(y − u)

χ

)−1/γ
if γ 6= 0,

= 1− exp

(
−y − u

χ

)
if γ = 0. (A.1)

where u is the threshold, χ > 0 is the scale parameter, and γ is the shape parameter.

Also, (A.1) is valid when y − u ≥ 0 for γ ≥ 0 and 0 ≤ y − u ≤ −χ/γ for γ < 0.

The threshold u is chosen graphically by looking at the threshold choice plots and

mean residual life plots. Then, assuming that u is known, the other parameters are

estimated using the maximum likelihood method.

Because of the assumption that the parameters χ and γ do not depend on wind

covariates, the extreme load level lT , given the target probability PT , can be expressed

directly in terms of function of parameters u, χ and γ as follows:

lT = u+
χ

γ
(P γ

T − 1). (A.2)

To calculate the confidence intervals for the POT method, we go through the

following procedure:

• Draw a sample of χ and γ from a multivariate normal distributions taking the

MLE as its mean and the inverse of the negative of the Hessian matrix as its

covariance matrix.
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• Compute the quantile value lT (χ, γ) by using (A.2).

• Repeat the above procedure Ml times to get the mean and confidence intervals

of lT .

Our implementation here uses the same Ml as that used in the implementation in the

spline method.
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APPENDIX B

OBTAINING CONFIDENCE INTERVALS FOR THE BINNING

METHOD

To calculate the confidence intervals for the binning method, we follow a procedure

similar to the one used for calculating the credible intervals in the spline method.

The difference is mainly that in the binning method, the parameters used in the

GEV distribution, namely µ and σ (recall that ξ is fixed as a constant across all the

bins), are sampled using only the data in a specific bin. For those bins which do not

have data, its µ and σ are a weighted average of all non-empty bins with the weight

related to the inverse squared distance between bins, following the approach used by

Agarwal and Manuel (2008). Once a sample of µ and σ is obtained for a specific bin,

the resulting local GEV is used to sample ỹ in that bin. Do this for all the bins, and

the ỹ’s from all bins are pooled together to estimate lT .

Specially, we go through the following steps, where Φc denotes the collection of

the parameters associated with all local GEV distributions used in all bins.

• Draw Mw ×Nw samples from the joint posterior predictive distribution

p [ṽ, s̃|Dv,Ds] of wind characteristics (ṽ, s̃); this step is the same as in the spline

method.

• Using the data in a bin, draw a sample of µ and σ for that specific bin from a

multivariate normal distributions taking the MLE as its mean and the inverse

of the negative of the Hessian matrix as its covariance matrix. Not all the bins

have data. For those which do not have data, its µ and σ are a weighted average

of all non-empty bins with the weight related to the inverse squared distance
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between bins, as we explained above. Collectively, Φc contains all the µ’s and

σ’s from all the bins.

• Decide which bins the wind characteristic samples (ṽ, s̃)’s fall into. Based on

the specific bin in which a sample of (ṽ, s̃) falls, the corresponding µ and σ in

Φc is chosen; doing this yields the short-term distribution p [ỹ|ṽ, s̃,Φc] for that

specific bin.

• Draw Nl samples of ỹ from p [ỹ|ṽ, s̃,Φc] for each of the total Mw ×Nw samples

of (ṽ, s̃). This produces a total of Mw ×Nw ×Nl ỹ samples.

• One can then compute the quantile value lT [Φc] corresponding to PT .

• Repeat the above procedure Ml times to get the mean and confidence intervals

of lT .

Our implementation here uses the same Mw,Ml, Nw, and Nl as those used in the

implementation in the spline method.
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