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ABSTRACT 

 

Ductal carcinoma in situ (DCIS) has been shown to be a precursor to invasive ductal 

cancer (IDC).  Though the progression of DCIS to IDC is believed to be an important aspect of 

tumor aggressiveness, prognosis and molecular markers that predict progression are poorly 

understood.  Therefore, determining the mechanisms by which some DCIS progress is critical 

for future breast cancer diagnostics and treatment.   

Singleminded-2s (SIM2s) is a member of the bHLH/PAS family of transcription factors 

and a key regulator of differentiation. SIM2s is highly expressed in mammary epithelial cells and 

lost in breast cancer.  Loss of Sim2s causes aberrant mouse mammary development with features 

suggestive of malignant transformation, whereas over-expression of Sim2s promotes precocious 

alveolar differentiation, suggesting that Sim2s is required for establishing and enhancing 

mammary gland differentiation.   We hypothesize that SIM2s expression must be lost in pre-

malignant lesions for breast cancer to develop.   

We first analyzed Sim2s in the involuting mammary gland, which is a highly tumor-

promoting environment.  Sim2s is down-regulated during involution, and forced expression 

delays involution.  We then analyzed SIM2s expression in human breast cancer samples and 

found that SIM2s is lost with progression from DCIS to IDC, and this loss correlates with 

metastasis.  SIM2s expression in DCIS promoted a differentiated phenotype and suppressed 

genes associated with de-differentiation.  Furthermore, loss of SIM2s expression in DCIS 

xenografts increased metastasis likely due to an increase in hedgehog signaling and matrix 

metalloproteinase expression.  Interestingly, we found metabolic shifts with gain and loss of 

SIM2s in not only DCIS cells, but also MCF7 and SUM159 cells.  SIM2s expression decreased 

aerobic glycolysis and promoted oxidative phosphorylation through direct upregulation of 
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CDKN1a and senescence.  Loss of SIM2s, conversely, promotes mitochondrial dysfunction and 

induction of the Warburg effect.  This is the first time CDKN1a and cellular senescence have 

been indicated as causative to metabolic shifts within cancer cells. 

These studies show a new role for SIM2s in metabolic homeostasis, and this regulation is 

lost during tumorigenesis.  These data indicate SIM2s is at the apex where aging, metabolism, 

and disease meet – regulating the delicate relationship between the three. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Breast Cancer 

Breast cancer is the most common type of cancer occurring in women in the United 

States, and remains one of the leading causes of mortality (Figure 1)(Group, 2013).  Breast 

cancer occurs when cells in the breast proliferate uncontrollably, ignoring the signals from the 

body to stop.  

 

 
Figure 1. Cancer Rates in the United States of America.  Data is courtesy of CDC cancer statistics.  Breast 

cancer is the higher occurring cancer among women, and the second leading cause of mortality in the 
USA.  

 

 

Approximately 50-75% of breast tumors begin in the ductal tree (ductal carcinoma), 

while 10-15% begin in lobular structures (Dillon, 2010).  In 2013, an estimated 232,340 new 

cases of invasive breast cancer will be diagnosed, along with 64,640 new cases of in situ breast 

cancer.  The estimated number of breast cancer related deaths in 2013 is 39,620 (American 

Cancer Society).    In the United States, approximately 22% of women between the ages of 45-
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54 are diagnosed with breast cancer.  Despite drastic advances in diagnostics and therapies, there 

remains a need for more efficient biomarkers and treatments. 

Breast cancer is a collection of diseases that have diverse histo-pathological phenotypes, 

genetic make-ups and prognostic indicators (LaMarca and Rosen, 2008; Vargo-Gogola and 

Rosen, 2007).  Non-invasive breast cancer is characterized by hyperplastic cells that are 

proliferating within the ductal structure of the mammary gland, but have not spread to nearby 

tissue.  This early stage of the disease is termed ductal carcinoma in situ (DCIS) or the less 

common lobular carcinoma in situ (LCIS).  Due to improved detection methods, the diagnosis of 

DCIS has risen from less than 1% of diagnosed breast cancers to 15-25% (Jones, 2006; Norton et 

al., 2010).  DCIS has been shown to be a precursor to invasive ductal cancer (IDC), with 20-30% 

of DCIS showing evidence of invasion upon diagnosis (Burstein et al., 2004; Maffuz et al., 

2006). Invasive breast cancer occurs when rapidly growing cells from within ductal and lobular 

structures invade through the stroma into nearby tissues.  From here tumor cells can spread to 

lymph nodes and to distant organs (metastasis).  Metastasis to distant organs is the primary cause 

of mortality in breast cancer patients.  Research has provided many biomarkers that aid in 

diagnoses and chemotherapy, as well as characterization and classification of this disease. 

Breast Cancer Subtypes 

Analysis of primary breast cancers for genetic mutations and unique genetic phenotypes 

has led to the characterization of 6 breast cancer sub-types: luminal A, luminal B, HER2 

positive, and basal-like (Table 1), as well as the lesser known normal-like and claudin-low 

(Cancer Genome Atlas, 2012; Perou et al., 2000; Sorlie et al., 2001).   
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Table 1.  Classification of Breast Cancer Subtypes. 
 

 
 

 

The use of high-throughput sequencing and protein arrays have enabled scientists to 

view whole-genome changes that are acquired with the onset of breast cancer, thus identifying 

unique profiles that divide breast cancer based on certain genotypic characteristics. 

Luminal breast cancers make up the most heterogeneous subtype of breast cancers in 

terms of genes expression and mutation (Cancer Genome Atlas, 2012). Luminal-type tumors are 

mainly characterized by the expression of luminal genes such as GATA binding protein 3 

(GATA3), X-box binding protein 1 (XBP1), and cytokeratins 8 and 18 (CK8/18).  More 

commonly, luminal cancers are identified by the expression of hormone receptors: estrogen 

receptor (ER) and progesterone receptor (PR) (Perou et al., 2000).  ER+/PR+ breast cancers 

require hormone stimulation to maintain tumor proliferation and integrity.  As such, endocrine 

therapy that blocks this signaling is highly effective in treating these cancers.  Luminal breast 

cancers can be further broken down into subtypes A and B by whether, in addition to ER and PR, 

the tumors also express human epidermal growth factor receptor 2  (HER2) (Luminal B). 

HER2 overexpression occurs in approximately 30% of primary breast cancers (Slamon 

et al., 1989).  Also called Neu, ErbB2, and CD340, HER2 expression in tumors activates 

mitogenic pathways such as STAT, AKT, and MAPK.  HER2 expression is associated with 

lower survival rate and high recurrence rates and metastasis, and is often associated with 

ER PR HER2 CK5/6 CK8/18 EGFR

Luminal A + + ‐ ‐ + ‐
Luminal B + + + ‐ + ‐

HER2 ‐ ‐ + ‐ ‐

Basal ‐ ‐ ‐ + ‐ +

Molecular 

Subtype

Immunohistochemical staining
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increased expression of epidermal growth factor receptor (EGFR) (Cancer Genome Atlas, 2012).  

Although resistant to hormone therapy, new treatments, such as trastuzumab, that directly target 

HER2 (and therefore leave healthy tissue alone) are very effective (Damodaran and Olson, 2012; 

Tinoco et al., 2013).  

If a tumor is missing all three of these biomarkers, it is said to be a triple-negative, or 

basal, breast cancer.  Triple-negative breast cancers, which comprise approximately 15% of 

breast cancers, are hard to classify, and as such are a heterogeneous mixture of various subtypes.  

Triple negative breast cancers are said to be basal-like when they are highly proliferative, poorly 

differentiated, and express the basal marker cytokeratin 5/6 (CK5/6) (Perou et al., 2000) and this 

accounts for approximately 75% of triple negative breast cancers.  Triple-negative breast cancers 

are often characterized by expression of genes such as Ki67 and Proliferating Cell Nuclear 

Antigen (PCNA) regulating proliferation, as well as loss or mutation of p53 (Cancer Genome 

Atlas, 2012).  These cancers are often harder to treat, and their inherent aggressive 

characteristics account for a much higher proportion of breast cancer mortality compared to 

luminal subtypes (Oakman et al., 2010).  A relatively newly characterized triple-negative breast 

cancer is the claudin-low subtype (Herschkowitz et al., 2007).  In addition to being a triple-

negative breast cancer, claudin-low subtype tumors also are characterized by low expression of 

adhesion genes such as E-cadherin (CDH1) and claudins, as well as a strong mesenchymal 

phenotype.  Additionally, claudin-low breast cancer have a unique signature of CD44+/CD24- 

breast tumor-initiating cells, which are linked to chemoresistance and metastasis (Hennessy et 

al., 2009). 

Thanks to many new treatments and biomarkers, our understanding of breast cancer 

progression has been greatly enhanced.  However, much remains to be understood.  Research has 

increasingly shown that the normal development of the mammary gland includes a delicate 
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balance that is the basis for cancer development when insults occur.  In order to understand the 

progression of breast cancer, we must also understand the normal mammary gland and how the 

normal function is mis-regulated in carcinogenesis.   

 

Normal Mammary Gland Development 

The mammary gland is a unique reproductive structure of mammals that, with the 

exception of humans and some dairy calves, is critical for reproductive success.  Mammary 

glands are epithelial organs that at birth are extremely rudimentary, and do not reach full 

development until lactation following parturition.  The mammary is a complex structure of 

lactating lobules, ducts for milk passage, supporting tissue, muscles, fat, and lymph nodes.  

Throughout puberty, menstruation, pregnancy, lactation, and menopause the structure and 

activity of the mammary gland dynamically changes to meet the varying signals of these cycles. 

The mammary gland is composed of three major epithelial cell types including ductal, 

alveolar and myoepithelial cells, which undergo dramatic morphological and genetic changes 

associated with different stages of mammary gland differentiation (Siegel and Muller, 2010; 

Visvader, 2009).  A rudimentary ductal structure develops in utero, however, all subsequent 

development occurs at the onset of puberty.  During puberty, mammary gland development is 

regulated through a branching morphogenic mechanism driven by terminal end buds (TEB).  

TEBs are highly proliferative and invasive, invading the mammary fat pad to develop the 

rudimentary ductal structure (Sympson et al., 1995; Sympson et al., 1994).  As the TEB invades, 

the ductal structures remaining are formed through highly regulated apoptotic and differentiation 

mechanisms.  The onset of estrous cycling promotes side branching and alveolar budding 

(Andres and Strange, 1999).  Prolactin and progesterone are largely responsible for alveolar bud 

formation during post-pubertal growth by stimulating proliferation through paracrine signaling 



6 

 

with Wn4 and Rank Ligand (RankL) (Brisken et al., 2000).  During pregnancy and lactation, 

progesterone and prolactin levels increase, causing the mammary gland to enter a cyclic 

transition characterized initially by growth and differentiation of lobuloalveolar structures, a 

switch to milk production during lactation, and regression to a state similar to the pre-pregnant 

virgin gland during involution.  Similar to the hematopoietic system, a differentiation hierarchy 

of mammary stem cells has been identified in the adult mammary gland that give rise to the 

luminal and myoepithelial lineages (Figure 2) (Visvader, 2009).  The luminal lineage can be 

further sub-divided into ductal cells that line the ducts and alveolar luminal cells that expand in 

response to lactogenic hormones to form alveolar units.  There is also increasing evidence that 

the differentiation hierarchy in the developing mammary gland may be linked with the different 

sub-types of breast cancer.  Gene expression profiling studies suggest that breast cancer 

heterogeneity is a result of the transformation of specific stem cell or progenitor cell populations 

responsible for normal mammary gland development (Figure 2) (Siegel and Muller, 2010; 

Visvader, 2009). 
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Figure 2.  Mammary Gland Hierarchy and Derivation of Breast Cancer Subtypes.  The mammary gland is 
composed of a unique hierarchy of stem, progenitor, and differentiated cells.  Mutations in various cell 

types lead to the different subtypes of breast cancer. 
 

 

Mammary gland involution is the regression of a lactating mammary gland post weaning 

to its quiescent state.   Involution is characterized by a decrease in milk protein, collapse of 

alveolar structure, apoptosis of epithelial cells, and reinvasion of adipocytes (Baxter et al., 2007; 

Furth, 1999; Thangaraju et al., 2004; Walker et al., 1989; Wilde et al., 1999).  Involution has 

been shown to proceed in two separate phases, first an acute response phase characterized by a 

decrease in milk protein synthesis, and epithelial cell apoptosis (Baxter et al., 2007; Bierie et al., 

2009; Clarkson and Watson, 2003; Furth, 1999; Henson and Tarone, 1994; Jaggi et al., 1996; 

Lund et al., 1996; Marti et al., 1999; Quarrie et al., 1996).  This initial phase is reversible and 
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occurs for 1-3 days post weaning (varies with species).  The second phase begins at 72 hours 

post weaning, and is characterized by a collapse in the alveoli, extensive epithelial apoptosis, and 

breakdown of the basement membrane by matrix  metalloproteinases (MMPs) (Stein et al., 

2007).  Involution is a unique process with a wound healing signature and controlled 

inflammation, both of which are associated with breast cancer progression, metastasis, and 

survival.  During this process terminally differentiated luminal epithelial cells proceed through 

two pathways: the most prominent is cellular apoptosis, the remaining undergo a de-

differentiation back to their pre-lactating state.  The extracellular matrix of the involuting 

mammary gland has also been shown to enhance metastasis, and the gene expression signature 

of the involuting gland has been associated with poor prognoses in breast cancer diagnosis 

(Marti et al., 1999; McDaniel et al., 2006; Schedin et al., 2007; Stein et al., 2009).  Extensive 

research has looked at gene expression, basement membrane changes, and signaling in 

involution and its respective correlation with breast cancer.  Research has shown that metastatic 

breast cancer shares a gene expression profile similar to the involuting mammary gland 

(Clarkson and Watson, 2003; Clarkson et al., 2004; Come et al., 2004; Henson and Tarone, 

1994; Jager et al., 1997; Lefebvre et al., 1992; Lyons et al., 2009; McDaniel et al., 2006; O'Brien 

and Schedin, 2009; Pensa et al., 2009; Radisky and Hartmann, 2009). 

Pregnancy-associated breast cancer is one of the more aggressive, highly metastatic, 

types of breast cancer and often has a poor prognosis (Lyons et al., 2009; Newcomb, 1997; 

Polyak, 2006; Russo and Russo, 1998).  Research has indicated that this is due to hormonal 

changes during pregnancy and lactation, and more recently the microenvironment and unique 

wound healing signature of the involuting mammary gland (Clarkson and Watson, 2003; Lund et 

al., 1996; McDaniel et al., 2006; Newcomb, 1997; O'Brien and Schedin, 2009; Radisky and 

Hartmann, 2009; Stein et al., 2009). 
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Stat5 in the Mammary Gland and Breast Cancer 

Transcription factor cascades controlling functional gene expression are key events in 

regulating the differentiation potential of mammary epithelial cells.  In the mammary gland, 

signal transducer and activator of transcription 5A (STAT5a), a well-known non-tyrosine kinase-

containing cytokine receptor-activated transcription factor, is a key modulator of three different 

cellular outcomes:  differentiation, survival, and proliferation (Liu et al., 1997; Silva, 2004).  

STAT5a can be activated via serine phosphorylation and de-phosphorylation, as well as 

interactions with other cellular proteins (Johnson et al., 2010; Wang et al., 2003).  As a key 

regulator of mammary cell fate and lactation, STAT5a is activated by diverse and overlapping 

signaling pathways.  These same pathways are potentially involved in the aberrant up-regulation 

of STAT5a in breast cancer. 

Studies in normal mammary gland development have established the vital role for 

STAT5a in alveolar differentiation and lactation.  STAT5a expression is present throughout 

virgin development of the mouse mammary gland, with highest levels of expression seen during 

pregnancy and lactation, coinciding with expression levels of Whey Acidic Protein (Liu et al., 

1995).  Using deletion transplant studies, loss of STAT5a in mouse mammary epithelium did not 

affect virgin ductal development (Miyoshi et al., 2001).  However, STAT5a null mammary 

glands failed to differentiate and form alveoli or express milk proteins, resulting in locational 

failure in early pregnancies.  Interestingly, after subsequent pregnancies, coupled with suckling 

pups, STAT5b expression and phosphorylation increased to eventually rescue the lactation 

defect (Liu et al., 1998).  Complete knockdown of both STAT5a and STAT5b prevent this 

rescue, and significantly inhibited proliferation and differentiation in the mammary gland.  Using 

conditional gene activation Cui et al (2004) examined this loss of STAT5 at different stages of 

mammary gland development to determine its effect.  Loss of STAT5 expression prior to 
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pregnancy prevented epithelial proliferation and differentiation, and caused lactation failure. 

Loss of STAT5 during late pregnancy using a WAP Cre gene promoter, which itself (WAP) is a 

milk protein induced in differentiating mammary tissue, did not completely ablate functional 

lactation, although alveolar structures were fewer in the STAT5fl/fl mice. However, further 

analysis showed that loss of STAT5 in lactating epithelial cells resulted in a de-differentiation, 

and was characterized by loss of WAP protein expression and the apical secretory marker Npt2b.  

Loss of STAT5 in late pregnancy also increased apoptosis in the lactating gland, indicative of an 

involution phenotype.  Indeed, under normal circumstances, a cyclic relationship with loss of 

STAT5 and induction of STAT3 is a key step in the onset of involution (Philp et al., 1996). 

In the mammary gland, STAT5a expression can be regulated by many different 

pathways.  The most commonly identified pathway is gene induction through pregnancy 

hormones and prolactin.  Alveolar epithelial cells respond to prolactin by initiating a Janus 

kinase 2 (Jak2)-mediated phosphorylation and dimerization with cytoplasmic STAT5a, resulting 

in activation and nuclear translocation of STAT5a, which then binds regulatory elements of milk 

protein genes, increasing their expression and subsequent lactation (Happ and Groner, 1993; Li 

and Rosen, 1995).  However, in studies where the prolactin receptor (PrlR) was knocked down in 

mammary epithelium, STAT5 could still be induced by a myriad of other cytokine and hormone 

signals.  While loss of PrlR in mammary epithelium inhibited lactation in the same manner as 

STAT5 loss, it was not as severe.  PrlR-null mammaries were able to form small, open alveolar 

lumina, indicating that other cytokines were potentially activating STAT5 (Miyoshi et al., 2001).  

Miyoshi et al. showed that injection of epidermal growth factor (EGF) or growth hormone (GH) 

was sufficient to induce activation of STAT5a in PrlR-null mammary glands.  However, other 

work done by Gallego et al. (2001) shows that neither one of these is necessary for normal 

mammary gland development, while PrlR is essential. 



11 

 

Although prolactin-mediated STAT5a activation is central to alveolar epithelial cell 

function, it is not the only pathway responsible for initiating mammary gland specification 

towards terminal differentiation.  Other transcription factors, including the glucocorticoid 

receptor (GR), CCAAT-enhancer binding protein-beta (CEBPβ), Elf-5 and GATA-3 also play a 

role in lactogenic differentiation (Asselin-Labat et al., 2007; Kouros-Mehr et al., 2008; Kouros-

Mehr et al., 2006; LaMarca et al., 2010). Thus, commitment to cellular differentiation in the 

mammary gland requires activation and coordination of multiple signaling pathways to ensure 

that specific mammary lineage commitment is achieved. However, it is still not clear how these 

proteins control the specification of distinct cell types within the differentiation hierarchy of the 

developing mammary gland (Asselin-Labat et al., 2007; LaMarca and Rosen, 2008). 

 

Ductal Carcinoma In Situ 

DCIS is also a heterogenous group of diseases within itself, characterized by a neoplastic 

mammary lesion that is confined to the ductal-lobular system of the breast.  It is hypothesized 

that nearly all invasive ductal carcinomas proceed from DCIS, and the ability to detect this early 

stage of breast cancer has allowed clinicians to target DCIS before the onset of invasive disease.  

However, research has yet to find reliable biomarkers that dictate the progression of DCIS to 

invasive ductal cancer (IDC).    An estimated 14-60% of women with untreated DCIS will later 

develop invasive disease (Burstein et al., 2004).   

Pathological markers such as nuclear grade, comedo necrosis, and size have been 

associated with an increased risk of DCIS progression, however these features are confounded 

when also addressing treatment and follow-up (Chin et al., 2004; Cocker et al., 2007; Ma et al., 

2003; Porter et al., 2003; Yao et al., 2006).  Serial analysis of gene expression (SAGE) showed 

no distinct genetic signature that differentiates DCIS from IDC.  Indeed, most genetic changes 
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occurred at the normal to DCIS transition.  In fact, extensive studies using fluorescent in situ 

hybridization (FiSH), microarrays, and whole genome analysis of human DCIS and IDC lesions 

have not consistently identified any classical markers for progression from DCIS to IDC 

(Hernandez et al., 2012; Muggerud et al., 2010).  Molecular profiling of DCIS compared to IDC 

shows the same heterogeneity and sub-types previously described for IDC (Clark et al., 2011).  

However, the frequency of these subtypes varies between DCIS and IDC, indicating differences 

in subtype progression that may merit further research.  Cocker, et al. (2007) studied the 

potential role or proteolytic enzymes in promoting the progression of DCIS to IDC, however, 

their results were inconsistent .  Current research has also not determined the mechanisms that 

cause some DCIS to progress and others to lie dormant.  Many confirmed oncogenes and tumor 

suppressors such as p53, PTEN, ERBB2, and MYC have been analyzed in DCIS and IDC 

samples; and consisten changes in gene expression indicating progression to invasion were not 

observed (Behling et al., 2011; de Biase et al., 2010; Knudsen et al., 2012; Liu et al., 2010; Lu et 

al., 2009; Miron et al., 2010; Rajan et al., 1997; Schmidt et al., 2010; Yao et al., 2006).  ERBB2 

was overexpressed in 25% of invasive tumors, and 50-60% of DCIS lesions, and must be 

correlated with 14-3-3ζ or its downstream regulator SIAH to better predict the risk of 

progression from DCIS to IDC; changes in PTEN signaling between DCIS and IDC were also 

not observed.  MYC has been implicated as a possible genetic signature predicting DCIS and 

IDC, however the genetic imbalances and heterogeneity seen in these tumors did not show a 

definitive correlation (Heselmeyer-Haddad et al., 2012).  However, FiSH studies of ERBB2, 

ESR1, CCDN1, and MYC showed no significant changes in their amplification in the 

progression from DCIS to IDC (Burkhardt et al., 2010).  While a correlation has been established 

between hormone receptors ER and PR and DCIS, no change in p53 expression is seen during 

DCIS progression (Liu et al., 2010).  Another study by Lee et al. showed that suppression of 
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genes involved in cell adhesion and signaling, and protease inhibition significantly increased 

DCIS progression, and pointed toward increased cathepsin activity (which is involved in 

autophagy) as a possible mechanism for DCIS progression (Lee et al., 2012).  Currie et al. 

studied the potential role of tumor initiating cells (cancer stem cells) in the progression from 

DCIS to IDC.  Tumor initiating cells are defined as de-differentiated, stem cell-like cells that are 

able to generate the heterogeneous cells of the tumor.  In breast cancer, TICs have been 

identified as CD44+/CD24- (cluster of differentiation 44/24, cell surface proteins) cells that are 

also positive for aldehyde dehydrogenase (ALDH) activity (Al-Hajj et al., 2003; Ginestier et al., 

2007). Higher percentages of TICs have been implicated in basal breast cancers and have been 

associated with enhanced invasion and metastasis (Charafe-Jauffret et al., 2009; Charafe-Jauffret 

et al., 2008; Dontu et al., 2003; Korkaya and Wicha, 2007).  Analysis of these three TIC markers 

in matched DCIS and IDC samples showed similar TIC populations (Currie et al., 2013).  

Although some possible indicators have been found between DCIS and IDC, no causal links to 

induced DCIS progression have been established, and no major pathways have emerged as 

necessary for the onset of invasive disease. 

Emerging evidence indicates that response to metabolic stress and hypoxia promote 

progression of DCIS to IDC (Espina and Liotta, 2011; Hu et al., 2008; Lee et al., 2012; Schmidt 

et al., 2010).  Indeed, hypoxic stress and nutrient deprivation are well established inducers of 

mutagenesis and genetic instability (Bindra and Glazer, 2005; Mathew et al., 2009; Mathew and 

White, 2011).  In order for DCIS to progress, these lesions must circumvent stress-induced death 

and senescence, and adapt to using alternative sources of energy.  HIF1α up-regulation in a 

hypoxic environment has been implicated as an inhibitor of p53-mediated cell death and the 

DNA damage response (Sendoel et al., 2010).  De-phosphorylation of retinoblastoma (RB) in 

response to hypoxia and nutrient deprivation is responsible for cell-cycle arrest and senescence, 



14 

 

however, research in DCIS indicates this pathway is compromised, resulting in uncontrolled 

proliferation regardless of stress signals (Berman et al., 2010; Gauthier et al., 2007). A similar 

study further analyzed RB and the related tumor suppressor phosphatase and tensin homolog 

(PTEN) as potential regulators of DCIS progression (Knudsen et al., 2012).  Using human DCIS 

samples, loss of RB protein expression was found to be significantly related to recurrent DCIS or 

progression to IDC.  However, PTEN expression showed no correlations with DCIS progression.  

It was suggested that  RB and PTEN expression together was a promising prognostic indicator 

for DCIS progression, through dual regulatory roles in cell cycle progression and an adaptive 

growth advantage via PTEN loss (Knudsen et al., 2012).  In order to survive the stressed 

environment during tumorigenesis, autophagy has also been implicated in survival.  

Interestingly, autophagy has been to shown to have both tumorigenic and tumor-suppressive 

qualities, which will be further discussed.  Autophagy has been shown to be activated during 

hypoxia and nutrient stress, and is hypothesized to be a major survival mechanism in DCIS cells 

(Debnath, 2011; Jin, 2006; Lozy and Karantza, 2012; Mathew et al., 2009). 

MCF10DCIS.com Cells as a Novel Model for DCIS In Vivo 

Until recently, mechanistic research of DCIS and the mechanism of cancer progression 

has been challenging due to lack of in vivo models.  Studies were restricted to human samples, 

limiting real-time experimentation and modulation.  Development of the MCF10DCIS.com 

(DCIS) cell line provided a useful and novel technique for modeling DCIS progression in vivo 

(Miller, 2000; Miller et al., 2000; Tait et al., 2007).  Developed from the premalignant 

MCF10AT cells, DCIS cells were obtained from xenograft lesions of MCF10AT cells that 

mimicked DCIS in vivo.  In vitro, DCIS cells grow in a single monolayer, and all cells express 

keratin and smooth muscle actin.  DCIS cells, upon injection, form rapidly growing DCIS 

lesions, characterized by tightly packed lobular structures, many with central necrosis (comedo 
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DCIS).  After injection and growth, these DCIS lesions will ultimately progress and become 

invasive, similar to a normal human DCIS lesion.  It is hypothesized that in vitro DCIS cells are 

still in a bipotent progenitor state, and in vivo they differentiate into the myoepithelial and 

luminal cells necessary for DCIS development.  Thanks to the development of this model, 

researchers are now able to actively study the genetic and environmental effects on DCIS 

progression.    

Initial studies using this model were used to elucidate the potential role of the 

myoepithelial cell layer and fibroblasts in DCIS progression.  Using subcutaneous injections, Hu 

et al. (2008) verified the bipotent activity of the DCIS cell line and development of DCIS lesions 

with intact basement membranes and myoepithelial cell layers, which other human breast cancer 

cell lines were unable to do.  Using immunohistochemical analysis and flow cytometry, the 

bipotent progenitor capabilities of the DCIS cell line were verified.  In vitro, DCIS cells are 

uniformly positive for both basal and luminal markers, and only upon injection do they 

differentiation into separate luminal and myoepithelial cells.  Additionally, microarray analysis 

confirmed that genetic alterations in DCIS xenografts mimicked genetic alterations commonly 

found in human breast carcinomas, such as downregulation of cell cycle regulator p16 

(CDKN2A).  SAGE and microarray analysis showed that the myoepithelial layer in DCIS 

xenografts and human DCIS lesions was largely responsible for maintenance of the extracellular 

matrix (ECM), cytoskeleton, and basement membrane remodeling.  Further analysis of matrix 

metalloproteinases (MMPs), which have been highly indicated in degradation of the basement 

membrane and promotion of invasion, found that MMP14 was highly upregulated in DCIS 

associated myoepithelial cells.  Co-injection of DCIS cells with fibroblasts resulted in invasive 

ductal carcinoma rather than the previously described DCIS lesions, but this could be reversed 

by the addition of normal myoepithelial cells.  Importantly, none of these differences induced 
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genetics changes in the epithelial cells of DCIS xenografts, indicating a paracrine effect of 

fibroblasts on the bipotent progenitor potential of DCIS cells.  This study elegantly elucidated a 

potential role for tumor progression that explains the lack of genetic changes with the onset of 

invasive disease. 

More recently, a new technique, the mouse intraductal (MIND) injection has been 

developed to better mimic the natural environment of human DCIS in vivo (Behbod et al., 2009).  

In addition to the DCIS.com cell lines, a second DCIS-like SUM225 cell line and primary 

human DCIS cells can be used in this model.  Using immunosuppressed mice, these cells were 

injected into the inguinal mammary gland through the nipple.  This results in a DCIS lesion 

within the actual ductal structure of the mouse mammary gland, enhancing the similarities to a 

human mammary gland DCIS lesion.  Interestingly, in this study, only the DCIS.com cells 

became invasive, the SUM225 cell line and primary human samples did not.  In the intraductal 

model, the previously described comedo style DCIS of the DCIS.com cells was replaced by a 

cribiform pattern, where the epithelial cells have not completely filled the ductal region.  In this 

model, the myoepithelial and basement membrane layers are developed by the mouse mammary 

gland, whereas the epithelial cells are from the human cell lines, indicating that the bipotent 

potential of the DCIS.com cell lines is altered in this model.  This modeling experiment has also 

been used with human primary DCIS to continually grow human primary DCIS samples through 

repeated intraductal injection.  Using this model, Valdez et al. (2011) were able to grow human 

DCIS cells within mouse mammary ducts that maintained that characteristics of the original 

DCIS pathology.  This allows for long-term study of DCIS lesions in an in vivo situation with 

lower risks of genetic alteration. 

The establishment of these unique models for DCIS progression has significantly 

enhanced our ability to study early onset and progression of breast cancer.  These models will be 
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critical for identification of markers for progression, and identification of novel and effect 

treatments that prevent the development of invasive disease. 

 

Breast Cancer Differentiation 

A major indicator of overall tumor aggressiveness and an important prognostic indicator 

is the differentiation status of the tumor.  Understanding differentiation and the identification of 

genes regulating differentiation are major themes in cellular biology.  While the discussion of 

differentiation permeates the study of breast cancer, understanding the definition and important 

of differentiation in breast cancer progression is vital. 

In the normal body, differentiation is identified as the process by which a less 

specialized cell (ie. stem cell) becomes a more specialized cell with a specific function (ie., 

neuron).  Thus, differentiation is vital for human growth and development.  The mammary gland 

is unique in that it goes through repeating rounds of differentiation (specialization) and de-

differentiation with menstrual cycling, and most importantly with pregnancy and lactation.  We 

have already discussed the various levels of differentiation that occur within the mammary gland 

during normal development, and also how it diverges at various points of this pathway resulting 

in unique subtypes or breast cancer.  The mammary gland reaches its most differentiated state, 

named terminal differentiation, shortly after parturition, at the peak of lactation.  During this 

state the cells are highly metabolically active but do not proliferate.  After weaning, most of 

these terminally differentiated cells are unable to de-differentiate to the mammary glands pre-

pregnancy state, and therefore, they undergo apoptosis.  These terminally differentiated cells are 

also highly prone to cell death, and are more susceptible to outside insults such as 

chemotherapeutics.  Throughout the cycles of differentiation within the mammary gland, it must 

always maintain the ability to form a subsequent, functional gland for later pregnancies, which is 
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hypothesized to occur through the regulation of mammary stem cells (Visvader, 2009).  While 

regulation of this process is highly controlled in the normal gland, the unique ability of this 

organ to cycle in its differentiation status makes tumor differentiation of the utmost importance 

in breast cancer. 

In breast cancer, tumors are often graded according to their state of differentiation, or de-

differentiation – in accordance with how closely they resemble the normal tissue of the 

mammary gland (NCI).  The more de-differentiated a breast tumor is, or the less it resembles the 

mammary gland, the worse the prognosis.  Poorly differentiated tumors are often highly invasive 

and metastatic, in addition to being highly proliferative (Bloom and Richardson, 1957; Contesso 

et al., 1987; Liu et al., 2007).  Indeed, the parameters used for breast cancer grading are directly 

related to the differentiation characteristics of the mammary gland (Jogi et al., 2012).  Tumor 

grading in breast cancer is often based on several parameters – including tubule formation and 

nuclear pleomorphisms, both of which are directly related to tumor differentiation.  Tubule 

formation is indicative of the cells’ ability to maintain polarity, whereas large nuclei and 

variations in nuclear size are markers for low differentiation.  Additionally, in ductal carcinoma 

in situ, the development of hypoxic regions within lesions correlates with a high localization of 

de-differentiated cells and progression to invasive breast cancer, and promotes the hypothesis 

that hypoxia, and specifically HIF1α, plays an important role in loss of differentiation. 

The importance of differentiation in breast cancer progression and aggressiveness has 

stimulated research on identification of critical pathways of differentiation that are altered with 

the onset of cancer.  Several transcription factors have been implicated, including GATA3, p53, 

HIF1α, and the previously mentioned STAT5a (Kouros-Mehr et al., 2008; Kouros-Mehr et al., 

2006).   
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GATA3 in Mammary Gland and Breast Cancer Differentiation 

GATA3 was first identified as a key transcription factor that is highly expressed in the 

luminal epithelial cells of the mature mammary gland (Kouros-Mehr et al., 2006). GATA3 is 

expressed in all luminal cells of the mammary gland, but not in the capsule of the TEB.  Loss of 

GATA3 in the mouse mammary gland severely disrupted normal development.  While 

embryonic and pre-pubertal development was similar to WT littermates, at the onset of puberty, 

the GATA3 null glands failed to develop beyond the pre-pubertal stage, and these glands 

exhibited defects in side branching and structural defects.  GATA3 null luminal epithelial cells 

exhibited a loss of cellular polarity, identified by multiple layers of epithelial cells within ductal 

structures.  Using a doxycycline-inducible system, Kouros-Mehr et al. (2006) allowed mice to 

read adulthood before targeting GATA3 in the mammary gland.  Even after puberty, loss of 

GATA3 induced a drastic loss in ductal structure, and a loss of polarity in luminal epithelial 

cells.  Loss of GATA3 induced loss of luminal markers β-casein (CSN2) and CDH1, and also 

increased proliferation within the mammary gland, showing that GATA3 expression as critical 

for both the development and maintenance of the differentiated mammary gland (Kouros-Mehr 

et al., 2006).   

Additional work in mammary cancer showed that loss of GATA3 in breast cancer 

promoted tumor growth and metastasis (Kouros-Mehr et al., 2008).  Using the Mouse Mammary 

Tumor Virus Polyoma Middle-T (MMTV-PyMT) tumor system, GATA3 was shown to be 

down-regulated in breast tumors and was lost during tumor de-differentiation.  Tumors that had 

metastasized to distant organs were consistently devoid of GATA3 expression.   By examining a 

panel of breast cancer cell lines ranging from less aggressive, luminal to highly metastatic, basal 

types, Kouros et al. (2008) verified that less aggressive cell lines have detectable amounts of 

GATA3, which is progressively lost in more aggressive cell lines.  Re-establishment of GATA3 
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in PyMT tumors significantly inhibited metastasis and promoted differentiation.  Expression of 

GATA3 in PyMT tumors also induced CSN2 expression, indicative of terminal differentiation, 

and the tumors themselves formed ductal structures rather than disorganized tumors.  Although 

tumor sizes were larger in GATA3 expressing tumors, this was due to the formation of cysts full 

of secretory material from the tumor rather than enhanced proliferation.  These tumors had a 27 

fold decrease in lung metastasis compared to controls.  Interestingly, loss of GATA3 in early 

stage mammary carcinomas was not sufficient to induce tumor progression, since loss of 

GATA3 induced apoptosis in GATA3 positive cells, and did not completely eliminate GATA3 

expression in subsequent tumors.  Further analysis indicated that tumor progression occurred 

through the clonal expansion of the GATA3 null population of cells in the tumor, eventually 

overtaking the GATA3 positive population and conferring stem-like, basal characteristics on the 

tumor.  These studies show a vital role for GATA3 expression in the promotion of 

differentiation, and its potential as a diagnostic indicator in breast cancer. 

 

Singleminded 

Originally discovered in Drosophila, dsim was found to be a key regulator of CNS 

midline differentiation and cell fate (Crews et al., 1992; Kasai et al., 1992; Lewis and Crews, 

1994; Nambu et al., 1990; Nambu et al., 1991).  It was found that dsim knockdown in embryos 

was fatal due to a lack of differentiation, and the dsim expression was sufficient and necessary 

for CNS development.  These studies also examined the collaboration of dsim with tango (dtgo, 

homologous to mammalian ARNT) for association with DNA response elements and proper 

formation of the CNS (Pielage et al., 2002).  This research concluded that dsim was a master 

regulator of neurogenesis (Nambu et al., 1990).  Two mammalian homologs of dsim have been 

identified: Singleminded 1 (SIM1) and Singleminded 2 (SIM2) (Chrast et al., 1997).  SIM1 is 
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located on chromosome 6, whereas SIM2 is located on the Down Syndrome (DS) critical region 

of chromosome 21 and is believed to contribute to many of the physiological abnormalities 

associated with trisomy 21 (Chrast et al., 2000).   Sim2 plays an important role in development 

as Sim2 null mice die shortly after birth due to multiple abnormalities including cleft palate, 

improper diaphragm development and rib defects (Goshu et al., 2002; Shamblott et al., 2002).   

SIM2 is a member of the basic helix-loop-helix (bHLH)/Per-Arn-Sim (PAS) 

transcription factor. bHLH describes the basic structural motif of the transcription factor, and 

PAS describes the unique protein domain within the protein that functions as a signal sensor 

influencing the transcription of target genes (Ponting and Aravind, 1997).  The bHLH 

superfamily contains transcriptional regulators that function in multiple fundamental biological 

processes.  The basic bHLH region is involved in DNA binding and the helix-loop-helix motif is 

a dimerization domain.  Both are necessary for the formation of functional DNA binding 

complexes required for transcription.  bHLH proteins can be divided into three subfamilies: 

those with the bHLH domain only; those with a bHLH domain contiguous with a leucine zipper 

(Zip); and those with a bHLH domain contiguous with a Per-Arnt-Sim (PAS) domain (Kewley et 

al., 2004).  The bHLH/PAS family of transcription factors  form heterodimers that recognize 

sequences such as the xenobiotic response elements (XRE), the hypoxic response elements 

(HRE), and central midline elements (CME) (Kewley et al., 2004).  The PAS domain, which 

consists of two adjacent repeats of approximately 130 amino acids, is important in regulating 

dimerization specificity (Kewley et al., 2004).  Activation of signaling occurs when one 

bHLH/PAS protein dimerizes with another bHLH/PAS protein, namely ARNT.  DNA binding 

and regulation of gene expression occurs through transcription machinery recruitment, 

elongation control, or transcriptional repression (Kewley et al., 2004).      

 



22 

 

SIM2 in Down Syndrome 

DS is a genetic condition characterized by an extra chromosome 21 (also known as 

Trisomy 21).  This extra chromosome, resulting in an overexpression of genes on this 

chromosome, results in complications in body and brain development.  Some common physical 

symptoms include: a flat face with an upward slant to the eye, small hands and feet, poor muscle 

tone, and white spots on the iris of the eye.  In addition to the classical mental and physical 

symptoms, people with DS are also prone to a unique subset of health problems, most notably, 

increased susceptibility to childhood leukemias and germ-line cancers, but a greater than 50% 

decreased development of solid tumors including cancers of the breast, lung, and other epithelial 

cancers (Boker et al., 2001; Boker and Merrick, 2002; Hasle et al., 2000a; Hasle et al., 2000b; 

Hasle et al., 2000c; Hill et al., 2003; Satge et al., 1998).  Children with DS are 500 times more 

likely to develop acute leukemias, and a majority of adults with DS develop Alzheimer’s or other 

neurodegenerative diseases (Seewald et al., 2012; Xavier et al., 2009).  DS individuals often 

develop amyloid plaques as early as their 40s, and up to 75% of people with DS develop 

dementia.  Research has shown that extra copies of amyloid precursor protein (APP), located on 

chromosome 21, are associated with increased Alzheimer’s in DS individuals (Zigman and Lott, 

2007; Zigman et al., 1996).  Interestingly, long-term studies analyzing cancer in DS populations 

has shown that people with DS have a lower occurrence of solid tumors, especially breast cancer 

(Hasle et al., 2000c; Xavier et al., 2009).  A substantial population of individuals with DS were 

followed through a national cancer registry to examine malignancy rates in a DS population 

compared to a matched normal population (Hasle et al., 2000c).  In a population of 

approximately 2814 DS individuals, 60 cases of cancer were seen, which is significantly higher 

than the cases in a normal population; however, 60% of these cases were leukemia.  Out of the 

60 cases, only 24 were solid tumors, with 48 expected. Even more striking is the observation that 
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women with DS are 10-25 times less likely to develop breast cancer compared to age-matched 

normal populations (Benard et al., 2005; Hasle et al., 2000a; Hasle et al., 2000b; Hasle et al., 

2000c; Hill et al., 2003; Satge et al., 1998).   The unique relationship between DS and 

tumorigenesis has led to extensive research of the DS Critical Region (DSCR) of chromosome 

21 for potential tumor suppressors and oncogenes that would attribute to this unique tumor 

phenotype.  Studies have established a unique paradox where the biological features of DS are 

also general characteristics of cancer-prone individuals (Nizetic and Groet, 2012).  Chromosome 

instability, increased DNA damage and defective DNA repair, immunodeficiency, and the 

presence of oncogenes on the DSCR are all features of DS that increase specific cancer 

susceptibility.  However, the presence of tumor suppressor genes and anti-angiogenic genes in 

the DSCR lead to the conclusion by Nižetić and Groet (2012) that the DS phenotype is more 

susceptible to cancers that do not depend on angiogenesis, such as leukemia.  These conclusions 

are insufficient; however, to explain epidemiological findings that some solid tumors do occur in 

DS populations, indicating that there are complex, tissue specific effects of the genetic makeup 

of DS patients.   

SIM2 expression during fetal development in the CNS as well as the facial, skull, and 

vertebra primordial indicate that the expression of SIM2 could be involved in the phenotypes 

associated with DS (Dahmane et al., 1995).  Indeed, the spatial and temporal location of SIM2 

expression in the brain during development corresponds to the regions affected by DS (Rachidi 

et al., 2005).  The short isoform of SIM2 (SIM2s) was discovered in 1997 in the study of the 

DSCR of chromosome 21 (Chrast et al., 1997).  Using exon trapping, Chrast et al (1997) and 

associated discovered the additional isoform of SIM2 that was 10kD shorter than the long 

isoform, and one repressive Proline/Alanine- rich region was deleted (Figure 3).   
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Figure 3.  The Mammalian Single-minded Protein.  Schematic drawing of human and mouse Sim2 
proteins with conserved and variable domains.  Adapted from Chrast et al. (1997). 

 

 

 Chrast et al (1997) also showed high similarity between dsim, mouse Sim1 and Sim2, 

and human SIM1 and SIM2.  To further elucidate the potential role of SIM2 in DS, Ema et al. 

(1999) overexpressed mSim2 in the hippocampus and amygdala of mice.  They found that while 

these animals were viable and fertile, they had defects in fear conditioning and spatial learning 

and memory, indicating that the overdosage of Sim2 may be important for the mental retardation 

seen in DS (Ema et al., 1999).  In a similar study, Chrast et al. (2000) developed an artificial 

bacterial chromosome overexpressing Sim2 with only one or two additional copies.  Similar to 

previous experiments, these mice developed normally with no histological abnormalities.  

However, Sim2 transgenic mice exhibited reduced exploratory behavior and enhanced anxiety, 

as well as reduced social interactions and increased pain tolerance.  These studies provide strong 

evidence for the role of SIM2 in the etiology of DS.  More recently, it was shown that Sim2 

protein levels are upregulated in the cortex of Tc1 DS mouse models (Spellman et al., 2013).  

Using DS-derived lymphoblastoid cell lines and cortex material from two DS transgenic mouse 

models, Spellman et al. (2013) analyzed protein levels for 20 genes in the DSCR of chromosome 
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21, including Sim2.  Out of the 20 genes analyzed, Sim2 is one of only two transcription 

regulators that were elevated in trisomy in both transgenic mouse models analyzed.  In addition 

to baseline level analysis of SIM2 in DS, analysis of single nucleotide polymorphisms (SNPs) in 

the SIM2 gene have also been associated with DS (Chatterjee et al., 2013; Chatterjee et al., 

2011). These investigators examined two coding, nonsynonymous SNPs in SIM2 in DS 

populations compared to their parents, as well as ethnically matched controls.  These SNPs were 

selected using FastSNP analysis due to their potential deleterious role in SIM2 functioning.  The 

first SNP called rs2073601 (C/A), showed significant upregulation in DS populations compared 

to parents and control groups; however, the second SNP (rs2073416 A/G) showed no significant 

changes.  These studies established that rs2073601 SNP on the SIM2 gene occurs at a high 

frequency in DS populations, and may lead to an alteration in protein function, thus contributing 

to the DS phenotype.  Further in silico analysis was performed to predict pathways regulated by 

SIM2, including pathways involved in nervous system development, signal transduction, and 

induction of apoptosis.  These studies provide strong evidence for a causal role of SIM2 in the 

DS etiology. 

Characterization of SIM2 

Human orthologues or SIM2 are highly conserved with the murine and drosophila 

homologues, however, there are differences in the carboxyl terminus, where dSim acts as a 

transcriptional activator and murine Sims functions as a transcriptional repressor (Ema et al., 

1996; Probst et al., 1997). While human SIM2 mimics the murine Sim2 and is thought to be a 

transcriptional repressor, the loss of proline/alanine rich domains in the short isoform (SIM2s) 

indicates the potential for SIM2s to operate either as a repressor or activator (Chrast et al., 1997; 

Moffett et al., 1997).  Moffett et al. (1997) studied the transcriptional activity of murine Sim2 to 

determine its similarities to dSim.  Using a series of structural deletions, Sim2 was determined to 
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heterodimerize with Arnt through its bHLH-PAS region, similar to other Arnt partners,  Ahr and 

Hif1α.  Further immunoprecipitation analysis (IP) indicated that unlike its relative genes Per and 

Arnt, Sim2 does not form homodimers.  Further analysis of Sim2 repression domains using 

deletion mutations identified a trans-repression element within the carboxyl terminus.  By 

separating the C terminus into three unique regions based on the amino acid enrichment (serine-

threonine, proline-serine, and proline-alanine), Moffett et al. (1997) determined the presence of 

two separable repression domains within the carboxyl terminus.  It is interesting to note that in 

the earlier study by Chrast et al. (1997) that found SIM2s, part of the C-terminus is lost in the 

short isoform, enhancing the potential for both repression and activation (Chrast et al., 1997).  

Using a mammalian two-hybrid system, Moffett et al. (1997) determined that Sim2 dominantly 

represses Arnt mediated transactivation, but not DNA binding.  Additionally, the transactivation 

of Hif1α through heterodimerization with Arnt is a well-established hypoxic response in cells.  

By inducing a hypoxic environment with Hif1α, Arnt, and Sim2, researchers were able to show 

that Sim2 interferes with Hif1α/Arnt transactivation by competitively dimerizing with Arnt.  

Competitive interference with Hif1α indicates the potential for Sim2 to inhibit hypoxic and 

dioxin-induced gene expression.  Further work by Moffett et al. (2000) was done to evaluate the 

transcriptional properties of murine Sim1 and Sim2 .  Using reporter assays, Sim1 and Sim2 

were found to bind to central midline elements (CME) in promoter regions, and this activity was 

dependent on the inclusion of Arnt.  Interestingly, while Sim1/Arnt activates gene expression, 

Sim2/Arnt does not unless the carboxy-terminus is deleted.  Additionally, Sim2 expression was 

shown to dominantly sequester Arnt and block Sim1 mediate transactivation.  These data 

indicate a unique mechanism for Sim2 as a transcriptional repressor by blocking the availability 

of Arnt to other transcription factors. 
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Further analysis of SIM2 transcriptional activity has been reported by Woods et al.  

(2002). Based on the role of SIM2 in competing with HIF1α for ARNT, Woods further 

examined the potential role of SIM2 expression during hypoxia (Woods and Whitelaw, 2002).  

Analysis of SIM cellular localization defined SIM proteins as mammalian class I bHLH/PAS 

proteins, meaning they are constitutively nuclear.  The key nucleotides of the CME, which bind 

SIM2, are also present in the hypoxic response element (HRE).  Using luciferase reporters, 

SIM1/ARNT complexes enhanced HRE transactivation, whereas SIM2/ARNT complexes did 

not.  However, the presence of SIM2 ablated HIF1α/ARNT mediated transcriptional activation 

of an HRE-regulated reporter gene. Using mutational analysis, chromatin immunoprecipitation 

(ChIP), Woods et al. (2002) discovered that this repression was not just from competitive 

dimerization with ARNT, but also with direct binding to the HRE sequence.  Indeed, SIM2 can 

repress the hypoxic activity of HIF1α by competitively dimerizing with ARNT and binding the 

HRE.  However, prolonged hypoxic treatment decreased SIM2 protein levels while increasing 

HIF1α protein, indicating an inverse relationship between HIF1α and SIM2 expression as needed 

in a hypoxic environment.  This has led to the theory of a “hypoxic switch” in cells where 

SIM1/2 are coexpressed with HIF1α.  These data indicate a potentially different activation and 

repression activity for SIM2 based on specific cis-element binding. 

Additional characterization of SIM2 discovered that SIM2 is polyubiquitinated though 

interaction with E3 ubiquitin ligases (Okui et al., 2005).  SIM2 was found to have a PEST motif, 

a sequence rich in proline (P), glutamic acid (E), serine (S), and threonine (T), using computer 

analysis.  PEST motifs are typically found in short-lived proteins such as transcription factors 

and cell cycle regulators that are controlled by proteolysis.  Initial attempts to examine SIM2 

protein expression presented problems in finding the appropriate band size via western blot, 

which could be overcome with proteasome inhibition, thus, these problems are likely due to the 
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rapid ubiquitination of the protein. Using co-transfection experiment with SIM2 and various 

ubiquitin mutants, Okui e al. (2005) verified the ubiquitination of SIM2 protein on lysine 

residues.  Further mutation of SIM2 showed that ubiquitination occurred on multiple lysine 

residues between the PAS1 and PAS2 domains.  The potential SIM2 interaction with E3 

ubiquitin ligases was analyzed using co-expression of a selection of ligases (Parkin, HHARI, 

Siah1, and AIRE) with SIM2, followed by IP analysis.  Results showed that Parkin and HHARI 

interact with SIM2, whereas Siah-1 and AIRE did not.  This binding is due to unique IBR (in-

between ring) and RING2 (really interacting new gene) domains on Parkin.  This interaction has 

many implication for brain development, as Parkin is ubiquitous in the brain at all stages of 

development, whereas Sim2 is not, and Parkin has been strongly implicated in the etiology of 

Parkinson’s disease and mitochondrial function (Kitada et al., 1998; Pilsl and Winklhofer, 2012). 

Previous work in our laboratory has elucidated the unique transcriptional characteristics 

of Sim2s compared to its long isoform, Sim2 (Metz et al., 2006).  Using 3’ RACE analysis in 

mouse kidney and liver to identify the mouse homologue of SIM2s, Metz et al. (2006) showed 

that the unique short isoform that was previously detected in human tissues is also present in the 

mouse, again lacking the Pro-Ala rich repressor region present in full-length Sim2.    Tissue 

analysis of full-length and short Sim2 showed that both isoforms were expressed at high levels in 

kidney and skeletal muscle; however the ratios between the two differ indicating that their 

expression is tissue-specific.  Using the two-hybrid liquid culture assay and co 

immunoprecipitation (CoIP), our laboratory verified that Sim2s can also heterodimerize with 

Arnt and Arnt2, similar to Sim2, and that Sim2s preferentially binds Arnt over Arnt2.  Luciferase 

assays showed that Sim2s significantly repressed hypoxia-induced reporter gene expression, and 

that this phenotype could be potentially overcome with addition of Arnt, but not Arnt2.    These 

assays also indicated that Sim2s mediated repression was not by competition with Hif1α for Arnt 
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binding, but rather direct interaction with the hypoxic response element (HRE).  Using similar 

methods, Metz et al. (2006) also verified that Sim2s expression significantly represses dioxin-

induced gene expression and was attenuated by increasing amounts of Arnt, indicating that this 

repression is caused by competition for Arnt binding.  Since Sim2s is missing one of the 

repressor domains present in full length Sim2, analysis of the previously described Sim2 

repressor activity on the central midline element (CME) need to be analyzed to determine if 

Sim2s had less repressive activity (Moffett and Pelletier, 2000).  Luciferase studies on CME-

controlled gene expression showed that Sim2s significantly increased reporter gene expression 

when expressed with Arnt.  This transcriptional activity was mediated by the transactivation 

domain of Arnt, as mutation of this domain ablated CME-controlled gene expression.  Through 

this work, it was determined that Sim2s has differential effects on CME and HRE-controlled 

gene expression compared to full length Sim2.  Sim2s can also be both a transcriptional activator 

and repressor that depends on the cis-element and Arnt heterodimerization, adding a level of 

complexity and fine tuning to Sim2s mediated gene expression. 

Sim2s in the Normal Mammary Gland 

Previous work in our laboratory has examined the role of Sim2s in mouse mammary 

gland development.  In normal mouse mammary gland development, Sim2s expression is 

developmentally regulated.  In early mammary gland development, branching morphogenesis is 

a tightly regulated proliferative process, guiding the development of the basal ductal tree before 

the onset of puberty (Sympson et al., 1994).  During development of the ductal tree, EMTs play 

a vital role in regulating migration and tissue development.  A concert of proliferation, apoptosis, 

and differentiation are vital for the final structure of the ductal tree: a hollow lumen with luminal 

epithelial cells, mesenchymal cells, and stroma.  Initial analysis by our laboratory in early 

development showed that Sim2s is the primary Sim2 isoform present in the early virgin 
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mammary gland (Laffin et al., 2008).  Additionally, Sim2s expression was detectible in the 

ductal epithelial glands, indicating a potential role in mammary gland development.  Using Sim2-

/- mammary bud transplant models, the mammary buds were transplanted from embryonic lethal 

Sim2-/- mice and transplanted into the cleared fat pad of nude mice.  At 8 weeks of age, the 

mammary glands from these mice were harvested and analyzed.  Whole mount analysis showed 

an increase in alveolar budding.  Significantly, H&E analysis of Sim2-/- and WT glands revealed 

that Sim2-/- glands failed to hollow appropriate, and the alveolar buds seen under whole mount 

analysis were disorganized epithelial cells reminiscent of hyperplasia.  Mason’s trichrome 

immunohistochemistry showed that Sim2-/- gland had less collagen and disrupted basement 

membranes.  Indeed, examples of invasion through the stroma into the surrounding fat pad are 

seen in Sim2-/- glands and were also associated with an increase in the expression of proliferative 

marker Ki67 and a decrease in TUNEL apoptotic staining.  Staining for cell polarity marker 

Aquaporin 5 showed a loss of polarity in Sim2-/- glands, which is a hallmark of tumorigenesis 

(Ellenbroek et al., 2012).  These studies show that loss of Sim2 has a significant impact on 

normal mammary epithelial organization.  Further analysis of EMT markers in the Sim2-/- glands 

showed a decrease in CDH1 staining with an increase in Mmp2 and β-catenin protein levels.  

Additionally we saw a significant increase in EMT regulator Slug in the Sim2-/- mammary 

glands. 

While detected in early development, Sim2s levels remain low in virgin and early 

pregnant glands, which correlate well with Sim2s’ hypothesized role in differentiation.  Sim2s 

expression increases during late pregnancy and peaks during mid-lactation when the gland is 

terminally differentiated and metabolically active (Wellberg et al., 2010).   Sim2s expression in 

the mammary gland is specific to the nuclei of luminal alveolar mammary epithelial cells as 

previously mentioned.  The correlation between Sim2s expression and lactation led to our 
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hypothesis that Sim2s regulates this process in the mammary gland, promoting the onset of 

lactation and terminal differentiation.  Over expression of Sim2s using a Mouse Mammary 

Tumor Virus (MMTV) long terminal repeat (LTR) promoter found that virgin mice undergo 

precocious lactogenic differentiation.  While the ductal structure of the virgin mouse mammary 

was indistinguishable between wild type and MMTV-Sim2s mice, immunohistochemical and Q-

PCR analysis showed the epithelial cells of the transgenic mice expressed milk proteins such as 

whey acidic protein (WAP),Csn2, and solute carrier Npt2b (a polarity marker that is upregulated 

with the onset of lactation) – which are hallmarks of lactation.  This was believed to be a partial 

induction of alveolar differentiation, as the polarity marks Aqp5, which is normally lost during 

lactation, remained expressed in MMTV-Sim2sHA mammary glands.   Indeed, when using the 

normal mouse mammary cell lines HC11 and CIT3, Sim2s expression was upregulated in 

response to prolactin-induced differentiation.  HC11 and CIT3 cells are unique mouse mammary 

epithelial cell lines derived from the COMMA-D cell line that can undergo lactogenic 

differentiation with exposure to hydrocortisone and prolactin (Ball et al., 1988; Kabotyanski et 

al., 2009).  Stable lentiviral transduction inducing Sim2s expression in these cells enhances their 

response to prolactin, significantly increasing Csn2 expression.  Analysis of Sim2s levels in 

undifferentiated and differentiated cells showed that Sim2s levels increased within 24 hours of 

hormone stimulation and continued to elevate through day 4.  Lentiviral transduction of these 

cell lines was performed to overexpress Sim2s, to establish whether enhanced Sim2s expression 

played a role in prolactin induced differentiation.  Sim2s enhancement in HC11 and CIT3 cells 

significantly upregulated Csn2 expression following hormone induction.  Additionally, shRNA 

transduction targeting Sim2s in these cells reduced Csn2 expression after prolactin exposure by 

50%.  While not completely abrogated, this indicated a role for Sim2s in the robust hormone-

mediated induction of Csn2 and differentiation.  ChIP analysis of confirmed transcriptional 
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regulators of lactogenic differentiation showed a significant enhancement of recruitment to the 

Csn2 promoter in Sim2s overexpressing cells.  Both Stat5a and RNA Polymerase II (RNAPII) 

binding were enhanced in Sim2s expressing cells, and they presented a more rapid response to 

hormone induction.  Additionally, further ChIP analysis confirmed that Sim2s directly binds and 

regulates the expression of Csn2 milk protein through elongation control and recruitment of 

transcriptional machinery.  Sim2s re-ChIP analysis showed that Sim2s is associated with 

RNAPII on Csn2 but not on negative control β-actin, showing this is not a general transcriptional 

effect but is gene specific.  These studies confirmed that Sim2s expression is necessary and 

sufficient to induce lactogenic differentiation. 

One of the most unique aspects of the mammary gland is its ability to undergo numerous 

rounds of differentiation, lactation, and de-differentiation in response to the hormone signals 

during estrous cycling, pregnancy, and parturition.  These pathways are classically highjacked 

during breast tumorigenesis, thus understanding their normal operation will help us elucidate the 

mechanisms by which they are hijacked during breast cancer.  We hypothesize that Sim2s plays 

an integral role in normally mammary gland differentiation cycling, and thus is potentially a key 

pathway that must be loss for tumors to occur. 

SIM2s in Cancer 

In addition to the role of Sim2s in normal development and mammary gland 

development, SIM2s has also been implicated in multiple cancers.  Interestingly, SIM2s has been 

described as both an oncogene and tumor suppressor depending on the organ and type of cancer.  

SIM2s expression was observed in colon, prostate, and pancreatic cancers, but not in breast, lung 

or ovarian tumors (DeYoung et al., 2003b).   

In the search for tumor-critical genes on the DSCR region of chromosome 21 using large 

scale bioinformatics, DeYoung et al (2003) first pin-pointed SIM2s as a potential drug target for 
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solid tumors.  Using RT-PCR analysis, SIM2s expression was detected in colon, pancreas, and 

prostate tumors, but not in the corresponding normal tissues.  In adult tissues, SIM2s expression 

was observed only in kidney and tonsil derived samples.  In fetal tissues, however, SIM2s was 

detected in the heart, kidney, and skeletal muscle.  In colon tumors, SIM2s was found to be 

activated at an early stage, and was associated with increased tumor progression.  These studies 

indicated a unique tumor phenotype with tissue specific SIM2s expression. 

SIM2s in Breast Cancer 

Our laboratory has established differential expression of SIM2s in normal and human 

breast cancer samples (Kwak et al., 2007).  SIM2s expression was highest in the normal-like 

MCF10A and 16N breast cell lines, and was significantly decreased in breast cancer cell lines.  

Additionally, the expression of SIM2s in these cell lines decreased with the relative 

aggressiveness of the cell line.  Luminal cancer cell lines MCF7 and T47D had moderate levels 

of SIM2s, whereas SIM2s was not detected in the highly metastatic MDA.MB.231 cells.  This 

was confirmed in human primary samples using immunohistochemistry.  SIM2s expression was 

strong and nucleic in normal mammary gland epithelial cells, and lost in primary breast tumors.  

Preliminary studies in the highly aggressive MDA.MB.435 breast cancer cell line showed that 

stable lentiviral transduction re-establishing SIM2s expression significantly decreased 

proliferation and colony formation in soft agar.  Additionally, SIM2s expression significantly 

inhibited the invasive potential of MDA.MB.435 cells through inhibition of MMP3, which is 

known to play a role in epithelial mesenchymal transition (EMT) and breast cancer progression 

(Ioachim et al., 1998; La Rocca et al., 2004).  ChIP and luciferase analysis of SIM2s showed that 

SIM2s binds the promoter of MMP3 and represses transcriptional activity.   

Luminal-like MCF7 breast cancer cells express moderate levels of SIM2s, and loss of 

SIM2s (SIM2si) in these cells by RNA interference (RNAi) induced an EMT (Laffin et al., 
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2008).  These cells underwent a transition from the cobblestone, epithelial characteristics of the 

parent MCF7 cell line to a spindle-like mesenchymal morphology.  Analysis of key epithelial 

and mesenchymal markers showed a decrease in epithelial markers CDH1 and CK18 and an 

increase in mesenchymal markers N-cadherin (NCad), Vimentin (VIM), and β-catenin 

(CTNNB1).  Indeed, analysis of key EMT regulators showed a significant up-regulation of 

SLUG with loss of SIM2s (Come et al., 2006; Martinez-Estrada et al., 2006; Peinado et al., 2004; 

Peinado et al., 2007).  To determine the tumorigenicity of these cells, they were injected into the 

flank of athymic nude mice.  SIM2si xenografts grew rapidly and by day 10 were 3 times the size 

of Scrambled controls.  SIM2si xenografts also had increased angiogenesis, elucidated by CD31 

endothelial cell staining and VEGF.  BrdU analysis of xenografts showed a significant increase 

in proliferation in SIM2si tumors.  Similarly to the in vitro data, SIM2si xenografts had decreased 

CDH1 and increased VIM, indicative of an EMT.  MCF7 cells classically require estrogen to 

sustain growth.  However, SIM2si xenografts grew well in the absence of estrogen, did not 

respond to estrogen treatment, and immunohistochemical analysis showed that ERα was 

undetectable in these tumors.  Based on the earlier study by our lab elucidated a mechanism by 

which SIM2s binds and represses MMP3, analysis of MMP expression and behavior was 

performed to determine if a similar mechanism was occurring in MCF7 xenografts.  These 

experiments showed a significant increase in MMP2 expression with loss of SIM2s in MCF7 

tumors, whereas the aforementioned MMP3 expression was unaltered. Luciferase assays verified 

that increasing amounts of SIM2s expression inhibited MMP2 activity. It was hypothesized that 

the difference in MMP regulation between MCF7 and MDA.MB.435 cancer cells is likely due to 

intrinsic differences between the two cell lines, as it is common for primary tumors and cell lines 

to have unique molecular signatures.  Since in vitro and in vivo analysis showed significant 

alterations in EMT related proteins, we hypothesized that SIM2s may regulate these factors.  
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Key regulators of EMT have been well characterized in the SNAIL family of transcription 

factors (De Craene et al., 2005a; De Craene et al., 2005b).  Analysis of key transcription factors 

SNAIL and SLUG showed that SLUG expression was significantly increased with loss of SIM2s.  

By expressing a SLUG-controlled luciferase reporter in the MCF7 Scr and SIM2si cells, we saw 

a significant increase in SLUG-controlled gene expression in SIM2si cells when compared to 

controls (Gustafson et al., 2009b; Laffin et al., 2008).  ChIP analysis confirmed that SIM2s binds 

and represses SLUG expression through a promoter associated CME/XRE element.  This data, 

along with the earlier work in normal mammary gland development, elucidated a role for SIM2s 

expression in the inhibition of an EMT through repression of SLUG and MMPs (Figure 4). 

 

 

 
Figure 4.  Singleminded-2s Induction of an Epithelial Mesenchymal Transition.  During oncogenesis, 
upregulation of NOTCH and C/EBPbeta and NOTCH suppressive SIM2s expression, which results in 

upregulation of SLUG and MMP2, and concurrent EMT transition characterized by decreased CDH1 and 
upregulated invasion (Gustafson et al., 2009b; Laffin et al., 2008). 
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After characterizing the role of SIM2s in tumor inhibition, our laboratory sought to 

explain how SIM2s expression was lost in oncogenesis (Gustafson et al., 2009b).  The Ras proto-

oncogene is dis-proportionately activated in approximately 50% of breast cancers, and it’s 

activity correlates with progression and poor prognosis (von Lintig et al., 2000).  In breast 

cancer, Ras overexpression has been shown to target NOTCH signaling and the CCAT/enhance 

binding protein β (C/EBPβ) transcription factor (Kiaris et al., 2004; Weijzen et al., 2002).  To 

this end, previous work in our laboratory used the Ras oncogene in the MCF10A breast cell line 

to determine if SIM2s expression is lost through oncogenic induction of tumorigenesis.  

MCF10A cells express have high levels of SIM2s mRNA and are considered a normal breast 

epithelial cell line (Kwak et al., 2007).  Stable overexpression of Ras in MCF10A cells was 

achieved by transfected cells with a lentiviral Ras construct.  Upon transfection, Ras expression 

resulted in MCF10A cells that exhibited characteristics of transformation and EMT, including 

increased invasion, anchorage independent growth, and decreased CDH1.  Ras induced 

transformation decreased SIM2s protein and mRNA levels.  Ras target NOTCH was activated in 

MCF10A-Ras cells as well as NOTCH target genes HES1, HEY1, and HEY2.  Similarly, stable 

transduction of the MCF10A cells with a SIM2s shRNA (SIM2si) resulted in a similar 

transformation characterized by poor acini growth in three-dimensional culture and increased 

invasive potential.  SIM2si MCF10A cells also had increased VIM and decreased CDH1 

expression.  This led to our hypothesis that Ras-mediated tumorigenesis in MCF10A operates 

through NOTCH signaling, which targets SIM2s.  Using a SIM2s-controlled luciferase assay, 

cells were cotransfected with SIM2s-reporter construct and either NOTCH intracellular domain 

(NICD) or the common NOTCH target C-repeat binding factor 1 (CBF1).  Analysis showed that 

NICD significantly inhibited SIM2s-regulated gene expression while CBF1 did not.  Thus, the 

effect of NOTCH on SIM2s was independent of its usual CBF1 mechanism.  ChIP analysis 



37 

 

confirmed that NICD directly bound to the Sim2s promoter in Ras-overexpressing cells, 

indicating that NOTCH inhibits SIM2s expression to promote tumor progression.  In addition to 

NOTCH, C/EBPβ has also been shown to be an important mediator of Ras-induced 

tumorigenesis (Grimm and Rosen, 2003; Seagroves et al., 1998).  Analysis of Ras-transformed 

MCF10A cells showed a significant increase in the truncated dominant negative isoform (LIP), 

with no changes in other C/EBPβ isoforms.  To see if changes in these isoforms were sufficient 

to alter SIM2s expression, MCF10A cells were stable transduced with all 3 isoforms (LAP1, 

LAP2, and LIP).  Western blot analysis revealed that the aforementioned LIP was the only 

isoform to reduced SIM2s protein levels.   Previous studies of C/EBPβ in the mouse mammary 

gland have shown that loss of C/EBPβ impairs ductal outgrowth and differentiation (Seagroves 

et al., 1998).  Analysis of C/EBPβ-/- glands for Sim2s showed a significant increase in Sim2s 

expression.  These data show roles for NOTCH and C/EBPβ as inhibitors of SIM2s in both 

normal mammary gland development and oncogenesis.  While Ras-mediated oncogenesis is 

complex and activates many pathways, it is of interest that both these pathways mediate SIM2s, 

as they have differing molecular signatures that vary with tumor sites (Gomis et al., 2006; 

Sundaram, 2005). 

SIM2s in Other Cancers 

Additional work by DeYoung et al. (2003) determined whether SIM2s would make a 

viable drug target in colon cancer cells using a SIM2s antisense RNA chimera .  Treatment of 

colon cancer cells resulted in a rapid inhibition of proliferation and induction of apoptosis, 

whereas, treatment of MDA.MB.231 breast cancer cells had no effect on proliferation or 

invasion.  This work established a unique, tissue specific role for SIM2s expression and gene 

regulation.  In later studies, the effect of SIM2s on p53 and caspase dependent apoptosis was 

determined in colon cancer (Aleman et al., 2005).  Treatment of SIM2s expression colon cancer 
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cells with a SIM2s antisense RNA chimera induced tumor-specific apoptosis, since colon tissue 

does not express SIM2s.  This apoptotic phenotype was reverse by general caspases and specific 

caspase 9 and 10 inhibitors, but not caspase 2 or 8 inhibitors.  Protection from cell death was also 

seen with MAPK inhibition and p53 inactivation in these tumor cells.  The induction of 

apoptosis with SIM2s antisense was due to increased GADD family expression in concordant 

with p38 MAPK activation; however, this did not correlate with an increase in cell cycle 

inhibition or senescence.  Antisense treated cancer cells saw an induction in colon terminal 

differentiation markers such as mucins and alkaline phosphatase (ALP).  While the role of 

SIM2s in colon cancer is the inverse of breast cancer cells, it is interesting to note that the 

pathways are similar, specifically the modulation of differentiation and apoptosis.   A potential 

role for SIM2s in pancreatic cancer has also been observed (DeYoung et al., 2003a).  Using 

microarrays and RT-PCR, pancreatic tumors expressed higher levels of SIM2s than normal 

tissues.  Targeting SIM2s in pancreatic tumor cells significantly inhibited growth in a dose 

dependent manner, and also induced apoptosis.  Since SIM2s expression is absent in healthy 

colon and pancreatic tissues, DeYoung and colleagues showed that targeting SIM2s in these 

tumors allowed for a tumor specific target that did not affect surrounding healthy tissue. 

More recently, using a similar microarray approach, Caldas et al. (2012) also identified 

SIM2s as a potential regulator of malignant pleural mesothelioma .  Using a genome-wide 

measurement of gene expression levels, SIM2s was significantly under-expressed in pleural 

mesothelioma.  SIM2s expression was also under-expressed compared to control pleural tissue, 

along with a corresponding increase in SNAI2 (SLUG) expression, consistent with our previous 

work in the breast.  This was a novel association of SIM2s with mesothelioma, and a second 

example of the role of SIM2s as a potential tumor suppressor.  Recent studies have also 

associated SIM2s expression in glioblastoma and invasion (He et al., 2010).  SIM2s expression 
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was not detected in the normal cortex, meningioma, or pituitary gland of the brain at the RNA or 

protein level.  However, SIM2s was detected at significant levels in glioma samples and 

glioblastoma cell lines.  The expression of SIM2s also increased with the grade of glioma.  

Knockdown of SIM2s in gliomas and glioblastomas by RNAi had no effect on cell proliferation, 

however, invasion was significantly decreased.  SIM2s knockdown in these cells increased tissue 

inhibitor of metalloproteinase 2 (TIMP2) and decreased matrix metalloproteinase 2 (MMP2), 

which play a role in invasion and metastasis (Mendes et al., 2005).  This MMP2 specific 

relationship has also been observed in our work (Laffin et al., 2008).  The inverse relationship 

between the effect of SIM2s on MMP2 in the breast and glioblastoma is yet another example of 

the unique tissue specific effects of SIM2s expression. 

In addition, a role for SIM2s in prostate cancer has also been observed.  High levels of 

SIM2s were observed in prostate tumors compared to normal prostate tissue (DeYoung et al., 

2003b).  Halvorsen et al. (2007) first identified full length SIM2 in prostate tumors in cDNA 

microarrays, and Q-PCR confirmed that SIM2s was significantly upregulated in malignant 

samples.  Immunohistochemical analysis of SIM2s protein levels in prostate tumors showed a 

significant correlation with adverse prognostic indicators such as preoperative serum prostate 

specific antigen (PSA), high histologic grade, and proliferation.  Statistical analysis also showed 

that positive SIM2s expression significantly correlated with reduced survival and reduced time to 

metastasis.  Similarly, Arredouani et al. (2009) used prostate tissue microarrays to identify genes 

significantly overexpressed in prostate cancer.  23 genes were overexpressed in prostate cancer, 

including SIM2.  Q-PCR verified that SIM2 had the highest frequency of expression among 

these genes, and elisa analysis for SIM2 immune antibodies in the sera of health and prostate 

cancer patients identified SIM2 antibodies in the sera of some prostate cancer patients, but not in 

the controls, indicating a humoral immune response to SIM2 expression.  The presence of 
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autoantibodies against self-antigens correlates with clinical responses and immunotherapy.   

Based on this information, the possibility of deriving an effective vaccine to generate SIM2 

specific lymphocytes that target prostate tumors was investigated.  Using several unique 

epitopes, it was shown that SIM2 vaccines significantly increased the cytotoxic t-cell response to 

subsequent SIM2 stimulation, indicating a potential role for vaccination to enhance SIM2 

tolerance in prostate cancer (Arredouani et al., 2009). 

These studies indicate an important role for SIM2 in cancer, both as a potential 

oncogene and tumor suppressor.  The previous work in our laboratory has demonstrated a role of 

SIM2s in breast cancer progression and inhibition.  Promotion of differentiation, inhibition of 

invasion, and terminal differentiation are all important activities in the mammary gland that can 

be imperative to either maintain a functioning gland or prevent tumor progression.  These 

pathways have been shown as causal pathways in SIM2 regulated gene transcription and has led 

to the hypothesis that SIM2s promotes differentiation in the mammary gland and loss of SIM2s 

is necessary for the development breast cancer. 

 

Cancer Metabolism 

Cellular metabolism is a complex and highly regulated series of pathways through which 

the cell generates energy, acquires the nucleotides necessary for growth and survival, and 

performs various functions necessary for organ function.  For our purposes, we will limit the 

pathways discussed to the two major catabolic pathways of the cell: oxidative phosphorylation 

(cellular respiration) and glycolysis.   

Oxidative phosphorylation (OXPHOS) is the major metabolic pathway through which 

normal cells produce adenosine triphosphate (ATP), the primary energy molecule of the cell.  

Oxidative phosphorylation is the most energy efficient pathway, generating most of the ATP in 
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the cell, and must have oxygen in order to function.  In aerobic organisms, all oxidative steps in 

various metabolic pathways converge with OXPHOS as the final stage.  OXPHOS occurs in the 

mitochondria, where enzymes in the citric acid cycle produce CO2 from the precursor acetyl 

CoA, then the electron transport chain (ETC) operates through the reduction of oxygen (O2) into 

water (H2O) using electron transfer and the generation of a proton gradient (Nelson and Cox, 

2005).  In addition to ATP and CO2, OXPHOS also is responsible for the production of reactive 

oxygen species (ROS) in the cell, which are important for cell signaling, and also be responsible 

for protein and DNA damage (Alfadda and Sallam, 2012; Verbon et al., 2012).  Mitochondria 

have two membranes with different permeabilities – the outer membrane which is readily 

permeable and the inner membrane which is impermeable, and uses transporter proteins to 

transmit particles.  It is this inner membrane that contains the electron transport chain for ATP 

generation.  Within the inner mitochondrial membrane, named the mitochondrial matrix, resides 

the enzymes of the citric acid cycle and other pathways, with the exception of glycolysis, which 

occurs in the cellular cytoplasm (Figure 5). 
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Figure 5.   Metabolic Localization in the Cell.  Glycolysis and lactate production or localized to the 
cytoplasm, while glutamate metabolism and the TCA cycle are located within the mitochondrial matrix 

(Cairns et al., 2011a). 
 

Under normal circumstances, cellular respiration occurs in three distinct phases (Nelson 

and Cox, 2005).  Cytoplasmic glycolysis oxidizes glucose in the cell through a series of 10 

reactions into pyruvate (Figure 6).  Under aerobic conditions, pyruvate is transported into the 

mitochondria, where it is decarboxylated by pyruvate dehydrogenase, resulting in acetyl-CoA 

(Figure 7).  Under anaerobic conditions, pyruvate remains in the cytoplasm and is converted into 

lactate by lactate dehydrogenase (LDHA).  Once converted, acetyl-CoA then enters the citric 

acid cycle (within the mitochondria), where it is enzymatically oxidized into CO2, and energy is 

released through the production of reduced electron carriers NADH and FADH2
 (Figure 7). 
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Figure 6. Normal Cellular Glycolysis. The normal consumption of glycolysis in the cytoplasm. 
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Figure 7.  Tricarboxylic Acid Cycle. Pyruvate metabolism localized in the mitochondria, oxygen 
dependent. 

 

 

Finally, in the electron transport chain (on the inner mitochondrial membrane), these 

electron carriers are oxidized through five complexes, generating H2O, and ultimately ATP 

through the generation of a proton motive force (Figure 8). 
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Figure 8.  Electron Transport Chain (ETC).   The flow of electrons across the inner  
mitochondrial membrane to generate ATP. 

 

 

Deregulation of cell metabolism is a unique and defining feature of tumor cells. First 

described by Otto Warburg over eighty years ago, tumors cells preferentially utilize glycolytic 

pathways for energy generation while down-regulating their oxidative phosphorylation or 

mitochondrial energy activity, even in the presence of abundant oxygen (Warburg, 1956a; 

Warburg, 1956b).  Warburg hypothesized that tumor cells originate from a two hit model: first 

the irreversible injury to mitochondrial respiration, and second the struggle for tumor cells to 

maintain their structure after the insult, resulting in a de-differentiation and ultimately a tumor 

cell.  By measuring blood glucose levels in tumor veins and arteries, he established that tumors 

consumed significantly higher amounts of glucose out of the blood than normal tissues, and 

secreted more lactate.  Warburg established that tumor cells are more adaptive at obtaining 

energy than normal cells, and in order to effectively target and kill tumor cells both glycolysis  
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and oxidative phosphorylation had to be thwarted.  This is driven by the tumor cells’ need to 

meet increased metabolic demands for proliferation and survive insults to mitochondrial 

respiration and the frequently hypoxic environment of the tumor (Bensinger and Christofk, 2012; 

Dang, 2012; Yeung et al., 2008).   Increased glycolysis provides tumors with a selective growth 

advantage by supplying ATP to meet their high bioenergetics needs, including precursors 

required for nucleotide, amino acid and lipid biosynthesis.  In fact, even though the net ATP gain 

for aerobic glycolysis is lower than that gained through oxidative phosphorylation, it is believed 

that the gain in metabolic precursors is more important for cellular survival and proliferation  

(Cairns et al., 2011b; Dang, 2012; DeBerardinis et al., 2007).   

Normal non-proliferating cells and cancer cells use both glucose and glutamine to 

generate energy (Bensinger and Christofk, 2012; Dang, 2012; Kroemer and Pouyssegur, 2008; 

Lu et al., 2010a; Tennant et al., 2010). Differentiated cells predominantly metabolize glucose to 

pyruvate.  Enzymes in the mitochondria facilitate the oxidation of pyruvate to produce ATP and 

reactive oxygen species (ROS) through electron transport-coupled oxidative phosphorylation 

(Figure 9).   
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Figure 9.  Normal Metabolism and the Warburg Effect.   Tumor cells preferentially used glycolysis for 
energy production, even in the presence of abundant oxygen. 

 

 

In contrast, rapidly dividing cancer cells meet metabolic demands by switching from 

oxidative phosphorylation to aerobic glycolysis (Figure 9).  This switch has been attributed to 

growth factor signaling, as well as oncogene and tumor suppressor mutations (DeBerardinis et 

al., 2008; Ward and Thompson, 2012).  Cancer cells increase their glucose uptake by up-

regulating glucose transporters (GLUT 1 to 9) and hexokinase (HK) to retain glucose in the cell.  

The majority of the pyruvate generated from glucose in cancer cells is metabolized in the 

cytoplasm to lactate by lactate dehydrogenase (LDHA) and secreted into the microenvironment, 

lowering the pH, and increasing angiogenesis and invasion (Cardone et al., 2005; Gatenby and 

Gillies, 2004; Harguindey et al., 2005; Jones and Thompson, 2009; Robey and Martin, 2011). 

Enhanced lactate levels have been associated with metastases, tumor recurrence, and patient 

survival in human cancers (Hirschhaeuser et al., 2011; Semenza, 2008; Walenta et al., 2000).  
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Increased intracellular glucose also promotes activation of the pentose phosphate pathway 

through induction of glucose-6-phosphate dehydrogenase (G6PD), which generates NADPH and 

ribose-5-phosphate for the synthesis of nucleotides.  Recent studies have also found that 

glutamine is an essential nutrient for cancer cells by providing intermediates for the TCA cycle 

and synthesis of fatty acids and to regulate redox potential (Lu et al., 2010b).   

Breast Cancer Metabolism 

The use of positron emission tomography (PET) in patients to detect tumors and 

metastatic lesions with increased glucose uptake has shown that altered metabolism in breast 

cancer is associated with increased tumor progression and therapeutic resistance, supporting a 

role for alterations in metabolism in malignant transformation (Gambhir, 2002; Gatenby and 

Gillies, 2004; Hama and Nakagawa, 2010; Jones and Thompson, 2009; Kroemer and 

Pouyssegur, 2008; Tennant et al., 2010). [18F]deoxy-glucose (FDG), used in PET scans, uptake 

significantly correlates with glucose transporter 1 (GLUT1) expression in tumors (Robey et al., 

2008). Early research in human breast cancer samples showed that GLUT1 was significantly 

upregulated in breast cancer when compared to healthy tissue (Brown and Wahl, 1993).  Early 

research in MCF7 and MDA.MB.453 breast cancer cell lines examined the unique glycolytic 

phenotypes of these cells and their responsiveness to nutrient starvation (Mazurek et al., 1997). 

Their studies indicated that MCF7 cells maintained higher glycolytic flux than MDA.MB.453 

cells, and were more susceptible to nutrient starvation and adenosine monophosphate levels.  

They also hypothesized that the unique metabolic environment of MDA.MB.453 cells would 

make them less prone to drugs that target electron carrier NAD+.  While the authors touched on 

the unique metabolic differences between the two cells lines and their responses to different 

stresses, they did not pursue the inherent differences and their potential role in tumor 

progression.  A later study analyzed key, rate-limiting proteins involved in aerobic glycolysis 
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(Brown et al., 2002). Primary glucose transporter GLUT1, which transports glucose from the 

body into the cell, and hexokinase II (HK2), responsible for the conversion of hexose to hexose-

6-phosphate on the outer mitochondrial membrane, were analyzed via immunohistochemistry in 

untreated primary human breast cancer samples.  HK2 is the first enzyme of the glycolytic 

pathway and is a key regulator of glucose metabolism in cancer cells (Mathupala et al., 2006).  

While the authors found upregulation of HK2 in breast cancer, it did not always correlate with 

increased GLUT1 expression.  However, HK2 is more consistently activated than GLUT1 in 

primary tumors.  Analysis of primary human breast cancer cell lines showed variable rates of 

glucose uptake and lactate production under normal cellular conditions (Robey et al., 2008) and 

a linear relationship between GLUT1 expression and lactate production.  Analysis of key 

oncogenes HIF1α and c-Myc with lactate production and glucose uptake showed that HIF1α did 

not correlate with glucose uptake, although it was highly expressed in all cell lines, and 

phosphorylated c-Myc strongly correlated with lactate production and increase glucose uptake.  

Expression of another oncogenic protein, AKT, did not correlate with the glycolysis in breast 

cancer cells (Schmidt et al., 2010).  However, another study showed activation of AKT in the 

glycolytic phenotype of breast cancer (Schmidt et al., 2010).  Analysis of primary human 

specimens showed significantly upregulated AKT phosphorylation and GLUT1 expression in 

tumors compared to normal tissues. All of these studies point to an enhanced glycolytic 

phenotype in breast cancer. 

 Further analysis of GLUT1 in MMTV-ErbB2 tumors indicated an important role for 

glucose uptake in tumor growth (Young et al., 2011).  GLUT1 screening across a panel of breast 

cancer cell lines and tumors verified that GLUT1 was the most high expressed glucose 

transporter in all samples.  Knockdown of GLUT1 by RNAi in ErbB2 overexpressing mammary 

epithelial cells significantly decreased glucose uptake and lactate production, and also 
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proliferation and colony formation.  However, loss of GLUT1 had no effect on ATP production.  

Loss of GLUT1 did not completely ablate glucose uptake in these cells, indicating that glucose 

uptake may still occur by non-specific means or other glucose transporters.  Cells with silenced 

GLUT1 were then injected into the cleared mouse mammary glands as xenografts and there was 

significantly decreased tumor growth in vivo.  While GLUT1 knockdown inhibited proliferation, 

it had no effect on apoptosis, indicating the differences in tumor size are due to differences in 

growth.  Conversely, overexpression of Glut1 in a mouse mammary tumor cell line that has low 

levels of Glut1 significantly increased glucose uptake, however had no effect on proliferation in 

vitro.  When these cells were injected into mice, however, enhanced Glut1 expression 

significantly increased tumor growth and decreased cellular apoptosis. 

In addition to GLUT1, lactate dehydrogenase A (LDHA) has also been implicated in 

breast cancer growth and glycolysis (Hussien and Brooks, 2011; Zhao et al., 2009).  Hussein et 

al. (2011) analyzed location of extracellular lactate transporter MCT and LDH isoforms in 

MCF7, MDA.MB.231, and HMEC cells.  MCT and LDH expression were expressed in both 

control and cancer cell lines, and cancer was associated with increased expression, but not a 

change in localization of these proteins.  They also found that lactate transport was associated 

with decreased oxidative phosphorylation and increased lactate accumulation in cancer cells.  

Surprisingly, their studies indicated that MCT1 was down regulated in breast cancer, and when 

expressed it is localized to the cell membrane, indicating a potential role for the flow of lactate 

between tumor cells and the stroma.  Research on the role of LDHA in ErbB2 expressing MCF7 

and MDA.MD.453 breast cancer cells (Zhao et al., 2009) showed that there was increased 

glucose uptake and lactate production, and decreased oxygen consumption.  Analysis of LDHA 

protein levels showed higher LDHA levels in ErbB2 expressing cells, and this correlated with 

enhanced enzyme activity.  Moreover, knockdown of ErbB2 in an ErbB2 overexpressing cell 
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line down regulated glucose uptake and lactate production, and increase oxygen consumption.  

Knockdown of LDHA by RNAi in ErbB2 expressing tumors was sufficient to decrease the 

glycolytic phenotype and it was shown that ErbB2 regulation of LDHA was due to heat shock 

factor 1 (HSF1), a transcription factor that play an important role in stress response gene 

expression.  ErbB2 expression in breast cancer cells also increased cell sensitivity to glycolytic 

inhibitors such as 2-deoxy glucose (2-DG).  In contrast, ErbB2 decreased sensitivity to 

mitochondrial drugs such as oligomycin, which targets the ATPase complex of the electron 

transport chain. 

Mitochondria in Cancer 

In addition to glycolytic enzymes, mitochondrial dysfunction has also been implicated in 

cancer.  Warburg’s original work associated the enhanced aerobic glycolysis of tumor cells with 

an irreversible dysfunction of the mitochondria, where oxidative phosphorylation occurs 

(Warburg, 1956a).  More recent research shows that while many tumors have irreversibly altered 

mitochondria, many continue to use cellular respiration, albeit at a significantly lower level than 

the use of glycolysis (Bensinger and Christofk, 2012; Crabtree, 1929; Scatena, 2012; Ward and 

Thompson, 2012).  Mitochondria are incredibly complex organelles, and mutations to 

mitochondrial DNA (mtDNA), mitochondrial specific enzymes, or mitochondrial physiology can 

impact cellular respiration, ROS signaling, and other metabolic pathways (Wallace, 2012).  

Additionally, studies analyzing mitochondrial morphology and activity in cancer cells showed 

that mitochondrial dysfunction was due to increased mitochondrial replication, however 

alterations to mtDNA and the ETC prohibited increased oxygen consumption and ATP 

production (Shapovalov et al., 2011).  This study emphasizes that mitochondrial number is not a 

true indicator of cellular respiration, and real-time analysis of oxygen consumption is key to 

understanding mitochondrial activity in tumors and tumor cells.  Thanks to the development of 
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Seahorse Flux analysis, we are now able to measure these quantities in real-time.  This 

multiparameter analysis of human tumor cells verified that increased levels of glycolysis 

correlated with decreased mitochondrial function, and that long-term, sustained glycolysis 

attenuated oxidative phosphorylation capacity, to the point that mitochondria are not able to 

adapt to compensate when glycolysis is inhibited (Wu et al., 2007).  Mitochondrial length is also 

an important characteristic that can promote cellular survival and tumorigenesis (Gomes et al., 

2011).  At the induction of the self-degradation process, autophagy, mitochondria undergo fusion 

to elongate and avoid mitophagy (degradation of mitochondria), where the ubiquitin ligase 

PARKIN degrades components of mitochondrial fusion and dysfunctional organelles.  The result 

is long, interconnected mitochondria that are spared from degradation, maintain ATP levels, and 

promote cell survival in low nutrient environments.   

In breast cancer, mitochondrial adaptation to cellular stress has also been examined 

(Smolkova et al., 2010).  As expected, oxygen consumption was lower in breast cancer cells 

compared to non-cancer cells.  However, when these cells were grown in low glucose media, the 

rate of oxygen consumption was similar between cancer and non-cancer cells.  This supports the 

Crabtree effect, which states that the high concentrations of glucose used for cancer cell growth 

inhibited oxidative phosphorylation in cancer cells (Crabtree, 1929; Rossignol et al., 2004).  

However, this study did not take into account other variables such as glutamine in the media.  

Further experiments were done by Owens et al. (2011) that examined the five complexes of the 

ETC in human breast cancer cells and primary tumors .  Examination of a panel of breast cancer 

cells showed various ETC complexes were decreased in breast cancer, as well as the activities of 

these complexes.  ETC complex defects also correlated with overall cancer aggressiveness.  

Complex III, the complex responsible for coenzyme Q:cytochrome c-oxidoreductase , is the 

most commonly reduced complex, and is sifnificantly down regulated in the highly metastatic 
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MDA.MB.231 cell line.  Interestingly, although complex III activity was decreased in breast 

cancer, many of the subunits were upregulated.  Knockdown of complex III subunits led to 

decreased mitochondrial membrane potential and increased ROS production.  Inhibition of 

complex II proteins also decreased cellular invasion, not only in breast cancer cells but also 

osteosarcoma and ovarian cancer cells.  A recent study by Diers et al. (2012) also found that 

induction of mitochondrial function in breast cancer cells through addition of pyruvate actually 

promotes cell growth .  By substituting pyruvate for glucose in cell culture medium, proliferation 

of MCF7 and MDA.MB.231 cells was significantly increased compared to glucose-containing 

media, and the conditions did not affect cell death.  Addition of pyruvate did not enhance 

baseline levels of oxygen consumption, but it increased reserve capacity.  However, their reserve 

capacity was lower than cancer cells grown in a full complement including glucose and 

pyruvate.  This study demonstrates that mitochondria play an important role in cellular 

proliferation and oncogenesis. 

Autophagy in Metabolism and Cancer 

Autophagy and mitophagy play important roles in cellular metabolism in response to 

nutrient stress and hypoxia.  Autophagy is the process through which cells consume their own 

cytoplasm and organelles in autophagosomes in order to build new proteins and membranes.  

Autophagy can be non-selective, but is also used to selectively degrade faulty organelles, such as 

mitochondria (mitophagy), ribosomes (ribophagy), endoplasmic reticulum (reticulophagy), and 

lipids (lipophagy) (Gomes et al., 2011; Rabinowitz and White, 2010; Tanida et al., 2008). In the 

absence of cellular stresses, basal levels of autophagy are used in a housekeeping manner to 

removed damaged organelles that could become toxic.  Due to the potential specificity of 

autophagy, the process is highly regulated, with complex pathways involved in promoting or 

inhibiting autophagosome development.  Autophagy is integral to multiple stages in normal 
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mammalian development, from embryonic survival to survival immediately after parturition.  

Autophagy is highly active in normal embryonic cells without stress, and is a potential 

mechanism to ensure survival and stress repair (Salemi et al., 2012).  High levels of autophagy in 

adult stem cells also correlate with inhibition of cancer, and are required for adult stem cell 

differentiation.  During starvation, autophagy is activated to promote cell survival until the 

necessary nutrients are available.  Autophagy can also be used to remove unwanted organelles to 

adapt to changes in the nutrient environment.  These mechanisms have also presented a potential 

mechanism for autophagy in the prevention of aging by maintaining cellular integrity (Wirawan 

et al., 2012).  Cellular phenotypes of aging include damage to DNA, lipids, proteins, and other 

organelles - thus autophagy is a key anti-aging mechanism in normal cells through organelle 

cleanup. 

Autophagy has been implicated both as an oncogenic and a tumor suppressive process 

(Tsuchihara et al., 2009).  The general consensus is that early stages of autophagy induction 

prevent malignant transformation and oncogenesis, whereas autophagy induction at later stages 

can promote cell survival and tumor growth (Debnath, 2011; Wirawan et al., 2012).  The 

primary hypothesis for the promotion of tumor growth by autophagy is through cellular survival.  

Autophagy allows tumor cells to survive in stressed environments that would normally undergo 

cell death, and suppresses necrosis and inflammation responses.  The molecular mechanisms that 

activate autophagy under these circumstances, however, are unclear (Degenhardt et al., 2006).  

Beclin-1 (BECN1), a critical autophagy gene, is a candidate tumor suppressor, especially in 

breast cancer (Liang et al., 1999).  Liang et al. found that BECN1 was highly expressed in 

normal mammary glands, and that expression was lost in breast cancer.  Subsequent studies in 

cell lines verified that expression of BECN1 reduced proliferation and tumorigenesis.  P53, a 

classical tumor suppressor integral to cell function, has also been shown to promote autophagy 
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through multiple mechanisms including suppression of mTOR and direct effect through 

transcription of the damage-regulated autophagy modulator gene (DRAM) (Crighton et al., 

2006; Feng et al., 2005).  Additionally research has shown that autophagy can also mediate 

cellular senescence, a stable cell cycle arrest during which the cells remain metabolically active 

(Young et al., 2009).  Young et al. (2009) found Ras induced senescence also upregulated 

autophagy marker LC3II, and this upregulation could be blocked by subsequent inhibition of the 

senescence machinery.  Their study established that induction of autophagy contributes to the 

establishment of cellular senescence.  The primary hypothesized tumor-suppressive function of 

autophagy is the induction of autophagy cell death.  This non-apoptotic programmed cell death 

pathway is upregulated in cancer cells after chemotherapy (Kondo et al., 2005).  Another 

hypothesis regarding autophagy in tumor suppression is through regulation of genomic stability 

(Mathew et al., 2007) where it has been hypothesized that loss of autophagy in cancer cells 

increased DNA damage and gene amplification, resulting in increased genomic instability due to 

an accumulation of damage organelles.   

In breast cancer, autophagy is also oncogenic and tumor suppressive (Gong et al., 2012; 

Karantza-Wadsworth et al., 2007; Oh et al., 2011).  Wadsworth et al. (2007) found that 

inhibition of autophagy was necessary to sensitize mammary epithelial cells to insult, thus 

causing the DNA damage and genomic stability that are integral to cancer progression.  Oh et al. 

(2011) studied the effect of anti-apoptotic Bcl2 on autophagy inhibition.  During breast cancer 

progression Bcl2 is often upregulated and confers drug resistance as well as oncogenic 

transformation.  Bcl2 was shown to directly target BECN1, and thus inhibit autophagy during 

oncogenesis.  Using a Bcl2 mutant unable to inhibit apoptosis but still capable of suppressing 

autophagy, it was shown that the anti-autophagic capability of Bcl2 was integral to its oncogenic 

effect.  Conversely, Gong et al. (2012) found that autophagy was required in breast cancer tumor 
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initiating cells.  Autophagic flux was significantly upregulated in aldehyde dehydrogenase 

(ALDH) positive cells, and was integral for maintenance of TICs.  While depletion of BECN1 in 

a cell monolayer increased tumorigenesis, depletion of BECN1 in the TIC specific population 

inhibited tumorigenesis (Gong et al., 2012).  Autophagy is vital to embryonic stem cell survival  

and it appears that autophagy has unique cell-type specific effects in adult stem cells and 

differentiated cells. 

The metabolic regulation in normal cells is elegantly controlled and intermingled.  The 

derailment of this system in cancer is complex and not well understood.  While it has been 

reviewed and studied, there remains competing theories that indicate the role of metabolism is 

not strictly black and white with tumorigenesis. 

 

BNIP3, a Novel Sim2s Target Implicated in Metabolism 

The identification of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 

(BNIP3) as a target of SIM2s repression was the first indication that SIM2s plays a role in 

intracellular metabolism.  BNIP3 is a HIF1α regulated pro-apoptotic protein that is also pro-

autophagic (Bruick, 2000; Tracy et al., 2007).  Farrall and Whitelaw (2009) elucidated the 

regulation of BNIP3 by SIM2s in prostate cancer.  Microarray analysis of SIM2s expressing 

prostate cancer cells compared to controls revealed the BNIP3 levels were down regulated with 

ectopic expression of SIM2s.  Similarly to SIM2s, BNIP3 has been shown to be down regulated 

in pancreatic and colon cancers (Akada et al., 2005; Bacon et al., 2007).  The inverse 

relationship between SIM2s and BNIP3 expression was confirmed using addition cell lines stably 

transduced to overexpress SIM2s, indicating that BNIP3 silencing is downstream of SIM2s 

activity.  No changes were seen in epigenetic regulation of BNIP3 expression, thus indicating a 

direct regulation of BNIP3 expression by SIM2s.  SIM2s competes with HIF1α to bind the HRE, 
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and inhibits hypoxic induced gene expression (Woods and Whitelaw, 2002).  Since BNIP3 is a 

hypoxically regulated gene, ChIP analysis was performed to test for SIM2s binding to the HRE 

in the BNIP3 promoter, as well as two putative SIM2s specific response elements (S2RE) 

(Woods et al., 2008).  SIM2s bound to the BNIP3 HRE, but not the S2REs, supporting previous 

studies (Woods and Whitelaw, 2002).  To confirm that SIM2s binding to the BNIP3 promoter 

was sufficient to inhibit hypoxic induced gene expression, SIM2s expressing cells were grown in 

a hypoxic environment, resulting in enhanced BNIP3 expression, even with the decreased levels 

of SIM2s that are seen after hypoxic exposure.  Further analysis during hypoxic exposure 

verified that the binding affinity of SIM2s to the HRE during hypoxia was not altered.  

Additional ARNT expression during hypoxia partially alleviated SIM2s mediated repression, 

thus indicating that SIM2s also competes with HIF1α for ARNT heterodimerization.  Further 

analysis showed that SIM2s mediated BNIP3 repression inhibited hypoxia induced autophagy in 

prostate cancer cells and therefore inhibited autophagic cell death. 

BNIP3 is a protein related to the BH3-only family, which contains only a single Bcl-2 

homology (BH) domain.  BNIP3 induces cell death and autophagy, but upon interaction with the 

anti-apoptotic protein BCL2, these effects are inhibited.  BNIP3 is a hypoxia regulated gene, and 

its expression is associated with tumor cell death.  Interestingly, the molecular mechanism of 

BNIP3 induced cell appears to work independently of the caspase cascade and is not well 

understood (Vande Velde et al., 2000; Zhang and Ney, 2009).  The generally accepted model of 

BNIP3 activity involves mitochondrial dysfunction, specifically a loss in mitochondrial 

membrane potential through mitochondrial pore opening, the generation of reactive oxygen 

species (ROS), and ultimately necrosis (Kubli et al., 2007).  BNIP3 can induce mitochondrial 

pore opening a number of ways: through direct interaction with BAX or BAK, or indirectly via 

increased mitochondrial calcium uptake (Marzo et al., 1998).  Indeed, knockdown of Bax and 
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Bak in mice prevented Bnip3 mediated mitochondrial cell-death, but not Bnip3 mediated 

autophagy (Kubli et al., 2007).  BNIP3 can also form channels in the mitochondrial outer 

membrane, thanks to its unique transmembrane domain (Chen et al., 1997; Imazu et al., 1999).  

As previously mentioned, in addition to cell death, BNIP3 is as an important protein in cellular 

autophagy and several studies have established a role for BNIP3 in drug-induced autophagy.  

Interestingly, the effect of BNIP3 induced autophagy varies with the cell type.  Induction of 

autophagy in glioma cells induced mitochondrial depolarization and autophagy cell death, 

however HL-1 myocytes were protected from cell death by BNIP3 induced autophagy (Daido et 

al., 2004; Hamacher-Brady et al., 2007; Kanzawa et al., 2005).  BNIP3 expression in skeletal 

muscle also induces autophagosome formation, and has been implicated in muscle wasting 

disorders (Mammucari et al., 2007).  In a hypoxic environment, autophagy is often associated 

with cell survival rather than cell death, and BNIP3 expression during hypoxia does not induce 

autophagic cell death.  Tracy and Macleod (2007) have observed that overexpression of BNIP3 

in various tumor cell lines causes increased autophagy independently of cell death, and that 

knockdown of BNIP3 inhibits hypoxia-induced autophagy.  Autophagy during hypoxia increases 

ATP production efficiency and helps combat the oxidative damage that occurs, particularly 

through mitophagy, in order to maintain an energy balance in hypoxic cells (Jin, 2006).  BNIP3 

expression increases activation of autophagic LC3 proteins, and increases lysosomal localization 

to faulty mitochondria for removal (Rikka et al., 2011).  Inhibition of this process using 

autophagy inhibitor 3-methyladenine (3-MA) resulted in extensive cell death.  BNIP3 is a novel 

autophagy gene in that is induced by varying and sometimes competitive signals, indicating a 

highly controlled process that it responsive to unique cellular stimuli, as opposed to the highly 

conserved ATG genes.  In addition to the mitochondrial autophagy and cell death mechanisms, 

further work by Rikka et al. (2011) established that expression of BNIP3 decrease mitochondrial 
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respiration proteins, thereby reducing oxidative phosphorylation and ATP levels.  In addition to 

regulation by HIF1α and SIM2s, BNIP3 is also repressed by the classical tumor suppressor RB 

(Tracy et al., 2007).  These competing regulators of BNIP3 expression could keep BNIP3 levels 

in a range that promotes autophagy without inducing cell death, as well as regulating autophagy 

in response to unique environmental stressors. 

In breast cancer, research on BNIP3 has produced varying and conflicting data.  Early 

work examined the expression of BNIP3 in DCIS lesions and correlation with necrosis and 

tumor grade (Sowter et al., 2003).  Using both in situ hybridization and immunohistochemistry, 

an array of varying DCIS lesions were analyzed for BNIP3 expression.  Sowter et al. (2003) 

reported that BNIP3 was not expressed in normal breast tissues, but was detected in DCIS tissue.  

BNIP3 levels varied significantly with tumor grade, as well as necrosis score.  High levels of 

BNIP3 were observed in high-grade, highly-necrotic DCIS lesions, and BNIP3 expression 

significantly correlated with invasion-associated DCIS.  It is important to note that DCIS 

necrosis has been associated with enhance tumor progression and metastasis (Shekhar et al., 

2008).  However, BNIP3 expression in the invasive component did not correlate with BNIP3 

staining in the adjacent DCIS lesion, nor did it correlated with grade or necrosis.  Sowter et al. 

(2001) also established that BNIP3 was upregulated in breast carcinoma cells lines, and hypoxia 

enhanced expression.  In a similar study, a large number of DCIS and IDC lesions were analyzed 

for BNIP3 and HIF1α to determine the potential use of BNIP3 as a marker of DCIS progression  

(Tan et al., 2007).  BNIP3 was only weakly detected in normal tissues, but over 60% of DCIS 

samples and 70% of IDC samples expressed this protein.  While there was a significantly 

correlation in BNIP3 expression and breast cancer compared to normal tissue, no correlation was 

seen between BNIP3 and progression to IDC.  Nuclear expression of BNIP3 in IDC samples 

correlated with smaller tumor size and lower grade, as well as ER expression.  Surprisingly, 
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BNIP3 expression did not correlate with HIF1α expression.  Additionally, nuclear localization of 

BNIP3 was significantly related to increased disease recurrence in DCIS lesions, and shorter 

disease-free survival.  This study indicated an enhance complexity in the regulation of BNIP3 

expression, with potential HIF1α independent mechanisms and both pro and anti-tumorigenic 

properties.  A recent study by Naushad et al. (2012) has elucidated a role for epigenetic 

regulation in BNIP3 expression in IDC.  Combined bisulfite restriction analysis (COBRA) of the 

BNIP3 gene showed that the CpG island on the BNIP3 promoter was hypomethylated in IDC 

samples, and upregulated.  However, the methylation profile of the BNIP3 promoter did not 

correlate with hormone markers ER, PR, HER2, or mitotic index. 

In contrast, the loss of BNIP3 has also been associated with enhanced progression and 

metastasis.  Manka et al. (2005) determined that loss of BNIP3 in breast cancer promoted 

metastasis to the lung, liver, and bone, and in mouse breast cancer metastasis models, BNIP3 

was increased after exposure to hypoxia, however expression was lower in highly metastatic 4T1 

cells compared to the non-metastatic 67NR cell line.  Expression in 4T1 cells was also 

mitochondrial, compared to cytoplasmic expression in both the 67NR and 4T07 cell lines.  

Likewise, hypoxia also induced high levels of cleaved caspase in the non-metastatic 67NR and 

mildly-metastatic 4T07 cells compared to 4T1 cells.  Knockdown of BNIP3 in 67NR and 4T07 

cells increased clonogenic survival, and tumor volume.  Knockdown of BNIP3 in 4T07 cells 

enabled tumors to form macroscopic metastatic lesions in the liver and sternum.  Koop et al. 

(2009) also used in situ hybridization and immunohistochemistry to associate BNIP3 expression 

with IDC.  Forty percent of IDC tumors were positive for BNIP3 mRNA, and 57% were positive 

for BNIP3 protein, and expression was cytoplasmic and granular, as expected with mitochondrial 

localization.  In adjacent normal tissue, immunohistochemistry showed that 8/35 samples 

exhibited nuclear staining of BNIP3, which is rarely seen in tumor cells.  When tumor cells were 
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strongly positive for BNIP3, the lower levels of BNIP3 were observed in the surrounding normal 

tissues approximately 65% of the time, with stronger signal in normal tissue being seen 35% of 

the time.  Again, BNIP3 expression did not correlate with HIF1α status.  Clinicopathological 

analysis showed that BNIP3 negative tumors had a higher frequency of lymph node metastasis, 

as well as mitotic index.  Correlations with ER, PR, necrosis, or tumor size were not observed.  

The conflicting reports on BNIP3 expression in breast cancer indicated a highly 

regulated, complex mechanism for BNIP3 in mitochondrial function and autophagy.  BNIP3 is a 

new link between SIM2s and HIF1α.  Most importantly, BNIP3 establishes a potential role for 

SIM2s in the regulation of cellular metabolism and autophagy. The roles of metabolic 

homeostasis and autophagy in tumor onset and progression are complex, and strategies that 

target these pathways would provide a novel approach for chemotherapy. 

 

P53 

P53 in Differentiation 

P53 is one of the most well-known tumor suppressor genes and was identified in the 

early 70’s.  P53 has been shown to have important roles in apoptosis, DNA repair, cell-cycle 

regulation, and genomic stability (Linzer and Levine, 1979) and because of this it has earned the 

name, “Guardian of the Genome” (May and May, 1999).  P53 is activated by variety of stresses, 

such as DNA damage, UV radiation, and stress signals, and regulates various functions such as 

mitochondrial function, senescence and autophagy, apoptosis, and DNA damage repair (Junttila 

and Evan, 2009) (Figure 10).   
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Figure 10.  P53 Stress Response.  Stress induction of p53 has multiple pathways, which can promote 
tumor suppression. 

 

 

P53 is frequently inactivated or mutated in cancers, and by a wide range of mechanisms.  

Although extensively researched, while some methods of p53 inactivation are favored over 

other, it remains unclear why.  One widely studied role of p53 is the promotion of cell cycle 

arrest through upregulation of p21.  When activated, p53 transcribes cell cycle inhibitor 

p21WIF/CIP which inhibits the CDK4/6 complex, thus blocking cell cycle progression and inducing 

senescence (Taylor and Stark, 2001).  Additionally, many p53 target genes are pro-apoptotic, 

thus loss of p53 contributes to the survival of tumor cells (Jerry et al., 2000). 

P53 mutation in breast cancer is associated with increased tumor aggressiveness and 

worse prognosis (Gasco et al., 2002).  While p53 mutation occurs in approximately 50% of 

breast cancers, and it is enriched in the inheritable BRCA1/BRCA2 mutated tumors, 

hypothetically due to the increased genomic instability caused by germline mutations (Greenblatt 

et al., 2001).  While p53 has been indicated as a potential prognostic marker for breast cancer, 

immunohistochemical analysis of breast cancer samples for p53 are inconclusive, as they cannot 
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differentiate between wild-type and mutant p53.  Mutant p53 expression is associated with 

increased tumor growth, metastasis, and chemotherapeutic resistance (Allred et al., 1994). 

Aside from p53’s role in cell cycle regulation and apoptosis, it has also been shown to 

play an important role in normal cell differentiation and tumor de-differentiation (Molchadsky et 

al., 2010).  In normal embryonic development, p53 expression is high during organogenesis, but 

is almost un detectable in terminally differentiated tissues (Schmid et al., 1991).  Initial studies 

on p53 knockout mice appears as though p53 null mice were viable and physiologically normal, 

but later generations exhibited frequent developmental defects in extremity development and 

fertility (Armstrong et al., 1995).  These mice were also more susceptible to spontaneous cancers 

(Donehower et al., 1992).  Further research in p53 function has established it as a critical 

regulator of differentiation in multiple tissues.    P53 has been shown to be a critical regulator of 

neuronal differentiation, slowing growth and maintaining neuronal stem cell potential (Sah et al., 

1995; Zheng et al., 2008). In p53 null mice, neurons proliferate uncontrollably, resulting in 

exencephaly and neural tube defects.  In neurons, P53 has been shown to promote differentiation 

through two major pathways:  progression through neurite outgrowth and cell-cycle arrest.  P53 

in osteogenic differentiation has a slightly different role.  While P53 is considered a promoter of 

differentiation, studies have indicated that it acts as a negative regulator in bone development 

(Lengner et al., 2006; Wang et al., 2006).  Loss of P53 accelerated osteoblast differentiation, 

resulting in higher levels of bone formation and bone density.  The associated increase in 

proliferation has also been associated with a higher risk for osteosarcoma formation.  

Additionally, P53 has been shown to regulate skeletal muscle differentiation through 

maintenance of active retinoblastoma (RB) (Porrello et al., 2000). As noted with other tissues, 

loss of P53 in myogenic cells is associated with increased rhabdomyosarcomas (Choi and 

Donehower, 1999).  Initially, the role of P53 in hematopoietic cell differentiation was not 
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observed, however later research has shown that P53 is necessary for B-cell maturation, which 

promotes their tumor suppressing activity (Donehower et al., 1992; Shaulsky et al., 1991).  

Finally, P53 has also been implicated in adipogenic differentiation.  Adipocyte differentiation is 

another example of where P53 acts as an inhibitor of differentiation (Hallenborg et al., 2009; 

Inoue et al., 2008).  P53 is down regulated during normal adipocyte differentiation, and loss of 

P53 results in increase proliferation of adipocytes.  P53 induction is also seen in obese mice, 

possibly promoting lipid accumulation in adipocytes.    P53 expression in adipose tissues in 

animals with insulin resistance showed characteristics of aging and inflammation, likely due to 

P53 upregulation of P21 and senescence (Ahima, 2009).  It is these effects on adipocytes that has 

led to the study of p53 in metabolism, we will discuss below. 

In the mammary gland and breast cancer, P53 is an important target for hormone-

mediated tumor suppression.  While P53 is stabilized with exposure to stresses such as radiation, 

estrogen and progesterone are also sufficient to increase P53 expression in the mammary gland 

(Becker et al., 2005).  Thus P53 is upregulated during pregnancy, and hypothetically works to 

promote luminal cell differentiation and prevent mammary tumorigenesis due to the enhanced 

mammary epithelia proliferation that occurs during this time (Jerry et al., 2000; Medina and 

Kittrell, 2003).  Original work attempting to analyzed breast cancer in p53 null mice indicated 

that loss of p53 had no effect on development of breast cancer.  However, these mice often died 

young due to lymphomas, therefore, obscuring a possible mammary tumor phenotype.  Thus, 

Jerry et al. (2000) used a mammary specific p53 knockout mouse to study the effects of p53 loss 

specifically in the mammary gland.  Their studies found that loss of p53 alone was sufficient to 

induce significant levels of breast cancer, and exposure to hormones just increased the 

tumorigenicity in p53 null glands.  Studies have shown that full-term pregnancy at a young age 

has a preventative effect on breast cancer, and Sivaraman et al. (2001) hypothesize that this 
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preventative effect is the early upregulation of P53 in the differentiating mammary gland.  

Interestingly, while P53 expression peaks and is necessary during pregnancy and lactation, 

involution can proceed independently of p53 (Li et al., 1996).  Li et al. showed that the major 

apoptosis that occurs during mammary gland involution is P53-independent, but still uses P53 

apoptotic targets Bax and Bcl-x, indicating P53-independent mechanisms for their activation.  

Studies by Jerry et al., however, showed that loss of p53 delayed mammary gland involution, 

followed by compensation by p53-independent mechanisms (Jerry et al., 1998; Jerry et al., 

1999).  These studies indicated that p53 promoting the first stage of rapid cellular apoptosis in 

the involuting mammary gland, indicated through upregulation of p21. 

P53 in Metabolism 

While extensively characterized in differentiation, P53 has also been heavily implicated 

in the regulation of normal and tumor metabolism.  We have already established the importance 

of P53 upregulation in response to various environmental stresses.  So it also makes sense that 

P53 is upregulated in response to nutrient stress such or low oxygen.  However, enhanced 

aerobic glycolysis, as is common in cancers, has been shown to suppress P53, and may 

potentially help cancer cells evade P53 induced apoptosis and senescence (Zhao et al., 2008).  

Hypoxia has also been shown to induce P53, however research is conflicting whether P53 

stabilization is a direct effect of low oxygen or indirect due to DNA damage and nutrient 

deprivation (Alarcon et al., 1999; An et al., 1998; Pan et al., 2004).  Similarly, mitochondrial 

ROS are an important activator of P53 (Karawajew et al., 2005). These authors found that 

inhibition of mitochondrial function through targeting of the ETC or MMP suppressed P53 

activation.  However, while these studies elucidated the promotion of classical P53 stress 

response, including senescence and inhibition of proliferation, new studies have shown novel 

mechanisms for P53 in the direct regulation of metabolic pathways.  
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 P53 has been shown to suppress glycolysis and promote oxidative phosphorylation 

through suppression of GLUT1 and GLUT4 (Schwartzenberg-Bar-Yoseph et al., 2004).  

Additionally, two key P53 repression targets: P53-induced glycolysis and apoptosis regulator 

(TIGAR) and synthesis of cytochrome c oxidase (SCO2) have been shown to regulate various 

aspects of metabolism as well (Bensaad et al., 2006; Madan et al., 2011; Won et al., 2012).  

These proteins have been especially studied in breast cancer, where P53 expression significantly 

correlates with decreased TIGAR and SCO2 expression (Won et al., 2012).  However, decreased 

SCO2 expression wax associated with histological grade, metastasis, and poorer prognosis.  This 

study was not able to determine the presence of mutant p53, which may provide a confounding 

factor.  The authors hypothesize that it is the upregulation of these genes with mutation/loss of 

P53 that can induced the Warburg effect in breast cancer cells.  TIGAR has been shown to 

promote the pentose phosphate pathway (PPP) in mitochondria, which lowers ROS and increases 

NADPH (Bensaad et al., 2006; Cheung et al., 2012). Under hypoxia, HIF1α promotes the 

translocation of TIGAR to the mitochondria where it increases hexokinase 2 (HK2) activity.  

This shunting toward the PPP in the mitochondria decreases TCA cycle activity, thus lowering 

ROS and protecting the cells from apoptosis.  P53 has also been shown to inhibit the PPP 

through binding and repressing the rate-limiting enzyme, glucose-6-phosphate dehydrogenase 

(G6PD) (Jiang et al., 2011).  This inhibition of the PPP would have the opposite effect, 

promoting the TCA cycle and oxidative phosphorylation.  Conversely to what was seen in breast 

cancer cells, P53 actually has been shown to upregulate SCO2 expression, which in turn 

upregulates oxidative phosphorylation through the cytochrome c complex (COX) (Madan et al., 

2011).   SCO2 and COX are critical for the major site of oxygen utilization in the cell.  P53 

regulation of SCO2 has been shown to be the modulator of balance between respiratory 

pathways and glycolysis (Ma et al., 2007; Matoba et al., 2006).  Other work has also shown that 
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loss of P53 in malignancy is associated with increased mtDNA mutations, mitochondrial 

dysfunction, and direct regulation of COXII by P53 (Compton et al., 2011; Zhou et al., 2003).  

Additional studies have shown a direct regulation of monocarboxylate transporter (MCT1), the 

key lactate transporter, by P53 (Boidot et al., 2012).  P53 directly binds the MCT1 promoter and 

inhibits lactate efflux under normal conditions.  At the onset of hypoxia, P53 is lost and MCT1 

expression increases, thus increasing lactate transport, and ultimately glycolytic flux.  This was 

verified in human breast cancers, and MCT1 expression was associated with poorer prognosis.  

Further studies attempting to upregulate P53 in tumors showed that pharmacologically activating 

P53 significantly inhibited glycolysis and HIF1α and promoted cell death in tumors and breast 

cancer cells (Zawacka-Pankau et al., 2011). 

P53 has also been shown to participate in regulation autophagy through DRAM as well 

as other indirect mechanisms (Abida and Gu, 2008; Crighton et al., 2006).  As previously 

mentioned, autophagy is believed to be both oncogenic and tumor suppressive, and P53  has 

been shown to be both an activator and an inhibitor of autophagy (Tasdemir et al., 2008a; 

Tasdemir et al., 2008b).  Interestingly, the pathways P53 upregulates autophagy through are 

different from the pathways through which it inhibits autophagy.  Loss of P53 has been shown to 

induced ER stress, which in turn promotes ER specific autophagy (reticulophagy) as party of the 

unfolded protein response (UPR) (Morselli et al., 2008; Tasdemir et al., 2008a).  Since the 

presence of low oxygen and mitochondrial ROS have already been shown to induce the P53 

stress response, it stands to reason that P53 is integral to repair oxidative stress and damage.  The 

same pathways involved in P53-mediated autophagy and senescence are also key for the exertion 

of P53-dependent antioxidant mechanisms (Sablina et al., 2005; Yoon et al., 2004).  The role of 

P53 in oxidative stress is highly complex, and examples have been shown where P53 can also be 

pro-oxidation through upregulation of BAX and PUMA, and thus induce senescence and 
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apoptosis (Macip et al., 2003).  This regulation by P53 might regulate oxidative adaption 

between basal, low stress environments and high damage conditions. 

With these major roles in oxidative phosphorylation and oxidative stress, it is expected 

that P53 also have important roles in mitochondrial quality and function.  Initial studies 

examined ischemic damage in the heart, and found that loss of P53 caused an increase in 

mitophagy, thereby decreasing the levels of damaged mitochondria, and increasing survival after 

myocardial infarction (Hoshino et al., 2012).  They found that P53 and TIGAR were inhibited in 

response to ROS, which in turn activated BNIP3 and mitophagy.  This is an example of 

mitophagy’s ability to prevent oxidative damage in organs through degradation of faulty 

mitochondria, which has also been implicated as being mandatory for extended lactation in the 

mammary gland (Hadsell et al., 2011).  Furthermore, an addition P53-inducible gene, MIEAP, 

has been shown to regulate mitochondrial quality and autophagy (Kitamura et al., 2011).  In a 

similar mechanism to P53/TIGAR, ROS and BNIP3 promote mitochondrial quality control 

through upregulation of MIEAP induced mitophagy, and this effect can be ablated with 

inactivation of P53.  These studies indicate that not only is P53 integral for genome quality and 

repair, but also the repair and maintenance of metabolic machinery as well. 

More recent studies have elucidated another mechanism through which P53 helps to 

inhibit the Warburg effect and promote normal cell metabolic homeostasis: through interactions 

with NFκB signaling.  NFκB signaling is an important regulator of immune and inflammatory 

responses, and its mis-regulation is known to be tumorigenic (Johnson and Perkins, 2012; 

Johnson et al., 2011).  During tumorigenesis, NFκB subunit RELA translocates to the 

mitochondria where it inhibits mitochondrial gene expression, oxygen consumption, and ATP – 

thus promoting glycolysis.  Expression of P53 however, blocks this effect by inhibiting RELA’s 

interaction with the heat shock protein mortalin through competition and sequestration.  
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Interestingly, RELA has been shown to have varying effects depending on cellular context, and 

these effects are determined by P53.  RelA expression in mouse embryo fibroblasts upregulates 

p53, thus enhancing OXPHOS and inhibiting glycolysis through upregulation of Sco2 (Mauro et 

al., 2011).  Other work has shown that RELA upregulates GLUT3, increasing glucose uptake 

and lactate production (Kawauchi et al., 2008).  In fact, this upregulation of GLUT3 is required 

for Ras-induced cell transformation.  The cross-talk between NFκB and P53 adds an additional 

fine-tuning to metabolic homeostasis, and loss of this feedback can hyperactivate NFκB, and 

promote the Warburg effect.  So far RELA is the major NFκB subunit that has been implicated 

in metabolic transformation, but there is potential crosstalk with other subunits as well. 

 

P21 

P21 in Cellular Senescence and Differentiation 

One of the most well-known mechanisms of P53 action is through upregulation of P21 

(CDKN1A), and promotion of cellular senescence.  Senescence is an important mechanism for 

proliferation arrest in potential cancer cells, as well as tissue repair, inflammation, and aging.  

Originally described in the 1960’s, senescence was described even then to be important for aging 

and tumor suppression (Hayflick, 1965).  Hayflick’s work found that normal diploid cells were 

not immortal in vitro, and could only undergo a set number of divisions, and this number varied 

with the cell type.  Cellular senescence is classically described as the irreversible growth arrest 

that occurs when cells encounter an oncogenic insult.  Almost all division-competent cells can 

undergo senescence when properly stimulated (Campisi and d'Adda di Fagagna, 2007).  

Characteristics are senescent cells are: flattened and enlarged cell size, expression of senescence-

associated β-Galactosidase (SA-βGal), upregulation of P16INK4a and P21 (Reddy and Li, 2011; 

Rodier and Campisi, 2011; Shay and Roninson, 2004).   Senescent stimuli include DNA damage, 
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telomere erosion (aging), oncogenic insult, and epigenetic disruption (Rodier and Campisi, 

2011).  In addition, environmental stress can induce senescent without direct genomic insult.  

Serum starvation, oxidative stress, and other environmental factors have been indicted in 

senescence induction.  These stimuli that induce senescence all have the ability to initiate or 

promote tumor growth, making cellular senescence one of the large tumor-suppressive pathways 

that must be overcome in oncogenesis (Reddy and Li, 2011; Rodier et al., 2007).  Studies of 

human tissues and cancers have shown that cellular senescence is lost in most, if not all cancers.  

Also, research shows that early oncogenic transformation induces senescence (oncogene induced 

senescence, OIS), and this must be overcome through loss of P53, CDKN1A, and P16 in order to 

tumors to develop (Figure 11).  

 

 
Figure 11.  Oncogene Induced Senescence.  Upregulation of senescence in response to initial oncogenic 

events occur four potential pathways. 
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Some tumor cells may retain the ability to senesce, and may do so in response to 

chemotherapeutics (Schmitt et al., 2002).  As is seen in P53, metabolism, and autophagy, cellular 

senescence can also be tumorigenic in the appropriate context.  As previously mentioned, 

senescence is largely induced and implicated in aging – and cancer is primary an age-related 

disease (Campisi et al., 2011).  Not much work has been done to elucidate how senescence 

promotes late-life cancer, however some hypothesize that the senescence secretory phenotype 

induced the secretion of factors that can stimulate cancer cells (Kuilman and Peeper, 2009).  For 

example, work has shown that factors secreted by senescent fibroblasts (amphiregulin, growth-

related oncogene α, and interleukin 6) stimulated proliferation of premalignant epithelial cells 

(Bavik et al., 2006; Coppe et al., 2010). 

While senescent cells are similar to terminally differentiated cells, they are not the same.  

However research has not clearly delineated the two.  In fact, several studies have shown that 

P21 promotes differentiation in various tissues and circumstances.  P21 is associated with a G1 

arrest, and this arrest is frequently characterized in cellular differentiation  (Steinman et al., 

1994).  Scientists found that P21 was induced by multiple differentiation signalers during 

hematopoietic differentiation, and this induction could occur independently of P53, and was 

coupled with other differentiation markers.  P21 has also shown to be expressed in well-

differentiated chondrosarcoma cells, and was associated with a better prognosis in these tumors 

(Hiraoka et al., 2002).  In colorectal cancer cell lines, escape from P21-mediated OIS resulted in 

cell de-differentiation and enhanced survival (de Carne Trecesson et al., 2011).  P21 and OIS 

have been established in many premalignant lesions as an important checkpoint to inhibit tumor 

progression (Reddy and Li, 2011).  P21 has been indicated to promote differentiation in a myriad 

of other cells lines independently of P53, making it a powerful competitor for promotion of 

tumor differentiation. 



72 

 

In the mammary gland and breast cancer, P21 has already been established as a key 

barrier to tumor progression.  Initial studies in MCF7 cells showed that oncogenic 

overexpression of HER2 induced senescence in a dose-dependent manner (Trost et al., 2005).  A 

similar study actually showed that the co-expression of HER2 and senescence in breast epithelial 

cell lines induced a secretory phenotype that promoted metastasis (Angelini et al., 2013). In 

MDA.MB.231 cells, HER2 induced senescence promoted metastasis independently of cytokine 

attraction.   Additional work in MCF7 cells showed that tumor-initiating cells survive through 

down-regulation of the senescence pathway (Karimi-Busheri et al., 2010).  This enhanced 

survival allows for radiation resistance in mammosphere culture.  Human pituitary tumor-

transforming gene1 (hPTTG1) is an oncogene commonly overexpressed in breast cancer (Ruan 

et al., 2012).  Overexpression of hPTTG1 in premalignant lesions induces oncogene induced 

senescence, and in order for hPTTG1 to exert its oncogenic effects this senescence must be 

overcome.  Similar to the secretory phenotype of HER2 induced senescence, hPTTG1 induces a 

similar secretory senescence that can promote metastasis in neighboring senescence-evading 

cells, hypothetically through development of a metastasis-promoting microenvironment.  

hPTTG1 expression induces senescence through P53-independent activation of CDKN1A, and 

early stage senescence inhibits cancer cell growth through a P21-CXCR2 axis.  Other studies in 

MCF7 and MDA.MB.231 cells elucidated a unique set of P53-dependent and independent 

mechanisms for P21 expression and senescence (Wang et al., 1999).  Wang et al. found that UV 

radiation down-regulates CDKN1A in cancer cells regardless of P53 expression.  Conversely, x-

ray exposure up-regulated P21 through P53.  MCF7 is a P53 competent cell line, whereas 

MDA.MB.231 is a P53 mutant.  Variations were seen in both cell lines, CDKN1A was down-

regulated more gradually in MCF7 cells compared to MDA.MB.231, indicating that P53 

potentially still regulated CDKN1A gene expression, albeit not in a dose-dependent manner.  
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This loss of CDKN1A with UV radiation also suggests a role for P21 in DNA-damage response 

aside from cell cycle inhibition.  Other studies have shown the opposite, up-regulation of P21 in 

response to UV radiation, but these studies are either in other cell lines or another type of UV-

radiation, indicating a complex response pathway than can adapt to unique insults  (Zhan et al., 

1996).  In vivo studies in P53 null mice have shown the induction of OIS through P16 in ductal 

hyperplasias with the overexpression of mitotic oncogenes (Zhang et al., 2008).  Ras-driven 

breast cancer also induced OIS, but only with high levels of Ras expression (Sarkisian et al., 

2007).  In this model, OIS has to be circumvented in order for tumor progression to proceed, and 

the authors hypothesized this occurred with later inactivation of P53.  Later work confirmed this 

hypothesis (Borgdorff et al., 2010; Swarbrick et al., 2008).  After Ras expressing mammary 

epithelial cells (MECs) form premalignant lesions with OIS, few progressed to tumors; however 

selective inactivation of P19, P53, or CDKN1A (but not p16) significantly increased progression.  

Human DCIS samples have also been analyzed for a relationship between senescence and 

progression (Gauthier et al., 2007; Kerlikowske et al., 2010).  P16 induction in DCIS samples 

correlated with low proliferation and lower changes of progression to invasion.  DCIS samples 

with P16 defects, however, have high rates of tumor progression.  Another master regulator, 

C/EBPβ, has also been implicated in breast cancer and senescence (LaMarca et al., 2010). Loss 

of C/EBPβ in MECs decreased the stem cell population, and caused premature senescence and 

differentiation.  This resulted in decreased growth and transplant success both in vivo and in 

vitro.  As previously discussed, our lab has shown that C/EBPβ suppresses SIM2s expression.   It 

is possible that this upregulation of senescence with loss of C/EBPβ is due to subsequent 

upregulation of SIM2s.   The implications of senescence in regards to DNA damage, early 

malignancy, cytokine attraction, and modes of activation indicate an intricate pathway in breast 

cancer with multiple factors needing to be addressed for successful tumorigenesis. 
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P21 in Metabolism 

The role of P21 and senescence in the Warburg effect and metabolism has not been well 

researched.  As previously discussed, mitochondria have been established as involved in aging, 

and aging with the onset of senescence, however to date senescence and metabolism have often 

been viewed as two separate mechanisms.  Metabolomic analysis of oncogene induced 

senescence showed a unique metabolic phenotype that differs from normal cells and replicative 

senescing cells (Quijano et al., 2012).  OIS cells have increased fatty-acid oxidation (a 

mitochondrial metabolic activity), that correlated with a high rate of oxygen consumption, 

indicating enhance mitochondrial function with senescence.  It is this fatty acid metabolism that 

may be related to the unique inflammatory phenotype previously discussed.  This study also 

provided a unique differentiation between types of cellular senescence, which are normally 

viewed as equivalent pathways.  Other studies have analyzed the role of mitochondrial 

dysfunction in the onset of senescence (Masgras et al., 2012; Moiseeva et al., 2009).  Ras-

induced senescence was shown to be preceded by an increase in mitochondria, ROS, and a drop 

in ATP production.  This response depended on intact P53 and RB, indicating a causal tie 

between metabolic deregulation and senescence.  This was verified through direct 

pharmacological inhibition of oxidative phosphorylation, which was sufficient to trigger 

senescence.  Masgras et al. (2012) showed that senescence itself cause an upregulation in 

mitochondrial ROS, dependent on CDKN1A expression.  Interestingly, the senescent response 

could be abrogated by exposure to antioxidants, and P21 expression in cancer cells correlated 

with increased sensitivity to oxidants and mitochondrial polarizations changes.  Early analysis of 

metabolic differences in human fibroblasts showed that senescent fibroblasts has lower levels of 

glycolysis compared to non-senescent cells (Zwerschke et al., 2003).  The authors indicated that 

as fibroblasts aged, depletion of glycolytic enzymes resulted in a metabolic imbalance, decreased 
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ATP, and subsequently increased AMP, which induced further senescence.  This was the first 

study establishing a causal relationship between metabolic balance and senescence.  In tumor 

cells, inhibition of the PPP has been shown to induce senescence through accumulation of 

growth inhibitory glucose intermediates (Sukhatme and Chan, 2012).  This inhibition and 

senescence is associated with increased oxygen consumption and mitochondrial activity in 

glutamate metabolism.  While this initial metabolic shift in cancer cells is to try to accommodate 

G6PD loss, the ultimate induction of senescence inhibits proliferation.  Other mitochondrial 

specific enzymes, specifically the TCA cycle associate malic enzymes, have been shown to 

regulate P53 expression and senescence (Jiang et al., 2013).  Down regulation of malic enzymes 

activates P53, generating a positive-feedback look between the two as P53 expression represses 

malic enzymes.  This upregulation of P53 correlates with a strong induction of senescence, 

indicating a direct relationship between metabolic homeostasis and senescence.  In addition to 

glucose metabolite accumulation, glycogen accumulation in cancer cells has also been associated 

with premature senescence (Favaro et al., 2012).  Glycogen metabolism has been shown to be 

important during hypoxia for cell survival and metabolic reprogramming (Pelletier et al., 2012; 

Pescador et al., 2010).  Favaro et al. found that inhibition of glycogen depletion through 

knockdown of glycogen phosphorylase (PYGL) resulted in an accumulation of glycogen, 

corresponding with reduced proliferation and senescence.  This senescent phenotype could be 

partly abrogated through co-depletion of P53 or addition of an antioxidant, indicating this 

senescence occurs through ROS-mediation of P53 expression.  This depletion of PYGL also 

leads to a decrease in the PPP, which we previously discussed as causal in cellular senescence as 

well.  While all of these studies indicate a unique and important relationship between 

metabolism and senescence, to date senescence is evaluated as a response to metabolic insult, 

and not the inducer of a unique metabolic phenotype. 



76 

 

The unique relationship between differentiation, metabolism, aging, and cancer is 

complex.  While work has been done in all of these areas individually, little work has been 

performed examining the causal relationships between the four and genes/pathways that may be 

integral to this cascade of events that result in cancer.  Understanding the intricacies of these 

pathways will enhance our abilities to effectively target tumors, as well as prevent early tumor 

progression.  In the work discussed herein, we seek to test the hypothesis that SIM2s’ promotion 

of differentiation and inhibition of tumor progression are through induction of cellular 

senescence and a metabolic shift from aerobic glycolysis to oxidative phosphorylation. 
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CHAPTER II 

MATERIALS AND METHODS 

 

In Vitro 

Cell Culture 

MCF10DCIS cells were generously provided by Dr. Dan Medina (Baylor College of 

Medicine, Houston, TX, USA) and maintained in DMEM-F12 (Invitrogen, Carlsbad, CA, USA) 

with 10% horse serum (Atlanta Biologicals, Lawrenceville, GA, USA). SUM159 cells were 

purchased from Asterand (Asterand, Detroit, MI, USA) and grown in Ham’s F12 (Invitrogen) 

with 5% fetal bovine serum (Atlanta Biologicals) with insulin and hydrocortisone (Sigma 

Aldrich, St. Louis, MO, USA).  HEK-293T Ampho-Phoenix packaging cells were obtained with 

permission from Gary Nolan at Stanford University and DMEM (Invitrogen) with 10% fetal 

bovine serum (Atlanta Biologicals).  MCF7 cells were obtained from ATCC and maintained in 

DMEM (Invitrogen) with 10% fetal bovine serum (Atlanta Biologicals).  All cells were 

maintained in 5% CO2 at 37˚C. 

Plasmids and Lentiviral Transductions 

Lentiviral transduction of MCF10DCIS.com, MCF7, and SUM159 cells was performed 

as previously described (Kwak et al., 2007). Lentiviral transduction, SIM2s shRNA and SIM2s 

overexpression plasmids have been previously described (Gustafson et al., 2009b; Kwak et al., 

2007; Laffin et al., 2008). Retroviral plasmids were transfected into 293T Viral Packaging Cells, 

which stably express amphotrophic envelope proteins and are referred to as 293-Ampho.  Up to 

10 µg of plasmid was transfected using Gene Juice (Novagen, Merck, Darmstadt, Germany), in a 

3:1 ratio of Gene Juice (µL) to DNA (µg).  Media was changed 24 hours later, and collected for 
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infection 48 hours and 72 hours later. Viral media was filtered through 0.45 µM syringe filters 

and polybrene was added to a final concentrations of 4 µg/mL. Viral media was added to target 

cells, followed by centrifugation at 1200 rpm for 1 hour.  Target cells were incubated at 32⁰C for 

the duration of the infection protocol to promote viral stability. Selection was carried out using 

puromycin at varying concentrations, depending on the target cell type (.4µM-MCF10DCIS.com, 

.4µM-MCF7, 1µM-SUM159). Selection was considered complete when all cells in a mock-

infected plate were dead. 

Transient Transfections Using siRNA  

 CDKN1A and Negative Control siRNA was purchased from Invitrogen.  siRNA 

transfection was performed using Lipofectamine RNAiMax (Invitrogen) according to the 

manufacturer's protocol, and cells were analyzed 48 hours after siRNA treatment. 

Invasion Assays 

Invasion was measured using control and Matrigel-coated invasion chambers (Falcon 

BD, Franklin Lakes, NJ, USA). A total of 12,500 cells were seeded in serum-free Dulbecco’s 

modified Eagle’s medium (DMEM-F12, Invitrogen) in the upper chamber, with serum-

containing medium in the lower chamber as a chemo attractant. After 18 hours at 37 °C, cells 

were scraped from the upper chamber with a cotton swab, and the undersides of the membranes 

were fixed in 3.8% paraformaldehyde (Sigma, St Louis, MO, USA), stained with DAPI (4′,6′-

diamidino-2-phenylindole) (Invitrogen) and counted. The percent invasion was calculated 

according to the manufacturer’s instructions.  All experiments were done in triplicate. 
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Proliferation Assays 

Proliferation was measured using a Coulter particle counter. A total of 15,000 cells of 

each transduction were plated in triplicates on six-well plates, and then every 24 hours the cells 

were trypsinized and counted in triplicate. The procedure continued for 6 days, or until the cells 

reached 100% confluency.  Cells were imaged in 6 well plates on day 4 of proliferation using an 

Olympus IX71 inverted fluorescent microscope using Olympus CellSens Software (Olympus, 

Center Valley, PA, USA). 

 

In Vivo  

MMTV-Sim2s Mice 

The transgenic mice used in this study were described previously (Wellberg et al., 2010). 

An MMTV-KCR cassette was used with the Sim2s coding sequence to overexpress Sim2s in the 

mammary gland of FVB mice. All procedures were approved and followed the guidelines set 

forth by the Texas A&M University Animal Use and Care Committee. 

Animals 

For involution studies pups were removed from both WT and MMTV-Sim2s mice at 

lactation day 10. Tissue was harvested at 24, 48, and 72 hours after weaning. The fourth inguinal 

mammary glands were used for histological sectioning, RNA isolation, and protein isolation. 

Litters were normalized to eight pups at parturition. All animals were housed with litter under a 

standard 12-hour photoperiod. Males were analyzed for genetic orientation prior to mating (Klar, 

2003; Rahman et al., 2009).  The animals were given access to food and water ad libitum. Three 

mice per genotype were analyzed for each time point, and transgene expression was confirmed 

before further experimentation. Procedures were approved by the University Laboratory Animal 

Care Committee at Texas A&M University. 
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Xenograft Studies 

For xenograft studies, MCF10DCIS.com cells (50,000) were injected subcutaneously 

into 8- to 14-week-old female nude mice in 50% Matrigel (BD Biosciences, Bedford, MA, 

USA). Tumors were allowed to grow for 18 days, and were measured using calipers starting on 

day 13. Xenografts were weighed at harvest and either snap-frozen in liquid nitrogen and stored 

at −80 °C for DNA/RNA purification or formalin-fixed and paraffin-embedded. Three tumors for 

each variable were taken for RNA, and three for histochemical analysis.  Animal experiments 

were conducted following protocols approved by the Texas A&M Animal Care and Use 

Committee. 

 

Metabolic 

Mitochondrial Bioenergetics 

Seahorse analysis was performed as previously described (Meerbrey et al., 2011).  

Briefly, cells were seeded at 10,000 cells/well and allowed to adhere overnight.  Mitochondrial 

bioenergetic analysis was performed using a Seahorse XF24 Extracellular Flux Analyzer 

(Seahorse Bioscience, Massachusetts, USA).  Cells were exposed to mitochondrial drugs 

oligomycin (30 µM), FCCP (10 µM), and rotenone (50 µM) (Sigma Aldrich). 

NMR Spectroscopy 

Samples for NMR spectroscopy were obtained in triplicate from cell cultures. Cells were 

seeded at 80% density and allowed to grow for 24 hours, then media was collected and 

centrifuged at 15000xg for 10 minutes.  Before NMR analysis, 10%(v/v) D2O was added to all 

media samples. NMR spectra were measured on a 400 MHz spectrometer (Bruker, Billerica, 

MA, USA) equipped with a 5 mm triple resonance (TXI) probe. The spectra were measured with 

128 scans, a spectral width of 15 ppm and an acquisition time of 1.36 s, with 13C decoupling 
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(decoupling bandwidth of 9600 Hz). Measurement temperature was 298 K.  NMR data were 

processed and peaks were integrated using Bruker Topspin 3.0. Chemical shifts were referenced 

indirectly to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) signal at 0 ppm. The 

concentrations of lactate in different samples were determined by comparing the signal integrals 

from the media samples to those of a standard sample of 20mM lactate. The concentrations of 

glucose remaining in the media samples were determined by comparing the signal integrals to 

that of unused control media. For each sample, 1H pulse lengths were measured, and based on 

these parameters the concentrations obtained were corrected for differences in sensitivity.  

DCFH Assay 

Cellular ROS was measured as previously described (Eruslanov and Kusmartsev, 2010).  

Briefly, Cells were seeded at 10,000 cells per well in a 9-well plate 12 hours prior to 

experimentation.  Cells were washed with 1xPBS and incubated with 2.5µM CM-H2DCFDA 

(Invitrogen) for 30 minutes.  Cells were allowed to recover for 15 minutes and then fluorescence 

was measure in a fluorimetric plate reader at 495 nm excitation/521 nm emission. 

ATP-lite Analysis 

Intracellular ATP analysis was performed using the ATP-lite luminescence detection 

assay according to manufacturer’s protocol (Perkin-Elmer, Waltham, Massachusetts, USA).  

Briefly, cells were seeded at a density of 10,000 cells per well in a 96-well plate.  Cells were 

adhered for twelve hours then exposed to the compounds of interest (See Reagents).  ATP was 

measured 24 hours post treatment on a chemiluminescent plate reader.  Protein concentrations of 

cells were determined for signal normalization. 
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Lactate Measurements 

Extracellular lactate analysis was measured using the Lactate Assay Kit according to 

manufacturer’s protocol (Sigma-Aldrich).  Briefly, spent media from cells in 6-well plates was 

harvested and spun through a molecular weight cut off column at 10kD (EMD Millipore, 

Billerica, Massachusetts, USA) for 30 minutes to remove lactate dehydrogenase.  Flow through 

was collected.  5µl of media was used per sample.  Experimental triplicate samples were 

analyzed in duplicate.  Lactate was measured using a fluorimetric plate reader at 535nm 

excitation/567nm emission. 

Mitochondria Isolation 

 All chemicals were purchased from Sigma-Aldrich.  Mitochondria were isolated using 

the Abcam Mitochondrial purification protocol (MitoSciences, Eugene, Oregon, USA).  Briefly, 

cells were collected by centrifugation (370xg for 10min) and resuspended in NKM buffer (1mM 

Tris-HCl pH 7.4, .13M NaCl, 5mM KCl, 7.5mM MgCl2), and washed in NKM buffer 3 times.  

Cells were then resuspended in 6 cell volumes of homogenization buffer (10mM Tris-HCl, pH 

6.7, 10mM KCl, .15mM MgCl2, 1mM PMSF, 1mM DTT) and incubated on ice for 10 minutes.  

Using a glass homogenizer, cells were homogenized for 30 strokes or until cell breakage was 

approximately %60.  Homogenate was mixed with a 2M sucrose solution and mixed gently.  

Cellular debris was pelleted through centrifugation (1200xg for 5min) and supernatant was 

removed, containing mitochondria.  Mitochondria was pelleted through centrifugation at 7000xg 

for 10 minutes, and then resuspended in mitochondrial suspension buffer (10mM Tris-HCl pH 

6.7, .15mM MgCl2, .2M sucrose, 1mM PMSF, 1mM DTT).  Mitochondria were frozen at -20⁰C 

until use.  
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Microscopy 

Electron Microscopy 

Cells were fixed in 2% glutaraldehyde, 2.5% formaldehyde in sodium cacodylate buffer 

for 24 hours, then washed in 0.1 M sodium cacodylate buffer (Sigma-Aldrich).  Briefly, the 

buffer-washed cells were stained en bloc with 1% osmium tetroxide and 0.5% potassium 

ferrocyanide then dehydrated in an ascending alcohol series and embedded in epoxy resin. 

Ultrathin sections were examined with an FEI Morgagni 268 transmission electron microscope 

operating at an accelerating voltage of 80 kV (FEI, Hilssboro, OR, USA). Digital images of were 

acquired with a MegaViewIII camera operated with iTEM software (Olympus Soft Imaging 

Systems). Work was performed in the Texas A&M University College of Veterinary medicine & 

Biomedical Sciences Image Analysis Laboratory. 

Live Cell Imaging 

Cells were grown on coverslip chamber slides (Nunc) for 12 hours before 

experimentation.  Cells were incubated with MitoTracker Deep Red (100nM) or LysoTracker 

(200nM) (Invitrogen) for 30 minutes at 37˚C.   Images were acquired with a 63x oil plan-

apochromat objective. Lysotracker images were taken at 488nm excitation and 500-550nm 

emission.  Mitotracker deep red images were taken at 633nm excitation and 565-615nm 

emission. Image area was 142.9µm x 142.9µm.  Images were taken on a Zeiss 510 confocal 

microscope (Carl Zeiss Microscopy, Jena, Germany).  At least 10 images per specimen were 

collected for analysis.  Quantification of these images was done using Adobe Photoshop by 

analyzing the mean histogram of color specific channels. 
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Β-Galactosidase Staining 

Senescence was determined by β-Galactosidase Staining Kit (Cell Signaling, Beverly, 

Massachusetts, USA) according to manufacturer’s protocol.  Cells were grown and stained on 

coverslips and then imaged on the Zeiss AxioImager.v1 using a 40x objective lens (25.2x 

magnification) using Zeiss Axiovision software (Carl Zeiss Microscopy). 

Immunohistochemical Analysis 

Immunostaining was carried out as previously described (Kwak et al., 2007). Samples 

were incubated in blocking solution for 1 h, followed by incubation in primary antibody 

overnight at 4 °C. Antibodies used with dilution and antigen retrieval information are included in 

Table 2 and Table 3.  Tissue preparation and hematoxylin and eosin staining were carried out by 

the Histology Core Facility at Texas A&M University College of Veterinary Medicine and 

Biomedical Sciences. Immunostaining for SIM2s was performed on DCIS and IDC tissue 

sections provided by the University of Kansas Cancer Center Biospecimen Share Resources at 

the University of Kansas Medical Center. Statistical analysis of positive staining was performed 

using the ImageJ (National Institutes of Health, Bethesda, MD) cell-counting feature and has 

been previously described (Koodie et al., 2010; Stockmann et al., 2008).  Images were taken on a 

Zeiss AxioImager .v1 with a 10x (6.3x) and 40x oil objective lens (25.2x magnification) using 

Zeiss Axiovision software (Carl Zeiss Microscopy). 
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Table 2.  Immunohistochemical Antibodies 

 

 

 

Table 3.   Immunofluorescent Antibodies 

 

 

 

 

 

 

Target Source Dilution

CDH1 Cell Signaling 1:2000 5min high pressure

Cleaved Caspase 3 Cell Signaling 1:100 5min high pressure

GLUT1 Cell Signaling 1:250 5min high pressure

HK2 Cell Signaling 1:250 5min high pressure

KER14 Covance 1:250 5min high pressure

KER18 Neomarkers 1:500 5min high pressure

KER5 Covance 1:250 5min high pressure

Mucin‐1 Neomarkers 1:250 5min high pressure

p21 Cell Signaling 1:100 5min high pressure

p63 Neomarkers 1:250 5min high pressure

PECAM‐1 Santa Cruz 1:250 5min high pressure

Perilipin Cell Signaling 1:250 5min high pressure

Phopho‐STAT3 Cell Signaling 1:250 5min high pressure

SIM2 Millipore 1:100 5min high pressure

SIM2s Santa Cruz 1:250 5min high pressure

SMA Sigma 1:1200 5min high pressure

STAT3 Cell Signaling 1:200 5min high pressure

Vimentin Sigma 1:1000 5min high pressure

β‐Casein Santa Cruz 1:100 5min high pressure

Ag Retrieval

Target Source Dilution Ag Retrieval

SIM2s Santa Cruz 1:500 5min high pressure

VIM Covance 1:1000 5min high pressure

KER5 NeoMarkers 1:500 5min high pressure
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RNA 

RNA Isolation from Cells 

Cells were washed with PBS and RNA was isolated using the High Pure RNA Isolation 

Kit (Roche Applied Science, Indianapolis, Indiana, USA) following the manufacturer’s protocol 

for spin isolation, including DNase digestion of RNA contaminants.  RNA was eluted in 30 to 

50µL RNAse-free H2O and stored at -80 C.  

RNA Isolation from Tissue 

To isolate total RNA from tissue, sections of approximately 0.5 cm by 0.5 cm were 

homogenized in Trizol reagent (Invitrogen) for 30 seconds.  Samples were then centrifuged for 5 

min at 16.1K x g to pellet debris. Supernatant was mixed with 200 µL of chloroform and allowed 

to incubate at RT for 5 min. Following centrifugation at 12K x g for 15 min, aqueous layer was 

mixed with 1 mL of 75 % EtOH and inverted several times. Samples were centrifuged for 10 

min at 12K x g.  Supernatant was aspirated and pellets were washed in 75 % EtOH, then 

centrifuged for 5 min at 7.5K x g.  Supernatant was aspirated again, and pellets were 

resuspended in 100 µL of RNAse-free H2O. Rehydrated RNA was subjected to purification 

according to that described in the previous section for RNA isolation from mammalian cells. 

Reverse Transcription 

For cDNA synthesis, depending on the RNA concentration, 1-2 µg of RNA was used for 

reverse transcription reactions. cDNA was formed using the Transcriptor First Strand cDNA 

Synthesis Kit (Roche Applied Science) according to the manufacturer’s protocols. One µL of 

each 10 mM dNTPs and Oligo dT were added to RNA in H2O for a total volume of 12 µL. The 

sample was incubated at 70˚C for 10 min, then 4 µL 5X first strand buffer, 2 uL 0.1 M DTT, 1 

µL RNAse Inhibitor, and 1 µL Superscript Reverse Transcriptase were added for a new total 

volume of 20 µL per sample. The sample was incubated at 42˚C for 50 min, followed by 70˚C 
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for 15 min. cDNA was diluted to 20 to 25 ng/µL with H2O and stored at -20˚C.  These samples 

were then used for Q-PCR Analysis. 

PCR 

For chromatin immunoprecipitation, DNA samples were analyzed via PCR to determine 

binding at response elements on the proximal promoter of CDKN1A (P21) as previously 

described (Wellberg et al., 2010).  Briefly, 2µl of DNA were combined with 2.5 µl 10X Taq 

Buffer (Invitrogen), 1 µl 50mM MgCl2 (Invitrogen), 1 µL 10mM dNTPs (Invitrogen), 2.5µL 

Primers (See Table 4) (Sigma-Aldrich), .25 µl Taq polymerase (Invitrogen), and water for a total 

reaction volume of 25 µl.  PCR reactions were run on a thermal cycler for 33 cycles with an 

annealing temperature of 60⁰C.  Products were analyzed by electrophoresis on an 8% agarose gel 

with ethidium bromide (Sigma-Aldrich). 

 

Table 4.  ChIP RT-PCR Primers 

Gene Sense Anti-sense 

CDKN1A TATAA Box TCTAGGTGCCCAGGTGCTT ACATTCCCCACGAAGTGAG 

CDKN1A  3’p53RE CCAGGTCTTGGATTGAGGAA TGTTAAGGTGGTGGCATTGA

 

Quantitative Real-time PCR 

One µL of each cDNA sample were mixed with 5.0 µL 2x SyberGreen master mix 

(Roche Applied Science), 3 µL H2O, and 1 µL of both sense and antisense primers (Tables 5 

and 6) and added to a 384 well plate (Applied Biosystems). Reactions were run according to the 

following cycle conditions: 95⁰C for 10 minutes, and 40 cycles of 95⁰C for 10 seconds followed 

by 60⁰C for 1 minute. Analysis was performed using the ΔΔCT method as previously described 

(Hettinger et al., 2001). For mouse mammary tissue samples, expression of Claudin 7 was used 
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to normalize mRNA levels of assayed genes (Blackman et al. 2005).  For cell culture, expression 

of TBP and/or β-Actin was used to normalize mRNA levels. 

 

Table 5.  Human Q-PCR Primers 

 

Gene Sense Anti‐sense

ACO2 TGTCACGTCCCCAGAGATTG CGGTCTCTGGGTTGAACTTGA
AKT GGGCGAGCTGTTTTTCCAT TGTAGATAGTCCAAGGCAGAGACAA

B2Globulin GGCTGGCAACTTAGAG GCCTTACTTTATCAAATGTAT

B‐Actin GCAACGAGCGGTTCCG CCCAAGAAGGAAGGCTGGA

BNIP3 TTCCCCCCAAGGAGTTCCT CGCTCGTGTTCCTCATGCT

CDH1 CACAGACGCGGACGATGAT GATCTTGGCTGAGGATGGTGTAA

CDKN1A CCTAATCCGCCCACAGGAA AAGATGTAGAGCGGGCCTTTG

CHOP AGAACCAGGAAACGGAAACAGA TTCATGCGCTGCTTTCCA

CSN2 TGTGCTCCAGGCTAAAGTTCACT GGTTTGAGCCTGAGCATATGG

G6PD GCCTTCTGCCCGAAAACAC TGCGGATGTCAGCCACTGT

GATA3 CTG‐GCT‐CGC‐AGA‐ATT‐GCA AAC‐TGG‐GTA‐TGG‐CAG‐AAT‐AAA‐ACG

GLUT1 CAGCTGACGTGACCCATGAC CCTTCTTCTCCCGCATCATC

GLUT3 GACTCTTCGTCAACCGCTTTG TGACAGCCAACAGGTTGACAA

GLUT4 GCTTCGTGGCATTTTTTGAGA AGCTCGGCCACGATGAAC

HK1 TCTTATTTGAAGGGCGGATCA TTTCGATGGCTGACACATCAC

HK2 GCATCTTTGAAACCAAGTTCTTGTC GGTGCTCTCAAGCCCTAAGTG

KER18 GAGGCTGAGATCGCCACCTA CCAAGGCATCACCAAGATTAAAG

LC3 GTGAACCAGCACAGCATGGT CGTCTTTCTCCTGCTCGTAGATG

LDHA AAATTGAAGGGAGAGATGATGGAT AGTTACATTATAGTCTTTGCCAGAGA

MDH2 GGAGTGGCCGCAGATCTG TCAGGTCCGAGGTAGCCTTTC

MFN1 TTCTACTCCCACTGCTCCTACCA TCATGAGTTCTTCCTGTGATGCA

MFN2 ACCATGCAGCAGGACATGATAG GACTCCGCACAGACACAGGAA

MTOR AGGCGGCATTGTCTCTATCAA GCAGTAAATGCAGGTAGTCATCCA

OPA1 CTGTGGATGCTGAACGCAGTA CTCCTTCCATGAGGGTCCATT

P63 CCT‐TCT‐GTG‐AGC‐AG‐CTT‐ATC‐A CAT‐CAG‐GAA‐TGG‐TTG‐TAG‐GAG‐TGA

PARKIN TCCCAGTGGAGGTCGATTCT GCTTAGCAACCACCTCCTTGA

PGC1a TGTCACCACCCAAATCCTTATTT TGTGTCGAGAAAAGGACCTTGA

PINK1 GGACACGAGACGCTTGCA CTTACCAATGGACTGCCCTATCA

SCO2 CTTCACTCACTGCCCTGACA TGAGCAGGTAGATGGCAATG

SIM2s GCTGAGAACAAACCCTTACC GAAGCAGAAAGAGGGCAAGTT

SLUG GGCTGGCCAAACATAAGCA CTGCAAATACTGCAACAAGGAATAC

SMA CAA‐GTG‐ATC‐ACC‐ATC‐GGA‐AAT‐G AGC‐AA‐CTC‐CAT‐CCC‐GAT‐GA

SMO CAC‐CCT‐GGC‐CAC‐ATT‐CGT CGC‐ATT‐GAC‐GTA‐GAA‐GAG‐AAT‐AAC‐A

SOD2 TTGGCCAAGGGAGATGTTACA TGATATGACCACCACCATTGAAC

TBP TGCACAGGAGCCAAGAGTGAA CACATCACAGCTCCCCACCA

TFAM GTGCACCGGCTGTGGAA TGAAAACCACCTCGGTAAATACAC

TIGAR CTCCAGTGATCTCATGAG AGACACTGGCTGCTAATC

TSC2 AGCTCTACCATTCCCCCTTCTT CTGCACCGACCGCTCAA

VIM TTCTCTGCCTCTTCCAAACTTTTC GGGTATCAACCAGAGGGAGTGA

XBP1 GTGAAGGAAGAACCTGTAGAAGATGA GGGCAGTGGCTGGATGAA
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Table 6.  Mouse Q-PCR Primers 

 

 

Protein 

Protein Isolation from Cells 

Cells were washed once with PBS and scraped in PBS containing 25x protease inhibitor 

cocktail (Roche Applied Science). Cells were pelleted by spinning in a pre-cooled Eppendorf 

centrifuge at 2000 rpm for 4 minutes.  Lysis buffer [20 mM Tris-Cl pH 8.0, 137 mM NaCl, 10 % 

glycerol, 1 % NP-40, 2 mM EDTA + 25x CPI + phosphatase inhibitors (0.5 mM NaMolybdate, 

0.1 mM Na Orthovanadate, and 1 mM NaF)] was added and resuspended cells were agitated at 

4⁰C for 30 minutes.  Debris was pelleted by spinning in a cooled Eppendorf centrifuge at 16.1K 

X g for 10 minutes. Aliquots of 200 µL were stored at -20⁰C. If used immediately, they were 

stored at 4⁰C. Protein content was estimated using the RCDC Protein Assay (BioRad, Hercules, 

CA, USA) according to the manufacturer’s protocol. 

 

 

 

Gene Sense Anti‐sense

CEBP/D CGC‐CGC‐AAC‐CAG‐AT GCT‐GAT‐GCA‐GCT‐TCT‐CGT‐TCT
Claudin 7 TCCCTGGTGTTGGGCTTCT ACAGCGTGTGCACTTCATG

CSN2 TGTGCTCCAGGCTAAAGTTCACT GGTTTGAGCCTGAGCATATGG

GAPDH CTA‐ACA‐CA‐AAT‐GGG‐GTG‐AGG TCA‐TAC‐TTG‐GCA‐GGT‐TTC‐TCC

IGFBP5 GAT‐GAG‐ACA‐GGA‐ATC‐CGA‐ACA‐AG TTG‐AAC‐TCC‐TGG‐AGG‐GAA‐GCT

IKK2 CAG‐CGA‐GCA‐GCC‐ATG‐ATG GGA‐GGC‐CAT‐GGC‐GTT‐CT

KER18 CATCGTCTTGCAGATCGACAA GACTGGCGCATGGCTAGTTC

NFKB1 GCC‐GTG‐GAG‐TAC‐GAC‐AAC‐ATC TGT‐CCA‐CGT‐GGG‐CAT‐CAC

NFKB2 GGG‐CAG‐ACT‐GGT‐GTC‐ATT‐GA GGT‐TGA‐TGA‐CGC‐CGA‐GGT‐A

RELA GCC‐CAT‐GGA‐GTT‐CCA‐GTA‐CTT‐G GTC‐CTT‐TTG‐CGC‐TTC‐TCT‐TCA

SIM2s AACCAGCTCCCGTGTTTGAC ACTCTGAGGAACGGCGAAAA

STAT3 GGA‐GTA‐CGT‐GCA‐GAA‐GAC‐ACT‐GA TCC‐GAT‐GCA‐GCG‐GAT‐CT

TBP TGC ACA GGA GCC AAG AGT GAA CAC ATC ACA GCT CCC CAC CA
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Western Blot Analysis 

Protein samples were diluted in 30 µL of H2O per sample. 6 µL of 6x SDS loading 

buffer (60 % glycerol, 0.3 M Tris pH 6.8, 12 mM EDTA, 12 % SDS, 6 % beta- mercaptoethanol, 

0.5 % bromophenol blue) was added and samples were boiled for 5 minutes, followed by 5 

minutes of cooling on ice. Acrylamide gels ranging from 8%-12% were used for analysis. 

Depending on the size of the target protein, gels were run at 110mV (constant V) for 1-2 hours 

and transferred to PVDF membranes for 1.5 to 3 hours at 110mA (constant mA).  After a 5 

minute wash in PBS + 0.05 % Tween 20 (PBST), membranes were blocked for 1 hour or 

overnight in PBST + 5 % milk (BioRad).  See Table 7 for antibody sources and incubation 

conditions. Proteins were visualized using the Amersham ECL Plus western blotting detection 

reagent (GE Healthcare) on Amersham Hyperfilm (GE Healthcare, Waukesha, WI, USA).  All 

films were scanned using an HP All-in-one scanner. 

 

Table 7.  Western Blot Antibodies 

 

 

Microarray Analysis 

Gene Expression Microarray 

The Whole Mouse Genome CodeLink Bioarray (Amersham, GE Healthcare, 

Piscataway, NJ) was used to determine differential gene expression between WT and MMTV-

Sim2s transgenic females at 72 hours of involution. Sample preparation and hybridization were 

performed according to the manufacturer's protocols and as previously described (Davidson et 

Target Source Catalog # Dilution

Actin Sigma A5441 1:5000
p21 Cell Signaling 2947 1:1000

LC3B Cell Signaling 3868 1:4000

Total OXPHOS Cocktail MitoSciences MS601 1:100
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al., 2004) . RNA samples were confirmed for Sim2s overexpression via qPCR before microarray 

analysis. 

The Whole Human Genome CodeLink Bioarray (Applied Microarrays, Tempe, AZ, 

USA) was used to determine differential gene expression between Scr and SIM2si MCF7 breast 

cancer cells. Sample preparation and hybridization were performed according to the 

manufacturer’s protocols and as previously described (Davidson et al., 2004).  RNA samples 

were confirmed for loss of SIM2s expression via qPCR prior to microarray analysis. 

Microarray Analysis 

Raw microarray data were initially normalized and analyzed using CodeLink Expression 

Analysis Software version 4.1.0.29054 (GE Healthcare). A median normalization method was 

used, with a 20% threshold trim percentage. Microarray data were analyzed, and functionally 

analyses were generated through the use of Ingenuity Pathways Analysis (Ingenuity Systems. 

Redwood City, CA, USA). A data set containing gene identifiers and corresponding expression 

values was uploaded into the application. The identifiers were mapped to their corresponding 

objects in Ingenuity's Knowledge Base. A P value cutoff of 0.05 was set to identify the 

expression of which pathway was significantly differentially regulated. These molecules were 

integrated into a molecular network developed from information in Ingenuity's Knowledge Base. 

The data were then analyzed for the biological functions and/or diseases that were most 

significant. 

Accession Numbers 

The data discussed in this publication have been deposited in NCBI's Gene Expression 

Omnibus and are accessible through GEO Series accession number GSE44187(MCF7 array) and 

GSE27012 (Involution) (Edgar et al., 2002). 
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Mechanistic Assays 

Luciferase Promoter Assay 

CDKN1A-Luciferase constructs were obtained from Dr. Zhi-Min Yuan (Harvard School 

of Public Health).  Luciferase assays were performed as previously described (Yuan et al., 1996).  

Briefly, MCF7 breast cancer cells were transiently transfected with a CDKN1A-luciferase 

construct, then exposed to increasing amounts of SIM2s protein.  Luciferase was measured in a 

luciferase plate reader as an indicator of gene expression. 

Chromatin Immunoprecipitation Assay (ChIP) 

             Chromatin Harvest from Cells 

Formaldehyde (Sigma Aldrich) was added to fresh culture media (final concentration 

1%) and cells were incubated at room temperature (RT) for 10 minutes with gentle rocking. 

Glycine (Sigma Aldrich) was added to a final concentration of 125 mM and allowed to quench 

formaldeyhde for 5 additional minutes at RT. Cells were washed 2 times with ice cold PBS and 

scraped in cold PBS containing 25x Complete protease inhibitors (Roche Applied Science).  

Cells were pelleted by spinning at 2000 rpm (805 x g) for 4 min using an Eppendorf 5810R 

centrifuge chilled to 4˚C. SDS lysis buffer (50mM Tris pH 8.1, 10 mM EDTA, 1% SDS, 25x 

CPI) was added, and resuspended cells were incubated on ice for 10 minutes. Using a sonicator 

(Heat Systems Ultrasonics Inc.), DNA was sheared in 20 second pulses, 16 times, allowing the 

lysate to cool on wet ice for 1 minute after every pulse.  Debris was pelleted by spinning at 

13,200 rpm (16.1K x g) in an Eppendorf 5415D centrifuge for 10 minutes at 4˚C. Chromatin was 

stored at -80˚C in 100 µL aliquots. 

             ChIP Assay 

One aliquot of chromatin was used for each assay.  ChIP dilution buffer (0.01% SDS, 

1.1 % Triton X-100, 1.2 mM EDTA, 16.7 mM Tris pH 8.1, 167 mM NaCl, 25x CPI) was added 
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to 5-fold dilution. 100µL of normal rabbit serum (5 µL Santa Cruz) conjugated Protein A 

Dynabeads (Invitrogen) was added for 1 hour and chromatin was precleared at 4⁰C with 

agitation.  Beads were pelleted by magnet and lysate was precleared once more with 100 µl 

magnetic beads. Antibody conjugated beads (4µg SIM2 Rbd antibody, Millipore) were added 

and chromatin was agitated at 4⁰C overnight.   Beads were pelleted and washed consecutively in 

each solution: low salt wash (0.1 % SDS, 1 % Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.1, 

and 150 mM NaCl), high salt wash (0.1 % SDS, 1 % Triton X-100, 2 mM EDTA, 20 mM Tris 

pH 8.1, and 500 mM NaCl), lithium chloride wash (0.25 M LiCl, 1 % NP-40, 1 % sodium 

deoxycholate, 1 mM EDTA, and 10 mM Tris pH 8.0), and twice in TE buffer (10 mM Tris pH 

8.0 and 1 mM EDTA).  TE washes took place at RT and others at 4⁰C.  Immune complexes were 

eluted from beads in 1 % SDS and 0.1 M NaHCO3, adding 250µL to each aliquot and rocking 

for 15 min at RT, then repeating for a total of 500 µL eluate.  NaCl was added for a final 

concentration of 0.3 M with 1 µL of 10 mg/mL RNAse-A.  Eluate was incubated at 65⁰C for 5 

hours to reverse formaldehyde crosslinks. Two and one half volumes of 100 % EtOH were added 

to each sample and they were placed at -20⁰C overnight. On the third day, chromatin was 

pelleted by spinning in an Eppendorf centrifuge at 16.1K x g for 10 minutes. Supernatant was 

removed and the pellet resuspended in 100 µL H2O, with 2 µL 0.5 M EDTA, 4 µL 1 M Tris pH 

6.5, and 1 µL of 20 mg/mL proteinase K (Sigma Aldrich).  Samples were incubated at 45 C for 2 

h, and then purified using a Qiagen PCR purification kit (Qiagen).  DNA was eluted in 50 µL 

elution buffer (supplied with kit). PCR was performed according to conditions listed above. 
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Miscellaneous 

Statistical Analyses 

All differences were analyzed with Student’s t test unless otherwise specified.  Student’s 

T-Tests were performed in Microsoft excel.  A p-value less than 0.05 was considered to be 

statistically significant.  For involution samples Fischer’s exact test was also used to test for 

significance.  Tissue microarrays and pathology reports were analyzed using categorical analysis 

accompanied with the Chi2 Test of homogeneity with Likelihood Ratio and Pearson Tests.  

Tissue microarray analysis and Fischer’s exact tests were performed using JMP statistical 

software (JMP, SAS Cary, North Carolina, US).  Microarray heat maps were generated using R 

statistical software (R, GNU project). 

Reagents  

Cells were treated with rotenone (1µM–24hrs), oligomycin (2µM-24hrs) and 2-deoxy 

glucose (2-DG, 10mM-24hrs) (Sigma-Aldrich) for ATP and ROS assays. Cells were treated with 

rotenone (50µM), oligomycin (30µM), and carbonilcyanide p-triflouromethoxyphenylhydrazone 

(FCCP, 10µM) (Sigma-Aldrich) for seahorse flux analysis.   All compounds were reconstituted 

in DMSO (Sigma-Aldrich).  
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CHAPTER III 

MANUSCRIPT 1: SINGLEMINDED-2S (SIM2S) PROMOTES DELAYED 

INVOLUTION OF THE MOUSE MAMMARY GLAND THROUGH 

SUPPRESSION OF STAT3 AND NFκB* 

 

Synopsis 

Post-lactational involution of the mammary gland following lactation provides a unique 

model to study breast cancer susceptibility and metastasis.  We have shown that the short 

isoform of Singleminded-2 (Sim2s), a bHLH/PAS transcription factor, plays a role in promoting 

lactogenic differentiation, as well as in maintaining mammary epithelial differentiation and 

malignancy.  Sim2s is dynamically expressed during mammary gland development, with 

expression peaking during lactation, and decreasing in early involution.  To determine the role of 

Sim2s in involution, we used transgenic mice expressing Sim2s under the mouse mammary 

tumor virus (MMTV-Sim2s) promoter.  Over-expression of Sim2s in the mouse mammary gland 

resulted in delayed involution, indicated by a lower proportion of cleaved caspase-3 positive 

cells and slower re-establishment of the mammary fat pad.  Immunohistochemical and 

quantitative RNA analysis showed a decrease in apoptotic markers and inflammatory response 

genes, and an increase in anti-apoptotic genes, which were accompanied by inhibition of signal 

transducer and activator of transcription 3 (Stat3) activity.  Microarray analysis confirmed that 

genes in the Stat3 signaling pathway were repressed by Sim2s expression, along with NFκB and 

other key pathways involved in mammary gland development.  Multiparous MMTV-Sim2s 

                                                      
* Reprinted with permission from “Singleminded-2s (Sim2s) promotes delayed involution of the mouse 
mammary gland through suppression of Stat3 and NFκB” by Scribner, K. C., Wellberg, E. A., Metz, R. P., 
and Porter, W. W., 2011. Mol Endocrinol, Apr; 25(4):3-44, Copyright 2011 by The Endocrine Society.  
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females displayed a more differentiated phenotype compared to wild-type controls, characterized 

by enhanced β-casein expression and alveolar structures. Together, these results suggest a role 

for Sim2s in the normal involuting gland, and identify potential down-stream pathways regulated 

by Sim2s. 

 

Introduction 

Mammary gland involution is the regression of a lactating mammary gland to its 

quiescent state following weaning and is characterized by a decrease in milk protein, collapse of 

alveolar structures, apoptosis of epithelial cells, and re-establishment of the fat pad (Baxter et al., 

2007; Furth, 1999; Thangaraju et al., 2004; Walker et al., 1989; Wilde et al., 1999).  Involution 

has been shown to proceed in two separate phases; first an acute response phase characterized by 

a decrease in milk protein synthesis, and epithelial cell apoptosis (Baxter et al., 2007; Bierie et 

al., 2009; Clarkson and Watson, 2003; Furth, 1999; Henson and Tarone, 1994; Jaggi et al., 1996; 

Lund et al., 1996; Marti et al., 1999; Quarrie et al., 1996).  This initial phase is reversible and 

occurs 1-3 days post weaning. Acute phase involution is characterized by a drop in Stat5, 

followed by an increase in Stat3 signaling.  The second, irreversible, phase begins at 72 hours 

after pup removal, and is typified by a collapse in the alveoli, extensive epithelial apoptosis, and 

breakdown of the basement membrane by matrix metalloproteinases (MMPs) (Stein et al., 2007).  

Involution is a unique process with a wound healing signature and controlled inflammation, both 

of which are associated with breast cancer progression, metastasis, and survival. Studies 

investigating differences in gene expression, extracellular matrix composition, and signaling 

associated with involution and breast cancers have shown that metastatic breast cancer shares 

characteristics of the involuting mammary gland (Clarkson and Watson, 2003; Clarkson et al., 

2004; Come et al., 2004; Henson and Tarone, 1994; Jager et al., 1997; Lefebvre et al., 1992; 
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Lyons et al., 2009; McDaniel et al., 2006; O'Brien and Schedin, 2009; Pensa et al., 2009; 

Radisky and Hartmann, 2009).  Therefore, defining the mechanisms regulating involution will 

identify potential pathways involved in breast cancer progression. 

Singleminded-2s (Sim2s) is a member of the bHLH/PAS family of transcription factors 

that has been implicated in normal mammary gland development and is frequently lost or 

reduced in primary human breast tumors.  We have shown that Sim2s is expressed in mouse 

luminal mammary epithelial cells and is developmentally regulated with highest expression 

observed in mid-lactation (Kwak et al., 2007; Wellberg et al., 2010). To further define the role of 

Sim2s in mammary gland development, we generated a transgenic mouse expressing Sim2s 

under control of the Mouse Mammary Tumor Virus promoter (MMTV-Sim2s) (Wellberg et al., 

2010). Analysis of mammary glands from staged virgin MMTV-Sim2s and WT mice, showed 

that mRNA levels of Csn2 and Wap, were significantly increased, implying that Sim2s 

expression is associated with enhanced differentiation (Wellberg et al., 2010).  While Sim2s is 

expressed in mammary epithelial cells, it is down regulated in a majority of breast tumors and 

breast cancer cell lines and forced expression of Sim2s in invasive breast cancer cells inhibits 

growth and motility.  In addition, loss of Sim2s in the mouse mammary gland and in normal 

human breast epithelial cells results in an epithelial-mesenchymal transition (EMT), inducing an 

aggressive basal like phenotype (Gustafson et al., 2009a; Kwak et al., 2007; Laffin et al., 2008). 

Mammary glands from Sim2-null mice show impaired development, as the epithelial ducts do 

not properly form and differentiate (26).  

To further elucidate the function of Sim2s in breast cancer progression and metastasis, as 

well as the function of Sim2s in normal mammary development, we analyzed the effect of Sim2s 

over-expression on involution following forced weaning (Wellberg et al., 2010).  We found that 

mammary gland involution is disrupted in MMTV-Sim2s mice as demonstrated by a delay in the 
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reoccurrence of the fat pad and decrease in apoptosis.  Furthermore, over-expression of Sim2s 

inhibited Stat3-mediated signaling and other pathways involved in the acute phase response.  

These studies extend the role of Sim2s in mammary gland development and identify Sim2s-

regulated gene expression signatures that correlate with involution. 

 

Results 

Constitutively Active Sim2s Delays Mouse Mammary Gland Involution 

To determine the effect of Sim2s on mammary involution, we analyzed glands from 3 

MMTV-Sim2s transgenic mice force-weaned at lactation day 10 and harvested at 24, 48, and 72 

hours after pup removal.   Histological analysis showed clear differences starting at 24 hours 

post weaning in the number of apoptotic cells shedding into the alveolar lumen (Figure 12 A-D).  

Transgenic Sim2s mammary glands maintained distinct alveolar structures with copious amounts 

of milk at 72 hours of involution (Figure 12 K & L), while the wild-type glands had larger 

adipocytes and breakdown of luminal structures (Figure 12 I & J).  Consistent with the 

observation that Sim2s promotes alveolar differentiation (Wellberg et al., 2010), we also 

observed an increase in β-casein (Csn2) and Whey Acidic Protein (Wap) gene expression 24 

hours after pup removal as compared to controls (Figure 12 M & N).   However, we observed no 

changes in phospho-Stat5a staining (data not shown), suggesting that Stat5a signaling is not 

involved in mediating this phenotype.  Immunohistochemical staining of involuting mammary 

glands with anti-perilipin revealed distinct differences in adipocyte size between the transgenic 

and wild type glands 48 and 72 hours after pup removal.  Figure 13 shows both fewer and 

smaller adipocytes in the fat pads of MMTV-Sim2s mice compared to wild type mice, indicating 

a delay in adipocyte lipid synthesis and repopulation of the mammary fat pad resulting from 

Sim2s over-expression.  
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Figure 12. Involution is Delayed and Milk Protein mRNA Levels Are Increased in MMTV-Sim2s 
Transgenic Mice.Normal (FVB) and MMTV-Sim2s mice were harvested at 24, 48, and 72 hours 

involution (I24, I48, I72).  A,B,E,F,I, and J - Hematoxylin & eosin (H&E) stained mammary glands from 
wild-type FVB mice.  C, D, G, H, K, and L - H&E stained mammary glands from MMTV-Sim2s 

transgenic mice. Transgenic mammary glands show less apoptotic cell shedding, slow fat pad 
reoccurrence, and slower alveolar regression (Indicated by arrows).  A-D - 24 hours involution.  E-H - 48 
hours involution.  I-L - 72 hours involution.  Magnification bar represents 100µm on all images.  Images 
are representative of all samples collected.  M – Quantitative PCR analysis of involuting mammary gland 
β-casein (Csn2).  N – Quantitative PCR analysis of involuting mammary gland Whey Acidic protein 

(Wap).  Transgenic mammary glands have an increased trend of milk protein mRNA expression 
throughout involution when normalized to an epithelial specific control gene (Claudin 7). 
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Figure 13.  Delayed Fat Pad Regeneration in MMTV-Sim2s Mice During Involution.   Perilipin staining 
of wild-type FVB and transgenic MMTV-Sim2s mice. A-D - mammary gland 48 hours involution.  E-H - 

Mammary glands I72 hours involution.  A, B, E, and F - Wild-type FVB mammary glands.  C, D, F, and H 
- MMTV-Sim2s mammary.  Transgenic mammary glands show less fat pad regeneration post forced 

weaning.  Magnification bars represent 100 µm.  Images are representative of all samples. 
 

 

The acute phase of involution is largely characterized by shedding of apoptotic cells into 

the lumen of mammary gland alveoli.  To evaluate differences in apoptosis between transgenic 

and WT involuting mammary glands, we used immunohistochemistry to evaluate cleaved 

caspase-3, which is normally confined to those cells that have undergone apoptosis and shed into 

the lumen.    The results showed a significant increase in caspase-3 positive cells in involuting 

glands from MMTV-Sim2s mice at 24, 48, and 72 hours compared to controls (Figure 14).  
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Figure 14.  MMTV-Sim2s Transgenic Mice have Significantly Lower Levels of Apoptotic Cells During 

Involution.  A-L - Wild-type and MMTV-Sim2s mammary glands stained for cleaved caspase 3.  A-D - 24 
hours involution.  E-H - 48 hours involution.  I-L - 72 hours involution.  A, B, E, F, I and J - Wild-type 
FVB mammary glands.  C, D, G, H, K and L - MMTV-Sim2s mammary glands.  Magnification bars 

represent 100 µm in all images.  Images are representative of all samples.  M - Quantification of cleaved 
caspase 3 images, %Positive cells taken from five images for each mouse, counted and averaged.  MMTV-
Sim2s transgenic mammary glands have significantly lower levels of cleaved-caspase 3 positive cells.  * = 

p-value<.05 
 

 

Multiparous MMTV-Sim2s Mammary Glands Exhibit Alveolar Structure and Milk Protein 

Expression 

To determine the effect of Sim2s over-expression on multiple rounds of involution, 

mammary histology of transgenic and WT mice that had gone through at least 3 pregnancies 

each was evaluated. Analysis of H&E staining shows a distinct alveolar phenotype in the 
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MMTV-Sim2s mammary glands with a more differentiated morphology and lipid accumulation 

(Figure 15 B, C, E, F) as compared to control animals (Figure 15 A and D). Furthermore, 

immunohistochemical analysis showed that WT glands have little β-casein expression, whereas 

the MMTV-Sim2s gland has distinct staining within the alveolar structures (Figure 15 H-M).  

 

 

Figure 15.  Multi-parous MMTV-Sim2s Females Have More Alveolar Structures in the Non-lactation 
Gland, and Higher β-casein Expression.   A-F - H&E staining for multi-parous (+1 litter) WT and MMTV-
Sim2s mice.  A & D, WT multiparous, non-lactating mammary glands have small ductal branching similar 

to the virgin gland.  B, C, E, and F – MMTV-Sim2s multi-parous, non-lactating mammary glands have 
larger alveolar glands indicating an incomplete involution (Indicated with arrows).  Magnification bars 

represent 100µm.  H-M - β-Casein Immunohistochemical staining of multi-parous wild-type and MMTV-
Sim2s mice. H & K - WT multiparous, non-lactating mammary glands show little to no detectable levels 

of β-casein.  I, J, L, and M - MMTV-Sim2s multi-parous, non-lactating mammary glands show much 
higher levels of β-casein in the alveolar structures still present in the quiescent gland.  Magnification bars 

represent 100µm.  Images are representative of at least 60% of samples. 
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Sim2s Expression Inhibits Activation of Stat3 

Stat3 signaling plays an important part in regulating mammary gland involution by 

inducing genes involved in inflammation and the acute phase response.  Activation of Stat3 

through phosphorylation promotes translocation into the nucleus, where phospho-Stat3 (pStat3) 

functions as a transcriptional regulator.  Analysis of pStat3 staining in WT and MMTV-Sim2s 

mice showed chimeric staining patterns throughout the mammary epithelium, but glands from 

transgenic mice appeared to have far fewer pStat3-positive cells than WT glands (Figure 16 A-

L).  Quantification of pStat3-positive cells revealed a significant decrease in Sim2s glands at 48 

and 72 hours of involution (Figure 16 M).  Pan-Stat3 immunohistochemistry was also performed 

to ensure pStat3 changes seen are due to altered activation of Stat3. No changes are seen 

between wild-type and transgenic mammary glands in levels of Stat3 (Figure 17 A-L).  To 

determine if the reduction of active Stat3 seen in MMTV-Sim2s mice correlated with a decrease 

in down-stream Stat3 target genes, we performed qPCR analysis for C/EBPδ and IGFBP5 and 

found a distinct downward trend in gene expression in Sim2s transgenic mice at 72 hours of 

involution (Figure 16 O and P).  Together, these results suggest that the delayed involution 

observed in mammary glands from MMTV-Sim2s mice is mediated, in part, by Sim2s-dependent 

suppression of the Stat3 pathway. 
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Figure 16.  Active Stat3 and Stat3 Target Genes Are Significantly Lower in MMTV-Sim2s Mice During 

Involution.    A-L - Immunohistochemical staining of phosphorylated Stat 3 in wild-type and MMTV-
Sim2s mice.  A-D - 24 hours involution.  E-H - 48 hours involution.  I-L - 72 hours involution.  A, B, E, F, 
I, and J - Wild-type mammary glands have very high levels of pStat3, especially in the epithelial secretory 
cells.  C, D, G, H, K, and L - MMTV-Sim2s transgenic mammary glands exhibit significantly lower levels 
of pStat3 staining.  Heterogeneous mixture of p-Stat3 staining is consistent with heterogeneous expression 

of MMTV-LTR.  No difference was seen in pan Stat3 staining (Supp. 1).  Magnification bars represent 
100µm.  Images are representative of at least 60% of samples.  M – Quantification of pStat3 staining, four 

images were taken for each gland harvested and counts were averaged. N – mRNA expression levels of 
pan Stat3 in involuting mammary glands.  O and P – Stat3 target genes C/EBPδ and IGFBP5 have 

downward trends in mRNA expression at 72 hours in transgenic mice as shown by quantitative PCR. * = 
p-value<.05 
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Figure 17.  Immunohistochemical Analysis of pan-Stat3 During Involution Reveals No Change in Overall 
Expression.   A-L - Immunohistochemical staining of Stat 3 in wild-type and MMTV-Sim2s mice.  A-D - 
24 hours involution.  E-H - 48 hours involution.  I-L - 72 hours involution.  A, B, E, F, I, and J - Wild-type 
mammary glands.  C, D, G, H, K, and L - MMTV-Sim2s transgenic mammary glands.  Both wild-type and 
transgenic mammary glands express pan-stat3 at comparable levels.  Stat3 is detected both as a cytosolic 
and nucleic stain, which is expected with non-active Stat3.  Magnification bars represent 100µm.  Images 

are representative of at least 60% of samples. 
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Microarray Analysis Revealed Changes in Pathways Regulating Involution, Specifically Stat3 

and NFκB 

Microarray analysis was performed using mammary glands from WT and MMTV-Sim2s 

transgenic females harvested 72 hours after force-weaning to identify additional pathways 

regulated by Sim2s during involution.  Data was analyzed using the Ingenuity Pathway Analysis 

Software. The significance of the association between the data set and the canonical pathway 

was measured by taking a ratio of the number of molecules from the data set that map to the 

pathway divided by the total number of molecules that map to the canonical pathway displayed.  

Fisher’s exact test was used to calculate a p-value to determine the probability that the 

association between the genes in the data set and the canonical pathway is explained by chance 

alone.  As expected, one of the most significantly affected pathways identified in the involuting 

MMTV-Sim2s mammary gland was the Jak/Stat signaling pathway, which is involved in 

regulating mammary gland growth, differentiation, migration, and apoptosis.   Other pathways 

identified, including Notch, Wnt/β-catenin, PI3K/Akt, and NFκB, also play roles in involution 

and breast cancer progression.  Changes in multiple genes involved in NFκB signaling, identified 

in the microarray studies, were verified using qPCR (Figure 18 B-E).  In transgenic mammary 

glands, Ikk2, an activator of NFκB, showed reduced expression compared to wild type glands 

throughout the time series. NFkB2 expression was gradually upregulated in wild type glands, 

showing maximal expression by 72 hours; however, the levels remained low in glands from 

transgenic females.  These data suggest that Sim2s regulates multiple pathways involved in 

normal mammary gland function and malignancy. 
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Figure 18.  Canonical Pathway Analysis of 72 Hour Involuting Glands Reveals Multiple Pathways that 

Are Affected by MMTV-Sim2s Over Expression.   A- Canonical Pathway Analysis was performed using 
Ingenuity Pathway Analysis Software.  Statistically significant data (p-value <.05) from the Codelink 

Microarray was analyzed to determine what pathways were significantly altered by Sim2s expression. B-C 
- Quantitative PCR analysis of Ikk2 and NFκB 2 show downward trends in MMTV-Sim2s mice.   
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Discussion 

We have shown that Sim2s promotes mammary lactogenic differentiation when over 

expressed in virgin mice (Wellberg et al., 2010).  The objective of this study was to evaluate the 

effect of Sim2s over expression on mammary involution following forced weaning.  Here, we 

demonstrate that MMTV-Sim2s transgenic mice experience delayed involution, characterized by 

reduced epithelial cell apoptosis and lower Stat3 activation.  Microarray studies performed on 

tissue from involuting glands revealed that Sim2s inhibited pathways associated with 

inflammation and apoptosis, both of which are hallmarks of involution and cancer progression.   

Previously, our lab has shown that Sim2s is required for proper development and differentiation 

of the mammary ductal tree.  Additionally, down-regulation of Sim2s in MCF7 breast cancer 

cells and MCF10A breast epithelial cells results in the loss of epithelial characteristics and the 

acquisition of a basal phenotype (Gustafson et al., 2009a; Laffin et al., 2008; Rudolph et al., 

2009; Wellberg et al., 2010).  The results from this study support a role for Sim2s in maintaining 

epithelial differentiation and suppressing involuting pathways.  

Recent studies have utilized the involuting mouse mammary gland as a model to identify 

pathways involved in breast cancer progression (Ackler et al., 2002; Atabai et al., 2007; 

Chapman et al., 2000; Clarkson et al., 2000; Clarkson and Watson, 1999; Clarkson and Watson, 

2003; Desrivieres et al., 2006; Flanders and Wakefield, 2009; Gordon et al., 2000; Heermeier et 

al., 1996; Humphreys et al., 2002).  Special interest has focused on the regulation of apoptosis 

during the acute phase of involution, and on controlled inflammation, which are part of the 

wound-healing signature.  Bax, Akt, Il6, Stat3, and other pro apoptotic genes associated with 

involution have been conditionally deleted in the mammary gland to determine their roles in 

involution (Ackler et al., 2002; Bierie et al., 2009; Chapman et al., 2000; Clarkson et al., 2000; 

Flanders and Wakefield, 2009; Heermeier et al., 1996; Humphreys et al., 2002; Jager et al., 
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1997; Jerry et al., 2002; Jerry et al., 1998; Kritikou et al., 2003; Schorr et al., 1999; Stein et al., 

2004; Thangaraju et al., 2005; Tonner et al., 2000; Zhao et al., 2002a).  Gene expression analysis 

of the involution signature shows that Stat3 and NFκB pathways are induced during involution, 

while the Stat5 pathway is inhibited.  From these results, we know that a substantial number of 

factors up-regulated during involution play various roles in inflammation and the acute phase of 

involution.  These pathways have also been analyzed in conjunction with various breast cancer 

subtypes, and correlate with an increase in metastasis and poor prognoses.  In addition, the 

microenvironment of the involuting mammary gland has been shown to promote metastasis due 

to active basement membrane degradation, controlled inflammatory signaling, activation of 

fibroblasts, and other signals also involved with a wound healing signature (Baxter et al., 2007; 

Clarkson and Watson, 2003; Come et al., 2004; Henson and Tarone, 1994; Lyons et al., 2009; 

McDaniel et al., 2006; Pensa et al., 2009; Schedin et al., 2007).   

The acute phase of involution, which occurs during the first 72 hours post weaning, is 

characterized by an increase in apoptosis, an enhanced immune response, and decreased milk 

protein synthesis (Abell et al., 2005; Chapman et al., 2000; Clarkson and Watson, 2003; 

Hennighausen et al., 1997; Kritikou et al., 2003; Stein et al., 2004; Walker et al., 2009; Watson, 

2001).  Many of these processes are dependent on Stat3, which mediates apoptosis of secretory 

epithelial cells, as well as their removal from the gland during involution.  Stat3 is also the key 

regulator of the controlled inflammatory response observed in the involuting mammary gland 

and is constitutively active in many breast cancer cell lines and primary tumors (Pensa et al., 

2009; Walker et al., 2009; Watson, 2001; Watson and Neoh, 2008; Yu et al., 2009; Zhou et al., 

2007). Stat3 regulates both pro and anti-inflammatory responses, based on LIF and OSM 

signaling, and is often activated by tumor cytokines, oncogenes, and growth factors.  In Stat3 

null mice, involution is delayed and the secretory alveolar epithelial cells maintain functional 
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integrity up to 6 days post weaning in the absence of lactogenic stimuli (Chapman et al., 2000; 

Chapman et al., 1999; Humphreys et al., 2002; Pensa et al., 2009; Thangaraju et al., 2005; Zhao 

et al., 2002a). We observed a similar phenotype in our MMTV-Sim2s mice with a significant 

inhibition of pStat3 activity and reduced expression down-stream targets genes IGFBP5 and 

C/EBPδ (Thangaraju et al., 2005).  

Stat3 and NFκB are known to interact at multiple levels, and similar to Stat3, NFκB is 

constitutively active in cancers (Yu et al., 2009).  NFκB expression is high during the acute 

phase of mammary gland involution, and has been shown to play a role in milk clearance 

(Connelly et al., 2010).  Conditional deletion of IKK2, a NFκB activator, resulted in delayed 

involution and a decrease in cleaved-caspase 3 positive apoptotic cells (Baxter et al., 2006).  

These studies indicate that NFκB plays a role in pro-apoptotic signaling, in addition to the 

commonly described anti-apoptotic regulation of Bcl2 and BclXL.  Transgenic mice with a 

doxycycline inducible NFκB construct undergo rapid loss of milk and alveolar collapse shortly 

following pup weaning, in addition to an increase in cleaved-caspase 3 positive cells compared 

to wild-type counterparts (Connelly et al., 2010).  Similarly, induction of NFκB expression 

during lactation resulted in decreased milk protein levels and alveolar collapse.  NFκB has been 

implicated in tumorigenesis, as constitutive activation results in increased proliferation, 

inhibition of apoptosis, increased metastasis and angiogenesis (Cao and Karin, 2003; Clarkson 

and Watson, 1999; Haffner et al., 2006; Kozlow and Guise, 2005; Pensa et al., 2009; Pratt et al., 

2009; Yu et al., 2009; Zhou et al., 2008; Zhou et al., 2005b).  A pro-inflammatory target of 

NFκB, interleukin-6 (IL-6), is a known activator of Stat3, and forms a positive feedback loop 

that is a major regulator of inflammation (Yu et al., 2009).  IL-6 null mice also have delayed 

involution and decreased epithelial cell death; however, Stat3 remains activated in these mice, 

indicating that Stat3 is activated through multiple cytokines (Zhao et al., 2002a).  Stat3 also 
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inhibits anti-tumorigenic pathways that are typically activated by NFκB Rel, allowing only the 

expression of pro-oncogenic Rel A (Yu et al., 2009).  In tumors, this results in a reciprocal 

relationship between Stat3 and NFκB because many cytokines and growth factors encoded by 

RelA activate Stat3.  Similar to Stat3, active NFκB signaling has also been indicated in 

maintenance of mammary stem cells (Pratt et al., 2009; Zhou et al., 2008).   

We have shown that mammary gland involution is delayed in MMTV-Sim2s mice, and 

that Sim2s inhibits gene signatures associated with involution including Stat3 and NFκB 

signaling pathways.  This suggests that Sim2s expression in breast cancer cell lines might 

suppress the pro-oncogenic activities of these transcription factors. Further studies into the 

inhibition of these pathways by Sim2s may significantly contribute to the understanding and 

therapeutic treatment of metastatic breast cancer.  Increasing evidence indicates that the 

differentiation status of a tumor correlates with its aggressiveness, thus showing the importance 

of finding factors that induce terminal differentiation not only in the mammary gland, but also in 

primary tumors.  Based on the studies shown here, and our previous work showing that Sim2s 

promotes mammary alveolar differentiation, we hypothesize that over-expression of Sim2s will 

inhibit tumor progression, metastasis, and render breast tumors more susceptible to therapeutics, 

leading to a better prognosis. 
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CHAPTER IV 

MANUSCRIPT 2: REGULATION OF DCIS TO INVASIVE BREAST 

CANCER PROGRESSION BY SINGLEMINDED-2S (SIM2S)* 

 

Synopsis 

Singleminded-2s (SIM2s) is a member of the bHLH/PAS family of transcription factors 

and a key regulator of mammary epithelial cell differentiation. SIM2s is highly expressed in 

mammary epithelial cells and down regulated in human breast cancer.  Loss of Sim2s causes 

aberrant mouse mammary ductal development with features suggestive of malignant 

transformation, whereas over-expression of SIM2s promotes precocious alveolar differentiation 

in nulliparous mouse mammary glands, suggesting that SIM2s is required for establishing and 

enhancing mammary gland differentiation. To test the hypothesis that SIM2s regulates tumor 

cell differentiation, we analyzed SIM2s expression in human primary breast ductal carcinoma in 

situ (DCIS) samples and found that SIM2s is lost with progression from DCIS to invasive ductal 

cancer (IDC).   Utilizing a MCF10DCIS.COM progression model, we have shown that SIM2s 

expression is decreased in MCF10DCIS.COM cells compared to MCF10A cells and re-

establishment of SIM2s in MCF10DCIS.COM cells significantly inhibits growth and invasion in 

vitro and in vivo.  Analysis of SIM2s-MCF10DCIS.com tumors showed that SIM2s promoted a 

more differentiated tumor phenotype including the expression of a broad range of luminal 

markers (CSN2 (β-casein), CDH1 (E-cadherin), and KER18 (keratin-18)) and suppressed genes 

associated with stem cell maintenance and a basal phenotype (SMO (smoothened), p63, SLUG 

(snail-2), KER14 (keratin-14) and VIM (vimentin)).  Furthermore, loss of SIM2s expression in 

                                                      
* Reprinted with permission from “Regulation of DCIS to invasive breast cancer progression by 
Singleminded-2s (SIM2s)” by Scribner, K. C., Behbod, F., and Porter, W. W., 2012. Oncogene, July Epub 
ahead of print. Copyright 2012 by Nature Publishing Group.   
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MCF10DCIS.COM xenografts resulted in a more invasive phenotype and increased lung 

metastasis likely due to an increase in hedgehog signaling and matrix metalloproteinase 

expression.  Together, these exciting new data support a role for SIM2s in promoting human 

breast tumor differentiation and maintaining epithelial integrity. 

 

Introduction 

Ductal Carcinoma In Situ (DCIS) has been shown to be a precursor to invasive ductal 

cancer (IDC) (Burstein et al., 2004) with 20-30% of DCIS showing evidence of invasion upon 

diagnosis (Cody, 2007; Maffuz et al., 2006).  Though the progression of DCIS to IDC is believed 

to be an important aspect of tumor aggressiveness, prognosis and molecular markers that can 

predict progression are poorly understood.  Analysis of biomarkers and molecular profiles of 

IDC and DCIS have failed to identify progression-specific pathways (Chin et al., 2004; Cocker 

et al., 2007; Ma et al., 2003; Porter et al., 2003; Yao et al., 2006).  Therefore, determining the 

mechanisms by which some DCIS progress is critical for future breast cancer diagnostics and 

treatment.   

There is increasing evidence that DCIS are heterogeneous tumors, which enhances 

complexity when attempting to define the mechanisms that promote progression to IDC in in 

vivo models. Recent studies utilizing the MCF10DCIS.COM cell line, which was derived from 

the non-cancerous MCF10A cell line, have shown that these cells contain a unique bipotent 

progenitor ability that forms a myoepithelial cell layer in addition to luminal-type cells in vivo, 

which results in basal-like DCIS with high similarities to human DCIS samples (Behbod et al., 

2009; Hu et al., 2008; Miller et al., 2000; Shekhar et al., 2008; Tait et al., 2007).   Intraductal and 

flank injections have shown that MCF10DCIS.COM cells not only form DCIS like structures, 

but also spontaneously progress to invasive breast cancer (Behbod et al., 2009; Hu et al., 2008). 
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These observations suggest that MCF10DCIS.COM cells are a unique model to study DCIS, as 

well as the role of different factors in regulating the progression to IDC.  

We have previously shown that the basic helix-loop-helix/PER-ARNT-SIM 

(bHLH/PAS) transcription factor Singleminded-2s (SIM2s) plays a role in normal mammary 

gland development as well as in promoting tumor cell differentiation (Gustafson et al., 2009b; 

Kwak et al., 2007; Laffin et al., 2008; Scribner et al., 2011; Wellberg et al., 2010).  Loss of 

Sim2s expression in the mouse mammary gland and in normal breast and breast cancer cell lines 

is associated with an epithelial mesenchymal transition(EMT), whereas over-expression of Sim2s 

under the Mouse Mammary Tumor Virus (MMTV) promoter induces precocious alveolar 

differentiation in nulliparous mice and delayed forced involution (Gustafson et al., 2009b; Kwak 

et al., 2007; Laffin et al., 2008; Scribner et al., 2011; Wellberg et al., 2010). SIM2s is down-

regulated in primary human breast cancer samples, and re-establishment of SIM2s in human 

breast cancer cell lines inhibits cell proliferation and invasion (Gustafson et al., 2009b; Kwak et 

al., 2007).  Moreover, we have found that SIM2s mRNA gene expression is inhibited by 

activation of C/EBPβ and NOTCH signaling, two known EMT promoters, in RAS-transformed 

MCF10A cells (Gustafson et al., 2009b).  Both C/EBPβ and NOTCH expression have been 

shown to have to play a role in breast cancer progression through mediation of breast cancer 

stem cells, cellular proliferation, and oncogenesis (Grimm and Rosen, 2003; Kiaris et al., 2004; 

LaMarca et al., 2010; Politi et al., 2004; Stylianou et al., 2006).Together, these observations 

suggest that SIM2s is a tumor suppressor gene that is required to maintain epithelial integrity by 

inhibiting EMT-like pathways and promoting differentiation. 

In the studies here, we examined the role of SIM2s in regulating the progression of 

DCIS to IDC and metastasis, while promoting the less aggressive, luminal-like breast cancer 

subtype.  Based on our studies of SIM2s as a breast cancer tumor suppressor, we hypothesize 
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that SIM2s expression will decrease spontaneous metastasis seen in the MCF10DCIS.COM 

model, and play a role in the inhibition of DCIS progression.   

 

Results 

SIM2s is Lost During DCIS Progression 

To determine the role of SIM2s in progression from DCIS to IDC, fourteen human 

primary DCIS and IDC samples were analyzed for SIM2s expression by immunohistochemistry.  

We have previously shown that SIM2s is localized in the nuclei of human breast and mouse 

mammary ductal epithelial cells (Kwak et al., 2007; Laffin et al., 2008), and similar punctate 

staining was observed in normal ductal structures surrounding the tumors analyzed (Figure 19 

A).  In these studies, we found that SIM2s expression is prominent in both the nucleus and 

cytoplasm in over 75% of DCIS samples (Figure 19 B), suggesting a loss in localization at the 

onset of progression.  In contrast, as DCIS progresses to IDC, SIM2s staining is dramatically 

down-regulated with no evidence of nuclear expression in over 80% of IDC samples (Figure 19 

C), supporting a role for loss of SIM2s in breast cancer progression. 
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Figure 19.  SIM2s Expression is Progressively Lost in Human Ductal Carcinoma In Situ (DCIS) 

Transition to Invasive Ductal Cancer (IDC).   A – Human Normal-like tissue, B – Human DCIS, C – 
Human IDC.  Top Row – H&E staining of Normal, DCIS, and IDC samples.  Bottom Rows - SIM2s 

immunohistochemistry of Normal, DCIS and IDC samples.  Normal-like structures show clean, punctate 
nuclear staining. DCIS samples show nuclear and cytoplasmic SIM2s staining in over 75% of samples, 

and this expression is lost in over 80% of IDC samples.  Images were taken at 10x and 40x objective (6.3x 
and 25.2x), scale bars represent 100µm.  Images are representative of all samples.  An n=14 was used for 

each tumor classification (DCIS and IDC). 
 

 

Re-establishment of SIM2s in the MCF10.DCIS.com Cell Line Induces Genetic and 

Morphologic Changes In Vitro 

MCF10DCIS.COM cells are a unique human breast cancer cell line which form DCIS-

like lesions in in vivo mouse models, similar to primary human DCIS lesions, and spontaneously 

progress to invasive cancer (Tait et al., 2007).    In addition, MCF10DCIS.COM cells are 

thought to contain a bipotent progenitor population that generate both myoepithelial and luminal 
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cells, mimicking the heterogeneity observed in human DCIS tumors (Behbod et al., 2009; Hu et 

al., 2008). Quantitative real-time PCR (Q-PCR) analysis of SIM2s levels showed that SIM2s is 

significantly down-regulated in MCF10DCIS.COM cells compared to parent MCF10A cells, 

however, SIM2s levels are still higher in MCF10DCIS.COM cells than levels found in luminal 

MCF7 and basal MDA.MB.231 cell lines, suggesting that SIM2s expression is lost with 

progression (Figure 20 A).  To determine the effect of SIM2s loss and gain of function, we stably 

transduced MCF10DCIS.COM cells with SIM2s and previously validated SIM2s-shRNA 

(SIM2si) lentiviruses (Gustafson et al., 2009b; Laffin et al., 2008).  SIM2s levels and localization 

were confirmed using Q-PCR and immunofluorescence (Figure 20 B, C, & D) (Figure 21).  Q-

PCR analysis of SIM2s mRNA levels show an approximate 80% loss of expression in SIM2si 

cells compared to scrambled controls (Figure 20 D).  In growth assays, SIM2s inhibited cell 

proliferation, whereas loss of SIM2s led to a significant increase in proliferation as compared to 

scrambled controls (Figure 20 E).  We observed no change in invasive potential with SIM2s 

over-expression in Boyden chamber assays; however, there was a significant increase in invasion 

in the SIM2si cells (Figure 20 F).  Q-PCR analysis also showed a significant increase in E-

Cadherin (CDH1) expression with SIM2s expression, as well as a decrease with SIM2si (Figure 

20 G).  Similarly, p21, an important senescence and cell cycle regulator, was also significantly 

altered in response to SIM2s (Figure 20 H).  
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Figure 20.  Analysis of MCF10DCIS Cell Transductions In Vitro Show Changes in Proliferation, 

Invasion, and Differentiation Markers.A – Q-PCR analysis of SIM2s mRNA levels in MCF10DCIS.COM 
and parent MCF10A cells, as well as commonly used breast cancer cell lines MCF7 and MDA.MB.231.  

B, C - Immunofluorescent staining of SIM2s to confirm nuclear SIM2s overexpression. D – Q-PCR 
analysis of SIM2s in the MCF10DCIS.com cell line confirming an approximate 80% loss of expression in 

adhered SIM2si cells. E – Proliferation assays confirm that SIM2s expression inhibits breast cancer cell 
proliferation, while loss of SIM2s increases growth. The values shown are the mean ± SE of triplicate 

samples.  F - Boyden chamber invasion assay shows significantly more SIM2si cells were able to invade 
and migrate compared to controls. Values are the average number of cells per five fields per membrane of 
three separate plates.  G & H - Q-PCR analysis of differentiation markers CDH1 and p21.   * = p-value < 

.05. 

 

 
Figure 21.  Channel Images of the SIM2s Fluorescence Previously Shown (Figure 20).  Adhered cells 
were stained with SIM2s (green) and DAPI (blue).  Images were taken using a 40x objective (25.2x). 
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In Vivo Analysis of Transduced MCF10DCIS.com Cell Xenografts Show Changes in Growth 

and Morphology 

Similar to the in vitro results, we found that SIM2s xenograft tumors grew significantly 

slower than controls (Figure 22 A & B).  In contrast to our in vitro observations, we were 

surprised to find that down-regulation of SIM2s led to a decreased trend in tumor size and weight 

as compared to scrambled controls; however statistical significance was not obtained (Figure 22 

A & B).  To determine if SIM2s expression affected changes in tumor morphology, we analyzed 

H&E sections from SIM2s and SIM2si tumors.  Histological analysis confirmed a distinct 

phenotypic differences with SIM2s expression (Figure 22 D): SIM2s tumors had a more 

differentiated phenotype including lobular-like structures with intact myoepithelial layers 

whereas SIM2si tumors, despite growing at a slower rate, were more invasive and had large 

necrotic areas as compared to scrambled controls (Figure 22 D, invasion shown by arrows). 

These observations are similar to previous studies that found no correlation between 

MCF10DCIS.COM growth in vivo and invasive potential and support the hypothesis that SIM2s 

inhibits DCIS progression by promoting and maintaining a luminal phenotype (Behbod et al., 

2009; Hu et al., 2008; Shekhar et al., 2008). Immunohistological analysis of tumors confirmed 

that SIM2s and SIM2si tumors continued to overexpress or knock down SIM2s protein levels in 

vivo (Figure 22 E).  Q-PCR analysis of SIM2s levels confirmed an approximate 50% knockdown 

of SIM2s expression in SIM2si xenografts (Figure 22 C). 
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Figure 22.  Differential SIM2s Expression Regulates Growth In Vivo.  A & B – Analysis of xenograft 

tumor growth and mass shows that over-expression and loss of SIM2s expression inhibits xenograft 
growth. C – Q-PCR analysis of SIM2s mRNA expression in SIM2si tumors shows an approximate 50% 
loss of expression in vivo.  D – H&E histological analysis shows that SIM2s expressing tumors exhibit 
smaller, more lobulo-like structures throughout the tumor, with less necrosis and inflammation. Images 

were taken using a 5x objective (5x) 10x objective (6.3x) and a 40x objective (25.2x).  Scale bars 
represent 100µm.  Arrows indicate areas of invasion.  D – Histological analysis of SIM2s expression in 

xenografts confirms SIM2s overexpression and loss of expression.  Images were taken using a 40x 
objective (25.2x).  Scale bars represent 100µm.  * = p-value < .05. 

 

 

SIM2s Inhibits Expression of Basal Breast Cancer Markers 

We have previously established that SIM2s is a negative regulator of EMT and promotes 

mammary gland differentiation in vitro and in vivo (Kwak et al., 2007; Scribner et al., 2011; 

Wellberg et al., 2010).  To determine if the morphological changes associated with SIM2s 

expression in MCF10DCIS.COM xenografts are similar to our previous gain and loss of function 

studies in the mouse mammary gland, we examined basal markers involved in breast cancer 

progression and EMT via Q-PCR and immunohistochemical analysis.  Immunostaining for basal 

markers including keratin 14 (KER14), alpha-smooth muscle actin (�SMA), vimentin (VIM) 

and p63 show a decrease in staining in SIM2s over-expressing MCF10DCIS.COM tumors, and 
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up-regulation with loss of SIM2s (Figure 23 A, B, C, & D). Moreover, indicative of enhanced 

tumor aggressiveness and progression, we observed an increase in co-localization of KER5 and 

VIM in SIM2si tumors (Figure 23 E, Figure 24).  Further analysis of EMT and basal markers, 

including the EMT transcription factor, SLUG, which we have previously shown is directly 

regulated and suppressed by SIM2s, was significantly decreased in SIM2s tumors along with 

SMA and p63 (Figure 23 F, G, & I).  These results are consistent with SIM2s’s role in mammary 

gland differentiation as p63, SMO and SLUG regulate cell differentiation and stem cell 

maintenance, which suggests that re-establishment of SIM2s is sufficient to promote a decrease 

in basal breast cancer markers (de Biase et al., 2010; Du et al., 2010; Dubois-Marshall et al., 

2011; Kallergi et al., 2011; Moraes et al., 2007; Visbal et al., 2011; Yalcin-Ozuysal et al., 2010).  

Analysis of p21 mRNA levels also showed a decrease in SIM2si xenografts, similar to what was 

seen in vitro (Figure 23 H).  p21 is an important cell cycle regulator and is involved in the p53 

stress response pathway as well as senescence (Bond et al., 1996; Malkin et al., 1990; Zuo et al., 

2012). 
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Figure 23.  SIM2s Decreases Markers Associated with Basal Breast Cancer in MCF10DCIS.COM 

Xenografts.A, B, C, & D – Immunohistochemical staining for basal markers including KER14, SMA, 
VIM, and p63. Images were taken using a 40x objective (25.2x).  Scale bars represent 100µm.  E – 

KER5/VIM immunofluorescence shows increased overlap of KER5 and VIM in SIM2si xenografts, which 
is associated with enhanced invasive potential and aggressiveness.  F, G, H, & I – Q-PCR analysis of basal 

markers SLUG, SMA, and p63, as well as cell cycle regulator p21.  * = p-value < .05. 
 

 

Figure 24.  Channel Images of the KER5/VIM Fluorescence Previously Shown (Figure 23).  Tumors were 
stained with KER5 (green), VIM (red), and DAPI (blue).  Images were taken using a 40x objective 

(25.2x). 
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SIM2s Promotes Expression of Luminal Markers 

To determine whether differential expression of SIM2s regulates prominent luminal 

markers in DCIS xenografts, we evaluated the expression of E-cadherin (CDH1), keratin-18 

(KER18), and Mucin-1 (MUC1).  Immunostaining results for CDH1 showed increased trends 

and localization to the cellular membrane in the SIM2s over-expressing tumors, and a decrease in 

localized staining with SIM2si tumors (Figure 25 A).  Interestingly, Q-PCR analysis of CDH1 

showed no significant changes with SIM2s overexpression; however SIM2si tumors had 

significantly lower levels of CDH1 mRNA compared to controls (Figure 25 D).  Analysis of 

keratin 18 (KER18) showed a significant positive relationship with SIM2s expression; KER18 

protein and mRNA levels were elevated in SIM2s tumors and protein appeared decreased with 

loss of SIM2s (Figure 25 B & E).  MUC1, an apical luminal marker that is often mis-localized in 

cancer, showed an increase in apical staining in SIM2s xenografts, while a loss of localization is 

seen in SIM2si tumors (Figure 25 C).  In addition, we also examined changes in the transcription 

factor GATA3, a prognostic factor associated with positive breast cancer outcome and regulator 

of breast tumor cell differentiation (Asselin-Labat et al., 2007; Kouros-Mehr et al., 2006). 

Analysis of GATA3 mRNA expression showed no differences in with SIM2s expression, 

indicating that the differentiation phenotype associated with SIM2s expression appears to be 

GATA3 independent in this model (Figure 25 G).  To determine whether SIM2s tumors undergo 

partial lactogenic differentiation, we also examined the expression of the milk protein β-casein 

(CSN2).  Immunostaining for β-casein in SIM2s tumors not only showed increased protein 

expression over controls, but also secretory globule formation indicative of milk protein 

expression as seen in the lactating mammary gland (Figure 25 H, arrows) and a distinct trend in 

CSN2 mRNA gene expression in SIM2s tumors (Figure 25 F & H). Overall these data support 
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the hypothesis that expression of SIM2s induces a luminal phenotype, including expression of 

milk proteins, while loss of SIM2s significantly decreases the expression of luminal markers. 

 

 
Figure 25.  SIM2s Xenografts Have Increased Levels of Luminal Markers and Express β-Casein.  A, B, & 
C  –Re-establishment of SIM2s promotes apical localization of CDH1 and increased KER18 expression, 

while SIM2s loss results in a decrease in expression.  SIM2s expression also promotes apical expression of 
luminal marker MUC-1, whereas loss of SIM2s causes a loss of localization.  D, E, F, & G – Q-PCR 

analysis of luminal markers CDH1, KER18, CSN2, and GATA3. H – Immunohistochemical analysis for 
CSN2 shows elevated levels in SIM2s tumors (see arrows). Images were taken using a 40x objective 

(25.2x) and 63x objective (63x).  Scale bars of images represent 100µm.  * = p-value < .05. 
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Angiogenesis and Metastasis Are Inhibited by SIM2s 

We have shown that gain and loss of SIM2s expression in MCF10DCIS.COM correlates 

with phenotypic changes in invasive behavior and expression of luminal and basal differentiation 

markers. To investigate if these phenotypic differences affect cancer progression and metastasis, 

we analyzed lungs from tumor bearing mice for vimentin (VIM), which is expressed in 

MCF10DCIS.COM cells, but not in normal lung tissue (McDaniel et al., 2006).  The results  

showed positive VIM staining in lungs from control and scrambled tumors; however, we did not 

detect VIM expression in lungs from mice with SIM2s-expressing tumors (Figure 26 A & C).  

To confirm SIM2s-dependent changes in progression, we performed Q-PCR analysis for human 

specific β-2-globulin (β2M) gene expression in mouse lungs, which has been previously shown 

as an indicator of human cells in mouse lung tissues either due to metastasis or circulating tumor 

cells (McDaniel et al., 2006).  While moderate levels of β2M expression were observed in 

control tissues, we did not detect β2M expression in lung tissue from mice with SIM2s over-

expressing tumors (Figure 26 B).  In contrast, the majority of the lungs from mice with SIM2si 

tumors had high levels of β2M expression (Figure 26 B).  Consistent with differences in 

metastatic potential and SIM2s expression, we observed a decrease in angiogenesis in SIM2s 

tumors compared to controls (Figure 26 D and E) Interestingly, this difference is seen without 

taking into account the drastic change in tumor size (Figure 26 E).  In contrast, no significant 

change in angiogenesis was seen with loss of SIM2s, indicating that the increase in metastasis is 

due to other metastatic processes.  
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Figure 26.  SIM2s Inhibits Metastasis and Alters Angiogenesis.  A – Immunohistochemical analysis of 
lung tissue for vimentin (VIM) positive micrometastases showed decreased staining in SIM2s tumors, 

whereas loss of SIM2s enhanced lung metastasis.  Images were taken with a 40x objective (25.2x).  B – Q-
PCR analysis for human β-2-Globulin as an indicator of lung metastasis confirmed the effect of SIM2s on 

metastasis with a decreased in β-2-Globulin expression in SIM2s tumors and increased expression with 
loss of SIM2s.  Data is shown as the number of β-2G positive samples out of the total number of samples 
analyzed. C – Increased magnification (63x) of VIM staining to indicate the presence of vimentin positive 

cells in Scrambled controls and SIM2si tumors.  D – Immunostaining for CD31 expression showed that 
SIM2s tumors have smaller blood vessels that remained on the outer perimeter of the tumors, whereas 

SIM2si tumors had an increased trend in angiogenesis. E – Quantification of CD31 staining by measuring 
blood vessel length confirms trends seen with CD31 immunohistochemistry.  Images were taken using a 

10x objective (6.3x) and a 40x objective (25.2x).  Scale bars in images represent 100µm.  *= p-value < .05 
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SIM2s-dependent Regulation of Matrix Metalloproteinase and Hedgehog Signaling 

We have previously shown cell type specific SIM2s-dependent regulation of matrix 

metalloproteinase (MMP).  These studies found SIM2s binds to the MMP3 promoter and inhibits 

MMP3 expression in MDA.MB.435 cells (Kwak et al., 2007), while MMP2 expression is 

increased in MCF7-SIM2si cells and mouse Sim2s knockout mammary glands (Laffin et al., 

2008).  Using Q-PCR, we examined MMP gene expression in SIM2s over and under-expressing 

tumors (Figure 27). The results show that SIM2s xenografts have decreased MMP expression, 

whereas SIM2si tumors have increased MMP levels (Figure 27 A, B, C, & D).  In addition, the 

hedgehog signaling pathway has been shown to be overexpressed in breast cancer and play a role 

in proliferation and differentiation (Moraes et al., 2007; Visbal et al., 2011).  Analysis of Indian 

Hedgehog (iHH) and SMO by Q-PCR showed a drastic increase in iHH and SMO mRNA levels 

with loss of SIM2s (Figure 27 E & F).   

 

 
Figure 27.  Loss of SIM2s Increases Tumor Invasiveness through MMP Expression and Hedgehog 

Signaling.  A, B, C & D – Q-PCR analysis of various MMPs showing a decrease in expression with SIM2s 
tumors and an increase in SIM2si tumors, a likely mechanism for increased tumor invasiveness and 

metastasis.  E & F – Q-PCR analysis of Indian Hedgehog (IHH) and Smoothened (SMO) show elevated 
levels of expression in SIM2si tumors.  * - p-value < .05. 



128 

 

Discussion 

There is significant evidence that relates the differentiation status of a tumor with its 

metastatic potential (Bloom and Richardson, 1957; Liu et al., 2007; van 't Veer et al., 2002).  

Analysis of luminal markers by microarray analysis and immunohistochemistry have confirmed 

that loss of epithelial characteristics correlates with an increase in cancer progression (Perou et 

al., 2000; Sorlie et al., 2001; West et al., 2001; Zajchowski et al., 2001). Though pathways have 

been identified that promote differentiation, few molecules have been identified that maintain 

and enhance differentiation potential.  We have previously shown that SIM2s is a negative 

regulator of EMT in normal breast, breast cancer cell lines and the mouse mammary gland by 

suppressing SLUG and MMP2 gene transcription (Kwak et al., 2007; Laffin et al., 2008).  In 

contrast, overexpression of Sim2s in the mouse mammary gland under the MMTV promoter 

induces precocious lactogenic differentiation in virgin mice and delayed involution following 

forced weaning (Scribner et al., 2011; Wellberg et al., 2010).  Together, these observations led 

us to hypothesize that expression of SIM2s in breast cancer would inhibit tumor growth by 

regulating differentiation potential.  We report here that SIM2s expression is lost in human DCIS 

progression to invasive breast cancer and, utilizing the MCF10DCIS.com progression model, we 

demonstrate that re-establishment of SIM2s promotes a more luminal-like phenotype, whereas 

down-regulation of SIM2s leads to an increase in invasive potential.  These new data support a 

role for SIM2s in regulating epithelial identity and a potential novel molecular target for 

differentiation therapy. 

At the onset of xenograft studies, as expected we observed that tumors over-expressing 

SIM2s grew at a slower rate, as compared to controls, with lower amounts of necrosis. 

Surprisingly, we found that SIM2si tumors exhibited a decreased trend in growth compared to 

scrambled controls.  However, upon histological analysis, we observed a more invasive 
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phenotype and large necrotic areas in the SIM2si tumors.  In comedo DCIS, necrotic centers 

have been implicated as a more rapidly progressing DCIS with a worse prognosis compared to 

DCIS lacking necrosis (Shekhar et al., 2008).  Further analysis of luminal and basal-like breast 

cancer markers showed distinct trends regarding SIM2s gain and loss of function.  We observed 

that basal markers were inhibited in SIM2s tumors, with upward trends occurring in SIM2si 

tumors.  Conversely, when examining luminal markers, we found an increase either in the 

appropriate localization (CDH1 and MUC1) or increased expression with SIM2s tumors and a 

loss of localization and expression with SIM2si.  Another unique expression pattern was the 

presence of αSMA in the SIM2s over-expressing tumors.   We anticipated that re-establishment 

of SIM2s in MCF10DCIS.COM cells would inhibit the bipotent progenitor capabilities of the 

cell line, and thus prevent the development of a myoepithelial layer in vivo.  Surprisingly, 

however, SIM2s did not affect the bipotent progenitor ability.  The significant decrease in SMA 

mRNA expression seen in SIM2s tumors could possibly be due to the smaller size of the tumors 

and lobular units rather than a biologically significant change in SMA expression.  Finally, the 

expression of CSN2 in SIM2s tumors further indicates that not only does re-establishment of 

SIM2s maintain epithelial integrity, but also promotes functional differentiation.  

Recent studies have identified a number of transcription factor cascades that control key 

events in regulating mammary epithelial differentiation including GATA3, ELF5, NOTCH and 

C/EBPβ (Asselin-Labat et al., 2007; Grimm and Rosen, 2003; Politi et al., 2004; Zhou et al., 

2005a). For instance, analysis of Gata3 conditional knockout mammary glands found an increase 

in luminal progenitor cells during alveolar differentiation and a defect in virgin ductal 

morphogenesis as a result of compromised estrogen responsiveness (Kouros-Mehr et al., 2006) , 

whereas loss of Elf5 has no effect on virgin development and exclusively regulates alveolar cell 

fate (Oakes et al., 2006).  Although these factors play key roles in promoting differentiation 
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along the luminal lineage, it begs the question: what maintains mammary ductal epithelial cells 

in a differentiated state and keeps them from de-differentiating and acquiring stem cell 

characteristics? It can be hypothesized that this/these factor(s) may target pathways regulating 

tumor initiating cell self-renewal by blocking induction of EMT and maintaining epithelial 

integrity. Interestingly, studies with GATA3 have shown that while overexpression is sufficient 

to promote epithelial differentiation, forced loss of GATA3 is not tolerated (Asselin-Labat et al., 

2007). With SIM2s we observed that while overexpression is sufficient to induce differentiation, 

loss of expression promotes malignant transformation. Moreover, the lack of change in GATA3 

in the SIM2s tumors, which has been shown to promote differentiation and inhibit breast cancer 

growth and metastasis, indicates that SIM2s is operating independently of GATA3.     This has 

significant implications for our understanding of normal mammary development and breast 

cancer progression by introducing a novel pathway that may play a role in maintaining tumor 

initiating cells or in promoting functional differentiation.  

One of the most interesting phenotypes of this study was the dramatic increase in lung 

metastasis with loss of SIM2s.  MMPs have long been attributed as playing a key role in breast 

cancer invasion and (Ioachim et al., 1998; Liu et al., 2012; Mendes et al., 2005; Pellikainen et 

al., 2004; Walsh et al., 2012) are integral to the degradation of the basement membrane during 

normal biology functions including mammary gland involution and lobular development 

(Ioachim et al., 1998; Kessenbrock et al., 2010; Schedin et al., 2004; Scribner et al., 2011; Sims 

et al., 2011; Sternlicht et al., 1999; Wang et al., 2011; Witty et al., 1995).  Previous work in our 

lab has shown that SIM2s differentially regulates MMP2 and MMP3 gene expression (Kwak et 

al., 2007; Laffin et al., 2008).  In the study here, we observed a SIM2s-dependent regulation of 

MMP gene expression in SIM2s over and under-expressing DCIS xenografts.  We showed that 

MMP1 and MMP10 were significantly decreased by SIM2s expression, whereas MMP3 was 
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significantly increased by loss of SIM2s, accompanied by increased trends in other MMPs 

analyzed.  This data indicates that a likely mechanism for SIM2s’ effect on metastasis may be 

through a global regulation of MMPs in a complex and varied manner.  Hedgehog signaling has 

also been implicated in breast cancer progression and invasion as well as the maintenance of 

cancer stem cells (Kasper et al., 2009; Kasperczyk et al., 2009; Moraes et al., 2007; Visbal et al., 

2011).  In our study the decrease in SMO expression in SIM2s tumors is unique since SMO up-

regulation in tumors causes a phenotype similar to that seen in SIM2si tumors and Sim2s 

knockout mammary glands, including increased proliferation and altered differentiation, possibly 

indicating interaction between these genes (Moraes et al., 2007).  Studies in gastric and ovarian 

cancer have also connected hedgehog signaling with invasion and MMP expression (Liao et al., 

2009; Yoo et al., 2011), suggesting a potential mechanism of action by which SIM2s inhibits 

invasion and metastasis in vivo. 

These observations provide a possible mechanism for the promotion of tumor 

differentiation through re-establishment of SIM2s, as well as possible roles for SIM2s in breast 

cancer progression.  Determining what point of the metastatic cascade that SIM2s functions will 

be key in understanding SIM2s’ role in breast cancer progression.  Moreover, the use of 

established metastatic models and the impact of SIM2s on breast cancer subtypes will help 

elucidate the mechanism by which SIM2s affects tumor progression as well as its possible effect 

on tumor initiating cells.  Together, these results suggest that SIM2s has the potential to be a 

novel target for differentiation therapy by inhibiting or reversing breast cancer progression. 
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CHAPTER V 

MANUSCRIPT 3: SIM2S INHIBITS DCIS BREAST CANCER 

PROGRESSION BY REGULATING SENESCENCE-DEPENDENT 

METABOLIC EQUILIBRIUM 

 

Synopsis 

Dysregulation of cellular metabolism is a defining hallmark of breast cancer progression 

and is associated with metastasis and therapeutic resistance.  However, there is a gap in our 

understanding of the mechanisms by which cells undergo the switch from respiration to 

glycolysis and its impact on tumorigenesis. Here, we show that the bHLH/PAS transcription 

factor Singleminded-2s (SIM2s) inhibits ductal carcinoma in situ (DCIS) to invasive ductal 

carcinoma (IDC) progression by regulating metabolic homeostasis and cell senescence.   We 

found that SIM2s promotes oxidative phosphorylation and inhibits aerobic glycolysis through 

direct up-regulation of CDKN1A gene expression.  These findings suggest that SIM2s is a tumor 

suppressor that blocks DCIS progression by regulating the equilibrium between glycolysis and 

senescence.   

 

Introduction 

Ductal Carcinoma in situ (DCIS) are a heterogeneous group of diseases that are 

characterized by a neoplastic mammary lesion that is confined to the ductal-lobular system of the 

breast (Cocker et al., 2007; Polyak, 2010; Porter et al., 2003; Tait et al., 2007).  Due to improved 

detection methods, the diagnosis of DCIS has risen from less than 1% of diagnosed breast 

cancers to 15-25% (Jones, 2006; Norton et al., 2010).  Studies have yet to find reliable 
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biomarkers that dictate the progression of DCIS to invasive ductal carcinoma (IDC).  

Pathological markers such as nuclear grade, comedo necrosis, and size have been associated with 

increased risk of DCIS progression; however these features are confounded when addressing 

treatment and follow-up (Fujii et al., 1996; Gur, 2010; Liao et al., 2011; Nofech-Mozes et al., 

2008; Shekhar et al., 2008). Many confirmed oncogenes and tumor suppressors such as PTEN, 

ERBB2, and MYC have been analyzed in DCIS and IDC samples; all showing no clear change 

with progression (Behling et al., 2011; de Biase et al., 2010; Lu et al., 2009; Miron et al., 2010; 

Rajan et al., 1997; Schmidt et al., 2010; Yao et al., 2006).  Emerging evidence indicates that 

response to metabolic stress and hypoxia promotes the progression of DCIS to IDC (Hu et al., 

2008; Lee et al., 2012; Schmidt et al., 2010).  First described by Otto Warburg, tumor cells 

preferentially utilize glycolytic pathways for energy generation while down-regulating oxidative 

phosphorylation, even in the presence of abundant oxygen (Cairns et al., 2011b; Warburg, 

1956a).  This metabolic shift is driven by the tumor cells’ need to meet increased metabolic 

demands for proliferation and survive insults to mitochondrial respiration (Bensinger and 

Christofk, 2012; Dang, 2012; Warburg, 1956a; Yeung et al., 2008).   Increased glycolysis 

provides tumors with a selective growth advantage by supplying ATP and the precursors 

required for nucleotide, amino acid and lipid biosynthesis.  Previous work has shown that altered 

metabolism in breast cancer is associated with increased tumor progression and therapeutic 

resistance, supporting a role for alterations in metabolism in malignant transformation (Gambhir, 

2002; Gatenby and Gillies, 2004; Hama and Nakagawa, 2010; Jones and Thompson, 2009; 

Kroemer and Pouyssegur, 2008; Tennant et al., 2010).  

Tumor cell metabolism is dependent upon the convergence of oncogenic and tumor 

suppressor pathways to support growth and survival (Levine and Puzio-Kuter, 2010; Yeung et 

al., 2008).  The p53 and hypoxia inducible factor-1 alpha (HIF1α) pathways play a major role in 
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metabolic adaptation since selective loss of p53 and activation of HIF1α promote a metabolic 

switch.  p53 has been implicated in metabolic control by influencing the balance between 

glycolysis and oxidative phosphorylation through inhibition of glucose transporters and 

promoting mitochondrial respiration (Madan et al., 2011; Yeung et al., 2008; Zawacka-Pankau et 

al., 2011).  A major role of p53 is the promotion of cellular senescence, which is a major barrier 

to breast cancer progression (Kuilman et al., 2010; Peeper, 2010; Smit and Peeper, 2010).  

Senescent cells remain metabolically active yet fail to proliferate, and induction of senescence 

through chemotherapy or early oncogenic induction is considered inhibitory to tumor 

progression (Schmitt et al., 2002; te Poele et al., 2002). While past work has indicated an 

intricate relationship between AMP, glycogen consumption, and senescence; little research has 

been done to define the potential role of senescence in tumor progression through mediation of 

metabolism (Favaro et al., 2012; Kim et al., 2010; Zwerschke et al., 2003). 

We have previously shown that the bHLH/PAS transcription factor Singleminded-2s 

(SIM2s) plays an important role in normal mammary gland development and tumor 

differentiation (Gustafson et al., 2009b; Kwak et al., 2007; Laffin et al., 2008; Metz et al., 2006; 

Scribner et al., 2012; Scribner et al., 2011; Wellberg et al., 2010). SIM2s expression is lost in 

primary breast tumors compared to normal mammary glands (Kwak et al., 2007; Scribner et al., 

2012) and loss of SIM2s expression is associated with an epithelial mesenchymal transition 

(EMT), both in normal mammary glands and breast cancer cell lines, using multiple shRNA 

constructs.  Re-establishment of SIM2s in breast cancer cell lines and xenografts inhibits growth 

and metastasis, while promoting luminal gene and milk protein expression (Kwak et al., 2007; 

Scribner et al., 2012).  Enhanced Sim2s expression in the mouse mammary promotes lactogenic 

differentiation and delays involution (Scribner et al., 2011; Wellberg et al., 2010). The 

expression of beta casein milk protein expression in SIM2s expressing tumors and the normal 
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expression of SIM2s during lactation indicates a role for SIM2s in mediating the metabolic 

demands of the mammary gland during lactation.  The loss of SIM2s expression with breast 

tumor progression and EMT prompted us to examine the potential role of SIM2s in early DCIS 

progression in regards to cellular metabolism and the Warburg effect. 

 

Results 

SIM2s Expression Correlates with Early Stage DCIS and Luminal Breast Cancer 

To confirm SIM2s expression with breast cancer progression, we analyzed normal 

breast, DCIS and IDC for differences in SIM2s by IHC.  Tumor microarrays were stained for 

H&E, SIM2s, GLUT1, and HK2 (Figure 28 A). The results show that SIM2s expression is high 

and nucleic in normal tissue, but decreases and begins to translocate to the cytoplasm in DCIS, 

and is lost in IDC, verifying previous work (Scribner et al., 2012).  Statistical analysis of SIM2s 

staining shows a significant correlation between SIM2s expression and the state of breast disease 

(Normal, DCIS, or IDC) (Figure 28 B).  GLUT1 and HK2 expression increased with tumor 

progression, indicative of the increased aerobic glycolysis, confirming previous work showing a 

glycolytic shift with tumor progression (Schmidt et al., 2010; Vander Heiden et al., 2010; Young 

et al., 2011) (Figure 28 A).   

We performed further analysis for correlations within DCIS and SIM2s.  SIM2s 

expression significantly correlated with estrogen and progesterone receptor expression in DCIS 

samples, but not HER2, indicating a significant relationship between SIM2s and luminal stage 

breast cancer (Figure 28 C).  SIM2s expression was also significantly aligned with p53 

expression and inversely related to Ki67 expression in DCIS samples (Figure 28C). Importantly, 

loss of SIM2s in DCIS correlated with increased microinvasion and metastasis, supporting a role 

for SIM2s in breast cancer progression (Figure 28 D). 
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Figure 28.  SIM2s Expression Correlates with DCIS and Luminal Breast Cancer.  (A) Immunostaining of 

human normal, DCIS, and IDC samples for H&E, SIM2s, GLUT1, and HK2.  Samples were imaged at 
25.2x. (B) Statistical analysis of breast type with SIM2s expression.  Tissue microarrays were analyzed 
using categorical analysis comparing SIM2s staining versus the type of tissue (C) Statistical Analysis of 

DCIS specific pathology reports (n=17).   Common biomarkers ER, PR, HER2, p53, and Ki67 were 
categorically analyzed compared to binomial SIM2s staining (nucleic/both = positive, cytoplasmic/none = 

negative). (D)  Prognosis of micro invasion and/or metastasis was compared with binomial SIM2s 
staining. Likelihood Ratio and Pearson Chi Squared tests were performed to test correlations.  *=p-value 

<.05.  Scale bars = 100µm. 
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Loss of and Re-establishment of SIM2s Modulates Metabolic Shifts in Breast Cancer Cells 

We have shown that loss of SIM2s in MCF7 and MCF10A cells and the mouse 

mammary gland induces an EMT (Laffin et al., 2008).  These experiments analyzed multiple 

SIM2s targeting shRNA constructs to verify the effect of SIM2s knockdown in MCF7 and 

MCF10A cells.  Potential downstream targets were identified by microarray analysis of MCF7 

SIM2si cells using Ingenuity Pathway Analysis. Pathways critical to tumor metabolism and 

cellular function, as well as canonical pathways including p53 signaling, mitochondrial 

dysfunction, and oxidative stress were altered with loss of SIM2s (Figure 29 A).  These results 

correlated with our observation that MCF7 SIM2si cells rapidly acidify their media compared to 

controls, indicative of enhanced glycolytic activity and lactate production (Figure 29 B).  To 

determine if the MCF7-SIM2si cells had undergone a metabolic shift, we analyzed media from 

control and MCF7-SIM2si cells by 1H nuclear magnetic resonance (NMR). MCF7 SIM2si cells 

significantly increased glucose consumption and lactate production under normal culture 

conditions (Figure 29 B).  Metabolic flux was determined by measuring changes in oxygen 

consumption rates (OCR) and extracellular acidification rates (ECAR) using a Seahorse XF-24 

extracellular flux analyzer.  These results confirmed that the basal respiration rate in SIM2si cells 

was significantly lower than controls, whereas there was an increased trend in ECAR (Figure 29 

B).  Surprisingly, MCF7 SIM2si cells did not respond to mitochondrial drugs oligomycin (ATP  
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Synthase inhibitor), rotenone (Complex I inhibitor), and FCCP (electron transport uncoupler), 

indicating that the mitochondria are almost completely inert (Figure 29 B).  Together, these data 

support a role for SIM2s in energy homeostasis.   

To further determine the effect of SIM2s on tumor metabolism, we analyzed SIM2s gain 

and loss of expression using basal p53 mutant SUM159 cells and MCF10DCIS.com cells 

(referred to hereafter as DCIS), which are an early stage cell line derived from MCF10A cells 

that mimics the natural progression of DCIS to IDC in vivo (Miller et al., 2000). Over-expression 

of SIM2s in SUM159 cells caused a significant loss in lactate production along with a decreased 

trend in glucose consumption.  However, we found that DCIS SIM2s cells showed significantly 

higher glucose consumption, with no change in lactate – indicating that glucose consumption 

was being shunted to other pathways than lactate production (Figure 29 C).   

For these initial studies, cells were grown in excess glucose under normal conditions 

(10mM-25mM), which according to the Crabtree effect, increases glycolysis while inhibiting 

reliance on oxidative phosphorylation (Crabtree, 1929).  To determine if this glycolytic switch 

represented a homeostatic response to proliferation, we examined the ability of SIM2s over and 

under-expressing cells to turn to oxidative phosphorylation for energy provision upon nutrient 

starvation.  In normal glucose containing media, we have shown that SIM2si cells proliferate 

more rapidly as compared to controls, whereas SIM2s inhibits proliferation (Gustafson et al., 

2009b; Kwak et al., 2007; Laffin et al., 2008; Scribner et al., 2012).  When we limited glycolysis 

and forced oxidative phosphorylation by either substituting galactose as an energy source or  

 

 

 



139 

 

under glucose starvation, we found that loss of SIM2s impaired adaptation to nutrient stress, 

whereas re-establishment of SIM2s promoted resistance to low glucose as compared to controls 

(Figure 29 D-F and Figure 30).This response is likely due to the SIM2s cells’ ability to utilize 

their mitochondria more efficiently than control and SIM2si cells.  

Further analysis of SUM159 SIM2s cells showed significantly higher levels of oxidative 

phosphorylation in both glucose concentrations, along with decreased ECAR rates (Figure 29 G).  

DCIS SIM2s cells also showed higher OCR rates in glucose rich media, but interestingly this 

significance was lost in low glucose.  This is likely due to the control DCIS cells being able to 

mount a mitochondrial response to the stressed environment.  DCIS SIM2s cells’ ECAR rates 

were insignificant in glucose rich media, but were significantly decreased in low glucose.  DCIS 

SIM2si cells showed similar trends to the MCF7 SIM2si cells, with decreased OCR and 

increased ECAR, varying with glucose levels (Figure 29 G).  SIM2s expression thus has a 

significant effect on the metabolic adaptation of breast cancer cells, and this effect varies with 

breast cancer aggressiveness and progression. 
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Figure 29.  Loss of and Re-establishment of SIM2s Modulates Metabolism in Breast Cancer Cells.  (A) 
Microarray Analysis of MCF7 SIM2si cells shows that pathways common to cell cycle, metabolism, and 
oxidative phosphorylation are significantly affected by loss of SIM2s.  (B) Enhanced media acidification 

caused by MCF7 SIM2si cells.  NMR analysis of % glucose remaining and mM lactate produced.  
Seahorse flux analysis of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of 
MCF7 SIM2si cells, along with response graph showing OCR cellular response to oligomycin (points 4-

6), FCCP (points 7-9), and rotenone (points 10-12).  (C) NMR analysis of SUM159 and DCIS SIM2s cells 
for mM lactate produced and % glucose remaining.  (D) Proliferation assays of MCF7, SUM159, and 

DCIS cells in decreasing concentrations of glucose.  10mM cell counts were set to 100%, and decreasing 
glucose cell counts are normalized to their respective 10mM control. (E) Images of MCF7, SUM159, and 

DCIS cells in high and low glucose.  Images were taken using a 20x objective lens. (F) Proliferation 
assays of MCF7, SUM159, and DCIS cells grown in normal media (10-25mM glucose) and galactose 

(10mM) containing media. (G) Seahorse flux analysis of SUM159 and DCIS cells in high and low glucose 
media.  *=p-value<.05. Data are shown as mean + SEM. Scale bars = 100µm.   
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Figure 30.  Proliferation Assays of MCF7, SUM159, and DCIS Cells in Galactose Containing Media.  
10mM cell counts were set to 100%, and galactose cell counts are normalized as a percentage to their 

respective 10mM control. Student’s T-test was performed to test correlations.  *=p-value <.05.  Data are 
shown as mean + SEM. 

 

 

SIM2s Induces Intracellular Changes in Metabolic Constituents 

To further address SIM2s dependent regulation of oxidative phosphorylation, we 

assessed various parameters of mitochondrial content in each cell type.   Despite the significant 

differences in glycolysis, we found no change in mitochondrial membrane potential in SIM2s 

over and under-expressing cells (data not shown).  When we measured mitochondrial and 

lysosome content using live cell imaging of cells labeled with MitoTracker and LysoTracker, we 

saw a significant increase in lysosomes with SIM2s over-expression in DCIS and SUM159 cells, 

and a decrease in MCF7-SIM2si cells. Similarly, we found an inverse relationship between 

SIM2s expression and mitochondrial content (Figure 31 A and 32 A-B). The observed increase 

in lysosomal activity accompanied with a decreased trend in mitochondria is likely due to 

enhanced mitophagy.   Increased LC3B protein was seen with SIM2s expression in both 

SUM159 and DCIS cells and decreased in MCF7 SIM2si cells (Figure 32 B).  To further 
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characterize the effect of SIM2s on mitochondria function, mitochondria morphology was 

examined by transmission electron microscopy. SIM2s expression correlated with shortened 

mitochondria, well-defined cristae and an electron-dense cytoplasm in DCIS cells, whereas loss 

of SIM2s resulted in elongated mitochondria and electron-lucent cytoplasm as compared to 

controls (Figure 31 B and Figure 32).  In SUM159 cells, SIM2s expression also caused shortened 

mitochondria with well-defined cristae, however the cytoplasm was more electron-lucent than 

controls.  Loss of SIM2s in MCF7 cells reduced mitochondria definition and cristae organization 

(Figure 31 B and Figure 32). 

The endpoints of mitochondrial oxidative phosphorylation are ATP and reactive oxygen 

species (ROS).  Therefore using ATP-lite luminescence and DCFH fluorescent assays we 

analyzed cellular capacity for energy production with SIM2s expression.  In DCIS cells, SIM2s 

expression was associated with significantly higher ATP and ROS levels, regardless of glucose 

conditions.  In contrast, down-regulation of SIM2s in DCIS cells significantly decreased ROS 

levels under glucose rich conditions, and decreased ATP production in low glucose (Figure 31 

C).  MCF7 SIM2si cells showed significantly lower levels of ATP regardless of glucose levels, 

as well as decreased trends in ROS that reached statistical significance in low glucose media.  

SUM159 SIM2s cells also showed significantly decreased ATP levels, with no significant 

change in ROS (Figure 31 C). Cells were treated with 2-deoxy-glucose (2-DG), which blocks 

glycolysis, and the ATP synthase inhibitor, Oligomycin (Oligo).   Inhibition of glycolysis by 2-

DG had little effect on SIM2s related differences; however the decreased ATP seen in SIM2si 

DCIS cells was lost.  Trends remained similar with ROS as well, although blocking glycolysis in 

MCF7 SIM2si cells significantly reversed their ROS expression in glucose rich media.  

Inhibition of ATPase also saw little effect on ATP trends, except for during stressed, low glucose 

conditions – then ATP levels were reversed – indicating that during low glucose conditions a 
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majority of ATP is from oxidative phosphorylation, supporting the Crabtree effect (Figure 31 C).  

Since all trends were not reversed by 2-DG or oligomycin, it appears there is a complex balance 

between oxidative phosphorylation and glycolysis that is constantly adapting to the environment. 

These results also indicate that SIM2s plays an important role in the cells’ ability to adapt to 

nutrient changes in the environment. 

Key Glycolytic Enzymes Are Inhibited by SIM2s Expression 

Tumor metabolism is dependent on the convergence of numerous signaling cascades and 

transcription factors.  Minor changes in key pathways can have a significant impact on metabolic 

homeostasis (Figure 33 A).  Analysis of key metabolic genes by qPCR in DCIS and SUM159 

cells found that SIM2s expression correlated with significant decreases in glycolytic genes 

including HK1 and HK2, as well as glucose transporters SLC2A1, SLC2A3, and SLC2A4 (Figure 

33 B).  DCIS SIM2si cells showed a significant increase in SLC2A3 and HK1, and increased 

trends in SLC2A and HK2 gene expression. Similar trends were also observed in MCF7 SIM2si 

cells (Figure 34).  Additionally, we saw no distinct trends with pentose phosphate pathway 

Glucose-6-phosphate dehydrogenase (G6PD), but did see significant decreases in lactate 

dehydrogenase (LDHA) in DCIS SIM2s cells (Figure 34).   
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Figure 31.  SIM2s Induces Intracellular Changes in Metabolic Constituents.  .  (A) Imaging of DCIS, 

MCF7, and SUM159 cells using LysoTracker and MitoTracker fluorescent probes.  Images were taken 
using 63x objective lens.  (B) Electron microscopy images of DCIS, MCF7, and SUM159 cells under 
glucose rich conditions.  Images taken at 3.5kx, 11kx, and 44kx. (C) ATP and ROS quantification for 

DCIS, MCF7, and SUM159 cells.  Cells were plated, adhered for 12 hours, and then were dosed for 24 
hours prior to experiments.  *=p-value<.05.  Data are shown as mean + SEM. 
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Figure 32.  Single Channel Images of MCF7, SUM159, and DCIS Live Cell Imaging.  MitoTracker is in 
red, LysoTrackers is in green.  Images were taken using 63x objective lens. (B) Western blot analysis of 
LC3B and oxidative phosphorylation complexes using isolated mitochondria.  Actin was used as loading 
control.  .  (C) Electron microscopy images of MCF7, SUM159, and DCIS cells grown in 1mM glucose 
media.  Cells were grown in 1mM glucose for 24 hours prior to fixation and preparation.  Images were 

taken at 3.5kx, 11kx, and 44kx. 
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Figure 33. Key Glycolytic Enzymes Are Inhibited by SIM2s Expression.  (A) Simplified model of key 

pathways involved in cellular metabolism, along with key, rate-limiting enzymes involved in each 
pathway. (B) Q-PCR analysis of gene expression of key glycolytic enzymes in MCF7 and SUM159 cells.  
Samples are normalized to the Control, 10mM samples.  *=p-value<.05. Data are shown as mean + SEM. 
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Figure 34.  Q-PCR Analysis of Breast Cancer Cells for Metabolic and Stress Response Genes.  (A) Q-
PCR analysis of MCF7 cells for key glycolytic genes.  (B)  Q-PCR Analysis of MCF7, SUM159, and 

DCIS cells for alternative metabolic pathways and stress response genes.  *=p-value<.05.  Data are shown 
as mean + SEM. 
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DCIS Xenograft Analysis Confirms In Vitro Data and Induces P53 Stress Response 

We have shown that SIM2s regulates MCF10DCIS.com progression and invasion in in 

vivo xenograft assays by promoting luminal gene expression and inhibiting  matrix 

metalloproteinases (MMPs) (Scribner et al., 2012).  The glycolytic trends observed in vitro were 

analyzed in vivo, DCIS control, SIM2s, and SIM2si tumors were stained for SIM2s, GLUT1, and 

HK2 (Figure 35 A).  Consistent with the in vitro results, we found that GLUT1 and HK2 staining 

increased with loss of SIM2s, along with shifts in localization to the cellular membrane (Figure 

35 A).  qPCR analysis showed decreased HK1 and HK2 with SIM2s expression, as well as 

SLC2A1 (Figure 35 B).  We saw a significant increase in the insulin-regulated SLC2A4 with 

SIM2s, and no change in the NFκB regulated SLC2A3 (Figure 35 B).  Also, DCIS xenografts 

showed a significant increase in p53-regulated oxidative phosphorylation genes SCO2 and 

TIGAR with SIM2s expression (Figure 35 B) (Bensaad et al., 2006; Won et al., 2012).  This 

change, not seen in vitro, is likely due to the unique stressed and hypoxic environment that 

occurs in the tumor.  We found that SIM2s expression significantly increased nucleic p21 

expression in DCIS xenografts, and that p21 expression decreased under normal breast cancer 

progression from DCIS to IDC (Figure 35 C).  Additionally, we saw a significant decrease in key 

metabolic signalers AKT and MTOR, as well as TSC2, which is often involved in autophagy 

(Figure 35 B) (Alexander et al., 2010; Zhu et al., 2012).  However, we still see the increased 

trend in LC3 gene expression in SIM2s tumors.  We did not see changes in genes involved in 

mitochondrial fusion, fission, and function, as well as key enzymes in the TCA cycle and 

pentose phosphate pathway (Figure 36).   
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Figure 35.  DCIS Xenograft Analysis Confirms In Vitro Data and Induces P53 Stress Response.  (A) 

Immunohistochemical analysis of DCIS xenografts.  Immunostaining for H&E, SIM2s, GLUT1, and HK2.  
Images were taken at 25.2x magnification.  (B) Q-PCR analysis of key metabolic and stress response 
genes in DCIS xenografts (C) p21 immunostaining and quantification.  Quantification was done by 

counting positive and negative nuclei and calculating percentage.  *=p-value<.05. Scale bars = 100µm.  
Data are shown as mean + SEM. 
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Figure 36.  Q-PCR Analysis of DCIS Xenografts of Key Mitochondrial Genes and Alternative Metabolic 

Pathways.  *=p-value<.05.  Data are shown as mean + SEM.  Control and SIM2s represent PLPCX 
lentiviral transductions (Empty plasmid and SIM2s overexpression).  Scrambled and SIM2si represent 

shRNA transductions (Scrambled Control and SIM2s targeting). 
 

 

SIM2s Regulates P21 Expression and Induces Cellular Senescence and Inhibits Glycolysis 

The significant increase in p21 expression seen in DCIS SIM2s xenografts indicated a 

potential mechanism by which SIM2s may inhibit proliferation and tumor metabolism.  Analysis 

of basal CDKN1A gene expression by qPCR showed that CDKN1A is highly expressed in DCIS 

cells as compared to MCF7 and SUM159 cells (Figure 37 A).  Over-expression of SIM2s 

enhanced basal CDKN1A expression in DCIS, MCF7, and SUM159 cells, whereas CDKN1A 

levels decreased in SIM2si cells (Figure 37 A).  p21 expression is associated with cellular 

senescence, and cell cycle regulation was significantly effected in our microarray analysis.  
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Analysis of senescence-associated β-Galactosidase (SaβGal) activity showed a increase in 

SaβGal staining in SIM2s cells (Figure 37 B).   The observation that SIM2s induces senescence 

in MCF7 and SUM159 cells is significant, since these cells have lost several nodal tumor 

suppressive pathways.  MCF7 cells lack the INK4A/ARF locus that encodes p16 and p14, 

whereas SUM159 cells have a defective p53, suggesting that SIM2s-induced senescence is 

independent of these pathways (Deng et al., 2002; Wasielewski et al., 2006).   

To determine the molecular mechanism of SIM2s induction of CDKN1A gene 

expression, we co-transfected a 2.4kb CDKN1A promoter luciferase into MCF7 cells with 

increasing amounts of SIM2s, showing that SIM2s induced CDKN1A promoter activity in a dose-

dependent manner (Figure 37 C).  Analysis of the CDKN1A promoter identified two potential 

SIM2s central midline binding elements (CME) near the 3’-p53 response site and TATA box 

(Figure 37 C).  Chromatin immunoprecipitation (ChIP) analysis showed that SIM2s 

differentially bound the 3’-CME in MCF7 cells under basal conditions (Figure 37 C).  Since the 

p53 response element is often a stress response element, the MCF7 cells were irradiated and 

ChIP analysis was performed, showing increased SIM2s binding to the CDKN1A promoter in 

response to cellular stress (Figure 37 C). These results confirm that SIM2s directly binds and 

regulates basal and IR-induced CDKN1A promoter activity. 
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To determine if silencing CDKN1A was sufficient to reverse the metabolic phenotype 

seen in cancer cells with SIM2s expression, we knocked down CDKN1A using  a confirmed 

siRNA and analyzed changes in senescent and metabolic behavior.  Down-regulation CDKN1A 

gene expression was verified by qPCR (Figure 37 D).  Loss of CDKN1A reversed the increased 

SaβGal staining seen in SIM2s cells (Figure 37 D).  We also found that SIM2s-induced ATP 

production was significantly affected by inhibition of CDKN1A, whereas control cells had no 

response to loss of CDKN1A (Figure 37 E).  Additionally, we measured lactate levels in spent 

media of cells after CDKN1A knockdown.  DCIS control and SIM2s cells showed significant 

increases in lactate production with loss of CDKN1A, likely due to the high levels of CDKN1A 

already present in the parent cell line (Figure 37 E).  SUM159 SIM2s cells also showed a 

significant increase in lactate production with CDKN1A knockdown, while control cells showed 

no response to loss of CDKN1A (Figure 37 E).  Together, these data show that SIM2s mediates 

the glycolytic shift of breast cancer cells through direct up-regulation of p21-induced 

senescence. 
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Figure 37.  SIM2s Regulates P21 Expression, Induces Cellular Senescence, and Inhibits Glycolysis.  (A) 

Q-PCR analysis of CDKN1A in DCIS, SUM159, and MCF7 cells. (B) β-Gal staining for cellular 
senescence in MCF7, DCIS, and SUM159 SIM2s cells.  Images were taken at 25.2x magnification.  

Quantification was taken as average of mean blue staining on cells. (C) Luciferase assay to determine 
SIM2s regulation of CDKN1A activity.  Gene diagram showing RT-PCR primer designs.  ChIP analysis 
of MCF7 cells confirms that SIM2s binds the p53RE in the promoter of CDKN1A, and is increased with 
stress induction through irradiation. (D) β-Gal staining of Control and CDKN1A siRNA transfected cells.  
Western blot showed increased p21 expression with SIM2s expression.  Q-PCR analysis confirmed loss of 

CDKN1A in transfected cells.  Quantification of β-Gal staining showing loss of increased cellular 
senescence with loss of CDKN1A. (E) ATP and lactate analysis of DCIS and SUM159 SIM2s cells 

transfected with control and CDKN1A siRNA, resulting in significantly decreased ATP levels in SIM2s 
cells, as well as increased lactate production.  *=p-value<.05. Scale bars = 100µm.  Data are shown as 

mean + SEM 
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Discussion 

In this study we have demonstrated that SIM2s plays a key role in DCIS progression by 

regulating the switch between senescence and glycolysis.  Previously, we have shown that 

SIM2s expression inhibits tumor growth and metastasis in vivo, and loss of SIM2s induces an 

EMT through SLUG (Gustafson et al., 2009b; Kwak et al., 2007; Laffin et al., 2008; Scribner et 

al., 2012).  Our current study shows that SIM2s plays a role in maintaining cellular metabolic 

homeostasis under normal circumstances, and this system is hijacked during cancer progression.    

SIM2s promotes normal mitochondrial function and oxygen consumption while decreasing 

extracellular acidification and glycolytic enzyme activity, whereas loss of SIM2s induces 

mitochondrial dysfunction and enhances glycolysis.  This correlates with our observation in 

human breast tumors: SIM2s expression is lost as glycolytic activity is gained.  Taken together, 

these data provide a mechanism by which SIM2s actively inhibits tumor progression in early 

stage DCIS. 

The functional interface between senescence and tumor metabolism is not well 

understood.  Previous work has alluded to this relationship, as p53 has been well established as a 

regulator of both cellular metabolism and senescence, as well as the unique roles of reactive 

oxygen species (ROS) and low glucose in their ability to induce cellular senescence (Bensaad et 

al., 2006; Feng and Levine, 2010; Ferbeyre et al., 2002; Kawauchi et al., 2008; Ma et al., 2007; 

Malkin et al., 1990; Matoba et al., 2006; Yeung et al., 2008; Zhou et al., 2003).  Previous work 

in fibroblasts has also established that senescence cells have lower levels of glycolysis than their 

proliferating counterparts (Zwerschke et al., 2003).  Glycogen metabolism has also shown to be 

up-regulated in tumors and inhibition of glycogen consumption induces senescence and impairs 

tumorigenesis (Favaro et al., 2012).  Our study demonstrates that SIM2s induces p21 expression 

independently of p53, and subsequently promotes senescence and loss of glycolytic ability.  
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Down-regulation of p21 in SIM2s expressing cells is sufficient to inhibit oxidative 

phosphorylation and promote lactate production, thereby blocking the SIM2s related effect, 

indicating that promotion of senescence is the primary mechanism through which SIM2s 

regulates metabolism.  The up-regulation of p21 and subsequent inhibition of glycolysis raises 

the question whether senescence is involved in differentiation.  Comparison of DCIS and 

SUM159 cell lines show complex responses to SIM2s expression depending on cell type.  We 

have previously shown that re-establishment of SIM2s promotes terminal differentiation and 

milk protein expression in DCIS xenografts (Scribner et al., 2012).  This supports our previous 

work showing that increased Sim2s expression in the mouse mammary gland induces precocious 

lactogenic differentiation and delayed involution (Scribner et al., 2011; Wellberg et al., 2010).  

This suggests a role for senescence in the normal metabolic function of the mammary gland. 

Based on this we hypothesize in early stage DCIS, overexpression of SIM2s induces a terminal 

differentiation, lactational phenotype.   Recent research has made similar connections with 

oxidative phosphorylation, ROS, and senescence in the phenotype of Alzheimer’s and Downs 

syndrome (Chatterjee et al., 2013; Helguera et al., 2013; Piccoli et al., 2013).  SIM2s has been 

shown to be elevated in the brains of Downs syndrome populations, indicating a potential 

relationship between SIM2s and brain metabolic activity (Chatterjee et al., 2013; Chrast et al., 

2000; Ema et al., 1999; Spellman et al., 2013).   

The demand for understanding metabolic homeostasis in tumor cells and how to 

maintain normal metabolic activity is significant (Ferreira et al., 2012; Levine and Puzio-Kuter, 

2010; Lunt and Vander Heiden, 2011).  Many effects have been seen and studied in both normal 

and cancerous environments (DeBerardinis et al., 2007; Marroquin et al., 2007; Pavlides et al., 

2009; Swerdlow et al., 2013; Warburg, 1956a).  Cells can alter their metabolism in response to 

available nutrients, however with tumorigenesis, this pathway is derailed and the cells become 
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metabolic powerhouses to maintain proliferation and avoid apoptosis.  Our study shows that 

SIM2s expression is necessary for cells to competently operate their metabolic machinery in 

response to changing environments. 
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CHAPTER VI 

CONCLUSIONS 

 

In conclusion, we have developed a new and novel mechanism of action through which 

SIM2s inhibits early breast cancer progression through upregulation of p21-induced senescence, 

and subsequently a reverse Warburg effect.  The relationship between senescence and 

metabolism has been alluded to earlier, however no studies have been done to determine the 

possibility of an upstream role in senescence in metabolic regulation.  Our studies point towards 

this as the potential mechanism for SIM2s-regulated cellular differentiation.  The relationship we 

have shown between differentiation, metabolism, aging, and disease has far reaching 

implications in breast cancer, as well as other diseases. 

 

SIM2s in Mammary Gland Lactation and Metabolism 

Previous work in our lab has elucidated the importance of Sim2s in mammary gland 

differentiation and lactation (Wellberg et al., 2010).  Lactation is the most metabolically active 

state of mammary gland development, and is characterized by metabolically active, non-

proliferating epithelial cells.  This is interesting due to the fact senescent cells are also defined as 

metabolically active and non-proliferating (Rodier and Campisi, 2011).  The role of senescence 

and p21 in induction and maintenance of lactation has not been studied, however prolonged 

lactation has been associated with increased ROS, oxidative damage, and mitochondrial 

dysfunction (Hadsell et al., 2011; Hadsell et al., 2006; Hadsell et al., 2005).  We hypothesize that 

the natural induction of Sim2s during lactation actually promotes this lactational phenotype 

through senescence, and that overexpression of Sim2s could potentially prolong lactation be 

helping maintain mitochondrial integrity during enhanced metabolic activity.  A study done in 
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2004 examined the expression of p19ARF (another senescence associated protein) during normal 

mammary gland development (Yi et al., 2004).  Yi et al. found that p19ARF increased 

significantly during pregnancy and plateaued during lactation, eventually decreasing during the 

second phase of involution.  Loss of p19ARF in the mouse mammary gland delayed the first 

phase of involution, similar to the overexpression of Sim2s, and decreased p21 expression and 

apoptosis.  This aligns well with our hypothesis for the potential role of senescence in lactational 

metabolism.  Thus Sim2s is responsible for metabolic homeostasis not in normally mammary 

gland function, and this regulation must be lost for tumor progression. 

 

SIM2s and Full Body Metabolism 

We have shown that SIM2s can regulate metabolic homeostasis in breast cancer.  We 

hypothesize that likewise, SIM2s plays a role in normal metabolism throughout the body.  This 

is especially important with current health concerns like diet-induced obesity and insulin 

resistant diabetes.  Additionally, this has important implications in muscle development and 

training.  Obesity is defined as a metabolic imbalance: energy input is greater than energy 

output, likely through enhanced energy storage, with a chronic inflammatory phenotype 

(Johnson et al., 2012).  Many studies have evaluated different risk factors associated with 

obesity: sleep, genetic predisposition, maternal diabetes, diet, exercise, etc (Bell et al., 1995; 

Goularte et al., 2012; Johnson et al., 2012; Klingenberg et al., 2012).  In general, calorie 

restriction and exercise are the biggest inhibitors of obesity, and obesity associated diseases.  

Similarly, caloric restriction has also been shown to lower breast cancer risks through increased 

insulin sensitivity and decreased proliferation (Frankenberry et al., 2006; Harvie and Howell, 

2006; Harvie and Howell, 2012; Howell et al., 2009).   
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Interestingly, people diagnosed with Down syndrome have a high occurrence of obesity 

and type 2 diabetes (Cento et al., 1999; Cusi, 2010; Fonseca et al., 2005).  Down syndrome 

individuals are prone to obesity at an earlier age, have a lower resting metabolic rate, and low 

dietary intake.  Hypothyroidism and increased leptin levels in people with DS have also been 

implicated in contributed to the higher rates of obesity.  Studies have indicated this 

predisposition toward metabolic deregulation is through increase adipocyte inflammatory 

signaling, as well as deregulated endocrine homeostasis, which also has systemic effects in the 

brain (Misiak et al., 2012).  We have previously discussed that upregulation of SIM2 in DS, and 

its contribution to the etiology of DS.  Based on our current studies linking SIM2s to 

metabolism, we hypothesize that SIM2s also plays an important role in diet induced obesity and 

diabetes.  Initial studies using a systemic, heterozygous knockdown of Sim2s, have shown that 

loss of Sim2s significantly inhibits weight gain on a high fat diet (Figure 38).  

 
Figure 38.  High Fat Diet Reduces SIM2 Expression, and Loss of SIM2s Affects Weight Gain and 

Mammary Gland Development.  WT and Sim2s+/- mice were fed a 40% high fat diet for 14+ weeks, mice 
were weighed weekly and food consumption was measured weekly.  High fat diet significantly reduced 

Sim2s expression.  Sim2s+/- mice gained significantly less weight, despite equal energy uptake, and 
developed pre-malignant mammary lesions. 
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 Although energy intake between wild-type mice and Sim2s+/- is equivalent, the Sim2s+/- 

mice do not gain weight compared to wild-type, and high fat diet also down regulates Sim2s 

expression in the mammary gland. We hypothesize that the Sim2s heterozygous mice lose their 

limited expression of Sim2s with high-fat diet, inhibiting weight gain, and increasing breast 

cancer risk.  Initial studies have shown increased hyperplasias in the mammary gland of 

Sim2s+/- mice fed a high-fat diet compared to wild-type (Figure 38).  This translates the effect 

SIM2s has on the mammary gland to a systemic regulation of metabolism. 

In addition to adipocytes and obesity, another major organ involved in metabolic 

homeostasis and weight is skeletal muscle.  SIM2 has already been identified to be integral to 

myogenic differentiation (Havis et al., 2012; Zhao et al., 2002b).  SIM2 expression in myogenic 

progenitor cells prevents premature entry into the myogenic differentiation program, and helps to 

maintain muscle integrity.  Using the same Sim2s+/- mice we just discussed, we allowed these 

mice to run at will and measure distance run and time run.  Sim2s +/- mice ran significantly less 

than their WT counterparts – both in distance and time (Figure 39).  This also associated with an 

increase in glycolytic enzyme RNA levels in Sim2s+/- muscle tissues.  In skeletal muscle, muscle 

fibers are divided into two groups based on their metabolic activity (Figure 39).  Type I muscles 

are slow twitch, used for endurance such as marathon running, and are highly oxidative – 

primarily using mitochondria and oxidative phosphorylation of energy.  Type II fibers are fast 

twitch, used for strength and sprinting, and are highly glycolytic – with fewer mitochondria than 

Type I fibers and increased glucose uptake.  Based on this we hypothesize that SIM2s expression 

in muscle fibers is important to the muscle fiber phenotype, with higher expression seen in Type 

I fibers, and lower expression in Type II fibers.   We also hypothesize that under conditions of 

endurance training, athletes’ muscle-specific levels of SIM2s increase, due to the increased 

demand for slow twitch muscle fibers. 
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Figure 39.  Sim2s Expression Affects Muscle Development and Aerobic Activity.  WT and Sim2s+/-

 were 
given access to an activity wheel to run on ad libitum.  Sim2s+/- mice ran significantly less, both in 

distance and time.  Sim2s+/- mice also had significantly higher levels of glycolytic genes Ldha and HK2 in 
both the gastrocnemius and EDL muscles. 

 

 

SIM2s in Brain Development and Neurodegenerative Disease 

As previously discussed, SIM2s expression is upregulated in the brain of people with 

Down Syndrome, and contributes to the etiology of DS (Chrast et al., 2000; Spellman et al., 

2013).  Altered metabolic activity and oxidative stress have long been associated with DS 

(Arbuzova et al., 2002; Brooksbank and Balazs, 1984; Busciglio et al., 2002).  DS neurons 

generate high levels of ROS which can compromise neuronal survival, and altered mitochondrial 

activity has been measured in DS fibroblasts (Busciglio et al., 2002; Coskun and Busciglio, 

2012).  Mitochondria are more fragmented in the DS brain, similar to the shortened mitochondria 

we found with overexpression of SIM2s, several of the pathways we discussed using microarray 

analysis are also altered in DS brains compared to normal brains :oxidative stress and 

mitochondrial dysfunction (Helguera et al., 2013).  These symptoms point to prolonged 

mitochondrial stimulation, ultimately resulting in mitochondrial dysfunction and cell death.  It is 
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this metabolic shift that promotes an increased susceptibility to neurodegenerative diseases in DS 

populations (Coskun and Busciglio, 2012; Coyle et al., 1988; Scholl et al., 1982). 

Mitochondrial dysfunction is the key causative effect in the brain for Alzheimer’s, 

Parkinson’s, and other neurodegenerative diseases (Ramalingam and Kim, 2012).  The 

accumulation of oxidative stress and disrupted mitochondrial respiration initiate apoptotic 

cascades in neurons.  Cell death in neurons is the hallmark of these diseases, as healthy neurons 

are not able to proliferate to accommodate neuron loss.  Depending on the region of the brain 

affected, this apoptosis results in the symptoms of Parkinson’s, such as loss of muscle control, or 

Alzheimer’s, such as loss of memory, or other diseases such as stroke and Huntington’s 

(Ramalingam and Kim, 2012).  Under normal circumstances, the brain is a rapid glucose 

consuming organ that is easily identified using 18-fluorodeoxyglucose signaling.  The onsets of 

these diseases are often diagnosed by decreased glucose consumption in specific regions of the 

brain.  We have shown that the upregulation of SIM2s decreases glucose uptake and promotes 

mitochondrial function and ROS, and since it has been shown to be upregulated in DS, we 

hypothesize that the upregulation of SIM2s in neuronal and astrocyte cells is part of the initial 

event that induces neurodegenerative disease.  Also, since neuronal cells are unable to 

proliferate, yet remain highly metabolically active, we again hypothesize that SIM2s is necessary 

for the induction of a senescence phenotype that promotes normal neuronal function.  A recent 

study has already shown that Sim2 expression in neurons is necessary for hyperglycemia-

induced injury – and down regulation of Sim2 inhibited subsequent neuronal damage (Wang et 

al., 2013).  Patients suffering from diabetes mellitus (a metabolic disorder) are at high risk for 

hyperglycemia-induced brain injury, which can result in stroke or intracerebral hemorrhage 

(ICH).  We hypothesize that an upregulation in SIM2s would promote obesity and diabetes, 
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which would also indicate a higher susceptibility to neuronal injury.  This is just another 

indicator of the important role Sim2s potentially plays in full body and brain metabolism. 

Other proteins have had similar implications in the combination of aging, metabolism, 

and disease (Bonuccelli et al., 2010).  Caveolin-1 has been shown to induce oxidative stress in 

tumor associated stroma, through which it promotes metastasis.  Analysis of the transcription 

profile of this stroma showed a close association with the genetic signature of Alzheimer’s 

disease.  Termed the “Reverse Warburg Effect,” the authors indicate that oxidative stress, 

hypoxia, and mitochondrial dysfunction not only contribute to breast cancer metastasis, but also 

to neurodegeneration.  While this conflicts with our studies of these effects being tumor 

suppressive in the breast, it is important to note that SIM2s is expressed in the luminal epithelial 

cells, not the stroma and myoepithelial cells – indicating a unique cell compartment effect for 

mitochondrial function and oxidative stress.  

 

Conclusion 

In conclusion, these new studies have elucidated a new and complex role for SIM2s in 

the global regulation of differentiation, metabolism, and senescence.  In breast cancer, SIM2s 

must be lost for cells to induce metabolic adaptations for survival and progression, and re-

establishment of SIM2s promotes cellular senescence and differentiation, which reverses the 

Warburg effect (Figure 40).  These effects have exciting implications in normal mammary gland 

lactation, diet-induced obesity, muscle development, and neurodegenerative diseases.  These are 

all examples of metabolic homeostasis, and how the loss of metabolic regulation can induce 

disease.  Our hypothesis is that SIM2s will be a causal regulator of metabolic homeostasis in 

multiple environments in the body, and thus be implicated in further metabolic disorders. 
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Figure 40.  Model of SIM2s Regulation of DCIS Progression through P21 and Metabolic Homeostasis. 
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APPENDIX III 

NOMENCLATURE 

 

2-DG 2-Deoxy Glucose 

AKT Protein Kinase B 

ALDH Aldefluor Dehydrogenase 

APP Amyloid Precursor Protein 

ARNT Aryl hydrocarbon Receptor nuclear translocator 

ATP Adenosine Triphosphate 

BCL2 B-cell lymphoma 2 

BECN1 Beclin-1 

bHLH basic helix-loop-helix 

BNIP3 

Bcl2/adenovirus E1B 19kDa protein-interacting 

protein 3 

BRCA1/2 Breast cancer 1/2 

C/EBP CAAT/Enhancer Binding Protein 

CBF1 C-Repeat Binding factor 1 

CC3 Cleaved-Caspase 3 

CCDN1 Cyclin-D1 

CDH1 E Cadherin 

ChIP Chromatin Immunoprecipitation 

CK5/6 Cytokeratin 5/6 

CK8/18 Cytokeratin 8/18 
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CME Central Midline Element 

CNS Central Nervous System 

CoIP Coimmunoprecipitation 

COX Cytochrome c complex 

Csn2 β-Casein 

CTNNB1 β-Catenin 

DCIS Ductal Carcinoma in situ 

DS Down Syndrome 

DSCR Down Syndrome Critical Region 

dSim drosophila, Single-minded 

dTgo drosophila, TANGO 

ECM Extracellular Matrix 

EGFR Epidermal Growth Factor Receptor 

EMT Epithelial Mesenchymal Transition 

ER Estrogen Receptor 

ETC Electron Transport Chain 

FDG FluorDeoxyGlucose 

FiSH Flurescent in situ hybridization 

G6PD Glucose-6-phosphate dehydrogenase 

GADD Growth arrest and DNA damage 

GLUT Glucose Transporter 

GR Glucocorticoid Receptor 

H&E Hematoxylin and Eosin 

HER2 Human epidermal growth factor receptor 2 
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HIF1α Hypoxia-inducible factor 1-alpha 

HK Hexokinase 

hPTTG1 Human pituitary tumor-tranforming gene 1 

HRE Hypoxic Response Element 

IDC Invasive ductal cancer 

IGFBP5 Insulin-like Growth Factor Bdinging Protein 

JAK2 Januse Kinase 2 

LCIS Lobular Carcionoma in situ 

LDHA Lactate Dehydrogenase 

MAPK Mitogen-activated protein kinase 

MIND mouse intraductal injection 

MMP Matrix Metalloproteinase 

MMP Matrix Metalloproteinase 

MMTV Mouse Mammary Tumor Virus 

mtDNA Mitochondrial DNA 

NADPH Nicotinamide adenine dinucleotide phosphate 

NCAD N-Cadherin 

NFκB Nuclear Factor -kappa B 

NICD NOTCH intracellular domain 

OIS Oncogene Induced Senescence 

OXPHOS Oxidative Phosphorylation 

PAS Per-Arnt-Sim 

PAS Per-Arnt-Sim 

PET Positron Emission Tomography 
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PPP Pentose Phosphate Pathway 

PR Progesterone Receptor 

Prl Prolactin 

PTEN Phosphatase and tensin homolog 

PYGL glycogen phosphorylase 

PyMT Polyoma Middle-T 

Q-PCR Quantitative PCR 

RB Retinoblastoma 

ROS Reactive Oxygen Species 

RT-PCR Reverse Transcriptase PCR 

S2RE SIM2 Response Element 

SA-βGal Senescence Associated β-Galactosidase 

SCO2 Synthesis of cytochrome c oxidase 

SIM2s Singleminded-2 short isoform 

SNP single nucleotide polymorphisms 

STAT Signal transducer and activator 

STAT Signal transducer and activator of transcription 

TBP TATA Binding Protein 

TCA Tricarboxylic Cycle 

TEB Terminal End Bud 

TIC Tumor Initiating Cell 

TIGAR TP53-induced glycolysis and apoptosis regulator 

TIMP Tissue Inhibitor of metallo proteinase 

UPR Unfolded Protein Response 
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VEGF Vascular endothelial growth factor 

VIM Vimentin 

WAP Whey acidic protein 

WT Wild Type 

XRE Xenobiotic response element 
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APPENDIX IV 

VITA 

 

Education 

Ph.D.  – Toxicology (Defense: March 25, 2013)      

 Texas A&M University – College Station, TX 

Committee: Weston Porter, Ph.D. (Chair), Stephen Safe, Ph.D., Les Dees, Ph.D., Tim  

 Phillips, Ph.D., and Scott Dindot, Ph.D. 

Dissertation:  “Metabolic Demands in Mammary Gland Development and Breast  

 Cancer” 

 

B.S. - Veterinary Science, Biomedical Option (Minor: Biochemistry)   

University of Nebraska – Lincoln, NE 

 

Research Experience 

Aug 2008 – Current Graduate Research Assistant 

 Texas A&M University College of Veterinary Medicine (CVM) 

 Veterinary Integrative Biosciences/Interdisciplinary Faculty of Toxicology 

  Principle Investigator: Weston W. Porter, Ph.D. 

Jan 2008 – May 2008 Undergraduate Research Assistant (Independent Study) 

 University of Nebraska – Lincoln 

 Veterinary Diagnostic Lab – Toxicology 

  Principal Investigator: Michael Carlson, Ph.D. 
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Apr 2004 – Mar 2005 Student Assistant 

 University of Nebraska – Lincoln 

 Animal Research Facility 

Jan 2003 – May 2003 Student Assistant 

 University of Nebraska – Lincoln 

 Ruminant Nutrition Lab 

 

Awards & Honors 

2013  TAMU Auxiliary Graduate Student Award 

2013  High Impact Research Achievement Award – First Author Publication,  

  Texas A&M 

2012  Ethel Ashworth-Tsutsui Memorial Award for Research 

 2012  3rd Place, Platform Presentation, Breast Cancer Research and Education  

   Program, Baylor College of Medicine 

2012  High Impact Research Achievement Award, Texas A&M University 

2012 1st Place, Platform Presentation, CVM - Graduate Student Association 

Symposium 

2012  TAMU Academic Excellence Award 

2012   George T. Edd’s Outstanding Toxicology Student Award,  

 TAMU Interdisciplinary Faculty of Toxicology 

2011  CVM Graduate Student Research Trainee Grant 

2011  CVM-GSA Travel Award 

2011  CVM Award for Exemplary Work during Graduate Career 
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2011  5th Place, Poster Presentation, CVM-GSA Spring Symposium 

2011  Pinnacle Honor Society, Induction 

2010  Who’s Who among Students in American Colleges & Universities, 

 Induction 

 2010  San Antonio Breast Cancer Symposium Basic Science Scholars-In- 

   Training Scholarship, American Association for Cancer Research 

2010 2nd Place, Platform Presentation, Society of Toxicology, Gulf Coast 

Chapter Annual Meeting 

2010  Gulf Coast Society of Toxicology Annual Meeting Travel Award 

2010  1st Place, Platform Presentation, Toxicology Research Forum 

2010  3rd Place, Poster Presentation, Texas Forum on Reproductive Science 

2010  CVM-GSA Travel Award    

2009  Honorable Mention, Poster Presentation, Toxicology Research Forum    

2009  CVM-GSA Travel Award      

2008-2009 Toxicology Regents Fellow (full support)                                                         
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Research Support 

 BC100880  (Scribner, KC)   1/15/2011 – 1/31/2014   

 DOD BCRP Pre-Doctoral Traineeship Award    

  “Regulation of Mammary Gland and Breast Tumor Differentiation by Singleminded-2s” 

 Role: Principle Investigator 

 

 CVM Graduate Student Research Trainee Grant   1/01/2012 – 12/01/2012 

“The Role of Singleminded-2s (Sim2s) in breast cancer cell metabolism and energy  

homeostasis” 

Role:  Principle Investigator 

 

 Publications 

1. Scribner K.C., Metz R.P., Schilling L., Ragavan M., Fan Y.Y., Hilty C., Chapkin R., 

Payne H.R., Mouneimne R., Behbod F., Medina D., Porter W.W.  “SIM2s inhibits 

DCIS progression by regulating senescent-dependent metabolic equilibrium.” 

Cancer Research. (Submitted) 

2. Dyer L.M., Hu J., Reinhard M.K., Izumchenko E., Scribner K.C., Leeuwenburgh C., 

Porter W.W., McKinnon P.J., Brown K.D. “Atm is required for homeostasis within 

the lactating mammary gland.”  Breast Cancer Research.  (Submitted). 

3. Scribner K.C., Behbod F., and Porter W.W.  “Regulation of DCIS to invasive breast 

cancer progression by Singleminded-2s (SIM2s).”  Oncogene. 2012 Jul 9. [Epub 

ahead of print]. 

4. Romoser A.A., Figueroa D.E., Sooresh A, Scribner K.C., Chen P.L., Porter W.W, 

Criscitiello M.F., and Sayes C.M.(2012)  “Differential NF-B competency mediates 
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nanoparticle toxicity in normal human dermal cells.” Toxicology Letters, May 

5;210(3):293-301. 

5. Scribner K.C., Wellberg E.A., Metz R.P., Porter W.W. (2011) “Singleminded-2s 

(Sim2s) promotes delayed involution of the mouse mammary gland through 

inhibition of Stat3 and NFB.”  Molecular Endocrinology, Apr;25(4):635-

44.(Cover) 

 

National Presentations 

1. Mediation of a Metabolic “Switch” from DCIS to IBC 

 Platform, 8th Annual Breast Cancer Research and Education Program, 

 September 2012, Montgomery, TX (3rd Place) 

2. Singleminded-2s (Sim2s) plays a unique role in mammary gland and breast cancer 

autophagy and energy homeostasis 

 Poster, American Association for Cancer Research Special Conference on  

 Metabolism in Cancer, October 2011, Baltimore, MD 

3. Singleminded-2s (Sim2s) plays a unique role in mammary gland and breast cancer 

autophagy and metabolism homeostasis 

Poster, 7th Annual Breast Cancer Research and Education Program, September 

2011, Montgomery, TX 

4. Singleminded-2s (Sim2s) induces metabolic and autophagic changes in the 

functioning mammary gland and breast cancer 

Poster, Mammary Gland Biology Gordon Research Conference, Salve Regina 

University, June 2011, Newport, RI 

5. Singleminded-2s (Sim2s) in Breast Cancer 
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Seminar, Interdisciplinary Faculty of Toxicology, Texas A&M University, 

February 2011, College Station, TX 

6. Inhibition of DCIS progression through promotion of differentiation 

 Poster, CTRC-AACR Breast Cancer Research Symposium, December 2010,  

San Antonio, TX 

7. Singleminded-2s (Sim2s) inhibits MCF10DCIS.COM progression in vivo by 

promoting differentiation 

Platform, Gulf Coast Society of Toxicology Annual Meeting, October 2010, 

Houston, TX (2nd Place) 

8. Singleminded-2s (Sim2s) inhibits MCF10DCIS.COM progression and metastasis in 

vivo by promoting differentiation 

Platform, 6th Annual Breast Cancer Research and Education Program, 

September 2010, Montgomery, TX 

9. Singleminded-2s (Sim2s) inhibits MCF10DCIS.COM progression and metastasis in 

vivo by promoting differentiation 

Poster, MRS-AACR Metastasis and The Tumor Microenvironment Conference, 

September 2010, Philadelphia, PA 

10. Singleminded-2s (Sim2s) delays apoptosis and involution of the mammary gland 

through inhibition of phospho-Stat3 

Poster, Texas Forum on Reproductive Sciences, April 2010, Houston, TX (3rd 

Place) 

11. MDF10DCIS.COM Breast Cancer Cell Lines are Attenuated by Expression of 

Singleminded- 2s(Sim2s) 
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Platform, Gulf Coast Society of Toxicology Annual Meeting, October 2009, 

Austin, TX 

12. Aberrant Involuting Pathways in MMTV-Singleminded-2s (Sim2s) Mice           

 Poster, 5th Annual Breast Cancer Research and Education Program,  

September 2009, Houston, TX 

13. Differential Induction of Involution in MMTV-Singleminded-2s (Sim2s) Mice 

             Poster, Mammary Gland Biology Gordon Research Conference, June 2009,      

              Newport, RI 

 

Local Presentations 

1. SIM2s inhibits DCIS progression by regulating senescent-dependent metabolic 

equilibrium  

 Seminar, Baylor College of Medicine, February 2013, Houston, TX. 

2. Singleminded-2S (SIM2S) mediates breast cancer cell metabolism and 

mitochondrial bioenergetics 

Platform, CVM-GSA Spring Research Symposium, April 2012, College Station, 

TX. (1st Place) 

3. Singleminded-2s (Sim2s) plays a unique role in breast cancer metabolism and 

mitochondrial bioenergetics 

 Platform, Student Research Week, March 2012, College Station, TX. 

4. Singleminded-2s (Sim2s) induces metabolic and autophagic changes in the 

functioning mammary gland and breast cancer 

Poster, Toxicology Research Symposium, August 2011, College Station, TX. 

5. Inhibition of DCIS Progression through the Re-establishment of Sim2s Expression 
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Poster, CVM-GSA Spring Research Symposium, April 2011, College Station, 

TX (5th Place) 

6. Singleminded-2s (Sim2s) inhibits MCF10DCIS.COM progression and metastasis in 

vivo by promoting differentiation 

Platform, Toxicology Research Symposium,  August 2010, College Station, TX. 

(1st Place) 

7. Differential Induction of Involution in MMTV-Singleminded-2s (Sim2s) Mice 

Poster, Toxicology Research Symposium, August 2009, College Station, TX. 

(Honorable Mention) 

Professional Affiliations 

2011-Current  Society of Toxicology   

2011-Current  Metastasis Research Society – Member 

2010-Current  American Association of Cancer Researchers – Associate  

   Member 

2009-Current  Lone Star Society of Toxicology – Student Member 

 

Volunteering & Service 

2011-2012 TAMU Veritas Forum Planning Committee – Member  

2009-Current Texas A&M CVM Graduate Student Association Spring Symposium                

2009-Current Texas A&M CVM Open House Volunteer    

2008-Current   TAMU CVM Graduate Student Association – Member 

2011-2012 TAMU Veritas Forum Planning Committee – Member 

2010-2012 American Cancer Society (College Station, TX) – Volunteer 



242 

 

2010-2012 American Cancer Society Reach to Recovery Program East Texas – 

  Coordinator 

2010-2012 Executive Toxicology Committee - Student Representative  

2010-2012 TAMU Student Service Fee Advisory Board – Board Member 

2009-2012 TAMU Medical Sciences Library Student Advisory Board - Board 

  Member 

2012  TAMU Student Research Week – Poster Judge 

2011  TAMU Women’s Leadership Conference 

2011  Expanding Your Horizons Program (Bryan, TX) – Workshop Leader 

 2010-2011 Cattle Barron’s Ball Planning Committee – Food and Beverage Chair 

 2010-2011 TAMU GSC Legislative Relations Committee –Committee Member   

 2010-2011 TAMU Rec Sports Advisory Committee– Student Representative   

 2010-2011 Graduate Student Council – Toxicology Representative 

      2010  Harmony Science Academy (Bryan, TX) – Science Fair Judge 

 2009-2010 TAMU CVM Graduate Student Association - President 

       2009-2010 TAMU CVM Graduate Instruction Council - Graduate Student  

   Representative  

2008       Texas A&M/BYD Kennels Equine Theft Prevention Clinic   

 

Mentorship/Teaching 

 Graduate Panel, VIBS 650: Education in a Veterinary Medical and Biomedical 

Environment 

o (Faculty Coordinator: Dr. Jane Welsh) Fall Semester 2012. 

 Sydney Duckworth, Undergraduate, 485 Directed Studies January-May 2012 
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 Substitute Lecturer, Tumor Cell Biology (Professor: Weston Porter) Spring 

Semester 2012. 

 Expanding Your Horizons:  Motivating young women in math and science, 2011 

  Fall workshop for 6th grade girls interested in math and science. 

 Graduate Panel, VIBS 650: Education in a Veterinary Medical and Biomedical 

Environment 

o (Faculty Coordinator: Dr. Jane Welsh) Fall Semester 2010. 

 Graduate Panel, VIBS 650: Education in a Veterinary Medical and Biomedical 

Environment 

o (Faculty coordinator: Dr. Jane Welsh) Fall Semester 2009. 

 Mansi Gaitonde, Undergraduate researcher, (Directed Studies) Aug-Dec 2009. 

  Currently a medical student at UT Southwestern in Dallas, TX. 

 Sara Filliben, Veterinary student, Summer Research Program 2009 

Poster Presentation: “Role of Singleminded-2s in tumorigenicity of 

MCF10DCIS.COM Cancer Cell Line.”  Sarah Filliben, Kelly Scribner, and 

Weston Porter at the Merck-Merial NIH Veterinary Scholars Symposium in 

North Carolina.  August, 2009. 

 Nebraska Women in Science Conference, 2008. 

  Conference for junior high and high school girls interested in careers in science. 

 

 




