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ABSTRACT 

 

Although mammals are the most commonly utilized laboratory animal, 

laboratory animal medicine continually seeks to replace them with animals of lower 

phylogenic classification. Fish are becoming increasingly important as investigators seek 

alternative animal models for research. Fish can provide an economical and feasible 

alternative to typical mammalian models; moreover, many fish, which have 

comparatively short life spans, can easily reproduce in the laboratory. One key area of 

animal health research in which fish have been underutilized is the field of advanced 

imaging. Although many images of fish have been captured through the use of computed 

tomography (CT), radiography, and ultrasonography, these images have been primarily 

utilized for anatomical study. In addition, fish have never before been studied with 

positron emission tomography/ computed tomography (PET/CT). My objectives were to 

determine if these imaging techniques can be used to obtain physiological information 

from fish, therefore making it more likely that fish can be utilized as replacement 

animals using these new imaging techniques (CT, PET/CT). I performed two different 

types of studies to assess the potential application of advanced imaging techniques to 

fish. In the first experiment, microCT was used to characterize otolith deformity in 

vitamin C deficient captive-raised red drum and relate the deformity to behavioral and 

physiological changes. I found that the normal and abnormal fish had statistically 

significant differences in behavior, cortisol levels, and otolith volume and density. 

MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, 
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and several types of otolith malformations. Therefore, the affected fish had not only an 

abnormal skeletal appearance but also significantly abnormal behavior and cortisol 

responses. In the second experiment, fluorodeoxyglucose-positron emission tomography/ 

computed tomography (FDG-PET/CT) was used to quantify glucose uptake in select 

organs prior to carcinogenesis studies in fish. The quantified glucose uptake was 

compared to published data on humans, mice, and dogs. Rapid, quantifiable glucose 

uptake was demonstrated, particularly in brain, kidneys, and liver in all imaged fish 

species. Glucose uptake in the major organ systems of fish was closer to that in humans 

than uptake in mice or dogs, indicating that fish may serve as an effective alternative 

animal model for tumor studies using this technology. Other applications for this 

technique in fish may include metabolism studies and screening for environmental 

carcinogenesis. I found that both microCT and PET/CT imaging provided useful and 

meaningful results. In addition, the use of non-invasive scanning allows for re-use of 

fish, thus reducing the number of animal models used in experiments. These experiments 

suggest that fish will be good replacement models for mammals using these advanced 

imaging techniques. 
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NOMENCLATURE 

 

AA ascorbic acid 

FDG 18 F-fluorodeoxyglucose  

PET positron emission tomography 

CT computed tomography 

ROI region of interest 

SUV standard uptake value   
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CHAPTER I  

INTRODUCTION  

 

The 3Rs, reduce, refine, and replace are the principle edicts of laboratory animal 

medicine.
1
 Fish fulfill two of these edicts by providing good replacement animal models 

to reduce the use of mammalian species in research
2
. Fish are valuable as research 

models for a number of reasons, including portability, ease of laboratory culture, and 

short reproductive lifecycle. As a result, fish have been used for everything from prion 

research to genetic testing to cancer research
3-8

. They represent the largest and most 

diverse group of vertebrates and can easily be raised in the laboratory, often less 

expensively than other vertebrates
9
. Besides their importance as model systems for 

biological research, fish are useful economically and as a source of nutrition for humans. 

Aquatic biotechnology, aquaculture, is the fastest growing industry worldwide. 

Aquaculture production and the value of aquaculture products has doubled over the past 

ten years to become a multi-million dollar industry
10

. In addition to its obvious economic 

importance, aquaculture provides a critical portion of human nutrition due to the 

efficiency of feed conversion in fish
11-13

. Due to lower maintenance and respiratory 

costs, fish are more efficient converters of feed into meat than mammals. Worldwide, 

fish represent 6% of human dietary protein consumption. However, this percentage rises 

to as high as 22.3% in Asian countries
10

. Fish have also been extensively studied in 

carcinogenesis research. For instance, the novel fish neoplasia research of Mearl Stanton 

piqued the interest in the use of fish species for cancer research in 1965
9
. Since that time, 
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many fish species have been established as animal models for human neoplasms, notably 

rainbow trout with hepatocellular carcinomas
9
, platyfish/swordtails with melanomas

14
, 

catfish with epitheliomas
15

, and bicolored damselfish with schwannomas
16

. As early as 

the 1930s, zebrafish have been used as developmental and embryological model animal 

models of human disease
3-8

. There is one area of research, however, in which fish have 

been underutilized, the field of advanced imaging. Although many images of fish have 

been captured through the use of CT (computed tomography), radiographs, and 

ultrasound, these images have been primarily utilized for anatomical study. The primary 

goal of my research is to determine how fish can fit into current research involving 

advanced imaging’s application to functional studies. By demonstrating how advanced 

imaging techniques for evaluating mammalian tumor growth and development are 

applicable to fish, I showed how fish may serve as highly useful adjuncts to traditional 

mammalian models while at the same time providing wholly unique approaches as 

replacement animals.  As such, they may serve as useful new animal models for human 

carcinogenesis research. The novel aspects of my research are the first use of PET 

(positron emission tomography) imaging in fish and the use of CT imaging to reach 

functional conclusions by linking imaging data to fish behavior and physiology.    

I explored two potential applications of advanced imaging techniques in fish. 

First, microCT and CT utilize tomography created by computer processing and digital 

geometry processing to generate a detailed anatomical three-dimensional image of the 

inside of an object from a large series of two-dimensional X-ray images taken around a 
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single axis of rotation
 17,18

. This technique observes anatomic features of an organism in 

a three dimensional view.    

I used this imaging technique in a novel way by linking internal deformities to 

physiologic and behavioral changes.  In the first experiment, microCT was used to 

characterize otolith deformities captive-raised red drum (Sciaenops ocellatus L.) and 

relate deformity to behavior and physiology. Captive-raised red drum have been 

observed with phenotypic abnormalities, including deformities of the spine, jaw, and 

cephalic region, which were consistent with vitamin C deficiency during the larval stage. 

In light of their obvious skeletal abnormalities, I hypothesized that vitamin C deficient 

fish would have irregular otoliths that would alter behavior and stress response as 

compared with those of phenotypically normal fish. Cortisol was used to quantitate acute 

stress levels. Evaluation of behavior and cortisol levels was coupled with microCT 

assessment of normal and abnormal fish. The mean behavioral scores, cortisol levels, 

and otolith volume, mass, and density of normal and abnormal fish were analyzed by 

using the Student t test.  

Another type of imaging, combined positron emission tomography/computed 

tomography (PET/CT), is a relatively new imaging modality that combines the 

functional images of PET with the anatomical information of CT. PET is capable of 

detecting areas of metabolic activity by using radio-labeled molecular probes with 

specific uptake rates
19

. The most commonly used PET tracer is 18 F-fluorodeoxyglucose 

(FDG), a glucose analogue that allows measurement and mapping of tissue glucose 

uptake
20

. FDG, like glucose, enters cells and is phosphorylated by hexokinase to FDG-6-
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phosphate. Unlike glucose, FDG undergoes only the initial phosphorylation and is not 

further metabolized past F18-FDG-6-Phosphate and thus remains in the cell
20,21

. In 

normal tissues, FDG uptake peaks in the heart, liver, and kidneys shortly after 

administration
22

. In the presence of neoplasia, the tumor also takes up glucose/FDG 

rapidly, allowing for the visualization of the tumor mass in vivo over time
17,23

. The 

retention of the tracer is calculated as SUV (standard uptake value), the most widely 

used unit of measure of metabolic rate of glucose uptake
18,22,23

. SUVs provide highly 

reproducible parameters of cellular glucose metabolism, allowing for accurate 

comparison among PET studies
23

. However, the accuracy of PET measurements alone 

can be hampered by lack of sufficient anatomical detail. PET/CT imaging merges the 

two systems, combining the images acquired from both devices into one superimposed 

image. Thus, functional imaging obtained by PET can be more precisely correlated with 

anatomic three-dimensional imaging obtained by CT scanning. Post processing 

workstations allow for objective and subjective analysis of the imaging data.  

In my second study, FDG-PET/CT was used to quantify glucose uptake in select 

organs of multiple fish species to establish baseline FDG values in fish. Fish were 

serially imaged at 30 and 60 minutes post injection of FDG. Based on mammalian 

studies and fish metabolism research, time contrast images provide the most accurate 

and sensitive information about fish glucose metabolism
20,24

. Post-acquisition, the FDG 

distribution of the entire imaging volume was analyzed in three dimensions using 

Siemens workstations. SUVs were computed for the following tissue volumes: heart, 

liver, intestines, brain, and muscle. Data obtained was analyzed by ANOVA, with a 
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p<.05 used for determining statistical significance. Establishment of normal whole body 

FDG uptake is important to establish metabolic activity of glucose in fish compared to 

humans for accurate interpretation of PET images 
25

. Results indicated that fish uptake 

radioactive glucose in a manner similar to humans, therefore, fish could serve as 

replacement animals for research in diagnosis, staging, and monitoring treatment of 

certain types of cancers. There would also be a reduction in the number of animals that 

would be needed in research projects because with these advanced imaging capabilities, 

the same fish could be reimaged multiple times. Since fish models for various neoplasms 

already exist, this study provides a novel experimental method to utilize these 

replacement animals. This study also has important applications to the rapidly growing 

industry of aquaculture. By visualizing glucose uptake in the fish, we will begin the 

process of understanding how carbohydrates are metabolized to achieve maximum 

growth. 

Since advanced imaging techniques do not require the sacrifice of animals, my 

research is harmonious with the laboratory animal edict regarding reduction. Application 

of advanced imaging techniques to fish does not require the sacrifice of animal life, as is 

normally the case when animal subjects are euthanized using other conventional 

techniques for dissection, tissue collection, and histopathology.  I performed two very 

different studies to demonstrate the application of advanced imaging techniques to 

reducing animal numbers in two areas of study in which fish could be more widely used: 

behavioral and carcinogenesis research
8,26,27

. 
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CHAPTER II 

THE EFFECT OF OTOLITH MALFORMATION ON BEHAVIOR AND CORTISOL 

LEVELS IN JUVENILE RED DRUM FISH (Sciaenops ocellatus)
*
 

 

INTRODUCTION 

Red drum (Sciaenops ocellatus), a perciform teleost species of the family 

Sciaenidae, are commonly used for endocrine and nutrition research and are a 

recreationally important species common in the Gulf of Mexico and southeastern United 

States
28

. Since 1983, hatchery-reared red drum have been stocked to help restore 

depleted populations in Texas. Unlike other commonly cultured species like salmonids, 

juvenile red drum inhabit warm waters (as high as 30 °C), grow at extremely rapid rates, 

and are freely euryhaline. In addition, red drum have excellent aquacultural potential 

because they can be cultured at a range of temperatures and salinities
29

. 

On their arrival to our institution, a new group of red drum was noted to have a 

specific set of phenotypic abnormalities consistent with vitamin C deficiency during the 

larval stage. The exact cause of the abnormalities in these fish was unknown. However, 

because vitamin C (ascorbic acid) is a water-soluble and heat-labile vitamin that can 

degrade quickly in the diet, vitamin C deficiency was a reasonable explanation for the 

observed deformities
30

. Vitamin C acts as a reducing agent and antioxidant in teleosts 

and is a dietary requirement for most fish, including red drum, because they are unable 

                                                 

*
 Reprinted with permission from “The effect of otolith malformation on behavior and cortisol levels in 

juvenile red drum fish, Sciaenops ocellatus” by Z.S. Browning, A.A. Wilkes, E.J. Moore, T.W. Lancon, 

F.J. Clubb. 2012. Comparative Medicine 62(4), 251-256, 2012. 
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to synthesize it
28

. In addition, ascorbic acid is a cofactor in hydroxylating amino acids 

for collagen synthesis, which is required for wound repair, formation of connective 

tissue and bone matrix
31

. Common signs of vitamin C deficiency in teleost fish include 

deformities of the spine, jaw, and cephalic region as well as anophthalmia and shortened 

opercula
32

. These signs were present in all of our phenotypically abnormal fish. Because 

of the visible skeletal malformations of the cranium and spine, we hypothesized that the 

abnormal fish had abnormal otoliths, because bone deposition lesions can be associated 

with poor collagen formation
28

. 

Fish hear in a similar fashion to other vertebrates
33

. Otoliths (or ‘ear stones’) are 

dense calcareous structures in the chambers associated with the ear in teleost fishes
34

. 

The saccular otolith, also called sagittal otolith or sagitta, is the largest in most fishes and 

is considered the primary auditory organ
35

. Otoliths are considered to be involved in 

both auditory and vestibular functions. These calcareous structures detect motion and 

indirectly sense fluctuations of swim-bladder volume in a pressure field. In addition, 

otoliths relay information about sound source characteristics, including distance and 

location
36

. The precise pattern of otolith motion likely is affected by characteristics of 

the otolith, including its mass and center of gravity
37

.  

Red drum have very large otoliths and, as a result, tend to be very responsive to 

external stimuli 
35

. Based on the skeletal deformities we observed, we hypothesized that 

these phenotypically abnormal fish would have abnormal otoliths, which would lead to 

behavioral differences resulting from impaired sensory function. We also hypothesized 

that abnormal fish would have increased acute cortisol responses compared with those of 
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normal fish due to a greater startle response when netted, because they are unable to hear 

the approach of the net
29,38

. The elevation of plasma corticosteroids, mainly cortisol, in 

teleosts in response to various types of stressful stimuli has been well documented and 

constitutes an important hormonal or primary response to stress
39

. 

MATERIALS AND METHODS 

Red drum were obtained as fry and grown to juvenile size (weight, 20 to 80 g) at 

the Aquacultural Research and Teaching Facility (Texas A and M University, College 

Station, TX). The standard length and wet mass (mean ± SEM) for all fish (abnormal 

and normal) were 16.5 ± 0.8 cm and 76.5 ± 1.1 g, respectively. The abnormal and 

normal groups were maintained in 2 recirculating 1900-L tanks at 25 ± 2 °C and 6 ppt 

salinity on a 12:12-h light: dark cycle and commercial fish diet. All fish were maintained 

and treated humanely, and experimental protocols were approved by the Texas A and M 

University IACUC (Institutional Animal Care and Use Committee). 

Fish were separated into 2 groups with 75 ± 5 fish per group; the normal group 

contained only physically normal red drum, whereas the other group consisted of drum 

with various phenotypic skeletal abnormalities. For 15 d, fish were observed once daily 

at 0900 for 10 min by a single impartial observer who was unaware of the purpose for 

monitoring and recording behavior. Fish were scaled as a group on 3 responses: 

schooling, response to visual stimuli (a standard commercial aquaculture feed; Rangen), 

and response to acoustic stimuli. Acoustic stimuli consisted of a verbal phrase spoken by 

the observer after she had been in the room for 5 min—long enough for the fish to 

acclimate to her presence
29

. The speaker was instructed to use the same volume, tone of 
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voice, and phrase during the stimulus. Groups were scored on a scale of 1 to 5 based on 

their responses (Table 1). 

For blood collection for cortisol analysis by radioimmunoassay, 8 normal and 7 

abnormal red drum were anesthetized by using tricaine methanesulfonate (MS222; 

Finquel, Argent Chemical Laboratories, Redmond, WA). Blood was collected from the 

caudal vein and centrifuged to separate the plasma. Plasma was stored at −80 °C until 

cortisol analysis by using Coat-A-Count Total Cortisol kits (Siemens, Los Angeles, CA); 

this kit quantifies hormone concentration in diluted samples by using an antibody-coated 

tube method. 

Another 7 abnormal and 3 normal red drum were chosen randomly and 

euthanized by using tricaine methanesulfonate. They were imaged with microCT (Hawk-

160XI, X-Tek Group, Santa Clara, CA). MicroCT scans were reconstructed (version 2.0, 

VGStudio MAX, Volume Graphics, Heidelberg, Germany) for visualization and 

qualitative evaluation of otolith morphology. In addition, 8-bit image stacks of the 

microCT scans were exported to conduct quantitative microCT measurements of the 

total volume of both sagittal otoliths. 

After imaging, all otoliths were removed, air dried, and weighed individually on 

a gram scale. Otolith volume was measured by water displacement in a 5-mL graduated 

cylinder. The information was used to calculate density by dividing weight (in grams) by 

volume (in milliliters). The mean behavioral scores, cortisol levels, and otolith volume, 

mass, and density of normal and abnormal fish were analyzed by using the Student t test 
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(Excel 2010, Microsoft, Redmond, WA). Differences were considered to be significant 

when the P value was less than 0.05. 

RESULTS 

All of the classic signs of vitamin C deficiency, including deformities of the 

spine, jaw, and cephalic region, anophthalmia, and shortened opercula, were present in 

fish in the abnormal group. Other than their phenotypic abnormalities, the abnormal fish 

exhibited similar trends in weight gain and growth as those of normal fish. Over the 15-d 

observational period, mortality in the normal drum was 32% compared with only 2% in 

the abnormal fish.  

The normal and abnormal fish had statistically significant (P < 0.05) differences 

in behavior (Figure 1). Normal fish had more schooling behavior (P < 0.001) and swam 

close together without touching, whereas abnormal fish were dispersed randomly 

throughout the tank. The abnormal group was more responsive (P < 0.04) to visual 

stimuli of food than was the normal group. The abnormal fish swam closer to food and 

more quickly, whereas normal drum were slower to react to the presence of food. The 

abnormal group showed no response to acoustic stimuli, whereas normal fish swam 

away from the source of the noise (P < 0.001). Plasma cortisol levels of the abnormal 

drum group were significantly (P < 0.001) higher than those of the normal group (Figure 

2). 

MicroCT of abnormal red drum revealed operculum abnormalities, 

malocclusions due to brachygnathia or prognathia, different types of otolith 

malformations, and spinal deformities such as kyphosis when compared with images 
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from the normal group. The mean volume of abnormal sagittal otoliths was 3 times that 

of normal otoliths: 36.7 mm3 as compared with 12.29 mm3 (P < 0.001). The sagittal 

otolith was the largest of the otoliths. Normal sagitta are oval, smooth on the lateral 

surface, rounded at the antirostral end with a well-developed sulcul ridge on the medial 

surface (Figure 3)
28

. In normal red drum, normal occlusion of the mouth was present, 

and the operculum was fused and fully covered the gills (Figure 3). All abnormal drum 

had shortened, unfused opercula and oral cavity abnormalities; many also exhibited 

cranial abnormalities (Figure 4). Sagittal otolith abnormalities ranged from abnormal 

shape, asymmetry, and abnormal ossification, with abnormal ossification being the most 

common (Figure 5)
40

. 

The density of the otoliths from the normal fish was significantly (P < 0.001) 

higher than of the phenotypically abnormal group; however, the volume of the otoliths 

was significantly (P < 0.001) higher in the abnormal group (Figure 6). There was no 

significant difference in the mass of otoliths between the 2 groups (P = 0.922), indicating 

that the fish were approximately the same age. A direct relationship between otolith 

mass and linear aging has been well documented, making otolith mass measurements a 

good indicator of fish age
34,41,42

 

DISCUSSION 

Comparative studies on fish ear structure may facilitate research regarding how 

animals and humans interpret complex auditory stimuli
43

. By extrapolation from 

zebrafish studies, the simplest method to detect deficiencies in the auditory structure is 

to screen for defects in otolith morphology
8
. Because the saccular otoliths are the major 



 

12 

 

sound detector in most fish, we elected to image these structures
37

. We used microCT to 

scan 7 of the phenotypically abnormal red drum and confirmed that all 7 fish had 

abnormal sagittal otoliths, with the most consistent abnormality being abnormal 

ossification. Abnormal ossification was further confirmed by significant differences in 

density and volume between the 2 groups of fish. Acoustic functionality (sensitivity, 

temporal processing, and sound localization) is altered by otolith mass asymmetry
36

. We 

therefore hypothesized that abnormal shape and ossification of otoliths would 

compromise functionality and resultant behavior. We speculated that abnormal drum 

would demonstrate atypical behavior because these fish would be less aware of their 

surroundings than would be normal fish. Behavioral studies of laboratory red drum have 

taught us to expect consistent schooling behavior and rapid responses to acoustic 

stimuli
29

. Consistent with our hypothesis, abnormal red drum exhibited less schooling 

behavior and no response to acoustic stimuli, whereas normal fish showed more 

schooling and swam away from the acoustic source.  

The abnormal fish had a greater response to visual stimuli (food) than did normal 

fish. This finding is consistent with the sensory compensatory mechanism described in 

humans
44,45

 and cave fish, in which increased acuteness of hearing compensates for loss 

of vision
46

. The hearing capabilities of fish can be measured behaviorally
37,47

. Therefore, 

the behavior data from the current study support the hypothesis that abnormal red drum 

perceive their environment differently than normal red drum because the hearing 

capabilities of the abnormal fish have been compromised. 
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We further hypothesized that defects in the auditory structures and responses to 

stimuli would result in increased responses to stress in these fish. Cortisol is the 

predominant corticosteroid released in red drum during acute stress
48

. The elevation of 

plasma corticosteroids, mainly cortisol, in teleosts in response to various types of 

stressful stimuli has been well documented and constitutes an important hormonal or 

primary response to stress
38,47

. In addition, an appropriate corticosteroid response 

appears to be essential for resistance to severe trauma via the stimulation of 

gluconeogenesis and involvement with osmoregulation
39

. Handling and anesthesia are 

expected to result in an acute cortisol stress response that may represent a ‘fright’ 

reaction to a novel stimulus
38

. Both fish groups exhibited increased cortisol responses in 

response to capture as compared with published normal resting levels for red drum;
48

 

however, the cortisol levels of the abnormal fish were significantly higher than those of 

the normal group. We propose that the auditory impairment caused by abnormal otoliths 

resulted in a heightened startle response when abnormal fish were netted. This fright 

response may be similar to the increased startle response seen in visually impaired 

humans
49

. In addition, children with hearing loss from an adverse event have increased 

cortisol levels compared to children with normal hearing ability
50

. Fish are now well 

accepted to perceive sound in the same manner as do other vertebrates
33

. 

In summary, the gross morphologic defects in the affected group of fish were 

only one aspect of the abnormalities present in these animals; they also had significant 

differences in their behavioral and cortisol responses (Table 2). Data obtained from 

studies with these phenotypically abnormal animals may be compromised by their 
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physiologic differences from normal fish. Further studies are needed to define the link 

between otolith deformities and vitamin C deficiency; however, vitamin C deficiency in 

red drum might provide a new animal model of hearing impairment. 
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CHAPTER III 

USING PET/CT IMAGING TO CHARACTERIZE 18 F-FLUORODEOXYGLUCOSE 

UTILIZATION IN FISH
*
 

 

INTRODUCTION 

Fish have become increasingly valuable as research models for a number of 

reasons, including low cost, portability, ease of laboratory culture, and short 

reproductive lifecycle. As early as 1910, President Taft proposed the creation of a 

federal research laboratory focused on studying cancer in fish 
6
. Since that time, many 

fish species have been established as animal models for human neoplasms including 

rainbow trout, Oncorhynchus mykiss (Walbaum)  with hepatocellular carcinomas 
9
, 

platyfish/swordtails, Xiphophorus hellerii x variatus (hybrid) with melanomas 
14

, catfish, 

Ameiurus nebulosus  (Lesueur) with epitheliomas 
15 

and bicolored damselfish Stegastes 

partitus (Poey) with schwannomas 
16

.  Zebrafish, Danio rerio (Hamilton) and medaka, 

Oryzias latipes (Temminck & Schlegel) are already being widely used in cancer research 

for everything from genetic screening to anticancer drug screening to transplantable 

tumors 
3-7,27,51

. The novel fish neoplasia research of Mearl Stanton piqued the interest in 

the use of fish species for cancer research in 1965
 9

. 

Since Stanton’s work, newer methods of studying carcinogenesis in vivo have 

been developed. Combined positron emission tomography/computed tomography 

                                                 

*
 Reprinted with permission from “Using PET/CT Imaging to Characterize 18 F-Fluorodeoxyglucose 

Utilization in Fish” by Z.S. Browning, A.A. Wilkes, D.S. MacKenzie, R.M. Patterson, M.W. Lenox. 2012 

Journal of Fish Diseases, doi:10.1111/jfd.12081.  
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(PET/CT) is a relatively new imaging modality that combines the functional images of 

PET with the anatomical information of CT. PET is capable of detecting areas of 

metabolic activity by using radio-labeled molecular probes with specific uptake rates. 

The most commonly used PET tracer is 
18 

F-fluorodeoxyglucose (FDG), a glucose 

analogue that allows measurement and mapping of tissue glucose uptake 
17

. FDG, like 

glucose, enters the cells and is phosphorylated by hexokinase to FDG-6-phosphate. 

Unlike glucose, FDG is not further metabolized and thus becomes trapped in the cell 

52,53
. In normal tissues, FDG uptake peaks in the heart, liver, and kidneys shortly after 

administration 
20

. In the presence of neoplasia, the tumor also takes up glucose/FDG 

rapidly, allowing for the visualization of the tumor mass in vivo over time 
17,20

. The 

retention of the tracer is calculated as SUV (standard uptake value), the most widely 

used unit of measure of metabolic rate of glucose uptake 
20,52

. SUVs provide highly 

reproducible parameters of cellular glucose metabolism, allowing for accurate 

comparison among PET studies 
17

. However, the accuracy of PET measurements alone 

can be hampered by lack of sufficient anatomical detail. PET/CT merges the two 

systems, combining the images acquired from both devices into one superimposed 

image. Thus, functional imaging obtained by PET can be more precisely correlated with 

anatomic three-dimensional imaging obtained by CT scanning.  

PET/CT is commonly used in cancer studies, but to date these studies rely on 

mammals such as dogs and rodents 
21,22,54

.  Four key areas of oncology in particular use 

FDG-PET imaging: grading tumors, determining tumor extent, determining prognosis, 

and measuring tumor response to treatment 
52

. Tumor cells have increased metabolic 
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activity, and thus exhibit increased glucose uptake 
17,21

. Therefore the glucose analogue 

FDG is used to map and quantify glucose use in tumors 
21

.
 
In the future, FDG-PET/CT 

imaging will likely become increasingly important by providing more accurate 

quantitative information than previous conventional in vivo methods of oncology studies 

52
.  Since laboratory animal medicine seeks to replace more sophisticated animal models 

with animals of lower phylogenic classification, this project has the potential to establish 

teleost fish as promising replacement animals for mammals in carcinogenesis research. 

Because FDG-PET/CT has not previously been studied in fish, the goal of this study was 

to show that fish can be a viable replacement animal in cancer studies by demonstrating 

the similarities between fish and humans in glucose uptake in select organs prior to 

carcinogenesis studies. In most cases, fish neoplasms are relevant to human cancers 

because fish neoplasia has been proven to be histologically similar to human neoplasia
 

3,4,6
, and the genetics also appears to be highly conserved 

3
. Therefore if fish FDG uptake 

resembles human FDG uptake, there should little difference in the tumor metabolism. 

We also have the technology to graft human tumor cells onto fish meaning the tumors 

would be identical to human neoplasms 
4,7

. The establishment of normal whole body 

FDG uptake is important to establish baseline physiological activity in fish compared to 

humans for accurate interpretation of PET images 
7
. Because of known physiological 

variability among fish species in venous uptake and metabolism, a variety of species was 

chosen in the present study to encompass the three different teleost trophic classes 
12

. 

The species chosen represent fish species widely used in aquaculture research. Because 

of the size limitation of the imaging system, only large fish could be used, not medaka or 
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zebrafish. With the advance of technology, it may be possible to use this technique with 

small fish in the near future.  

MATERIALS AND METHODS 

Five fish each of 7 species were used: koi, Cyprinus carpio carpio L., tilapia, 

Oreochromis aureus (Steindachner), hybrid striped bass, Morone saxatilis x M. chrysops 

(hybrid), channel catfish, Ictalurus punctatus (Rafinesque), red drum, Sciaenops 

ocellatus L., grass carp, Ctenopharyngodon idella  (Valenciennes), and largemouth bass, 

Micropterus salmoides (Lacepède). The fish weighed an average of 607.6 ± 43.88 grams 

and measured 36.7 ± 0.78 cm from nose to tail (Table 3).  All fish were obtained from 

the Aquacultural Research and Teaching Facility (ARTF) of the Texas A&M University 

System. This facility includes laboratories, hatcheries for red drum and other species and 

a 36-pond complex. Laboratories are equipped with extensive flow-through and 

recirculating tank systems, comprising more than 200 units, and with a variety of 

modern research equipment for work in areas of nutrition, bioenergetics, environmental 

physiology and developmental biology. Fish were maintained in recirculating 1900 L 

tanks at 25 +/-2°C, 12L: 12D photoperiod with aeration. All fish were fed once daily 

with a commercial fish diet (Rangen Inc, Aquaculture Feeds, Buhl, Idaho). Water quality 

parameters was checked daily and maintained at pH 6.5-8.5, alkalinity >50 ppm, 

nitrites= 0 and ammonia=0. Red drum were kept under the same conditions as other fish 

except they were housed in 6 ppt salinity. On the day of the experiment fish were placed 

in individual, oxygenated 10 gallon plastic bags and transported from their holding tank 

to the imaging facility.  Upon arrival, fish were sedated with 100 mg/ml FINQUEL® 
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(MS-222®; Pure Tricaine Methanesulfonate; Argent Chemical Laboratories, Inc., 

Redmond, WA) buffered with equal parts sodium bicarbonate to a neutral pH for 

physical examination, placement of identification tags, and collection of weights and 

lengths. During this time, anesthesia was maintained at stage 4, which is defined by total 

loss of muscle tone and equilibrium, slow and regular opercular movement and loss of 

spinal reflex 
55

. Fish with significant phenotypic abnormalities noted on physical exam 

were excluded from the study.  

 The experimental protocol was approved by the Texas A&M University 

Institutional Animal Care and Use Committee. Fish were fasted for 24 hours prior to the 

experiment, in accordance with general PET imaging guidelines. FDG was injected 

intravenously as a bolus in the caudal vein.  FDG activity in the syringe was quantified 

before and after FDG injection, and recorded together with time measurements. The 

measurement was obtained in millicuries (mCi) and converted to Becquerel (Bq), and 

the decay-corrected activity was calculated. All fish were imaged with combined 

PET/CT at 30 and 60 minutes post injection.  All imaging was accomplished under MS-

222® stage 4 anesthesia with minimal time spent out of water. Fish were out of the 

water for approximately 6 minutes per scan, with actual scanning time taking 5 minutes. 

The fish recovered without complications after the first scan and were euthanized by 

overdose of MS-222® followed by cervical dislocation immediately following the 

second scan at 60 minutes.  

Whole body PET/CT was performed using a 128 slice Siemens Biograph mCT 

scanner (SOMATOM Definition AS+, Siemens Medical Solutions USA, Inc.) as 
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described by Jakoby et al 
18

. The CT parameters were a slice thickness of 0.6 mm, 120 

kv, 340 mas, pitch 0.6, H31s medium smooth filter kernel. PET scans were acquired 

using 3D acquisition mode, and PET data were attenuation corrected based on CT data 

19
.  

All acquired PET images were reconstructed using a 3D OSEM reconstruction 

with point spread function modeling and time of flight compensation (3 iterations, 21 

subsets). The reconstructed images were smoothed using a Gaussian filter setting for 

FWHM of 3.0 mm in all directions, and a matrix size of 400 x 400 and a physical pixel 

size of 0.3571 mm. Measured FDG activity in all field of view positions was attenuation 

corrected to the start time of the whole body PET scan.  

The PET/CT images were transferred for post-processing to the Siemens 

workstation. All PET/CT images were evaluated subjectively and regions of interest 

(ROI) for semi-quantitative analysis were drawn manually. The program automatically 

calculated and reported the mean, minimum, and maximum of FDG activity per volume 

within ROIs on the co-registered PET/CT images.  

ROIs were drawn to evaluate liver, brain, heart, gastrointestinal tract, trunk 

kidney, and dorsal lumbar musculature. Organ ROIs were drawn manually on the 

transverse or sagittal images, and 3-dimensional position was confirmed on the axial 

images. All ROIs were drawn to include the largest area of the region or organ in the 

individual image.  

FDG SUV for each organ was calculated by dividing the averaged attenuation-

corrected ROI activity (Bq) per tissue in cm³ by the injected activity (Bq)/body weight 
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(g). Radioactive decay was corrected to the start time of the PET scans using the 

following equation:                                 
 
             

   
 
 

Tscan is the time the fish was imaged. Tassay is the time the radiation level of the FDG was 

tested. The half-life of FDG (THL) is 109.7 minutes. 

The mean SUV and standard error measurement for the ROI (heart, liver, brain, 

dorsal lumbar musculature, and kidney) in each species of fish at two time points (30 

minute and 60 minute) were calculated. The mean values for each teleost species were 

compared both separately and as a group of all fish species to published human values 
25

 

using the z-test for two sample means.  A p-value of less than 0.05 was used to define 

significance. Published values of SUV for the same ROI in dogs 
21

 and mice 
54

 were 

compared to humans using the z-test for two sample means (Excel). 

RESULTS 

A mean activity of 1.10
7
 Bq (range 6.66

6
-1.52

7
 Bq) FDG was injected into each 

fish. FDG uptake into specific organs at 30 minutes was easily detectable and 

quantifiable (Figure 7). Multiple fish could be simultaneously imaged in a single 5 

minute scan by placing them together on the scanning bed (Figure 8). Although the 

images shown are two dimensional snapshots of these animals, a powerful benefit of the 

technology was its three dimensional capabilities allowing for elimination of 

superimposition artifacts. ROI SUV mean and standard error measurement from fish 

species are listed according to the time point at which they were imaged, 30 verses 60 

minutes post injection (Tables 4 and 5). Data for the imaging analysis of largemouth 

bass at 60 minutes is unavailable due to a processing error during imaging. 
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The SUVs of individual fish species and fish as a group were more similar to 

humans at thirty minutes than at sixty; therefore, all further discussion refers to the thirty 

minute data (z-test, p>0.05). Because there were no significant differences in the ROIs 

between individual fish species, we combined all fish into a single group for analysis. As 

in mammalian studies, our results were decay corrected for time elapsed post injection. 

No significant differences in SUV were found between fish and humans in any of the 

ROIs (Figure 9, p> 0.05). Interestingly, while values for fish taken as a group were not 

significantly different from humans, within fish species, fish classified as carnivores (red 

drum and bass species) had higher standard errors as compared to the herbivores and 

omnivores (Tables 4 and 5). In all fish, measureable uptake was observed in the brain, 

heart, liver, and trunk kidney. The gastrointestinal tract of all fish was characterized by 

moderate to high uptake. However, the SUVs for the GI tract were not used for 

comparison to humans due to the complicating effects of peristalsis and the variability of 

the GI tract among fish species; in most species, peristalsis makes SUV measurement of 

the gastrointestinal tract unreliable 
22

. All fish showed unexpectedly elevated SUVs in 

the tail muscle.  This uptake was likely caused by arterial delivery of FDG from the 

injection site or movement of the animal during the uptake period.  Moderate uptake was 

also observed on the anterior jaw of many fish, possibly due to inflammation from 

trauma during anesthesia and transport 
23,53

. Fish were free from external abnormalities 

prior to handling. However, post transport and anesthesia, red lesions were observed on 

the anterior jaw of some fish due to their thrashing movements. The lowest uptake 
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values in the fish were observed in the dorsal lumbar musculature, as is common in most 

species 
20,25,54

.  

The ROIs were chosen because they represent the major organ systems of 

interest in the regulation of glucose metabolism. Of all species analyzed, fish exhibited 

SUVs most similar to humans in the liver and brain (p>0.05) (Figure 10). In the heart, 

fish and dogs were both statistically similar to humans. Similarly, uptake in the kidney 

of both fish and mice were statistically similar to humans. Only mice had muscle values 

that were significantly different from the human (p<0.05) (Figure 10). Thus, compared 

to the typical animal models of dogs and mice, fish were the only species to show no 

significant differences in SUV from humans in all of the major organ systems (Figure 

10). In addition, the 95% confidence intervals for fish and humans overlapped in all 

ROIs (Figure 9).  

DISCUSSION 

Modern imaging techniques, specifically FDG-PET/CT, have revolutionized the 

study of oncology, particularly in the areas of screening, staging, diagnosing, measuring 

response, and surveying tumors 
17

. PET quantification using SUV has been conclusively 

established as a useful tool for neoplasia research 
20

. A major limitation in this imaging 

technique is its dependence on mammalian models. When mechanistically possible, the 

use of fish offers a feasible alternative model which may have more similarity to the 

human than mammalian models in some parameters such as cell specific rates of glucose 

uptake. Fish are already widely used in the field of oncology to study anticancer drugs 
5
, 

monitor environmental carcinogenesis 
27

, study cancer genetics 
3
, transplant human 
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tumors 
4,5

, as well as many other areas. However, they have not before been studied with 

FDG-PET/CT. The comparatively lower cost is one of the obvious advantages to using 

fish, but significant others include greater availability of the animals, easier 

maintenance, and less stringent housing density requirements. Perhaps most importantly, 

they offer the potential replacement of mammalian species as models 
9
.  

All fish images obtained with this technique were of high resolution, 

straightforward to analyze, and easily reproducible. When comparing FDG uptake in fish 

versus humans in major organ systems (brain, liver, heart, kidney, and muscle), the 

group consisting of all fish analyzed was not significantly different from humans in any 

of the studied organ systems. When fish were compared to humans according to their 

trophic level classification, there were still no significant differences. In addition, SUV 

values for neither omnivorous nor herbivorous fish were significantly different from 

human values reported in the literature. However, fish classified as carnivores (red drum 

and bass species) displayed greater variability in SUV measurements than omnivorous 

and herbivorous fish. This variability suggests that carnivorous fish may be less suitable 

as model species for use with FDG-PET/CT than their omnivorous and herbivorous 

counterparts. The greater variability may be partially explained by the proposal that 

carnivorous fish are “glucose intolerant” 
56

, with the longer times required to clear a 

glucose load in more carnivorous fish 
13,24,57

 contributing to variability in glucose uptake. 

Imaging with PET/CT generally utilizes larger animals such as dogs; however, with 

microPET, it is also possible to use mice. When comparing human SUV values to those 

of dogs or mice, there is a high degree of difference in select organs including heart, 
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liver, brain, and kidney. These results suggest that fish could actually provide a useful 

alternative model for the pathogenesis of neoplasia using this technique because the 

FDG uptake in fish species is not significantly different from human FDG uptake across 

all organ systems. In addition, the 95% confidence intervals for fish and humans 

overlapped in all ROIs (Figure 9). A possible explanation for this similarity is the 

elimination of the mammalian variability in blood glucose uptake caused by insulin 

regulation.  In mammals, FDG uptake into cells, like glucose, is primarily facilitated by 

insulin 
20

. Therefore, variation in blood glucose and insulin levels could affect the uptake 

of FDG. In fish, this variation may be minimized because blood glucose is metabolized 

at a more constant rate 
24,57 

through non-insulin dependent constitutive glucose uptake. 

However, the genes for glucose transporters (particularly GLUT-1, GLUT-4) are well-

conserved across mammalian and aquatic species 
11,26

, suggesting that PET/CT 

application to fish could serve as both a viable model for carcinogenesis and offer value 

to aquaculture researchers interested in fish metabolism, hormonal control of glucose 

utilization, and feed efficiency. Additionally, screening for environmental carcinogenesis 

would be greatly enhanced by this technology. Assays using fish have been found to be 

more sensitive to carcinogens, less expensive, and faster to perform than rodent studies 

51
. Live scanning would eliminate sacrifice of healthy animals and allow for more 

precise localization of tumors in afflicted animals. Although only large fish could be 

used due to the size limitation of this technique, with the advance of technology, it may 

be possible to use this technique with zebrafish and medaka in the near future. 
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Two complimentary factors suggest the suitability of fish as animal models in 

future studies. First, a key goal of laboratory animal medicine is to reduce the use of 

mammalian species in research. Secondly, FDG-PET/CT is quickly becoming vital in 

oncology research. Our study demonstrates that, with this novel technique, fish can 

potentially serve as highly useful adjuncts to traditional mammalian models in the study 

of oncology, and in some situations, can provide wholly unique approaches. 
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CHAPTER IV 

SUMMARY AND CONCLUSION 

 

My goal has been to draw on evidence provided by two different fish imaging 

techniques to demonstrate the scope for imaging techniques in fish. Fish have become 

increasingly valuable both as biomedical research models and in aquaculture research
10

. 

No other vertebrate organism offers the same combination of transparent and accessible 

embryos, cost-effective mutagenesis screening, sequenced genome, GFP, and knockout 

technology
3,4

. A key goal of laboratory animal medicine is to replace the use of 

mammalian species in research
1
. Fish meet this goal because, in many scenarios, fish can 

serve as highly useful adjuncts to traditional mammalian models, and in some situations, 

can provide wholly unique approaches
2
. However, fish have been severely underutilized 

in the field of advanced imaging. Although many images of fish have been captured 

through the use of CT (computed tomography), radiographs, and ultrasound, these 

images have been primarily utilized for anatomical study. Current research has neglected 

the potential to apply advanced imaging techniques to functional studies.  I attempted to 

fill that gap by demonstrating first use of PET imaging in fish, and the use of CT 

imaging to reach functional conclusions by linking imaging data to fish behavior and 

physiology.    

In the first experiment, microCT was used to characterize otolith deformity in 

vitamin C deficient captive-raised red drum. The auditory impairment observed in the 

abnormal fish and assessed by microCT caused behavioral and physiologic cortisol 
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responses analogous to the increased startle response and physiologic cortisol response 

seen in visually impaired humans
50

. There is the potential to use vitamin C deficiency to 

create fish with deformed otoliths, confirm and quantify the otolith changes via CT, and 

then study behavioral, hormonal, and physiologic responses in more detail. One day this 

new fish animal model could help us further understand and treat human hearing 

disability.  

In the second experiment, FDG-PET/CT was used to quantify glucose uptake in 

select organs. Glucose uptake values were established for all the major organs in seven 

species of fish. Fish images obtained with the advance imaging techniques were of high 

resolution and straightforward to analyze. The data is easily reproducible and consistent 

across fish species. When comparing human SUV values to fish, there is no significant 

difference in select organs including heart, liver, brain, and kidney
23

. These results 

suggest that fish could actually provide a useful alternative model for the pathogenesis of 

human neoplasia. My study demonstrates that, with this novel technique, fish can 

potentially serve as highly useful adjuncts to traditional mammalian models in the study 

of oncology, and in some situations, can provide wholly unique approaches.  

The applications for these imaging techniques encompass far more than the scope 

of this paper and include bone density measurements, organ analysis, metabolic studies, 

and studies with other radioactive isotopes such as radioactive iodine. PET/CT 

application to fish could offer value to aquaculture researchers interested in fish 

metabolism, hormonal control of glucose utilization, and feed efficiency. Additionally, 

screening for environmental carcinogenesis would be greatly enhanced by this 
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technology. Assays using fish have been found to be more sensitive to carcinogens, less 

expensive, and faster to perform than rodent studies
51

. Live scanning of animals 

eliminates waste of healthy animals and reduces numbers of animals used, another key 

edict of laboratory animal medicine
11

. 
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APPENDIX A       
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Figure 1. Behavioral Comparison.  Behavioral differences between abnormal and normal red drum were quantified for 2 weeks 

by an unbiased observer using the previously described scoring system. Compared with normal fish, abnormal fish had 

significantly (*, P < 0.05) higher scores for each of the 3 criteria. 
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Figure 2. Cortisol Comparison. Radioimmunoassay of collected fish plasma indicated that abnormal fish had significantly (*, P 

< 0.05) higher cortisol levels than did normal fish. 
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Figure 3. MicroCT of Normal Drum. MicroCT of normal red drum with normal sagittal otoliths. Head and otolith morphology 

were consistent among all normal fish. Arrows indicate the typical formation of normal operculum. 
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Figure 4. MicroCT of Abnormal Drum. MicroCT of abnormal red drum illustrating the most common abnormalities seen, 

including prognathia, brachygnathia, cranial abnormalities, and shortened and unfused operculum (delineated by arrows). 
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Figure 5. MicroCT of Abnormal Drum Otoliths.  MicroCT of abnormal drum otoliths illustrating the most common otolith 

abnormalities seen, including abnormal ossification, excessive ossification of the sulcul ridge, and asymmetry of the right and 

left otoliths. 
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Figure 6. Otolith Comparison. Abnormal fish had significantly (‡, P < 0.001) lower 

mean otolith density and higher mean otolith volume, as compared with the normal 

group. Mean otolith mass was similar (P = 0.922) between the 2 groups. 
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Figure 7:  Tilapia FDG-PET/CT Image. FDG-PET/CT image of a tilapia thirty minutes 

post injection. Anatomical landmarks are indicated. The colored areas reflect glucose 

uptake rates, with red being the greatest followed by yellow, green, and blue. Organ 

ROIs were drawn manually on the transverse or sagittal images, and 3D position was 

confirmed on the axial images. All ROIs were drawn to include the largest area of the 

region or organ in the individual image. SUV analysis is performed in three dimensions, 

eliminating superimposition of organs apparent on this static, two dimensional image.  
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Figure 8: Red Drum Group FDG-PET/CT Image. FDG-PET/CT image of a red drum 

thirty minutes post injection. The drum were imaged as a group in a single scan with no 

increase in scan time. Apparent, intraspecific variability on this image arises partly from 

size variation, as fish are viewed in different planes when imaged as a group. Although 

there is some intraspecific variability, it is not as significant as it appears on this static, 

2-d image. Three dimensional technology and individual analysis eliminates this artifact. 
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Figure 9: SUV in Each ROI Compared between Fish and Humans. Standard Uptake Values (SUV) of glucose in each ROI 

compared between fish (n=35) and humans (n=20)18 using the z-test. In all five tissue types, human SUV shows no significant 

differences as compared to fish (p>0.05).  Values displayed are mean SUV +/- s.e. Axis labels are the 95% confidence 

intervals for fish and humans. 
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Figure 10: SUV in Each ROI Compared between Fish, Dogs, Mice, and Humans. SUV comparison of glucose in each ROI 

between dogs (n=7), humans (n=20), mice (n=31), and fish. Each species was compared to humans using the z-test. In all five 

tissue types, human18 SUV is more similar to fish than mouse22 or dog11 models (p>0.05). Asterisks are used to indicate 

values that are significantly different from humans (p<0.05). Values displayed are mean SUV +/- s.e. 
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Table 1. Behavioral Measurements. Scoring scale for behavioral measurements of normal and abnormal red drum. Fish were 

scored daily for 15 d and responses were averaged and compared between the 2 fish groups. 

 

 

 
 Score assigned 

Behavior 1 2 3 4 5 

Schooling Fish huddle in 
tight group with 
physical contact 
among multiple 

fish 

Fish are close 
together but not 

touching 

Fish are 
dispersed 
randomly 

throughout tank 

Fish do not 
associate with 
one another 

Fish actively 
avoid contact by 
swimming away 
from each other 

      

Response to food Fish scatter 
quickly when fed 

Fish initially 
swim away from 

food 

Fish do not react Fish swim closer 
to food 

Fish come to 
surface and 
immediately 

consume food 

      

Response to verbal 
stimuli 

Fish scatter 
quickly 

Fish swim away 
slowly 

Fish do not react Fish swim closer 
to speaker 

Fish come to 
surface 
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Table 2:  Summary of Differences between Normal and Abnormal Drum. 

Response Abnormal Drum Normal drum 

Schooling Low degree of schooling High degree of schooling 

Food High response to food Low response to food 

Auditory stimuli Low response to auditory 

stimuli 

High response to auditory 

stimuli 

Cortisol Higher cortisol Lower cortisol 

Otolith 

Density 

Decreased otolith density Increased otolith density 

Otolith Volume Increased otolith volume Decreased otolith volume 

Otolith Mass Equal otolith mass Equal otolith mass 
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Table 3: Weight and Lengths of Fish. The lengths in centimeters and the weights in 

grams for each fish used in the 18 F-Fluorodeoxyglucose PET/CT imaging experiment. 

 

 

Fish Species Weight Length 

channel catfish 445 37 

channel catfish 431 38 

channel catfish 379 35 

channel catfish 497 37 

channel catfish 323 34 

red drum 290 32.5 

red drum 358 34 

red drum 473 36 

red drum 273 30 

red drum 574 39.5 

grass carp 463 35 

grass carp 418 36 

grass carp 452 37 
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Table 3: Continued 

Fish Species Weight Length 

grass carp 389 37 

largemouth bass 450 33 

largemouth bass 711 39 

largemouth bass 1205 45 

largemouth bass 832 46 

largemouth bass 713 40 

koi 693 34 

koi 980 37 

koi 816 38 

koi 963 38 

koi 901 38 

hybrid striped bass 737 39 

hybrid striped bass 318 30 

hybrid striped bass 1246 47 

hybrid striped bass 1084 50 

tilapia 512 32 

tilapia 514 31 

tilapia 599 32 

tilapia 539 32 

tilapia 648 34 
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Table 4.  30 Minute SUV of Fish. Means of the Standard Uptake Values (SUV) of fish injected 

with 18 F-fluorodeoxyglucose (FDG) and imaged 30 minutes post injection.  Normal SUV 

values were measured for the following ROIs for each species of fish (n=5) at 30 minutes post 

injection: heart, liver, brain, dorsal musculature, and kidney.

Site at 30 Minutes 

Post Injection 

Fish Species 

N=5 

Average SUV  

 x  (SD) 

Heart Catfish 1.629 (1.269) 

 Koi 3.432 (0.833) 

 Tilapia 2.682 (0.954) 

 Hybrid Striped Bass 3.149 (2.359) 

 Large Mouth Bass 1.615 (1.290) 

 Red Drum 4.108 (2.153) 

 Grass Carp 1.827 (1.199) 

   

Liver Catfish 1.636 (1.265) 

 Koi 4.921 (1.050) 

 Tilapia 3.097 (0.809) 

 Hybrid Striped Bass 5.976 (3.977) 

 Large Mouth Bass 3.193 (0.938)  

 Red Drum 3.470 (1.533) 

 Grass Carp 1.800 (1.240) 

   

Brain Catfish 1.145 (1.440) 

 Koi 4.320 (0.863) 

 Tilapia 2.382 (1.248) 

 Hybrid Striped Bass 3.306 (1.746) 

 Large Mouth Bass 2.207 (1.152) 

 Red Drum 3.205 (1.190) 

 Grass Carp 2.115 (1.394) 

   

Muscle Catfish 0.431 (1.706) 

 Koi 0.467 (1.703) 

 Tilapia 0.415 (1.711) 

 Hybrid Striped Bass 0.769 (1.664) 

 Large Mouth Bass 0.456 (1.698) 

 Red Drum 0.433 (1.720) 

 Grass Carp 0.439 (1.705) 

   

Kidney Catfish 1.442 (1.363) 

 Koi 2.976 (1.169) 

 Tilapia 1.618 (1.320) 

 Hybrid Striped Bass 6.877 (5.321) 

 Large Mouth Bass 3.358 (0.798) 

 Red Drum 2.890 (1.768) 

 Grass Carp 1.819 (1.240) 
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Table 5. 60 Minute SUV of Fish. Means of the Standard Uptake Values (SUV) of fish 

injected with 18 F-fluorodeoxyglucose (FDG) and imaged 60 minutes post injection.  

Normal SUV values were measured for the following ROIs for each species of fish 

(n=5) at 60 minutes post injection: heart, liver, brain, dorsal musculature, and kidney. 

Data for the 60 minute imaging analysis of largemouth bass is unavailable due to a 

processing error during imaging. 

 
Site at 60 Minutes 

Post Injection 

Fish Species 

N=5 

Average SUV  

x  (SD) 

Heart Catfish 1.426 (1.342) 

 Koi 2.740 (0.973) 

 Tilapia 2.427 (0.962) 

 Hybrid Striped Bass 3.108 (2.408) 

 Red Drum 3.616 (1.881) 

 Grass Carp 1.348 (1.368) 

   

Liver Catfish 1.550 (1.295) 

 Koi 4.732 (1.824) 

 Tilapia 2.805 (0.849) 

 Hybrid Striped Bass 5.464 (2.867) 

 Red Drum 3.602 (2.163) 

 Grass Carp 1.481 (1.328) 

   

Brain Catfish 1.171 (1.430) 

 Koi 3.577 (1.120) 

 Tilapia 1.872 (1.190) 

 Hybrid Striped Bass 3.181 (1.714) 

 Red Drum 3.628 (1.937) 

 Grass Carp 1.609 (1.331) 

   

Muscle Catfish 0.510 (1.679) 

 Koi 0.476 (1.708) 

 Tilapia 0.368 (1.727) 

 Hybrid Striped Bass 0.899 (1.672) 

 Red Drum 0.685 (1.637) 

 Grass Carp 0.483 (1.688) 

   

Kidney Catfish 1.090 (1.464) 

 Koi 2.555 (1.199) 

 Tilapia 1.191 (1.429) 

 Hybrid Striped Bass 5.103 (3.788) 

 Red Drum 2.926 (1.829) 

 Grass Carp 1.635 (1.298) 

 




