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ABSTRACT 

 

Enzyme structure dynamics has recently been revealed to be essential for 

structure-function relationship. Among various structure dynamics analysis platforms, 

hydrogen deuterium exchange mass spectrometry stands as an efficient and high-

throughput way to analyze protein dynamics upon ligand binding, protein folding, and 

enzyme catalysis. HDX-MS can be used to study the regional dynamics of proteins 

based on the m/z value or percentage of deuterium incorporation for the digested 

peptides in the HDX experiments.  

Various software packages have been developed to analyze HDX-MS data. 

However, for the accurate, enhanced, and explicit statistical analysis of HDX-MS data 

statistical analysis of software was developed as HDXanalyzer.  

The capability of HDX-MS analysis for the identification of enzyme structure 

dynamics was tested by using model catalysis endoxylanase A (XYN I) from 

Trichoderma longibrachiatum. The HDX data of XYN I revealed a highly dynamic 

personality of XYN I through the interaction with two substrates. The dynamic data 

which certainly restricts the targeted regions for the protein engineering efforts provided 

useful knowledge about the essential structural modifications for the catalysis of XYN I. 

The obtained knowledge was then employed for the engineering studies in order to 

improve the certain characteristics of XYN I protein.  

The high level stabilization of XYN I protein was gathered and the two highly 

active and moderately thermostable XYN I recombinants were developed based on the 
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HDX-MS data which further confirmed the efficiency of the current strategy for the 

rational designs of catalytic proteins. 

A differential dynamics analysis of the two structurally similar catalysts was also 

performed through HDX-MS. The functionally and sequentially different but structurally 

highly similar XYN I and endoglucanase (Eg1A) enzymes revealed distinct structure 

dynamic characteristics. Compared to XYN I, Eg1A from Aspergillus niger indicated 

quite restricted structural motions. The data clearly postulated that the intrinsic dynamic 

modifications of during the enzymatic catalysis may not be the only driving force in all 

cases.  

In summary, the integration of the structure dynamics knowledge to the current 

biochemical and biophysical data of catalysts may provide novel insights to further 

enzyme improvement applications. 
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NOMENCLATURE 

 

CMC Carboxymethyl Cellulose 

DNS 3,5-Dinitrosalicylic Acid 

LB Luria-Bertani 

LC-LTQ Liquid Chromatography-Linear Quadrupole Ion Trap 

LCL Lower Bound of 100 % Confidence Interval for Individual 

Prediction 

MES 2-(N-Morpholino) Ethanesulfonic Acid 

MM Minimal Medium 

Ni-NTA Nickel-Nitrilotriacetic Acid 

OD Optical Density 

PDA Potato Dextrose Agar  

PEG Polyethylene Glycol 

SDS Sodium Dodecyl Sulfate 

UCL Upper Bound of 100 % Confidence Interval for Individual 

Prediction  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Introduction 

 

Proteins are macromolecules that exist in all biological systems, from lower 

prokaryotes to higher eukaryotes. They consist of the prominent amounts of living 

organisms, both quantitatively and qualitatively. The majority of the key biochemical 

processes in cells and organisms are controlled through the coordinated action of protein 

molecules [1]. In these multi protein complexes, proteins are involved in a variety of 

different interactions and form a coordinated network for different cellular signals and 

most metabolic pathways. The term protein was first pronounced by Jons Jakob 

Berzelius in 1838 and their prominence for life was attributed to the Greek word 

“protos”, which means first rank of importance [2]. 

Similar to polysaccharide and nucleic acid molecules, proteins are a major group 

of catalysts in the cells, highly essential for metabolism, and participate in almost every 

process within the organelles and cells. In addition, they provide structural and 

mechanical support to the organisms. Some protein types also are involved in cell 

signaling, cell cycle, adhesion, and immune responses [1]. For the last three decades, it 

was firmly believed that the proteins were the only catalytic macromolecules; however,
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since then a variety of RNA molecules have also been identified with catalytic activities 

[3, 4]. 

Enzymes are the molecules in protein forms and tailored protein catalysts 

responsible for thousands of chemical reactions that take place naturally. As key players 

in most biological processes, they catalyze nearly all important chemical reactions in the 

body as well as being involved in the control of the transcription of genetic information, 

signal transduction, and cell regulation [5]. Enzymes are well suited to their functions by 

having highly exquisite catalytic specificities, enormous catalytic powers, and tunable 

catalytic reactions. They accelerate the rates of chemical reactions by decreasing the 

catalytic energy barrier through binding and stabilizing the transition states and this 

acceleration may be as much as 1020 fold [6]. They are not consumed or altered during 

the reaction and do not change the equilibrium, but lessen the reaction time.  

The majority of the dynamic metabolic activities in living organisms are mostly 

regulated by specific proteins and enzymes, hence understanding their roles on these 

biochemical events is hidden in their structures [7]. Enzymes and proteins are unique 

macromolecules consisting of a sequence-specific composition of twenty different amino 

acids. Their complexity and uniqueness are defined by the sequence of the gene from 

which the protein is produced. The linear amino acid sequences of proteins, which is 

known as the primary structure, promote all sorts of biological and chemical 

characteristics such as their catalytic activities, substrate specificities, and stabilities. The 

primary structure of proteins is produced by ribosomal machinery in the cells based on 

genetic code and coding of gene transcripts. Through hydrogen (H) bond interactions 



 

3 

 

 

among amino acid residues, α- helix, β-sheet, and turns are derived which are specified 

as the secondary structure of proteins. Overall folded polypeptide chains are called as the 

tertiary structure of proteins, which harbors the variations of different chemical 

interactions such as disulfide bridges, ionic and/or hydrophobic interactions, hydrogen 

bonds, and stemming from side chain R groups located on amino acid molecules. 

Tertiary structures are the functional units of proteins with the properties more consistent 

and stable compared to those primary and secondary formations. Certain metabolic 

reactions in living organisms, however, requires the cooperative action of two or more 

polypeptide chains or proteins, which may have identical or different amino acid 

sequences. In this case, the complex generated by several proteins are called quaternary 

structures of protein molecules [8]. In brief, the ultimate functionality of enzymes and 

proteins are derived from the cooperative actions of entire chemical interactions 

occurring during protein folding stages from primary to tertiary structure. 

Catalytically reactive atoms embedded within folded enzyme structures are the 

major key components responsible for the unique feature of chemical catalysis. Unlike 

their unquestionable importance for biochemical reactions, there are still many unknown 

factors contributing to enzyme catalysis. To some extent, current technological 

advancements allow disclosure of the mechanisms of their function through chemical 

reactions and static three-dimensional structures (3D); however, the dynamic nature of 

enzymes has recently been proposed to have notable functions in catalysis [9-11]. It is 

currently well accepted that the intrinsic dynamics of enzymes implement substantial 

roles in enzymatic catalysis. The term enzyme dynamics is typically attributed to the 
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conformational flexibility and alterations in the atomic coordinates of enzyme 

molecules. The atomic displacements of enzyme-structure fluctuations typically occurs 

in a wide range of timescales changing from femtoseconds to seconds which result in an 

enzyme molecule having an assortment of different conformational states [12]. Although 

it is still under debate, the potential enzyme backbone fluctuations such as the movement 

of flexible loops, rotations of side-chains, and motions of larger domains highlighted up 

to date may occur at times spanning from femtosecond to millisecond tiers. Some fast 

timescale (femtoseconds–picoseconds) fluctuations on enzyme molecular machinery 

may also occur as local collective protein motions, in particular bond stretching, side-

chain rotamers, and angle bending within specific atomic groups [12]. Nevertheless, the 

mechanisms underlying the great majority of the functions of biological macromolecules 

are most likely driven at least partially by large-scale structural conformational changes. 

 

1.2. Structure and Dynamics Relevance to Enzymes 

 

Understanding the biochemical and biophysical properties and unraveling the 

functional roles of proteins within the context of their natural environments is still one of 

the greatest challenges for many disciplines such as biochemistry, biophysics, molecular 

biology, enzymology, and structural biology. Recent technological advancements 

towards this goal have been made with the development of both chemical and 

biochemical tools; however, the knowledge of enzyme-structure and enzyme-function 

relationship has not yet been well documented.  
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Catalytic properties of enzymes are deeply associated with both their 

biochemical and structural characteristics and physically interaction partners. Today, the 

structure–function relationship of proteins constitutes the main dogma of structural 

biology. Over hundred years ago, fundamental mechanisms of enzyme catalysis was the 

subject of intensive research over time and described by Fischer (1894) with a “lock and 

key” model [13]. As another hypothesis overlapping to some extent with recent dynamic 

considerations, the induced-fit model introduced by Koshland in 1958 [14], extended the 

lock and key model by incorporating flexibility of protein structures which introduced a 

new perspective into substrate recognition and enzyme catalysis. The induced-fit 

scenario was typically postulated as a conformational change in the enzyme structure 

through intimate and specific interactions between enzyme and its substrate. In other 

words, free and ligand-bound protein conformations are altered and induced as a result 

of binding interaction that triggers the structure of a protein to a new conformation that 

is more complementary to its binding partner. 

 Unlike the induced-fit model, the conformational selection model as a fresh 

theory of enzyme dynamics, points out that enzymes and proteins are naturally available 

in their environments with ensembles of conformational states [15]. Thermally 

accessible conformational substates of proteins are more favorable for ligand binding 

rather than its native (the lowest energy) conformation [16]. The conformational 

selection model posits that weakly populated, higher energy conformations are capable 

of binding to ligands, indicating the presence of a shifting event for the distribution of 

conformers towards ligand-bound states. In this scenario, intrinsic dynamics of the 



 

6 

 

 

protein initiates a spontaneous transition between a stable unbound and a less stable 

ligand-bound conformation. The conformational selection model mainly stem from the 

free energy landscape theory of protein structure and dynamics [16]. A protein free 

energy landscape defines the existence of different conformations and substates in the 

dynamic equilibrium which was well  addressed by Henzler et al [11]. It is therefore 

postulated that the small changes in the free energy are responsible for the 

conformational fluctuations and intrinsic dynamic changes. 

All aforementioned models mainly serve the same goal and intend to shed light 

on the puzzle about the different protein motions, unique protein-ligand binding patterns, 

and exquisite protein-protein interactions.  

 

1.3. Engineering Strategies for Biocatalysts 

 

The engineering approaches of protein biocatalysts can be primarily performed 

through several different ways such as directed evolution, computational de novo design, 

and rational design [17-19]. Directed evolution usually employs a batch of molecular 

biology techniques enabling the imitation of natural evolutionary processes in laboratory 

environments in order to optimize the specific properties of functional parental proteins. 

Directed evolution requires the formation of a remarkably large library of randomly 

distributed variants which later needs to be screened to obtain the desired recombinants 

of parental enzyme in a labor-intensive and time consuming manner. Directed evolution 

applications, however, are predominantly the best choice when the knowledge of the 
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protein of interest is highly limited or the protein of interest is typically novel and there 

is no further information beyond its amino acid sequence. Although the outcomes from 

directed evolution and derivatives-based  applications [DNA shuffling, site directed 

saturation mutagenesis (SDSM), error-prone polymerase chain reaction (epPCR), look-

through mutagenesis (LTM), iterative saturation mutagenesis (ISM), etc.] are mostly 

favored and predominantly overcome the results from rational design-based engineering 

efforts, it often lacks of insights towards the mechanistic knowledge and the functional 

characteristics of recombinant biocatalysts and does not provide further information to 

the enzyme improvement efforts [18-21].  

To engineer enzymes, the rational design technique typically uses different 

strategies such as site directed mutagenesis (SDM), domain exchange, secondary 

element swapping, and protein fusion to obtain recombinants with desirable features 

such as higher activity, better selectivity, increased stability, and resistance to inhibitors 

and tolerance to extreme conditions [22, 23]. Rational design is a very information-

intensive process since it utilizes the harmony of different knowledge from amino acid 

sequence, 3D structure, structure-function relationship, and the mechanisms of catalysis 

or inhibition [22-24]. Extensive X-ray and NMR studies have been previously carried 

out to elucidate the structure-function relationship of some cellulases [25, 26]. Exquisite 

and fine-tuned analytical techniques such as X-ray scattering, nuclear magnetic 

resonance (NMR), molecular dynamics simulations, hydrogen deuterium exchange mass 

spectrometry (HDX-MS), recently developed X-ray spectroscopy, Kinetic Terahertz 

absorption (kinetic THz), single-molecule fluorescence resonance energy transfer 
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(FRET), quantum mechanical/molecular mechanical methods (QM/MM) empower the 

hand of rational design for better engineering efforts [12, 27]. 

 

1.4. Engineering Strategies to Improve Xylanase Production by Trichoderma reesei 

 

As an industrially valuable and model strain for the large-scale production of 

cellulosic and hemicellulosic enzymes, T. reesei currently contributes to the biomass 

degradation by expressing four different xylanases [28]. Many approaches and efforts 

intended to increase the enzymatic production of xylanases from T. reesei by optimizing 

the culturing conditions, and incorporating  a variety of different biomass feedstocks 

have provided remarkable improvements over time, in particular for the last three 

decades [29-33]. In order to further improve the degradation of industrially valuable 

feedstock by T. reesei, and increase and refine the amount of end-products obtained after 

hydrolysis, the expression of xylanase genes under high expression promoters of T. 

reesei and the heterologous expression of thermophilic enzymes in different T. reesei 

strains were also examined through various strategies [34-39].  

As another approach beyond the optimizing culturing conditions, molecular 

genome engineering, and heterologous expression endeavors, the sequence and 

structure-based engineering of biocatalysts from a variety of different organisms for both 

improved catalysis and enhanced hydrolytic activities have also been performed over 

time.  
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Rational design of cell wall degrading enzymes based on structure information 

has produced fungal and bacterial enzymes with higher catalytic activity, altered stability 

and substrate specificity [40-44]. Identification of the 3D structures has led to the 

prediction of active sites, coordination spheres, and mechanisms for catalysis and 

substrate binding [26, 45-49]. In the early 1990s, the identification of the 3D structures 

of both XYN I and XYN II T. reesei endoxylanases by X-ray crystallography improved 

the knowledge of their biochemical mechanisms (Figure 1) [50]. However, considering 

the tremendous amount of input to date, the success in cell wall degrading enzyme 

improvement through rational design has been rather limited [24]. 

 Rational design of cell wall degrading enzymes based on the structure-driven 

knowledge has led to the production of fungal and bacterial enzymatic recombinants 

with higher catalytic activity, altered stability, and substrate specificity [51-55]. All these 

efforts greatly manifest the importance of structure-dynamics and structure-function 

relationships of catalytic machineries.  
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Figure 1. The three-dimensional structure of right hand-shaped XYN I enzyme 
with its catalytic amino acid residues marked as yellow. 
 
 
 

1.5. The Importance and Phylogeny of Trichoderma reesei  

 

The filamentous Ascomycota fungus Trichoderma reesei (teleomorph Hypocrea 

jecorina) produces a great number of cellulolytic and hemicellulolytic enzymes essential 

for xylan and lignocellulosic biomass degradation which make it a highly preferable 

species for industrial and biotechnology-based applications. The genus 
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Hypocrea/Trichoderma containing the different members of soil-borne or wood-

decaying fungi are essential to humankind as producers of industrial enzymes and 

biocontrol agents against plant pathogens, but also as opportunistic pathogens of 

immunocompromised hosts. In terms of heterologous expression compatibility, efficient 

secretory mechanisms, and large scale production of eukaryotic proteins, T. reesei 

fungus stands as an excellent and ideal model system. It is of great interest especially for 

the degradation of a variety of different lignocellulosic biomasses thanks to its ability to 

naturally produce and secrete a range of enzymes important for biofuel production and 

plant cell wall hydrolysis.  

Throughout the last two decades, there have been numerous efforts to elucidate 

the geographic distribution and phylogeny of Trichoderma members. The industrially 

most preferred species and well-known cellulase producer T. reesei is phylogenetically 

positioned within Trichoderma – section Longibrachiatum which is the most diverse 

group of Trichoderma. Besides T. reesei, the monophyletic group section 

Longibrachiatum contains some other intensively studied species, such as the facultative 

opportunistic human pathogens T. longibrachiatum, T. citrinoviride, and H. orientalis 

[56]. The most studied mycoparasitic biocontrol agents of the genus Trichoderma are 

most likely T. atroviride (teleomorph Hypocrea atroviridis) and T. virens (teleomorph 

Hypocrea virens) both of which are positioned within the paraphyletic clade section 

Pachybasium. This situation undoubtedly points out the phylogenetic distinction of 

hydrolytic enzyme producers T. reesei and T. longibrachiatum from these two biocontrol 

agents [57].  
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1.6. Importance of Biocatalyst Improvement Enterprises for Biofuel Applications 

 

Increasing environmental concerns, mounting energy needs with the ascending 

population of earth, and diminutions on the potential of fossil fuels have shifted the 

focus of energy production towards sustainable and renewable energy sources such as 

lignocellulosics most abundantly available feedstock on earth. Although lignocellulosic 

biomass feedstock stands as one of the truly sustainable promising and renewable energy 

resources, the major challenge in producing biofuels from lignocellulosics is to improve 

the biological and chemical conversion efficiency [58-61]. Improving the effectiveness 

of biomass conversion is indispensable for the viability of advanced biofuels as 

alternative to crude oil [58-64]. Throughout the past two decades, extensive efforts were 

dedicated to improve the biomass conversion efficiency by focusing on the conditions of 

pretreatment, saccharification, and fermentation [58, 60, 62, 65]. The biomass 

conversion improvement endeavors depend heavily on the availability of biocatalysts 

with suitable features. Figure 2 simply exemplifies the potential strategies to improve 

different biorefinery processes in the presence of efficient biocatalysts. 
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Figure 2. The needs for biocatalyst improvement to optimize biorefinery processes. 
 
 
 

Biocatalysts tolerant to the severe environmental conditions such as high 

temperature and extreme pH may allow the integration of a better pretreatment with the 

other steps of lignocellulosic conversion.  

The engineering efforts of biocatalysts are of great interest and indispensable 

need for industrial applications in order to simplify biomass processing, reduce the 

current processing costs, and improve efficiency of hydrolysis. Basically, exogenous 

enzymes are expressed in Escherichia coli (E. coli) or other biofuel fermenting 

organisms such as yeast to reduce the enzyme load and processing complexity [60, 66-

68]. However, the expression of some commonly used fungal biocatalysts with sufficient 

activity in fermentation organisms like yeast is highly challenging and mostly results in 

insufficient biocatalyst activity [66, 68-71]. Enzymes secreted by microorganisms for 

cell wall digestion can be generally classified into two categories; free cell wall 

degrading enzymes and the multi-enzyme cellulosome systems. The free cell wall 
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degrading enzymes secreted by the filamentous fungus T. reesei and its close relatives 

are still the most common commercial enzymes used in biomass conversion due to their 

high efficiency and robustness [72]. Xylan is the major hemicellulose component of the 

plant cell wall and the second most abundant natural polysaccharide, and its degradation 

requires the concerted and synergistic function of several enzymes including endo-β-1,4-

xylanases (EC 3.2.1.8) [73]. Due to the broad applications in biopulping and 

biobleaching in the paper industry, xylanase has been one of the major research focuses 

for bioconversion [74]. Xylanases with high substrate binding specificity, enhanced 

enzymatic activity, and increased thermostability are needed for various biorefinery 

applications. Tremendous efforts have been devoted to improve xylanase and cellulase 

enzyme performances by manipulating the protein amino sequences in the past [75]. It is 

experimentally infeasible to test all possible mutants of a protein, and it is time 

consuming since the majority of the manipulated sequences do not fold properly into 

functional proteins [76]. Suitable techniques are thus needed to guide the enzyme 

improvement with structure-function relationship for better enzyme rational design and 

engineering.  

 

1.7. Xylanase Production by T. reesei 

 

Besides the production of a variety of different cellulases, four major xylanases 

in T. reesei have also been identified to date [28]. Although they are grouped under 

various glycosyl hydrolase (GH) families, three of them were reported to have specific 
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endo-β-1,4-xylanase activity. Both xylanase I (XYN I) and xylanase II (XYN II), the 

two main xylanases with molecular masses of 19 and 20 kDa and isoelectric points of 

5.5 and 9.0, respectively, belong to the GH family 11 hydrolases (Table 1). A GH family 

10 member endo xylanase III (XYN III) from T. reesei has also been identified. The 

XYN III production in T. reesei can be induced with cellulosic substrate and L-sorbose 

rather than the induction by xylan [77]. Another unique xylanase, a GH family 30 

member, was also identified from T. reesei as xylanase IV (XYN IV) with a molecular 

mass about 43 kDa (Table 1), displaying hydrolytic activity on hardwood 

glucuronoxylan, wheat arabinoxylan, and rhodymenan [28].  

 The typical 3D structures of xylanases contain the two β-sheet and one α- helix 

units which together form a β-sandwich structure [78].  XYN I and XYN II in general 

exhibit a right hand-shape structure where thumb, cord, palm, and finger segments are 

specified suggested by Torronen et al [79]. The two catalytic residues (Glu75 and 

Glu164) are positioned within the binding cleft (palm region) of the XYN I (Figure 1). 

 
 
 

Table 1. Properties of xylanases produced by T. reesei.  
Enzymes amino acid 

sequence 
pH 

optimum 
pI PDB 

codes 
molecular weight 

(kDa) 
 

XYN I 178 3.5-4.5 5.5 1XYN 19  

XYN II 190 4.5-5.5 9.0 1ENX 20  

XYN III 347 6.0-6.5 9.1 ND 32  

XYN IV 465 3.5-4.0 7.0 ND 43  
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The proposed research therefore focuses on endo-β-1,4-xylanase 1 (XYN I) from 

T. longibrachiatum as a model cell wall degrading enzyme due to the extensive previous 

studies and its commercial value [72, 80, 81]. XYN I is an important enzyme with broad 

applications in particular for the biofuel industry [82]. As a GH family 11 enzyme, XYN 

I xylanase serves as a good model for other cellulolytic and hemicellulolytic enzymes.  

The XYN I of T. longibrachiatum displays 100% sequence identity to that of 

Trichoderma reesei. The two closely related filamentous fungi have the ability to 

abundantly secrete native hydrolytic enzymes. Considering all the identical 

characteristics of XYN I from both organisms, the 3D structure of T. reesei XYN I can 

be used to overlay the HDX results of XYN I from T. longibrachiatum in order to 

visualize and unravel its dynamic characteristics.  

By considering the needs for better biocatalysts in the bioprocessing applications, 

it is hypothesized that the targeted modification of enzyme dynamics can be used to 

improve heterologous expression compatibility, thermostability, and other characteristics 

of biocatalysts. The knowledge of the structure dynamics during enzymatic catalysis can 

be derived from molecular dynamics simulations, NMR, and mass spectrometry-based 

methods.  
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1.8. Hydrogen Deuterium Exchange Mass Spectrometry as an Alternative 

Approach to Guide Enzyme Improvement 

 

Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) has been broadly 

applied to study protein dynamics and structure, particularly for protein binding with 

ligands, substrates, DNA and other molecules [83-88]. Such analysis has enabled the 

illustration of enzyme-substrate interaction mechanisms and the protein binding 

molecular determinants [89, 90]. The same approach can be used to study the 

conformational changes of xylanase when binding with substrates or inhibitors. 

The fundamental concept of HDX-MS analysis is based on the mass increase of a 

protein when the protein protons (H) exchange with the solvent deuterium (D) [91]. The 

knowledge of the rates of the H/D exchange in the protein structure can be utilized to 

elucidate the structure dynamics of the protein as mass to charge ratio (m/z). Moreover, 

HDX-MS can also be used to study the global and regional protein conformational 

changes with different platforms [92, 93]. Coupled with protein digestion and 

chromatographic separation, HDX-MS is able to profile different regions of protein for 

H/D exchange based on the peptide H/D exchange rate and percentage. The information 

allows understanding which region of the protein is more stabilized or destabilized based 

on the H/D exchange information [88, 93-102]. If more H/D exchange is observed, it is 

postulated that the protein region is more exposed to the solution phase, and the region is 

thus considered to be more flexible. The structure dynamics information provided by 

novel HDX-MS platforms can be employed for enzyme engineering applications [97, 
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103]. Recent research efforts also support this idea by unveiling the relation of the 

structure dynamics to enzyme function [8, 97, 104]. Recently, uncovering the 

information of structure dynamics has become an important consideration for enzyme 

engineering efforts [8, 9, 104-108]. 

The structure dynamics-guided approach has been successfully used for several 

enzyme activity improvement applications [8]. With this study, it is therefore proposed 

as a novel strategy to unravel the intrinsic dynamic patterns of XYN I during enzymatic 

catalysis and provide useful knowledge to the downstream engineering applications. The 

related research is innovative, transformative, and translational. It is innovative because 

no previous work has been carried out to improve cell wall degrading enzymes based on 

HDX-MS based structure dynamics analyses. A combination of the structure dynamics 

data from the HDX-MS analyses and the static structure information from the X-ray 

crystallography provides novel insights for further enzyme improvement such as rational 

design and domain swapping. Furthermore, the related research introduces a new 

approach to enzyme engineering efforts to improve enzyme thermostability, specificity, 

and efficiency through rational design. Overall, this research study aims to address 

several challenges in biocatalyst improvement using structure dynamics-guided enzyme 

improvement as a novel strategy. 
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CHAPTER II  

HDX-ANALYZER: A NOVEL PACKAGE FOR STATISTICAL ANALYSIS OF 

PROTEIN STRUCTURE DYNAMICS* 

 

2.1. Introduction 

 

 Protein intrinsic dynamics has been increasingly recognized as an important 

consideration for protein function [11]. Several recent studies revealed that protein 

dynamics play essential roles in catalysis and other functions [11, 81]. Among the 

different techniques, HDX mass spectrometry stands out as a relatively high throughput 

platform to probe the backbone dynamics of the proteins [88, 91, 96, 109]. HDX mass 

spectrometry has been broadly applied to study protein dynamics and structure, in 

particular for protein binding with ligands, substrates, DNA, and other molecules [84-

88]. 

 Such analysis has enabled the illustration of enzyme substrate interaction 

mechanism and the protein binding molecular determinants [89, 90]. The fundamental 

concept of HDX mass spectrometry analysis is based on the mass increase of a protein 

when the protein protons are exchanged with solvent deuterium [91]. The rate and

*Reprinted with permission from:” HDX-Analyzer: A Novel Package For Statistical 
Analysis of Protein Structure Dynamics” Sanmin Liu, Lantao Liu, Ugur Uzuner, Xin 
Zhou, Manxi Gu, Weibing Shi, Yixiang Zhang, Susie Y. Dai, Joshua S. Yuan BMC 
Bioinformatics, Volume 12(Suppl 1):S43. Copyright (2011) BioMed Central 
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percentage of the H/D exchange can be measured by mass to charge ratio (m/z) of the 

protein. The HDX mass spectrometry can be used to study the global and regional 

protein conformational changes with different platforms [92, 93]. Coupled with protein 

digestion and chromatography separation, the HDX mass spectrometry is able to profile 

different regions of protein for H/D exchange based on the peptide H/D exchange rate or 

the m/z of the peptides. In a differential HDX experiment, usually two protein forms are 

compared. The apo protein and the ligand bound protein are subjected to HDX 

experiment in a parallel mode. The information allows understanding which region of 

the protein is more stabilized or destabilized upon ligand binding in the solvent exchange 

reaction [88, 93-102, 109]. If more H/D exchange is observed for a particular region, the 

protein region is more dynamic in the solvent exchange reaction, and the region is thus 

considered to be more flexible or less stable in HDX. In a typical differential HDX 

experiments, the protein of interest was subject to different exchange times in its apo 

form and protein ligand complex. The data processing for HDX mass spectrometry thus 

requires comparison to a large set of the m/z values or percentages of deuterium 

incorporation for the same peptides derived from apo protein and ligand bound protein at 

different exchange times with some technical replicates. 

Various software platforms have been developed to analyze the HDX data. 

Among them include HX-Express, Deuterator, HD Desktop, DEX, Hydra, TOF2H and 

others. Most of the HDX data analysis software packages developed to date focus on 

calculating the m/z value from the MS raw data for the deuterated peptide, then evaluate 

the m/z value increase according to time. One of the aims for those software packages is 
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targeting processing a large set of HDX data, which includes calculating the centroid 

m/z value for varied HDX exchange times in a batch mode. For example, HX-Express is 

a semi-automated software package which exports deuterium uptake curve and peak 

width plots based on Microsoft excel application [110]. Compared with HX-Express, 

Deuterator is more automated and can deconvolute overlapping mass peaks. At the same 

time, Deuterator implements a server for processing multiple HDX data sets comparing 

the protein apo and ligand binding mode based on the web application [111]. 

Furthermore, HD Desktop is built on top of deuterator, which integrates more tools for 

data extraction with visualization components [112]. DEX is a Fourier deconvolution 

method that has been developed for high-resolution mass spectrometry data [113]. Hydra 

executes through a user-defined workflow, by which deuterium incorporation values are 

extracted and can be visualized in tabular and graphical formats. Hydra also automates 

the extraction and visualization of deuterium distribution values for large data sets [114]. 

TOF2H focuses on interpreting MALDI based HDX data and also builds up a pipeline 

for automated data processing [115]. Despite significant progress in the field, most 

software uses absolute differences between HD exchange rates as an evaluation of the 

differential structure dynamics changes. Some software did not integrate the differential 

HD exchange evaluation at all. It is noted that CalcDeut [116] evaluates the statistical 

distribution of deuterium incorporated into protease digested peptide fragments to 

compensate data truncation due to instrument signal to noise ratio. Nevertheless, most of 

the software programs have not integrated strong statistical evaluation of HD exchange 

rates for peptides. The statistical analysis of the differential H/D exchange rates of a 
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specific peptide is crucial in terms of the eventual decision whether the significant 

structural dynamic changes occur on that region or not. In many studies, a large 

difference in exchange rate may not reflect the differential structure dynamics changes if 

the standard deviation for the exchange rate is high. For this reason, new platforms for 

the statistical evaluation of HDX-MS data have also been integrated into HDXanalyzer.  

The integration of statistical analysis with data processing is challenging. In 

terms of statistical analysis, several software environment including SAS, SPSS, and R 

can be employed. Among these packages, R is the open source choice with a strong 

visualization component and has significant advantages for developing the open source 

software. Despite the various advantages of R, the software environment does not have 

strong user-interface supports and thus requires the users to have basic knowledge of the 

statistical language R. In order to develop user-friendly statistical software for HDX 

mass spectrometry analysis, the latest RPY2 package to connect the statistical module of 

R with a data processing module implemented by Python has been employed and the 

user-interface by wxpython has been implemented. Many programming languages 

including C, java, Perl, Python can be used for data processing and UI development, and 

each programming language has its pros and cons. Among these programming 

languages, Python stands out as a unique choice for two reasons. First, the RPY package 

allowed the seamless and effective implementation between the data processing module 

and statistical module in R. Second, Python is a script language suitable for handling 

strings and biological data, and various BioPython packages have been developed for the 
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analysis of biological data. For these reasons, the HDX-MS analysis software 

HDXanalyzer has been developed using Python, R, and RPY2 packages. 

A novel software package HDXanalyzer for the statistical analysis of HDX-MS 

data to evaluate the protein structure dynamics motions has been developed with this 

study. The software package includes three major components, the data intake and 

processing module, the user interface, and the statistical analysis module. The data 

processing module is developed in Python to process excel input files containing the m/z 

value of the peptides from different experiments. The pre-formatted m/z value of the 

peptides is processed to derive the centroid of the peptide peaks or the percentage of 

deuterium incorporation for the statistical analysis. The data is then processed by the 

Figure Generator to create graphs to visualize the differential HD exchange rates in apo 

and ligand bound protein. Further statistical analysis is carried out by R, where two 

statistical methods are used. The Paired Student’s t-test is used to compare either the 

centroid values of the m/z value or the deuterium incorporation rate to derive point 

estimation, confidence intervals, and p value to indicate if significant differences in 

structure dynamics exist or not. In addition, the multiple regression (or ANCOVA) 

model is also involved to carry out the similar analysis through linear combination of the 

intercepts. HDXanalyzer thus provides novel solutions toward ultimate quantification 

and statistical evaluation of the structure dynamics changes when studied by HDX mass 

spectrometry. The software package addresses the imminent need of statistical 

evaluation for the HDX mass spectrometry analysis and can be expanded to other 

applications for HD exchange studies by other techniques. 
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2.2. Implementation  

2.2.1. Data Processing as Implemented by Python 

 

As shown in Figure 3, HDXanalyzer includes several modules, data processor, 

statistical analysis module, and user interface. HDX mass spectrometry often involves 

two types of data, the MS/MS analysis for peptide sequence identification and the MS 

analysis for m/z value of the peptide peaks in different protein forma and status (i.e. apo 

form, ligand bound form, proteins that has been subjected to different HDX exchange 

time points). 

 
 
 

 

Figure 3. The implementation flow of HDXanalyzer. 
 
 
 
The MS/MS analysis often allows us to correlate the peptide ID with a sequence, which 

is beyond the scope of HDXanalyzer. The software is mainly dealing with the MS 
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analysis data. The raw MS data was exported for intensity and m/z values in the excel 

format for each peptide that has been identified in the HDX experiment. The 

HDXanalyzer then takes the pre-formatted Excel file of peptide ID and m/z values of the 

peptides at different HDX exchange time points as the input. A python package for 

reading and formatting information from excel files named as xlrd was used to develop a 

parser to extract and process Excel spreedsheets. The parser allows us to extract all m/z 

values and intensity of peptide at different retention time. The peptide ID and the 

treatment (apo or ligand bound) are also extracted. 

The data processing can derive two types of variables for the statistical analysis, 

centroid of the peptide in form of m/z value or deuterium incorporation rate. Centroid 

values of each peptide are derived based on the m/z value of the peaks generated by MS 

analysis. For deuterium incorporation rate, the weighted average m/z values of each 

peptide ion isotopic cluster are calculated. Basically, the deuterium incorporation rate is 

calculated based on the centroid of the peptide m/z value and is in form of percentage. 

The deuteration level of each peptide is calculated based on the equation 1, and 

corrections for back-exchange are made based on 70% deuterium recovery and 

accounting for 80% deuterium content in the ion-exchange buffer. These corrections can 

be defined by users in the data processing procedure. The deuteration levels are 

calculated based on the equation given below; 
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            Equation 1 
 

 
 
 
where m/z (P), m/z (N), and m/z (F) are the centroid value of partially deuterated 

peptide, nondeuterated peptide, and fully deuterated peptide, respectively [111].  

The resulted data are then processed into a table format and loaded to the Figure 

Generator to create visualization of the dynamic status of peptide at different time 

points. Specifically, the figures are graphs displaying the m/z value or deuterium 

incorporation rate of a peptide at different exchange time. Gnuplot was employed to 

implement the Figure Generator. Gnuplot is a cross-platform graphing utility compatible 

with Linux, Windows, and many other systems. The advantages of gnuplot lies in two 

aspects including the high quality 2D plots for scattered data and automate gnuplot using 

shell scripts. Besides the graphic display of the HDX data, statistical analysis is carried 

out to generate the point estimation of differential m/z value or incorporation rate, the 

confidence intervals and the p value.  

 

2.2.2. Statistical Models and Implementation  

 

Statistical analysis was employed to evaluate if a peptide or a region of the 

protein has significant changes in structure dynamics as revealed by HDX mass 

spectrometry or not. Such changes are reflected in the differences of either m/z value 

during the HDX experiments or the deuterium incorporation rate. The m/z value or 
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deuterium incorporation rate from different peptides can be compared with different 

statistical models to derive parameter estimation and p value. The parameter estimations 

allow us to evaluate the levels and variations of the differences in structure dynamics of 

a protein region, and the p value allows us to determine if the differences are significant 

or not. 

Two types of statistical models were used. First, a Paired Student’s t-test 

(Pairwise t-test) was used to compare the m/z value or percentage of deuterium 

incorporation for peptides from apo or ligand binding proteins. Paired Student’s T-test is 

used instead of the regular T-test because of the time effects in the HDX experiments. 

The m/z values or the percentages of deuterium incorporation for a peptide increase as 

the hydrogen deuterium exchange time gets longer. As these two values are time 

dependent, they reach a plateau when the exchange time is long enough. For this reason, 

the Paired t-test is used to avoid the time point effects. Besides the pairwise t-test, the 

multiple regression model or ANCOVA model were also used to compare the m/z or 

incorporation rate differences between peptides from the two types of proteins (apo and 

ligand bound). The linear combination of the group effects allows comparing the 

differences between apo and ligand-bound proteins. For either model, the point 

estimation of mean differences, confidence intervals, and p values are rendered. The 

multiple regression model is given in equation 2; 
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     T Time G Group TG Time GroupY X X X X                 Equation 2 
 
 
 

where Y is the dependent variable that can be either the m/z value or the deuterium 

incorporation rates of different peptides. Y is dependent on the effects of time points and 

different groups from either apo or ligand bound proteins. The combination of the two 

effects may also influence the dependent variable. 

 

2.2.3. RPY for Integrating the Different Components 

 

The integration of statistical analysis, data processing, and visualization is always 

challenging, and the recent developed RPY allows us to integrate the statistical capacity 

of R and the user interface and data processing capacity of Python. As an open-source 

language, R has the unique advantages over other statistical languages for software 

development. RPY enables the use of R for statistical analysis of HDX mass 

spectrometry data. RPY2 provides a low-level interface to R. The Python-based system 

thus can directly call R function through RPY and the software efficiency and 

effectiveness are greatly improved.  
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2.2.4. User Interface as Implemented by Wxpython 

 

The user interface of HDXanalyzer was developed with Wxpython. Wxpython is 

a Python extension model, which works as a wrapper for the cross-platform GUI API 

wxWidgets for the Python programming language. A user friendly interface including a 

menu bar, a tool bar, and four windows have been developed. The four windows are data 

manager window, figure browser, enlarged figure, and statistical analysis windows. Data 

manager window shows the spreadsheets (or the peptides) for the data analysis. The 

figure browser window shows a list of the graphs comparing the m/z values or deuterium 

incorporation rates of all peptides listed in the data manager window. All of the graphs 

are clickable and can be viewed in the enlarged figure window. The statistical analysis 

window displays the statistical analysis results.  

 

2.3. Results and Discussion  

 

HDXanalyzer is implemented as a software package to enable the statistical 

analysis of HDX mass spectrometry data and to allow the evaluation of protein structure 

dynamics changes. In order to test the confidence of HDXanalyzer, a previously 

published dataset for the HDX-MS analysis from XYN I enzyme has been employed.  
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2.3.1. The Input Data Format and the Usage of the Package 

 

The HDXanalyzer aims to integrate statistical analysis for comparing structure 

dynamics of protein upon ligand or substrate binding. As discussed in the 

implementation part, the software takes a pre-formatted excel files containing m/z values 

for multiple peptides of different treatment and time points. The data pre-formatting 

allows to the software to process a uniform input of HDX mass spec data from different 

instruments. The sample input file is derived from a xylanase structure dynamics study 

and the m/z values of the peak area for the peptides are included. Each input Excel file 

contains several sheets for the data from different peptides and treatments. The 

spreadsheet contains peptide ID, m/z value, charge state, time points for deuterium 

treatment, and the ligand name to distinguish different experimental sets like apo set and 

ligand set. The peptide ID can be corresponding to a certain peptide sequence. The 

upload function is available from the user interface, where input file can be read and 

processed to generate centroids and deuterium incorporation rates of the peptides as 

aforementioned. The data are therefore further analyzed for visualization and statistical 

analysis. 

 

2.3.2. The Output of HDXanalyzer 

 

The data output includes three parts as shown in Figure 4. The upper left panel is 

the data manager window and contains the peptide list. The upper middle panel is the 
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figure browser window and contains the graphs to compare the trends of HD exchange 

for all the peptides from the input file.  

 
 
 

 
Figure 4. The overview of the HDXAnalyzer user interface. 

 
 
 

In each graph, the X axis is the time after the deuterium incubation, and the Y axis is 

either the m/z value of the centroid or deuterium incorporation rate. The user can choose 
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the output in either format. The same peptide from the apo protein and the ligand-bound 

protein are marked with different colors in the graph (Figure 5). 

 
 
 

 

Figure 5. The deuteration-rate related figure of a representative peptide from apo 
and ligand-bound protein. 
 
 
 

Each graph in the middle panel is clickable, and the enlarged graph for each peptide is 

presented in the expanded figure window in the upper right panel. When the graph is 

clicked, the statistical analysis can be carried out for the particular peptide and the output 

is presented in the statistical analysis window at the bottom (Figure 6). 
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Figure 6. The output for the statistical analysis window. 
 
 
 
The statistical analysis output is typical R output with the point and confidence interval 

estimation as well as the p value. The parameter and p value estimation can be generated 

for either centroid of the peptide or the deuterium incorporation percentage. Statistical 

analysis can be carried out for all the peptides and the output can be presented together 

in the statistical analysis window. 
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2.3.3. The Interpretation and Comparison of Different Statistical Models 

 

As aforementioned, two types of statistical analyses were implemented for 

HDXanalyzer. Both Paired Student’s T-test and the linear combination of intercept for 

group (apo vs. ligand) effects in multiple regression models were used to derive 

parameter and p value estimation. A very important decision for data processing is the 

choice of time point. The early time points after deuterium exchange, especially for 

exchange less than 1 minute, may lead to very limited exchange even in apo protein. In 

such case, the statistical analysis of data from these time points cannot represent the real 

deuterium incorporation level. Therefore, HDXanalyzer offers users the option to choose 

the time points for the analysis.  

The data interpretation is another important consideration. Several key values are 

presented in the statistical analysis readouts. The p value presents the estimation of 

whether a region has significant differential structure dynamics or not. A small p value 

on either deuterium incorporation rate or centroid of m/z indicated that the peptide has 

significant differential structure dynamics changes between the apo and ligand 

interaction. The point estimation of the mean differences and the confidence intervals 

estimates the levels of the changes. Both parameter estimation and the p value are 

important in interpreting the HDX-MS data to render reliable conclusions. In addition, 

the statistical analysis results also provide both the paired student’s t-test  
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results and the outputs from multiple regression model. As shown in Table 2, the results 

from both types of analysis correlate with one another, highlighting the reliability of the 

results.  

 
 
 
Table 2. The comparison of statistical analysis results from the paired-students test 
and multiple regression. 
 

 

 

 

 

 
 
 
 
To further validate the analysis results, the HDX data from another previously published 

dataset were also tested [117]. Figure 7 reveals the results of statistical analysis for the 

two peptides presented in the previous publication by Dai et al. [30]. The peptide in 

panel A did not show significant differential HDX, whilst the peptide in panel B shows 

significant differential HDX with P < 0.001 (Figure 7). The results from HDXanalyzer 

correlates well with the previous statistical analyses carried out by regular statistical 

analysis software PRISM by Dai et al. [3]. The comparison highlighted that 

HDXanalyzer is reliable. 

 

Analysis Type Mean LCL UCL p values 

Multiple Regression 0.4522 0.3389 0.5654 0 

Paired t-test 0.4452 0.3393 0.5649 0 

Multiple Regression 0.2362 0.1157 0.3567 0.0004 

Paired t-test 0.2362 0.1237 0.3487 0 
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Figure 7. Verification of data analysis using previously published estrogen receptor 
data. A panel is a peptide showing no significant changes in the HDX; and B panel 
illustrates a peptide with significant changes in the HDX. 
 
 
 
2.3.4. The Overlay of 3D Structure for Differential Structure Dynamics of 

Xylanase 

 

The statistical analysis allows identification of those regions of the protein that 

exhibit significant structure dynamics changes upon ligand binding. As shown in Figure 

8, the substrate binding of XYN I trigger substantial structural dynamic changes in 
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various regions of the protein. The overlay of the HDX-MS data onto the 3D structure 

facilitates the evaluation and interpretation of dynamic patterns of the protein. 

 
 
 

 

Figure 8. The overlay of p values from the HDX analysis onto the 3D structure of 
XYN I. The color legend indicates the level of confidence. 
 
 
 
For example, the significant p values of the different peptides from the protein of 

interest, the regions with significant changes are highlighted on 3D structures and this 

information assists to understand the enzyme catalysis mechanisms to some extent. 

HDXanalyzer thus provides a powerful tool for statistical analysis of structure dynamics 

data, which has not been achieved with the previous HDX mass spectrometry analysis 

packages. 
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HDXanalyzer as a statistical analysis software has enabled the accurate 

evaluation of the changes of protein structure dynamics. The software thereby enables 

the quick, timely-efficient and practical evaluation of the HDX-MS based differential 

structure dynamics analyses through the integration of graphical visualizations and 

statistical data. 

Statistical analysis delivers crucial evaluation of whether a protein region is 

significantly protected or unprotected during the HDX mass spectrometry studies. In 

addition, HDXanalyzer stands as a powerful tool for the statistical evaluation of the 

fluctuations in protein structure dynamics based on HDX-MS data. The open-free 

developed software can be reached from the link given below; 

http://people.tamu.edu/~syuan/hdxanalyzer  

 

 

 

 

 

 

 

 

 

http://people.tamu.edu/~syuan/hdxanalyzer
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CHAPTER III  

ENZYME STRUCTURE DYNAMICS OF XYLANASE I FROM          

Trichoderma longibrachiatum* 

 

3.1.  Introduction 

 

 Xylan is the major hemicellulose component of the plant cell wall and the 

second most abundant natural polysaccharide. Most of xylan is a heteropolysaccharide 

consisting of β-1,4-linked D-xylose monomers in connection with side branches of 

arabinosyl, glucuronosyl, acetyl, uronyl, and mannosyl residues [74]. Complete 

degradation of xylan structures requires the concerted and synergistic function of several 

enzymes including endo- β-1, 4-xylanases (EC 3.2.1.8) [73]. Due to the broad 

applications in biopulping and biobleaching in paper industry, xylanase has been one of 

the major research focuses for bioconversion [74]. In particular, endoxylanases have 

been thoroughly studied as the major lignocellulosic biomass degradation enzymes. 

Xylanases with high substrate binding specificity, enhanced enzymatic activity, and 

increased thermostability are needed for various biorefinery applications. Tremendous 

efforts have been devoted to improve xylanase and cellulase enzyme performance by 

*Reprinted with permission from: “Enzyme Structure Dynamics of Xylanase I from 
Trichoderma longibrachiatum” Ugur Uzuner, Weibing Shi, Lantao Liu, Sanmin Liu, 
Susie Y. Dai, Joshua S. Yuan. BMC Bioinformatics, volume 11(Suppl 6):S12. Copyright 
(2010) BioMed Central 
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manipulating the protein amino sequence in the past [75]. However, sequence-based 

protein modification has its limitations [118, 119]. It is experimentally infeasible to test 

all possible mutants of a protein, and it is time consuming since the majority of the 

manipulated sequences do not fold properly into functional proteins [76]. Suitable 

techniques thus are needed to guide enzyme improvement with structure-function 

relationship for better enzyme rational design and engineering.  

Structure dynamics has become an important consideration for enzyme 

engineering [8, 9, 11, 104-108]. The structure dynamics during the enzyme catalysis can 

be derived from molecular dynamics simulations, NMR, and mass spectrometry-based 

methods. In particular, novel HDX mass spectrometry platforms provide the structure 

dynamics information for enzyme engineering [97, 103]. Recent research unveiled how 

structure dynamics is related to enzyme function [9, 97, 104]. The structure dynamics-

guided approach has been successfully used for enzyme activity improvement [8, 11]. 

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) represents one of the most 

widely used platforms for exploring protein conformational dynamics, folding, and 

binding [87, 120-124]. HDX mass spectrometry has been broadly applied to study 

protein dynamics and structure, in particularly for the protein binding with ligands, 

substrates, DNA and other molecules [84-87, 125]. Such analysis has enabled the 

illustration of the enzyme substrate interaction mechanism and the protein binding 

molecular determinants [88, 126].  

The fundamental concept of HDX mass spectrometry analysis is based on the 

mass increase of a protein when the protein protons exchange with the solvent deuterium 
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[90]. The rate and percentage of the H/D exchange can be measured by mass to charge 

ratio (m/z) of the protein. The HDX mass spectrometry can be used to study the global 

and regional protein conformational changes with different platforms [91, 92]. Coupled 

with protein digestion and chromatography separation, the HDX mass spectrometry is 

able to profile different regions of protein for H/D exchange based on the peptide H/D 

exchange rate and percentage. The underlying cause of HDX structure dynamics may 

involve changes in hydrogen bonds and other forces [87]. For instance, if the protein 

binding with ligand leads to more H/D exchange in a region, the ligand binding is 

expected to induce conformational changes to destabilize the region. HDX mass 

spectrometry thus allows probing the protein structure dynamics changes during 

enzymatic reactions [9, 88, 93]. 

The HDX platform comes with the advantages of mass spectrometry analysis: 

fast, straightforward, and environmentally friendly [87]. The HDX mass spectrometry 

technologies thus provide user-friendly alternatives to study the structure and dynamics 

of xylanase in a way that is not possible with other technologies. The advantages of 

HDX mass spectrometry over X-Ray and NMR are higher throughput, less protein purity 

requirements, and the dynamics and stability information rendered [127, 128]. Compared 

with X-Ray or NMR techniques, HDX mass spectrometry is difficult to resolve 

structures at a single amino acid residue resolution. The resolution of the techniques 

relies on the protease digestion, which produces peptides of varied length in a protein-

dependent manner. In addition, the conformational changes observed are the backbone 

changes, and the side chain information is limited. However, it is of great interest to 



 

42 

 

 

resolve peptide regions that span several amino acid residues to localize the stabilized or 

destabilized region during the catalysis or inhibition. The backbone changes contribute 

to the conformational changes involved in enzyme reactions [84, 88]. The combination 

of HDX mass spectrometry with X-ray data and computational modeling is a potent way 

to provide more detailed information regarding the structure, stability, and dynamics of 

enzyme/substrate or enzyme/inhibitor interactions.  

In the present study, the structure dynamics changes of the Trichoderma 

longibrachiatum (T. longibrachiatum) xylanase enzyme upon binding with xylohexaose 

and xylan ligands was evaluated with HDX mass spectrometry analysis. The analyses 

revealed important regional dynamics of xylanase upon ligand binding. Combination of 

the structure dynamics data from the HDX analyses and the static structure information 

from the X-ray crystallography provided novel insights for further enzyme improvement.     

 

3.2. Material and Methods 

3.2.1. Protein and Reagents 

 

The endo-1,4-β-Xylanase M2 (EC 3.2.1.8) from T. longibrachiatum was 

purchased from Megazyme (Megazyme International Ireland Ltd., Wicklow, Ireland) and 

used throughout the all HDX experimental processes without further purification. The 

protein solution was provided as a mixture of ammonium sulfate 45%, sodium azide 

0.02%, water 45%, and Xylanase M2 (T. longibrachiatum) 2.5%. The substrate, 

xylohexaose (molecular weight, MW: 810.70 g-1, Cat No: O-XHE) with >95% purity, 
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was also provided from Megazyme. The second substrate of xylanase enzyme for this 

study was 2% oats spelts xylan obtained from TCI AMERICA (Portland, OR, Cat No: 

X0011). 

 

3.2.2. HDX Experiment 

 

HDX experiments were similar to those previously described except without 

using the LEAP Technologies Twin HTS PAL liquid handling robot [39-40]. Briefly, the 

xylanase protein solution was used without further purification at the concentration of 

13.6 mg/mL in solution. The xylohexaose was dissolved in a D2O buffer (20mM Tris-

HCL, 100mM KCL, and 1mM DTT in D2O, pD 7.9) to reach a final concentration of 

25mM. Xylan was dissolved in D2O buffer to make up a 1% solution. Four µL of the 

xylanase solution was mixed with 16 µL of the ligand D2O buffer for HDX experiments 

at room temperature for 0, 60, 240, 960, 1920, and 3840 seconds, respectively. After the 

incubation in D2O at an aforementioned hydrogen deuterium exchange time, the 

exchange reaction was quenched with 30 µL ice-cold solution containing 2M urea and 

1% Trifluoroacetic acid (TFA), injected into an injection valve with 50 µL sample loop, 

and then passed through a pepsin column (Applied Biosystems, Foster City, CA) by a 

solvent pump (0.1% TFA in water) with flow rate at 200 µL/min. The pepsin column 

was kept on ice. The digested xylanase peptides were then eluted through a micro 

peptide cartridge (Michrom Bioresources, Inc., Auburn, CA) and desalted. The digestion 

and desalting takes a total of 5 min. Peptides were then eluted across a 2.1mm x 5cm 
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C18 column (Thermo Scientific, Waltham, MA) with a linear gradient of 2%-50% 

Solution B over Solution A for 10 min (Solvent A, 0.1% formic acid in water; solvent B, 

0.1 formic acid 80% acetonitrile, 20% water; flow rate 200 µL/min). Mass spectrometric 

analyses were carried out with the capillary temperature at 280 ºC using LC-LTQ mass 

spectrometer (Thermo Scientific, Waltham, MA). The apo xylanase HDX experiment 

was performed with the same protocol except that the D2O solution contained no ligand. 

 

3.2.3. Peptide Identification and HDX Data Processing 

 

Product ion spectra were acquired in a data-dependent MS/MS mode. The 

precursor ion survey scan was performed and the five most abundant ions were selected 

for product ion analysis. MS/MS *.raw data was first converted into *.MS2 file and then 

searched against the database containing xylanase using SEQUEST algorithm 

(Bioworks, Thermo Finnigan, CA). All peptide ion assignments were inspected 

manually. 

The weighted average m/z values of each peptide ion isotopic cluster were 

calculated with the in-house developed software named as HDXanalyzer (Chapter I). 

The deuteration level was calculated based on the equation given in Chapter I, and 

corrections for back-exchange were made based on 70% deuterium recovery and 

accounting for 80% deuterium content in the ion-exchange buffer. 
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3.2.4. Data Processing for HDX Mass Spectrometry  

 

The xylanase enzyme of T. longibrachiatum shared 100% sequence identity to 

that of T. reesei. A total of 57 digested peptides were identified in the MSMS data 

acquisition with the sequence coverage of 91% (Figure 9) for XYN I chain A.  

 
 
 

 

Figure 9. The peptides analyzed in the HDX experiment for XYN I (PDB code: 
1XYN). The blue arrowed lines represent the sequence of the peptides. 
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In addition, the HDX analyses rendered 45 peptides with significant signal to noise ratio 

(S/N>3) and also gave 71% sequence coverage for XYN I enzyme. The covered region 

is given in Figure 10. Twelve peptides identified in the MSMS acquisition could not be 

measured accurately in the HDX experiments most likely due to the co-elution problems 

or weak signals after long exchange times (for precise description, see Table 3). The 

HDX profile of apo XYN I through the representative peptides is revealed in Figure 10. 

In order to illustrate the molecular mass increases of the peptides over time, a 

representative deuterium incorporation spectrum for the peptide 

“YTIWENTRVNEPSIQGTAT” (residues; 102-120) was displayed in Figure 11.  
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Figure 10. The HDX profile of apo XYN I through representative peptides. The 
selected peptides have a total of 91 % sequence coverage. The percentage is the 
averaged values of five HDX experiments with different exchange times (60, 240. 
960, 1920, and 3840 seconds). 
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Figure 11.The mass spectra of XY N I peptide “YTIWENTRVNEPSIQGTAT” 
cover the residues; 102-129. The exchange times from top to bottom are 60, 240, 
960, 1920, and 3840 seconds, respectively. The shift of the peak centroid toward to 
the left indicates the incorporation of deuterium into the backbone of the region. 
 
 
 
3.2.5. Structure Dynamics of Apo XYN I Revealed by HDX-MS Analysis  

 

The HDX analysis of apo xylanase showed that the enzyme dynamics is regional 

specific. Regions that include residues 77 to 101 and 107 to 121 showed the greatest 

hydrogen deuterium exchange in the apo enzyme, and the N-terminal of the enzyme is 
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less dynamic according to the overall hydrogen deuterium exchange. Overall, the 

enzyme is dynamic based on the HDX experiment considering that the average exchange 

percentage is 50 % for all five exchange times (i.e. 60, 240, 960, 1920, and 3840 

seconds). 

 

3.2.6. Differential HDX Analysis of XYN I 

 

Differential HDX analysis of the apo protein versus the protein ligand complex 

revealed the structure dynamics change of the enzyme upon ligand binding. Figure 12 

illustrates the two examples of the regions highly protected in the HDX experiment. The 

protected regions however displayed less deuterium incorporation for the same exchange 

times. The peptide “VGWTTGSSAPINF” in Figure 12A (residues; 38-50) and the 

peptide “YTIWENTRVNEPSIQGTAT” in Figure 12B (residues; 102-120) showed 

significant protection in the HDX measurements. Contrary to that, the peptide 

“SVYGWSTNPLVEY” (residues; 64-76), and the peptide “SVYGWSTNPLVEYY” 

(residues; 64-77) revealed similar exchange pattern in the apo protein and holo protein, 

which suggested those regions had little structure dynamics change upon xylohexaose  

binding (Figure 12C and Figure 12D). More importantly, the two peptides had only one 

amino acid differences and had an essentially similar HDX profile, which highlighted 

the reproducibility of the current data. The differences in the structure dynamics probed 

by hydrogen deuterium exchange potentially reflected the differential local structure 

protections. The common speculation of mechanism for HDX involves H bonding and 
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possible solvent accessibility, which lead to different hydrogen/deuterium exchange 

rates in different protein regions [36]. Nevertheless, the HDX analysis revealed the 

differential structure dynamics of various xylanase regions when binding with substrate 

xylohexaose. 

 
 
 

 

Figure 12. The deuterium incorporation curves of four XYN I peptides. The open 
squares illustrate the HDX data for apo XYN I and the closed squares display the 
HDX data for the XYN I-xylohexaose bound complex. A) The HDX data for the 
peptide “VGWTTGSSAPINF” containing residues; 38-50. B) The HDX data for 
the peptide “YTIWENTRVNEPSIQGTAT” containing residues; 102-120. C) The 
HDX data for the peptide “SVYGWSTNPLVEY” containing residues; 64-76, D) 
The HDX data for the peptide “SVYGWSTNPLVEYY” containing residues; 64-77. 
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3.2.7. Statistical Analysis for Differential HDX Data  

 

Despite the visualization, the differential HDX profile needs to be determined 

statistically. We chose the last three time points for the paired student t test analysis to 

compare the apo and ligand binding mass spectra centroid value as shown in Table 3. 

For the apo enzyme, the maximum D2O exchange percentage (HDX percentage) for 

each peptide ranged from 10% to 95.7%. In parallel, HDX percentage was also defined 

for the binding of XYN I with its substrate. The level of protection for a particular 

peptide can be determined by two methods. First, the differences for the HDX 

percentage between the apo and holo protein can be calculated. Second, the differences 

of the centroid of the mass spectra for the peptides can also be evaluated. The advantage 

for the percentage calculation is that it gives a numeric value that is normalized against 

the size and the charge state of the protein. The advantage of centroid value is that it is 

the direct measurement of the HDX mass spectra and thus can be more readily subject to 

various statistical analyses. It has been therefore combined the strength of the two types 

of measurement. For the visualization in, the deuterium rates as percentage differences 

were overlaid onto the3D structure of the protein. For the statistical analysis in Table 3 

and Table 4, the mass spectra centroid values of the peptides to compare the apo and 

holo proteins were also evaluated by employing paired student’s t-test. 

The results revealed that the substrate xylohexaose played an important role in 

the stabilization of the xylanase chain A, because the HDX rate for most of the peptides 

were smaller than apo, and the centroid values were significantly lower than those of 
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apo protein for most peptides (P <0.01). Only a few peptides such as the peptide 

“SVNWNTQDD” and “NTRVNEPSIQGTATF” showed no significant differences in 

the peptide centroid values between the apo and holo protein (t =0.9553 and 0.9681, P 

=0.3627 and 0.3614).  

In contrast, most of the peptides were not significantly stabilized by xylan 

binding Table 4. Upon the xylan binding, only a few peptides including 

“SVNWNTQDD” (t=4.76, P<0.01), “LSVYGWSTNPLVEY” (t=3.08, P=0.02), 

“YGWSTNPLVEYY” (t =4.52, P <0.01), “ISVRNSPRTSGTVTVQNHF” (t =3.23, P 

=0.01), and “NAWASLGLHLGQMNY” (t =2.81, P =0.02) were significantly stabilized 

through xylan binding Table 4. Even though some peptides of enzyme-xylan binding 

complex exhibited large HDX percentage differences, these peptides did not display 

significant variations in the centroid values. Overall, the results highlighted the 

importance of statistical analysis applications with respect to interpretation of structure 

dynamics of XYN I. 

 

3.2.8. Correlation of HDX Data with X-Ray Structure 

 

Correlation of the HDX data with the X-ray three dimensional structure data can 

also provide useful information to understand the enzyme function. The 3D structure of 

xylanase from T. reesei was used as the template to overlay the structure dynamics with 

the static structure since the enzyme shares 100% amino acid sequence identity with the 

T. longibrachiatum Xylanase. Excellent consistency between the X-ray structure and the 
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HDX analyses were also observed. The active sites of XYN I, Glu75 and Glu164 are 

located in B6 and B4 β strands [37]. The protein was previously described to have the 

analogy of the right hand. As shown in Figure 13A, the HDX profile revealed that the 

regions close to the reaction center had the highest protection when the enzyme bound 

with xylohexaose ligand, suggesting that the enzymatic activity also involves chemical 

interactions between substrate and several specific amino acid residues closely located to 

active sites. Correspondingly, the results highlighted the potential regions essential for 

the ligand binding process and substrate specificity (Figure 13A). In addition, the thumb 

region of the protein as suggested in the previous publication [37] was also highly 

stabilized during the ligand binding. The stabilization indicated that the thumb region of 

xylanase might also play an important role in binding and processing of the xylohexaose 

substrates. HDX analysis thus had the potential to reveal important regions of substrate 

binding and enzyme reaction beyond the reaction sites. Besides the thumb regions, the 

existence of some other stabilized regions outside of the substrate binding groove was 

also determined. For instance, the peptide containing the residues between from 77 to 

101 located only one residue away from the active site Glu75 exhibited the greatest 

protection in the HDX experiment. The dynamic characteristics of XYNI-xylan complex 

however, was less dynamic compared to that of xylohexaose (Figure 13B). The 

protection was also observed with the peptide containing the residues from 6 to 24 which 

represents one of the fingers of the right hand structure of the protein.  
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Figure 13. The HDX profiles overlaid onto the 3D structure of XYN I. A) HDX 
profile of XYN I through the binding to xylohexaose soluble substrate. B) HDX 
profile of XYN I through its interaction with xylan (XYN I/xylan complex). The 
color legend reveals the rates of deuterium incorporation difference specifically 
obtained by subtracting the deuteration percentage of apo xylanase from holo 
xylanase. The green colored sections represent the regions that are not detected 
after pepsin digestion or cannot be measured accurately in the HDX experiments 
due to co-elution problems. 
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3.2.9. Comparative Analysis of XYN I Structure Dynamics When Binding with 

Two Different Substrates 

 

As aforementioned, the HDX profile of the two substrates, xylan and 

xylohexaose, was analyzed. The results showed quite altered structure dynamics induced 

by different substrate bindings as shown in Figure 13, Table 3, and Table 4 . Overall, the 

xylan binding induced the less enzyme structure dynamics changes on the 

conformational structure of XYN I compared to that of xylohexaose binding. Even 

though the xylan binding displayed some regional HDX deuterium changes as shown in 

Figure 13B, most peptides did not exhibit statistically significant changes in terms of 

HDX percentage. The results through the HDX profiles of the two substrates uncovered 

the existence of the differential binding ability of XYN I over various substrates.  Such 

variation between the substrates may be explained with the solubility problem of xylan 

molecules. Xylan is not entirely soluble and the solution usually forms an emulsion 

during the experiment which might have led to the significant variation of the HDX 

analysis during the xylan binding experiments. Overall results indicated that 

xylohexaose binding might have rendered much more reliable data for mechanism 

studies.  
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3.2.10. HDX Profile and Enzyme Improvement for the Future 

 

Engineering protein flexibility (plasticity) can be used to enhance 

substrate/ligand specificity of proteins by increasing the rigidity of flexible residues [38]. 

For this reason, the HDX analysis of XYN I was carried out to identify the critical 

sequences that could be stabilized to improve the local interactions of the groove region 

and neighboring residues of XYN I. The current data provided significant information 

regarding the global and local dynamics of xylanase enzymes through binding with 

different substrates. The obtained knowledge related to the structure dynamics of XYN I 

can be engaged to the future enzyme engineering applications. Those highly stabilized 

regions through ligand bindings are excellent candidates for similar downstream protein 

engineering treatments. In addition to the thumb region, the cord region of XYN I was 

also highly deuterated during the experiment, indicating that the cord region could also 

be another target region towards to enzyme specificity and stabilization-based 

engineering applications on XYN I. 

 

 

 

 

 

 

 



 

56 

 

 

Table 3. The HDX analysis of the sequence-specific peptides from XYN I and related statistical data. 
   Apo  Xylohexaose  Centroid 

difference 
    

ID Peptide Residue&Charge D2O% D2O% Change 
rate% 

Mean SD T-
test 

df p-
value 

1 ASINYDQN  1-8 (1) 11 9 -2 -0.492 1.03 1.432 8 < 0.01 
2 ASINYDQNYQTGGQ  1-14 (2)         

3 ASINYDQNYQTGGQVSYSPSNTGF  1-24 (2) 62.8 27 -35.8 0.9661 0.34 8.528 8 < 0.01 
4 SINYDQN  2-8 (1)         

5 DQNYQTGGQVSYSPSNTGF  6-24 (2) 61.6 21.7 -39.9 0.7114 0.182 11.72 8 < 0.01 
6 YQTGGQVSYSPSNTGF  9-24 (1) 45.6 18 -27.6 1.1621 0.263 13.27 8 < 0.01 
7 YQTGGQVSYSPSNTGF  9-24 (2) 48.78 20.2 -28.58 0.6794 0.182 11.18 8 < 0.01 
8 SVNWNTQD  25-32 (1) 12.45 7.57 -4.88 0.6672 0.268 7.472 8 < 0.01 
9 SVNWNTQDD  25-33 (2) 14.5 4.26 -10.24 0.1268 0.394 0.965 8 0.3627 

10 SVNWNTQDD  25-33 (1) 29.8 12.3 -17.5 0.6465 0.121 16 8 < 0.01 
11 VGWTTGSSAPINF  38-50 (1) 47 19.61 -27.39 1.0629 0.191 16.74 8 < 0.01 
12 VGWTTGSSAPINFGGSF  38-54 (1) 34.52 15.82 -18.7 0.9381 0.354 7.943 8 < 0.01 
13 VGWTTGSSAPINFGGSF  38-54 (2) 32.28 7.68 -24.6 0.4687 0.184 7.652 8 < 0.01 
14 LSVYGWSTNPLVE  63-75 (1) 16.75 10.55 -6.2 0.1773 0.151 3.518 8 < 0.01 
15 LSVYGWSTNPLVE  63-75 (2) 61.26 24.68 -36.58 0.6243 0.144 12.98 8 < 0.01 
16 LSVYGWSTNPLVEY  63-76 (1) 17.21 7.85 -9.36 0.3248 0.171 5.687 8 < 0.01 
17 LSVYGWSTNPLVEY  63-76 (2) 20.8 14.43 -6.37 -0.114 0.228 1.505 8 < 0.01 
18 SVYGWSTNPLVE  64-75 (1) 9.97 5.63 -4.34 0.2211 0.143 4.63 8 < 0.01 
19 SVYGWSTNPLVEY  64-76 (1) 15.88 10.52 -5.36 0.2603 0.095 8.242 8 < 0.01 
20 SVYGWSTNPLVEYY  64-77 (1) 18.76 10.92 -7.84 0.3695 0.237 4.677 8 < 0.01 
21 YGWSTNPLVEYY  66-77 (1) 14.4 8.36 -6.04 0.314 0.157 6.011 8 < 0.01 
22 YGWSTNPLVEYY  66-77 (2) 46.42 26.5 -19.92 0.4475 0.135 9.933 8 < 0.01 
23 YIMEDNHNYPAQGTVKGTVTSDGAT  77-101 (2) 90.88 35.44 -55.44 1.0861 0.235 13.87 8 < 0.01 
24 IMEDNHNYPAQGTVKGTVTSDGAT  78-101 (2) 83.74 42.21 -41.53 0.8823 0.527 5.018 8 < 0.01 
25 EDNHNYPAQGTVKGTVTSDGAT  80-101 (2) 82.38 33 -49.38 0.8533 0.326 7.858 8 < 0.01 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASINYDQN&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASINYDQNYQTGGQ&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASINYDQNYQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SINYDQN&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=DQNYQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVNWNTQD&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVNWNTQDD&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVNWNTQDD&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VGWTTGSSAPINF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VGWTTGSSAPINFGGSF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VGWTTGSSAPINFGGSF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=LSVYGWSTNPLVE&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=LSVYGWSTNPLVE&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=LSVYGWSTNPLVEY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=LSVYGWSTNPLVEY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVYGWSTNPLVE&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVYGWSTNPLVEY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVYGWSTNPLVEYY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YGWSTNPLVEYY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YGWSTNPLVEYY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YIMEDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=IMEDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=EDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
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  Apo  Xylohexaose  Centroid 
difference 

    

ID Peptide Residue&Charge D2O% D2O% Change 
rate% 

Mean SD T-
test 

df p-
value 

26 DNHNYPAQGTVKGTVTSDGAT  81-101 (2)         

27 YTIWENTRVNE  102- 112 (1)         

28 YTIWENTRVNEPSIQG  102-117 (2)         

29 YTIWENTRVNEPSIQGTAT  102-120 (2) 72.88 36.68 -36.2 0.8337 0.193 12.98 8 < 0.01 
30 YTIWENTRVNEPSIQGTATF  102-121 (2) 74.39 32.65 -41.74 0.7598 0.199 11.57 8 < 0.01 
31 YTIWENTRVNEPSIQGTATF  102-121 (3) 69 34.8 -34.2 0.4264 0.172 7.419 8 < 0.01 
32 YTIWENTRVNEPSIQGTATFNQ  102-123 (2) 55.96 32.91 -23.05 0.506 0.585 2.592 8 0.0319 

33 IWENTRVNEPSIQGTAT  104-120 (2)         

34 NTRVNEPSIQGTAT  107-120 (2)         

35 NTRVNEPSIQGTATF  109-120 (2) 95.7 33.6 -62.1 0.2885 0.894 0.968 8 0.3614 

36 RVNEPSIQGTAT  109-120 (2)         
37 RVNEPSIQGTATF  109-121 (2) 44.54 21.4 -23.14 0.546 0.243 6.741 8 < 0.01 
38 RVNEPSIQGTATFNQ  109-123 (2) 39.31 16.7 -22.61 0.273 0.112 7.344 8 < 0.01 
39 RVNEPSIQGTATFNQY  109-124 (2) 61.25 32.23 -29.02 0.6612 0.102 19.47 8 < 0.01 
40 YISVRNSPRTSGTVTVQNHF  124-143 (2) 74.86 38 -36.86 0.8307 0.323 7.727 8 < 0.01 
41 ISVRNSPRTSGTVTVQNHF  125-143 (3) 29.37 15.76 -13.61 0.3136 0.105 9.007 8 < 0.01 
42 ISVRNSPRTSGTVTVQNHFNA  125-145 (2) 36.33 12.97 -23.36 0.3182 0.169 5.662 8 < 0.01 
43 ISVRNSPRTSGTVTVQNHFNAW  125-146 (2) 37.19 13.31 -23.88 0.3188 0.122 7.847 8 < 0.01 
44 RNSPRTSGTVTVQNHF  128-143 (2) 23.13 14.5 -8.63 0.2763 0.169 4.896 8 < 0.01 
45 RNSPRTSGTVTVQNHFNAW  128-146 (2) 24.23 7.74 -16.49 0.2565 0.124 6.205 8 < 0.01 
46 SPRTSGTVTVQNHF  130-143 (2) 10 6.17 -3.83 0.4537 0.258 5.279 8 < 0.01 
47 SPRTSGTVTVQNHF  130-143 (2)         

48 VTVQNHFNAW  137-146 (2)         

49 NAWASLGLHLGQMNY  144-158 (2) 47.44 29.65 -17.79 0.8253 0.182 13.57 8 < 0.01 
50 WASLGLHLGQM  146-156 (2) 10.59 14.31 3.72 0.2383 0.104 6.847 8 < 0.01 
51 WASLGLHLGQMNY  146-157 (2) 45.47 25 -20.47 0.5188 0.109 14.33 8 < 0.01 
52 ASLGLHLGQM  147-156 (2) 55.68 32.27 -23.41 0.3143 0.171 5.509 8 < 0.01 

Table 3.  Continued 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=DNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNE&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQG&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTATFNQ&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=IWENTRVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=NTRVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=NTRVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTATFNQ&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTATFNQY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YISVRNSPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ISVRNSPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ISVRNSPRTSGTVTVQNHFNA&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ISVRNSPRTSGTVTVQNHFNAW&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RNSPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RNSPRTSGTVTVQNHFNAW&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VTVQNHFNAW&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=NAWASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=WASLGLHLGQM&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=WASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASLGLHLGQM&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
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  Apo  Xylohexaose  Centroid 
difference 

    

ID Peptide Residue&Charge D2O% D2O% Change 
rate% 

Mean SD T-
test 

df p-
value 

53 ASLGLHLGQMNY  147-158 (1) 32.86 2.45 -30.41 1.0308 0.406 7.624 8 < 0.01 
54 ASLGLHLGQMNY  147-158 (2)         
55 GLHLGQMNY  150-158 (1) 44.18 28.38 -15.8 0.465 0.32 4.356 8 < 0.01 
56 HLGQMNY  152-158 (1) 19.95 7.65 -12.3 0.4594 0.274 5.028 8 < 0.01 
57 VEGWGGSGSASQSVSN  163-178 (2) 57.35 29.37 -27.98 0.6036 0.162 11.21 8 < 0.01 

 

Table 4. The HDX rates of the specific peptides through XYN I-xylan interaction and related statistical data. 
   Apo  Xylan  Centroid 

difference 
    

ID Peptide Residue&Charge D2O% D2O% Change rate% Mean SD T-test df p-
value 

1 ASINYDQN  1-8 (1) 11 17.47 6.47 -0.568 1.216 1.4012 8 0.1987 

2 ASINYDQNYQTGGQ  1-14 (2)         

3 ASINYDQNYQTGGQVSYSPSNTGF  1-24 (2) 62.8 31.6 -31.2 0.2922 0.2969 2.9521 8 0.0184 

4 SINYDQN  2-8 (1)         

5 DQNYQTGGQVSYSPSNTGF  6-24 (2) 61.6 26.45 -35.15 0.0919 0.2317 1.1893 8 0.2684 

6 YQTGGQVSYSPSNTGF  9-24 (1) 45.6 24.4 -21.2 0.2032 0.1721 3.5408 8 0.0076 

7 YQTGGQVSYSPSNTGF  9-24 (2) 48.78 21.3 -27.48 0.1322 0.1717 2.3084 8 0.0498 

8 SVNWNTQD  25-32 (1) 12.45 9.29 -3.16 -0.0074 0.2488 0.0896 8 0.9308 

9 SVNWNTQDD  25-33 (2) 14.5 9.06 -5.44 -0.4882 0.3086 4.7457 8 0.0015 

10 SVNWNTQDD  25-33 (1) 29.8 20.42 -9.38 -0.0559 0.1813 0.0388 8 0.3824 

11 VGWTTGSSAPINF  38-50 (1) 47 33.16 -13.84 0.0681 0.2478 0.8244 8 0.4336 

12 VGWTTGSSAPINFGGSF  38-54 (1) 34.52 20.61 -13.91 0.0495 0.3242 0.4578 8 0.6592 

13 VGWTTGSSAPINFGGSF  38-54 (2) 32.28 29.77 -2.51 -0.0746 0.1771 1.2635 8 0.242 

Table 3. Continued 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=GLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=HLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VEGWGGSGSASQSVSN&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASINYDQN&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASINYDQNYQTGGQ&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASINYDQNYQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SINYDQN&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=DQNYQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YQTGGQVSYSPSNTGF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVNWNTQD&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVNWNTQDD&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVNWNTQDD&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VGWTTGSSAPINF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VGWTTGSSAPINFGGSF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VGWTTGSSAPINFGGSF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
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  Apo  Xylan  Centroid 
difference 

    

ID Peptide Residue&Charge D2O% D2O% Change rate% Mean SD T-test df p-
value 

16 LSVYGWSTNPLVEY  63-76 (1) 17.21 16.54 -0.67 -0.1646 0.1606 3.0765 8 0.0152 

17 LSVYGWSTNPLVEY  63-76 (2) 20.8 21.65 0.85 -0.0678 0.1864 1.092 8 0.3066 

18 SVYGWSTNPLVE  64-75 (1) 9.97 15.61 5.64 -0.1651 0.191 2.5937 8 0.0319 

19 SVYGWSTNPLVEY  64-76 (1) 15.88 13.58 -2.3 -0.1467 0.2064 2.1333 8 0.0655 

20 SVYGWSTNPLVEYY  64-77 (1) 18.76 16.48 -2.28 -0.1772 0.3409 1.5597 8 0.1574 

21 YGWSTNPLVEYY  66-77 (1) 14.4 17.3 2.9 -0.1605 0.1946 2.4742 8 0.0385 

22 YGWSTNPLVEYY  66-77 (2) 46.42 25.77 -20.65 0.1567 0.104 4.5203 8 0.0019 

23 YIMEDNHNYPAQGTVKGTVTSDGAT  77-101 (2) 90.88 60.26 -30.62 0.0787 0.2673 0.883 8 0.403 

24 IMEDNHNYPAQGTVKGTVTSDGAT  78-101 (2) 83.74 63.1 -20.64 -0.0628 0.5804 0.0345 8 0.0739 

25 EDNHNYPAQGTVKGTVTSDGAT  80-101 (2) 82.38 62.95 -19.43 -0.0682 0.2842 0.72 8 0.492 

26 DNHNYPAQGTVKGTVTSDGAT  81-101 (2)         

27 YTIWENTRVNE  102- 112 (1)         

28 YTIWENTRVNEPSIQG  102-117 (2)         

29 YTIWENTRVNEPSIQGTAT  102-120 (2) 72.88 60.03 -12.85 0.0164 0.1753 0.2799 8 0.7867 

30 YTIWENTRVNEPSIQGTATF  102-121 (2) 74.39 60.2 -14.19    8  

31 YTIWENTRVNEPSIQGTATF  102-121 (3) 69 59.07 -9.93 -0.0347 0.2216 0.4698 8 0.651 

32 YTIWENTRVNEPSIQGTATFNQ  102-123 (2) 55.96 65.1 9.14 -0.3886 0.5815 2.0046 8 0.0799 

33 IWENTRVNEPSIQGTAT  104-120 (2)         

34 NTRVNEPSIQGTAT  107-120 (2)         

35 NTRVNEPSIQGTATF  109-120 (2) 95.7 44.12 -51.58 -0.4629 0.9855 1.409 8 0.1965 

36 RVNEPSIQGTAT  109-120 (2)   0      

37 RVNEPSIQGTATF  109-121 (2) 44.54 45.25 0.71 -0.1663 0.2423 2.0597 8 0.0734 

38 RVNEPSIQGTATFNQ  109-123 (2) 39.31 34.85 -4.46 0.0313 0.1623 0.0589 8 0.5786 

39 RVNEPSIQGTATFNQY  109-124 (2) 61.25 56.38 -4.87 -0.1092 0.2907 1.1267 8 0.2925 

Table 4. Continued 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=LSVYGWSTNPLVEY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=LSVYGWSTNPLVEY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVYGWSTNPLVE&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVYGWSTNPLVEY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SVYGWSTNPLVEYY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YGWSTNPLVEYY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YGWSTNPLVEYY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YIMEDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=IMEDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=EDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=DNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNE&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQG&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YTIWENTRVNEPSIQGTATFNQ&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=IWENTRVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=NTRVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=NTRVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTATF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTATFNQ&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RVNEPSIQGTATFNQY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
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ID Peptide Residue&Charge D2O% D2O% Change rate% Mean SD T-test df p-
value 

40 YISVRNSPRTSGTVTVQNHF 124-143 (2) 74.86 57.56 -17.3 -0.1694 0.3407 1.4918 8 0.1741 

41 ISVRNSPRTSGTVTVQNHF 125-143 (3) 29.37 20.45 -8.92 -0.1261 0.1172 3.2288 8 0.0121 

42 ISVRNSPRTSGTVTVQNHFNA  125-145 (2) 36.33 27.1 -9.23 -0.0848 0.19 1.3397 8 0.2172 

43 ISVRNSPRTSGTVTVQNHFNAW  125-146 (2) 37.19 26.7 -10.49 -0.1107 0.1559 2.1303 8 0.0658 

44 RNSPRTSGTVTVQNHF  128-143 (2) 23.13 21.46 -1.67 -0.1006 0.2016 1.4967 8 0.1728 

45 RNSPRTSGTVTVQNHFNAW  128-146 (2) 24.23 21.05 -3.18 -0.1174 0.1684 2.091 8 0.0699 

46 SPRTSGTVTVQNHF  130-143 (2) 10 11.53 1.53 0.0291 0.172 0.5083 8 0.625 

47 SPRTSGTVTVQNHF  130-143 (2)         

48 VTVQNHFNAW  137-146 (2)         

49 NAWASLGLHLGQMNY  144-158 (2) 47.44 44.19 -3.25 0.1296 0.1384 2.8082 8 0.0229 

50 WASLGLHLGQM  146-156 (2) 10.59 19.87 9.28 -0.0516 0.0991 1.5623 8 0.1568 

51 WASLGLHLGQMNY  146-157 (2) 45.47 25.88 -19.59 0.1403 0.138 3.0484 8 0.0159 

52 ASLGLHLGQM  147-156 (2) 55.68 20.98 -34.7 0.0291 0.1149 0.7586 8 0.4698 

53 ASLGLHLGQMNY  147-158 (1) 32.86 22.55 -10.31 0.3286 0.3459 2.8497 8 0.0215 

54 ASLGLHLGQMNY  147-158 (2)         

55 GLHLGQMNY  150-158 (1) 44.18 36.3 -7.88 -0.1752 0.4382 1.995 8 0.2646 

56 HLGQMNY  152-158 (1) 19.95 10.76 -9.19 -0.0472 0.2264 0.6252 8 0.5492 

57 VEGWGGSGSASQSVSN  163-178 (2) 57.35 42.86 -14.49 -0.0602 0.1874 0.0929 8 0.3638 

Table 4. Continued 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ISVRNSPRTSGTVTVQNHFNA&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ISVRNSPRTSGTVTVQNHFNAW&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RNSPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=RNSPRTSGTVTVQNHFNAW&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=SPRTSGTVTVQNHF&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VTVQNHFNAW&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=NAWASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=WASLGLHLGQM&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=WASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASLGLHLGQM&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=ASLGLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=GLHLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=HLGQMNY&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=VEGWGGSGSASQSVSN&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
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In order to relay the HDX analysis results to enzyme evolution and improvement, 

the multiple sequence alignment of xylanase enzymes from different species and 

families were also carried out as shown in Figure 14. The 10 fungal and 2 bacterial 

xylanase 1 sequences were aligned together with the T. longibrachiatum xylanase. The 

multiple sequence alignment revealed that some highly conserved regions like peptide 

“RVNEPSIQGTATFNQY” (residues; 109-124) might be crucial for enzymatic activity 

since it was significantly stabilized during the substrate binding. This peptide normally 

refers to the thumb region of the xylanase and locates very close to the active site 

(Glu75) of the protein (Figure 13A and B). The significant protection indicated its 

crucial role in substrate recruitment or holding. The evolutionary evidence and structure 

dynamics information correlated with one another indicate that the region might be one 

of the structure dynamics determinants for enzyme function. Besides the peptide (covers 

the residues between 109-124), several other regions were also determined with 

significantly protected dynamic patterns following the substrate binding, and some of 

these regions however were less conserved. The current findings therefore point out that 

HDX-MS analysis can be used to explore a broader range of cell wall degrading 

enzymes for both mechanistic study and enzyme engineering. 
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Figure 14. Multiple sequence alignment of homologs of T. longibrachiatum 
xylanase. The alignment includes only XYN I sequences from different organisms. 
The sequences are endo-1,4-beta-xylanase A from Paenibacillus sp. 
(Q1XGE6_9BA), Aeromonas punctata (Q43993_AER), Cochliobolus carbonum 
(XYN I_COCCA), T. reesei (XYN I_TRIRE), P. marneffei (P. Marneffei), 
Talaromyces stipitatus (B8MTU7_TAL), Sclerotinia sclerotiorum (A7EQZ6_SCL), 
and Botryotinia fuckeliana (A6SL53_BOT), Bispora sp. (C6FGW6_9AS), 
Phaeosphaeria nodorum (Q0UF14_PHA), A. niger (XYNA_ASPNG), and 
Cryptococcus flavus (B0FIU1_CRY). 
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3.3. Results and Discussion 

 

Overall, HDX analysis has revealed significant intrinsic dynamics for xylanase 

enzyme and such dynamics might be important for the enzyme function. Specifically, 

different regions of the apo xylanase showed a differential HDX rate. The substrate 

binding leads to significant protection or stabilization effects, where some regions near 

the reaction sites were significantly stabilized by the enzyme substrate xylohexaose. The 

xylohexaose binding also induced protection on regions beyond the reaction center. In 

contrary to xylohexaose, xylan binding induced fewer changes in enzyme structure 

dynamics, assumingly due to the insufficient binding resulted from the insolubility of 

xylan. The structure dynamics information for substrate binding indicated that many 

regions in the protein coordinately changed conformation to fulfill the function of 

substrate docking and catalysis.  

The structure dynamics information also correlated with the enzyme evolution to 

a certain degree, where the evolutionarily conserved regions were very well protected by 

the substrate binding. These regions were expected to be essential for the enzyme 

function. Overall, HDX mass spec analysis allows identifying the novel structure 

determinants for the enzyme function that could not be found with traditional X-ray or 

NMR techniques. HDX mass spectrometry thus provided a novel platform to guide the 

rational design of enzymes.  

HDX-MS findings unveiled the existence of strong dynamic-function relevance 

for XYN I and such relevance can be explored for the future enzyme improvement. The 
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typical ligand-binding interactions can lead to significant dynamic motions and 

subsequent stabilizations at both regional and global levels in the structure of catalysts 

like XYN I. These types of conformational fluctuations occur during ligand bindings and 

are most likely related to the molecular mechanisms of the enzymatic function that can 

be identified and explored by using powerful and high-throughput HDX-MS platforms. 

By considering the current data, it was postulated that the HDX-MS analysis of cell wall 

degrading enzymes provides a novel platform to guide the rational design of 

biocatalysts. 
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CHAPTER IV  

STRUCTURE DYNAMICS GUIDED-ENZYME IMPROVEMENT STUDIES 

FOR XYN I FROM Trichoderma reesei 

 

4.1. Introduction 

 

To produce ideal and desired biocatalysts for industrial applications, natural 

enzymes often require the optimization of their catalytic efficiencies. The engineering of 

proteins for improved function and new characteristics is a fast-growing field in 

biotechnology. A number of enzyme engineering strategies are currently employed to 

modify biocatalysts in terms of improving their suitability for large-scale industrial 

applications [129]. In general, these attempts include various directed evolution 

practices, semi rational design techniques, and more recently, the de novo design of 

novel enzymes. 

The directed evolution of catalysts primarily requires the natural evolution of 

gene sequences by random mutations which result in the creation of large mutant 

libraries (103-106 mutants) displaying a high level of sequence diversity. The created 

libraries are then investigated through high-throughput screening to identify 

recombinants with desired characteristics. Directed evolution enabled some success in 

producing cellulases and xylanases with improved activity [130-132]. Nevertheless, it is 

not quite sufficient to provide mechanistic insights into the protein structure-function 

relationship.



 

66 

 

De novo design of enzymes is another engineering strategy and commonly 

requires the modeling of the enzyme transition states specific to functionality. It 

theoretically offers the modification of atomic positions in a particular configuration and 

aims to obtain the enzymes with desired activities through the computational rational 

design. 

The rational design of catalysts however, is an information-concerted process 

requiring the understanding of the mechanisms such as prior knowledge of the sequence, 

3D crystal structure, structure-function relationship, and the mechanisms of catalysis or 

inhibition. The rational design strategies are capable of integrating a variety of several 

strategies to generate engineered catalysts with enhanced activity, efficient specificity, 

and increased stability [22, 23].  

HDX-MS stands as a high-throughput tool enabling the rational design of 

catalysts through the identification of protein structure dynamics during ligand binding. 

By taking advantage of HDX-MS, the previously identified structure dynamics 

knowledge (Chapter III) of the model enzyme XYN I from T. longibrachiatum was 

employed in order to engineer and obtain better xylanase biocatalysts for various 

industrial applications. The highly dynamic regions identified in the 3D structure of 

XYN I protein were targeted for site specific modifications. The thumb and cord regions 

of the protein revealed a high degree of dynamic changes through binding with different 

substrates compared to the other parts of the protein [81]. The related findings call 

attention to these regions in terms of their roles during substrate binding. It is therefore 

hypothesized that the stabilization of the thumb and/or cord regions can help to improve 
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the various catalytic characteristics of XYN I. Due to its highest dynamic motion profile, 

the thumb region of the XYN I protein was the primarily focus in terms of the 

engineering applications targeted to obtain better XYN I recombinants.  

 

4.2. Material and Methods 

4.2.1. Materials 

 

Oligonucleotide primers were synthesized by Integrated DNA Technologies Inc 

(IDT) and the sequences are presented in Table 5. Beechwood xylan was purchased from 

Sigma Aldrich. T. reesei pyrG mutant (T. reesei Qm9414, pyrG auxotroph), 

Saccharomyces cerevisiae YM10 strain (S. cerevisiae), and pRS426 phagemid plasmid 

for the fungal expression cassette construction were kindly provided by Dr. Ziyu Dai, at 

the Pacific Northwest National Laboratory (PNNL) in Washington state, USA. E. coli-

based expression vector pET32a was purchased from Novagen Inc. and used for the 

cloning and sequence-based confirmations of the XYN I recombinants.  

 

4.2.2. The Introduction of Amino Acid Substitutions into XYN I Coding Sequence 

 

The engineering of XYN I protein was performed via the traditional PCR-based 

introduction of amino acid substitutions. When the substitutions designed, codon 

preference of T. reesei was always considered. Three consecutive PCR reactions were 

followed for each substitution within the coding sequence.  
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Table 5. List of the primers used to engineer XYN I enzyme. 

 
 
 
Internal primers were designed and used to introduce the specific mutations into 

the coding sequence of XYN I (Figure 15). A specific extension primer was also 

synthesized for each mutation and used to extend the fragment (usually C terminus 

fragment) length in order to increase the overlapping sequence between the two pieces of 

the gene during a second PCR. Those two pieces previously amplified were recombined 

back into one piece of DNA sequence as a result of the third PCR. 

 

Primer                                                                                 Sequence 

N111D F GACGAGCCTTCCATCCAGGGC  
N111D R CTGCTCGTTGACACGGGTATT 
N111D Ext GAGAATACCCGTGTCAACGACGAGCCTTCCATCCAGGGC 
E112C F  TGTCCTTCCATCCAGGGCACAGC  
E112C R ACAGTTGACACGGGTATTCTCCCA 
E112C Ext GAGAATACCCGTGTCAACTGTCCTTCCATCCAGGGCA 
E112Q F CAGCCTTCCATCCAGGGCACA 
E112Q R CTGGTTGACACGGGTATTCTCCCA 
E112Q Ext GAGAATACCCGTGTCAACCAGCCTTCCATCCAGGGCA 
E112I F ATCCCTTCCATCCAGGGCACA 
E112I F GATGTTGACACGGGTATTCTCCCA 
E112I Ext GAGAATACCCGTGTCAACATCCCTTCCATCCAGGGCA 
S97C F TGCGACGGAGCCACTTACACCATC 
S97C R GCAGGTGACGGTTCCCTTGAC 
S97C Ext GTCAAGGGAACCGTCACCTGCGACGGAGCCACTTACACC 
S64C F TGTGTCTATGGCTGGAGCACCAAC 
S64C R ACAAAGCAGGCCAGTTCCGCT 
S64C Ext AGCGGAACTGGCCTGCTTTGTGTCTATGGCTGG 
N141C F TGCCACTTCAATGCTTGGGCC 
N141C R GCACTGCACAGTAACAGTTCCGCT 
N141C Ext GGAACTGTTACTGTGCAGTGCCACTTCAATGCTTGGGCC 
T70R F CGCAACCCACTGGTTGAGTAC 
T70R R GCGGCTCCAGCCATAGA 
T70R Ext TCTATGGCTGGAGCCGCAACCCACTGGTTGAGTAC 
Q116E F GAGGGCACAGCGACCTTCAAC 
Q116E R CTCGATGGAAGGCTCGTTGACACG 
Q116E Ext GTCAACGAGCCTTCCATCGAGGGCACAGCGACCTTC 
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Figure 15. Consecutive PCR-based introduction of amino acid substitutions into 
XYN I gene fragment. A) Internal and external primers were employed to 
introduce single amino acid substitutions into XYN I during first PCR reaction. B) 
During the second PCR, an extension primer was designed and used together with 
reverse primer in order to increase the length of overlapping sequences between the 
two fragments from 1st PCR. C) By using parental primers of XYN I, a consecutive 
third PCR was performed to recombine the two fragments of XYN I gene before 
cloning and sequence confirmation. 
 
 
 

This strategy was followed for the each amino acid substitution related to the 

engineering and creating HDX data-driven specific recombinants of XYN I. The created 

recombinants of XYN I together with wild type XYN I are given in Table 6. In order to 

easily purify the XYN I proteins from fungal cultures, a specific His tag sequence was 

added to the 3’ ends of each recombinants.  
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4.2.3. The Construction of Fungal Expression Cassettes for Each XYN I 

Recombinant 

 

In light of the HDX-MS data for the protein, XYN I recombinants were created 

by employing traditional PCR strategy. In order to test the possible characteristics of 

each recombinant, the expression cassettes targeting the production of 

 
 
 
Table 6. The list of the XYN I recombinants created. 

 

 
 
 

proteins in fungal host were constructed. The required components for the construction 

of the expression cassettes were PCR amplified from the specific templates mentioned 

above. The specific primers carrying about 30 bp overlapping sequence in total were 

used to construct the expression cassettes in yeast cells. The primers used for the 

expression cassette construction are given in Table 7. A specific S. cerevisiae-based 

construction strategy was employed to combine all components. The italic sequences 
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refer to the Pme I restriction sites which were later utilized in order to exclude the 

expression cassettes from pRS426 phagemid backbone vector. 

 

4.2.4. The Yeast-Based Construction of Fungal Expression Cassettes 

 

In order to express each XYNI recombinants in T. reesei, a yeast-based construct 

building method, also known as non-homologous end joining (NHEJ) strategy, was 

followed [133]. This in vivo gap-repair cloning method in yeasts has been recently 

recognized as one of the most efficient applications for error-free and high fidelity 

construction of expression cassettes [134]. 

A representative scheme of the construct built for the T. reesei based expression 

of XYN I recombinants are shown in Figure 16. Yeast-based gap repair enabled the 

successful integration of each incorporated DNA fragments together with specific 

selection marker, and mitigated any PCR-based mismatching and related amplification 

errors during the expression cassette constructions for fungal transformation and 

homologous recombination. 
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Table 7. Primers operated to build the fungal expression cassettes specific to 
filamentous fungus T. reesei. 

Primers Sequence 
A1 gtaacgccagggttttcccagtcacgacgGTTTAAACGTGGCAACAAGAGGCCAGAG 
B1 ATTGGACTGAGTGAAGAAGCCGTTGGCAAATTAC 
A2 ATTTGCCAACGGCTTCTTCACTCAGTCCAATCTCA 
B2 GAGGCCTGTGGGCATAGCACGAGCTGTGGCCAAGAA 
A3 GCCACAGCTCGTGCTATGCCCACAGGCCTCGAGCCT 
B3 AGGAAATCATGACTCGTGGTGATGGTG 

ATGATGAGAACCACGGTTGCTGACACTCTGTGA   
A4 CATCATCACCATCACCACgagtcatgatttcctcttgg 
B4 TTTCGCCACGGAGCTtcatgacttgccgcatactc 
A5 TGCGGCAAGTCATGAAGCTCCGTGGCGAAA 
B5 gcggataacaatttcacacaggaaacagcGTTTAAACCCGCGCCGGGAAATTCTTT 

 
 
 

A uracil and tryptophan auxotroph YM10 strain of S. cerevisiae was used during 

the construction of expression cassettes of the XYN I recombinants.  

The orotidine-5′-phosphate decarboxylase (pyrG) gene of T. reesei was used as 

selective marker during the fungal expression of recombinants. The co-transformation of 

competent yeast cells by using 100 ng of the each construct component amplified by 

 
 
 

 

Figure 16. The schematic visualization of the T. reesei expression cassettes 
constructed within yeast cells. 
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PCR was performed together with 100 ng of linearized pRS426 phagemid backbone 

vector. YM10 yeast strain was first inoculated into 5-10 ml of YPD (Bacteriological 

peptone 20 g/L, yeast extract 10 g/L, and glucose 20 g/L) culture, incubated overnight at 

30 °C with continuous shaking. The following day, 50 ml YPD in 250 ml flask was 

inoculated with 1 ml of the overnight culture and incubated at 30 °C until the O.D600 

value reaches 1. The cells were collected by centrifugation at 5000 rpm for 2-5 min, 

washed with sterile H2O, and then, resuspended in 1 ml 100 mM lithium acetate, 

centrifuged at top speed for 15 second; the supernatant was discarded. The cell pellet 

was then resuspended in 400 µl 100 mM lithium acetate (if original O.D= 1) and 

delivered into the eppendorf tubes as 50 µl aliquots. Before transformation, the aliquots 

were spun down and the supernatants were removed.  

The co-transformation of each expression cassette component into the yeast cells 

was performed by using a 360-X µl transformation mixture without the fragments 

(where X is the total volume of all PCR fragments, vector etc.). The transformation mix 

per sample was as followed; 240 µl 50 % PEG 3350, 36 µl 1 M lithium acetate, 50 µl 

sheared salmon sperm DNA (2 mg/ml), 34-X µl sterile H2O.  After that, each component 

of the construct, linearized vector DNA and specific recombinant of XYN I were added 

into the tubes, homogenized by inverting and then, heat shock was applied in a 42 °C 

water bath for 40 min. The cells were then spun down for 15 second at 6000 rpm; the 

cell pellets were washed with 1 ml sterile H2O by gentle pipetting. 100-200 µl of YPD 

medium was used to resuspend cells and spread onto SC-Ura plates and the plates were 

incubated for 2-3 days in a 30 °C incubator. Positive colonies, the representatives of 
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successful transformation, were scraped off in order to perform the genomic DNA 

isolations as described earlier [135].  

 

4.2.5. E. coli Transformation 

 

Although total genomic DNAs can be directly used to enrich the constructs via 

PCR, the size of the constructs and PCR conditions chosen, however, may adversely 

affect the sequence quality and render sequence based errors in the coding sequences. In 

order to ensure the sequence fidelity, an E. coli based enrichment strategy was 

successfully performed for the yeast-based expression constructs. The genomic DNAs 

isolated from yeast cells were used for the general E. coli transformation. The positive 

transformants were selected on LB plates including ampicillin antibiotic. In light of 

current experiences, nevertheless, a common E. coli transformation strategy based on 

heat shock at 42 °C may not work all the time. In this case, it is the best choice to use an 

electroporation method to transfer the recombinant plasmid DNAs into TOP10 or DH5α 

(Invitrogen Inc.) E. coli competent cells. Positive colonies were picked and inoculated 

into LB broth medium. Plasmid isolation from liquid cultures was performed by 

following a general plasmid isolation protocol in order to isolate pRS426 plasmids 

specific to each XYN I recombinant.  

In order to confirm the true size of the constructs built in yeast cells, size-specific 

PCR amplifications and restriction reactions were examined. Specific Pme I restriction 

sites located at both ends of the constructs were used to confirm the correct size and 
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assembly of the constructs. The XYN I recombinants-enclosed expression cassettes 

excluded from the pRS426 backbone vector were next used as the templates for the 

fungal transformation of T. reesei. 

 

4.2.6. Fungal Transformation 

 

The pRS426-excluded linear expression cassettes of each XYN I recombinants 

were used to transform a pyrG auxotroph of the T. reesei fungus by following the 

protoplast-based transformation strategy. The upstream and downstream untranslated 

(UTR) regions of the cellobiohydrolase I (CBH I) gene from T. reesei were amplified 

and used to perform the true integration and homologous recombination of expression 

cassettes into the T. reesei genome. The CBH I promoter together with its secretion 

signal was selected to ensure the large scale expression, production, and secretion of the 

recombinant XYN I enzymes into the liquid growth medium. For this reason, the native 

signal peptide sequence of XYN I protein was replaced with that of CBH I.  

The conidia were harvested from 7-12 day old PDA plates of T. reesei pyrG-

mutant strain and 106 -107 spores/ml inoculated into 100 ml PDB growth medium. The 

suspension was incubated at 28 °C for 14-16 hours by shaking at 150 rpm on orbital 

shaker. The fungal material was collected using 100 micron nylon filter (HC3-100, sefar 

American; Tetko) or two layers of sterile miracloth, washed three times with ice cold 

ddH2O. The hydrolyzing enzyme mixture was prepared within protoplasting buffer (50 

mM MES, 50 mM CaCl2, and 0.5 M Mannitol, pH 5.5), filter sterilized. The enzyme 
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complex to create protoplasts from the fungal mycelia was prepared within protoplasting 

buffer as a combination of 2 mg chitinase (approx. 300 units/g solid; Sigma C-6137), 7 

mg lyticase (approx. 275 units/mg solids; Sigma L-4025), and 44 mg cellulase (Onozuka 

R-10). Fresh fungal mycelia (0.6-0.7 gram) were transferred into 15 ml centrifuge tubes 

and dissolved with 2.4 ml of protoplasting buffer, and incubated at 28 °C for 30 - 45 min 

by shaking at 200 rpm. The hydrolyzing enzyme mixture was prepared within the 

protoplasting buffer (50 mM MES, 50 mM CaCl2, and 0.5 M Mannitol, pH 5.5). 

In order to separate the undigested mycelia from the protoplasts produced, the 

suspension was filtered through a 10 µm nylon filter. The spores were collected by 

centrifuging the supernatants at 4000 rpm for 5 min, eluted within 1 ml of protoplasting 

buffer to determine the concentration. The 1-2 µg from the linear expression DNAs of 

XYN I recombinants were added to a 100 µl of protoplast suspension, incubated on ice 

for 20 min. A 60 µl amount of 50% PEG 6000 (sterile) prepared in protoplasting buffer 

was added to the tubes at RT. The suspensions were mixed by inverting the eppendorf 

tubes several times and the second addition of 60 µl of 50% PEG 6000 was performed 

and mixed, incubated at room temperature for 30 minutes. For the regeneration of the 

protoplasts, the osmotic density of MM was stabilized with 1 M sorbitol. The mixture 

was then homogenized with 0.8 % agar, poured onto MM selection plates, and incubated 

at 28 °C for 3 days.  
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4.2.7. Enzyme Expression and Purification  

 

The positive transformants were first transferred onto the minimal medium (MM) 

selective cultures. The transformants were incubated on MM medium for four 

generations in order to obtain homologous recombinants. Since the T. reesei pyrG strain 

is not able to grow on MM, it can only grow in MM when a specific concentration 

(0.5%) of uridine is added. Hence it was used as negative control during the all 

transformation experiments performed. The recombinant T. reesei strains were 

inoculated onto PDA agar plates and incubated for about 5-7 days at 28 °C until the 

sporulation occurs. In order to initiate the expression of XYN I recombinants under the 

CBH I promoter, the spores were washed from PDA plates by using 10 ml of MM. After 

that, the spores were filtered via miracloth before inoculating into MM to exclude the 

mycelia from the inocula. 

Together with T. reesei pyrG mutant strain as a negative control, a 106 spores/ml 

of each recombinant line were inoculated into 100 ml of MM containing 1 % glucose as 

sole carbon source. Spore germination and mycelia formation were induced as in 250 ml 

flasks on an orbital shaker with 48 hours incubation at 28 °C (200 rpm). Following 

formation of mycelia after two days, the biomass produced was filtered through 1 layer 

of miracloth to replace the media with fresh MM including 2 % wheat bran instead of 

glucose. Two days incubation was performed for the induction of the recombinant 

protein expression. The supernatants from each culture were then harvested by filtering 

through miracloth. The extracts were further centrifuged at 10000 rpm for 15 min in 
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order to remove possible mycelium artifacts and cell debris. The culture filtrate was then 

precipitated by adding gradual concentrations of ammonium sulfate (up to 80 %). The 

suspension was centrifuged at 10000 rpm for 30 min. The protein pellets were eluted 

within “His Buffer A” (100 mM NaCl, 40 mM imidazole, 1 % glycerol, 20 mM Tris-

HCL pH 8.0).  

The protein suspensions were treated with Qiagen Ni-NTA superflow resins in 

order to purify His-tagged XYN I recombinants out of the secretome of T. reesei cultures 

and incubated on a rotary shaker at 4 °C for four hours. After 6XHis resin-based 

incubation, the His resins were washed three times with washing buffer (50 mM 

NaH2PO4, 300 mM NaCl, and 20 mM imidazole; pH 8.0) in order to remove the non-

specific protein contaminants. The bound proteins were then eluted by using elution 

buffer (50 mM NaH2PO4, 300 mM NaCl, and 250 mM imidazole; pH 8.0). To collect the 

all bound proteins completely, the His resins were washed two times with elution buffer. 

The dialysis of the eluted proteins within sodium phosphate citrate buffer (pH 4.5) was 

performed overnight. The fungal expression levels and the purity of the XYN I 

recombinant proteins were examined by SDS page analysis (Figure 17 and Figure 18 ). 

The concentrations of the eluted proteins were identified by using a Pierce Commassie 

Protein Assay kit (Thermo Scientific Inc) with spectrophotometric measurements at 

595nm.  
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Figure 17. High-level expression of XYN I recombinants in T. reesei. The 
recombinants were expressed under the CBH I promoter and secreted into the 
culture medium. The figure illustrates the expression levels of the proteins before 
purification. X12- wild type XYN I; UP1: unpurified total protein before any 6XHis 
resin treatment. 
 
 
 

The protein concentrations of the recombinants were normalized to the same 

enzyme concentration by using sodium citrate buffer before performing any activity-

based quantitative assays. This normalization action enabled the identification of the first 

hand activities of the engineered recombinants compared to the wild type XYN I. 
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Figure 18. The Ni-NTA superflow-aided purification of XYN I recombinants from 
the fungal cultures of T. reesei. FT refers to flow through from the first washed his 
resins. FT1: flow through from X12; FT2: flow through from N111D (Asn111Asp); 
FT3: flow through from E7. 
 
 
 
4.2.8. Xylanase Activity Assays 

 

Xylanase activity of the XYN I recombinants was determined by measuring the 

amount of reducing sugars from hydrolyzed beechwood xylan using the DNS (3,5-

dinitrosalisylic acid) method previously described by Bailey [136]. The enzymatic 

activity evaluations of the XYN I recombinants were carried out at pH 4.0 at 50°C, with 

the reaction time of 30 min. These conditions were also followed for the analysis of 

enzyme kinetics. The main substrate beechwood xylan was prepared within 0.05 M 

sodium citrate buffer (pH 4.0), boiled and then cooled down to room temperature while 
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stirring. 250 μl of 1 % beechwood xylan substrate was mixed with 125 μl of enzyme 

suspension following the dilution of recombinant enzyme concentrations to the 

measurable levels. After incubation at 50°C for 30 min, the reaction was terminated by 

adding 500 μl of DNS reagent [8]. The mixture was then boiled for 10 min and cooled to 

room temperature. The absorbance values of released sugar molecules were identified at 

540 nm by using Beckman Coulter DU 640 spectrophotometer. The same experimental 

design was also followed for the identification of the kinetic parameters of each XYN I 

recombinant. Each reaction and the related controls were run in triplicate. 

 

4.3. Results and Discussion 

 

T. reesei (teleomorph of Hypocrea jecorina) is an industrially important 

filamentous fungus due to harboring both excellent secretion capacity of numerous 

enzymes essential for lignocellulosic biomass degradation and accessible fermentation 

conditions. As a eukaryotic model system, it has been well developed for the production 

of various hydrolyzing enzymes (e.g., 40 g/L of CBH I) [137]. In addition, having the 

capacity for both extracellular and large amount of production of cell wall degradation 

enzymes enables the successful expression of heterologous eukaryotic proteins in this 

model system. Thus, the homologous expression of XYN I recombinants was performed 

under the highly inducible CBH I promoter in T. reesei. The purified proteins from T. 

reesei cultures were subject to quantitative enzyme analysis to identify the effects of 

each specific amino acid substitution.  
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The enzyme assay results for the XYN I recombinants created are shown in 

Figure 19. The engineering studies of XYN I was mostly focused on the thumb region of 

the structure regarding the high regional dynamics. Therefore, the hydrophilic amino 

acid residues in the thumb region were first determined, through the comprehensive 

structural and residue-based analysis, few amino acid residues were identified and 

substituted with hydrophobic amino acids in order to increase the hydrophobicity index 

of the thumb region. E7 and Q4 are the two recombinants of XYN I with higher 

enzymatic activity. Both recombinants contain two different types of stabilization within 

the structure of XYN I. The design of the E7 mutant aims to stabilize the thumb region 

slightly by creating an ionic interaction between the thumb region and the neighboring 

 -sheet wall. 

It is hypothesized that the slight stabilization of the thumb region may not disrupt 

its binding function and would still allow functionality specific to ligand binding. The 

XYN I recombinants were also tested in terms of their pH optima. The best two XYN I 

recombinants were characterized in terms of their kinetic parameters, pH, and residual 

activities. The sodium phosphate-citrate buffer was utilized in order to perform the pH-

based activity assays of the mutants. 
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Figure 19. The enzymatic activity results of XYN I recombinants through different 
temperatures. E7 includes the substitutions; Thr70Arg and Gln116Glu. Q4 
contains four amino acid substitutions: Thr70Arg, Gln116Glu, Ser97Cys, and 
Asn141Cys. 

 
 
 
As XYN I is an acidic enzyme compared to XYN II, the activities were tested 

with the pH interval from 2 to 8 over different pH values shown in Figure 20. 

This data suggest that the enzyme activity of the Q4 mutant showed greater pH 

dependence than E7 and X12. On the other hand, the E7 mutant displayed a better pH 

interval compared to wild type X12 and Q4, indicating that the amino acid residues (Asn 

and Ser) substituted with cysteine for the disulfide bridge introduction might have some 

roles to accept or release protons at different pH values due to their OH groups. 
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Figure 20. The pH optima of the two recombinants of XYN I protein. X12 is wild 
type XYN I. E7 and Q4 were tested through different pH values for their best 
activity results. The reaction conditions are identical to those previously described. 
 
 
 

The residual activity based analysis data further proved that the Q4 and E7 

recombinants are better enzymes than the wild type. The half-life of the wild type XYN I 

(X12) is around 20 min in the current study, the half times of both E7 and Q4 mutants 

were much higher. The half-life of E7 is around 150 min, indicating the improvement on 

the half-life of the wild type XYN I over seven times. On the other hand, the Q4 mutant 

shows a half-life of 250 minutes, which is more than a 10 fold increase compared to that 

of the wild type (Figure 21). 
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Figure 21. The residual activity and related half-life results of the two XYN I 
recombinants as compared to wild type (X12). The enzymes were treated at 50 °C 
without any substrate over time and then the substrate was added to the enzyme 
aliquots, incubation was performed for 30 min for the same conditions. The 
hydrolysis reaction was terminated by adding DNS solution. 
 
 
 

In order to better understand the mechanism of the stabilization on the 3D 

structures of the both E7 and Q4 mutants, a deep look into the structure of XYN I is 

essential. Considering the prominent role of the thumb region for the open and closed 

conformations of XYN I enzyme for ligand binding, it is hypothesized that optimized 

stabilization of thumb region may result in desired characteristics. Thus, an ionic 

interaction was introduced to reduce the flexibility of the thumb region. Negatively (Glu) 

and positively charged (Arg) amino acid residues were chosen to replace glutamine 
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(Gln116) and threonine (Thr70) in the original sequence and produced an improved 

enzyme of E7 (Figure 22). 

Furthermore, the introduction of two cysteine amino acids into the other two 

highly dynamic regions of E7 mutant resulted in an improved enzyme Q4. The 

hypothesis is that introduction of a disulfide bond might have strongly stabilized the 

mutated region. In turn, it is possible that the introduction of a disulfide bridge onto a 

place beyond the reaction center of the protein may increase the stability but not affect 

the enzymatic activity. Meanwhile, the previous data suggested that the α-helix of XYN 

I and the downstream part of the thumb region on the back site is quite dynamic (see the 

peptide 23 and the peptide 40 from the XYN I HDX data for better understanding of 

their deuteration levels; Table 3). 

For instance, the peptide 23 “YIMEDNHNYPAQGTVKGTVTSDGAT” from 

XYNI showed high deuteration level suggested that the peptide region is quite dynamic 

in the hydrogen deuterium exchange experiment. 

 
 
 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastp&QUERY=YIMEDNHNYPAQGTVKGTVTSDGAT&LAYOUT=OneWindows&AUTO_FORMAT=Fullauto
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Figure 22.The specific positions of the E7 recombinant-specific substitutions on the 
3D structure of XYN I. The related substitutions are Gln116Glu and Thr70Arg. 
 
 
 
In addition, the neighboring region peptide; the peptide 40 

“YISVRNSPRTSGTVTVQNHF” also revealed a high level of deuteration (74.86%) for 

the apo enzyme. The close neutral amino acid residues (Ser97 and Asn141) on these 

regions were identified and replaced with cysteine residues in order to introduce a 

disulfide bridge to improve thermostability of the E7 recombinant of XYN I (Figure 23).  
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Figure 23. The specific positions of the Q4recombinant-specific substitutions on the 
3D structure of XYN I. The related substitutions are Gln116Glu, Thr70Arg, 
Ser97Cys, and Asn141Cys. 

 
 
 
The Q4 recombinant therefore contains the synergistic impact of four substituted 

amino acid residues. This attempt resulted in a better recombinant compared to both wild 

type XYN I and E7 proteins.  

In conclusion, the stabilization efforts on XYN I protein based on the HDX-MS 

data resulted in promising findings and provide insights into the enzyme engineering 

applications through the knowledge of structure dynamic and structure function 

relationships. 
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CHAPTER V  

DIFFERENTIAL DYNAMICS OF THE TWO STRUCTURALLY SIMILAR 

BIOCATALYSTS 

 

5.1. Introduction 

 

Utilization of cellulolytic and hemicellulolytic enzymes in industry, especially 

for the saccharification of lignocellulosic biomass in biorefinery are increasing at a rapid 

rate [58, 60, 61, 80, 81]. Due to their  potential for industrial applications, these enzymes 

have been subject to vast engineering studies, in particular through rational design or 

direct evolution [22-24]. The fundamental knowledge obtained from the extensive 

previous studies make these enzymes perfect models to study protein structure-function 

relationship. Despite the tremendous amount of work, limited progress has been made as 

a result of the enzyme improvement efforts through rational design based solely on 3D 

structure [24]. Therefore, additional information in enzyme structure-dynamics and 

structure-function relationship is needed.  

Recent studies have shown that structural motions might have significant roles 

during enzymatic catalysis because enzyme functions can depend heavily on the intrinsic 

dynamics of proteins [8, 11, 22, 104-107, 138-141]. In particular, Dorothy Kern’s group 

recently discovered how the intrinsic dynamics of a protein can be harnessed for enzyme 
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catalysis [9, 106]. Moreover, because of its possible importance in functionality, 

structure dynamics has been suggested as driving force for enzyme evolution [142].  

In spite of the current progress, only few studies have reported the comparison of 

the intrinsic dynamic patterns of enzymes with similar 3D structures, yet such a 

comparison can help to elucidate the role of structure dynamics in evolvability and 

functionality of enzymes. The structure dynamics analysis of the two similar enzymes 

from different organisms presented below provides insights into to their intrinsic 

dynamics and functionality patterns. 

Several platforms can  enable the study of enzyme structure dynamics analyses 

like NMR, X-ray, molecular dynamics, fluorescence resonance, and others [11]. Each 

technology has its pros and cons. Among these techniques, HDX-MS platforms emerge 

as relatively high-throughput solution enabling multiple enzyme comparisons [97, 103]. 

The fundamental concept of HDX-MS analysis is based on the mass increase of a 

protein when the protein protons exchanged with solvent deuterium [91]. The rate and 

percentage of the H/D exchange can be measured by mass to charge ratio (m/z) of the 

protein. HDX-MS can be also used to study the global and regional protein 

conformational changes with different platforms [92, 93]. Coupled with protein 

digestion and chromatographic separation, HDX mass spectrometry is able to profile 

different regions of protein for H/D exchange based on the peptide H/D exchange rate 

and percentage. The gathered information allows understanding of which region of the 

protein is more stabilized or destabilized based on solvent exchange information and this 

information is translated as the knowledge of the protein structure modifications towards 
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ligand binding [8, 88, 89, 93-102, 127].HDX –MS platform comes with the advantages 

of mass spectrometry analysis: fast, straightforward, radioactivity free, environmental 

friendly, and less protein input and purity required [88].  

Even though the recently developed HDX-MS techniques are recognized by the 

scientific community and have been used to study protein-ligand interactions, HDX-MS 

coupled with enzyme digestion for regional protein dynamics analysis has not been 

widely applied to cellulolytic and other enzyme studies. The recent studies indicate that 

HDX-MS can potentially provide useful structure dynamics information to enzyme 

engineering [81]. Through the HDX-MS based analysis, it was identified that the XYN I 

enzyme exhibits a highly dynamic pattern during ligand binding and pointed out the 

possible importance of several peptide regions essential for the functionality of XYN I 

with highly remarkable motions.  

In the present study, cellulolytic endo--1,4-glucanase (Eg1A) A from 

Aspergillus niger was chosen as a model catalyst and its structure based motions were 

defined using HDX-MS platform through binding with different ligands. One of the 

most remarkable reasons of this study is that A. niger Eg1A reveals a high structural 

similarity to that of T. longibrachiatum XYN I. The identification of the intrinsic 

dynamics of the two structurally similar, but functionally different biocatalysts therefore 

can provide insights into their ligand binding patterns and structure-function 

specificities. 
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5.2. Materials and Methods 

5.2.1. Protein and Reagents 

 

Purified cellulase (endo-1,4--D-glucanase) of A. niger was purchased from 

Megazyme (Megazyme International Ireland Ltd., Wicklow, Ireland) and was used 

throughout all HDX experiments. Reference protein myoglobin was obtained from 

Sigma-Aldrich (St. Louis, MO). The protein solution was provided in 3.2 M ammonium 

sulphate with a specific activity of 86 U / mg against carboxymethyl cellulose (CMC) at 

40C and pH 4.5. The substrate of endoglucanase for this study was 0.5% CMC (average 

molecular weight, 250 000 Da, TCI AMERICA, Portland, OR). The inhibitor, D-(+)-

cellobiose (molecular weight, MW: 342.30, Cat No: 22150) with >99.0% purity, was 

provided from sigma-Aldrich (St. Louis, MO). The second inhibitor of cellulase enzyme 

for this study was palladium chloride (PdCl2, MW: 177.33, Cat No. 520659) was also 

purchased from Sigma-Aldrich. 

 

5.2.2. HDX Experiments 

 

For the Eg1A HDX-MS analysis, followed experimental design was similar to 

that of the structure dynamic analysis of XYN I from T. longibrachitaum [81]. Briefly, 

the A. niger Eg1A protein solution was directly used for HDX experiments, and the final 

concentration of Eg1A was 12.9 mg/ml. The substrate, CMC, was dissolved in a D2O 

buffer (20mM Tris-HCL, 100mM KCL, and 1mM DTT in D2O, pH 7.9) to make up a 

0.5% solution. In previous studies, it has been revealed that addition of 100 M PdCl2 to 
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1g/ml Eg1A inhibits more than 94% of enzyme activity against 1% CMC [143], and 

cellobiose has also defined as a potential inhibitor of cellulase [144]. Thus, the two 

inhibitors, cellobiose (competitive inhibitor) and PdCl2 (uncompetitive inhibitor), were 

selected and also dissolved in the same D2O buffer to obtain final concentrations of 146 

and 100 mM, respectively. For the apo enzyme HDX reaction, 5 l of the Eg1A solution 

was mixed with 15 l of D2O buffer and the same experimental design was also 

followed for the enzyme-ligand interactions (D2O + ligand) at room temperature for 0, 1, 

15, and 60 minutes, respectively. Next, the exchange reaction was terminated by adding 

30 l ice-cold quenching buffer (2 M urea and 1% trifluroacetic acid, TFA). The 

solution was then injected into a loading valve with 50 l sample loop, passed through a 

pepsin column (Applied Biosystems, Foster City, CA) for 5 minutes. The digested Eg1A 

peptides were then eluted through a micro peptide cartridge (Michrom Bioresources, 

Inc., Auburn, CA) and desalted. The digested peptides were then eluted across a 2.1 mm 

 5 cm C18 column (Thermo Scientific, Waltham, MA) with a linear gradient of 2%-

50% Solution B (0.1% formic acid in 80% acetonitrile) over Solution A (0.1% formic 

acid in water) with a flow rate of 200 L/min in 10 minutes. The eluted peptides were 

analyzed using LC-LTQ mass spectrometer (Thermo Scientific, Waltham, MA). 

The global HDX experiment was carried out by monitoring the HDX of the intact 

enzyme with matrix assisted laser desorption ionization time of flight (MALDI- TOF) 

mass spectrometer (Shimadzu Scientific Instruments, Columbia, MD). Hydrogen 

exchange was initiated by adding 10-fold excess deuterated exchange buffer (20 mM 
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Tris-HCl, 100 mM KCL, and 1 mM DTT in D2O, pH 7.9) to the original Eg1A stock 

solution (12.9 mg/mL). At a given exchange time, 1 l of the exchange reaction was 

added into 9 l of matrix solution, which has been kept on ice before addition of the 

protein solution. The matrix solution was prepared as the saturated solution of sinapinic 

acid in 45% acetonitrile/ water with 0.1 % of trifluroacetic acid. The reference protein 

myoglobin was added into the matrix solution in order to get an accurate measurement 

of the molecular weight of the intact protein. After the protein solution was introduced 

into the ice cold matrix solution, 2 l of the solution was immediately placed onto a 

MALDI plate and dried under the gentle air flow. For a given time point, at least ten 

MALDI mass spectra were collected and the results were averaged.  

 

5.2.3. Peptide Identification and HDX Data Processing 

 

The identification of each peptide region was achieved by acquiring the product 

ion in a data-dependent MS/MS mode, and the precursor ion survey scan was performed 

and the five most abundant ions were selected for product ion analysis [81, 109]. The 

MS/MS raw data was converted into MS2 file and searched against the database with A. 

niger Eg1A using SEQUEST algorithm (Bioworks, Thermo Finnigan, CA). All peptide 

ion assignments were inspected and determined manually.  

The weighted average m/z value were analyzed and calculated by the recently 

developed software, HDXanalyzer [80]. The deuteration level was calculated based on 
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the equation which was given in Chapter II and corrections for back-exchange were 

made based on 70% deuterium recovery and accounting for 80% deuterium content in 

the ion-exchange buffer. 

 

5.2.4. Statistical Analysis for Differential HDX Data 

 

As the Eg1A deuteration rates over time were slightly low, the HDX profiles 

during the longest exchange time (60 minutes) were chosen for the student t-test analysis 

to compare the apo and ligand-bound protein deuteration rates. Furthermore, the 

cumulative deuterium rates of six peptides from Eg1A-substrate/inhibitor were analyzed 

using one-factor ANOVA and Tukey’s HSD procedures (Table 8 ). All analyses were 

performed using DPS software [145]. 
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Table 8. Differential deuteration rates of six notable peptides from Eg1A. 

 

ID residue Peptide sequence Treatment D2O%  SDa 

2 24-37 DSASSPPYSVNQNL Apo 13.8  0.7 a 
   CMC 6.7  0.6 b 
   Cellobiose 2.1  0.9 c 
   PdCl2 3.1  2.8 bc 
   F-test bF3,8 = 35.5, P < 0.01 
15 101-116 WKQDNTNVNADVAYDL Apo 7.3  1.8 a 
   CMC 8.8  2.3 a 
   Cellobiose 1.7  1.0 b 
   PdCl2 2.0  1.5 b 
   F-test F3,8 = 13.4, P < 0.01 
16 117-129 FTAANVDHATSSG Apo 5.7  1.4 b 
   CMC 12.7  2.4 a 
   Cellobiose 2.6  2.5 b 
   PdCl2 4.2  1.9 b 
   F-test F3,8 = 13.5, P < 0.01 
22 135-159 IWLARYGNIQPIGKQIATATVGGKS Apo 16.1  1.2 a 
   CMC 12.6  0.7 ab 
   Cellobiose 10.9  2.2 b 
   PdCl2 11.4  2.2 b 
   F-test F3,8 = 5.6, P = 0.02 
34 180-195 VSESPINSYSGDINAF Apo 13.1  0.9 a 
   CMC 3.2  0.9 b 
   Cellobiose 7.9  3.4 b 
   PdCl2 6.3  1.3 b 
   F-test F3,8 = 13.8, P < 0.01 
40 230-239 TVDNWTASVN Apo 15.9  3.3 a 
   CMC 16.0  1.3 a 
   Cellobiose 4.6  3.5 b 
   PdCl2 5.1  2.1 b 
   F-test F3,8 = 16.9, P < 0.01 
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5.3. Results and Discussion 

5.3.1. Structure Dynamics of Apo Eg1A  

 

The structure dynamics of Eg1A from A. niger was probed both at the global and 

regional levels. The whole sequence of Eg1A protein is consisted of 239 amino acids,  

159 of which represent the GH family 12 conserved domain and 223 of which are 

involved in the functional structure of Eg1A [143].From the MALDI-TOF measurement, 

it was observed that the Eg1A protein has a truncated version which starts Differential 

deuteration rates of six notable peptides from Eg1A from the residue 17th, from the N 

terminus, with a molecular weight of 24272 Da. In this study, a total of 40 digested 

peptides were identified in the MSMS data acquisition (Table 9). 
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Table 9. The deuteration levels and statistical data of the specific peptides from Eg1A in response to various ligands 
ID Peptide Residue & 

Charge 
Apo CMC Cellobiose PdCl2   

D2O
% 

D2O
% 

T-test p-
value 

D2
O% 

T-test p-
value 

D2O
% 

T-test p-
value 

1 DSASSPPYSVNQNL (8-21)1 8.93 5.49 1.4452 0.2219 2.1 3.0829 0.0368 1.85 3.4088 0.0271 

2 DSASSPPYSVNQNL (8-21)2 13.84 6.68 12.594 0.0002 2.09 17.751
3 

0.0001 3.15 6.4143 0.003 

3 YVDKLSSSGASW (34-45)1 6.55 4.18 1.1714 0.3065 6.94 0.152 0.8865 11.04 1.1717 0.3063 

4 YVDKLSSSGASW (34-45)2 8.23 4.5 1.2494 0.2796 5.48 0.4474 0.6777 5.48 0.4474 0.6777 

5 HTEWTWSGGEGTVKS (46-60)2 9.09 7.21 0.3625 0.7375 2.71 1.1932 0.2987 3.92 1.001 0.4222 

6 HTEWTWSGGEGTVKSYSNSGVTF (46-68)2 5.16 6.9 1.481 0.2127 4.07 0.7449 0.4977 4.03 1.682 0.1679 

7 HTEWTWSGGEGTVKSYSNSGVTFNKKLVSDV
SSIPTSVE 

(46-84)3 6.17 7.26 0.5959 0.5833 4.8 0.667 0.4129 7.49 0.8257 0.4554 

8 NKKLVSDVSSIPTSVE (69-84)2 3.87 5.02 0.7101 0.5169 2.62 0.913 0.4129 3.95 0.0477 0.9643 

9 NKKLVSDVSSIPTSVEWKQDNTNVNA (69-94)3 3.18 4.83 2.2879 0.0841 1.89 0.7914 0.473 3.97 0.6453 0.5539 

10 NKKLVSDVSSIPTSVEWKQDNTNVNAD (69-95)3 4.96    5.19 0.1913 0.8576 4.84 0.2015 0.8501 

11 VSDVSSIPTSVEWKQDNTNVNA (76-94)2 7.47 8.55 0.7717 0.4833 4.41 1.9478 0.1233 7.34 0.0964 0.932 

12 EWKQDNTNVNA (86-94)2 6.44 6.27 0.057 0.9573 3.07 1.455 0.2194 5.25 0.6203 0.5687 

13 WKQDNTNVNA (87-94)2 8.26 9.2 0.6239 0.5665 3.43 2.5427 0.0638 7.77 0.4775 0.6579 

14 WKQDNTNVNAD (87-95)2 8.37 4.82 1.485 0.2117 4.05 1.6698 0.1703 5.84 1.1286 0.3222 

15 WKQDNTNVNADVAYDL (85-100)2 7.29 8.79 0.89 0.4238 1.71 4.5626 0.0103 2.21 4.0205 0.0159 

16 FTAANVDHATSSG (101-113)2 5.7 12.71 4.3403 0.0122 2.56 1.8792 0.1334 4.19 1.1049 0.3312 

17 FTAANVDHATSSGD (101-114)1 3.84 5.96 0.3822 0.7218 3.89 0.008 0.9944 5.44 0.0752 0.9437 

18 FTAANVDHATSSGD (101-114)2 11.71 10.61 0.3674 0.732 4.96 2.0205 0.1366 7.1 1.5508 0.1959 

19 FTAANVDHATSSGDYE (101-116)2 7.52 10.08 1.0703 0.3448 2.34 2.2526 0.0874 10.46 1.1029 0.332 

20 FTAANVDHATSSGDYEL (101-117)2 11.66 7.25 0.504 0.6643 6.28 0.6122 0.6027 8.99 0.2995 0.7795 

21 MIWLARYGNIQPIGKQIATATVGGKS (118-143)3 12.43 8.89 2.1345 0.0997 8.58 2.2369 0.0899 12.15 0.2618 0.8064 

22 IWLARYGNIQPIGKQIATATVGGKS (119-143)2 16.11 12.6 4.3166 0.0125 10.9 3.604 0.0227 12.84 3.1316 0.0351 

23 IWLARYGNIQPIGKQIATATVGGKS (119-143)3 14.9 12.55 2.2011 0.0925 10.6 2.2807 0.0847 11.06 2.2837 0.0844 
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ID Peptide Residue & 
Charge 

Apo CMC  Cellobiose PdCl2 

   D2O
% 

D2O
% 

T-test p-
value 

D2
O% 

T-test p-
value 

D2O
% 

T-test p-
value 

24 LARYGNIQPIGKQIATATVGGKS (121-143)2 12.22 14.79 1.3992 0.2343 11.9 0.1423 0.8937 13.4 1.4459 0.2217 

25 LARYGNIQPIGKQIATATVGGKS (121-143)3 17.32 16.45 0.7564 0.4915 13.4 2.3255 0.0807 15.32 1.4625 0.2174 

26 ARYGNIQPIGKQIATATVGGKS (122-143)2 17.89 17.85 0.0141 0.9894 14.3 1.6389 0.1766 15.28 1.2451 0.2811 

27 ARYGNIQPIGKQIATATVGGKS (122-143)3 18.22 17.01 1.2607 0.276 13.1 2.1558 0.0973 14.24 2.9297 0.0428 

28 WEVWYGSTTQAGAEQRT (144-160)2 7.32 6.89 1.1814 0.3029 7.14 0.0786 0.9412 7.44 0.8146 0.461 

29 WEVWYGSTTQAGAEQRTYSF (144-163)2 6.37 8.72 0.9555 0.3934 5.76 0.3013 0.7782 5.55 0.6507 0.5507 

30 YGSTTQAGAEQRTYSF (148-163)2 6.9 6.66 0.1033 0.9271 5.23 0.6188 0.5695 7.26 0.1398 0.8956 

31 VSESPINSYSGDINA (164-194)1 10.58    7.95 1.583 0.1886 6.93 2.1989 0.0928 

32 VSESPINSYSGDINA (164-178)2 10.87 8 10.803 0.0004 9.31 1.1724 0.3618 5.54 3.7231 0.0652 

33 VSESPINSYSGDINAF (164-179)1           

34 VSESPINSYSGDINAF (164-179)2 13.1 7.02 2.8396 0.0469 7.94 2.581 0.0613 7.3 10.999
6 

0.0004 

35 FSYLTQNQGFPASSQY (180-195)2 5.78 6.57 0.4158 0.6989 3.31 1.8706 0.1347 6.1 0.2364 0.8248 

36 LTQNQGFPASSQY (183-195)2 7.24 5.03 1.6898 0.2331 9.72 1.5528 0.2607 6.96 0.1598 0.8877 

37 LINLQFGTE (196-204)1 4.97 6.74 0.6434 0.555 0.58 1.3947 0.2356 6.54 0.2965 0.7816 

38 QFGTEAFTGGPATF (200-213)1 3.62 6.2 1.6127 0.1821 1.77 1.5228 0.2025 3.23 0.2875 0.788 

39 QFGTEAFTGGPATF (200-213)2           

40 TVDNWTASVN (214-223)2 15.92 15.95 0.0162 0.9879 4.63 4.1043 0.0148 5.08 4.8254 0.0085 

Table 9. Continued 
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A sequence coverage of 85.4% for the whole enzyme and 100% coverage for 

conserved GH family 12 domain have been identified (Figure 24). After 60 minutes 

exchange with D2O, the HDX analysis revealed a minimum exchange rate of the enzyme 

when it was incubated with deuterium solvent. Most of the peptide regions exhibited less 

than 10% exchange as compared to the full exchange capacity of the corresponding 

peptide. Only six peptide regions were detected to have more than 10% but less than 

20% of deuteration exchange rate in the HDX experiment.  

 

 

Figure 24. Peptides analyzed in the HDX experiment for Eg1A. The blue arrows 
donate the sequence of the peptides analyzed successfully. 
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Careful examination of the Eg1A crystal structure revealed that the enzyme has a 

“jelly-roll” folding with two antiparallel  -sheets, which presents as a common folding 

motif in endoglucanase (Figure 25). The approximate dimensions of the Eg1A catalytic 

core is about 40 X 40 X 35 A and consists of a single-domain polypeptide chain (GH12) 

[143]. The hydrophilic surface of sheet B forms a long open cleft which is the binding 

site for substrate. The  -sheet A contains six strands (A1- A6) and β-sheet B contains 

nine strands (B1-B9). B1, B2, the loop region between B5 and B6 sheets, the loop 

between B6 and B9, B8, part of the helix region, and the A4 region in the C terminus are 

the regions identified with HDX as slightly dynamic regions of Eg1A. It was suggested 

that the hydrophilic face of the  -sheet B forms along the open cleft, which harbors the 

binding site of the substrate. The HDX-MS analysis findings for Eg1A are consistent 

with the specific protein-ligand interaction sites, where the most dynamic regions 

identified are located on the  -sheet regions.  

 

5.3.2. Active Site upon Ligand Binding Revealed by HDX  

 

When the apo enzyme was treated with solvent deuterium under specific 

conditions, the HDX-MS data of Eg1A indicated that the several regions of the protein 

reveal higher level of structural motions than the other regions (Figure 25). In order to 

examine the dynamic behavior of the enzyme to the different substrate or inhibitors, 

carboxymethyl cellulose (CMC), cellobiose, and PdCl2 were interacted with apo protein 
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through in a defined time scale. CMC is one of the main substrates of cellulases. 

Cellobiose and PdCl2 are the two inhibitors of Eg1A. The major regions whose dynamics 

have been changed upon ligand binding were shown in Figure 25 by overlaying 

 
 
 

 

Figure 25. The differential dynamic characteristics of Eg1A upon binding with 
various ligands. A) Apo A. niger Eg1Acrystal structure (PDB: 1KS4) to show the 
GH12 domain region (green); B) The HDX profile of Eg1A/CMC interaction 
overlaid onto the apo Eg1A 3D structure; C) The HDX delineation of 
Eg1A/cellobiose binding overlaid onto apo Eg1A 3D structure; D) The HDX report 
of Eg1A/cellobiose interaction overlaid onto apo Eg1A crystal structure. The 
stabilized (red) and destabilized (blue) regions identified through HDX analysis are 
indicated. 
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the HDX change data onto the protein X-ray structure. The two B1 and B2 regions, the 

loop regions before the helix, and part of the helix region have been shown to be 

stabilized binding with both CMC and two inhibitors. Part of A5 and B5, the loop region 

between A5 and B5, the A4 region in  -sheet A, however, showed stabilization effects 

when binding with the inhibitors, but displayed no change through interacting with 

CMC. Interestingly, the loop region between B5 and B6 was destabilized through 

interacting with CMC as revealed by HDX. Conversely, the same region showed no 

dynamic difference when binding with both cellobiose and PdCl2 inhibitor (Figure 25). 

The amino acid residues located in this loop are highly conserved (Phe117, Thr118, 

Ala119, Ala120, His124, Thr126, Ser128, and Gly129). This loop is an important region 

within the active site cleft, and the destabilization effect observed in HDX might be 

explained as a different binding mode of this region upon interaction with substrate 

versus inhibitors. Another important region referred to as the “cord” region in the both 

XYN I and Eg1A [79, 81], is the surface loop region between strands B6 and B9. Amino 

acids in this region are also highly conserved. In the HDX experiment, this region is 

slightly protected when binding with both the substrate and the inhibitors. The peptide 

“IWLARYGNIQPIGKQIATATVGGKS” (residue 135-159) showed 16% of exchange 

rate after 60 minutes incubation with solvent deuterium, which belongs to one of the 

regions that are most dynamic in the HDX experiment. The same peptide showed 11% 

of exchange rate when incubated with inhibitors. The X-ray structure showed that when 

Pd2+ ions are binding with Eg1A, one ion is residing in the binding cleft and close to the 

cord loop [143]. That Pd2+ forms coordinate covalent bonds with Met134, and Glu132. It 
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has been suggested that the loop may have conformational changes upon substrate 

binding and facilitate the interaction of the two conserved tryptophan residues (Phe136 

and Phe163) with the substrate. The HDX analysis results are consistent with the X-ray 

data, indicating the differential dynamics behavior of the enzyme when binding with 

various ligands. 

 

5.3.3. Comparison the Dynamic Motions of XYN I and Eg1A 

 

Even though the sequence similarity between Eg1A and XYN I is extremely low, 

structure analyses suggest that they share overall the same folding [143, 146, 147]. 

Hemicellulolytic XYN I protein from T. longibrachiatum exhibits only 16% sequence 

identity with Eg1A analyzed in this work. Both XYN I and Eg1A, however, share well 

known “right hand” structure including two  -strands and one  -helix to form the 

palm. However, in the Eg1A structure, the strands are more expanded with one more 

strand in  -sheet A. One notable structure feature about Eg1A is that cysteine 20 and 

cysteine 48 forms a disulfide bond by connecting strand A1 and A2, which might 

contribute to the less dynamic nature of Eg1A. However, the presence of one disulfide 

bond connecting two  -sheet strands might impact the dynamics locally and the 

contribution of such single disulfide bond cannot be inclusive. Since no denaturant was 

used during the HDX experiments, the measurement of the backbone hydrogens only 

probes the protein under native conditions. The exchange rates of the backbone 



 

105 

 

hydrogens are highly dependent on the three dimensions of the protein structure, which 

involves H bonding, protein distortional motion, and solvent penetration etc. The 

similarity of the 3D structures provides a good model to investigate the comparative 

structure dynamics.  

Interestingly, a big dynamic difference was observed for the two structurally 

similar protein folds. In the previous study, XYN I showed much higher exchange 

dynamics when incubated with solvent deuterium. Through a 64 minutes exchange with 

D2O, most peptides representing various regions of the XYN I enzyme experienced more 

than 50% of total exchange; some regions further displayed over 90% exchange rate 

with deuterium as compared to Eg1A protein (Figure 26) [81].  

 
 
 

 

Figure 26. Regional deuteration rates of both XYN I and Eg1A through HDX-MS 
analysis. 
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In order to directly compare the two enzymes, the global hydrogen deuterium 

exchange rates were probed by measuring the mass increases of the intact proteins when 

they treated with D2O (Figure 27).  

 
 
 

 

Figure 27. Globular dynamics of both XYN I and Eg1A revealed by MALDI-TOF 
analysis. 
 
 
 

The MALDI-TOF measurements revealed that the molecular weight of the XYN 

I is 19047 Da, given that the enzyme is composed of 178 amino acids. This is also a 

truncated version of the enzyme, which starts from the amino acid fifty second (Ala52). 

The exchange rates of both Eg1A and XYN I intact proteins through the 32 minutes 

incubation with D2O resulted in a mass increase of 39 Da for Eg1A and 60 Da for XYN 

I.  
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Given the whole sequence of each enzyme used in the experiments, Eg1A is 

composed of 223 amino acids and XYN I only contains 178 amino acids (Figure 28). 

Furthermore, the MALDI-TOF analysis revealed that the molecular weight of XYN I 

protein starts increasing dramatically after the first four minutes incubation with D2O as 

compared to Eg1A, suggesting the existence of a very rigid tertiary structure for Eg1A 

protein.  

 
 
 

 

Figure 28. The pairwise sequence alignment of A. niger Eg1A and T. reesei XYN I 
together with secondary structure assignment. -strands are marked with arrows; 
and -helices with double dashed lines. The “cord” and “thumb” regions are also 
indicated. 
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Eg1A has more backbone hydrogen available for exchange if global unfolding 

can be obtained. It was suggested that the HDX data of the apo protein with solvent 

might involve segmental unfolding reactions, even though the global unfolding is not 

reached [143].  

In addition, the root mean square deviation (RMSD) analysis confirmed the 

highly dynamic characteristic of XYN I compared to Eg1A (Figure 29). The RMSD is 

regarded as an important indicator of the structure flexibilities and dynamics of proteins. 

It is frequently used for the comparison of similar structures through the calculations of 

the average distances between the molecular atoms.  

The study unveiled potential new structure determinants for Eg1A enzyme 

function. The structure dynamics of Eg1A was compared to the previously studied XYN 

I and highlighted dramatic differences in enzyme structure dynamics, even though the 

3D structure of the two enzymes are similar. The HDX rates were compared both at 

global and regional levels for the two enzymes, and the global dynamics data confirmed 

the regional dynamics observations. Molecular dynamics of the two enzymes were also 

compared at the nanosecond scale. The comparison of nano second scale dynamics also 

pointed to the same conclusion that XYN1 is more dynamic than Eg1A.The structural 

flexibilities revealed by RMSD further confirmed the more dynamic personality of XYN 

I protein compared to Eg1A. XYN I was shown to be highly dynamic in the apo form 

when in the solution phase exchanging with solvent deuterium. Binding with substrate 

protected XYN I for a variety of peptide regions. However, the apo Eg1A showed very 
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limited exchange with solvent deuterium. Binding with substrate introduced protection 

into Eg1A, but such protection is significantly less as compared to XYN I.  

 

 
 
 

 

Figure 29. RMSD-based structure dynamics comparison of both XYN I and Eg1A. 
The XYN I protein starts changing in 10 ns in terms of the structural flexibility, the 
Eg1A protein however exhibits highly rigid structural patterns throughout the 
analysis 
 
 
 

Further overlay of the current structure dynamics data of Eg1A onto a multiple 

sequence alignment of the Eg1A proteins from different fungal organisms pointed out 

that the highly conserved surface loop region (the cord region; the residues between 138 

and 160) may be crucial for differential dynamics (Figure 30). Overall, the current 



 

110 

 

results highlight that enzyme dynamics can be a driving force for the differential 

functionality and biocatalyst engineering applications.  

 
 
 

 

Figure 30. Multiple sequence alignment for Eg1A indicating the highly stabilized 
(red boxes) and destabilized regions (blue boxes) in the protein sequence through 
HDX analysis. 
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CHAPTER VI  

CONCLUSIONS AND PERSEPCTIVES 

 

Studying the structure dynamics of proteins is of great interest regarding its 

potential role in structure-function relationships. Among various structure analysis 

platforms, HDX-MS stands out as an efficient way to analyze protein dynamics upon 

ligand binding. Demonstrated here is the systematic use of HDX-MS with model 

biocatalysts to reveal the application of HDX-MS toward structure-function relationships 

for bioenergy research.  

The HDXanalyzer software, developed to quantify the HDX-MS analyses of 

related data, enables rapid and statistical analyses of protein structure dynamics, which 

can further assist more accurate interpretation of HDX-MS data.  

 For the XYN1 model system, high intrinsic dynamics has been identified. 

Interaction with different substrates renders the differential stabilization of the enzyme 

structure. The thumb, cord regions, and the binding groove were detected as the key 

dynamic regions of XYN I which exhibit differential dynamic patterns through binding 

with specific substrates. Further modification of the enzyme based on the HDX-MS data 

leads to successful enzyme engineering with improved enzyme activity. It would be 

expected that the findings through HDX-MS analysis can translate into more protein 

engineering work for better enzymes.  

The structure dynamics comparison between the two similar protein folds 

revealed different dynamics in the HDX-MS analysis. In the model system here, even
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 though the two enzymes, T. reesei XYN I and A. niger Eg1A, are efficient 

catalysts for their substrates, the enzymes showed distinct enzyme dynamics, indicating 

that enzyme dynamics do not always underlie catalysis. Molecular dynamics modeling 

also conforms to the HDX analysis results, further questioning the current understanding 

of the correlation between catalysis and protein structure dynamics. Future applications 

of the enzyme dynamics analysis with more model systems will help better elucidate 

structure-function relationships with a broader perspective. 
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APPENDIX 

 

 

Figure 1. Multiple sequence alignment for XYN I enzyme from different organisms.  
A multiple sequence alignment of XYNI enzymes from various fungal and bacterial 
sources is given in order to elucidate the sequence similarity of family 11 (GH 11) 
xylanases. 1XYN: XYNI from T. reesei; 1ENX: XYNII from T. reesei; 1BK1: 
xylanase 1 from Aspergillus kawachii; 1UKR: xylanase 1 from Aspergillus niger; 
1YNA: xylanase 1 from Thermomyces lanuginosus; 1F5J:  xylanase 1 from 
Dictyoglomus thermophilum; 1XNB: xylanase 1 from Bacillus circulans; 2DCY: 
xylanase 1 from Bacillus subtilis. 




