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ABSTRACT 

 

 Through the creation and analysis of databases for radiocarbon, instrumental 

neutron activation analysis (INAA), and law, macro-level trends are exposed that form the 

framework of a broader research program aimed at advancing ideas of craft specialization 

and archaeological theory in the ancestral Caddo region of Southwest Arkansas, Northwest 

Louisiana, Northeast Texas, and Southeast Oklahoma. The findings of this investigation 

illustrate the research potential that remains buried within the context of cultural resource 

management (CRM) reports and legal databases (Westlaw and LexisNexis) that is awaiting 

consumption within regional research designs aimed at exploring the nuances and trends 

that appear through synthetic research. 

 While more can—and should—be done to exploit these resources, this endeavor 

represents the first logical step toward a more general comprehension of Woodland and 

Caddo occupations in the region. As a testament to those projects that generated these data, 

the findings herein are representative of decades of work by numerous academic 

institutions, archaeological firms, undergraduate as well as graduate students, and 

avocational archaeologists alike; all of which have and continue to contribute to a more 

synthetic and dynamic understanding of the things, peoples, and cultures that lie underfoot. 
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CHAPTER I 

INTRODUCTION TO THE VOLUME 

 

 
We must never forget that human motives are generally far 

more complicated than we are apt to suppose, and that we 

can very rarely accurately describe the motives of another 

(Dostoyevsky 2004 [1869]: 303). 

 

 This dissertation represents a synthetic approach to data collected from cultural 

resource management (CRM), as well as academic and legal (Westlaw and LexisNexis) 

domains, and it is focused upon extending the scope of discussions aimed at temporal 

contemporaneity, trade and exchange, and litigation in the ancestral Caddo territory.  With 

the availability of information garnered from data recovery, testing, and survey projects 

conducted across the Caddo area, these archaeological data sets are rich in research 

potential. The investigations presented in Chapters 2-5 are a testament to the variety of 

prospective topics that can be addressed with these data. The motivation for undertaking 

these endeavors is to create a foundation from which to begin addressing other topics of 

concern regarding the Caddo archaeological record, such as the temporal contemporaneity 

of Caddo sites by type (mound center, settlement, cemetery) within and across East Texas 

river basins, as well as a reanalysis of the Caddo instrumental neutron activation analysis 

(INAA) dataset at the landscape level due to misgivings concerning the current 

interpretation of those data. Building atop this foundation for future Caddo archaeological 
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research inquiries is discussed more fully in the concluding chapter of this dissertation.

  

 

Introduction 

The Caddo inhabited areas of what are today Arkansas, Louisiana, Oklahoma, and 

Texas (Figure 1.1) from ca. A.D. 800/850-1838 (Perttula 2012), and were horticulturalists 

that successfully became agricultural peoples, with a particular focus on maize cultivation 

(Perttula 2012; Wilson 2012). Their ancestral predecessors were various Woodland period 

communities that developed between ca. 500 B.C. and A.D. 800.  Caddo communities and 

separate population groups may have first emerged within two areas: the Great Bend of the 

Red River in southwestern Arkansas and northwest Louisiana, and the other concentrated 

in the Arkansas River basin in Eastern Oklahoma (Story 1981:148-149). However, other 

important communities developed early on in East Texas and in the Ouachita River basin in 

southwest Arkansas, and there may be no “centers” of early cultural emergence.  

 

Archaeological Evidence 

While elements of Caddo life share many similarities with the Southeastern 

Mississippian cultures, cultural developments in the Caddo region do not appear to have 

developed in concert with their Mississippian counterparts (see Blitz 2010; Livingood 2008). 

This had led archaeologists to consider Caddo developments as an expression of local and 

regional processes linked temporally and culturally to the preceding Woodland period 

(Perttula 2009, 2012) and to interactions between different Caddo groups. 

Initial attempts at delineating the temporal and spatial dynamics of Caddo groups and sub-
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groups employed the use of distinctive ceramic styles and mortuary/mound associations of 

different ceramic types to identify groups of sites with similar artifact assemblages (see 

Harrington 1920; Krieger 1947; Newell and Krieger 1949). Based upon the Midwestern 

Taxonomic System (MTS) (McKern 1939), Krieger used information from Caddo sites in 

concert with stratigraphic data from the Red and Neches River basins to produce the first 

systematic synthesis of the Caddo area (Perttula 1992) (Figure 1.2).  

 

Figure 1.1. Map of the Southern Caddo Area. 

 

 Itself a hierarchically-nested typology, the MTS uses—as its’ most basic element—

the component, which McKern (1939:30) defines as “the manifestation of any given focus at a 
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specific site.” Within the framework of Krieger’s efforts, the component was employed to 

substantiate the membership of a site within a larger focus, aspect, phase, or pattern, linking 

Caddo sites by diagnostic traits that included stylistic, technological, and functional 

attributes (e.g., Dunnell 1971; Perttula 1992). Using these initial findings, further affiliations 

were then explored between known sites.  

At its’ core, the component remains an integral part of modern archaeological 

endeavors within Caddo archaeology, and phases remain in use, despite rumblings that 

archaeologists should—instead—be exploring “[t]he actual relations between data 

points…instead of boxes of our own cryptic creation” (Dunnell 2008:64). Although a valid 

point, there remain numerous geographic areas within the Caddo area that lack the data 

needed to pursue this manner of exploration currently (Perttula 2012). 

Among the best examples of modern comparative analyses in Caddo archaeology 

employing a similar methodological approach is that of the Pine Tree Mound site (Fields 

and Gadus 2012). Using the bulk of modern analytical techniques, Fields and Gadus (2012) 

produced data sets for attributes and iconography, INAA, and petrography to explore 

ceramic variation; analysis of attributes, metric data, and LA-ICP-MS to explore lithic 

variation; petrology and geochemistry of ear spools and pigments; as well as radiocarbon, 

macrobotanical, geophysical, and osteological data sets. Using this amalgam of 

archaeological evidence, Fields and Gadus (2012) identified the Pine Tree Mound site as 

contemporaneous with the Titus phase using radiocarbon data (Figure 1.3). They were also 

able to infer interaction with Titus phase communities based upon geography, as well as 

attribute and INAA ceramic data—identifying similarities even at the sherd level—and 

noting that the percentages of Ripley vessels/sherds recovered from mortuary contexts at 
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Pine Tree Mound (40%) were similar to those from the Mockingbird (42%) and Tuck 

Carpenter (54%) cemetery sites, and that a number of the decorative motifs occurring at 

Tuck Carpenter were also present at Pine Tree Mound. Fields and Gadus (2012:661) see 

these elements to be suggestive of “distinct, though related, groups.” 

 

 
Figure 1.2. Distribution of Gibson and Fulton aspect foci defined by Krieger (1946). The triangles and circles 
represent individual components of the Alto and Glendora foci. Neither focus had a realistic spatial 
distribution when it was initially defined (Perttula 1992: Figure 9).  
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 Through employing a hybrid of the century-old theoretical construct posited by 

Kroeber (1907), the culture area—a geographic region with relatively homogenous human 

activity or complex of activities—remains of substantive import within the framework of 

Caddo archaeology. In the context of exploring the material culture of the Caddo, 

Kroeber’s culture area is augmented by both culture history and processualism to posit the 

temporal and spatial dynamics of Caddo sites via the totality of the archaeological 

assemblage (to include geoarchaeological, stratigraphic, and geographic contexts). It is from 

this theoretical baseline that discussions of inter-polity interaction (i.e., Fields and Gadus 

2012) and commerce (see Appendix B) can, and are, being furthered.  

 The research presented in this dissertation is consistent with this theoretical 

archetype, and provides a novel method of exploring archaeological contemporaneity via 

radiocarbon, while also positing a landscape-level approach to the analysis of INAA. New 

methods of synthesizing large data sets will—no doubt—continue to increase in both size 

and research potential, and their interpretation owes much to the forerunners of Caddo 

archaeology who strove to make sense of the complex material culture that represents our 

ever-expanding intellectual toolkit. Through their guidance and ingenuity, we continue to 

progress toward increasingly substantive interpretations as we endeavor to refine and 

reshape current theoretical constructs aimed at comprehending the complexities and 

nuances in the material culture of the ancestral Caddo.  
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Figure 1.3. Map showing the location of the Pine Tree Mound community relative to the 
Late Caddo Belcher, Texarkana, McCurtain, Mid-Ouachita, Frankston, Angelina, and Titus 
(heartland only) phases (Fields and Gadus 2012: Figure 9.11).  
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Ethnohistorical Evidence 

The Caddo were the most culturally complex aboriginal peoples living in the Trans-

Mississippi South (e.g., Schambach 1988) at the time of European contact. They used fire to 

clear new and old fields, employing buffalo shoulder blades or wooden hoes, and cultivated 

five or six varieties of beans, squash, sunflower seed, corn, and tobacco, which were raised 

in abundance in all but the infrequent drought years. They were very successful 

agriculturalists, and supplied enough food to support an increasingly dense sedentary 

population at, and during, the contact period (Figure 1.4).  

Caddo trade networks extended from Cahokia in the north (Smith 2005; Foster 

2008), to the Pueblo villages of New Mexico in the west (Smith 2005), to the Acansa and 

Taensa Indians on the Mississippi and Arkansas rivers to the east (Foster 2008). 

Manufacturers of such sought-after items as bows constructed of Osage-orange (bois d’arc), 

decorated fine ware pottery, salt (LaVere 1998; Perttula 1992; Swanton 1996), and food 

products, the Caddo were able to place themselves comfortably within local and extended 

trade networks (Smith 2005). 

Surplus food helped contribute to the Caddo’s development of a sophisticated and 

well-defined hierarchy of political and religious systems governed by a hereditary elite 

(Smith 2005). The caddi exercised control at the individual tribal level, while the xinesi led a 

religious community consisting of several populations (Smith 2005). The caddi presided over 

a “well-defined chain of command,” and were aided in their efforts by canahas, their 

principal aides, who were—in turn—aided by their assistants, known as chayas (Smith 

1995:10).  

Sedentary life was found to be fruitful for the Caddo, but it was also detrimental 
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once Europeans entered the area, as epidemic diseases (smallpox, measles, plague, 

diphtheria, whooping cough, trachoma, and influenza [see Ewers 1973]) swept through the 

region, decimating large numbers of Caddo—an estimated 75% between 1687 and 1790 

(Perttula 2001)—during the contact period (Foster 2008; LaVere 2004; Perttula 1992; Smith 

1995, 1996, 2005). Within the Caddo area of Texas alone, eight epidemic event occurred 

between 1691 and 1816; equating to one every 15.6 years (Perttula 1992). The result of this 

was high sub-adult mortality; and for those individuals with no immunity—in this case 

children and young adolescents—a significant decrease in the population growth potential 

that might have been achieved (Perttula 1992). 

Foster (2008:211-214) and Perttula (2001:81) identify (by name) a catalog of allies 

and the enemies of the Caddo during the contact period. Of Caddo enemies, the Osage 

were among the most feared during the contact period (Foster 2008), and in an effort to 

bolster their numbers against these enemies, the Caddo welcomed emigrant natives as allies 

to aid in their fights against the Osage (Smith 1995). Among the emigrants were growing 

numbers of Cherokee, who would eventually begin to lead war parties against the Osage. 

However, as the number of foreign emigrants increased—of the Cherokee in particular—

the position of the Caddo groups became threatened, causing an increase in tension 

between the tribes (Smith 1995). 
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Figure 1.4. Distribution of Caddoan phases at initial contact with Europeans ca. 1520 
(Perttula 1992: Figure 10). 
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The Caddo, along with other cultures that were largely agricultural, had 

matrilineal—rather than patrilineal—descent patterns; the latter was more prevalent in 

hunter-gatherer societies (LaVere 2004). While this approach to kinship organization was 

logical within the minds of the Caddo, it posed a rather significant cultural challenge for the 

Spanish, whom—upon their initial dealings—offended the Caddo greatly (Barr 2007). 

Although the Spanish would eventually return, they would never quite grasp the cultural 

nuances that the French had seemingly benefitted from (Barr 2007). The Caddo would 

continue in a position of power within the region until—during the Historic Caddo period 

(ca. 1680-1860+)—the imposition of other tribes, displaced by Andrew Jackson’s Indian 

Removal Act, and the influx of American settlers, would drive the Caddo from their 

traditional territory in 1838, then onto the Brazos Reserve in 1854, and then to Oklahoma 

in 1859 (LaVere 2004; Smith 1995, 1996, 2005). 

 

Research Approaches for Caddo Archaeology 

 In beginning a discussion of the theoretical underpinnings in the archaeological 

study of the Caddo region, chronology is an element of considerable import, providing 

evidence that underscores when and where different events occurred. These data can be useful 

within a variety of discussions ranging from Caddo origins (Girard 2009; Perttula 2009; 

Schambach 1998) and demographics (e.g., Surovell and Brantingham 2007; Surovell et al. 

2009) to trade and exchange. This is aided by the delineation of sites that contain evidence 

for components that may be archaeologically contemporary.  

 Within the context of such investigations, much of the data necessary to begin this 

discussion is available, just not properly organized and synthesized. I accomplish that in this 
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dissertation by identifying sites with occupational episodes (of a particular age and/or phase 

affiliation) that are archaeologically contemporary based upon radiocarbon dating measures.  

Upon the identification of archaeological components from a series of sites that 

appear to have been inhabited simultaneously, efforts can then be made to identify specific 

occupational episodes within those sites by using multiple sources of data (radiocarbon, 

ceramics, lithics, etc.). Using such multi-scalar approaches, Caddo archaeologists can then 

engage in a meaningful dialogue regarding the networks that existed between groups (e.g., 

Allen et al. 1997; Brumfield and Earle 1987; Janetski 2002; Orton et al. 1983; Parsons and 

Price 1971), the ceramic economy (including its location, organization, and production) 

(e.g., Cobb 1993; Costin 1991, 1993, 2001, 2005, 2007; Earle 1982; Mills and Crown 1995; 

Rice 1987), technological and functional attributes (volume, firing, and contents) (e.g., Jeske 

1992; Rice 1987), identity (regional traditions and regional and inter-regional interactions) 

(e.g., Costin 1998; Duff 2002), and social organization (Perttula 1992; Perttula and Walker 

2012). 

 

Radiocarbon 

 The initial goal of my work with radiocarbon was intended to address issues of 

Caddo demography (Surovell and Brantingham 2007; Surovell et al. 2009) across the 

traditional Caddo landscape, while making an effort to capitalize upon specific geographic 

occurrences within a temporal period (see Grove 2011). Perttula (1997a, 1997b) had 

assembled the majority of these data within the framework of previous endeavors, and thus 

the scope of that undertaking was manageable.   

 In archaeology, there is a lengthy history of manipulating dates or dated 
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components, and some have interpreted those dates as representative of changes in human 

demographic trends based on “the simple and reasonable assumption that as the number of 

people increases, so does the strength of their archaeological signal” (Surovell and 

Brantingham 2007:1868). In their recent work, Surovell and Brantingham (2007) argue that 

caution should be used when employing summed probability distributions to infer 

demographic trends, to which Surovell et al. (2009) offer a formula to decrease the amount 

of bias introduced by sampling error. As an alternative, Peros et al. (2010) suggest the use of 

binning to look more closely at demographic trends within a more rigid and 

compartmentalized approach. Steele (2010) uses radiocarbon as a quantitative strategy to 

estimate the speed of a colonizing front along with their densities, and while it is a novel 

application of extracting meaningful data from radiocarbon trends, it was thrown into 

question by Buchanan et al. (2011). However, Buchanan et al. (2011) do not refute the 

usefulness of employing summed probability distributions for studies of Paleoindian 

demography; in fact, they use it themselves to explore Paleoindian demography to 

investigate the extraterrestrial impact hypothesis (Buchanan et al. 2008). While seemingly 

useful, this method of extracting demographic data does come with substantive warnings, 

particularly regarding the inclusion of additional data within the framework of this type of 

research question  (Bamforth and Grund 2012; Surovell and Brantingham 2007). 

 While employing radiocarbon dates as data is not a novel endeavor (see Rick 1987), 

the magnitude of questions that are being asking of these data has increased dramatically. 

Many of these arguments appear logically sound, since the “when” and “where” 

components of archaeological research can have a fairly profound influence on the 

interpretation of archaeologically-recovered datasets. Examples of this can be seen in more 
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macro-level analyses, like Kuzmin and Keates (2005), who were able to delineate Paleolithic 

settlement patterns in Siberia from radiocarbon dates, and in a more novel application of 

radiocarbon data and statistics, Grove (2008, 2009, 2011:1012) has developed a method he 

dubbed the “spatio-temporal kernel method,” illustrating the variability of “prehistoric” 

land-use patterns temporally to identify active and inactive sites that were occupied 

contemporaneously. 

 My research arose out of concerns that Williams (2012) raised on the method of 

employing summed probability distributions in archaeology, and the bias that is often 

introduced by sites with large catalogs of dates that are geographically adjacent to sites with 

relatively few dates. Within that framework, Williams (personal communication, 2012) has 

often had to explain away peaks in his datasets “due to an overzealous archaeologist dating 

the same site umpteen times.” After a fair amount of reading and learning how to use 

OxCal, date combination appears to be the appropriate chronological method to use to 

approach an understanding of time in Caddo archaeology. 

 The date combination process assumes that if all assays collected at a particular site 

draw carbon from the same reservoir, they should have the same underlying F14C value and 

can be combined prior to calibration (Bronk Ramsey 2008). The measurements have 

Gaussian uncertainty distributions, and X2 can be used to test the assumption that all 

rations are the same to reveal whether compelling evidence exists—at the 95% confidence 

level—that dates cannot be related to the same event (Bronk Ramsey 2008).  

 One aspect of radiocarbon research that ought to be of considerable interest within 

Caddo archaeology is Bayesian analyses (Bayliss 2009; Bronk Ramsey 2009). Despite the 

claim that statistics commonly produce “instant mental paralysis in many otherwise 
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competent archaeologists” (Fletcher and Lock 1991:viii), the potential return on the time 

invested to learn and employ the method is substantial. While Bayesian models are more 

often used within the chronological component of geomorphological models of river 

terrace development (see Chiverrell et al. 2008), Bayesian archaeological models have been 

used for over 48% of the samples submitted by English Heritage since 1993 (see Bayliss 

2009). The chronological control produced by these models offer testable hypotheses (that 

can be confirmed or refuted by the addition of more radiocarbon dates) that can produce 

accurate chronologies at a resolution of less than a century (Bayliss 2009), and in some cases 

less than a decade (Bayliss 2009; Kidder, personal communication 2012).  

 

Instrumental Neutron Activation Analysis 

 Instrumental Neutron Activation Analysis (INAA) is a technique pioneered by the 

archaeological chemistry community—although quickly adopted by geologists for lithic 

analysis—that represents one of a very few examples where the earth sciences adopted a 

technique from archaeology (Pollard et al. 2007). Using small samples (archaeologically-

recovered ceramics in this instance), INAA can—with high precision—measure both very 

low and very high concentrations of a wide range of elements (Pollard et al. 2007).  In 

endeavoring to explore the ceramic compositional data from East Texas Caddo sites—due 

to current difficulties with interpretations—the synthesis of these data is important in the 

broader study of ceramic provenance in the southernmost territory of the Southern Caddo, 

and this analysis provides a method that can be employed to identify geochemical signatures 

that may—through more in-depth analyses of specific areas—be linked to geologic groups 

or formations that occur within and across the different river basins in East Texas. 
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Correlating the INAA evidence with the bedrock geology of East Texas falls beyond the 

purview of this dissertation, but that approach is being explored within the framework of 

current CRM endeavors in this region. 

 Problems that emerged from this analysis are: (1) the inconsistent application of a 

calcium correction to either all or a prescribed percentage of the data (dependent upon the 

analyst), (2) the failure of the defined composition groups to render a reliable result with 

further sample analyses, and (3) the failure of the currently defined compositional groups to 

provide results of analytical value at the macro-level. In an effort to combat these problems, 

this dissertation has focused on the development of a landscape-level approach that 

illustrates areas of high and low elemental concentrations for each of the 33 rare earth 

elements identified by INAA, as well as composite groups of elements that have similar 

spatial trends across the larger traditional Caddo landscape. Furthermore, within that 

framework, the calcium correction is only applied to the shell and bone-tempered sherds, 

leaving the other (mostly grog) tempered sherds uncorrected since “such correction is 

unnecessary because the grog itself is made of clay, presumably the same clay that comprises 

the rest of the paste” (Steponaitis et al. 1996:559).  

 

Law 

 An important aspect of Caddo archaeology is how it affects, and is affected by, 

living descendants, and one place where it may be possible to view the effects of this is 

within the practice of law. Although the Caddo have not pursued litigation for infractions 

under the current statutes and Executive Orders offering protections to their cultural 

property (see Cast and Perttula 2002), the Caddo have become more assertive in the 
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protection of cultural resources in ancestral Caddo lands. However, the current federal legal 

system can be said to hinder the efforts of the Caddo by making it increasingly difficult to 

gain consistent application and interpretation of cultural resource legislation across the 

geographic area encompassing their traditional territory (see Figure 1.1). 

 Although geographically contiguous, the Caddo territory falls within the purview of 

three Federal Circuit Courts (5th, 8th, and 10th). Within that framework, the Caddo Tribal 

Historic Preservation Officer would have to travel to (1) New Orleans to assert any 

challenges within Texas or Louisiana, (2) to St. Louis to assert any challenges within 

Arkansas or Missouri, or (3) to Denver to assert any challenges within Oklahoma. Add to 

that equation that the majority of federal judges follow the active precedent for the 

geographic area (Circuit Court) to which they are assigned, and one begins to see where 

inconsistencies in the interpretation of legislation can be problematic. 

 When viewing the deviation from national averages, court cases filed in each of the 

Circuit Courts illustrate an interesting trend. Of those states now defined atop traditional 

Caddo territory, only Texas and Louisiana have a litigation record that remains equal to or 

above the national average. Oklahoma falls below the national average for the Archeological 

and Historic Preservation Act, National Historic Preservation Act, and the Abandoned 

Shipwreck Act. Arkansas falls below the national average for the National Historic 

Preservation Act and the Abandoned Shipwreck Act. Missouri also falls below the national 

average for the National Historic Preservation Act and the Abandoned Shipwreck Act.  

 For those statutes found to fall below the national average within the traditional 

Caddo territory, all are more closely related to the protection of historic preservation (i.e., 

architecture, landscapes, and shipwrecks) rather than the preservation of archaeological 
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resources. Looking closer in this dissertation, of those statutes addressing shipwrecks, half 

(National Historic Preservation Act and the Abandoned Shipwreck Act) are predominantly 

litigated in Circuit Courts along the Eastern Seaboard and the Gulf of Mexico. The 

remaining statutes—each more closely geared toward the protection of archaeological 

resources—are more regularly prosecuted in the central and western areas of the U.S. Of 

the eight statutes, only the Archeological Resources Protection Act and the Native 

American Graves Protection and Repatriation Act were found to correlate well with 

archaeologically-related topics, and the principal reason for legal action in those cases was 

compliance. 

 

Organization of the Volume 

 The primary goal of this dissertation is to create a foundation for a continuing 

research program employing radiocarbon (14C) and INAA data and results from Cultural 

Resources Management (CRM) projects throughout the East Texas region. As a means of 

viewing these topics at a regional (14C and INAA) and national (law) scale, databases have 

been created and made publicly available (see Selden and Bousman 2009; Perttula and 

Selden 2011) for use within present and future academic or CRM endeavors.  

 The 14C articles (Chapters 2 and 3) employ OxCal’s method of date combination 

(R_Combine) to reduce the amount of bias introduced by sites with substantial catalogs of 

dates. This method of analysis has refined the current probability distributions to the extent 

that individual ranges can be discussed as occupational events. Median Woodland-era dates 

indicate the probability of three temporal divisions: Early Woodland (500 B.C. – A.D. 0), 

Middle Woodland (A.D. 0 – 400), and Late Woodland (A.D. 400 – 800), while Caddo-era 
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dates both confirm the current temporal divisions, but highlight the ability to identify 

occupational episodes within sites. These endeavors provide the initial step toward a better 

temporal understanding of the temporal and spatial relationships, population dynamics, and 

general use of the East Texas landscape by ancestral Woodland and Caddo inhabitants.  

 The INAA article and supporting appendices (Chapter 4 and Appendix A-B) 

synthesize the Caddo INAA database and supporting literature, and develop geographic 

representations of five composite chemical groups with similar geographic trends. This is 

augmented by the element by element results of the INAA analysis (Appendix A), 

illustrating elemental concentrations geographically, which is supported by a substantive 

bibliography (Appendix B). 

 The law article (Chapter 5) clarifies general temporal and spatial trends in federal 

cultural resources case law. This includes a higher rate of challenges to historic preservation 

laws (historic resources) nearer the east coast, and a higher rate of archaeological challenges 

(prehistoric resources) nearer the west coast. This chapter also illustrates the variable 

application of this legislation across the Caddo landscape (Texas, Louisiana, Arkansas, 

Oklahoma, and a small part of Missouri).  

 The volume concludes with a consideration of the broader theoretical framework of 

Caddo archaeology, as well as future analyses of radiocarbon and INAA databases. Caddo 

researchers should be able to gainfully utilize these results to enhance applicable theoretical 

arguments (Chapter 6). The results of this effort hold promise for multiple advances in 

theoretical, methodological, and practical applications within the Caddo area and abroad, 

and can be exported to research designs globally to aid in demarcating issues of 

contemporaneity, provenance, and the legal framework within which most—if not all—
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archaeological research is currently conducted. 
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CHAPTER II 

MODELING REGIONAL RADIOCARBON TRENDS: A CASE STUDY FROM THE 

EAST TEXAS WOODLAND PERIOD* 

 

 

Overview 
 

The work presented in this chapter was submitted and accepted to Radiocarbon. The 

East Texas Radiocarbon Database contributes to an analysis of tempo and place for 

Woodland era (ca. 500 B.C. - A.D. 800) archaeological sites within the region. The temporal 

and spatial distributions of calibrated radiocarbon (14C) ages (n=127) with a standard 

deviation (∆T) of 61 from archaeological sites with Woodland components (n=51) are 

useful in exploring the development and geographical continuity of the peoples in East 

Texas, and lead to a refinement of our current chronological understanding of the period. 

While the analysis of the dates produces less than significant findings due to sample size, 

they are used here to illustrate the method of date combination prior to the production of 

site and period-specific summed probability distributions. Through the incorporation of this 

method, the number of 14C dates is reduced to 85 with a ∆T of 54. The resultant data set is 

then subjected to statistical analyses which conclude with the separation of the East Texas 

Woodland period into the Early Woodland (ca. 500 B.C. – A.D. 0), Middle Woodland (ca. 

A.D. 0-400), and Late Woodland (ca. A.D. 400-800) periods. 

 

                                                 
* Reprinted with permission from “Modeling Regional Radiocarbon Trends: A Case Study from the East 
Texas Woodland Period” by Robert Z. Selden Jr., 2012, Radiocarbon, Volume 54, pp. 239-265, Copyright 2012 
by the Arizona Board of Regents on behalf of the University of Arizona. 
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Introduction 
 

Archaeologists have a lengthy history of tinkering with the manipulation of 14C data, 

and have made much progress since first advocating for a more flexible method of 

processing data through the employment of a punch-card data retrieval system (see Taylor 

et al. 1968). Through the advent and acceptance of novel methodological approaches, we 

continue to make significant progress in our understanding and manipulation of regional 

cultural chronologies (Bamforth and Grund 2012, Bever 2006, Hassan 1984, Wendorf et al. 

1979).  

Rick’s (1987) innovative explanation and subsequent employment of 14C dates as 

data garnered acceptance and use within studies of occupational patterns and population 

dynamics (see Kuzmin and Keates 2005), which use the number of occupations—in lieu of 

the number of 14C dates—as a method to view the spatial and temporal dynamics of human 

distribution (Straus et al. 2000). To that end, this study includes the assumptions that (1) 14C 

dates that can be combined via OxCal X-test represent a single occupational episode, (2) the 

summed probability distribution for archaeological sites with four or more 14C assays 

illustrates the discrete or diffuse nature of occupational episodes, and (3) median dates 

represent the age of highest probability within each date range.  

Through a variety of academic, avocational, and cultural resource management 

pursuits, archaeologists have obtained 127 14C dates from 51 Woodland period sites across 

East Texas (Tables 1 and 2). The bulk of these dates were collected with the intention of 

exploring locally-based research questions and are employed here within a discussion of 

macro-level trends, using a descriptive analysis of the results from date combination, 

summed probability distributions, and statistics to apprise the subsequent inferences (see 
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Bernard 2006). While the distribution of recognized Woodland sites (or components) is 

easily plotted spatially, this paper represents the first attempt to synthesize these combined 

data and illustrate the temporal relationships that exist between 14C dates collected across 

the East Texas region over the last 40 years.  

The ETRD represents a sizeable sample of dates produced within a relatively small 

geographic region on the southwestern border of the Woodland culture area. This research 

refines our current knowledge regarding the temporal complexities within the Woodland 

period, providing a snapshot of temporal trends extracted from an understudied sample of 

radiocarbon dates. The temporal and spatial distributions of calibrated radiocarbon ages are 

useful in exploring the development and geographic continuity of the Woodland peoples 

and lead to a better understanding of the current chronological framework. From these 

data, it is possible to establish temporal associations that correlate with site abandonment, 

decreases or increases in local populations, and an intensification of landscape usage 

throughout the Woodland period. These data are particularly helpful since 

paleoenvironmental models for East Texas are not able to be constructed due to highly 

acidic soils (Bryant and Holloway 1985). 

The inductive methodology employed here informs a regional chronology for East 

Texas Woodland sites (DeWalt and Pelto 1985). The goals of this article are to explore the 

process of 14C date combination from sites with four or more samples (n=11) to decrease 

sampling bias for statistical analysis and determine the modified summed probability 

distributions (see Bamforth and Grund 2012, Michczynska and Pazdur 2004, Williams 

2012), and secondly to employ the resulting median dates within a statistical analysis of 

regional trends. 
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East Texas Radiocarbon Database 
 

Story (1990) provided the first published compendium of 14C dates from East 

Texas, and the extensive radiocarbon database from investigations at Cooper Lake (Fields et 

al. 1997: Appendix B) led to Perttula’s (1997, 1998) initial efforts to synthesize these data. In 

its current form, the ETRD is comprised of 1248 radiocarbon dates from a total of 199 

archaeological sites that range in age from Paleoindian through Historic. This is a 

substantial increase from the 520 dates previously published (Perttula 1997; Perttula and 

Selden 2011), and the vast majority of the radiocarbon dates in the database are the product 

of Cultural Resource Management (CRM) projects in East Texas.  

 

Methods of Analysis 

Radiocarbon dates used within this research were collected from CRM reports and 

publications, were synthesized, then recalibrated with OxCal using IntCal09 (Table 2.1) 

(Perttula and Selden 2011). The completed database was analyzed using a variety of 

statistical processes (histograms, barplots, boxplots, kernel density, and hierarchical cluster 

analysis) within version 2.15.1 of R, and SPDs were produced using OxCal. Statistical 

calculations were made using negative numbers to represent B.C. and positive numbers to 

represent A.D. (Sirkin 2006).  

The 1248 corrected dates in the ETRD were calibrated utilizing OxCal 4.1.7 (Bronk 

Ramsey 2012) and IntCal09 (Reimer et al. 2009). With few exceptions where conventional 

radiocarbon ages were reported - to include older assays found to lack δ13C date - value 

estimates were made for fractionation correction as suggested by Stuiver and Reimer 
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(1993:Table 1): -25‰ for nutshells and charcoal (C3 plants), and -10‰ for charred maize 

(C4 plants).  

The Woodland sample was selected from the ETRD on the basis of median age. If 

the median age fell within the currently accepted temporal construct (ca. 500 B.C.-A.D. 800) 

for the Woodland period (see Story 1990, Perttula and Nelson 2004, Perttula 2008a), it was 

included.  Dates from sites found to lack geographic coordinates, with a standard deviation 

greater than 200 years, or from non-archaeological contexts (i.e., geoarchaeological profile, 

backhoe trench, or cutbank not on a site), were removed from the sample. The remaining 

dates were combined and comprise the basis of the Woodland period statistical sample. 

Data fields from the ETRD include site name, trinomial (site number), assay number, raw 

age, δ13C, corrected 14C age, 2𝜎 age range, and median age (Table 2.2). 

  Within the distribution of Woodland 14C assays (n=127) from the ETRD, 28 sites 

were found to have one radiocarbon sample, eight have two samples, four have three 

samples, three have four samples, one has five samples, three have six samples, two have 

seven samples, one has nine samples, and one has 13 samples.  The assays from the 11 sites 

with four or more radiocarbon dates were combined via OxCal for two reasons: (1) to 

reduce the standard deviation and increase the accuracy of each site’s temporal assignments 

and (2) to reduce sampling bias created by the number of samples during statistical analyses.  

Once combined, a summed probability distribution (SPD) was produced for each of 

the 11 sites to illustrate the position of each within the period. The dates were plotted in a 

manner where the SPDs, the combined groups, and the individual assays that inform them 

can be viewed together. These efforts permit the SPD for the entirety of the Woodland 

period sample to be contrast with those produced for the 11 sites. This comparison 
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demonstrates the impact that each site has upon the whole of the Woodland period 

radiocarbon sample, and allows for a discussion of regional trends within the temporal 

sample. 

This expands the scholarly impact of existing 14C dates through their integration 

within a regional chronology. By combining and recalibrating 14C dates, and producing site-

specific summed probability distributions, the most accurate temporal representation 

available for the Woodland period in East Texas has been developed. The investigation 

contrasts site-specific summed probability distributions for 11 sites against the summed 

probability distribution for the entirety of the Woodland period sample.  

To facilitate the statistical analysis, median ages were used to calculate the frequency 

of samples within each of the five major river basins in East Texas, and that information 

was used to inform a discussion of the average median age of Woodland sites in each river 

basin. To conclude the statistical analysis, a kernel density plot was created to explore 

potential populations within the sample of median ages. 

Subsequent modifications include the addition of the North American Datum, 

UTM zone, UTM northing, UTM easting, and river basin. The river basins used in the 

analysis are the Red River basin (RRB), Sulphur River basin (SRB), Cypress Creek basin 

(CCB), Sabine River basin (SaRB), and the Neches River basin (NRB), as currently defined 

by the Texas Natural Resources Information System (TNRIS 2012) (Figure 2.1).  
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Table 2.1. Data sources for the 51 archaeological sites examined in this study. 

Trinomial* Source 

41AN38 Lohse et al. 2004; Perttula et al. 2007, 2011 

41AN120 Perttula 1997 

41BW692 Lohse et al. 2004 

41CE19 Davis et al. 1992; Perttula 2010a, 2010b; Story 1990 

41CP245  Nelson and Perttula 2006 

41CP408 Sherman et al. 2004, Perttula and Ellis 2012 

41DT6  Fields et al. 1993 

41DT16  Fields et al. 1993 

41DT62  Fields et al. 1993 

41DT141  Fields et al. 1997 

41HO216  Cooper and Cooper 2005; Perttula and Nelson 2006, 2007 

41HP78  Doehner and Larson 1978 

41HP106  Perttula 1999 

41HP137  Fields et al. 1997 

41HS15  Fields and Gadus, in press 

41HS16  Webb et al. 1969 

41HS231  Dockall et al. 2008 

41HS843  Gadus et al. 2006 

41HS844  Gadus et al. 2006 

41LR152  Mahoney et al. 2001, 2002 

41LR164  Mahoney et al. 2001, 2002 

41LR297  Bruseth et al. 2009 

41MX5  Brewington et al. 1995 

41NA49  Corbin 1984, Corbin et al. 1984, Corbin and Hart 1998 

41NA231  Perttula 2002, 2008b 

41NA236  Perttula 2000, 2002, 2008b 

41NA243  Perttula 2000, 2002 

41NA244  Perttula 2000, 2002 

41NA248  Perttula 2000, 2002 

41NA264  Perttula 2000, 2002 

41NA280  Perttula 2000, 2002 

41NA285  Perttula 2000, 2002, 2008b 

41NA290  Perttula 2000, 2002 

41RK170  Perttula and  Nelson 2003 

41RK214  Rogers and Perttula 2004, Perttula and Rogers 2007 

41RK222  Rogers et al. 2001 
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Table 2.1. Continued 

Trinomial* Source 

41RK328  Cliff et al. 2004 

41RK468  Dixon et al. 2009 

41RK558  Dockall and Fields 2011 

41SM273  Perttula and Nelson 2001, 2004 

41SY41  Perttula 1997 

41TT370  Kotter et al. 1993 

41TT372  Barnhart et al. 1997 

41TT409  Kotter et al. 1993 

41TT550  Dixon et al. 1997, Perttula et al. 1998 

41TT653  Galan 1998, Perttula and Sherman 2009 

41TT847  Hatfield et al. 2008 

41TT865  Hatfield et al. 2008, Perttula et al. 2003 

41UR77  Perttula and Ricklis 2005 

41UR133  Parsons 1998 

41WD495  Bruseth and Perttula 1981 

 
*”Trinomial” refers to the  Smithsonian trinomial numbering system where the state is indicated by a number 
ranging from 1-50, the county by  two-three capitals, and the site within the county is represented by a number 
ranging from one- infinity. 
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Table 2.2. 14C dates for the East Texas Woodland period.* 

Trinomial** Assay No. 
Raw 
Age 

± δ13C 
Corr 14C 

Age 
± 1σ Age Range 2σ Age Range Median 

41AN038 Beta-236778 -- -- -26.2 ‰ 1290 40 AD 670-722 (0.43), AD 741-770 (0.25) 
AD 653-783 (0.91), AD 789-812 (0.03),  AD 

845-856 (0.01) 
722 

41AN038 Beta-236790 -- -- -25.8 ‰ 1420 40 AD 604-655 (0.68) AD 565-666 (0.95) 625 

41AN038 Beta-236794 -- -- -24.3 ‰ 1830 50 AD 126-244 (0.68) AD 70-263 (0.87), AD 278-329 (0.08) 184 

41AN120 SMU-669 1744 64  1744 76 AD 215-401 (0.68) AD 83-434 (0.95), AD 495-505 (0.01) 290 

41BW692 UGA-13420 1270 40 -24.7 ‰ 1280 40 AD 676-729 (0.40), AD 736-772 (0.28) AD 657-825 (0.93), AD 841-862 (0.03) 730 

41CE019 Tx-1223 1290 80 -- 1266 90 AD 665-826 (0.61), AD 840-863 (0.07) AD 622-972 (0.95) 767 

41CE019 Tx-919 1310 80 -- 1286 90 AD 665-820 (0.63), AD 842-860 (0.05) AD 602-901 (0.91), AD 917-966 (0.04) 751 

41CE019 Tx-105 1120 90 -- 1361 99 AD 582-775 (0.68) 
AD 436-490 (0.03), AD 510-517 (0.00), AD 

530-891 (0.92) 
676 

41CE019 Tx-674 1420 100 -- 1396 108 AD 542-723 (0.61), AD 740-770 (0.07) AD 425-877 (0.95) 639 

41CE019 Tx-3312 1190 80 -- 1431 90 AD 471-477 (0.01), AD 535-683 (0.67) AD 422-773 (0.95) 606 

41CE019 -- 1630 40 -26.7 ‰ 1600 40 AD 418-466 (0.31), AD 482-533 (0.37) AD 382-560 (0.95) 473 

41CE019 Tx-3695 1400 60 -- 1641 72 AD 337-468 (0.49), AD 479-534 (0.18) AD 240-570 (0.95) 411 

41CP245 Beta-208773 1320 40 -27.5 ‰ 1280 40 AD 676-729 (0.40), AD 736-772 (0.28) AD 657-825 (0.93), AD 841-862 (0.03) 730 

41CP245 Beta-208775 1730 40 -27.3 ‰ 1690 40 AD 261-280 (0.11), AD 326-410 (0.58) AD 249-426 (0.95) 353 

41CP408 Beta-184988 1930 40 -25.9 ‰ 1920 40 AD 29-38 (0.05), AD 51-128 (0.63) 20-13BC (0.01), 1 BC – AD 215 (0.95) 83 

41DT006 Beta-51364 1270 60 -26.2 ‰ 1250 60 AD 680-818 (0.62), AD 843-860 (0.06) AD 657-895 (0.95), AD 927-935 (0.01) 768 

41DT006 Beta-51366 1300 80 -25.0 ‰ 1300 80 AD 649-782 (0.63), AD 790-809 (0.05) AD 599-895 (0.95), AD 925-937 (0.01) 736 

41DT006 Beta-51367 1370 80 -25.5 ‰ 1370 80 AD 595-718 (0.59), AD 743-769 (0.10) AD 536-876 (0.95) 663 

41DT006 Beta-51368 1470 80 -25.8 ‰ 1460 80 AD 470-478 (0.02), AD 535-660 (0.66) AD 414-689 (0.95), AD 753-760 (0.00) 583 

41DT006 Beta-51365 1790 100 -26.1 ‰ 1770 100 AD 134-354 (0.65), AD 366-381 (0.04) 
AD 27-41 (0.01), AD 48-442 (0.92), AD 455-

460 (0.00), AD 484-532 (0.03) 
258 

41DT016 Beta-52241 1300 60 -25.5 ‰ 1290 60 AD 663-775 (0.68) AD 649-878 (0.95) 735 

41DT016 Beta-51372 1300 80 -26.0 ‰ 1290 80 
AD 654-782 (0.60), AD 789-810 (0.06), AD 

848-855 (0.02) 
AD 606-897 (0.94), AD 923-941 (0.01) 744 

41DT016 Beta-52242 1330 70 -25.9 ‰ 1310 70 AD 652-776 (0.68) AD 612-883 (0.95) 723 

41DT016 Beta-52245 1520 60 -24.8 ‰ 1530 60 
AD 436-491 (0.28), AD 509-518 (0.04), AD 

529-596 (0.37) 
AD 416-641 (0.95) 525 

41DT016 Beta-52244 1550 90 -24.8 ‰ 1560 90 AD 415-592 (0.68) AD 260-283 (0.02), AD 324-652 (0.94) 490 

41DT016 Beta-51371 2090 90 -25.7 ‰ 2080 90 336-331 BC (0.00), 203 BC - AD 21 (0.67) 365 BC-77 AD (0.95) -112 

41DT062 Beta-52605 1370 110 -24.8 ‰ 1380 110 AD 556-773 (0.68) AD 430-886 (0.95) 657 

41DT141 Beta-17400 2100 70 -- 2100 81 
347-321 BC (0.06), 206-37 BC (0.58), 30-21 BC 

(0.02), 11-2 BC (0.02) 
363 BC-AD 53 (0.95) -134 
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Table 2.2. Continued 

Trinomial** Assay No. 
Raw 
Age 

± δ13C 
Corr 14C 

Age 
± 1σ Age Range 2σ Age Range Median 

41DT141 Beta-17401 2350 70 -- 2350 81 
733-691 BC (0.08), 662-650 BC (0.02), 545-359 

BC (0.55), 276-259 BC (0.03) 
 761-682 BC (0.12), AD 671 -347 BC (0.69 ), 

320-206 BC (0.14) 
-465 

41HO216 Beta-206843 1540 70 -26.5 ‰ 1520 70 
AD 435-491 (0.25), AD 509-518 (0.04), AD 

529-606 (0.40) 
AD 409-651 (0.95) 534 

41HP078 SMU-1978 -- -- -26.4 ‰ 1810 110 AD 81-339 (0.68) 
46 BC-AD 436 (0.94), AD 490-510 (0.01), 

AD 517-529 (0.00) 
212 

41HP078 Tx-1961 2080 60 -- 2080 72 196-20 BC (0.65), 12-1 BC (0.03) 
357-285 BC (0.09), 255-249 (0.04), 234 BC-

AD 67 (0.86) 
-108 

41HP106 Beta-82913 1730 100 -27.6 ‰ 1710 100 AD 175-192 (0.03), AD 212-433 (0.65) AD 85-547 (0.95) 325 

41HP106 Beta-82914 1820 90 -25.4 ‰ 1810 90 
AD 86-106 (0.5), AD 120-264 (0.48), AD 276-

332 (0.15) 
AD 18-417 (0.95) 212 

41HP106 Beta-82915 1820 50 -24.1 ‰ 1840 50 AD 93-97 (0.02), AD 125-238 (0.66) AD 62-260 (0.90), AD 282-324 (0.05) 175 

41HP106 Beta-85866 1860 50 -24.6 ‰ 1860 50 AD 86-109 (0.12), AD 117-220 (0.56) 
AD 29-39 (0.01), AD 51-256 (0.93), AD 303-

316 (0.01) 
156 

41HP106 Beta-82917 1880 90 -25.9 ‰ 1870 90 AD 29-39 (0.02), AD 50-245 (0.66) 49 BC-AD 382 (0.95) 146 

41HP106 Beta-85868 1910 50 -26.2 ‰ 1890 50 AD 61-172 (0.61), AD 193-211 (0.07) AD 5-240 (0.95) 118 

41HP106 Beta-85867 2270 50 -26.7 ‰ 2250 50 
389-352 BC (0.23), 296-228 BC (0.40), 221-211 

BC (0.05) 
398-202 BC (0.95) -287 

41HP137 SMU-1966 -- -- -25.2 ‰ 1460 60 AD 555-647 (0.68) 
AD 434-493 (0.10), AD 507-520 (0.02), AD 

527-666 (0.84) 
592 

41HP137 SMU-1917 -- -- -25.7 ‰ 2090 30 
164-129 BC (0.26), 121-88 BC (0.25), 78-55 BC 

(0.17) 
196-42 BC (0.95) -112 

41HS015 Beta-242049 1450 40 -23.7 ‰ 1470 40 AD 565-635 (0.68) AD 467-481, AD 534-665 (0.99) 594 

41HS016 Tx-483 1850 90 -- 1850 99 AD 54-259 (0.63), AD 296-321 (0.05) AD 47-406 (0.95) 169 

41HS016 Tx-481 2150 100 -- 2150 108 
359-278 BC (0.21), 259-241 BC (0.04), 236-88 

BC (0.39), 78-55 BC (0.05) 
402 BC-61 AD (0.95) -194 

41HS016 Tx-484 2360 130 -- 2360 136 
752-686 BC (0.11), 667-636 BC (0.05), 623-614 

BC (0.01), 595-357 (0.45), 283-257 BC (0.04), 
246-235 BC (0.02) 

802-159 BC (0.95), 134-116 BC (0.01) -480 

41HS231 Beta-236382 1300 40 -26.2 ‰ 1280 40 AD 676-729 (0.40), AD 736-772 (0.28) AD 657-825 (0.93), AD 841-862 (0.03) 730 

41HS231 Beta-236383 1290 40 -25.4 ‰ 1280 40 AD 676-729 (0.40), AD 736-772 (0.28) AD 657-825 (0.93), AD 841-862 (0.03) 730 

41HS231 Beta-236388 1470 40 -25.2 ‰ 1470 40 AD 565-635 (0.68) AD 467-481 (0.01), AD 534-655 (0.94) 594 

41HS843 Beta-210245 1930 40 -25.3 ‰ 1930 40 AD 27-42 (0.10), AD 48-125 (0.58) 
BC 40-AD 170 (0.92), AD 150-170 (0.02), 

AD 195-210 (0.01) 
72 

41HS844 Beta-210247 1820 40 -25.6 ‰ 1810 40 AD 136-243 (0.68) 
AD 86-109 (0.03), AD 120-264 (0.80), AD 

275-334 (0.13) 
201 

41LR152 Beta-153588 -- -- -28.7 ‰ 1240 60 AD 688-827 (0.59), AD 840-864 (0.09) AD 660-897 (0.94), AD 923-940 (0.02) 779 

41LR164 Beta-153591 -- -- -21.0 ‰ 2040 40 106 BC - AD 17 (0.68) BC 168-AD 30 (0.92), AD 37-52 (0.03) -50 

41LR164 Beta-153593 -- -- -21.2 ‰ 2180 40 356-286 BC (0.40), 234-177 BC (0.28) 379-154 BC (0.92), 137-114 BC (0.03) -268 



 

31 

 

Table 2.2. Continued 

Trinomial** Assay No. 
Raw 
Age 

± δ13C 
Corr 

14C Age 
± 1σ Age Range 2σ Age Range Median 

41LR164 Beta-153592 -- -- -20.6 ‰ 2320 40 412-360 BC (0.63), 274-260 BC (0.05) 
514-352 BC (0.79), 295-229 BC (0.16), 220-

212 BC (0.01) 
-391 

41LR297 Beta-239524 1290 40 -25.9 ‰ 1280 50 AD 671-774 (0.68) AD 656-870 (0.95) 736 

41LR297 Beta-237680 1480 40 -24.9 ‰ 1480 40 AD 550-621 (0.68) AD 441-484 (0.06), AD 532-652 (0.90) 586 

41LR297 Beta-237677 1570 50 -24.9 ‰ 1570 50 AD 430-540 (0.68) AD 394-600 (0.95) 489 

41LR297 Beta-237678 2340 50 -25.1 ‰ 2340 50 511-371 BC (0.68) 
736-689 BC (0.05), 663-648 BC (0.01), 548-
352 BC (0.80), 296-228 BC (0.07), 221-211 

BC (0.01) 
-417 

41MX005 Beta-52709 1790 90 -- 1790 99 AD 126-350 (0.66), AD 368-379 (0.02) 
AD 2-435 (0.94), AD 491-509 (0.01), AD 

518-529 (0.00) 
235 

41NA049 Tx-4876 1280 100 -- 1280 108 AD 656-870 (0.68) AD 576-984 (0.95) 760 

41NA231 Beta-136806 1700 40 -26.3 ‰ 1680 40 AD 264-276 (0.06), AD 333-415 (0.62) AD 245-434 (0.95), AD 495-505 (0.01) 363 

41NA231 Beta-204778 1970 70 -25.9 ‰ 1960 70 42 BC - AD 90 (0.60), AD 100-124 (0.08) 159-135 BC (0.02), 116 BC - AD 221 (0.93) 37 

41NA236 Beta-183857 1280 60 -19.0 ‰ 1380 60 AD 598-688 (0.68) AD 558-773 (0.95) 651 

41NA236 Beta-203667 1410 90 -24.6 ‰ 1420 90 AD 537-689 (0.67), AD 753-760 (0.01) AD 420-778 (0.95) 615 

41NA236 Beta-204783 1470 40 -24.7 ‰ 1470 40 AD 565-635 (0.68) AD 467-481 (0.01), AD 534-655 (0.94) 594 

41NA236 Beta-203666 1560 40 -24.8 ‰ 1560 40 AD 434-495 (0.42), AD 504-543 (0.26) AD 415-585 (0.95) 492 

41NA236 Beta-204782 1830 40 -24.8 ‰ 1830 40 AD 134-230 (0.68) AD 80-258 (0.93), AD 300-318 (0.03) 182 

41NA236 Beta-203669 1850 90 -24.9 ‰ 1850 90 AD 61-256 (0.66) 39 BC-AD 385 (0.95) 169 

41NA236 Beta-151097 1920 40 -25.4 ‰ 1910 40 AD 31-37 (0.03), AD 52-132 (0.66) AD 5-216 (0.95) 95 

41NA236 Beta-203668 2000 60 -24.6 ‰ 2010 60 91-70 BC (0.07), 60 BC - AD 65 (0.61) 174 BC-AD 90 (0.93), AD 100-124 (0.03) -19 

41NA236 Beta-151098 2370 40 -24.7 ‰ 2370 40 510-436 BC (0.43), 426-393 BC (0.26) 
735-690 BC (0.07), 663-649 BC (0.01), 546-

382 BC (0.87)  
-463 

41NA243 Beta-154853 1770 70 -26.2 ‰ 1750 70 AD 215-391 (0.68) AD 86-106 (0.01), AD 121-428 (0.94) 285 

41NA243 Beta-154854 2350 60 -25.3 ‰ 2350 60 702-696 BC (0.01), 538-369 BC (0.67) 
752-686 BC (0.10), 668-637 BC (0.03), 622-
614 BC (0.00), 595-352 BC (0.74), 296-228 

BC (0.07), 221-211 BC (0.01) 
-454 

41NA244 Beta-151102 1820 40 -23.6 ‰ 1840 40 AD 130-226 (0.68) AD 75-255 (0.95), AD 305-313 (0.01) 174 

41NA248 Beta-151104 1670 40 -26.0 ‰ 1650 40 AD 338-434 (0.65), AD 495-504 (0.03) AD 260-284 (0.05), AD 323-520 (0.90) 400 

41NA264 Beta-151105 2370 110 -26.7 ‰ 2340 100 
733-691 BC (0.08), 662-650 BC (0.02), 545-353 

BC (0.47), 293-230 BC (0.11), 219-213 (0.01) 
767-198 BC (0.95) -451 

41NA280 Beta-151107 1950 40 -24.8 ‰ 1950 40 AD 3-85 (0.66), AD 110-115 (0.02) 41 BC-AD 129 (0.95) 50 

41NA285 Beta-221421 1250 40 -25.5 ‰ 1240 40 
AD 690-752 (0.36), AD 761-783 (0.12), AD 

788-815 (0.13), AD 844-859 (0.06) 
AD 680-882 (0.95) 772 

41NA285 Beta-201990 1240 40 -23.9 ‰ 1260 40 AD 680-779 (0.68) AD 668-870 (0.95) 
744 
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Table 2.2. Continued 

Trinomial** Assay No. 
Raw 
Age 

± δ13C 
Corr 

14C Age 
± 1σ Age Range 2σ Age Range Median 

41NA285 Beta-204786 1340 40 -25.6 ‰ 1330 40 
AD 652-695 (0.50), AD 701-707 (0.04), AD 

748-765 (0.14) 
AD 643-774 (0.95) 686 

41NA285 Beta-221420 1560 40 -23.2 ‰ 1590 40 AD 425-468 (0.30), AD 480-534 (0.40) AD 392-562 (0.95) 480 

41NA285 Beta-151112 2100 40 -25.7 ‰ 2090 40 166-54 BC (0.68) 338-330 BC (0.01), 204 BC – AD 2 (0.95) -113 

41NA285 Beta-201989 2170 40 -26.1 ‰ 2150 40 
351-299 BC (0.24), 228-223 BC (0.02), 210-151 

BC (0.32), 140-112 BC (0.11) 
359-277 BC (0.30), 260-87 BC (0.62), 78-55 

BC (0.04) 
-196 

41NA290 Beta-151116 1380 40 -24.5 ‰ 1390 40 AD 617-665 (0.68) AD 573-688 (0.95) 644 

41RK170 Beta-166761 2110 40 -24.0 ‰ 2130 40 342-326 BC (0.06), 204-94 BC (0.62) 355-290 BC (0.16), 232-46 BC (0.79) -163 

41RK214 B-107402** 1130 50 -18.4 ‰ 1240 50 
AD 689-753 (0.33), AD 760-822 (0.27), AD 

842-861 (0.08) 
AD 669-890 (0.95) 775 

41RK214 Beta-81680 1810 60 -23.4 ‰ 1830 60 AD 88-103 (0.05), AD 122-251 (0.63) AD 55-343 (0.95) 186 

41RK222 Beta-60093 1400 70 -24.3 ‰ 1410 70 AD 568-671 (0.68) 
AD 439-486 (0.04), AD 532-730 (0.87), AD 

735-772 (0.05) 
626 

41RK222 Beta-60094 1840 100 -24.8 ‰ 1840 100 AD 64-260 (0.60), AD 284-323 (0.09) 44 BC-AD 410 (0.95) 180 

41RK222 Beta-72776 1880 80 -26.5 ‰ 1850 80 AD 70-250 (0.68) 20-13 BC (0.00), AD 1-382 (0.95) 168 

41RK222 Beta-72770 1840 60 -23.2 ‰ 1870 60 AD 78-217 (0.68) AD 3-259 (0.93), AD 295-322 (0.02) 145 

41RK222 Beta-72778 1860 45 -22.0 ‰ 1905 50 
AD 26-139 (0.62), AD 158-166 (0.02), AD 196-

209 (0.04) 
19-14 BC (0.01), AD 1-235 (0.95) 102 

41RK222 Beta-72771 1980 100 -24.6 ‰ 1990 100 151-140 BC (0.02), 112 BC - AD 126 (0.66) 
351-298 BC (0.03), 228-222 BC (0.00) 211 

BC-AD 242 (0.92) 
-4 

41RK328 -- -- -- -- 1610 40 AD 408-465 (0.35), AD 482-533 (0.33) AD 348-369 (0.03), AD 379-547 (0.93) 463 

41RK468 Beta-239710 2150 40 -26.5 ‰ 2130 40 342-326 BC (0.06), 204-94 BC (0.62) 355-290 BC (0.16), 232-46 BC (0.79) -163 

41RK558 Beta-278035 1280 40 -25.9 ‰ 1270 40 AD 682-774 (0.68) AD 662-830 (0.89), AD 836-869 (0.06) 737 

41SM273 Beta-157990 1270 40 -25.7 ‰ 1260 40 AD 680-779 (0.68) AD 668-870 (0.95) 744 

41SM273 Beta-173089 1310 40 -26.0 ‰ 1290 40 AD 670-722 (0.43), AD 741-770 (0.25) 
AD 653-783 (0.91), AD 789-812 (0.03), AD 

845-856 (0.01) 
722 

41SM273 Beta-154860 1400 60 -25.0 ‰ 1400 60 AD 588-673 (0.68) AD 540-721 (0.91), AD 741-770 (0.04) 634 

41SM273 Beta-157989 1490 70 -25.7 ‰ 1480  70 AD 469-479 (0.03), AD 534-650 (0.65) AD 427-661 (0.95) 571 

41SM273 Beta-173091 1520 40 -24.9 ‰ 1520 40 AD 442-484 (0.19), AD 532-601 (0.49) AD 430-617 (0.95) 546 

41SM273 Beta-154857 1550 80 -26.0 ‰ 1530 80 AD 433-497 (0.27), AD 503-599 (0.42) AD 353-367 (0.01), AD 381-657 (0.95) 519 

41SM273 Beta-173092 1590 90 -25.9 ‰ 1570 90 AD 405-590 (0.68) AD 259-295 (0.03), AD 322-648 (0.92) 482 

41SM273 Beta-173095 1640 40 -26.9 ‰ 1610 40 AD 408-465 (0.35), AD 482-533 (0.33) AD 348-369 (0.03), AD 379-547 (0.93) 463 

41SM273 Beta-173090 1680 40 -24.4 ‰ 1690 40 AD 261-280 (0.11), AD 326-410 (0.58) AD 249-426 (0.95) 353 

41SM273 beta-157991 1710 40 -24.9 ‰ 1710 40 AD 259-296 (0.23), AD 322-388 (0.45) AD 241-415 (0.95) 332 

41SM273 Beta-182401 1710 40 -25.1 ‰ 1710 40 AD 259-296 (0.23), AD 322-388 (0.45) AD 241-415 (0.95) 332 

41SM273 Beta-173097 1720 40 -25.1 ‰ 1720 40 AD 257-300 (0.28), AD 318-382 (0.40) AD 235-414 (0.95) 321 
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Table 2.2. Continued 

Trinomial** Assay No. 
Raw 
Age 

± δ13C 
Corr 

14C Age 
± 1σ Age Range 2σ Age Range Median 

41SM273 Beta-182402 1810 40 -25.0 ‰ 1810 40 AD 136-243 (0.68) 
AD 86-109 (0.03), AD 120-264 (0.80), AD 

275-334 (0.13) 
201 

41SY041 Beta-97897 960 70 -6.0 ‰ 1270 70 
AD 664-782 (0.58), AD 789-810 (0.08), AD 

848-855 (0.02) 
AD 645-896 (0.94), AD 924-938 (0.01) 755 

41TT370 Beta-48882 2140 100 -- 2140 100 356-286 BC (0.18), 234-50 BC (0.50) 394 BC-AD 29 (0.95), AD 39-50 (0.01) -183 

41TT372 Beta-70994 1290 50 -26.4 ‰ 1270 50 AD 670-778 (0.68) AD 660-875 (0.95) 744 

41TT372 Beta-71006 1330 60 -26.1 ‰ 1310 60 AD 657-728 (0.46), AD 736-772 (0.22) AD 635-876  (0.95) 718 

41TT372 Beta-71000 1420 60 -26.8 ‰ 1390 60 AD 595-682 (0.68) AD 545-724 (0.89), AD 739-771 (0.06) 643 

41TT372 Beta-70995 1800 60 -25.3 ‰ 1800 60 AD 131-259 (0.58), AD 295-322 (0.10) AD 81-382 (0.95) 220 

41TT409 Beta-64984 1730 60 -30.4 ‰ 1640 60 
AD 340-442 (0.47), AD 454-461 (0.02), AD 

484-533 (0.19) 
AD 255-548 (0.95) 413 

41TT409 Beta-64985 1710 60 -25.5 ‰ 1700 60 AD 257-302 (0.21), AD 316-410 (0.47) 
AD 172-193 (0.01), AD 211-465 (0.90), AD 

482-533 (0.05) 
340 

41TT550 Beta-70989 2080 60 -27.0 ‰ 2050 60 162-131 BC (0.12), 119 BC - AD 5 (0.56) 342-327 BC (0.01), 204 BC-AD 74 (0.94) -70 

41TT653 Beta-117272 1870 50 -23.2 ‰ 1900 50 
AD 29-38 (0.03), AD 51-140 (0.54), AD 151-

170 (0.06), AD 194-210 (0.05) 
AD 3-236 (0.95) 107 

41TT847 Beta-242371 1360 40 -26.6 ‰ 1330 40 
AD 652-695 (0.50), AD 701-707 (0.04), AD 

748-765 (0.14) 
AD 645-772 (1.00) 686 

41TT865 Beta-242373 2180 40 -26.9 ‰ 2150 40 
351-299 BC (0.24), 228-223 BC (0.02), 210-151 

BC (0.32), 140-112 BC (0.11) 
358-277 BC (0.31), 259-87 BC (0.65), 78-55 

BC (0.04) 
-196 

41UR077 Beta-166910 1480 50 -25.5 ‰ 1470 50 AD 558-640 (0.68) AD 460-480, AD 520-660 589 

41UR077 UGA-12983 1830 40 -24.4 ‰ 1840 40 AD 130-226 (0.68) AD 75-255 (0.95), AD 305-313 (0.01) 174 

41UR077 UGA-12984 1840 40 -24.8 ‰ 1840 40 AD 130-226 (0.68) AD 75-255 (0.95), AD 305-313 (0.01) 174 

41UR077 UGA-12971 2190 40 -25.1 ‰ 2190 40 
358-281 BC (0.42), 258-243 BC (0.06), 236-197 

BC (0.20) 
383-164 BC (0.95), 128-122 BC (0.01) -278 

41UR133 Beta-117743 -- -- -- 2250 60 391-350 BC (0.21), 304-209 BC (0.47) 406-170 BC (0.95) -288 

41WD495 Tx-3045 1760 50 -- 1760 64 AD 180-187 (0.02), AD 214-382 (0.66) AD 93-97 (0.00), AD 125-417 (0.95) 275 

 

*Missing values in the Assay No., Raw Age and δ13C columns were not reported in technical reports. 
**”Trinomial” refers to the  Smithsonian trinomial numbering system where the state is indicated by a number ranging from 1-50, the county by  two-three capitals, and the site within the county is represented by 
a number ranging from one- infinity. 
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Figure 2.1. Map of East Texas river basins and the 11 Woodland period sites with four or 
more radiocarbon dates. 
 
 

14C Date Combination 
 

The date combination process assumes that if all assays collected at a particular site 

draw carbon from the same reservoir, then they should have the same underlying F14C 

value and can be combined prior to calibration (Bronk Ramsey 2008). The measurements 

have Gaussian uncertainty distributions, and 𝑋2 was used to test the assumption that all 

ratios are the same to reveal whether compelling evidence exists – at the 95% confidence 

level – that dates cannot be related to the same event (Bronk Ramsey 2008). Each site-

specific figure provides the SPDs, calibrated age range for combined assays, and all dates 

utilized to inform these results.  
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Although 14C determinations are most often represented in the form A±E where A 

is the radiocarbon estimate (B.P.) and E represents the standard deviation, the method of 

date combination can be used to create a new 14C determination from multiple assays often 

with the ancillary benefit of a decrease in the standard deviation (Ward and Wilson 1978). 

To test whether a series of 14C determinations are consistent, the pooled mean is calculated 

by way of Ap, where 

 

𝐴𝑝 =  (∑ 𝐴𝑖 𝐸𝑖
2⁄

𝑛

1

) / (∑ 1 𝐸𝑖
2⁄
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followed by the test statistic, T, where 
 

𝑇 =  ∑(𝐴𝑖 − 𝐴𝑝)
2

/𝐸𝑖
2

𝑛

1

 

 
 

the latter of which illustrates a chi-square distribution on n – 1 degrees of freedom under 

the null hypothesis (see Clark 1975:252; Ward and Wilson 1978:21). 

Provided that the 14C determinations are found not to be significantly different, they 

can then be combined with the pooled age as Ap given by (I), and the variance given by 

 

𝑉(𝐴𝑝) =  (∑ 1/𝐸𝑖
2

𝑛

1

)

−1

 

 
 

(Ward and Wilson 1978:21), which is a process accessible in OxCal by way of the 

R_Combine function. Once combined with R_Combine, a new date range, standard 

deviation, and median age is provided for the combined samples (Figure 2.2). Within the 



 

36 

 

framework of this study, the new date range replaces the combined dates and was employed 

within the revised summed probability distribution, while the new median date was used for 

statistical analyses. 

 

 
Figure 2.2. Calibrated results from the R_Combine function for 41DT16 Group 1. 
 
 
Calibration Curve 
 

Conventional 14C dates used within the framework of this study were recalibrated 

using IntCal09 (Figure 2.3). The curve serves as the basis for date calibration and can aid the 

process of archaeological interpretation by highlighting temporal zones with reversals and 

plateaus. Within the span of time assigned to the East Texas Woodland period (500 B.C. – 

A.D. 800), the curve can be seen to have three notable reversals of varying degrees (370-220 

B.C., A.D. 240-340, and A.D. 680-780). There are also three plateaus within the curve (500-

420 B.C., A.D. 140-210, and A.D. 430-540). While this does not produce clues regarding 

human behaviors, it does help to clarify why—even after combination—some date ranges 

have longer spans of probability for the calibrated date range.  
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Figure 2.3. IntCal09 Radiocarbon calibration curve for the East Texas Woodland period. 

 
 
 

The Woodland Sample 
 

The Woodland sites with four or more 14C assays include George C. Davis 

(41CE19), Tick (41DT6), Spike (41DT16), Hurricane Hill (41HP106), Stallings Ranch 

(41LR297), Naconiche Creek (41NA236), Boyette (41NA285), Herman Ballew (41RK222), 

Broadway (41SM273), 41TT372, and 41UR77. The number of 14C samples from each site is 

heavily biased by the variable mitigation strategies and research designs used in 

archaeological practice. The 14C samples from these sites are refined here through date 

combination, where the results of date combination replaced the original assays, and then 

incorporated with the remaining 42 samples used in this analysis.   
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41CE19 (George C. Davis Site) 

The Woodland period 14C dates for the George C. Davis site (n=7) have been 

combined into two groups (Figure 2.4). Group 1 consists of Tx-1223, Tx-919, Tx-105, Tx-

674, and Tx-3312. Group 2 consists of Tx-3695 and a reported conventional 14C age with 

an assay number that was not reported. The 2𝜎 age ranges for the groups, A.D. 358-544 for 

Group 2 and A.D. 616-773 for Group 1, indicate a possible occupational hiatus of 72 14C 

years. Occupation periods for the two 14C groups span 186 cal. 14C years and 157 cal. 14C 

years, respectively. 

 

 
Figure 2.4. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the George C. Davis 
site (41CE19). 
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41DT6 (Tick Site) 

All 14C dates from the Tick site (n=5) were unable to be combined via OxCal X-test 

(Figure 2.5). Only three assays (Beta-51364, Beta-51366, and Beta-51367) were combined 

into Group 1, leaving the remaining assays (Beta-51368 and Beta-51365) to populate the 

balance of the summed probability distribution. This site represents the singular example of 

overlapping occupations between A.D. 660-667, and the 14C assays indicate a continuous, 

but probably episodic, occupation of 831 cal. 14C years.   

 

 
Figure 2.5. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Tick site 
(41DT6). 
 
 
 
41DT16 (Spike Site) 
 

There are six 14C assays from the Spike site, three of which were combined, resulting 

in a final sample of three radiocarbon ages. Group 1 consists of Beta-52245 and Beta-

52244, and Group 2 includes Beta-52242, Beta-52241, and Beta-51372 (Figure 2.6). Beta-
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51371 was not able to be combined with the two other groups. Beta-51371 ranges from 336 

B.C. – A.D. 21, the Group 2 range is A.D. 434-574, and Group 1 ranges from A.D. 667-

770, indicating a temporal hiatus of 413 cal. 14C years between Beta-51371 and Group 2, and 

93 cal. 14C years between Group 2 and Group 1. Occupational periods span 357 cal. 14C 

years, 140 cal. 14C years, and 103 cal. 14C years, respectively. 

 

 
Figure 2.6. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Spike site 
(41DT16). 
 
 
 
41HP106 (Hurricane Hill Site) 
 

There are seven 14C dates from the Woodland period occupation at the Hurricane 

Hill site. Six of these (Beta-82913, Beta-82914, Beta-82915, Beta-85866, Beta-82917, and 

Beta-85868) comprise Group 1, while a single and much earlier assay (Beta-85867) was 

unable to be combined with the other dates (Figure 2.7). The Beta-85867 date ranges from 

398-202 B.C. and Group 1 dates indicate an occupation ranging from A.D. 85-235; there is 
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a temporal hiatus of 287 cal. 14C years between the two occupations. Occupational periods 

span 150 cal. 14C years and 196 cal. 14C years, respectively. 

 

 
Figure 2.7. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Hurricane Hill 
site (41HP106). 
 
 
 
41LR297 (Stallings Ranch Site) 
 

Only two of the 14C dates from the Stallings Ranch site (n=4) were combined. The 

assays with the latest (Beta-239524) and the earliest (Beta-237678) calibrated age ranges are 

plotted individually, and Group 1 consists of Beta-237680 and Beta-237677 (Figure 2.8). 

There are three possible occupations at Stallings Ranch, the first (Beta-237678) ranging 

from 736-211 B.C., with a peak distribution at 400 B.C., Group 1 from A.D. 432-619, and 

A.D. 656-870 for Beta-239524. This indicates a 643 cal. 14C year hiatus between the first and 

second occupations, and a 37 cal. 14C year hiatus between the second and third. 
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Occupational periods span 525 cal. 14C years, 187 cal. 14C years, and 214 cal. 14C years, 

respectively. 

 

 
Figure 2.8. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Stallings Ranch 
site (41LR297). 
 
 
 
41NA236 (Naconiche Creek Site) 
 

The 14C dates from the Naconiche Creek site (n=9) were combined into two groups, 

excluding only a single and older assay (Beta-151098) (Figure 2.9). Group 1 encompasses 

the Beta-183857, Beta-203667, Beta-204783, and Beta-203666 samples. Group 2 consists of 

the Beta-204782, Beta-203669, Beta-151097, and Beta-203668 samples. Beta-151098 spans 

the period from 735-382 B.C., Group 2 ranges from A.D. 56-214, and Group 1 extends 

from A.D. 541-636, indicating an occupational hiatus of 438 cal. 14C years between the first 

and second occupations, and 327 cal. 14C years between the second and third occupations. 

Occupational periods span 353 cal. 14C years, 158 cal. 14C years, 95 cal. 14C years, 

respectively. 
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Figure 2.9. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Naconiche 
Creek site (41NA236). 
 
 
 
41NA285 (Boyette Site) 
 

Radiocarbon dates from the Boyette site (n=6) were combined into two groups with 

a single uncombined exception (Beta-221420) (Figure 2.10). Group 1 consists of three 

assays (Beta-221421, Beta-201990, and 204786), while Group 2 is comprised of two assays 

(Beta-151112 and Beta-201989). Group 2 dates from 197-107 B.C., Beta-221420 dates from 

A.D. 425-534, and Group 1 ranges from A.D. 685-770, indicating a temporal hiatus of 532 

cal. 14C years between Group 2 and Beta-221420, and 151 cal. 14C years between Beta-

221420 and Group 1. Occupational periods span 90 cal. 14C years, 109 cal. 14C years, and 85 

cal. 14C years, respectively. 
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Figure 2.10. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Boyette site 
(41NA285). 
 
 
 
41RK222 (Herman Ballew Site) 
 

The 14C dates from the Herman Ballew site (n=6) were combined into one group 

(n=5), excluding only a single and younger assay (Beta-60093) (Figure 2.11). Group 1 

consists of Beta-60094, Beta-72776, Beta-72770, Beta-72778, and Beta-72771. The 2𝜎 age 

range for Group 1 is A.D. 54-221, and A.D. 439-772 is the calibrated age range for the 

Beta-60093 assay. This indicates a possible hiatus of 218 cal. 14C years between occupations. 

Occupational periods span 167 cal. 14C years and 333 cal. 14C years, respectively. 
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Figure 2.11. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Herman Ballew 
site (41RK222). 
 
 
 
41SM273 (Broadway Site) 
 

The 13 14C dates from the Woodland period occupation at the Broadway site were 

combined into three groups (Figure 2.12). Group 1 consists of two assays (Beta-157990 and 

Beta-173089), Group 2 has six assays (Beta-154860, Beta-157989, Beta-173091, Beta-

154857, Beta-173092, and Beta-173095), and Group 3 has five assays (Beta-173090, Beta-

157991, Beta-182401, Beta-173097, and Beta-182402). Group 3 dates from A.D. 257-344, 

Group 2 has an age range from A.D. 442-574, and Group 1 dates from A.D. 685-771, 

indicating a temporal hiatus of 98 cal. 14C years between Group 3 and Group 2, and 111 cal. 

14C years between Group 2 and Group 1. Occupational periods span 87 cal. 14C years, 132 

cal. 14C years, and 86 cal. 14C years, respectively. 
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Figure 2.12. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from the Broadway site 
(41SM273). 
 
 
 
41TT372 
 

Radiocarbon dates for 41TT372 (n=4) were combined into a single group (n=3), 

excluding one earlier assay (Beta-70995) (Figure 2.13). Group 1 consists of Beta-70994, 

Beta-71006, and Beta-71000. The early assay (Beta-70995) ranges from A.D. 131-322, and 

Group 1 dates from A.D. 659-765, indicating a temporal hiatus of 337 cal. 14C years 

between occupations. Occupational periods span 191 cal. 14C years and 106 cal. 14C years, 

respectively.  
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Figure 2.13. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from 41TT372. 
 
 
 
41UR77 
 

Radiocarbon dates from 41UR77 (n=4) were combined into a single group with two 

dates, and there are two younger and older exclusions (Beta-166910 and UGA-12971 

respectively) that could not be grouped (Figure 2.14). Group 1 consists of UGA-12983 and 

UGA-12984. The 2𝜎 age range for UGA-12971 is 358-197 B.C., for Group 1 it is A.D. 133-

215, and for Beta-166910 the age range is A.D. 558-640. This indicates a temporal hiatus of 

330 cal. 14C years between the first and second occupations, and 343 cal. 14C years between 

the second and third occupations. Occupational periods span 161 cal. 14C years, 82 cal. 14C 

years, and 82 cal. 14C years, respectively. 
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Figure 2.14. Combined 1𝜎 and 2𝜎 date ranges with median age illustrated, normal and 
combined summed probability distribution for radiocarbon dates from 41UR77. 
 

 
 

Results 
 

Through the date combination (R_Combine) process, the number of assays 

decreased from 127 to 85, which lowered the standard deviation for the combined group 

while reducing the number of median ages to be used in the statistical analysis. Summed 

probability distributions were then produced for each site with four or more dates to better 

illustrate when diffuse and discrete periods of occupation can be identified. 

The SPD for the whole of the Woodland period was created using the revised (i.e., 

combined from sites with ≥4 14C assays) sample of 85 14C dates from 51 archaeological sites 

in East Texas (Figure 2.15). This representation of these data is not biased by sites with 

larger numbers of samples due to the date combination process. While not discussed here, 

those sites with <4 14C assays that conformed to methodological constraints were included 

in the Woodland SPD. 
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Figure 2.15. Summed probability distributions contrasting all and combined dates from the 
entirety of the sample, and from those sites with ≥4 14C dates. 
 
  
 
Temporal Considerations 
 

Incorporating these results into a revised Woodland sample reduces the number of 

14C assays from 127 to 85. The final sample represents Woodland components from 51 

archaeological sites in the Red River (n=7 dates), Sulphur River (n=20), Cypress Creek 

(n=10), Sabine River (n=20), and Neches River (n=26) basins (Figure 16). The sample was 

sorted by median age, illustrating that the dates for Woodland period sites – when ordered 

by appearance – are oldest in the Red River basin (A.D. 134), followed by Cypress Creek 

(A.D. 202), Sulphur (A.D. 251), Sabine River (A.D. 296), and Neches River basins (A.D. 

312) (Figure 2.16). 
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Figure 2.16. Frequency of samples and boxplot of median ages by river basin. 
 
 
 

A summed probability distribution was calculated for the entirety of the Woodland 

period, and illustrates the temporal placement of Woodland components from key sites in 

East Texas (Figure 2.17). Although the number of sites is small, they highlight a possible 

temporal hiatus of nearly 400 years in the Red River basin, and another of nearly 200 years 

in the Cypress Creek basin, both of which appear here on the basis of data from one site in 

each river basin. The remaining peaks correlate with populations from the kernel density 

plot, and they illustrate a small peak in the Red River basin around 400 B.C. followed by 

slight increases in the dates from the Sulphur, Cypress, and Sabine basins around 200 B.C. 

This is prior to a 200-year peak in dates from the Sulphur and Sabine River basins for A.D. 

50-220, after which a marked increase occurs in the number of dated Woodland sites for the 

Sulphur, Cypress, Sabine, and Neches River basins from A.D. 600-800.  
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Figure 2.17. Summed probability distributions illustrating the impact of the 11 sites on the 
whole of the period, and upon the associated river basin. 
 
 

 
The temporal character of Woodland occupations from the 11 sites has been 

dissected, and then reassembled to illustrate the temporal range of occupations and hiatuses 

for each (Table 2.3). The diversity of occupational length within the sample ranges from an 

average of 95-831 cal. 14C years, with breaks of 0-382 cal. 14C years. Of the 11 sites, one may 
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have been continually - if episodically - occupied (41DT6), four have two discretely dated 

occupational events (41HP106, 41TT372, 41RK222, and 41CE19), and six have three 

discretely dated occupational events (41LR297, 41DT16, 41UR77, 41NA236, 41NA285, 

and 41SM273). 

 

 
Table 2.3. Occupations and hiatuses by river basin for sites with ≥4 14C dates. 

River 
Basin Site O(1) H(1) O(2) H(2) O(3) AOL AHL 

Red 41LR297 525 643 187 37 214 309 340 
         

Sulphur 41DT6 831 -- -- -- -- 831 0 
 41DT16 357 413 140 93 103 200 253 
 41HP106 150 287 196 -- -- 173 287 
         

Cypress 41TT372 191 337 106 -- -- 149 337 
         

Sabine 41RK222 167 218 333 -- -- 250 218 
 41UR77 161 330 82 343 82 108 337 
         

Neches 41CE19 186 72 157 -- -- 172 72 
 41NA236 353 436 158 327 95 202 382 

 41NA285 90 532 109 151 85 95 342 
  41SM273 87 98 132 111 86 102 105 

         
O = Occupation        
H = Hiatus 
AOL = Average Occupation Length 
AHL = Average Hiatus Length 
         

 
 
Spatial Considerations 
 

It has become increasingly apparent that there was no preference for river basin or 

natural region by this prehistoric population as they began to intensify upon the landscape 

within the Post Oak Savannah, Blackland Prairie, and Pineywoods of East Texas. In fact, 
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Woodland period populations settled in all three natural regions within the Red, Sulphur, 

Cypress Creek, Sabine, and Neches River basins. While the great majority of Woodland sites 

fall within the Austroriparian biotic province (Blair 1950:98), some sites—those in the 

western Red River and Sulphur River basins—occur within the Texan biotic province. The 

western boundary of the Austroriparian is limited by moisture (Blair 1950:99), and rainfall 

amounts range from 44 inches on the western margin of the province to 56 inches on the 

eastern border of Texas (Window on State Government 2012).  While this region boasts the 

highest annual rainfall for the state, it lies within the Region of Summer Drought as 

characteristically defined by Carr (1967:17), where he notes that, 

 

[o]ne abnormal climatologic occurrence which would have deleterious effects on 

East Texas would be the loss in April and May of the generous rainfalls which 

occur there during these months and again in November and December. These are 

the two peak rainfall periods before and after the summer-drought months. The 

loss of peak rainfalls during these months could result in a year-long drought—not 

merely a summer drought. 

 

This cyclical pattern produces a winter surplus and summer deficiency of water for 

the region (see Carr 1967:Figure 7), and may be a factor in the geographic location of 

Woodland-period settlements. While impossible to determine from the record of 

radiocarbon dates alone, shifts in residential strategies of these semi-nomadic to semi-

sedentary populations may have much to do with the variability in rainfall, since seasonal 
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shortcomings could have caused a dramatic shift in the availability of regionally important 

ecological resources.  

Another consideration of residential strategies is trade. This is defined by Perttula 

and Bruseth (1990:95) as “the movement of objects or materials to be used in the 

production of objects back and forth between different groups.” Archaeologically, 

participation in extra-local trade follows—virtually entirely—500 B.C. and continues to 

mature through the entirety of the Woodland period before fluorescing during the Caddo 

period in East Texas (ca. 800-1680) (Perttula and Bruseth 1990). 

Through the analysis of median dates by way of kernel density and hierarchical 

cluster analysis, Woodland period median dates were found to encompass three potential 

divisions (Figure 2.18). Although the small sample size prevents these results from 

achieving the appropriate level of significance—750 by Michczynski and Pazdur (2004) and 

500 by Williams (2012)—they do warrant mention here. 

 

  

 
Figure 2.18. From left to right, Early Woodland (500 B.C. – A.D. 0), Middle Woodland 
(A.D. 0-400), and Late Woodland (A.D. 400-800) archaeological sites. 
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These temporal trends were manifest within the geographic boundaries for East 

Texas Woodland populations of the Fourche Maline (Schambach 1998, 2002), Mill Creek 

(Perttula and Nelson 2004), and Mossy Grove (Story 1990) culture areas, and appear to 

support Schambach’s (1998:128) hypothesis that the Caddo culture developed “in situ in the 

Trans-Mississippi South.” However, this observation appears true for all three currently 

defined culture areas in East Texas and is not limited to the Fourche Maline. 

The demonstrated occupational episodes represent the cultural antecedents of the 

later prehistoric and protohistoric Caddo populations (ca. A.D. 800-1680) and the shift 

from a hunter-gatherer and horticultural economy to one dominated by agriculture within 

greater East Texas. While lacking in detailed temporal correlations with the material culture 

of the different Woodland culture areas, the 11 sites surveyed within this study illustrate a 

significant increase in site use during the period of A.D. 400-800.  

The temporal distribution of occupational episodes for Woodland sites in East 

Texas (see Figure 2.17) increased exponentially after A.D. 400 and the associated hiatuses 

decreased in both frequency and duration. Prior to A. D. 400, only 13 occupational episodes 

occurred throughout an 800 cal. 14C year period, while the number of occupational episodes 

increased to 16 during the last 400 cal. 14C years of the Woodland period. This trend is 

indicative not only of a larger population, but possibly a more sedentary lifestyle, which may 

temporally demonstrate the cultural shift from hunter-gatherer to agriculturalist.  
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Discussion 
  

Due to depositional and contextual issues and the wide variety of mitigation 

strategies and research designs employed throughout the region, the western boundary of 

the Eastern Woodlands remains one of the least well-known and explored periods in the 

greater Southeast. This can be seen plainly when the number of components from 

Woodland period sites is contrast against the much more robust representation of 

radiocarbon dates from the Archaic and Caddo periods. The fact that only 127 of the 

124814C samples in the East Texas Radiocarbon Database are representative of this period 

speaks to the need for further research. 

These results present a significant advancement in the manner by which 14C assays 

may be manipulated for use within summed probability distributions. At the regional and 

sometimes local scale, most archaeologists have encountered at least one very well-dated 

site. These sites, while often incredibly informative at the micro-scale, are fairly detrimental 

to macro-level analyses due to the amount of bias they introduce. Through incorporation of 

date combination to studies of summed probability distribution, the amount of site-specific 

sample bias can be reduced.  

Although not essential to this analysis due to sample size, consideration should be 

given to taphonomic loss (see Surovell and Brantingham 2007; Surovell et al. 2009; and 

Peros et al. 2010) and land-use patterns (see Grove 2008, 2009, 2011) once the sample size 

threshold is surpassed. When coupled with the method of date combination, these tools can 

further clarify much of the ambiguity encountered as we continue to move forward with our 

analyses of these data at the regional scale. 
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Summary and Conclusion 
 

Regionally, statistical nuances within the data appear to illustrate the likelihood of 

three temporal divisions and an increase in occupational episodes post ca. A.D. 400. While 

more research needs to be completed to reveal the nature of the cultural shift from hunter-

gatherer/part-time horticulturist to a more agriculturalist lifestyle, this investigation 

illustrates those sites with temporal components that would likely be more fruitful than 

others within the framework of that endeavor.   

Subsequent efforts to refine the chronology of the material culture from these 

different components should take the form of case studies from specific Woodland period 

sites where artifacts were recovered in association with radiocarbon samples. As that effort 

expands, our knowledge of the temporal and spatial distributions of specific artifact classes, 

types, and assemblages can be enhanced. We are quickly approaching an era where 

typological assignments can be associated with radiocarbon samples in this same manner, 

but significant advances in correlating these data with specific aspects of archaeological 

assemblages still need to be made as we progress in our analyses of the Woodland period of 

East Texas.  

This analysis represents only a small sample of 14C dates from the ETRD, which 

remains a large and understudied amalgam of radiocarbon dates that is available for use 

within current cultural resource management endeavors. Through the systematic 

employment of this methodological approach, it is plausible that similar analyses would 

strengthen the arguments presented here (i.e., shorter hiatuses during the later and better-

understood Caddo period, and longer hiatuses ranging from the Archaic through 



 

58 

 

Paleoindian periods), providing a productive medium through which dialogues regarding 

the material culture of East Texas can continue to be developed.  

 
  



 

59 

 

CHAPTER III 

MODELING TEMPORAL AND SPATIAL DYNAMICS OF THE EAST TEXAS  

CADDO (ca. A.D. 800-1680)2 

 
 
 
 

Overview 

The work presented in this chapter has been submitted by the author and 

committee member Timothy K. Perttula to the journal Southeastern Archaeology, where it was 

subsequently accepted. Through the employment of radiocarbon (14C) dates as data, we use 

the date combination process to refine site-specific summed probability distributions for 

555 dates  from Caddo sites (n=19) in East Texas with 10 or more 14C dates. Summed 

probability distributions are then contrasted across river basins and natural regions with the 

remainder of the East Texas Caddo Radiocarbon Database (n=338 from 132 other Caddo 

sites), highlighting the temporal and spatial character of Caddo archaeological sites 

throughout East Texas. 

 

Introduction 

The Southern Caddo Area stretches across East Texas, Northwest Louisiana, 

Southwest Arkansas, and Southeast Oklahoma (Figure 3.1). While delineating the 

geographic extent of ancestral Caddo settlements across this broad area has been of 

considerable research interest since the early 1900s (see Brown et al. 1978; Early 1982, 2004; 

                                                 
2 Reprinted with permission from “Radiocarbon Trends and the East Texas Caddo Tradition (ca. A.D. 800-

1680), Robert Z. Selden Jr. and Timothy K. Perttula, 2013, Southeastern Archaeology, Volume 32, 

Number 1, Copyright 2013 Southeastern Archaeological Conference. 
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Girard 2010; Krieger 1946, 2009; Rogers and Sabo 2004; Schambach 1982; Story 1990), this 

article focuses on the temporal and spatial variability in Caddo native history that occurred 

in East Texas. Using radiocarbon (14C) dates as data (e.g., Rick 1987), we combine 14C assays 

from all sites with  10 or more dates in order to construct a temporal and spatial model of 

ancestral Caddo occupation by natural region and river basin. This effort represents the first 

phase of a larger research approach to focus on better understanding long-term trends in 

interaction between Caddo and non-Caddo cultural groups between ca. A.D. 850-1680 

(Formative to Late Caddo periods).  

 

 
Figure 3.1. Southern Caddo Area. 
 

 
 To this end, it is important to identify those sites with occupational episodes (of a 
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particular district/region/phase) that are archaeologically contemporary. Here we use 

detailed analyses of radiocarbon dates from East Texas Caddo sites to address the issue. 

 Problems with chronology and cultural taxonomies persist (Perttula 2012) in East 

Texas Caddo studies, but with the availability of the extensive East Texas Radiocarbon 

Database (Perttula and Selden 2011)there is hope that these problems will be replaced with 

new ideas regarding non-chronological issues in the archaeological record: technology, 

traditions, politics, religion, and rituals of the East Texas Caddo people. It is important to 

dig deeper into the cultural nuances and traditions of the Caddo people to investigate how 

human interaction influenced the creation of this socially powerful group of complex 

mound-building societies at the western edge of the Eastern Woodlands. Representative of 

the first step in furthering current dialogues, this article explores various avenues through 

which large data sets-such as the one employed herein-from the Caddo region can be used 

gainfully to address more pointed and focused research questions. 

 To us, the logical first step in addressing the temporal and spatial character of the 

East Texas Caddo tradition is through an analysis of the 14C data. Although "deceptively 

simple" (Perttula 2012:12), the current chronology of the Caddo tradition (Table 3.1) 

embraces "no unstated assumption…that [these] periods represent linear or evolutionary 

views of regional developments or that archaeological developments within the East Texas 

Caddo area conform in any way from one region to another within the overall regional 

framework" (Perttula 1992:58).  
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Table 3.1. Caddo chronological framework (Perttula 2012: Table 1-1). 
_______________________________________________________________________ 
  
 Period      Dates (A.D.) 
_____________________________________________________________________________________
    
 Formative Caddo     800 – 1000    
 Early Caddo     1000 – 1200 
 Middle Caddo     1200 – 1400 
 Late Caddo     1400 – 1680 
 Historic Caddo     1680 – 1860+ 
_____________________________________________________________________________________ 

 

 

Methods 

 Radiocarbon dates have been gathered from the East Texas Radiocarbon Database 

(ETRD) (Perttula and Selden 2011), which is an amalgam of 14C dates collected from 

research and cultural resource management reports and publications spanning the last 50 or 

more years, synthesized, then recalibrated in version 4.1.7 of OxCal (Bronk Ramsey 2012) 

using IntCal09 (Reimer et al. 2009). These data were analyzed using a variety of statistical 

processes within version 2.15.1 of R (www.r-project.org), and summed probability 

distributions (SPD) were produced using OxCal. For older assays lacking δ13C data, we used 

estimates for fractionation correction as suggested by Stuiver and Reimer (1993: Table 1): -

25‰ for nutshells and charcoal (C3 plants), and -10‰ for charred maize (C4 plants) 

(Perttula 1998a, 1998b; Perttula and Selden 2011; Selden 2012). Once recalibrated, median 

ages were utilized to select the bulk of the Caddo sample, while others—those straddling 

the A.D. 800 or A.D. 1680 temporal boundaries—were selected on a case-by-case basis and 
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were segregated based upon probability. Statistical calculations employ negative numbers to 

represent B.C. and positive numbers to represent A.D. (Sirkin 2006).  

 The raw sample of Caddo 14C dates (n=893) exceeds the minimum number of dates 

needed for statistical significance—750 as suggested by Michczyńska and Pazdur (2004) and 

500 by Williams (2012)—but the combined sample (n=405) does not.  However, the 

distilled sample of 405 dates reduces probability bias introduced by sites with large numbers 

of 14C dates, and provides a more accurate representation of the temporal character for 

Caddo sites with 10 or more 14C dates.  

 The 14C date combination process assumes that if all assays collected at a particular 

site draw carbon from the same reservoir, then they should have the same underlying F14C 

value and can be combined prior to calibration (Bronk Ramsey 2008). The measurements 

have Gaussian uncertainty distributions, and the calibration curve will have an expanded 

range of probability that broadens the temporal span within which the date of the event 

may be said to have occurred. Conversely, if the calibrated intercept occurs at a point in the 

curve with no plateaus or reversals, the resultant date range will be smaller. Thus, no matter 

how precise the sample, occurrences of prolonged (plateaus) and multi-modal probability 

distributions (reversals) occur across the sample. However, through an understanding of the 

nuances in the current 14C calibration curve, samples that fall within temporal periods where 

plateaus and reversals occur can be more easily identified, and given a more critical analysis. 

 The Caddo sample was selected from the ETRD on the basis of median age. If the 

median age fell within the currently accepted temporal construct (ca. A.D. 850-1680) for the 

Caddo tradition prior to sustained European contact (see Story 1990; Perttula 2012), it was 

included. Data fields imported from the ETRD include site name, trinomial (site number), 
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assay number, raw age, δ13C, corrected 14C age, 2-sigma age range, and median age.  

  There are 118 sites in the ETRD that have between one and five 14C samples; 17 

sites with 6-10 samples; seven sites with 11-20 samples; four sites with 21-30 samples; two 

sites with 31-40 samples; one site with 41-50 samples; and two sites with 91-115 samples.  

The assays from the 19 sites with 10 or more 14C dates were combined via OxCal for two 

reasons: (1) to reduce the standard deviation and increase the accuracy of each site's 

temporal assignments and (2) to reduce sampling bias that was created by the number of 

samples during statistical analyses. Once combined, a SPD was produced for each of the 19 

sites with more than 10 dates to illustrate the temporal position of each grouping at the site. 

The dates were plotted in a manner where the SPDs, the combined groups, and the 

individual assays that comprise them can be viewed together. These efforts permit the 

uncombined SPD for each site to be contrasted with the combined SPD and the combined 

groups that comprise it. This comparison demonstrates the impact that each site has upon 

the whole of the Caddo sample, and allows for a discussion of regional trends within the 

temporal sample. 

 Caddo sites with 10 or more 14C dates are listed in bold in Table 2 and are 

geographically illustrated in Figure 3.2 (see also Table 3.2). The 14C assays from these 19 

sites are refined through date combination, and the subsequent results (combined dates) 

replace the original assays within the analysis of all East Texas Caddo dates. Radiocarbon 

samples from these sites were refined through date combination in an effort to create 

accurate site and temporally-specific summed probability distributions.  
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Figure 3.2. East Texas Caddo sites with 10 or more radiocarbon dates.  
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Table 3.2. Caddo sites in East Texas with radiocarbon dates. 
_______________________________________________ 
 
Site Name  Site Trinomial          No. of 14C dates 
_______________________________________________ 
Emma Owens  41AN21   1 
Fred McKee  41AN32   1 
Pierce Freeman 41AN34   1 
Lang Pasture  41AN38   22 
Pace McDonald 41AN51   2 
Ferguson  41AN67   1 
Alcoa No. 1  41AN87   4 
Hatchel  41BW3    8 
Cranfill   41BW171   3 
Dogwood Mound 41BW226   1 
-   41BW553   4 
Weaver Creek  41BW692   1 
Solon Stanley  41CE3    1 
A. H. Reagor  41CE15   1 
George C. Davis 41CE19   115 
-   41CE299   3 
Kah-hah-ko-wha 41CE354   6 
Tuck Carpenter 41CP5    1 
Harold Williams 41CP10   1 
Shelby Mound  41CP71   8 
-   41CP88   5 
Kitchen Branch 41CP220   17 
Underwood  41CP230   1 
Polk Estates  41CP245   2 
Pilgrim’s Pride  41CP304   29 
-   41CP313   2 
-   41CP316   2 
Honey Suckle  41CP335   1 
Hickory Hill  41CP408   27 
Coker Mound  41CS1    1 
Knight’s Bluff  41CS14    2 
-   41CS150   1 
-   41CS151   4 
-   41CS155   1 
Tick   41DT6    1 
Spider Knoll  41DT11   22 
Spike   41DT16   7 
L. O. Ray  41DT21   1 
-   41DT50   1 
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Table 3.2. Continued 
_______________________________________________ 
 
Site Name  Site Trinomial          No. of 14C dates 
_______________________________________________ 
Luna   41DT52   2 
Johns Creek  41DT62   2 
-   41DT63   3 
Thomas  41DT80   5 
Doctors Creek  41DT124   5 
-   41DT141   2 
New Hope  41FK107   1 
Hardin-A  41GG69   2 
Woldert  41HE80   1 
-   41HE139   1 
Winston  41HE245   2 
-   41HE257   1 
-   41HE343   2 
Hargrove Lake  41HO150   1 
Nabedache Azul 41HO214   1 
Butler Branch  41HO216   1 
Lawson  41HP78   2 
Arnold   41HP102   11 
Hurricane Hill  41HP106   11 
-   41HP116   1 
Finley Fan  41HP159   1 
Peerless Bottoms 41HP175   11 
Tuinier Farm  41HP237   2 
Mound Pond  41HS12   2 
Pine Tree Mound 41HS15   92 
-   41HS231   5 
-   41HS573   1 
-   41HS574   1 
-   41HS588   9 
-   41HS843   1 
-   41HS846   2 
Mackin   41LR39   7 
Ray   41LR135   8 
Stallings Ranch  41LR297   5 
-   41MX5    3 
Chayah   41NA44   3 
Washington Square 41NA49   7 
Tallow Grove  41NA231   15 
Foggy Fork  41NA235   5 

 



 

68 

 

Table 3.2. Continued 
_______________________________________________ 
 
Site Name  Site Trinomial          No. of 14C dates 
_______________________________________________ 
Naconiche Creek 41NA236   8 
Beech Ridge  41NA242   10 
Stroddard  41NA243   1 
Jas. Miles  41NA247   1 
Miles Boundary 41NA248   2 
Telesco   41NA280   3 
Boyette   41NA285   6 
Tom Moore  41PN149   1 
-   41PN175   1 
Hudnall-Pirtle  41RK4    4 
Nawi haia ina  41RK170   11 
Oak Hill Village 41RK214   32 
Herman Ballew 41RK222   3 
-   41RK342   1 
-   41RK468   1 
-   41RK557   5 
-   41RK558   4 
-   41RK562   1 
Holdeman  41RR11   4 
Fasken   41RR14   2 
Sam Kaufman  41RR16   9 
Rowland Clark  41RR77   2 
Sawmill  41SA89   1 
Blount   41SA123   1 
P4   41SM53   1 
Jamestown  41SM54   1 
Bryan Hardy  41SM55   1 
Henry Chapman 41SM56   1 
Redwine  41SM193   2 
Wolf   41SM195   1 
Browning  41SM195A   1 
Broadway  41SM273   7 
Lindsey Park  41SM300   1 
Leaning Rock  41SM325   6 
-   41SM404   6 
Buddy Hancock 41SY45   1 
Tyson   41SY92   4 
Keith   41TT11   1 
-   41TT154   1 
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Table 3.2. Continued 
_______________________________________________ 
 
Site Name  Site Trinomial          No. of 14C dates 
_______________________________________________ 
-   41TT372   4 
-   41TT373   1 
-   41TT406   1 
-   41TT409   1 
Mockingbird  41TT550   9 
Ear Spool  41TT653   17 
-   41TT670   1 
-   41TT672   1 
James Owens  41TT769   3 
George E. Richey 41TT851   44 
William A. Ford 41TT852   38 
James E. Richey 41TT853   20 
S. Stockade  41TT865   1 
Harroun  41UR10   2 
Dalton Mound  41UR11   1 
Boxed Springs  41UR30   2 
Seahorn  41UR105   1 
Kelsey Creek Dam 41UR118   3 
Verado   41UR129   2 
Rookery Ridge  41UR133   10 
Griffin Mound  41UR142   1 
Camp Joy  41UR144   2 
S. Lilly #4  41UR279   2 
Henry Spencer  41UR315   2 
Carlisle   41WD46   1 
McKenzie  41WD55   8 
Quitman Lake  41WD60   3 
  Burial Site 
Osborn  41WD73   1 
Spoonbill  41WD109   5 
-   41WD244   1 
Turbeville  41WD382   1 
Hines   41WD450   1 
Taddlock  41WD482   4 
Steck   41WD529   1 
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As an example of the date combination process, the Caddo period 14C dates from 

the Lang Pasture site (n=23) (Perttula et al. 2011) were combined into four groups (Figure 

3.3 and Table 3.3). Group 1 has three dates and ranges from A.D. 887-987, Group 2 has 

two dates ranging from A.D. 1264-1388, Group 3 has 12 dates ranging from A.D. 1320-

1413, and Group 4 consists of three dates ranging from A.D. 1430-1610. Two dates from 

the site are unable to be combined (Beta-236788 and Beta-239847). There are six newly 

combined age ranges at the Lang Pasture site, two of which are represented by one 14C 

sample each.  

 

Figure 3.3 All and combined summed probability distributions for Caddo tradition dates 

from the Lang Pasture site (41AN38) with 1𝜎 and 2𝜎 ranges, median ages, and number of 
samples. 
 
 
 
 This process was followed for all sites with 10 or more dates, after which the assays 

were organized by river basin since there are known to have been temporal differences in 

the ancestral Caddo use of the major river basins, and the summed probability distribution 

was plotted for each (Figure 3.4 and Table 3.3). Combining the spatial and revised temporal 
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data, Caddo sites of probable contemporaneity can be identified (Figure 3.5). 

 

 

Figure 3.4. Summed probability distributions for each Caddo site with more than 10 
radiocarbon dates contrast with the combined sum (from sites with less than 10 
radiocarbon dates) of each river basin.  
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Table 3.3. Date ranges for sites with combined samples. 

 

Site Name        Site Trinomial          Group/Assay  2𝜎 Date Range (Probability) 
         No. of 14C Dates 
 

Lang Pasture  41AN38   1 (n=3)  A.D. 887-987 (0.95) 
41AN38      Beta-236788 A.D. 1046-1093 (0.12), A.D. 1120-1141 

(0.04), A.D. 1148-1267 (0.79) 
41AN38 2 (n=2)  A.D. 1264-1310 (0.73), A.D. 1360- 

1388 (0.22) 
41AN38   3 (n=12)  A.D. 1320-1351 (0.53), A.D. 1390- 

1413 (0.42) 
41AN38   4 (n=3)  A.D. 1430-1491 (0.93), A.D. 1602- 

1610 (0.02) 
 Beta-239847  A.D. 1482-1690 (0.65), A.D. 1729- 
    1810 (0.24), A.D. 1925-1955 (0.07) 
 
George C. Davis  41CE19   1 (n=47)  A.D. 896-923 (0.31), A.D. 940-995  

(0.64), A.D. 1006-1012 (0.01) 
   41CE19   2 (n=66)  A.D. 1185-1258 (0.95) 
   41CE19   3 (n=2)  A.D. 1310-1360 (0.10), A.D. 1386- 

1525 (0.74), A.D. 1557-1632 (0.12) 
 
Kitchen Branch  41CP220   1 (n=3)  A.D. 894-988 (0.95)  
   41CP220             Beta-322667  A.D. 993-1059 (0.46), A.D. 1068- 

1155 (0.50) 
   41CP220   2 (n=2)  A.D. 1218-1273 (0.95) 
   41CP220            Beta-319977  A.D. 1261-1310 (0.76), A.D. 1360- 

1388 (0.19) 
   41CP220   3 (n=4)  A.D. 1303-1365 (0.74), A.D. 1383- 

1404.(0.21) 
   41CP220   4 (n=6)  A.D. 1431-1461 (0.95) 
 
Pilgrim’s Pride  41CP304   1 (n=11)  A.D. 1323-1347 (0.22), A.D. 1392- 

1430 (0.73) 
   41CP304   2 (n=18)  A.D. 1453-1522 (0.66), A.D. 1578- 

1581 (0.01), A.D. 1591-1620 (0.29) 
 
Hickory Hill  41CP408            Beta-313943  A.D. 1035-1225 (0.95) 
   41CP408   1 (n=8)  A.D. 1296-1325 (0.38), A.D. 1344- 

1395 (0.57) 
   41CP408   2 (n=14)  A.D. 1434-1453 (0.95) 
   41CP408   3 (n=4)  A.D. 1458-1528 (0.45), A.D. 1552- 

1634 (0.50) 
 
Spider Knoll  41DT11   1 (n=16)  A.D. 995-1045 (0.87), A.D. 1099- 

1120 (0.07), A.D. 1142-1147 (0.01) 
   41DT11   2 (n=6)  A.D. 1218-1277 (0.95) 
 
Arnold   41HP102   1 (n=10)  A.D. 1037-1189 (0.93), A.D. 1198- 

1207 (0.03) 
   41HP102               Tx-2049  A.D. 1280-1528 (0.85), A.D. 1552- 

1634 (0.11) 
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Table 3.3. Continued 

 

Site Name            Site Trinomial          Group/Assay  2𝜎 Date Range (Probability) 
         No. of 14C Dates 
 

Hurricane Hill  41HP106   1 (n=4)  A.D. 989-1057 (0.52), A.D. 1076- 
1155 (0.44) 

   41HP106   2 (n=4)  A.D. 1220-1279 (0.95) 
   41HP106    (n=3)  A.D. 1294-1405 (0.95) 
 
Peerless Bottoms  41HP175   1 (n=3)  A.D. 1189-1198 (0.02), A.D. 1207- 

1288 (0.94) 
   41HP175   2 (n=8)  A.D. 1417-1464 (0.95) 
 
Pine Tree Mound  41HS15   1 (n=2)  A.D. 1053-1080 (0.04), A.D. 1152- 

1269 (0.91) 
41HS15           Beta-217070  A.D. 1278-1398 (0.95) 

   41HS15   2 (n=18)  A.D. 1397-1429 (0.95) 
   41HS15   3 (n=69)  A.D. 1451-1495 (0.83), A.D. 1601- 

1612 (0.12) 
   41HS15   4 (n=3)  A.D. 1520-1593 (0.48), A.D. 1619- 

1665 (0.46), A.D. 1786-1792 (0.01)  
 
Tallow Grove  41NA231   1 (n=2)  A.D. 1033-1220 (0.95) 
   41NA231   2 (n=7)  A.D. 1280-1310 (0.52), A.D. 1360- 

1388 (0.43) 
   41NA231   3 (n=6)  A.D. 1419-1460 (0.95) 
 
Beech Ridge  41NA242   1 (n=9)  A.D. 1333-1337 (0.01), A.D. 1397- 

1435 (0.94) 
   41NA242           Beta-193131  A.D. 1442-1646 (0.95) 
 
Nawi haia ina  41RK170            Beta-166767  A.D. 990-1185 (0.95) 

41RK170   1 (n=6)  A.D. 1185-1270 (0.95) 
   41RK170    (n=3)  A.D. 1297-1410 (0.95) 
   41RK170         Beta-164352  A.D. 1432-1527 (0.67), A.D. 1556- 

1633 (0.29) 
 

Oak Hill Village  41RK214           Beta-107401  A.D. 775-1049 (0.91), A.D. 1085- 
1124 (0.03), A.D. 1137-1151 (0.01) 

   41RK214    1 (n=12)  A.D. 1219-1268 (0.95) 
   41RK214   2 (n=18)  A.D. 1299-1370 (0.77), A.D. 1380- 

1399 (0.18) 
   41RK214           Beta-107400  A.D. 1415-1527 (0.71), A.D. 1555- 

1633 (0.25) 
 
Ear Spool   41TT653   1 (n=3)  A.D. 1297-1407 (0.95) 
   41TT653   2 (n=14)  A.D. 1452-1521 (0.68), A.D. 1591- 

1620 (0.28) 
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Table 3.3. Continued 

 

Site Name            Site Trinomial          Group/Assay  2𝜎 Date Range (Probability) 
         No. of 14C Dates 
 

George E. Richey  41TT851   1 (n=2)  A.D. 880-990 (0.95) 
   41TT851              Beta-305076  A.D. 898-920 (0.07), A.D. 948- 

1033 (0.88) 
   41TT851   2 (n=4)  A.D. 1189-1197 (0.02), A.D. 1207- 

1264 (0.93) 
   41TT851   3 (n=16)  A.D. 1276-1296 (0.95) 
   41TT851   4 (n=12)  A.D. 1303-1365 (0.78), A.D. 1382- 

1399 (0.18) 
   41TT851   5 (n=6)  A.D. 1415-1441 (0.95) 
   41TT851   6 (n=3)  A.D. 1513-1601 (0.73), A.D. 1616- 

1645 (0.22) 
 
William A. Ford  41TT852             Beta-300101  A.D. 720-742 (0.03), A.D. 769-898  

(0.89), A.D. 921-944 (0.04) 
   41TT852           Beta-242379  A.D. 1049-1085 (0.08), A.D. 1123- 

1138 (0.02), A.D. 1151-1271 (0.86) 
   41TT852   1 (n=14)  A.D. 1328-1341 (0.12), A.D. 1395- 

1421 (0.84) 
   41TT852   2 (n=10)  A.D. 1428-1449 (0.95) 
   41TT852   3 (n=12)  A.D. 1521-1576 (0.73), A.D. 1582- 

1591 (0.03), A.D. 1623-1644 (0.19) 
 
James E. Richey  41TT853            Beta-305110  A.D. 720-742 (0.03), A.D. 769-898  

(0.89), A.D. 921-944 (0.04) 
   41TT853   1 (n=4)  A.D. 1320-1350 (0.37), A.D. 1390- 

1422 (0.59) 
   41TT853   2 (n=15)  A.D. 1470-1523 (0.53), A.D. 1573- 

1627 (0.43) 
 
Rookery Ridge  41UR133   1 (n=4)  A.D. 1297-1407 (0.95) 
   41UR133   2 (n=6)  A.D. 1454-1524 (0.53), A.D. 1558- 
        1632 (0.42) 
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Figure 3.5. Spatial and temporal dynamics of East Texas Caddo sites surrounding the 
Underhill site. 
 

 

Results 

 The use of OxCal's R_Combine process on the East Texas Caddo sites with more 

than 10 14C dates reduced the number of 14C dates from 893 (with a standard deviation of 

58) to 405 (with a standard deviation of 53), reducing probability bias from sites with large 

catalogs of 14C dates, and providing a more accurate representation for the temporal 

character of the SPD for the entirety of the East Texas Caddo tradition. Subsequent to date 

combination, the combined 14C assays replaced those assays used to create them. These data 

were then joined with the remaining assays from sites with less than 10 14C dates, and the 
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SPD across time were calculated for all the Caddo dates (Figure 6). This demonstrates the 

SPD for all Caddo 14C dates before (All Caddo) and after (Combined Caddo) the date 

combination process. Further, those sites with 10 or more 14C dates (Caddo 10Plus), were 

subject to the process of date combination, resulting in a decrease of bias in the associated 

probability distribution. In viewing the summed probability distribution for the sample of 

sites with ten or more dates in tandem with the dates from sites with fewer than 10 dates, it 

becomes clear that the 555 dates from sites with 10 or more 14C dates heavily influence the 

probability distributions. Although the 67 dates from the R_Combine process still influence 

probability distributions for the larger sample, the probability bias from archaeological sites 

with a greater number of 14C samples is decreased. (Figure 3.6)  

 

 
Figure 3.6. Summed probability distributions illustrating the effect of the date combination 
process upon the entirety of the Caddo tradition dates, and upon those sites with ≥10 14C 
samples. 
 
 
 
 One trend noted early in the study was that the number of 14C dates increased 

through time; that is to say that there are fewer dates from Formative Caddo contexts than 
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there are from Late Caddo contexts. This trend was also noted in research by Surovell and 

Brantingham (2007) and Surovell et al. (2009), which addressed concerns of taphonomic 

bias. In the context of those studies, taphonomic bias was defined as "the tendency for 

younger things to be over-represented relative to older things in the archaeological record 

due to the operation of destructive processes like erosion and weathering" (Surovell et al. 

2009:1715).  As a curative measure, Surovell and Brantingham (2007) modeled taphonomic 

bias as an exponential function to account for the proportion of archaeological sites that are 

lost (per year) to destructive processes. They subsequently refined that model (Surovell et al 

2009). However, these models are most useful for discussions of deeper time than are 

covered within Caddo archaeology, and taphonomic correction of this dataset is not 

warranted (Todd A. Surovell, personal communication 2012). 

 

Temporal Considerations 

 Efforts to analyze the temporal nature of Caddo occupations across the East Texas 

landscape utilizing 14C dates assume that (1) 14C dates combined via OxCal X-test decrease 

probability bias introduced by larger site-specific samples, (2) the summed probability 

distribution for archaeological sites with 10 or more 14C assays illustrates the discrete or 

extended nature of 14C date ranges, and (3) median dates represent the age of highest 

probability within each 14C date range. Subsequent to date combination, the Caddo sample 

consists of 48 dates from the Red River basin, 25 dates from the lower Sulphur River basin, 

46 dates from the upper Sulphur River basin, 89 dates from the Cypress Creek basin, 56 

dates from the middle Sabine River basin, 42 dates from the upper Sabine River basin, 39 

dates from the upper Neches River basin, six dates from the middle Neches River basin, 
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and 59 dates from the Angelina River basin. The shift in sample size illustrates the reduction 

in the number of 14C dates from each of the river basins for sites with 10 or more assays 

(Table 3.4).  

Based on the radiocarbon data, Caddo sites dating after the early fifteenth century 

A.D. are uncommon in the upper Sulphur River basin, the upper Sabine River basin, the 

middle Neches River basin, and the Angelina River basin. Conversely, post-15th century 

A.D. Caddo sites are particularly well represented in the lower Sulphur River basin (Jelks 

1961), the Cypress Creek basin (Perttula 2004), the middle Sabine River basin (Fields and 

Gadus 2012), and the upper Neches River basin (Perttula et al. 2011), where distinct 

regional polities had developed and were flourishing. These polities are marked by higher 

regional populations than was the case prior to ca. A.D. 1400, as well as dense but localized 

clusters of settlements, public architecture (i.e., earthen mounds), and associated family and 

community cemeteries. Most notably, these polities also have evidence for broad social and 

political hierarchies, led by religious and political leaders known ethnographically as the 

Xinesi and Caddi (see Story and Creel 1982). 
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Table 3.4. Radiocarbon dates by Caddo Period and stream basin.  
 

 Site Name  Site Trinomial    Dates by Period 
 
       FC EC MC LC N 
_______________________________________________________________________ 
Red River Basin 
Hatchel3†   41BW3   - 2 3 2 7 
Cranfill 3•   41BW171  - - 3 - 3 
Dogwood Mound3†  41BW226  - - 1 - 1 
Mackin 3†   41LR39   1 5 1 - 7 
Ray3•    41LR135   2 4 2 - 8 
Stallings Ranch2•   41LR297   3 1 1 - 5 
Holdeman3†   41RR11    - 1 3 - 4 
Fasken3†    41RR14   - 2 - - 2 
Sam Kaufman3†   41RR16   - 5 2 2 9 
Rowland Clark3•   41RR77   - - 2 - 2 
       -------------------------------------------- 
 Totals 6 20 18 4 48 
 Blackland Prairie 3 1 1 - 5 
 Post Oak Savannah 3 19 17 4 43 
 
Lower Sulphur River Basin 
-1•    41BW553  - 2 1 1 4 
Weaver Creek1•   41BW692  - 1 - - 1 
Coker Mound1†   41CS1   - - 1 - 1 
Knight’s Bluff1•   41CS14   - - 2 - 2 
-1•    41CS150   - - 1 - 1 
-1•    41CS151   1 1 1 1 4 
-1•    41CS155   - - 1 - 1 
-1•    41MX5   - 1 - 2 3 
-1•    41TT406   - - 1 - 1 
-1•    41TT409   - 1 - - 1 
Ear Spool1†   41TT653   - - 4(1) 13(1) 17(2) 
-3•    41TT670   - 1 - - 1 
James Owens3•   41TT769   - - 1 2 3 
       -------------------------------------------- 
 Totals 1 7 13(10) 19(7) 40(25) 
 Pineywoods 1 6 12(9) 17(5) 36(21) 
 Post Oak Savannah - 1 1 2 4 
 
Upper Sulphur River Basin 
Tick2•    41DT6   1 - - - 1 
Spider Knoll2•   41DT11   7(-) 11(1) 4(1) - 22 (2) 
Spike2•    41DT16   5 1 1 - 7 
L. O. Ray2•   41DT21   1 - - - 1 
-2•    41DT50   - - 1 - 1 
Luna2•    41DT52   - 1 1 - 2 
John’s Creek2•   41DT62   1 1 - - 2 
-2•    41DT63   1 2 - - 3  
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Table 3.4. Continued 
 

Site Name  Site Trinomial    Dates by Period 
 
       FC EC MC LC N 
_______________________________________________________________________ 
Thomas 2•   41DT80   - 5 - - 5 
Doctors Creek2•   41DT124  1 4 - - 5 
Lawson 2•   41HP78   - 2 - - 2 
Arnold2•    41HP102  1 8(1) 2(1) - 11(2) 
Hurricane Hill2•   41HP106  2 3(1) 6(2) - 11(3) 
-2•    41HP116  - - 1 - 1 
Finley Fan2•   41HP159  - - 1 - 1 
Peerless Bottoms2•  41HP175  - 1 7(1) 3(1) 11(2) 
Tuinier Farm3•   41HP237  - - - 2 2 
       ------------------------------------------------ 
 Totals 20(13) 39(20) 24(10) 5(3) 88(46) 
 Blackland Prairie 20(13) 39(20) 24(10) 3(1) 84(44) 
 Post Oak Savannah - - - 2 2 
 
Cypress Creek Basin 
Tuck Carpenter1°   41CP5   - - - 1 1 
Harold Williams1•   41CP10   - - - 1 1 
Shelby Mound1†   41CP71   - - 4 4 8 
-1•    41CP88   - 1 - 4 5 
Kitchen Branch1•   41CP220   3(1) 1(1) 10(3) 3(1) 17(6) 
Underwood1•   41CP230   - - - 1 1 
Polk Estates1•   41CP245   - 1 1 - 2 
Pilgrim’s Pride1†   41CP304   - - 10(1) 19(1) 29(2) 
-1•    41CP313   - - 1 1 2 
-1•    41CP316   - - - 2 2 
Honey Suckle1•   41CP335   - - - 1 1 
Hickory Hill1•   41CP408   - 1(1) 14(2) 12(1) 27(4) 
New Hope1•   41FK107  - - 1 - 1 
Mound Pond1†   41HS12   - 2 - - 2 
Keith1†    41TT11   - - 1 - 1 
-1•    41TT154   - 1 - - 1 
-1•    41TT372   - 1 3 - 4 
-1•    41TT373   - - - 1 1 
Mockingbird1•°   41TT550   1 3 1 4 9 
-1•    41TT672   - - - 1 1 
George E. Richey1•  41TT851   3(2) 1(-) 36(4) 4(1) 44(7) 
William A. Ford1•   41TT852   1(1) - 22(3) 15(1) 38(5) 
James E. Richey1•   41TT853   1(1) - 4(1) 15(1) 20(3) 
S. Stockade1•   41TT865   - - - 1 1 
Harroun1†   41UR10   - - 2 - 2 
Dalton Mound1†   41UR11   - - 1 - 1 
Seahorn1•   41UR105  1 - - - 1 
Kelsey Creek Dam1•  41UR118  - - - 3 3 
Verado1•    41UR129  1 - 1 - 2 
Rookery Ridge1†   41UR133  - - 4(1) 6(1) 10(2) 
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Table 3.4. Continued  
_______________________________________________________________________  
Site Name  Site Trinomial    Dates by Period 
 
       FC EC MC LC N 
_______________________________________________________________________ 
Griffin Mound1•   41UR142  - - 1 - 1 
Camp Joy1†   41UR144  - - - 2 2 
S. Lilly #41•   41UR279  - 1 1 - 2 
Henry Spencer1°   41UR315  - - - 2 2 
       --------------------------------------------- 
 Totals 11(8) 13(12) 118(33) 103(36) 245(89) 
 Pineywoods 11(8) 13(12) 118(33) 103(36) 245(89) 
 
Middle Sabine River Basin 
Hardin-A1•   41GG69   - - 2 - 2 
Pine Tree Mound1†  41HS15   - - 27(3) 65(2) 92(5) 
-1•    41HS231   - - 5 - 5 
-1•    41HS573   - - - 1 1 
-1•    41HS574   - - 1 - 1 
-1•    41HS588   - - 5 4 9 
-1•    41HS843   - - - 1 1 
-1•    41HS846   - - 2 - 2 
Tom Moore1†   41PN149  - - - 1 1 
-1•    41PN175  - - - 1 1 
Hudnall-Pirtle1†   41RK4   - 4 - - 4 
Oak Hill Village1†   41RK214  1(1) 4(-) 26(2) 1(1) 32(4) 
Herman Ballew 1•  41RK222  2 - - 1 3 
-1•    41RK342  - - 1 - 1 
-1•    41RK468  - - 1 - 1 
-1•    41RK557  1 - 3 1 5 
-1•    41RK558  - 2 1 1 4 
-1•    41RK562  - - 1 - 1 
Buddy Hancock1•   41SY45   - 1 - - 1 
       --------------------------------------------- 
 Totals 4(4) 11(11) 75(27) 77(14) 167(56) 
 Pineywoods 4(4) 11(11) 75(27) 77(14) 167(56) 
 
Upper Sabine River Basin 
P41•    41SM53   - 1 - - 1 
Jamestown3†   41SM54   - - 1 - 1 
Bryan Hardy1†   41SM55   - - 1 - 1 
Henry Chapman1•   41SM56   - - 1 - 1 
Redwine1†   41SM193  - - 1 1 2 
Wolf1•    41SM195  - - 1 - 1 
Browning1•   41SM195A  1 - - - 1 
Leaning Rock1•   41SM325  - 1 5 - 6 
Boxed Springs1†   41UR30   - 2 - - 2 
Carlisle1•    41WD46   - - 1 - 1 
McKenzie1†   41WD55   - - 8 - 8 
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Table 3.4. Continued 
_______________________________________________________________________  
Site Name  Site Trinomial    Dates by Period 
 
       FC EC MC LC N 
_______________________________________________________________________ 
Quitman Lake   41WD60   - - 2 1 3 
  Burial Site3° 
Osborn3•   41WD73   1 - - - 1 
Spoonbill3•   41WD109  - 2 3 - 5 
-3°    41WD244  - - - 1 1 
Turbeville3•   41WD382  - - 1 - 1 
Hines3•    41WD450  - 1 - - 1 
Taddlock3•   41WD482  - 3 1 - 4 
Steck3•    41WD529  - - 1 - 1 
       -------------------------------------------- 
 Totals 2 10 27 3 42 
 Pineywoods 1 4 18 1 24 
 Post Oak Savannah 1 6 9 3 19 
 
Upper Neches River Basin 
Emma Owens1•   41AN21   - - - 1 1 
Fred McKee1°   41AN32   - - - 1 1 
Pierce Freeman1°   41AN34   - - - 1 1 
Lang Pasture1•   41AN38   3(1) 1(1) 16(3) 2(1) 22(6) 
Pace McDonald1†   41AN51   - - 2 - 2 
Ferguson1•   41AN67   - - - 1 1 
Alcoa No. 11•   41AN87   - - 2 2 4 
Solon Stanley1°   41CE3   - 1 - - 1 
A. H. Reagor1°   41CE15   - - - 1 1 
-1•    41CE299  - 1 - 2 3 
Kah-hah-ko-wha1•  41CE354  - 1 1 4 6 
Woldert1•   41HE80   - - 1 - 1 
-1•    41HE139  - - 1 - 1 
-1•    41HE257  1 - - - 1 
-1•    41HE343  - - - 2 2 
Lindsey Park1°   41SM300  - - - 1 1 
-1•    41SM404  1 - 5 - 6 
       -------------------------------------------- 
 Totals 5(3) 4(4) 28(15) 18(17) 55(39) 
 Pineywoods 5(3) 4(4) 28(15) 18(17) 55(39) 

 
Middle Neches River Basin 
George C. Davis1†  41CE19   29(1) 54(-) 31(2) 1 115(3) 
Hargrove Lake1•   41HO150  - - - 1 1 
Nabedache Azul1•   41HO214  - - - 1 1 
Butler Branch1•   41HO216  - - 1 - 1 
       --------------------------------------------- 
 Totals 29(1) 54(-) 32(2) 3 118(6) 
 Pineywoods 29(1) 54(-) 32(2) 3 118(6) 

 
 



 

83 

 

Table 3.4. Continued 
_______________________________________________________________________  
Site Name  Site Trinomial    Dates by Period 
 
       FC EC MC LC N 
_______________________________________________________________________ 
Angelina River Basin 
Chayah1•    41NA44   1 - 1 1 3 
Washington Square1†  41NA49   2 2 3 - 7 
Tallow Grove1•   41NA231  - 2(1) 12(2) 1 15(3) 
Foggy Fork1•   41NA235  - - 4 1 5 
Naconiche Creek1•  41NA236  5 - 2 1 8 
Beech Ridge1•   41NA242  - - 8(1) 2(1) 10(2) 
Stroddard1•   41NA243  - 1 - - 1 
Jas. Miles1•   41NA247  - - 1 - 1 
Miles Boundary1•   41NA248  - - 2 - 2 
Telesco1•   41NA280  - - - 3 3 
Boyette1•   41NA285  2 2 2 - 6 
Nawi haia ina1•   41RK170  - 4(1) 6(2) 1(1) 11(4) 
Sawmill1•   41SA89   - 1 - - 1 
Blount1•    41SA123   - - - 1 1 
Broadway1•   41SM273  5 - 2 - 7  
Tyson1•    41SY92   - - 4 - 4 
       -------------------------------------------- 
 Totals 15 12(8) 47(26) 11(10) 85(59) 
 Pineywoods 15 12(8) 47(26) 11(10) 85(59)
  
______________________________________________________________________________ 

1=Pineywoods, 2=Blackland Prairie, 3=Post Oak Savannah; †=Mound Center, • Settlement, ° Cemetery; 
FC=Formative Caddo, ca. A.D. 800-1000; EC=Early Caddo, ca. A.D. 1000-1200; Middle Caddo, ca. A.D. 
1200-1450; Late Caddo, ca. A.D. 1450-1680+; numbers in parentheses indicate results from the date 
combination process 
 
 

  
Spatial Considerations 

  The spatial divisions of the nine river basins crosscut three natural regions: the 

Blackland Prairie, Post Oak Savannah, and the Pineywoods (see Figure 3.2). While no sites 

with 10 or more 14C samples occur in the Post Oak Savannah, this natural region is well-

represented by sites with less than 10 14C samples (see Table 3.4). Of the spatial divisions by 

stream basin, five occur only in the Pineywoods (Cypress Creek, middle Sabine River, upper 

Neches River, middle Neches River, and Angelina River basins), two in the Blackland 

Prairie and Post Oak Savannah (Red River and upper Sulphur River basins), and two in the 
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Pineywoods and Post Oak Savannah (lower Sulphur River basin and upper Sabine River 

basins) (Figure 3.7).  

 
 
Figure 3.7. Summed probability distributions by spatial divisions and natural regions. 
 
 
 
 In most instances where dated archaeological sites occur in the Pineywoods, 14C 

dates range from the Formative to the Late Caddo period, indicating a long-lasting 

continuity in settlements in this natural region. In the upper Sabine River and Angelina 

River basins, however, dated sites are rare after the early fifteenth century A.D. Perttula and 
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Rogers (2007) have suggested that drought-bearing climatic conditions beginning in the 

mid-fifteenth century may have led to the abandonment or lessened use of some parts of 

East Texas where agricultural economies were at risk. Sites in the Blackland Prairie are 

defined by a bimodal probability distribution in the Red River basin, and a more continuous 

probability distribution in the upper Sulphur River basin for Formative, Early and Middle 

Caddo periods. The natural region with the greatest amount of temporal variability in dated 

sites is the Post Oak Savannah. To better illustrate the differing settlement trends in this 

region (per 14C dates), probability distributions are used to demonstrate that Formative 

Caddo (ca. A.D. 800-1000) settlements appear first in the Red River basin, followed by the 

Early Caddo (ca. A.D. 1000-1200) settlements in the lower Sulphur River basin, and Late 

Caddo (ca. A.D. 1450-1680) settlements in the upper Sulphur River basin (although only 

represented by only two 14C dates) (Figure 3.8). 

 

Conclusions 

 While the specifics of each probability range can be challenging to discern without 

the raw numbers, it is possible to manipulate a large sample of 14C dates to create a regional 

model that highlights the temporal character of specific sites, where the cause of the 

differing temporal spans illustrated in the probability distributions associated with each 

episode can be correlated with the 14C calibration curve (see also Bamforth and Grund 

2012). The temporal analysis presented here effectively reduces bias introduced by sites with 

large numbers of 14C dates, providing the means by which the number and character of the 

14C dates—in lieu of relative occupational episodes (see Rick 1987:56; Kuzmin and Keates 

2005:780)—can be conveyed more meaningfully. 
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Figure 3.8. Summed probability distributions by site type. 
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 This approach to the interpretation of 14C data is fruitful, but whether it is capable 

of rendering accurate predictions regarding "occupation intensity" (see Rick 1987:67) or the 

"intensity of human occupation" (see Kuzmin and Keates 2005:773) warrants further 

consideration. In this instance, we consider the temporal dynamics of the East Texas Caddo 

radiocarbon database through site-specific analyses. Once refined through the date 

combination process, this approach provides a more accurate measure of regional 

occupation once a sufficient sample of well-dated Caddo sites throughout East Texas 

stream basins and environmental habitats is obtained. Certainly changes in the frequency of 

14C dates may be employed as a proxy for indicating population fluctuations (Peros et al. 

2010), but it is best to remain skeptical as chronological models are continually refined 

(Bamforth and Grund 2012). 

 The date combination process, when paired with summed probability distributions 

for 19 important sites with 10 or more 14C samples, has led to the establishment of more 

precise temporal ranges for specific Caddo occupations of East Texas. Within the context 

of an ongoing synthesis of research concerning all available Caddo radiocarbon dates in the 

four-state Caddo area, this method can be used to explore the temporal range of sites, and 

their combination can be a means of highlighting both temporal and spatial trends within 

the Caddo archaeological tradition (ca. A.D. 800-1680). Taken together and in combination 

with archaeological assemblage data, the analysis of Caddo radiocarbon dates can identify 

features and occupational events that are archaeologically contemporary across the larger 

region. The volume of 14C dates from East Texas is fairly robust, and it is becoming easier 

to explore "[t]he actual relations between data points…instead of boxes of our own cryptic 

creation" (Dunnell 2008:64). 
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 With the decreasing cost of attaining accurate 14C determinations from much smaller 

samples, archaeologists are becoming more mindful of the research potential that 14C dates 

can offer (see Kuzmin and Keates 2005; Rick 1987; Steele 2010; Williams 2012). One trend 

evidenced here and in other studies (see Surovell and Brantingham 2007; Surovell et al. 

2009) is that the number of younger components outnumbers that of older components. 

This observation plays an integral role in the recent push toward highlighting fluctuations in 

prehistoric demography via radiocarbon (Bamforth and Grund 2012; Buchanan et al. 2008; 

Faught 2008; Hinz et al. 2012; Peros et al. 2010), and the curative methods advanced to 

correct for taphonomic bias (Surovell and Brantingham 2007; Surovell et al. 2009). 

 Advances in combining the analysis of 14C with data from other sources—

stratigraphic contexts (Bronk Ramsey 1995, 2007; Michczynski and Pazdur 2003), phases 

(Buck et al. 1991; Ziedler et al. 1998), architecture (Bayliss et al. 2007; Whittle et al. 2011), 

palaeoenvironmental records (Gearey et al. 2009), tephrochronology (Buck et al. 2003), 

climate (Kidder 2006), and ceramics (Buck et al. 1992)—provide an integral toolkit for 

exploring potential associations between 14C determinations and archaeological datasets, 

providing testable hypotheses that can be validated or falsified with the addition of more 

data (Bayliss and Ramsey 2004). Bayesian analyses of radiocarbon data have been employed 

for over 15 years in Great Britain (Bayliss 2009; Bronk Ramsey 2008, 2009; Buck et al. 1996) 

with great success. Within the context of Caddo archaeological studies, further analysis of 

the trends highlighted here will aid in the development of more substantive and empirically-

supported hypotheses and theories of culture change in East Texas and the larger Caddo 

area.  

 While it is certain that more 14C dates are needed to identify more specific temporal 
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and spatial patterns that characterize the Caddo tradition, this synthesis of data from the 

ETRD represents the initial undertaking in that endeavor. More attention should be given 

to the appearance and temporal character of specific types of sites in the future (i.e., mound 

centers, settlements, cemeteries, etc.), as well as for better known sites within regions whose 

material culture assemblages (particularly ceramic vessels and sherds) are becoming 

increasingly well known. This will serve to further elucidate the temporal progression or 

abandonment of East Texas Caddo communities through the detailed consideration of 

micro-stylistic changes in ceramic assemblages (see Girard 2012) that can be associated with 

suites of calibrated radiocarbon dates. 
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CHAPTER IV 

EPISTEMOLOGY AND SYNTHESIS: INSTRUMENTAL NEUTRON ACTIVATION 

ANALYSIS OF ANCESTRAL CADDO CERAMICS 

 
 
 

Overview 
 

The work presented in this chapter will be submitted to the Journal of Archaeological 

Science. Ceramic provenance studies remain the basis of worldwide archaeological research 

concerned with reconstructing exchange networks, tracing migrations, and informing upon 

local and regional ceramic economy. Due to the vagaries of Texas geology, traditional 

geochemical techniques (instrumental neutron activation analysis in particular) have not 

achieved the degree of success in Texas as within other regions. This paper presents a 

synthesis of Caddo INAA research, highlighting the results of analyses and positing future 

directions for endeavors that remain focused upon the provenance of ceramic vessels 

within the ancestral Caddo territory. 

 

Introduction 
 
 Paradigms—as defined by Kuhn (1962:viii)—are “…universally recognized scientific 

achievements that for a time provide model problems and solutions to a community of 

practitioners.” That being the case, Caddo archaeology has passed through a number of 

theoretical paradigms in the last 80 years. The early years spawned a wealth of knowledge in 

the form of Culture History, and while standing philosophically on the shoulders of 

Kroeber (1919) and Childe (1932), this represents the basis of Sayles’ (1935) synthesis of 
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Texas archaeology, Krieger’s (1944, 1946) horizons and chronology-building of the Caddo 

archeological record, and Swanton’s (1942) source material, as well as two subsequent 

landmark contributions that represent the foundations of our current typological 

understanding of Caddo—and Texas—material culture (Suhm et al. 1954; Suhm and Jelks 

1962). The 1960s marked a significant turning point in the discipline, focusing upon the 

development of archaeology as a science. The principal arbiter of this new way of thinking 

was Lewis Binford, who began to vehemently question the efficacy of the historical (i.e., 

Culture History) approach (Binford 1968).  

 The “new archaeology” helped to shape much of the practice of archaeological 

research, and its impact can be seen in a large number of archaeological contributions 

spanning the 1970s through the present. Since adopting a more or less processual 

perspective (Shafer 1973, 2011), not much has changed within the realm of Caddo theory; 

however, this is not to say that there were no efforts made to pull Caddo archaeology 

toward and into other theoretical debates. Schambach’s (1998) discussion of pre-Caddoan 

cultures, and Brooks’ (1996) “revisionists perspectives,” tried to do just that.  

Holding true to the processual approach in vogue within the region, instrumental 

neutron activation analysis (INAA) has been employed in the context of ceramic studies 

focused upon the Caddo tradition since 1995 in an effort to generate probable zones of 

ceramic manufacture and use (Ferguson 2007; Perttula and Ferguson 2010). This article 

provides a general synthesis of the results of INAA endeavors in the ancestral Caddo 

territory over the past 17 years, and possible avenues for future research.   

 Thanks to significant assistance from several Caddo archaeologists, the geochemical 

data from all previous Caddo INAA endeavors has been assembled, and is used as the basis 
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for this endeavor. Those data include 1281 assays from 171 archaeological sites across the 

traditional Caddo landscape of southwest Arkansas, northwest Louisiana, east Texas, and 

southeast Oklahoma. Included within the current database are an additional 57 assays of 

Caddo ceramics recovered from 17 sites in Central Texas that fall beyond the geographic 

extent of the Southern Caddo Area (Figure 4.1).  

 

 
Figure 4.1. Geographic extent of the Southern Caddo Area. 
 
 
 

Archaeological Epistemology of Caddo INAA Research 
 
 When viewing the current geochemical data set, it is hard to believe that the foundation 

of Woodland and Caddo-based INAA research began with only 22 samples processed by 
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the National Institute of Standards and Technology (Steponaitis et al. 1996). Within that 

initial analysis, dominant clay minerals from each of several defined provinces in Eastern 

North America were identified (see Steponaitis et al. 1996:Figure 5), forming the core of the 

first region-based discussion (Steponaitis et al. 1996:555-557). Ceramic sherds from a few 

Caddo sites were assigned to the Western geographic area based upon the analysis of 

geochemical elements (Steponaitis et al. 1996:Figure 4), which appeared to segregate the 

sample based upon two clay-mineral provinces, the Western Gulf (dominated by smectite, 

illite and kaolinite), and the Ouachita-Ozark (dominated by kaolinite, illite and chlorite) 

(Steponaitis et al. 1996).  While the Western Gulf province was relatively well-defined, the 

Ouachita-Ozark was represented only by ceramics from Spiro, a number of which were 

more chemically similar to the Eastern geographic area than that of the Ouachita-Ozark 

(Steponaitis et al. 1996). However, it was the calcium correction formula developed by 

Steponaitis et al. (1996:559) that proved to be their most valuable contribution from that 

initial undertaking. This correction (1) was undertaken due to the large amount (75.8%) of 

that initial sample that was found to be shell-tempered (Steponaitis et al. 1996:557). 

 

𝑒′ =  
106𝑒

106 − 2.5𝑐
 

 
 

Caddo INAA Research in the 1990s 
 
 The analysis of 40 ceramic samples from the Hurricane Hill (41HP106) site with 

Woodland, Early, and Middle Caddo period ceramic components represents the initial 

effort to incorporate the study of INAA in cultural resources management endeavors. This 

analysis was also significant in that it signaled the entrance of the University of Missouri’s 
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Research Reactor Center (MURR) into the realm of Caddo research. While this report 

highlighted two potential source zones—one of which was deemed non-local-- the raw data 

from the 40 vessels analyzed were also presented and later synthesized  (Neff et al. 1998; 

Perttula et al. 1998) with 10 sherds from the Mockingbird site (41TT550) and 16 sherds 

from the Middle Caddo occupation at the Oak Hill Village site (41RK214). 

 Prior to embarking upon the quantitative analysis, MURR noted that Neodymium (Nd), 

Nickel (Ni), and Zirconium (Zr) were not determined for those samples from the NIST 

sample, and they were eliminated from the analysis of the Mockingbird analysis for this 

reason (Neff et al. 1998:256-257). MURR also eliminated calcium (Ca) and strontium (Sr) 

due to the presence of shell-tempered sherds within the Hurricane Hill specimens, noting 

large analytical errors in Sr that limits the usefulness of this element even for those sherds 

without shell temper (Neff et al. 1998:257). While not employed within the framework of 

that endeavor, Cogswell et al. (1998:71) point out that freshwater mussel shell has the 

capacity to introduce significant amounts of Ca, Sr, Sodium (Na) and Manganese (Mn) to 

the ceramic paste, and the resulting values can be corrected more readily with mathematical 

equations rather than by chemical means. However, this study did not employ the calcium 

correction, but it was the first—in terms of Caddo INAA—to employ a measure of 

Mahalanobis distance to identify the probability of group membership for each specimen. 

 

𝐷𝑦,𝑋
2  = [𝑦 − �̅�]𝑡 𝐼𝑥[𝑦 − �̅�] 

 
 

A subsequent analysis (Cogswell et al. 1998:66) of shell-tempered pottery replicates found 

that only Ca, Sr, Mn, and sodium (Na) “approached or exceeded the values in Ohio Redart 

clay and the southeastern Missouri clays” that were used in their experiment. They 
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concluded that while elemental values for freshwater mussel shell lack the variability 

necessary to demarcate between mussel species, they do add significant amounts of those 

elements mentioned above.  

 

Caddo INAA Research, 2000-2002 
 
 Due to the potential success of INAA in demarcating probable sources of ceramic raw 

materials and highlighting specific instances of what could be described as trade or 

exchange, Perttula (1999) submitted and was subsequently awarded by MURR a mini-NSF 

grant in an effort to expand the scope of this endeavor. The mini-grant allowed sherds 

submitted to MURR to be analyzed by INAA at a low NSF-subsidized rate, not the normal 

contract rate. By the year 2000, more than 220 samples of Caddo ceramics had been 

analyzed using INAA, but the volume of sherds submitted and analyzed soon increased 

dramatically, and Perttula’s efforts proved remarkably fruitful. The first of the reports on 

these INAA results emerged in February of 2000 (Perttula 2000a, 2000b), and  included 

sherds from the Audrey (11GE20) site in Illinois, as well as the Tom Moore (41PN149), 

Hardy (41SM55), and Redwine (41SM193) sites in Northeast Texas. Within these reports 

was the initial INAA-based discussion of trade and exchange for Caddo ceramics (Perttula 

2000a:1, 2000b:4). The Holly Fine Engraved sherd submitted from the Audrey site (dating 

ca. A.D. 1050) was found to be manufactured in Northeast Texas, and thus was considered 

a product of trade between the Caddo and Illinois-based Mississippian groups (Perttula 

2000a:1). Ceramics in the same compositional group (Titus, as named by MURR based on 

the county where the group seemed most frequent) were traded or exchanged within the 

Sulphur and Red River areas of the Caddo region. Those sherds from the Tom Moore, 
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Hardy, and Redwine sites in Northeast Texas were found to primarily illustrate local 

manufacture, with some instances of inter-group trade among the Caddo (Perttula 2000b:4) 

(Figure 4.2).  

 The third report based on the NSF mini-grant surfaced in March of 2000, and was 

composed of an analysis of seven shell-tempered sherds from two Walnut Focus sites—

Shrope (14CO331) and Radio Lane (14CO385)—in Cowley County, Kansas (Perttula 

2000c:1). Sherds from the engraved vessels were found to have been manufactured by 

McCurtain phase Caddo groups in Northeast Texas and Southeast Oklahoma, indicating 

trade or exchange with prehistoric and protohistoric Wichita groups living on the Southern 

Plains (Perttula 2000c:4). The red-slipped sherd was assigned to the Red River 2 group, 

which was defined on the basis of ca. A.D. 1500 shell-tempered sherds originating at the 

Sam Kaufman-Roitsch site (41RR16) (Perttula 2000c:4). 

 Three subsequent reports (one on July 14, and two on July 17) divulged findings from 

the Helm (3HS449) site in Arkansas, and the Washington Square Mound (41NA49), Mast 

(41NA157), Guadalupe del Pilar (41NA223), Mission Dolores de los Ais (41SA125), 

41SY45, Tyson (41SY92), and Henry M (41NA60) sites in Northeast Texas (Perttula 2000d, 

2000e, 2000f). The sherds from the Helm site indicated manufacture by Caddo groups in 

Northeast Texas and trade with other Caddo groups in southwestern Arkansas (Perttula 

2000d:1). All of the sherds from the Northeast Texas sites were found to have been the 

product of local manufacture (Perttula 2000e:2, 2000f:2). 
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Figure 4.2. Caddo ceramic chemical groups in Northeast Texas (Perttula 2001: Figure 1). 
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 In December of 2000, a report of Woodland and Caddo-era sherds from sites in 

Cherokee (41CE19), Smith (41SM54, 41SM56, 41SM87, 41SM144, 41SM197, 41SM213, 

and 41SM223), and Wood (41WD524) counties emerged (Perttula 2000g). Of the sherds 

submitted for analysis, 13 of 18 were assigned to the Titus group, and only one from the 

George C. Davis site (41CE19)—the Titus group sherd—was found to have been a 

potential trade vessel (Perttula 2000g:3). The only other trade vessel within this sample was 

the sherd from the Arnold Glenn site (41WD524) (Perttula 2000g:3).  

 In an effort to synthesize his findings, Perttula (2000h) offered a discussion of five 

Lower Walnut focus (ca. A.D. 1400-1700) sites—Larcom-Haggard (14CO1), Arkansas City 

Country Club (14CO3), Shrope (14CO331), Living the Dream (14CO382), and Radio Lane 

(14CO385)—near Arkansas City, Kansas. Of note is that Perttula’s synthesis also employed 

the use of point-count data (200 points per thin-section) from the Lower Walnut focus 

sherds in a petrographic database (more than 250 sherds at that time) used in Northeast 

Texas (Perttula 1999). In this report, Perttula (2000h:10) reiterates that the geochemical 

evidence points to regular interaction between late prehistoric and protohistoric Wichita 

groups from the Walnut River area of south central Kansas and southern Caddo 

populations in the Red River, Big Cypress Creek, and Sabine River basins of Northeast 

Texas ca. A.D. 1300-1700 (Perttula 2000h:10).  

 In 2001, Perttula (2001) published a request in Caddoan Archeology to colleagues for more 

INAA samples to be submitted for INAA. Within that request, he appealed to professional 

and avocational archeologists to “identify sites and collections worthy of INAA,” noting 

that “[l]uckily, almost any collection of Caddo sherds will suffice” (Perttula 2001:24). At that 

point in time—through the use of the NSF mini-grant—INAA had been conducted on 12 
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sherds from two sites in southwestern Arkansas, 19 sherds from eight sites in northwestern 

Louisiana, 38 sherds from four sites in southeast Oklahoma, and 481 sherds from 103 sites 

in northeast Texas, as well as those previously mentioned sherds from Illinois and Kansas  

(Perttula 2001:21). Despite that request, no Caddo archeological colleagues provided 

additional sherds for INAA. 

 The next of the NSF mini-grant analytical efforts was released in November 2002 

(Perttula 2002a). This report was focused upon sherds from U.S. Forest Service lands of 

Northeast Texas in Houston (41HO150), Sabine (41SB157), Shelby (41SY43), and Walker 

(41WA218) counties (Perttula 2002a). Of the sherds submitted, those from 41HO150 and 

41WA218 may have been trade vessels, the latter of which may have been manufactured by 

a Caddo group in the Neches-Angelina river basin (Perttula 2002a:7-10).  

 In his 2002 synthesis that highlights the long-distance exchange of Caddo ceramic 

vessels (Figure 4.3), Perttula (2002b) illustrates that none of the Kansas trade vessels 

associated with the Caddo were from contexts suggesting that they were prestige goods, but 

some have evidence of maintenance, which may indicate that these vessels were highly 

valued (Perttula 2002b:95). Nearly two-thirds of the Central Texas sample were potentially 

manufactured by Caddo potters in the Sabine and Big Cypress Creek basins, the remainder 

being attributed to different Caddo potters from the southern Sabine and Neches-Angelina 

river basins (Perttula 2002b:96). Perttula (2002b:100) mentions that Caddo ceramics made 

by the Red River groups were not traded heavily to the hunter-gatherers of Central Texas, 

suggesting that differing traditions and trade networks may have existed for different 

purposes.  He also mentions the Caddo connection with Illinois in reviewing the evidence 
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for the Holly Fine Engraved vessel from the Audrey site (11GE20), which was found to 

have been manufactured in Northeast Texas (Perttula 2002b:97).  

 

 
Figure 4.3. The southern and northern Caddo area and sites with evidence of the long-
distance trade of Caddo ceramics (Perttula 2002b:Figure 5.1). 
 
 
 
Caddo INAA Research, 2003-2006 
 
 In their appraisal of the ceramic sherds from the Hatchel site (41BW3), Speakman and 

Perttula (2003a:162) concluded that all of the samples—including Keno Trailed, Hodges 

Engraved, and Simms Engraved sherds—were locally manufactured. Three sherds were 

unable to be assigned to the current chemical compositional groups, but the rest were 

attributed to the Red River and Titus groups (Speakman and Perttula 2003a:162).  
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 It was the report from the Alex Justiss site (41TT13) that marked a shift in method 

where MURR began to employ a search of their comparative database to identify 

compositionally similar specimens using the average Euclidean distance: 

 

𝐸𝐷𝑎,𝑏 =
√∑ (𝑎𝑖 − 𝑏𝑖)2𝑚

𝑖=1

𝑚
 

   
 
where a and b are vectors containing m elemental concentrations for the two individual 

specimens being compared (Speakman and Glascock 2003:4). This report also marked a 

fundamental shift in which the discussion of ceramic provenance shifts from one of trade, 

exchange, and commerce, to one of local versus non-local production (see Speakman and 

Glascock 2003:5). It is also the first of many reports to return with a smaller number of 

sherds assigned to the established groups than the unassigned category (i.e., three assigned 

to Titus group, five unassigned), foreshadowing the forthcoming breakdown in the 

interpretation of this dataset, which would ultimately force a reconsideration of the efficacy 

of the groups initially defined by Neff et al. (1998) (see Speakman and Glascock 2003:12). 

Of those three sherds assigned to the Titus group, all were determined to have been of local 

manufacture (Speakman and Glascock 2003:5).  

 As of July 22, 2003, there were 785 INAA samples in the MURR database (Speakman 

2003). In his analysis of the 10 sherds from the Hatchel site (41BW3), Speakman (2003) 

assigned one to the Titus group, five to the Red River Reference group, and the remaining 

four remained unassigned.  

 In his report on September 3, 2003, Descantes (2003a) identified two new 

compositional groups that included the Grog group (characterized by low potassium [K] 
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concentrations), and the SM273 group (characterized by high arsenic [As] concentrations, 

and based on sherds from the Broadway site [41SM273]) in his analysis of 161 new INAA 

samples from East Texas sites. Within that sample were 45 sherds that were unable to be 

assigned to the current groups that were ultimately found—based upon the previously 

mentioned measure of Euclidean distance—to be compositionally similar to those from the 

Ohio Valley (n=1), Central Texas (n=1), Mississippi (n=3), Unknown (n=16), and Local 

(n=24); local context is defined by Descantes (2003a:4) as Northeast Texas or Northwest 

Louisiana based upon the current sample from the Caddo region.  

 This is the first report from MURR to request the addition of raw clay samples from the 

Caddo area in an effort to identify resource zones to better answer questions of clay 

procurement and ceramic production through time (Descantes 2003a:39). Descantes 

(2003a:4) also helped to clear up misconceptions regarding the Sandy Paste group that was 

defined by Neff (2001), adding that quartz sand can act as an intert dilutent. Perhaps more 

importantly, Descantes (2003a:39) mentioned that:  

 

[w]e believe we have reached a point of diminishing returns with the ceramic 

samples because the pastes in the ceramic samples originate from alluvial 

clays and ompositionally fit into the continuum predominated by the Titus, 

Red River, and Rusk groups. 

 

 At this time, there were 145 unassigned samples within the whole of the Caddo INAA 

database (Descantes 2003a).  
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 Three months later (November 17, 2003), Descantes (2003b:1) dissolved the Grog 

group, noting that the Grog and Cypress-1 group overlapped on every projection with the 

exception of titanium (Ti). The SM273 group was renamed “Mud Creek,” but was 

subsequently merged with the Smith group, effectively dissolving it as well (Descantes 

2003b:2). He also points out that the Cypress-2 group has a tendency to be enriched with 

aluminum (Al), antimony (Sb) and scandium (Sc), while Hurricane-2 is enriched in tantalum 

(Ta) and Ti (Descantes 2003b:2). Of particular note is that Descantes (2003b:18) recants his 

previous remark regarding the potential for diminishing returns with INAA, mentioning 

that “more samples may…help refine existing chemical composition groups that have few 

members.”  

 Following this, Perttula (2003a) reported on 31 sherds from the Festervan (16BO327), 

Mounds Plantation (16CD12), Onion Island (16CD218), Pace (16DS268), Robleau 

(16DS380), and Black Lake Bayou (16NA587) sites in northwestern Louisiana. In that 

report he points out that sherds from the Cypress-1 group have been found on both Middle 

and Late Caddo sites in the Big Cypress Creek basin of northeastern Texas, and within areas 

of Central Texas “where they must have been traded/exchanged with non-Caddo hunter-

gatherers” (Perttula 2003a:5). Those sherds originating from the Onion Island and Pace 

sites that were assigned to the Titus chemical group may demonstrate the prehistoric use of 

two discrete clay sources (Perttula 2003a:6).  

 The last of the NSF mini-grant Caddo INAA projects at MURR was from the Los 

Adaes (16NA16) site, also in northwestern Louisiana (Perttula 2003b). Of the two sherds 

that indicated possible trade or exchange with Northeast Texas Caddo groups, one came 

from a Patton Engraved vessel from the Mud Creek compositional group, and the other 
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came from a parallel incised bone-tempered sherd that was likely produced in the Neches-

Angelina river basin (Perttula 2003b:5).  

 In a successive effort, Perttula (2003c) reports the findings of INAA at the Nawi haia 

ina (41RK170) site in northeastern Texas. While two of the sherds could not be assigned to 

ceramic compositional groups (see Descantes 2003a), the remainder of the sample was 

assigned to the Titus group, which was defined on the basis of Caddo ceramics from the 

Big Cypress and Sabine River basins (Perttula 2003c:335). The sherds within the Titus 

group sample contain enough variability (based upon Mahalanobis distance calculations) to 

infer the possible use of two different clay sources (Perttula 2003c:335). 

 Dr. Darrell Creel and Dr. Samuel Wilson from the University of Texas then submitted 

50 samples from the George C. Davis (41CE19) site for analysis via INAA (Descantes et al. 

2003, 2004). Using the standard suite of multivariate statistics employed at MURR, 39 

(78%) of the samples were assigned to the Smith compositional group, and two were 

assigned to Titus (Descantes et al. 2003:5). In a comparison of ceramics from the Davis and 

Washington Square Mound (41NA49) ceramics mentioned earlier, they found that—while 

having similar geochemical compositions—the Wasington Square and Smith groups can be 

shown to separate statistically, and they illustrate this with a bivariate plot of scandium (Sc) 

and Mn (Descantes et al. 2003:8). In the first published report of Caddo INAA results since 

Perttula’s (2002b) synthesis, Descantes et al. (2003:126) discuss the elephant in the room, 

pointing out that: 

 

No clear chemical discriminations exist between these [Red River, Rusk and 

Titus] compositional groups, although Red River members tend to be 
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enriched in transition metals and Rusk members tend to have higher rare 

earth (or Lanthanide) concentrations. 

 

 The fact that the overwhelming majority of ceramics from the Davis site were assigned 

to the Smith group—which is chemically distinct from all other compositional groups—

brushed aside concerns regarding the overlap in those groups mentioned above for this 

analysis. In the end, they found that the majority of ceramic sherds from the Davis site were 

locally produced from alluvial clays in the Neches River basin, but point out that this 

hypothesis should be tested with the addition of raw clay samples from this and other major 

drainages in Northeast Texas (Descantes et al. 2004:132). 

 Excavations at the Broadway (41SM273) site in Northeast Texas resulted in an 

additional 21 INAA specimens (Perttula 2004). Of those, 13 were assigned to the Mud 

Creek group, five to the Titus group, one to Smith, and the remaining two were unassigned 

(Perttula 2004:416). The abundance of Mud Creek assignments led Perttula to interpret that 

the chemical components in the Mud Creek sherds pointed to local manufacture, which 

Perttula also posits for the single sherd from the Smith chemical group (Perttula 2004:417). 

Based on the measure of Mahalanobis distance, Perttula (2004:417) infers non-local 

production and the possibility of four different non-local clay sources, two of which most 

likely originate from the Big Cypress Creek or Sabine River areas. Perttula (2004:417) also 

concludes that the Caddo population at the Broadway site exhibited no clear preference 

with regard to clay source based upon the geochemical data. 

 A synthesis of chemical variation in Northeast Texas (Cogswell et al. 2004) was then put 

forth employing sherds from the Hurricane Hill (41HP106), Mockingbird (41TT550), Oak 
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Hill Village (41RK214), Holdeman (41RR11), Fasken (41RR14), Sam Kaufman-Roitsch 

(41RR16), Salt Well Slough (41RR204), as well as the comparative dataset employed by 

Steponaitis et al. (1996) (where appropriate). While this piece reiterates the need for a raw 

materials survey within the region, it also draws inferences to trade and exchange from the 

current sample of sherds. Within that discussion is a particularly interesting observation 

regarding ceramic pipes from the Oak Hill Village site. Of the five pipe samples submitted 

for analysis, only one was found to have been produced locally, indicating that these artfacts 

may have been a highly mobile commodity (Cogswell et al. 2004:319). There is also 

evidence for exchange between Caddo groups in the Red River valley, and those in Titus 

and Rusk counties (Cogswell et al. 2004:319). Additionally, Cogswell et al. (2004:319) found 

no evidence to support the potential exploitation of different clay sources between the Early 

and Late Caddo periods. 

 The 2006 analysis of 57 ceramic vessel and seven raw clay samples from archaeological 

sites in Arkansas (3LA1), Louisiana (16NA16, 16SA212), and Texas (41RK200, 41NA231, 

41NA235, 41NA236, 41NA285, 41SM193, 41SM325) resulted in 26 sherds being assigned 

to the Titus group, 11 to the Smith group, and one to the Red River group; the remaining 

sherds were unassigned, and none of the raw clay samples plotted within any of the 

established groups (Ferguson and Glascock 2006:7-8). However, the three raw clay samples 

from Louisiana were found to be closer to the archaeological sample than any of the Texas 

clays, and more clay sampling was recommended (Ferguson and Glascock 2006:8). These 

samples allowed for the refinement of the current compositional groupings to allow for 

statistical separation between the groups (Mahalanobis distance calculations). 
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Caddo INAA Research, 2007-2010 
 
 Perhaps the most damning evidence for the current chemical groupings was produced 

in a report of Caddo ceramics from 10 sites (41AN1, 41AN8, 41AN14, 41AN23, 41AN32, 

41AN38, 41CE3, 41CE4, 41CE8 and 41CE17) in the upper Neches River basin in 

northeastern Texas (Ferguson and Glascock 2007). This was the first of the analyses to 

apply the calcium correction to the entirety of the data set instead of only to those sherds 

with >1% Ca (Ferguson and Glascock 2007:3). Out of the 100 samples submitted for 

analysis, only 16% (n=16) sherds were found to belong to any of the established chemical 

groups, concluding that “[a]t this point we cannot see any differences in the composition 

between the samples from 41AN38 and those from the other sites” (Ferguson and 

Glascock 2007:9).   

 In his discussion of compositional studies from the Mississippi valley and its periphery, 

Neff (2008:234) cites none of the technical literature advancing the study of Caddo INAA 

since 2002 (even though he was listed as an author on one of those [see Cogswell et al. 

2004]), but he does hit the highlights for the pre-2002 studies. These include the gradual 

north-to-south decrease in potassium (K) and rubidium (Rb), and the correlation of several 

sherds from abroad (Kansas and Illinois) with likely areas of production within the ancestral 

Caddo territory (Neff 2008:234).   

 While currently unpublished, Ferguson (2007) produced the preliminary results of his 

reanalysis of the Caddo INAA database. Within the framework of that undertaking, he had 

attempted an approach employed by Glowacki (2006:87) using K-Means to generate new 

groups, but was discouraged by the “resounding failure” of this approach to discriminate 

the ceramic samples into more well-defined groupings (Ferguson 2007:1). In an effort to 
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extract potentially useable information for anthropological research, Ferguson posited that 

the problem may be the scale of the current analysis, and Perttula and Ferguson 

subsequently divided the ancestral Caddo landscape into geographically and archeologically 

distinct regions (Ferguson 2007:1-2; 2010:3) (Figure 4.4). To correct for missing data (due 

to measurement error or values below NAA detection limits), Ferguson (2007:3) assumed 

each to be half of the lowest measured value for that element, and used all elements (with 

the exception of Ca and Sr, which were deleted after the entire dataset was calcium 

corrected) in his analysis. In Region 7, Ferguson (2007:15-16) noticed a possible gradient in 

chromium (Cr) within the Sabine drainage, and suggested that it might be useful to combine 

samples on a drainage-by-drainage basis to explore the existing compositional variability. 

The downstream increase in Cr levels may also be evidenced by those sherds in Regions 3 

and 10 (Ferguson 2007:18, 20). In Ferguson’s (2007:24) comparison with the old Caddo 

groups, he notes that “all of the old groups, with the exception of Titus and Cypress-2 are 

largely contained in a single new group.” However, a large amount of overlap still existed 

among the new chemical groups with the exception of the northern part of Northeast Texas 

(i.e., the Red River basin), and while these new groups may have “great potential,” there is 

still much work to be done (Ferguson 2007:25) as the final reanalysis of the Caddo dataset 

remains to be published. 

 Twenty sherds and two clay samples from the Leaning Rock (41SM325) site in 

Northeast Texas produced results that were probably not surprising. Of the 20 sherds 

submitted for analysis, 15 were assigned to the Titus group and five were unassigned, while 

neither of the two clay samples fit within any of the established groups (Ferguson et al. 

2008:54). While these results do not reflect those potential new groupings proposed by 
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Ferguson (2007), this is due to this analysis being completed prior to/during the preparation 

of those groups.  

 In the first test of these new groups, Ferguson (2009) analyzed 38 Caddo ceramics from 

41CE354, 41FT549, 41HO67, 41HO211, 41HP237, 41LN436, 41LN465, 41WD244, Pine 

Snake, Pendulum, and Blue Branch sites. Within that analysis, Ferguson (2009:2) discusses 

the possible deletion of the outlier group as currently defined within Region 4. This sample 

also included sherds from the Trinity River basin (further south), and these sherds were 

found to have low probabilities of membership in core groups for Subregions 1 and 7, but 

high probabilities of membership within those core groups of adjacent regions (notably 

Regions 4, 5, 6, 8, and 9) (Ferguson 2009:5).  

 Analysis of sherds from 41BQ285 in Central Texas (Ferguson and Glascock 2009a; 

Perttula et al. 2010) found—through the incorporation of both INAA and ceramic 

petrography—that Caddo pottery that was manufactured within greater Northeast Texas 

was occasionally traded or exchanged with hunter-gatherer groups whose ranges included 

the central Brazos River basin (Perttula et al. 2003). What Perttula et al. (2010) suggest is the 

local production of pottery reflecting Caddo style that was manufactured locally in Central 

Texas. Incorporating the results from the petrographic analysis, one engraved sherd and 

two other sherds are believed to have been locally manufactured in Central Texas based 

upon point count data indicating a more substantial composition of hematite within those 

samples (Perttula et al. 2010:100). 

 Fifteen ceramic sherds and two daub samples from the Ear Spool (41TT653) site  were 

analyzed in 2009 (Ferguson and Glascock 2009), combining that sample with an additional 

six samples from the same site that were previously analyzed by Hector Neff in 1999 
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(Ferguson and Glascock 2009:Appendix C). This report was rather unconventional, if for 

no other reason than Ferguson and Glascock (2009:270) assigned these new samples to the 

previously defined groups, and did not incorporate these results within the framework of 

Ferguson’s proposed new groups (which were published subsequent to this analysis). Of the 

analyzed sherds, eight were assigned to the Titus group, one to the Cypress 2 group, and the 

remaining eight were unassigned (Ferguson and Glascock 2009:Table 11-1). Like the raw 

clay samples previously submitted to MURR (see Ferguson and Glascock 2006), the daub 

samples did not fit within any of the previously established groups (Ferguson and Glascock 

2009:274).   

 During the course of eligibility testing for the National Register of Historic Places 

(Sherman et al. 2011), INAA was conducted on sherds from 41CP28 (Ferguson and 

Glascock 2010) and 41CP88 (Ferguson and Glascock 2009). With their findings from 

41CP88, two sherds were found to match the current core groups from the region, and 

three others neither matched the current Caddo groups, nor any of those identified in 

Central Texas, and MURR recommended the use of ceramic petrography on these sherds to 

identify potential variations in temper and natural inclusions within the ceramic paste 

(Ferguson and Glascock 2009:8). Five sherds were analyzed at 41CP28, four of which were 

found to have been locally produced, but one evidenced a high probability of group 

membership within the Central Texas sample (Ferguson and Glascock 2010:9).  
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Figure 4.4. Plot of Texas Caddo regions defined for the 2007 reanalysis of Caddo INAA.  

 

On the Current State of Caddo INAA Research 

 After Perttula voiced legitimate concerns with regard to the upper Neches River study 

where only 16% (n=16 of the 100 sherds submitted) were able to be assigned to current 
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chemical compositional groups (later published as Ferguson and Glascock 2011), Ferguson 

(2010:2) “began to question the utility of a compositional group structure that could not 

assign a large percentage of new samples and continued to remove previously assigned 

samples from the compositional groups in order to maintain statistical separation of the 

groups.” As a whole, the Caddo region ranks within the top three with regard to the 

number of INAA samples that have been analyzed (only surpassed by the Valley of Mexico 

and the Mimbres region of the American Southwest), but due to the dominance of similar 

alluvial clays within the region it presents something of a statistical conundrum (Ferguson 

2010).  In their report of 36 samples submitted for analyses from the Hickory Hill site 

(41CP408), Ferguson and Glascock (Ferguson and Glascock 2011:6) point out that even 

after Ferguson’s reanalysis (cited as Ferguson et al. 2008)—due to statistical overlap within 

the current database of Caddo INAA—determining potential locations of ceramic 

production has become increasingly difficult, expounding upon a number of deficiencies 

that were identified by Perttula and Ferguson (2010) one year earlier.  

 While their recent work has focused upon the analysis of these data at a smaller scale 

(see Fields and Gadus 2012), the evolution of MURR’s methodological approach to Caddo 

INAA is difficult to document without access to technical and letter reports, and the 

proprietary nature of geochemical datasets produced by MURR (although Perttula [2010] 

published his) has made it a challenge to replicate their findings. Couple that with 

inconsistent exclusions/inclusions of different elements (zirconium, for instance) that are 

listed as “not determined” in the vast majority of reports, but included as one of the 12 

“most precise” geochemical elements in the analysis of the largest sample from a single site 

(41HS15 – Pine Tree Mound) raises questions of methodological consistency (see Ferguson 
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2010; Fields and Gadus 2012; Perttula and Ferguson 2010:46). Surprisingly, the language in 

those reports generated by MURR recently changed from stating that the reanalysis of the 

Caddo INAA database remains incomplete and unpublished (Ferguson and Glascock 

2007:1; 2009:7; 2010:6; 2011:593) to one that cites the same academic poster mentioned 

during reanalysis (Ferguson et al. 2008) as the completed product of those efforts. 

Additionally, in their final reports of ceramics from 41PN175 and the Pine Tree Mound site 

(41HS15), Ferguson and Glascock (2012a:6; 2012b:778) deemed that same (Ferguson 2007; 

Ferguson et al. 2008) reanalysis as only “moderately successful,” mentioning the significant 

overlap between core groups as their basis for a lack of confdence in assigning the unknown 

assays to likely production groups, with the exception of some limited success in the area of 

the Red River (see Ferguson and Glascock 2012:9).  

Further developments in Caddo INAA groupings (Perttula 2010: Article 3) illustrate 

the potential for provenance diversity (Figure 4.5), but issues arise when viewing the 

number of samples analyzed. Of the 171 sites where INAA has been employed, 104 have a 

sample size of five or less sherds, and 82 have three or fewer INAA samples. While the 

small sample size stems from the majority of INAA analyses being funded by only a few 

dedicated Caddo archeologists (whether because of financial constraints, or lack of interest, 

or both), the issue of statistical significance (or lack thereof) cannot be overlooked.  
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Figure 4.5. Current Caddo INAA groupings (Perttula and Ferguson 2010: Figure 1). 
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Reevaluating Caddo INAA 
 

In an attempt to better illustrate the changes in geochemical signatures across the 

southern Caddo landscape, and to highlight general trends that appear within the data, the 

INAA results for 1192 sherds from 164 sites are employed within the subsequent discussion 

(Table 4.1). After assembling the dataset, two tables were used—one with geochemical data, 

one with site data—to catalog the sample. In reviewing the database, all of the shell and 

bone-tempered sherds were noted, but in lieu of applying the calcium correction to the 

entirety of the dataset, the calcium correction was only applied to the 4% (n=47) of samples 

known to be shell-tempered (Figure 4.6).  

This analysis deviates from MURR’s current method of applying the calcium 

correction (Steponaitis et al. 1996:559) to the whole of the Caddo INAA dataset (see 

Ferguson 2007:4, 2010:6; Ferguson and Glascock 2006:3; 2007:3; 2009a:3; 2009:266; 

2010:93; 2012:3; Perttula and Ferguson 2010:11), and since the number of shell-tempered 

sherds remains small (4%), that process is found to be unwarranted due to the 

overwhelming majority of Caddo sherds being grog-tempered, and “such correction is 

unnecessary because the grog itself is made of clay, presumably the same clay that comprises 

the rest of the paste” (Steponaitis et al. 1996:559).  

The correction was applied in version 2.15.2 of R, after which those sherds were 

recombined with the bone and other-tempered sherds, and the log-10 value of each element 

was calculated, adding a value of one to each sherd/element in the database, modifying any 

missing values to a zero.  
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Figure 4.6. Frequency and uncorrected Ca values for shell, bone, and other tempers (top), 
and frequency and corrected Ca values for shell, bone, and other tempers (bottom). 
 
 
 

The calcium correction was applied to shell-tempered sherds in version 2.15.2 of 

R,after which those sherds were recombined with the bone and other-tempered sherds, and 

the log-10 of each element was calculated, adding a value of one to each sherd/element in 

the database, effectively replacing all missing values with a zero. Subsequently, the Getis-

Ord Gi* statistic in ArcGIS10 was employed to calculate a z-score for each log-10 value, 

illustrating the spatial distribution and z-score values for each site using the formula:  
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where 𝑥𝑗 is the attribute value for feature 𝒿, 𝑤𝑖,𝑗 is the spatial weight between feature 𝒾 and 

𝒿, 𝓃 is equal to the total number of features and:  
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The 𝐺𝑖
∗ statistic is a z-score so no further calculations are required (ESRI 2012). 

 
 Following the calculation of log-10 values for each element, these data were then 

used to calculate the deterministic statistic of inverse distance weighted (IDW) in ArcGIS10 

for each element to better illustrate whether discrete geochemical signatures exist close to 

one another, or in the same location (see Appendix B:Figures B.2-B.34).  

While initially an issue due to sample size, deletion of neodymium (Nd) and 

zirconium (Zr) from the dataset is no longer necessary. While comparisons to the original 

NIST sample should still follow this method, when dealing with the MURR dataset, the 

contribution of these elements needs to be further explored and not disregarded on the 

basis of their absence from 22 sherds analyzed at NIST (see Steponaitis et al. 1996).  
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Table 4.1. Caddo sites with INAA Samples. 
_______________________________________________ 
 
Site Name   Site Trinomial        Samples 
_______________________________________________ 
Helm    3HS449, H  2 
Battle Mound   3LA1   2 
Vanceville Mound  16BO7   2 
Werner    16BO8   1 
-    16BO175  2 
-    16BO186  1 
McLelland   16BO236  2 
Festervan   16BO327  5 
Mounds Plantation  16CD12  6 
Onion Island   16CD218  5 
Jamis Pace   16DS268  10 
-    16DS389  1 
Los Adaes   16NA16  40 
Lambre Point   16NA544  2 
-    16NA587  5 
-    34CH43  1 

  Hugo Dam   34CH112  7 
  Mahaffey   34CH113  16 

-    34MC760  14 
-    41AN1   2 
Cecil    41AN8   8 
Isibell-Gene Donell  41AN14  3 
A.C. Saunders   41AN19  3 
-    41AN23  9 
Fred McKee Farm  41AN32  6 
Lang Pasture   41AN38  50 
-    41BQ285  4 
Hatchel   41BW3  10 
Cranfill    41BW171  6 
Indian Springs #2  41BW512  5 
Solon Stanley   41CE3   6 
J.W. Blackburn   41CE4   8 
-    41CE8   6 
George C. Davis  41CE19  53 
-    41CE299  1 
Kah-hah-ko-wha  41CE354  2 
Williams   41CP10  2 
Horton    41CP20  4 
-    41CP21  10 
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Table 4.1. Continued. 
_______________________________________________ 
 
Site Name   Site Trinomial        Samples 
_______________________________________________ 
Peach Orchard Overlook 41CP25  10 
Shelby    41CP71  17 
-    41CP220  20 
Underwood   41CP230  8 
Lake Bob Sandlin  41CP239  3 
Polk Estates   41CP245  4 
-    41CP257  1 
Pilgrim’s Pride   41CP304  18 
-    41CP313  1 
-    41CP366  1 
-    41CS186  3 
-    41CS242  5 
-    41CS246  1 
-    41CV41  2 
-    41CV48  1 
-    41CV92  1 
-    41CV174  3 
-    41CV344  3 
New Hope   41FK107  5 
Edwards Creek   41FT549  3 
Hardin A   41GG69  5 
-    41HI105  2 
-    41HO67  2 
Hargrove Lake   41HO150  6 
Nebadache Blanco  41HO211  1 
Hurricane Hill   41HP106  40 
Tuinier Farm   41HP237  5 
Pine Tree Mound  41HS15  142 
Harrison Bayou  41HS240  3 
-    41HS407  4 
Coleman Farm   41HS574  2 
-    41LN436  2 
-    41LN465  2 
Sanders   41LR2   7 
Chupik    41ML44  4 
Asa Warner   41ML46  4 
-    41MR122  3 
-    41MR174  5 
-    41MR178  1 
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Table 4.1. Continued. 
_______________________________________________ 
 
Site Name   Site Trinomial        Samples 
_______________________________________________ 
-    41MR201  1 
-    41MR219  3 
-    41MX57  2 
Washington Square Mound 41NA49  2 
Henry M.   41NA60  2 
Mast    41NA157  1 
-    41NA223  1 
Tallow Grove   41NA231  12 
Foggy Fork   41NA235  16 
Naconiche Creek  41NA236  28 
Beech Ridge   41NA242  1 
Stroddard   41NA243  3 
Cedar Branch   41NA244  1 
-    41NA261  1 
P. Wilson   41NA264  1 
Telesco    41NA280  1 
Boyette    41NA285  19 
Tom Moore   41PN149  2 
-    41PN175  10 
Gilbert    41RA13  3 
Millsey Williamson  41RK3   4 
Hudnall-Pirtle   41RK4   2 
Nawi-haia-ina   41RK170  10 
Mission Nasoni  41RK200  5 
Oak Hill Village  41RK214  84 
Dan Holdeman  41RR11  3 
Fasken    41RR14  2 
Roitsch    41RR16  21 
Salt Well Slough  41RR204  10 
-    41SA125  1 
Devils Ford Creek  41SB157  5 
Jamestown Mound  41SM54  2 
Bryan Hardy   41SM55  2 
Henry Chapman Farm  41SM56  2 
-    41SM87  1 
-    41SM144  2 
Redwine   41SM193  5 
Browning   41SM195-A  2 
Langford   41SM197  1 
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Table 4.1. Continued. 
_______________________________________________ 
 
Site Name   Site Trinomial        Samples 
_______________________________________________ 
-    41SM213  1 
-    41SM223  1 
Lake Clear   41SM243  1 
-    41SM262  1 
Broadway   41SM273  31 
Holmes   41SM282  1 
-    41SM283  1 
Leaning Rock   41SM325  23 
-    41SY43  7 
Buddy Hancock  41SY45  2 
Tyson    41SY92  3 
Alex Justiss   41TT13  8 
-    41TT47  2 
Mockingbird   41TT550  10 
Crabb    41TT650  5 
Ear Spool   41TT653  6 
-    41TT718  10 
-    41TT730  2 
James Owens   41TT769  16 
-    41UR2   3 
Southall   41UR3   4 
Boxed Springs   41UR30  3 
-    41UR96  1 
-    41UR99  2 
Rookery Ridge   41UR133  3 
-    41UR136  4 
Griffin Mound   41UR142  5 
Camp Joy   41UR144  1 
-    41UR210  2 
Storm    41WA218  13 
Carlisle    41WD46  7 
-    41WD51  7 
M.W. Burks   41WD52  8 
Goldsmith   41WD208  3 
-    41WD244  3 
-    41WD524  2 
-    41WD573  2 
Audrey E. Allen-Smith  41WD575  3 
Thomas Moody  41WD577  10 
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Table 4.1. Continued. 
_______________________________________________ 
 
Site Name   Site Trinomial        Samples 
_______________________________________________ 
Barker    41WM71  1 
Rowe Valley   41WM437  4 
Blue Branch   -   5 
Pendulum   -   6 
Pine Snake   -   5 
_______________________________________________ 
 
 

Geochemical Variation in the Ancestral Caddo Territory 
 
 The resultant geographic illustrations affirm Ferguson’s (2007:15-16) assertion 

regarding an apparent gradient in the Sabine River drainage for Chromium, an observation 

which might now be extended to all but the Red River drainage in East Texas, and Neff and 

Glascock’s (2000; see also Neff 2008:234) notice of a north-to-south gradient for both 

potassium (K) and rubidium (Rb) (see Appendix B: Figures B.8, B.14 and B.21).  

 

Spatial Trends in the Chemical Composition Data 
 
Composite 1. A general northeast (high)—to—southwest (low) gradient occurs for aluminum 

(Al), calcium (Ca), chromium (Cr) (as mentioned previously), potassium (K) (also 

mentioned previously), manganese (Mn), sodium (Na), rubidium (Rb) (also mentioned 

previously), scandium (Sc), strontium (Sr), and tantalum (Ta). While the dynamics of the 

distributions for each of these elements does differ, the general trend—a decrease 

(substantial in some cases) that is evident from the Red River basin (high) to the Trinity 

River basin (low)—remains the same (Figure 4.7). There is a single case (antimony [Sb]) for 
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which this trend is reversed, and high values occur in the southwest with low values in the 

northeast. 

 

 

 
Figure 4.7. Composite 1 (left) contrast with antimony (Sb) (right). 
 
 
 
Composite 2. While it could be combined with the previous group, cesium (Cs) illustrates a 

stronger north-to-south dynamic with those areas of the Angelina, middle Neches, lower 

Sabine and lower Trinity River basins, which highlights a strong contrast with those sites to 

the north (Figure 4.8). The opposite is true for hafnium (Hf) and zirconium (Zr), for which 

the lowest values occur in the Cypress, Sulphur and Red River basins. 
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Figure 4.8. Cesium (Cs) (left) contrast with Composite 2. 
 
 
 
 
Composite 3. Arsenic (As), iron (Fe) and vanadium (V) appear have similarly amorphous 

spatial dynamics that are—for the most part—confined to Texas, where a region of low 

chemical concentration occurs in the Sulphur, Cypress and upper Sabine River basins that 

border a neighboring region to the south where high concentrations appear in the Angelina, 

Neches, and Trinity River basins (Figure 4.9). Again, these distributions are not identical, 

but do have recognizably similar distributions across the ancestral Caddo landscape. 
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Figure 4.9. Composite 3. 
 
 
 
 
Composite 4. Cobalt (Co), thorium (Th), uranium (U), and zinc (Zn) have an area of low 

value that runs northwest—to—southeast that is flanked on the northeast and southwest by 

areas of high value (Figure 4.10). There is one element—barium (Ba)—that illustrates an 

inverse distribution where an area of high value runs northwest—to—southeast that is 

flanked on the northeast and southwest by areas of low value. 
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Figure 4.10. Composite 4 (left) contrast with barium (Ba) (right). 
 
 
 
 
Composite 5. For cerium (Ce), dysprosium (Dy), europium (Eu), lanthanum (La), lutetium 

(Lu), neodymium (Nd), samarium (Sm), terbium (Tb) and ytterbium (Yb) there is a 

contrasting dynamic among the northern sites with an area of high value in the northeast 

and one of low value immediately to the southwest (Figure 4.11). Farther south, the 

dynamics change where chemical concentrations highlight a west (high)—to—east (low) 

dichotomy. 
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Figure 4.11. Composite 5. 
 
 
 
 

Neither nickel (Ni) (which is deleted from most analyses) nor titanium (Ti) has 

spatial patterns similar to any of the five groups mentioned previously, and both illustrate 

unique spatial patterns across the ancestral Caddo territory (Figure 4.12). For titanium, there 

are two discrete areas of low values, one surrounding of Lake O’ the Pines in Northeastern 

Texas, and the other near Clear Lake in Northwestern Louisiana.  
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Figure 4.12. Nickel (Ni) (left) and titanium (Ti) (right). 
 
 
 
 

The identification of the spatial dynamics associated with INAA data from Caddo 

sites increases its’ explanatory power when it comes to issues of defining possible ceramic 

provenance, for which these illustrations provide meaningful clues to expand the current 

dialogue.  

 

Summary and Conclusion 
 

The employment of INAA-based research within the Caddo region will continue to 

aid in clarifying issues of provenance currently evident within the dataset, and this analysis 

contributes five unique geospatial patterns that may help to further future discussions of 

possible ceramic provenance for ancestral Caddo ceramics. It is becoming increasingly 
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apparent that we cannot rely upon MURR to expound any further upon the diversity and 

increasing variability of this sample. Therefore, we must take it upon ourselves to investigate 

and identify potential areas of vessel provenance within the Caddo region that can be 

consistently employed as this substantial dataset continues to increase in magnitude.  

 Due to recent dialogues concerning lines of effective demarcation between local and  

non-local ceramics via INAA (Shrarer et al. 2006; Stoltman et al. 2005; Stoltman and 

Mainfort 2000), and the complex nature of ceramic chemical composition based upon the 

addition of temper and the process of diagenesis (Glascock 2002; Neff et al. 2006), it is 

recommended that petrographic analyses augment the analysis of INAA data in an effort to 

clarify and expound upon issues of probable vessel provenance and regional geochemical 

variability. It is noteworthy that more petrographic analyses were carried out in East Texas 

during the 1990s (Ferring and Perttula 1987; Reese-Taylor 1993, 1997; Skokan and Perttula 

1997; Skokan Switek 1997, 1998; Iruegas 1999) than at any other time, and this practice 

steadily decreased in frequency within cultural resource management studies and academic 

literature aimed at Caddo ceramics until fairly recently (Cecil 2012a, 2012b, 2012c; Perttula 

and Rogers 2007; Rogers and Perttula 2004).  

 Employed in tandem, INAA and petrography have been found to complement one 

another, and often yield substantive clues that assist in clarifying issues of provenance. 

Additionally, once areas of possible ceramic provenance have been defined by INAA and 

petrographic methods, an exploration of ceramic petrofacies can exponentially increase the 

scope and utility of studies aimed at identifying possible manufacturing locales for specific 

ceramic vessels. By noting the relative abundance of local sands, petrofacies models provide 

a high-definition method of assigning ceramic provenance (see Miksa and Heidke 1995; 
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2001). This can assist in facilitating the production of increasingly complex research 

questions, and provide the spatial and temporal resolution needed to begin a more detailed 

discussion of manufacture and use, ceramic economy, migration, exchange networks, and 

temporal trends. 

While combining these approaches may serve to elucidate further trends within 

these data, making sense of this complex amalgam of INAA samples remains paramount. 

Sample sizes must be increased within the currently analyzed sample and to further current 

dialogues regarding possible provenance determinations within the ancestral Caddo 

territory. In order to consistently identify local and non-local sherds as well as possible 

zones of production, a minimum of 30 sherds should be submitted for INAA from each 

site, making it possible to create a site-specific correspondence matrix from which an 

exploration of statistical similarities and differences can assist in the identification of clays 

found in the ceramics used at each site.  

  The maps presented here represent an important new addition to the analysis of the 

Caddo INAA database. The results of this analysis illustrate that the chemical composition 

of ceramics associated with ancestral Caddo populations were diverse and highly variable 

across East Texas and surrounding states, further hinting at the potential successes in 

ceramic provenance identifications for more robust (>33) samples of sherds from sites 

within this region. 
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CHAPTER V 
 

TEMPORAL AND REGIONAL DYNAMICS OF CULTURAL RESOURCE CASE  
 

LAW3 
 
 
 
 

Overview 
 

The work presented in this chapter has been submitted by the author and colleague 

C. Britt Bousman to the International Journal of Cultural Property. Eight statutes comprise the 

basis of our exploration of cultural resource legislation in the United States. Since the 

passage of the American Antiquities Act in 1906, 1086 cases have been tried in U.S. courts 

under these statutes. We investigate temporal and regional patterns in the case law to 

establish if these laws are uniformly prosecuted throughout the U.S. Our findings suggest 

that case law is complex and controlled by many factors, including unequal application. 

 

Introduction 

 Numerous articles and books contribute great detail to the discourse surrounding 

the various U.S. federal cultural resource laws offering insightful views regarding the 

interpretations and impacts of the individual statutes (see Hutt et al. 1999, 2004; King 2008). 

There have been 1086 adjudicated cases through December 2010, but since virtually 

nothing has been published that considers patterning for the case history of statutes aimed 

at the protection of cultural resources, we investigate the national application of cultural 

resource litigation through a spatial and temporal analysis of the case law for selected 

                                                 
3 In peer review, Reprinted with permission from “Temporal and Regional Dynamics of Cultural 

Resources Case Law” by Robert Z. Selden Jr. and C. Britt Bousman. 
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legislation aimed at cultural resource management. 

 Several questions emerge in a review of the case law, and the most prominent is that 

of consistent application. Are all federal cultural resource laws prosecuted to the same 

degree throughout the U.S. Circuit Courts? While the answer to this question would require 

book-length treatment and lies beyond the scope of this article, an initial examination is 

certainly warranted. This was recently made evident with the issue of warrants and 

subsequent arrests of 23 individuals in Utah for looting on federal and tribal lands. In 

noting his concern for the matter, Secretary of the Interior Ken Salazar noted, “[t]here have 

been times when the U.S. government looked the other way” (Johnson 2009). 

 The unequal distribution of cultural resources in the U.S. suggests that some bias 

should be expected. The spatial nature of archaeology requires consideration of varying 

artifact densities across broad cultural landscapes. For example, the archaeological record of 

the Southeast U.S. encompasses large and complex Mississippian ceremonial sites, mound 

complexes, and extensive prehistoric mortuaries that differ greatly from the dense 

distribution of well-preserved farming communities of the American Southwest or the 

widely dispersed rock shelters associated with hunter-gatherers in the Great Basin. Thus, the 

character of the cultural resources themselves demands some degree of flexible legal 

treatment. 

 The location and control of federal lands across the United States adds to the 

complexity of interpretation, and is evidenced through the distribution of national parks, in 

terms of number and size, that also vary from state to state. For historic reasons, the 

National Park Service (NPS) has the largest and most well-trained cultural resources staff of 

the federal agencies since its mission is aimed directly at preserving cultural resources. Other 
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Federal agencies (i.e., the U.S. Forest Service, Bureau of Land Management, and 

Department of Defense) have differing priorities and smaller cultural resource staffs as a 

result. 

 Native American populations and the location of tribal lands are equally important, 

and the application of laws like the American Indian Religious Freedom Act should reflect 

the distribution of the native people and their resources. The distribution of federal lands, 

when coupled with the actions of the controlling agency, has an enormous impact on the 

enforcement of this legislation.  

 Additionally, the variable manner by which archaeologists practice their profession 

affects the spatial patterning of the record. In the last century, the Works Progress 

Administration projects and River Basin Surveys helped to establish the foundation for 

much of our understanding of North American archaeology. Another of many examples 

can be seen throughout the last 30 years with a systematic increase in the application of 

geoarchaeological methods, which has dramatically altered the methodology of site 

discovery and interpretation. Archaeological research undertaken prior to this development 

produced very different views of American prehistory than what was previously known of 

the archaeological record.  

  These and many other biasing factors must be considered when analyzing the results 

presented in this paper. Nevertheless, the question remains, does equal prosecution of 

cultural resource laws exist, and if not, what other factors are causal? 
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Methods 
 

 Relevant cultural resource management laws were identified (National Park Service 

2006; King 2008; Hutt and Tarler 2006, 2007, 2008, 2009; United States Army 

Environmental Command 2011), then a listing of individual cases was created through the 

use of LexisNexis and Westlaw. Data fields include case name, date, disposition of the 

resource (i.e., archaeology, architecture, landscape, and other), reason for legal action (i.e., 

compliance, taking, and other), State, case summary and holdings, U.S. Circuit Court 

district1, and final ruling (see Author and Author 2010). This database comprises the 

foundation of the resulting analysis. 

 Temporal distributions for each statute were plotted alongside the total number of 

cases. The contingency table was created utilizing the numerical distribution of case law 

organized by statute and Federal Circuit Court district. Adjusted residuals2 were calculated 

to measure deviation from average values, hereafter called national averages (Everitt 1977; 

Haberman 1978). Patterns identified within the statistical analysis were then plotted 

spatially.  

 The disposition of the resource (archaeology, architecture, landscape, shipwreck, 

and other) and the reason for legal action (compliance, taking, and other) were recorded for 

each case, and used to demonstrate the nationally variable application of the legislation. 

These data are coupled with temporal and spatial distributions to explore the national 

trends. 
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The Legal Basis 
 
 The case law for eight prominent cultural resource statutes was examined for this 

study. These include the American Antiquities Act, Historic Sites Act, National Historic 

Preservation Act, Reservoir Salvage Act, American Indian Religious Freedom Act, 

Archeological Resources Protection Act, Abandoned Shipwreck Act, and the Native 

American Graves Protection and Repatriation Act. These eight cultural resource laws have 

been amended a combined total of 45 times. 

 
 
 
American Antiquities Act 
 
 The American Antiquities Act (AAA) was signed into law on June 8, 1906 by 

Theodore Roosevelt, has been amended once, and encompasses 34 Stat. 225 and 16 U.S.C. 

431-433. The AAA developed out of concern for archaeology on public lands due to 

commercial looting and haphazard mining. This Act grants the power to the President to 

designate landmarks, structures, and objects as National Monuments (National Park Service 

2006), and its passage marks the beginning of historic preservation laws in the United 

States. The first challenge to the American Antiquities Act was Ramming Real Estate Co. v. 

U.S. (122 F.2d 892 [1941]) on October 13, 1941, 35 years and four months after being 

signed into law. 

 
Historic Sites Act 
 
 The Historic Sites Act (HSA) was signed into law on August 21, 1935 by Franklin 

D. Roosevelt, has been amended eight times, and encompasses 49 Stat. 666 and 16 U.S.C. 
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461-467. This statute makes preservation of historic lands, properties, and objects a national 

policy. The HSA  grants authority to the Secretary of the Interior to obtain any information 

needed regarding archaeological sites, and established the National Park System Advisory 

Board (16 U.S.C. 463) (National Park Service 2006). The HSA was adjudicated twice prior 

to Ramming Real Estate Co. v. U.S. (122 F.2d 892 [1941]); once in March 1937 (Balter v. Ickes, 

67 App.D.C. 112, 89 F.2d 856 [1937]), then in January 1939 (Barnidge v. U.S., 101 F.2d 295 

[1939]). 

 
Reservoir Salvage Act (Archeological and Historic Preservation Act) 
 
 The Reservoir Salvage Act (now known as the Archeological and Historic 

Preservation Act [AHPA]) was signed into law on June 27, 1960 by Dwight D. Eisenhower, 

and has been amended six times. The statute was originally called the Reservoir Salvage Act, 

and has also been known as the Moss-Bennett Act and the Archeological Recovery Act 

before being renamed the Archeological and Historic Preservation Act in 1974 (National 

Park Service 2006). This statute includes a clause that forces federal agencies to accept 

responsibility for actions resulting in damage to archaeological sites. 

 
National Historic Preservation Act 
 
 The National Historic Preservation Act (NHPA) was signed into law on October 

15, 1966 by Lyndon B. Johnson, has been amended 23 times, and encompasses Public Law 

89-665 and 16 U.S.C. 470 et seq. (National Park Service 2006). This Act established several 

well-known entities for both historic and archaeological preservation, including the 

Advisory Council on Historic Preservation (ACHP), the State Historic Preservation Office 

(SHPO) (adding the Tribal Historic Preservation Office [THPO] with the Amendments of 
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1992), the National Register of Historic Places, and the Section 106 review process.  

 
American Indian Religious Freedom Act 
 
 The American Indian Religious Freedom Act (AIRFA) was signed into law on 

August 11, 1978 by Jimmy Carter, and encompasses Public Law 95-341 and 42 U.S.C. 1996 

and 1996a (National Park Service 2006). The AIRFA was conceived through an internal 

investigation by Congress in which the government was found to have had an adverse 

impact upon the practice of Native American religions. The AIRFA protects the right of 

American Indians to practice native religions without significant interference from the 

federal government, and was amended in 1994 to allow American Indians access to peyote 

for use as a religious sacrament.  

 
Archeological Resources Protection Act 
 
 The Archeological Resources Protection Act (ARPA) was signed into law on 

October 31, 1979 by Jimmy Carter, has been amended four times, and encompasses Public 

Law 96-95 and 16 U.S.C. 470aa-mm (National Park Service 2006). The ARPA provides civil 

and criminal penalties (felony and misdemeanor), and in some cases provides a reward for 

information. The statute was authored in a manner that establishes U.S. ownership of 

artifacts unearthed on federal lands or on private lands if the project uses federal dollars.  

 
Abandoned Shipwreck Act 
 
 The Abandoned Shipwreck Act (ASA) was signed into law on April 28, 1988 by 

Ronald Reagan, has not been amended, and encompasses Public Law 100-298 and 43 

U.S.C. 2101-2106 (National Park Service 2006). This statute establishes government 
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ownership of shipwrecks, which are subsequently transferred to the state where the vessel is 

located. This piece of legislation is aimed at protecting shipwrecks in United States waters 

that are threatened by treasure salvors and looters.  

 

Native American Graves Protection and Repatriation Act 

 The Native American Graves Protection and Repatriation Act (NAGPRA) was 

signed into law on November 16, 1990 by George H. W. Bush, has been amended twice, 

and encompasses Public Law 101-601 and 25 U.S.C. 3001 et seq. (National Park Service 

2006). It requires the return of human remains from burials as well as associated and 

unassociated funerary objects to affiliated tribal entities recognized by the United States. 

 

Temporal Distribution of Litigation 

 The temporal distribution of litigated cases provides a unique view of the legal 

system by illustrating the role that cultural resource statutes have and continue to play in our 

society. Until the early 1970s, cultural resource laws had been the source of very few cases, a 

trend that shifted greatly following the passage of the National Historic Preservation Act.  

 

American Antiquities Act 

 The AAA comprises 7.7% (n=85) of the court cases compiled for this analysis. 

There have been four Supreme Court decisions regarding the AAA (Cappaert v. U.S. 426 

U.S. 128, 96 S.Ct. 2062, 48 L.Ed.2d 523, 6 Envtl. L. Rep. 20,540 [1976]; U.S. v. California 

436 U.S. 32, 98 S.Ct. 1662, 11 ERC 1651, 56 L.Ed.2d 94 [1978]; Maine v. Thiboutot 448 U.S. 

1, 100 S.Ct. 2502, 65 L.Ed.2d 555 [1980]; Southern Utah Wilderness Alliance v. Bureau of Land 



 

139 

 

Management 545 U.S. 75, 125 S.Ct. 2137 [2005]). 

 The AAA was enacted to protect valuable cultural resources; however, integration 

of these preservation goals into our legal system appears to have occurred slowly. Over 

time, the AAA has fluctuated in use. These fluctuations are a recurring pattern noted in this 

legislative analysis. Since the 1970s, the frequency of case law has neither decreased nor 

increased; rather, it displays a pattern of consistent use.  

 

Historic Sites Act 

 The Historic Sites Act (HSA) comprises 3.5% (n=39) of the case law compiled for 

this analysis. While the HSA was the first litigated statute aimed at the protection of cultural 

resources, investigation of its temporal distribution reveals a low but consistent pattern of 

use with several temporal gaps. The largest gap (12 years) is from 1957 to 1969; but shorter 

gaps also occur from 1948 to 1953 and from 1995 to 2000. The absence of cases in the 

1960s appears odd as this was one of the few cultural resource laws available during the 

activist years, yet legal activity remained dormant.  

 

National Historic Preservation Act 

 The National Historic Preservation Act (NHPA) comprises 60.6% (n=676) of the 

case law compiled for this analysis. Within NHPA, Section 106 litigation represents 15.5% 

(n=105) of the total number of cases. There have been eight Supreme Court decisions 

concerning this Act (Penn Cent. Transp. Co. v. City of New York 438 U.S. 104, 98 S.Ct. 2646, 11 

ERC 1801, 57 L.Ed.2d 631, 8 Envtl. L. Rep. 20,528 [1978]; Weinberger v. Romero-Barcelo 456 

U.S. 305, 102 S.Ct. 1798, 17 ERC 1217, 72 L.Ed.2d 91, 12 Envtl. L. Rep. 20,538 [1982]; 
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I.N.S. v. Chadha 462 U.S. 919, 103 S.Ct. 2764, 77 L.Ed.2d 317, 13 Envtl. L. Rep. 20,663 

[1983]; Marek v. Chesny 473 U.S. 1, 105 S.Ct. 3012, 38 Fair Empl.Prac.Cas. [BNA] 124, 37 

Empl. Prac. Dec. P 35,396, 87 L.Ed.2d 1, 53 USLW 4903, 1 Fed.R.Serv.3d 1297 [1985]; 

Lyng v. Northwest Indian Cemetery Protective Ass'n 485 U.S. 439, 108 S.Ct. 1319, 99 L.Ed.2d 534, 

56 USLW 4292, 18 Envtl. L. Rep. 21,043 [1988]; West Virginia University Hospitals, Inc. v. 

Casey (499 U.S. 83, 111 S.Ct. 1138, 55 Fair Empl.Prac.Cas. [BNA] 353, 55 Empl. Prac. Dec. 

P 40,606, 113 L.Ed.2d 68, 59 USLW 4180, 67 Ed. Law Rep. 37, Med & Med GD (CCH) P 

39,109 [1991]; State of N.J. v. State of N.Y.  Not Reported in S.Ct., 1997 WL 291594 [1997]; 

and U.S. v. White Mountain Apache Tribe 537 U.S. 465, 123 S.Ct. 1126, 155 L.Ed.2d 40, 71 

USLW 4125, 71 USLW 4139, 03 Cal. Daily Op. Serv. 1903, 2003 Daily Journal D.A.R. 

2393, 16 Fla. L. Weekly Fed. S 106 [2003]). 

 Twenty-three amendments have been made to the NHPA, and some of the largest 

increases in the number of prosecuted cases litigated followed the passage of amendments 

in 1992, 2000, and 2004; however, not all amendments appear to have influenced the case 

law in this manner. For instance, the NHPA amendment of 1980 did not yield a similar 

result.  

 

American Indian Religious Freedom Act 

 The American Indian Religious Freedom Act (AIRFA) comprises 9.6% (n=106) of 

the case law compiled for this analysis. There have been three Supreme Court decisions for 

the AIRFA (Lyng v. Northwest Indian Cemetery Protective Ass'n, Employment Div., 485 U.S. 439, 

108 S.Ct. 1319, 99 L.Ed.2d 534, 56 USLW 4292, 18 Envtl. L. Rep. 21,043 [1988]; Dept. of 

Human Resources of Oregon v. Smith 494 U.S. 872, 110 S.Ct. 1595, 52 Fair Empl.Prac.Cas. 
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(BNA) 855, 53 Empl. Prac. Dec. P 39,826, 108 L.Ed.2d 876, 58 USLW 4433, 

Unempl.Ins.Rep. (CCH) P 21,933 [1990]; Rice v. Cayetano 528 U.S. 495, 120 S.Ct. 1044, 145 

L.Ed.2d 1007, 68 USLW 4138, 00 Cal. Daily Op. Serv. 1341, 2000 Daily Journal D.A.R. 

1881, 2000 CJ C.A.R. 898, 13 Fla. L. Weekly Fed. S 105 [2000]). However, none of these 

decisions deal directly with archaeology or historic preservation. In 30 years, the number of 

prosecuted cases involving AIRFA has surpassed all other statutes compiled for this study 

with the exception of the NHPA.  

 

Archeological Resources Protection Act 

 The Archeological Resources Protection Act (ARPA) comprises 5.4% (n=60) of the 

case law compiled for this analysis. There has been one Supreme Court decision involving 

the statute (Lyng v. Northwest Indian Cemetery Protective Ass'n 485 U.S. 439, 108 S.Ct. 1319, 99 

L.Ed.2d 534, 56 USLW 4292, 18 Envtl. L. Rep. 21,043 [1988]), although the role of ARPA 

in this case was marginal at best. The ARPA has the potential to yield substantive legal 

protection for archaeological resources, yet only 60 cases have been litigated using ARPA 

through 2010.  

 

Abandoned Shipwreck Act 

 The Abandoned Shipwreck Act comprises 4.2% (n=47) of the compiled case law. 

There has been only one Supreme Court decision involving this statute (California v. Deep Sea 

Research, Inc. 523 U.S. 491, 118 S.Ct. 1464, 1998 A.M.C. 1521, 140 L.Ed.2d 626, 98 Cal. 

Daily Op. Serv. 3000, 98 Daily Journal D.A.R. 4083, 98 CJ C.A.R. 1919, 11 Fla. L. Weekly 

Fed. S 460 [1998]). 
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Native American Graves Protection and Repatriation Act 

 The Native American Graves Protection and Repatriation Act (NAGPRA) 

comprises 6.7% (n=74) of the compiled case law. There has been one Supreme Court 

decision regarding this Act (Rice v. Cayetano, 528 U.S. 495, 120 S.Ct. 1044, 145 L.Ed.2d 1007, 

68 USLW 4138, 00 Cal. Daily Op. Serv. 1341, 2000 Daily Journal D.A.R. 1881, 2000 CJ 

C.A.R. 898, 13 Fla. L. Weekly Fed. S 105 [2000]). The most prominent case to date was that 

of Kennewick Man, and a large number of journal and newspaper articles have been 

published on the topic of this single high profile incident (Chatters 2000; Owsley and Jantz 

2001; Jelderks 2002;  Bruning 2006). 

 

Spatial Dynamics of Litigation 

 The distribution of cases by Federal Circuit Court districts (Figure 5.1) was 

evaluated through contingency table analysis and a chi-square goodness-of-fit test (Table 

5.1). The results (2=544.333, df=12, p<0.0000001) show that there is a non-random 

distribution of court cases by Federal Circuit Court districts. The total number of cases by 

U.S. Circuit Court districts is illustrated in Figure 5.2. The average number of cases per 

district is 90.5 and the range varies greatly. In the discussion below, the number of litigated 

cases is described as greater, lesser, or equal to the national averages as defined by the 

adjusted residuals2 (Everitt 1977; Haberman 1978). This analysis demonstrates that the 

western half of the United States has supported the largest case load, with the 2nd Circuit 

Court and D.C. Circuit Courts close behind (Figure 5.2).  
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Figure 5.1. U.S. circuit court districts. 
 

American Antiquities Act 

 The distribution of AAA cases displays larger frequencies than the Southern, 

Midwest and Western districts (7th, 8th, 10th, and 11th Circuits), as well as the Federal Circuit 

(Figure 5.3). However, it also reveals fewer than expected cases on the eastern seaboard, 

western Gulf Coast, western seaboard, and D.C. Circuit Court. Twenty-nine States have 

utilized this legislation, while the remaining 25 States and Territories have not.  

 

Historic Sites Act 

 Use of the HSA is concentrated in the Northern Plains, Midwest, Eastern Seaboard, 

Gulf Coast (3rd - 4th, 6th - 8th and 11th circuits) and Federal Circuit courts (Figure 5.3). The 1st, 

5th, 9th and 10th circuit court districts had many fewer HSA cases than predicted by the 

national average. 
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National Historic Preservation Act 

 The litigation pattern in AAA cases is the inverse of NHPA cases, where the highest 

number of cases occurred within the East and Gulf Coast Circuit Courts (1st -5th Circuits) 

and the D.C. Circuit, but in fewer than expected numbers in Circuits 7, 8, and 10 (Figure 

5.3). Of the 627 litigated NHPA cases, 105 deal directly with the Section 106 process. Of 

these, 24 occurred in the DC Circuit Court, followed by Louisiana (5th Circuit) with eight 

cases, Pennsylvania (3rd Circuit) with seven cases, and California and Arizona (both 9th 

Circuit) with six cases each. 

 

American Indian Religious Freedom Act, Archeological Resources Protection Act and Native American 

Graves Protection and Repatriation Act 

 Three statutes display a consistent regional pattern; those are AIRFA, ARPA, and 

NAGPRA (Figure 5.3). The 8th, 9th and 10th Circuits experienced a higher than expected 

pattern of use, and the 5th Circuit illustrates a high frequency of ARPA cases. This pattern is 

not surprising, since Native American populations are large and land ownership is great in 

the western states. 

 

Abandoned Shipwrecks Act 

 The ASA has a higher than expected use rate that is statistically significant in the 3rd, 

4th, 6th, 7th, and 11th Circuits (Figure 5.3). The highest frequency of ASA use was in the Great 

Lakes (n=16). Four cases and one Supreme Court decision (California v. Deep Sea Research, 

Inc.) were litigated on the west coast. A total of 15 cases have been litigated along the 

Eastern Seaboard and the eastern half of the Gulf of Mexico.  
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Litigation of Cultural Resources 
 

 In reviewing the history of litigation, resource-specific trends illustrate the highly 

variable use of these eight statutes (Figure 5.4). Legislation was correlated using the highest 

frequency of challenges by resource (Archaeology, Architecture, Landscape, Shipwreck, and 

Other) to demonstrate the resource most frequently protected by each statute. In sum, two 

statutes were found to correlate with archaeology (ARPA and NAGPRA), three with 

architecture (HSA, AHPA and NHPA), one with landscapes (AAA), one with shipwrecks 

(ASA), and one with other (AIRFA). In the case of the AIRFA, other is most frequently 

correlated with religion. 

 

Archaeology 

 For archaeological resources, ARPA and NAGPRA evidence the highest number of 

litigated cases, followed by “other,” landscapes, architecture, then shipwrecks (Figure 5.5). 

The reason for legal action followed the same trend, illustrating that the largest number of 

cases was focused upon issues of compliance, followed by Other and Taking (Figure 5.6).  

 The application of ARPA and NAGPRA correlates well with archaeology and 

landscape, but the number of cases in the category of other was unexpected. For ARPA, 

this category is comprised of litigation ranging in use from wrongful termination of mineral 

leases (327 Mont. 306, 114 P.3d 1009, 60 ERC 1869, 2005 MT 146 [2005]) and illegal 

fishing activities (Slip Copy, 2006 WL 3735654 [2006]) to importation of ozone-depleting   
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Table 5.1. Contingency table of number of litigated cases by regions and statute. 
Observed/values /adjusted residuals presented in each cell with row and column totals and 
percents. Adjusted residuals = ((Oi-Ei)/Ei)/Vari for cell i. Where O is observed value in 
cell i, E is expected value in cell i and Var is variance for cell i. Expected values (Ei) = 
column total x row total ÷ grand total. Variance = (1-(row total/grand total)) x (1-(column 
total/grand total)). 

 

 
Figure 5.2. Total number of CRM cases by circuit court district by national average. 
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substances (517 F.3d 1179, 08 Cal. Daily` Op. Serv. 2583, 2008 Daily Journal D.A.R. 3178 

[2008]). For NAGPRA, the same category ranged from a Supreme Court case focused upon 

voter qualification for trustees at the Office of Hawaiian Affairs (528 U.S. 495, 120 S.Ct. 

1044, 145 L.Ed.2d 1007, 68 USLW 4138, 00 Cal. Daily Op. Serv. 1341, 2000 Daily Journal 

D.A.R. 1881, 2000 CJ C.A.R. 898, 13 Fla. L. Weekly Fed. S 105 [2000]) to a challenge by a 

non-native Hawaiian minor alleging that the admissions policy of a  private school violated 

civil rights law (295 F.Supp.2d 1141, 184 Ed. Law Rep. 315 [2003]). 

 

Architecture 

 The AHPA, HSA, and NHPA represent the statutes with the largest number of 

litigated cases focused upon architecture, followed by landscape, then (for HSA and NHPA 

only) other, archaeology, and shipwreck (Figure 5.5). The reason for legal action revealed 

differing patterns for each statute, but the category with the largest number of litigated 

cases—compliance—remained the same throughout all three (Figure 5.6). In the case of the 

AHPA, compliance-based litigation comprised the entirety of this category. For the HSA, 

compliance is followed by Taking, then Other, and by Other, then Taking, for the NHPA.   
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Figure 5.3. Distribution of American Antiquities Act, Historic Sites Act, Archeological and 
Historic Preservation Act, National Historic Preservation Act, American Indian Religious 
Freedom Act, Archeological Resources Protection Act, American Shipwreck Act, and 
Native American Graves Protection and Repatriation Act cases by circuit court district. 
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compared to the national averages. 
 
 Of the four cases litigated under the AHPA, none were found to correspond 

directly with archaeological issues and this law appears to be of little value in pursuing 

substantive protection for cultural resources on federal lands. It was not unexpected that 

architecture and landscape would be the primary recipient of legal protections under the 

NHPA, and that compliance-based litigation comprised the bulk of the case law. For the 

NHPA, the other category contains three Supreme Court cases that include the suspension 

of deportation (462 U.S. 919, 103 S.Ct. 2764, 77 L.Ed.2d 317, 13 Envtl. L. Rep. 20,663 

[1983]), recovery of attorney’s fees (473 U.S. 1, 105 S.Ct. 3012, 38 Fair Empl.Prac.Cas. 

(BNA) 124, 37 Empl. Prac. Dec. P 35,396, 87 L.Ed.2d 1, 53 USLW 4903, 1 Fed.R.Serv.3d 

129 [1985]), and recovery of hospital fees related to Medicaid reimbursement (499 U.S. 83, 

111 S.Ct. 1138, 55 Fair Empl.Prac.Cas. (BNA) 353, 55 Empl. Prac. Dec. P 40,606, 113 

L.Ed.2d 68, 59 USLW 4180, 67 Ed. Law Rep. 37, Med & Med GD (CCH) P 39,109 [1991]). 

The other category of the HSA contains cases ranging from the appealed conviction of 

traffic regulations within a national seashore (364 F.3d 1266, 17 Fla. L. Weekly Fed. C 379 

[2004]) to a sheriff’s department employee seeking judicial review of her termination based 

upon misconduct involving pay vouchers (139 Idaho 5, 72 P.3d 845 [2003]). 
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Figure 5.4. Overview of resource-based litigation. 
 
 
Landscape 
 
 For landscape resources, the AAA has the highest frequency of litigated cases, 

followed by other, architecture, shipwreck, and archaeology (Figure 5.5). The reasons for 

legal action, when ordered by frequency, are compliance, other, and taking (Figure 5.6). 

 Challenges in the other category range from a prisoner that alleged constitutional 

violations while incarcerated in a private prison (352 F.3d 1351, 25 ITRD 1865 [2004]) to 

the conviction for receipt and concealment of state-owned stolen property valued at over 

$500 (137 Mich.App. 480, 358 N.W.2d 615 [1984]). There is a single Supreme Court 

decision in the other category where the AAA was used to recover retroactive benefits and 

attorney fees in a civil rights trial (448 U.S. 1, 100 S.Ct. 2502, 65 L.Ed.2d 555 [1980]).  
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Figure 5.5. Disposition of resource by frequency. 
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Figure 5.6. Reason for legal action by frequency. 
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Shipwrecks 

 Not surprisingly, the ASA represents the bulk of litigated cases concerning 

shipwrecks (Figure 5.5). The reason for legal action in the case of the ASA is purely 

compliance-based (Figure 5.6). The great majority of case law was filed seeking declaration 

of ownership for sunken vessels. The single Supreme Court case  was centered upon the 

issue of acquiring salvage rights for an 1865 wreck that sank off the coast of California, and 

in the majority opinion  Justice O’Connor wrote that “the Eleventh Amendment does not 

bar the jurisdiction of a federal court over an in rem admiralty action where the res is not 

within the state’s possession” (523 U.S. 491, 118 S.Ct. 1464, 1998 A.M.C. 1521, 140 

L.Ed.2d 626, 98 Cal. Daily Op. Serv. 3000, 98 Daily Journal D.A.R. 4083, 98 CJ C.A.R. 

1919, 11 Fla. L. Weekly Fed. S 460 [1998]). 

 

Other 

 The AIRFA represents the statute with the largest number of litigated cases 

associated with the category of other, followed by landscape, architecture, and archaeology 

(Figure 5.5). The reason for legal action is most commonly associated with compliance, then 

other (Figure 5.6).  

 The AIRFA case law in the category of other includes the conviction of individuals 

cultivating marijuana that failed to pay the drug tax (71 F.Supp.2d 1098 [1999]), an 

allegation that prison grooming regulations violated civil rights (10 Fed. Appx. 466, 2001 

WL 294324, not selected for publication in the Federal Reporter [2001]), and even first 

degree murder (502 F.3d 931, 07 Cal. Daily Op. Serv. 10,677, 2007 Daily Journal D.A.R. 

13,801 [2007]). The remainder of this category is focused upon the protection of religious 
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freedoms, and was most famously used in the case of a review of determination by the 

Supreme Court regarding the use of peyote in the context of religious use (494 U.S. 872, 

110 S.Ct. 1595, 52 Fair Empl.Prac.Cas. [BNA] 855, 53 Empl. Prac. Dec. P 39,826, 108 

L.Ed.2d 876, 58 USLW 4433, Unempl.Ins.Rep. [CCH] P 21,933 [1990]). That challenge was 

made by two individuals who were dismissed from employment at a drug rehabilitation 

clinic due to their use of peyote. This offense was considered misconduct, preventing the 

plaintiffs from attaining unemployment compensation subsequent to termination. The case 

eventually reached the Supreme Court where Justice Scalia held that “(1) [the] free exercise 

clause did not prohibit application of Oregon drug laws to ceremonial ingestion of peyote, 

and (2) thus state could, consistent with free exercise clause, deny claimants unemployment 

compensation for work-related misconduct based on use of drug” (494 U.S. 872, 110 S.Ct. 

1595, 52 Fair Empl.Prac.Cas. [BNA] 855, 53 Empl. Prac. Dec. P 39,826, 108 L.Ed.2d 876, 

58 USLW 4433, Unempl.Ins.Rep. [CCH] P 21,933 [1990]). 

 

 

Conclusion 

 These trends in major cultural resource laws indicate the disparate application of 

legislation associated with cultural resources. While a single piece of legislation, the ASA, 

appears to offer protection to only one kind of cultural resource, the remaining seven 

statutes have been employed within each of the resource categories, indicating the 

multifaceted nature of legal challenges. The flexible nature of these statutes and endless 

attempts by lawyers to apply them to widely ranging problems regarding cultural resources 

provides unique litigation-based signatures for each of the U.S. Circuit Courts. 
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 In all, 1097 litigated cases comprise the foundation of this study. Though each is 

unique, the combined case law provides a tool to analyze the legislation and document the 

evolution of legal practices. Our findings highlight the variable and unequal application of 

the eight statutes across the national landscape, emphasizing the need for further research 

to explore the intricacies within these patterns.  

 Many of these laws have attempted to provide greater legal access and authority to 

Native Americans. The last decade has seen yet another increase in litigation, which has 

continued for most of the new century. Though not included within this study, the National 

Environmental Policy Act (NEPA) has the highest frequency of use (>4000 cases), but 

most involve environmental issues with no implications for cultural resources. Nevertheless, 

NEPA warrants investigation and analysis. 

This study demonstrates the diverse practical application of these eight statutes. 

Knowing that these laws exist to protect the past is not enough. Only by following the 

evolutionary progress revealed in part by this study may we begin to truly comprehend the 

current impact of cultural resource laws upon the practice of archaeology. This analysis ends 

not only with a plea for additional analyses, but for the education of our legal counterparts 

regarding legislation that protects cultural resources, and the consistent prosecution and 

enforcement of cultural resource laws since, to a large degree, the nature of research 

focused upon cultural resources in the United States is influenced by the enforcement of 

these statutes. 
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Notes 

 
1. The distribution of cases uses the 11 circuit courts, which includes both the District of 

Columbia (D.C.) and Federal Circuit jurisdictions. Judicial practice places U.S. Territories 

within specific regional circuit districts. For example, the Northern Mariana Islands and 

Guam are grouped with the 9th Circuit (Alaska, Arizona, California, Hawaii, Idaho, 

Montana, Nevada, Oregon, and Washington), the Virgin Islands are incorporated with the 

3rd Circuit (Delaware, New Jersey, and Pennsylvania), and Puerto Rico is placed with the 

1st Circuit (Maine, Massachusetts, New Hampshire and Rhode Island). The other districts 

are made up of only states. For example, the 2nd Circuit is comprised of Connecticut, New 

York, and Vermont. The 4th Circuit contains Maryland, North Carolina, South Carolina, 

Virginia, and West Virginia. The 5th Circuit is made up of Louisiana, Mississippi, and 

Texas. Kentucky, Michigan, Ohio, and Tennessee constitute the 6th Circuit. The 7th Circuit 

consists of Illinois, Indiana, and Wisconsin. Arkansas, Iowa, Missouri, Minnesota, 

Nebraska, North Dakota, and South Dakota form the 8th Circuit. Colorado, Kansas, New 

Mexico, Oklahoma, Utah, and Wyoming are the states constituting the 10th Circuit, while 

Alabama, Georgia, and Florida comprise the 11th Circuit. 

 

2.  In the contingency table analysis, a chi-square test of independence and adjusted 

residuals were calculated (Everitt 1977; Haberman 1978). Adjusted residuals measure the 

difference between observed and expected values in individual contingency table cells, and 

converts this difference to the equivalent of a z-score in a normal distribution. Adjusted 

residuals with a value of 1.96 or greater, or –1.96 or less, are considered significant at a 0.05 
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level of confidence. Adjusted residual values between 1.96 and -1.96 do not deviate enough 

from the expected values to be considered significantly different from the expected values. 

Details of the actual calculations are presented in Table 5.1.  

  



 

158 

 

CHAPTER VI 
 

SUMMARY AND FUTURE DIRECTIONS 
 
 

The weapon of criticism cannot, of course, replace criticism 

by weapons, material force must be overthrown by material 

force; but theory also becomes a material force as soon as it 

has gripped the masses (Marx 1997 [1844]:93)  

 

 This concluding chapter offers potential future directions concerning avenues of 

gainful research within the Caddo region that are easily exportable to global contexts. To be 

sure, it has been my goal to aim a critical lens to issues of temporal control and ceramic 

provenance; however, the methods and approaches employed herein can be used to bolster 

archaeological arguments using databases composed of regionally-specific data garnered 

from archaeological investigations anywhere in the world.  

 

Summary 

 Within the preceding pages, I have attempted to convey both the scope and breadth 

of radiocarbon dating, instrumental neutron activation analysis (INAA), and legally-based 

research questions that can be addressed by the corpus of data available in the pages of 

Cultural Resources Management (CRM) reports and legal databases. The synthesis of this 

data provides a substantial platform from which to build upon as Caddo archeologists and 

the Caddo peoples strive to learn more regarding the materials, identities, and lifeways of 

ancestral Caddo populations.   
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 Through the use of radiocarbon, this investigation revealed three divisions within 

the Woodland period that represent the Early Woodland (ca. 500 B.C. – A.D. 0), Middle 

Woodland (A.D. 0 – 400), and Late Woodland (A.D. 400 – 800) occupations of East Texas. 

Using the same method, radiocarbon dates were used to explore the variation within the 

ancestral Caddo tradition (ca. AD 800 – 1680+) of East Texas, in which variable use 

through time of Texas’ natural regions was evidenced, and the differing site types 

(Cemeteries, Mound Centers, and Settlements) were set in contrast with their temporal and 

spatial contexts.  

  Although buried deep within the gray literature, collecting and assembling the 

INAA data proved to be a time consuming process. Taking almost two years to gather, this 

represents the first attempt to synthesize these data for reanalysis outside of the various 

approaches taken by the University of Missouri Research Reactor (MURR) since the late 

1990s. The product of this analysis is the landscape-level consideration of geochemical 

diversity across the Caddo region. At the conclusion of this analysis, five composite groups 

have been identified, each with differing geographic distributions that may hold clues to 

furthering the analysis of this complicated dataset.  

 The legal framework employed by the United States Circuit Courts provides a 

challenging platform from which the Caddo Nation must address their concerns and 

grievances regarding the violation of both statutes and Executive Orders. Positioned within 

the geographic limits of three different Circuit Courts, the Caddo must hope for consistent 

interpretation of federal mandates across current political boundaries. Fiscal limitations play 

a large part in their pursuit of violations, and may be the principal reason for the complete 

absence of litigation for cases in which their cultural property had been illegally procured 
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(i.e., stolen and/or looted).  Within each of the three research domains included in this 

dissertation, the analysis provides more questions than answers. It is my hope that the 

combining of these datasets will lead to an improved understanding of what it was to be a 

member of Caddo society. Of the most conceivably fruitful endeavors yet to be explored is 

the development of a novel and complementary theoretical dialogue, which must begin to 

evolve if Caddo archaeology is to continue to expand the boundaries of our current base of 

knowledge and remain relevant in the coming decades. 

 While not a central focus of this study, these results demonstrate the capacity for 

significant research gains from repository or library-based efforts. These methods illuminate 

promise in many forms. 

 

Future Directions 

Temporal Considerations 

 With the decreasing cost of attaining accurate 14C determinations from increasingly 

small samples, archaeologists are becoming ever more mindful of the research potential that 

14C dates can offer (see Kuzmin and Keates 2005; Rick 1987; Steele 2010; Williams 2012). 

One trend evidenced here—and in other studies (see Surovell and Brantingham 2007; 

Surovell et al. 2009)—is that the number of younger components outnumbers that of older 

components. This observation plays an integral role in the recent push toward highlighting 

fluctuations in prehistoric demography via radiocarbon (Bamforth and Grund 2012; 

Buchanan et al. 2008; Faught 2008; Hinz et al. 2012; Peros et al. 2010), and the curative 

methods advanced to correct for taphonomic bias (Surovell and Brantingham 2007; 

Surovell et al. 2009). 
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 Recent technological and statistical advances have made it less complicating to 

remove investigator bias from the process of delineating sites with simultaneous temporal 

occupations (see Grove 2008, 2009, 2010). Hypothetically, because of an increase in  

chronological precision, the development of a regional model of Caddo trade and exchange 

ought to occur at an appropriate scale to begin a discussion of cultural transmission—

whether vertical (Shennan and Steele 1999:376), oblique (Shennan 2002:49), 

master/apprentice (Epstein 1998:688-693; Silver 1981:43-44), or horizontal (Cavalli-Sforza 

and Feldman 1981)—which might be further evidenced in innovative ceramic decorations 

(Hosfield 2011). Within that context, variation and transmission become important 

mechanisms of ceramic traditions along with their differential persistence in the 

archaeological record (Neff 1996).  

 Advancements in combining the analysis of 14C and data from other sources—

stratigraphic (Bronk Ramsey 1995, 2007; Michczynski and Pazdur 2003), phases (Buck et al. 

1991; Ziedler et al. 1998), architecture (Bayliss et al. 2007; Whittle et al. 2011), 

palaeoenvironmental records (Gearey et al. 2009), tephrochronology (Buck et al. 2003), 

climate (Kidder 2006), and even ceramic data (Buck et al. 1992)—can provide an integral 

toolkit for exploring potential associations between 14C determinations and archaeological 

datasets, providing testable hypotheses that can be validated or falsified with the addition of 

more data (Bayliss and Ramsey 2004). Bayesian models of radiocarbon have been employed 

for over 15 years in Great Britain (Bayliss 2009; Bronk Ramsey 2008, 2009; Buck et al. 

1996), and are widely employed there with great success (e.g., Bayliss 2009; Bayliss et al. 

2005; Buck et al. 1994).  

 However, until archaeologists incorporate Bayesian analyses of radiocarbon dates on 
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a more regular basis, we should at least endeavor to use these data to identify those sites 

with probable components of archaeological contemporaneity. This can be done by 

highlighting sites with overlapping date ranges, and extending the spatial scope outward at 

regular increments (perhaps at 25, 50, 75 and 100 miles) to better illustrate and consider 

archaeological sites that contain elements (ceramics, lithics, features, etc.) that can increase 

our understanding of potential networks, interactions, and cultural transmission at particular 

temporal intervals. While beyond the scope of this endeavor, those data could—and 

should—be used to explore the possible range in the structure of communities and the 

potential political and social alliances and networks that may have been operating within 

these areas. 

 

Ceramic Provenance 

 The employment of INAA-based research in the Caddo area will continue to aid in 

clarifying issues of ceramic provenance evident in the dataset, and this analysis contributes 

five unique geospatial patterns that may help to further future discussions of ceramic 

provenance for ancestral Caddo ceramics. It is becoming increasingly apparent that we 

cannot rely upon MURR to expound any further upon the diversity and increasing 

variability of this sample. Therefore, we must take it upon ourselves to investigate and 

identify potential areas of vessel provenance within the Caddo area that can be consistently 

employed as this substantial dataset continues to increase in magnitude.  

 Due to recent dialogues concerning lines of effective demarcation between local and  

non-local ceramics via INAA (Shrarer et al. 2006; Stoltman et al. 2005; Stoltman and 

Mainfort 2000), and the complex nature of ceramic chemical composition based upon the 
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addition of temper and the process of diagenesis (Glascock 2002; Neff et al. 2006a, 2006b), 

it is recommended that petrographic analyses augment the analysis of INAA data in an 

effort to clarify and expound upon issues of probable vessel provenance and regional 

geochemical variability. While combining these approaches may serve to elucidate further 

trends within these data, making sense of this complex amalgam of INAA samples remains 

paramount. Sample sizes must be increased within the currently analyzed sample of sites 

and to further current dialogues regarding possible provenance determinations within the 

ancestral Caddo territory. In order to consistently identify local and non-local sherds as well 

as possible zones of production, I recommend that a minimum of 30 sherds should be 

submitted for INAA from each site under consideration, making it possible to create a site-

specific correspondence matrix from which an exploration of statistical similarities and 

differences can assist in the identification of clays found in the ceramics used at each site.  

 Employed in tandem, INAA and petrography have been found to complement one 

another, and often yield substantive clues that assist in clarifying issues of provenance. 

Additionally, once areas of possible ceramic provenance have been defined by INAA and 

petrographic methods, an exploration of ceramic petrofacies may exponentially increase the 

scope and utility of studies aimed at identifying possible manufacturing locales for specific 

ceramic vessels. By noting the relative abundance of local sands, petrofacies models can 

provide a high-definition method of assigning ceramic provenance (see Miksa and Heidke 

1995; 2001).  

 In archaeological application, petrofacies can be thought of as “temper resource 

procurement zones whose sand compositions are distinct from one another at a relevant 
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scale of investigation” (Miksa et al. 2004). Petrofacies models have been employed 

successfully in archaeological contexts of the San Pedro Valley (Miksa et al. 2004), Tonto 

basin (Miksa and Heidke 2001, Stark and Heidke 1998), Tucson basin (Lombard 1987, 

Miksa et al. 2004), Perry Mesa and Agua Fria (Castro-Reino 2004), Tanque Verde Wash 

(Lavayen 2011), and the Gila and Phoenix basins (Miksa et al. 2004), but this technique has 

not been exported east of Arizona, most likely due to the time investment needed at the 

outset of such an endeavor. Through employment of this method in East Texas, it should 

be possible to ask increasingly complex questions about Caddo ceramic sherds and vessels. 

The three-dimensional nature of ceramic provenance (x = longitude, y = latitude, z = time) 

adds to the complexity and value of the research.  Data resulting from the construction of 

an actualistic petrofacies model in East Texas can provide the necessary foundation for 

expanding upon the current dialogue regarding the provenance of ceramic vessels utilized 

by Woodland and Caddo populations.  

 The lower Angelina River basin in East Texas provides an ideal locality for a test of 

the petrofacies model within a prehistoric coastal environment. The lack of systematic 

sampling for raw materials and the apparent homogeneous chemical signatures within the 

INAA data have led to challenges with interpretations offered by MURR (Ferguson and 

Glascock 2012). Although superficially homogenous at the elemental scale (per MURR), the 

geologic variability within the lower Angelina River basin is ample, and provides promise 

for a substantial increase in the resolution of ceramic provenance studies. Within the basin, 

latitudinal variability occurs at a higher frequency than its longitudinal counterpart due 

wholly to the nature of the coastal geology in which deep sands were deposited 
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incrementally as sea level dropped. Although longitudinal homogeneity in the prehistoric 

coastline might be seen as a limiting factor, sand samples collected within the peripheral 

drainages could reveal that the petrofacies identifications defined within the Angelina River 

basin can be exported for use in the neighboring Neches and Sabine River basins due to 

similarities in longitudinal geologic composition.  

 Within the Angelina River basin, Woodland and Caddo (ceramic-bearing) 

occupations would provide the cultural framework for such an endeavor. The sample of 

ceramic sherds that could be employed for such a project would provide a representative 

cross-section needed to explore variation in ceramic composition from archaeological sites 

across the area. 

 The use of petrofacies exponentially increases the scope and utility of ceramic 

petrography. By noting the relative abundance of local sands instead of only ubiquitous 

materials, petrofacies models provide a high-definition method of assigning ceramic 

provenance (Miksa and Heidke 1995). This can facilitate the production of increasingly 

complex research questions, and provide the spatial and temporal resolution needed to 

begin a more detailed discussion of manufacture and use, ceramic economy, migration, 

exchange networks, and temporal trends. 

 With regard to the litigation aimed at the protection of archaeological and historical 

resources, it is recommended that future analyses proceed within the framework of statute-

specific investigations aimed at exploring the question of why litigation for each of these 

statutes can be said to pattern in these various ways. Also of benefit to further analyses 

would be the inclusion of local, state, and federal law enforcement and lawyers within a 
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larger discussion aimed at informing and educating those charged with the protection of 

these resources. The most productive of these would be the establishment of a Continuing 

Legal Education (CLE) course that meets the standards set out by the state in which the 

CLE is proposed. Another avenue of worthwhile pursuit would be the creation and 

dissemination of public service announcements aimed at informing the public of the laws 

protecting cultural resources on private lands. 

 

Theoretical Perspectives on Caddo Archaeology 

 The contribution of theoretically-inspired concepts to the archaeological study of 

the Caddo people is a valuable approach at arriving at a better understanding of Caddo 

native history, but it is an approach that needs more attention. Put plainly, theory is one of 

the least expensive and most powerful tools that we possess in archaeology, and the regular 

incorporation of theoretical contributions to present and future Caddo archaeological 

endeavors ought to assist in the development of competing/complementary theories and 

hypotheses concerning all aspects of Caddo culture change over more than a millennium.  

 Early’s (2012) agency-based discussion of Caddo pottery-making trajectories and the 

decision-making processes certainly stand out as a useful example of how this might be 

achieved. Subsequent to her discussion of ceramics, Early (2012:45) enlists the use of 

structural principles and cultural categories within several cultural domains, where “the 

relationships among cultural categories comprising pairs or contrast sets (e.g., human: 

superhuman, phenomenal: numinous, junior: senior, etc.) were structured according to a 

principle of hierarchy rather than opposition (Sabo 1998:167). Early’s (2012) argument 

stands out as one of the better examples of what might be called hierarchically-nested 
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Caddo theory in that she constructs her own theoretical viewpoint, subsequently couching 

that supposition within Sabo’s (1998) theoretical construct. It continues to be the case that 

within the realm of theory, Caddo archaeology possesses both the largest amount of 

promise, and the smallest number of practitioners. 
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APPENDIX A 

INSTRUMENTAL NEUTRON ACTIVATION ANALYSES IN THE ANCESTRAL  
 

CADDO TERRITORY4 
 
 
 

Revisiting the Caddo INAA Dataset 
 

The work presented in this appendix has been submitted to the Caddo Archeology 

Journal. In an attempt to better comprehend the geochemical composition of ceramic sherds 

across the traditional Caddo landscape, the INAA results for 1192 sherds from 164 sites are 

employed within this discussion (not included in this sample are sherds from sites recovered 

in central Texas). After assembling the dataset, two tables were used—one with 

geochemical data, one with site data—to catalog the sample. The shell and bone-tempered 

sherds were noted, but the calcium correction (see Steponaitis et al. 1996:559) was only 

applied to the 4% (n=47) of samples known to be shell-tempered (see Figure 2.1).  

 
 
Figure A.1. Frequency and uncorrected Ca values for shell, bone and other tempers in the 
Caddo INAA dataset. 

                                                 
4 Reprinted with permission from “Instrumental Neutron Activation Analyses in the Ancestral Caddo 

Territory” by Robert Z. Selden Jr., 2014, Caddo Archeology Journal, Volume 24, Copyright 2014 Caddo 

Conference Organization.  
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The calcium correction was applied to these 47 sherds in version 2.15.2 of R, after which 

those sherds were recombined with the bone and other-tempered sherds, and the log-10 of 

each element was calculated, adding a value of one to each sherd/element in the database, 

effectively replacing all missing values with a zero. Subseqently, the Getis-Ord Gi* statistic 

in ArcGIS10 was employed to calculate a z-score for each log-10 value, illustrating the 

spatial distribution and z-score value for each element using the formula:  
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where 𝑥𝑗 is the attribute value for feature 𝒿, 𝑤𝑖,𝑗 is the spatial weight between feature 𝒾 and 

𝒿, 𝓃 is equal to the total number of features and:  
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The 𝐺𝑖
∗ statistic is a z-score so no further calculations are required (ESRI 2012). 

 
 Following the calculation of log-10 values for each element, these data were then 

used to calculate the deterministic statistic of inverse distance weighted (IDW) in ArcGIS10 

for each element to better illustrate whether discrete geochemical signatures exist close to 

one another, or in the same location (see Mitchell 2005; ESRI 2004). Pulling from these 

results, the geographic illustrations seem to clarify much, but can also be used to clarify and 
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expand upon assertions made in previous analyses. For instance, the geographic distribution 

of chromium (Cr) appears to support Ferguson’s (2010:16-17) assertion regarding an 

apparent gradient in the Sabine River drainage, an observation which might now be 

extended to all but the Red River drainage in East Texas. What follows are the geographic 

illustrations created through this process, which document the spatial diversity and 

variability for each of the reported elements (Figures A.2-A.34). 
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Geochemical Results 

 
Figure A.2. Variation in aluminum (Al) concentrations for INAA of Caddo ceramics. 
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Figure A.3. Variation in arsenic (As) concentrations for INAA of Caddo ceramics. 
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Figure A.4. Variation in barium (Ba) concentrations for INAA of Caddo ceramics. 
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Figure A.5. Variation in calcium (Ca) concentrations for INAA of Caddo ceramics. 
 



 

209 

 

 
Figure A.6. Variation in cerium (Ce) concentrations for INAA of Caddo ceramics. 
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Figure A.7. Variation in cobalt (Co) concentrations for INAA of Caddo ceramics. 
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Figure A.8. Variation in chromium (Cr) concentrations for INAA of Caddo ceramics. 
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Figure A.9. Variation in cesium (Cs) concentrations for INAA of Caddo ceramics. 
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Figure A.10. Variation in dysprosium (Dy) concentrations for INAA of Caddo ceramics. 
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Figure A.11. Variation in europium (Eu) concentrations for INAA of Caddo ceramics. 
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Figure A.12. Variation in iron (Fe) concentrations for INAA of Caddo ceramics. 
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Figure A.13. Variation in hafnium (Hf) concentrations for INAA of Caddo ceramics. 
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Figure A.14. Variation in potassium (K) concentrations for INAA of Caddo ceramics. 
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Figure A.15. Variation in lanthanum (La) concentrations for INAA of Caddo ceramics. 
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Figure A.16. Variation in lutetium (Lu) concentrations for INAA of Caddo ceramics. 
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Figure A.17. Variation in manganese (Mn) concentrations for INAA of Caddo ceramics. 
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Figure A.18. Variation in sodium (Na) concentrations for INAA of Caddo ceramics. 
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Figure A.19. Variation in neodymium (Nd) concentrations for INAA of Caddo ceramics. 
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Figure A.20. Variation in nickel (Ni) concentrations for INAA of Caddo ceramics. 
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Figure A.21. Variation in rubidium (Rb) concentrations for INAA of Caddo ceramics. 
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Figure A.22. Variation in antimony (Sb) concentrations for INAA of Caddo ceramics. 
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Figure A.23. Variation in scandium (Sc) concentrations for INAA of Caddo ceramics. 
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Figure A.24. Variation in samarium (Sm) concentrations for INAA of Caddo ceramics. 
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Figure A.25. Variation in strontium (Sr) concentrations for INAA of Caddo ceramics. 
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Figure A.26. Variation in tantalum (Ta) concentrations for INAA of Caddo ceramics. 
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Figure A.27. Variation in terbium (Tb) concentrations for INAA of Caddo ceramics. 
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Figure A.28. Variation in thorium (Th) concentrations for INAA of Caddo ceramics. 
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Figure A.29. Variation in titanium (Ti) concentrations for INAA of Caddo ceramics. 
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Figure A.30. Variation in uranium (U) concentrations for INAA of Caddo ceramics. 
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Figure A.31. Variation in vanadium (V) concentrations for INAA of Caddo ceramics. 
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Figure A.32. Variation in ytterbium (Yb) concentrations for INAA of Caddo ceramics. 
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Figure A.33. Variation in zinc (Zn) concentrations for INAA of Caddo ceramics. 
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Figure A.34. Variation in zirconium (Zr) concentrations for INAA of Caddo ceramics. 
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Summary and Conclusion 

INAA sample sizes must be increased within sites and from new sites to further 

current dialogues regarding possible ceramic provenance determinations within the ancestral 

Caddo territory. In order to achieve a confident level of statistical significance, a minimum 

of 30 sherds should be submitted for INAA from each site. This makes it possible to create 

a site-specific correspondence matrix from which an exploration of statistical similarities 

and differences can assist in the identification of clays found in the ceramics used at each 

site.  

  The chemical maps presented here represent an important new analysis of the 

Caddo INAA database. The results of this analysis illustrate that the chemical composition 

of ceramics associated with ancestral Caddo populations were diverse and highly variable 

across East Texas and surrounding states, hinting at the potential successes in ceramic 

provenance identifications for more robust (>30) samples of sherds from sites within this 

region. 
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APPENDIX B 

BIBLIOGRAPHY ON WOODLAND AND CADDO INSTRUMENTAL NEUTRON 

ACTIVATION ANALYSIS STUDIES IN EAST TEXAS, NORTHWEST LOUISIANA, 

EASTERN OKLAHOMA, AND SOUTHWEST ARKANSAS 5 

 

 

The work presented in this chapter has been published by committee member 

Timothy K. Perttula and the author in the Caddo Archeology Journal. The characterization of 

the chemical and mineralogical composition of ceramic vessels and sherds from Woodland 

and Caddo sites by instrumental neutron activation analysis (INAA) and petrographic 

analysis provides a unique opportunity to gather and study evidence on the nature of trade 

and exchange of ceramic vessels (and perhaps their contents?) conducted by ancestral 

Caddo people with their neighbors, both near and far (i.e., other ancestral Caddo groups as 

well as non-Caddo communities) (see Perttula 2002). This evidence in turn can be used to 

explore changes in the nature of social and economic relationships between particular 

Caddo groups and with other prehistoric peoples. Compositional and paste differences that 

have been identified between the different wares made by Caddo groups (i.e., plain wares, 

utility wares, and fine wares) have also been used to explore functional and technological 

differences in vessel function and form (see Perttula 2000i:138). 

                                                 
5 Reprinted with permission from “Bibliography on Woodland and Caddo Instrumental Neutron 

Activation Analysis Studies in East Texas, Northwest Louisiana, Eastern Oklahoma, and Southwest 

Arkansas” by Timothy K. Perttula and Robert Z. Selden Jr., 2013, Caddo Archeology Journal, Volume 23, 

pp. 93-104, Copyright 2013 by Caddo Conference Organization.  
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 According to Ferguson et al. (2012:224), the database of INAA samples of ceramic 

sherds from Woodland and Caddo sites done at the University of Missouri Research 

Reactor Center at the University of Missouri-Columbia, “consisting of more than 1000 

ceramic samples…is one of the largest samples from any region in the world.  It is also one 

of the most complicated.  Over the past decade the compositional group structure has 

undergone numerous modifications, as well as a complete reanalysis (Ferguson et. al 2010).  

The most recent iteration of the East Texas Caddo database divides the region into 11 sub-

regions.”  Each of these sub-regions (Figure 1) has then been treated as an individual 

dataset, and for most sub-regions, a core group has been defined and identified. The INAA 

sample has been gathered from more than 200 Woodland and Caddo sites/ceramic 

assemblages, and the petrographic sample is almost equally as large. 

 A considerable amount of work has been accomplished in Caddo area ceramic 

studies over the last 15 years—although the first work was done more than 40 years ago 

(see Bareis and Porter 1965; Porter 1971)—that have focused on technological and 

provenance issues and whether particular vessels and sherds from vessels from Woodland 

and Caddo sites were made locally or were the product of trade and exchange from non-

local production sources. However, most of this work has been done in contexts—

especially cultural resource management projects—where the results of these studies are 

found only in very limited distribution reports and publications. Thus, many archeologists 

that currently work in the Caddo area may not aware of the scope of the research that has 

been accomplished to date, nor are they aware of the primary published and unpublished 

literature on the subject. Consequently, we have assembled a bibliography of all known 

(current through October 2012) reports and publications that concern themselves with 
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INAA and petrographic analysis of ceramic vessels and ceramic vessel sherds in the Caddo 

area. 
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Figure B.1. Current Chemical Groups defined in INAA analyses of sherds, mainly in sites in 
East Texas (Perttula and Ferguson 2010: Figure 3). 
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 As the bibliography shows, the vast majority of the INAA and petrographic analysis 

studies completed to date on Woodland and Caddo sites in the Caddo area have been done 

on sites in East Texas.  We think it is important that comparable studies be completed on 

Woodland and Caddo vessels and vessel sherds from assemblages in adjoining states, so 

consequently this article is a plea that Caddo archeologists working in all parts of the Caddo 

area strongly consider undertaking their own INAA and petrographic research. Such 

research can (1) help to better clarify the compositional nature of these ceramic wares 

across the entire Caddo temporal and geographic landscape, not just one part of the Caddo 

world; (2) help pinpoint other ceramic manufacturing locales and chemical/mineralogical 

compositional groups, but also to assess their apparent technological complexity; and (3) 

lead to better evaluations of the regional  character of prehistoric and historic Woodland 

and Caddo trade and interaction networks (across our modern state lines) that existed, and 

more definitively establish whether there were changes through time in the direction and 

intensity of trade and interaction on local and long distance scales. The disparate pieces of 

information contained in the sherds and vessel fragments of Woodland and Caddo ceramics 

scattered on many prehistoric and early historic sites over a broad region have the potential 

to address these questions and research issues, and can contribute unique information on 

relationships that existed in the distant past between Woodland groups and Caddo farmers 

and other aboriginal groups in the Southeast, Midwest, and Southern Plains. 
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