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ABSTRACT 

This dissertation consists of three essays wherein tools of financial econometrics 

are used to study the three aspects of farmland valuation puzzle: short-term boom-bust 

cycles, overpricing of farmland, and inconclusive effects of direct government payments. 

Essay I addresses the causes of unexplained short-term boom-bust cycles in 

farmland values in a dynamic land pricing model (DLPM). The analysis finds that gross 

return rate of farmland asset decreases as the farmland asset level increases, and that the 

diminishing return function of farmland asset contributes to the boom-bust cycles in 

farmland values. Furthermore, it is mathematically proved that land values are 

potentially unstable under diminishing return functions. We also find that intertemporal 

elasticity of substitution, risk aversion, and transaction costs are important determinants 

of farmland asset values. 

Essay II examines the apparent overpricing of farmland by decomposing the 

forecast error variance of farmland prices into forward looking and backward looking 

components. The analysis finds that in the short run, the forward looking Capital Asset 

Pricing Model (CAPM) portion of the forecast errors are significantly higher in a boom 

or bust stage than in a stable stage. This shows that the farmland market absorbs 

economic information in a discriminative manner according to the stability of the 

market, and the market (and actors therein) responds to new information gradually as 

suggested by the theory. This helps to explain the overpricing of farmland, but this 

explanation works primarily in the short run. 
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Finally, essay III investigates the duel effects of direct government payments and 

climate change on farmland values. This study uses a smooth coefficient semi-

parametric panel data model. The analysis finds that land valuation is affected by climate 

change and government payments, both through discounted revenues and through effects 

on the risk aversion of land owners. This essay shows that including heterogeneous risk 

aversion is an efficient way to mitigate the impacts of misspecifications in a DLPM, and 

that precipitation is a good explanatory variable.  In particular, precipitation affects land 

values in a bimodal manner, indicating that farmland prices could have multiple peaks in 

precipitation due to adaption through crop selection and technology alternation. 
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CHAPTER I 

INTRODUCTION 

 

Although U.S. farmland values have been studied with numerous land pricing 

models, a farmland valuation puzzle remains (Moss and Katchova 2005). The results of 

traditional economic models of farmland prices demonstrate that farmland value is 

determined by discounted future returns to the farmland (Alston 1986; Burt 1986; 

Featherstone and Baker 1987), but there are issues unexplained in those models. 

First, farmland values exhibit significant short-term boom-bust cycles that are not 

explained by the asset value formulations. The results of Schmitz (1995) and of Falk and 

Lee (1998) indicate that the values of agricultural assets are determined by market 

fundamentals in the long run. However, in the short run farmland prices diverge 

significantly away from the discounted value, and these short-run divergent periods are 

referred to as boom or bust cycles. Furthermore, a number of studies report the 

overreaction of farmland values in response to increases in returns (Featherstone and 

Baker 1987; Irwin and Coiling 1990; Falk 1991; Clark, Fulton, and Scott Jr 1993; 

Schmitz 1995). 

Second, while the directions of changes in farmland values are consistent with 

the capitalization formula, farmland appears to be systematically overpriced. Farmland 

returns are considered too low relative to farmland values, compared with other sectors 

in the capital market in a capital asset pricing model context (Moss and Katchova 2005). 
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Third, existing literature has not provided a closure of the effects of direct 

government payments on farmland prices. Direct government payments are found to be 

positively and negatively related to farmland prices in different studies. 

Farmland values make up 84 percent of U.S. agriculture assets; therefore the 

farmland valuation puzzle is an important issue that has stimulated substantial 

researches. Scholars have long been trying to identify the possible causes for boom-bust 

cycles, such as quasi-rationality or bubbles (Featherstone and Baker 1987), time-varying 

risk premiums (Hanson and Myers 1995), overreaction (Burt 1986; Irwin and Coiling 

1990), fads (Falk and Lee 1998), and risk aversion and transaction costs (Just and 

Miranowski 1993; Chavas and Thomas 1999; Lence and Miller 1999; Lencc 2001). 

Researchers have also explored potential arbitrage barriers for overpriced farmland 

values, such as the absence of short selling and transaction costs (Chavas 2008; Lence 

and Mishra 2003). 

Some studies have tried to understand land values and their fluctuations based on 

market fundamentals. Irwin and Coiling (1990) used a variance-bounds test proposed by 

Shiller (1981) and LeRoy and Porter (1981) to analyze whether the volatility in farmland 

prices was consistent with the variability in returns to farmland. They found that the 

variability in the returns was potentially larger than that implied by the variability of 

farmland prices, but this methodology may have suffered from nonstationarity (Kleidon 

1986) and small-sample bias (Flavin 1983). Campbell and Shiller (1987) developed the 

test of the present-value model to deal with nonstationary data. Falk (1991) used 

Campbell and Shiller’s (1987) approach to see if there was a stationary relationship 
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between farmland values and returns to farmland but did not find one. Hanson and 

Myers (1995) find that some variation in farmland values can be explained by a time-

varying-discount rate. 

Falk and Lee (1998) found that fads and overreactions are relevant to short-run 

pricing behavior, while permanent fundamentals cause long-run price movements. 

Barry, Robison, and Neartea (1996) allowed for the effects of risk and risk aversion on 

asset prices, and found that increasing time attitudes are comparable to the Arrow-Pratt 

measures of risk attitudes. Shiha and Chavas (1995) found that transaction costs have 

significant effects on land prices. Epstein and Zin (1991) found that risk aversion is 

important to farmland pricing. Kocherlakota (1996) discovers that incomplete markets 

and trading costs could also be relevant to the equity-premium puzzle. Just and 

Miranowski (1993) found that inflation-rate and real returns on alternative uses of 

capital may cause changes in farmland values. 

Chavas and Thomas (1999) found risk aversion and transaction costs are 

important determinants of farmland prices. Lence (2001) cautioned about the effects of 

data non-stationarity in the Just and Miranowski (1993) and the deduction in Chavas and 

Thomas (1999) studies. Plantinga, Ruben, and Robert (2002) decomposed agricultural 

land values into components reflecting the discounted value of future land development 

and the discounted value of agricultural production, and found that those components 

explain 91% of the overall level of US farmland values. De Fontnouvelle and Lence 

(2002) found robust evidence that the behavior of land prices and rents is consistent with 
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the constant-discount-rate present-value-model (CDR-PVM) in the presence of 

empirically observed values of transaction costs. 

However, under the assumption of fixed relative risk aversion coefficient, the 

existing literatures have not fully addressed the farmland valuation puzzle, including the 

effects of direct government payments. 

This dissertation consists of three essays studying the three aspects of farmland 

valuation puzzle. Essay I addresses causes of the short-term boom-bust cycles in 

farmland values, which are not explained by the classic asset value formulations. Essay 

II addresses the apparently overpriced farmland value by decomposing the variance of 

forecast errors in CAPM (forward) portion and Random Walk (backward) portion. Essay 

III investigates the effects of direct government payments (DGP) and climate change on 

farmland values, shedding some new light on the contribution of those factors. 
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CHAPTER II 

ASSET RETURNS AND BOOM-BUST CYCLES IN FARMLAND PRICES 

 

The value of farm real estate, including land and structures, constitutes 84 

percent of the 2009 total value of U.S. farm assets (Nickerson et al 2012). Since 

farmland is a big part of farmers’ wealth and an important business to banks that finance 

farming operations, changes in agricultural land values are an essential economic issue. 

This chapter endeavors to explain boom-bust cycles in farmland prices with a general, 

instead of linear, homogeneous return function of farmland assets. A dynamic land 

pricing model (DLPM) is estimated over U.S. farmland data under alternative 

assumptions of the budget constraint. 

 

2.1. Background 

In this essay we refer to the boom-bust cycles of land prices following Schmitz 

(1995). We define the boom stage as the case when the farmland prices are persistently 

higher than those implied by the present value of earnings.  The bust stage is one where 

the valuation is persistently lower than the present value, and the other cases are the 

stable stage (Falk 1991). 

Chavas and Thomas (1999) followed Epstein and Zin (1991) and developed a 

DLPM that incorporates risk aversion, transaction costs, and dynamic preferences. They 

applied this model to 1950-1996 U.S. farmland values, and found that risk aversion and 

transaction costs are important determinants of farmland prices. But they made some 
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strong assumptions in their analysis. In particular, they assumed linear homogeneity of 

the underlying budget constraint and the associated profit function.  

The objective of this essay is to contribute to the explanation of boom-bust cycles 

using US farmland data under the general homogenous functional forms of farmland 

return. In this essay, we extend the work of Chavas and Thomas (1999) by relaxing an 

essential assumption of the budget constraint. We assume a farmland return function of 

general, instead of linear, homogeneous functional forms. The general homogenous 

functional form is a relaxation of the usual case covered in existing literature of dynamic 

CAPM. 

We expect our empirical results to be consistent with the major findings of the 

existing capitalization formula. First, we correct the undersized error terms of our 2-

stage General Method of Moments (GMM) estimation by Windmeijer’ general function 

formula (2005). Second, we compare the restricted and unrestricted models. We expect 

that the linear (restricted homogeneity degree of 1) estimation of risk aversion 

coefficient is significantly lower than that of the general (unrestricted) model, which 

helps to explain the apparently overpriced farmland through risk aversion 

misspecifications in traditional DLPM. As we know, if the risk aversion is over 

estimated, the price according to that risk aversion will be under estimated. Third, we 

test the hypothesized nonlinear homogeneous relationship between farmland return and 

wealth level in our model with US data, and expect a significantly nonlinear relationship. 

Last, we expect better out of sample predictions from the general homogeneity model. 
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Our DLPM framework provides a platform for further studies on boom-bust cycles in 

farmland prices. 

The remainder of the essay is organized as follows: Section II contains a 

discussion and derivation of the model estimated in GMM. Section III details the 

construction of data, the estimation and testing procedures. Section IV illustrates the 

empirical results. Section V summarizes and concludes the essay. 

 

2.2. The Model 

2.2.1. Model Development 

We build our model based on the widely used Consumption-Capital Asset 

Pricing Model (C-CAPM). Following Gregory Mankiw and Shapiro (1986), we consider 

a representative agent facing an optimization problem. His goal is to maximize his utility 

through his choices of levels of consumption and allocation of his portfolio among 

various assets each period. At period t, the agent has the option to consume yt and invest 

mt. Under the assumption of rationality, the agent maximizes utility through 

consumption and investment decisions.  We assume that the agent's budget constraint is 

binding and denoted as follows: 

           (               )           ∑ [       (   )]   
 
          (2.1) 

where                                   . At period t, the agent's assets,    

(                ), consist of two parts: a riskless asset,      , and risky assets, 

(           ).    is the return rate for the riskless asset, and      is a first order 

differentiable return function for risky assets. The new investments of assets in period t 



 

 

8 

 

are denoted as    (                ), and they make up the changes between the 

asset levels in period t and t-1.    is the market price of consumption good   ,     is the 

market price for asset j, and     represents the unit transaction cost of buying or selling 

asset j at period t. equation (2.1) states that the total returns from riskless and risky assets 

are allocated between the consumption,     , and new asset investments,     

∑ [       (   )]   
 
   , for a utility maximizing agent. 

Now we consider three scenarios for the transaction cost function    (   ): 

   (   )     
        if               (2.2) 

                                   if         

                    
        if         

Suppose that both the buyers and sellers have to pay a positive fee to third parties in 

order to close the deal, therefore both   
 , the transaction cost for buying, and   

 , the 

transaction cost for selling, are positive although they may not be the same. This 

transaction cost structure reflects a situation where transaction costs reduce the income 

of all market participants and discourages them from participation.  

Following Epstein and Zin (1991) and Chavas and Thomas (1999), we assume a 

recursive utility framework: 

     [       
 
     

 
]
 

         (2.3) 

where          |           
  

 

  .    is the agent's consumption at period t, and Et 

is the expectation operator based on the information available at time t.           

is the rate of time preference, and            is the intertemporal elasticity of 



 

 

9 

 

substitution. The relative risk aversion coefficient      
   

       

  
       

        

   
       

    

       
    

 
       

    

       
  

      is a decreasing function of α.  

 

2.2.2. Specifications 

Equations (2.1), (2.2), and (2.3) have established the basic structure of budget 

constraint and utility function of the representative agent. In this section, we further 

specify the optimization problem and derive a first order condition system of equations 

that can be estimated with observable data. We will then discuss the homogeneity 

condition of gross returns with respect to asset holdings. 

We define the representative agent's asset level at period t as At: 

       ∑ (       )   
 
          (2.4) 

Define the gross return at time t as 

                   (               )  ∑ [       ]      
 
   , and the gross rate 

of return on wealth at time t as  

            .  

Then the budget constraint expressed in equation (2.1) can be alternatively written as 

                        (2.5) 

Assume gross return Gt is homogeneous degree of λ in At-1, 

        
             (2.6) 

where    is exogenous. 

Then by the definition of   , we have  



 

 

10 

 

            
    

          
              (2.7) 

It is generally the case in the land valuation literature to assume the value of  is 1 

(Chavas and Thomas 1999). Here we relax this assumption, and discuss three scenarios 

of return functions according to the range of the homogeneity degree parameter λ. 

First, when the gross return Gt is linear and homogeneous in At-1, the 

homogeneity degree parameter λ equals 1. In turn equation (2.7) reduces to the 

commonly used "exogenous gross return rate" assumption, Rt = Kt . That is, the 

representative agent has an exogenous gross return rate. Therefore the gross return is 

proportional to the investment asset level, which implies an economy with a linear return 

function. 

Second, when the homogeneity degree parameter falls between zero and one (1 > 

λ > 0), then the gross return rate gets smaller as the invested asset level gets larger, 

which is the characteristic of a concave return function of the economy, which is 

probably the results of diminishing returns to land as use expands likely due to land 

quality. This scenario has some interesting implications in the real world asset pricing 

phenomenon. For instance, in the case of bubbles, as the invested asset level gets higher, 

the economy gets bigger but less efficient, which would explain a smaller gross return 

rate in the farm sector. 

Third, when the homogeneity degree parameter λ is greater than 1, the gross 

return rate gets bigger as the invested asset level grows, which is the characteristic of a 

convex return function of the economy. Here we model the return function with 
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homogeneity, which is a simplification. In fact, the return function could be 

heterogeneous. 

To simplify notation, we define    ̇  
  

 

   
  and      ⁄  , then we have 

  
 

          ̇   
 

   ⁄  

   ̇    
 

      ̇   
 

   ⁄         (2.8) 

Since      ̇ is equivalent to       , given ρ > 0 and β < 1, the original optimization 

problem expressed in equation (2.3) is transformed into the following: 

     ̇    
 

      ̇   
 

   ⁄        (2.9) 

where ρ > 0 and β < 1 

The first order conditions with respect to consumption yt, riskless asset a0t, and risky 

asset ajt are 

    
 
 

   
  

      ̇   
 

   ⁄

   
                     (2.10a) 

    
 
 

    
  

      ̇   
 

   ⁄

    
                     (2.10b) 

    
 
 

    
  

      ̇   
 

   ⁄

    
                     (2.10c) 

Equation (2.10a) means that the marginal current utility gained from the current 

consumption (
    

 
 

   
) equals the marginal future utility lost from current consumption 

(
      ̇   

 
   ⁄

   
) times the time discounting factor (β) at optimal consumption level. 

Equations (2.10b) and (2.10c) mean that the marginal current utility lost from the current 
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investment (
    

 
 

   
 ) equals the marginal future utility gained from the current investment 

(
      ̇   

 
   ⁄

   
) times the time discounting factor (β) at optimal investment level. 

By the definition of   ̇we have 

      ̇   
 

   ⁄

   
      ̇   

 
   ⁄           ̇   

     ̇   

     

     

   

   

   
   

                      (   ̇   
 

)
(

 

  
    )

    ̇   
   

      
   

  
     

    
                    (2.11a) 

      ̇   
 

   ⁄

    
      ̇   

 
   ⁄           ̇   

     ̇   

     

     

    
       

                      (   ̇   
 

)
(

 

  
    )

    ̇   
   

      
   

  
      

    
                (2.11b) 

      ̇   
 

   ⁄

    
      ̇   

 
   ⁄           ̇   

     ̇   

     

     

    
    

                      (   ̇   
 

)
(

 

  
    )

    ̇   
   

      
   

  

     
     

                

    
              (2.11c) 

And we have 

    
 
 

   
    

   
                    (2.12a) 

    
 
 

    
    

      

    
    

   
 

 

   
                   (2.12b) 

    
 
 

    
    

      

    
    

   
 
         

   
                   (2.12c) 

Substitute equations (2.11) and (2.12) into equation (2.10), we have 

 (   ̇   
 

)
(

 

  
    )

    ̇   
            

                                 (2.13a) 

 (   ̇   
 

)
(

 

  
    )

    ̇   
            

                                    (2.13b) 
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 (   ̇   
 

)
(

 

  
    )

    ̇   
            

             
     

     
                         

                          (2.13c) 

Now we define a new discounting factor   , which includes four elements:  

            , where 

   
(   ̇   

 
)
(
 
  

    )

    ̇   

 (
 
  

    )
 

                   (2.14a) 

       ̇   
   

     ̇   
   

                    (2.14b) 

   
    ̇   

                              

    ̇   
   

                               
                (2.14c) 

We rewrite the first order conditions with respect to   ,    , and     as 

              
                                    (2.15a) 

              
                                       (2.15b) 

              
             

     

     
                                          (2.15c) 

where  
     

     
  

    

    
  

Here we model the profit function      with homogeneity, which is a simplification. In 

fact, the profit function could be heterogeneous in land acreage. 

Equation (2.15a), (2.15b), and (2.15c) are used as a system for parameter 

estimation and out-of- sample prediction for the rest of the paper. Several special cases 

are discussed in Appendix C, including the familiar time additive utility (Lucas 1978; 

Weil 1989, 1990; Bank and Riedel 2000). 
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Now we discuss the terms in the context of land valuation. Similar to equation 

(2.15a) and (2.15b), (2.15c) means that the marginal utility lost from the current 

investment in farmland assets, measured in (           , equals the marginal utility 

gained from the future returns in those farmland assets, measured in          
       

      
     

     
                 , times the general discounting factor (β’) at optimal 

investment level. 

 

2.3. Data and Estimation 

In this section, we discuss the data collected for estimation of equation (2.15), 

and illustrate the estimation method used for the DLPM estimable form derived in 

Section II. The above model is developed for a representative agent and we assume that 

all the functional forms can be applied to aggregated data.  

 

2.3.1. Data 

The data are collected from the USDA website, http://www.ers.usda.gov/data-

products/farm-income-and-wealth-statistics.aspx. They are annual time series data for 

the period of 1950~2008 at the US national level. The gross rate of return on farm equity 

is calculated as a ratio of gross return to farming to farm wealth levels. The farm wealth 

levels are collected from the balance sheet. Table 2.1 shows the descriptive statistics of 

the data. Parameters are defined in table 2.2. 

            :tq   Consumer Price Index(1982~1984:1) ‏ 

http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics.aspx
http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics.aspx
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Table 2.1. Descriptive Statistics, 1950-2010 
 

Variable Mean Standard 

Deviation 

Minimum Maximum Skewness Kurtosis Autocorrelation 

Coefficient 

      in 1      ) 0.9121 0.6154 0.2410 2.1530 0.4794 -1.2501 0.9996 

   billion dollars) 69.2605 16.0702 41.9507 123.3692 0.9209 1.3116 0.8146 

    million acres) 1056.0200 94.6592 919.9000 1206.3550 0.2190 -1.3532 0.9993 

   (1,000   acres) 0.5945 0.5087 0.0650 2.1700 1.1522 1.1551 0.9959 

   (billion dollars) 605.1680 448.2733 151.9045 1841.2120 0.9933 0.5685 0.9939 

   1.1597 0.0734 0.9599 1.4166 0.0929 2.6367 0.6270 

      (1,000   acre) 0.0313 0.0229 0.0091 0.0947 1.0584 0.4011 0.9260 

   0.0509 0.0264 0.0092 0.1316 0.7596 0.5695 0.8809 
 

Note: Number of observations is 61 

 

 

Table 2.2. Parameter Definitions 
 

Parameter Definition Economic Implication  

ρ            σ is the intertemporal elasticity of substitution 

      ⁄    is the ratio of  α to  ρ 

β'         ̅     β' is a general discounting factor 

                          is diminishing market transaction cost coefficient 

                          is booming market transaction cost coefficient 

α 
          

  
 
  

the relative risk aversion coefficient is a decreasing function of α. 

λ         
    λ is homogeneity degree of return function 

       

     
  

    

    
 

  is homogeneity degree of profit function 
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            :ty   disposable income of farm population ($trillion)‏ 

            :tR  gross rate of return on farm equity 

            :tA   farm wealth levels (equity) ($100million)‏ 

          :tr    Interest rate on U.S. treasury bills (%)‏‏ 

          :tp    Farm land price ($1,000/acre)‏ 

        :/1 ktt a net farm income per acre ($1000/acre)‏ 

         
tv : transaction costs of year t in farmland market ($1,000/acre)‏,  

where                    , and                     , 

where            ,    is the land quantity at time t, 

where     and    are coefficients 

 

2.3.2. Estimation Method: Two-stage GMM 

The system of equation (2.15) is estimated as a general homogeneous model. We 

will also estimate a variant where we set homogeneity degree to 1, a linear homogeneous 

model, which is identical to that in Chavas and Thomas 1999. Since both models are 

highly nonlinear, we take a typical approach, two-stage GMM, to estimate parameters. 

GMM has possibly been most frequently applied in empirical finance (Hall 

2005). Hansen (1982) introduced GMM with its fundamental statistical theory, while 

Hansen and Singleton (1982) revealed the potential of the GMM approach to estimation 

through their empirical analyses of asset pricing. When the distribution of the data is not 

assumed correctly, maximum likelihood estimation (ML) is not optimal and the resulting 
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estimator may even be inconsistent (Hansen and Singleton 1982). But GMM estimation 

is based on population moment conditions, and therefore GMM can be preferred to ML 

in nonlinear Euler equation models (Hansen and Singleton 1982). 

Hansen (1992) showed that an asymptotically efficient or optimal GMM 

estimator could be obtained by choosing weight matrix so that it converges to the inverse 

of the long-run covariance matrix. In the first stage, we calculate an HAC-Newey-West 

weight matrix, which is a heteroskedasticity and autocorrelation consistent estimator of 

the long-run covariance matrix based on an initial estimate of the parameter vector. To 

do this we first we calculate the initial parameter estimates of the nonlinear system with 

two-stage least squares (2SLS) estimation by iterated convergence. Second, we use the 

2SLS estimates to obtain the residuals, and third, we obtain estimates of the long-run 

covariance matrix of the instrument-residual matrix, and use it to compute the optimal 

weighting matrix.  

In the second stage, we minimize the GMM objective function with the optimal 

weighting matrix, , obtained in stage one with respect 

to parameter vector. The non-linear optimization for the parameter vector iterates to 

convergence of 0.0001, updating parameter estimates from the initial 2SLS estimation to 

the final two-stage GMM. Further, for the HAC procedure, we specify that the data is 

processed with pre-whitening by VAR(1) and we choose the Bartlett kernel and Newey-

West bandwidth (Beyer et al 2008). Under suitable conditions GMM estimator is 

consistent, asymptotically normal, and with right choice of weighting matrix W 

asymptotically efficient.  
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2.3.3. Error Correction 

Two-stage GMM is known for its undersized error terms. Monte Carlo studies 

have shown that estimated asymptotic standard errors of the efficient two-staged GMM 

estimator can be severely downward biased in small samples (Windmeijer 2005). In 

order to enhance the validity of hypothesis tests, the variances of the two-stage GMM 

estimation are corrected through the Taylor Expansion according to Windmeijer (2005). 

The calculation is executed in MATLAB with Windmeijer’s variance formula for 

general models. 

 

2.4. Estimation Results 

2.4.1. Estimation 

Table 2.3 reports the Two-stage GMM estimation for the general homogeneity 

model under error correction. Table 2.4 compares the estimation results between the 

linear and the general homogeneity model. 

Table 2.3 reports the estimated coefficients with their standard errors from the 

two-stage GMM, together with the corrected standard errors and ratios of correction. To 

evaluate the correction of the downward bias of standard errors, we calculate the ratio of 

correction as the ratio between the corrected standard errors and the original two-stage 

GMM standard errors. Table 2.4 shows that the ratio of correction ranges from 2.5 to 

10.7, indicating that the correction was needed.  
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Table 2.3. Two-Stage GMM Estimation Results of General Homogeneity Model with 

Corrections, 1950-2010 
 

 Estimate  Std. Error  Corrected Std. Error  Ratio of  Correction 

ρ 0.9904  0.0026  0.0276  10.7353 

  0.9602  0.0004  0.0014  3.8491 

β' 0.9882  0.0003  0.0013  3.8491 

   -0.0158  0.0013  0.0065  5.0512 

   0.1442  0.0285  0.0720  2.5227 

α 0.9510  0.0025  0.0265  10.6356 

λ 0.8982  0.0007  0.0039  5.7522 

  0.6025  0.0493  0.1868   3.7856 
 

Note: the General Homogeneity parameters are estimated from equations (2.15a), (2.15b), and (2.15c) 

with Two-stage GMM procedure, in Eviews7. 

The error corrections are performed according to Windmeijer 2005, in MATLAB. 

 

 

Table 2.4. GMM Estimation Results for Linear Homogeneity and General Homogeneity 

Model, 1950-2010 
 

 Linear Homogeneity  General Homogeneity 

 Estimate  Std. Error  Estimate  Std. Error 

Ρ 0.7547**  0.0807   0.9904**  0.0276 

  0.9701**  0.1115   0.9602**  0.0014 

β' 0.9726**  0.1279   0.9882**  0.0013 

   0.0084           0.0145  -0.0158*  0.0065 

   0.2062  0.2318   0.1442*  0.0720 

α 0.7321**  0.1323   0.9510**  0.0265 

λ 1.0000  -   0.8982**  0.0004 

  1.0000  -   0.6025**  0.1868 

J-stat 0.1085     2.2128   

     equation (a) 0.5174       

     equation 

(b) 

0.2345       

     equation (c) -       
 

Note: * and ** denote a parameter significantly different from zero at the 5% and 1% levels, 

respectively. 

The Linear Homogeneity parameters are estimated from Chavas and Thomas 1999, while the 

General Homogeneity parameters are estimated from equations (2.15a), (2.15b), and (2.15c). 

In statistics, the coefficient of determination, denoted R2, is used in the context of statistical 

models whose main purpose is the prediction of future outcomes on the basis of other related 

information. R2 is most often seen as a number between 0 and 1.0, used to describe how well a 

regression line fits a set of data. 
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The linear homogeneity model estimates are almost identical to those of Chavas 

and Thomas. Now we discuss the main differences between the results from linear 

homogeneity model and general homogeneity model. 

The general homogeneity model yields a much higher estimate for ρ, and 

therefore much higher intertemporal elasticity of substitution, σ=1 (1-ρ). In particular the 

linear model elasticity of substitution is 4.0650 while the general homogeneity model 

estimate is 104.1667. This indicates that it is much easier for agents in the US farmland 

market to substitute their current consumption for future consumption than the linear 

model shows. In other words, the agents in the US farmland markets have higher 

flexibility to postpone their consumption or higher tendency to hold onto their farmland 

investments than traditional dynamic farmland pricing models predict. 

The linear homogeneity model estimate for ρ is 0.75 , and the corresponding 

intertemporal elasticity of substitution is 4.0650, very close to 4.13, the estimate of that 

in Chavas and Thomas (1999). As defined in table 2.2, ρ does not have any independent 

economic definition, but is deemed as a reflector of σ, intertemporal elasticity of 

substitution. However, the general homogeneity model estimate for ρ is 0.  0  and the 

corresponding intertemporal elasticity of substitution is 104.1667. This result indicates 

that the curvature of the utility indifference curve, or, the substitutability between 

consumptions of this period and next period, yt and yt+1, is much higher than the linear 

homogeneity model estimates.  
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Table 2.5. Hypothesis Testing, 1950-2010 
 

 Linear Homogeneity  General Homogeneity 

 Test Statistic p-Value  Test Statistic p-Value 

Overidentifying restrictions                       (Hansen test)       0.1085 0.9998             2.2128 0.9999 

No transaction costs                                                1.0923 0.5792        0.0000 

Symmetric transaction costs                                         0.7284 0.3934          0.0000 

Expected utility                                                                0.0718 0.7887         806.3214 0.0000 

Infinite intertemporal elasticity of substitution              8.1808 0.0042                   0.7286 

0 rate of time preference                                                0.0007 0.9790           78.3039 0.0000 

Risk neutrality                                                                3.6801 0.0551              3.4161 0.0646 

Linear Homogeneity                                                            -                 0.0000 

Linear Homogeneity                                                            -               4.5279 0.0333 
 

Note: The Linear Homogeneity parameters are estimated from Chavas and Thomas 1999, while the General Homogeneity parameters are estimated 

from equations (2.15a), (2.15b), and (2.15c). 
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 This finding is highly supported by anecdotal reports on farmers’ reluctance to 

sell their land. For instance, Iowa Land Value Survey shows that less than 2% of the 

farmland in Iowa is sold each year, and 74% of it ends up in the hands of local farmers, 

who tend to buy for the long term (Professional Farmers of America, Inc. 2011). 

Agricultural Credit Conditions Surveys conducted by Federal Reserve Bank of Kansas 

City also indicate farmers’ reluctance to sell land even when farmland values are near 

record high (Henderson and Akers 2012). 

Intuitively, high intertemporal elasticity of substitution helps to explain boom 

and bust cycles. It is commonly observed that farmland values go through long booms 

and short busts. Farmland prices boom when economic indicators suggest an 

unsustainable boom, perhaps because of farmers’ tendency to hold on their farmland 

investments. High intertemporal elasticity of substitution means that farmers are very 

flexible in postponing their consumption, and probably hold onto their investments, 

which explains the extended boom period or the delayed bust start. 

A second point showed in tables 2.4 and 2.5 is that the general homogeneity 

model yields statistically significant estimates of transaction cost coefficients, Cp and 

Cm. In the linear homogeneity model, both transaction cost parameters are insignificant. 

In the general homogeneity model, the estimate of booming market transaction cost 

coefficient, Cp, is 0.1442 with standard error of 0.0720, positive and significant at 5% 

level. The estimate of the diminishing market transaction cost coefficient, Cm, is 

negative and significant at 5% level. These results indicate that transaction costs, νjt(mjt), 
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remain positive regardless of the direction of farmland quantity changes. This finding 

differs from that of the linear homogeneity model with both positive Cm and Cp.  

Now we look at the estimation from general homogeneous model. When the 

farmland quantity is increasing, the transaction costs equal booming market transaction 

cost coefficient (Cp) times farmland quantity change,    (   )     
       . Since 

both the coefficient and change are positive, the transaction costs will be positive. When 

the farmland quantity is decreasing, the transaction costs equal diminishing market 

transaction cost coefficient (Cm) times farmland quantity change,    (   )     
  

     . Since both the coefficient and change are negative, the transaction costs will still 

be positive. This is consistent with the observation that selling land costs money 

whatever the market form. 

The opposite signs of the transaction cost parameters in booming and 

diminishing markets are consistent with real world observations. In the US farmland 

market, both the buyers and sellers of farmland need to pay positive transaction costs, 

such as advertisements, research, legal fees, and so on in order to close the transaction. 

Therefore, it is reasonable to expect positive aggregated transaction costs in both 

booming and diminishing markets. 

The magnitude difference between two coefficients is sensible because when the 

market is diminishing, agents become more cautious and this leads to an increase in 

market efficiency. In a diminishing market, the transaction amount decreases, and only 

the most economically efficient deals are closed in the market, for instance, brokers may 
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give discounts to get people to sell, which yields a much lower transaction cost 

coefficient. 

A third finding is that the general homogeneity model yields a much higher 

estimate for α, and therefore much lower risk aversion. We follow Epstein and Zin 

(1  1)’s definition of the risk aversion coefficient: agents are risk neutral when their α 

=1, and they become more risk averse when α decreases. In the linear homogeneity 

model, the estimate of α is 0.73 1 with standard error of 0.13 3, positive and significant 

at 1% level. In the general homogeneity model, the estimate of α is 0. 510 with standard 

error of 0.0265, positive and again significant. These results indicate that the agents in 

US farmland market are much less risk averse than has been found under the traditional 

CAPM model estimates (Chavas and Thomas 1999).  

The finding of lower risk aversion helps explain the equity premium puzzle in the 

farm sector (Mehra and Prescott 1985). It has been well documented that the farm sector 

has a lower return rate than the capitalization formula suggested in the capital (Moss and 

Katchova 2005). Our results show that the low return rate in farm sector could be 

explained by the low risk aversion of farmers. 

Finally we find that the estimate of λ, the homogeneity degree of the gross return 

function, is less than 1, and therefore we find a concave return function. The general 

homogeneity model estimate for λ is 0.8982, with standard error of 0.0004, positive and 

significant at 1% level. This result means that the gross rate of return,         
     , is a 

decreasing function of asset level, At-1, since λ < 1. 
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It is straight forward that efficiency always goes in the opposite direction of scale 

in a concave return economy. In a booming stage, the scale of the investment continues 

to increase, and the return rate continues to decrease. This booming stage will continue 

without slowing down or fading into a static stage, because once the expected utility 

elasticity of investment (  
       

     
) goes beyond the upper bound of the stability 

range; it will increase in an accelerating manner and form a bubble. 

In the economics literature, a bubble is defined as "trade in high volumes at 

prices that are considerably at variance with intrinsic values" (Lahart 2008; Shiller 

2012), or, a trade in products or assets with inflated values. Many explanations have 

been suggested for the formation of a bubble, but recent researches show that bubbles 

appear even without uncertainty (Smith, Suchanek, and Williams 1988; Smith et al 

1993), speculation (Lei, Noussair, and Plott 2001), or bounded rationality (Levine and 

Zajac 2007). Our model provides a new explanation of the form of farmland price 

bubble under the concave return function. 

Bubbles are often identified in retrospect when a sudden drop in prices appears. 

Such a drop is known as a crash or a bubble burst. Our model shows that the booming 

stage will continue till the return rate decreases to such a low level that further increase 

in investment becomes unsustainable. This unsustainability is reflected in instability and 

in Appendix D a proof appears of instability under concave return function. Under this 

instability the asset value will drop sharply, the asset level will decrease, and a bust stage 

starts. In other words, our model suggests that a bust is inevitable for a bubble in 

farmland prices. 
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In short, a concave return economy illustrates embedded instability in dynamic 

CAPM models by explaining the forming of a bubble during a boom. The reverting 

mechanism between scale and efficiency explains the inevitability of a bust after the 

boom. Together, the general homogeneity model helps to explain the boom-bust cycles 

in farmland values. 

A concave return function is observed likely because of diverse land quality. 

Namely doubling the land use in the farm sector does not double the return to agriculture 

because of the varied productivity of land and the fact that expansion causes one to move 

onto lower productivity lands. By the nature of farm business, farmers would always 

first plant on the more productive land and turn to less productive land later. This is 

manifest in our model in the form of decreasing marginal net farm income per acre. The 

degree of homogeneity of the net farm income,  , is estimated to be 0.6025, significantly 

less than 1. Therefore, the marginal net farm income is a decreasing function of farmland 

acreage, which reflects the nonlinear relationship embedded in land quality. 

Other studies have shown this nonlinearity in the case of land use contractions. 

For example, when the farm acreage set-aside program caused retirement of land, the 

productivity was found to fall by a lesser percentage (Wu, Ziberman and Babcock 2001). 

 

2.4.2. Predictions 

Now, we compare the predictions from both linear and general homogeneity 

models with actual data. One-year-ahead predictions from both the general model and 

linear model were made for year 2000-2010 using a rolling process. The forecasts are 
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generated in a rolling process with fixed start year of 1950. For instance, the forecasted 

land price in 2000 is calculated with coefficients estimated with data in 1950~1999, the 

forecasted land price in 2001 is calculated with coefficients estimated with data in 

1950~2000, and so on. We actually use period t exogenous variables in forecasting land 

values for period t. Therefore, our work is not truly “out of sample”. 

Analysis in Tetrad 4 shows that the general model predictions D-separate 

(Bessler and Akleman 1998) the linear model predictions from the actual data. Figure 

2.1 demonstrates this relationship in a directed acyclic graph (DAG) from a greedy 

equivalent search (GES) (Chickering 2002). Figure 2.2 illustrates the predicted land 

prices generated for year 2000-2010. The Root Mean Squared Errors (RMSE) for linear 

and general homogeneity model predictions are calculated as 0.1315 and 0.0979 

respectively. Both figures provide evidences that general homogenous model generates 

better out-of-sample predictions than linear homogeneous model. 

 

2.5. Conclusion 

In this chapter, we find that altered assumptions in the traditional CAPM of 

linear return functions help identify the causes of boom-bust cycles in farmland 

valuations. Specifically, concavity of return functions illustrates the embedded instability 

of optimizations of dynamic CAPM. It is mathematically proved that the concavity of 

return functions regulates that the dynamic CAPM optimization grows in an exponential 

manner over time. Concave returns to asset investments in the farm sector mean that the 

gross return rate of farmland assets decreases as the asset level increases. The   
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Figure 2.1. DAG of Data and Predictions  
 

Note: Tetrad 4 shows that the general model predictions D-separate the Linear model predictions from the 

actual data.  

The relationship is searched in GES, a Bayesian search algorithm, greedy equivalent search. 
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Figure 2.2. Prediction Comparison for Linear Homogeneity Model and General   Homogeneity Model 
 

Note: One-year-ahead predictions from both the general model and linear model were made for year 2000-2010 using a rolling process. The Root Mean 

Squared Errors (RMSE) for linear and general homogeneity model predictions are 0.1315 and 0.0979 respectively. 
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growth of dynamic CAPM solutions indicates a bubble, and thus a boom-bust cycle, in 

farmland valuation. In other words, this essay explained the short-term boom-bust cycles 

in farmland valuations with the concave character of asset returns in farmland. 

We also find that intertemporal elasticity of substitution, risk aversion, and 

transaction costs are important determinants for farmland valuations. First, farmers’ 

willingness to delay consumption, as found through their high intertemporal elasticity of 

substitution, indicates that farmers are likely to hold on to land through bust cycles, 

which raises the value of land and shortens the bust. High intertemporal elasticity of 

substitution also means that farmers are likely to forgo immense consumption and 

instead acquire additional land during a boom cycle, which inflates land values and 

prolongs the boom. Second, we find much lower risk aversion in the agents on farmland 

market than previous studies, indicating that farmers will not accept low farmland prices 

to avoid the risks in farm business. This rigidity of farmland prices related to low risk 

aversion also helps to explain the prolonged boom stages and inevitability of bust stages 

in farmland valuation. Third, we find, as others have found (Chavas and Thomas 1999), 

that transaction costs vary across different stages of farmland valuation cycles. We argue 

that these costs do not give rise to the cycles. 

In short, our explanation of the boom-bust cycles in farmland valuation is rooted 

in the homogeneity of return functions. We find concavity (homogeneity less than 1) in 

farmland asset returns, which is consistent with the decreasing marginal returns to 

additional farmland assets. This essay provides empirical evidence for the connection 

between concavity of asset returns and boom-bust cycles in farmland valuations. 
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This chapter has made several important methodological contributions. In 

particular, estimating CAPM in a framework that permits nonlinear homogenous returns 

provides scholars a platform to explore the imbedded dynamic instability of CAPM. We 

also find that the non-linear homogeneous model generates better out-of-sample 

predictions than the linear homogeneity model, proposing a powerful alternative model 

in the literature of farmland valuation. 
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CHAPTER III 

THE VALUE OF ECONOMIC INFORMATION IN PREDICTIONS OF FARMLAND 

PRICES 

 

The Dynamic Land Pricing Model (DLPM) as developed in Chapter II can be 

used to generate forecasts of land prices. Errors from these forecasts involve both 

backward information and forward information. This chapter addresses the apparent 

overpricing of farmland values by decomposing the variance of forecast errors in the 

CAPM (forward) portion and the Random Walk (backward) portion. The estimation 

errors from Random Walk of exogenous (explanatory) variables are considered 

backward, because only historical data are used and no economic information is adopted 

in the estimation. The error terms from CAPM are considered forward, because CAPM 

uses the economic information on the relationship among different variables to estimate 

the future values of endogenous (dependent) variables.  

 

3.1. Background 

Even with the assumption of perfect and costless markets, individuals face risks 

of returns attainable from their own productive investments imposed by technological 

uncertainty (Hirshleifer 1971). Information is used to reduce risks in the decision process 

for economic agents, and the value of information could be measured by the expected 

utilities with different information sets. Besides the value of economic information, the 

distributive aspect of access to information is also an important issue in the literature. In 
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the land valuation context, information is the relationship between farmland prices and 

other variables specified in the CAPM.  

The objective of this essay is to explain the apparent overpricing of farmland 

with the analysis of the value of economic information through forecast error variance 

decomposition (FEVD) of QRE between CAPM and RW error terms. This essay 

presents an analysis of the value of economic information in the land valuation context. 

The DLPM framework with concave return functions developed in Chapter II is adopted 

to generate QRE predictions, and the variance of the predictions is decomposed into the 

CAPM (forward) part and RW (backward) part. This study identifies structural changes 

in farmland prices over the period of 1970-2010, and then defines different stages 

according to those break points. The portions of the CAPM part at different stages are 

compared to study the value of economic information in different scenarios of farmland 

pricing. 

 

3.1.1. Quasi-Rational Expectations 

After Muth (1961) introduced the rational expectations (RE) hypothesis, Nerlove 

(1967, 1971, and 1972) proposed a variant called Quasi-Rational Expectation or QRE, 

which was discussed in detail by Nerlove, Grether, and Carvalho (1979). RE assumes 

that economic agents make purposeful and efficient use of information in optimizing 

their decisions. QRE is a form of rational expectations obtained by neglecting some of 

the restrictions implied by the RE hypothesis. 
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Nerlove and Bessler (2001) proposed several reasons why RE may fail in a 

realistic market. First, the objective functions for optimization may not satisfy the 

quadratic assumption under linear stochastic constraints. Second, “agents are learning 

about both the processes generating exogenous variables and/or about the model 

characterizing their behavior in aggregate” (Horvath and Nerlove 1  6). For example, 

Tellis and Gaeth (1990) found that consumers select different choice strategies, rational, 

overweighting, and underweighting, when information on product quality is not perfect. 

Third, the empirical model may suffer from misspecifications in behavior, dynamics, 

and information measurements (Pesaran 1987).  

We adopt the DLPM developed in Chapter II to estimate and predict future land 

prices, which is consistent with the basic tenet of RE hypothesis. However, in order to 

make a more realistic analysis of farmland prices, we adopt QRE instead of RE, and 

assume that the agent does NOT have all the exogenous information needed in the 

DLPM to predict future land prices. We assume that the agent needs to use historical 

data on those exogenous variables to generate a naïve estimate as the necessary 

exogenous information for DLPM. Therefore, we have two kinds of errors in our model. 

First, when the agent uses historical data to make a naïve estimate of exogenous 

variables needed in DLPM, there are differences between those estimates and later 

realized data. We treat this kind of differences as backward errors, since the estimation is 

based on historical data and no economic theory is used. Second, when the agent uses 

DLPM to predict future land prices, there will be errors in the estimation and prediction 

of DLPM and we treat those errors as forward errors. The forward error terms present 
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the shocks in the DLPM and allow us to evaluate the economic information in the 

model. 

 

3.1.2. The Value of Economic Information 

The economic theory of information value has progressed considerably over the 

years (Katz and Murphy 1997; Letson, Sutter, and Lazo 2007). The von Neumann-

Morgenstern utility hypothesis and the decision theory under uncertainty (Arrow 1965; 

Pratt 1964) accelerated the development of value-of-information theory. The adoption of 

stochastic distribution models provides new means to measure the value of information 

in recent years (Athey and Levin 1998). 

Modern economic theory deems information as a factor in the decision process 

for economic agents to reduce risks, and that such information will be of value to 

decision makers (Morris and Shin 2002). Some individual decision models use 

subjective probabilities and utility rankings for all possible outcomes to capture 

information (Von Neumann and Morgenstern 1953; Winkler 1972). In those models, the 

value of information for individuals can be measured as the difference between expected 

utilities with and without the information set (Hilton 1981; Gregory Mankiw and 

Shapiro 1986). For instance, Levitt and Syverson (2008) found that real estate agents are 

often better informed than their clients, and this information advantage is related to a 

3.7% premium in the house prices received for those agents.  

Chavas and Johnson (1983) and Pesaran (1987) pointed out that there are 

interesting parallels between the value-of-information theory and the rational expectation 
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hypothesis. The rational expectation hypothesis provides a framework to investigate the 

market valuation of information.  

 

3.1.3. Forecast Error Variance Decomposition 

As we know, forecast error variance decomposition has been widely used in 

linear models, and the variance decomposition in Vector Auto Regression (VAR) 

models is a powerful tool to study the causality structure in data. In this chapter, we 

adopt the forecast error variance decomposition procedure to study the value of 

economic information in farmland prices.  

This study analyzes the value of economic information carried in CAPM through 

forecast error variance decomposition (FEVD). In other words, we are able to show the 

proportion of uncertainty at different horizons into the future. The portions are accounted 

for by values of exogenous variables (backwards) and endogenous variables (forward) as 

defined in the CAPM model. This demonstration allows analysts to better understand the 

relative contribution of each CAPM component. 

The remainder of the essay is organized as following: Section II describes the 

model. Section III describes the data, the estimation and structure change. Section IV 

illustrates the decomposition of the forecast error variance. Section V summarizes and 

concludes the essay. 
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3.2. The Model 

This chapter uses the dynamic land pricing model (DLPM) developed in Chapter 

2 to generate predictions. Our analysis continues with equation (2.15), the first order 

conditions generated for parameter estimation and out-of-sample prediction in Chapter 2. 

All existing variables are defined as in Chapter 2. 
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First, we rearrange all three conditions 

           
 (

  
    

)
   

(
  

    
)
           (3.2a) 

           
 (

  
    

)
   

(
  

    
)
             (3.2b) 

                  (
  

    
)
   

(
  

    
)   

    

  
               (3.2c) 

To study the land price, we further rearrange the third condition (3.2c) 

                          (
  

    
)
   

(
  

    
)    

    

  
       (3.3) 

                                 (
  

    
)
   

(
  

    
)    

    

  
  (3.4) 

To simplify notation, we define  

                 ,      
 

  
(
    

  
)
   

(
    

  
) , and        
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                                    (3.5) 

In order to generate QRE predictions of land prices, we treat     ,     , and      as 

random walk variables with drifts: 

                           (3.6) 

                           (3.7) 

                            (3.8) 

Substitute      and      into      

      (              )     (              )            

                                                                       (3.9) 

Assume error terms are iid 

             
  ,                                           (3.10a) 

             
  ,                                         (3.10b) 

             
  ,                                           (3.10c) 

             
  ,                                           (3.10d) 

Define                                      

                                                                  

                                                                                (3.11) 

Substitute        into      

                                      (3.12) 

Rewrite predictions of     ,     , and      into matrix form 



 

 

39 

 

   [

    

    

      

]   [

    
           
    

] [

  

  

    

]  [

  

   

    

]  [
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                  [

    
         

    

] [

  

  

    

]  [

  

   

    

]  [

      

      

        

]   (3.13) 

    [

    

    

      

]   [

    
              

    

]  [

  

  

    

]   [

      

      

        

]   (3.14) 

The above derivative matrix form is the structure used in the later analysis of forecast 

errors in this essay.  

 

3.3. Data, Estimation and Structure Change 

This chapter uses the same primary data as chapter 2 for the GMM estimation. 

As for the variables of     ,     ,     , and     , we use the primary data and 

corresponding estimates from GMM to generate new series, by substituting 

corresponding values into the definitions of those variables. 

 

3.3.1. Stationary 

To assure the validity of our analysis, we first test the stationarity of the residuals 

of the 4 time series used in our prediction matrix. Three unit root tests are performed on 

each of the four residuals and they are reported in table 3.1. 
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3.3.1.1. Augmented Dickey–Fuller test 

The augmented Dickey–Fuller test tests whether a time series follows a unit-root 

process. The null hypothesis is that the series contains a unit root, and the alternative is 

that it was generated by a stationary process. The augmented Dickey–Fuller test first 

estimates model: 

                                            

and secondly testes the null hypothesis H0: β = 0.  

Dickey and Fuller (1979) proposed this unit root test, and Hamilton (1994, 28–

529) described four different cases for its application. The null hypothesis is always that 

the variable has a unit root, but the variable may have a drift term, or the regression may 

include a constant term and time trend in different cases. We test the residuals in the 

fourth case, with no regression restrictions on drift or trend, because graph of the data 

shows an upward trend over time. 

In the fourth case, the t-statistic used to test H0: β = 0 does not have a standard 

distribution. The critical values reported by augmented Dickey–Fuller test are 

interpolated based on the tables in Fuller (1996). MacKinnon (1994) shows how to 

approximate the p-values on the basis of a regression surface, and augmented Dickey–

Fuller test also reports that p-value.  
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Table 3.1. Unit Root Tests for Time Series Residuals 

DF-GLS test with 1 lag 

  Statistic  Critical Value  p-value 

    1% 5% 10%   

        -8.645  -3.736 -3.177 -2.875  <0.01 

        -4.403  -3.736 -3.177 -2.875  <0.01 

        -3.016  -3.736 -3.177 -2.875  <0.01 

        -4.448  -3.736 -3.177 -2.875  <0.01 

  

Augmented Dickey-Fuller test with 1 lag and trend 

  Statistic  Interpolated Dickey-Fuller Critical Value  p-value 

    1% 5% 10%   

       Z(t) -10.211  -4.135 -3.493 -3.176  0.0000 

       Z(t) -4.826  -4.135 -3.493 -3.176  0.0004 

       Z(t) -5.534  -4.135 -3.493 -3.176  0.0000 

       Z(t) -6.888  -4.135 -3.493 -3.176  0.0000 

 

Phillips-Perron test 

  Statistic  Interpolated Dickey-Fuller Critical Value  p-value 

    1% 5% 10%   

       Z(rho) -63.885  -19.044 -13.364 -10.748  0.0000 

 Z(t) -9.909  -3.569 -2.924 -2.597    

       Z(rho) -73.365  -19.044 -13.364 -10.748  0.0000 

 Z(t) -8.352  -3.569 -2.924 -2.597    

       Z(rho) -50.328  -19.044 -13.364 -10.748  0.0000 

 Z(t) -7.435  -3.569 -2.924 -2.597    

       Z(rho) -73.04  -19.044 -13.364 -10.748  0.0000 

  Z(t) -11.396  -3.569 -2.924 -2.597    
 

Note:          and        are residuals estimated in time series: 

                           (3.6) 

                         (
  

    
)
   

(
  

    
)    

    

  
         (3.3) 

                           (3.7) 

                           (3.8) 

Equation (3.6), (3.7), and (3.8) are estimated with OLS in Stata11. 

Equation (3.3) is estimated with Two-Stage GMM in Eview7. 
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3.3.1.2. DF-GLS test 

DF-GLS is a modified Dickey–Fuller t test proposed by Elliott, Rothenberg, and 

Stock (1996). The main difference between DF-GLS test and an augmented Dickey–

Fuller test is that the time series is transformed via a generalized least squares (GLS) 

regression before it is used in the DF-GLS test. DF-GLS test has been proved to have 

significantly greater power than the previous versions of the augmented Dickey–Fuller 

test. 

DF-GLS test performs the test for the series of models that include 1 to k lags of 

the first differenced and detrended variable, and researchers have proposed approaches 

on how to set the value of k (Schwert 1989; Stock and Watson 2007). The null 

hypothesis of DG-GLS test is that yt is a random walk possibly with a drift, and the 

alternative hypotheses is that yt is stationary, with or without a linear time trend. 

 

3.3.1.3. Phillips–Perron unit-root test 

The Dickey–Fuller test estimates model 

                 

by ordinary least squares (OLS), but serial correlation presents a problem in the 

estimation. The Phillips–Perron test uses Newey and West (1987) standard errors to 

account for serial correlation, whereas the augmented Dickey–Fuller test uses additional 

lags of the first-differenced variable yt. Phillips and Perron’s test statistics can be viewed 

as Dickey–Fuller statistics that have been made robust to serial correlation by using the 
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Newey–West (1987) heteroskedasticity- and autocorrelation-consistent covariance 

matrix estimator. 

The Phillips–Perron test applies to three cases (1, 2, and 4, but not 3) out of the 

four applicable cases of augmented Dickey–Fuller test. Since Case three, which assumes 

that the variable has a random walk with drift under the null hypothesis, is just a special 

case of case four (random walk with or without a drift), the fact that the Phillips–Perron 

test does not apply to case 3 is not restrictive. 

As we can see in table 3.1, the nonstationarity null hypotheses for the residuals of 

4 time series regressions are all rejected with 1 lag in the Dick-Fuller and Phillips-Perron 

tests at a significance level of 1%. These results rule out cointegration and therefore 

spurious correlations in our regressions (Engle and Granger  1987).  

 

3.3.2. Stability 

Regression analysis of time-series data usually adopts the assumption of stability 

or constancy of the regression relationship during the period of study, but this 

assumption is not always supported by data in the analysis. Therefore, before we study 

the value of economic information in predictions of farmland prices, we should first 

check the stability of the regression coefficients. The land price is estimated from 

equation (3.3) 

                         (
  

    
)
   

(
  

    
)    

    

  
         (3.3) 

Two types of stability tests are performed on the coefficients in the CAPM model. First, 

we run the CUSUM and CUSUM squared tests (Brown, Durbin, and Evans 1975) 

http://en.wikipedia.org/wiki/Robert_Engle
http://en.wikipedia.org/wiki/Clive_Granger
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without specifying break points. Second, we run three GMM breakpoint tests at the 

potential breakpoints suggested in the CUSUM and CUSUM squared tests. 

 

3.3.2.1. CUSUM and CUSUM squared tests  

Brown, Durbin, and Evans (1975) described a set of techniques for detecting 

departures from constancy of regression relationships of time-series variables over time. 

The CUSUM test (Brown, Durbin, and Evans 1975) is based on the cumulative sum of 

the recursive residuals. This technique plots the cumulative sum together with the critical 

lines at a certain significance level. The test finds parameter instability if the cumulative 

sum goes outside the area between the two critical lines. The CUSUM test is based on 

the statistic: 

   
 

 ̂
∑   

 

     

 

for r = k+1, …, T, where    is the recursive residual defined above, and  ̂ is the 

estimated standard deviation of the recursive residuals. If the β vector remains constant 

from period to period,        . If β vector changes,    will tend to diverge from the 

zero mean value line. So movement of    outside the critical lines is suggestive of 

coefficient instability. The 10% significance lines are found by connecting the points: 

[k, ±0.85* sqrt(T-k)] and [T, ±3*0.85* sqrt(T-k)] 
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Figure 3.1. CUSUM Test of Pt+1 at Significance Level of 10% 
 

Note:   CUSUM is calculated as:    
 

 ̂
∑   

 
      

 ̂ is the estimated standard deviation of the recursive residuals       . 

       are residuals estimated in time series with Two-stage GMM in Eview7: 

                         (
  

    
)
   

(
  

    
)    

    

  
         (3.3) 
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Figure 3.2. CUSUM Squared Test of Pt+1 at Significance Level of 5% 
 

Note:   CUSUM is calculated as:           ∑   
  

        ∑   
  

       

  
  are the estimated residuals squared of the recursive residuals       . 

       are residuals estimated in time series with Two-stage GMM in Eview7: 

                         (
  

    
)
   

(
  

    
)    

    

  
         (3.3) 
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As we can see in figure 3.1, the fact that the CUSUM test results do not move 

outside the critical values does not provide evidence of instability of coefficients in the 

CAPM model at 10% significance level. However, the sign changes in the figure suggest 

possible breakpoints at 1987 and 2007 during the period. 

Brown, Durbin, and Evans (1975) also proposed the CUSUM of squares test, and 

it is based on the test statistic: 

          ∑   
  

        ∑   
  

       ,           

The expected value of    under the hypothesis of parameter constancy is: 

                  

which goes from zero at r = k to unity at r = T. 

As we can see in figure 3.2, the CUSUM of squares test provides a plot of    

against r and the pair of 5% critical lines parallel around the expected value. As with the 

CUSUM test, movement outside the critical lines is suggestive of parameter or variance 

instability. The significance of the departure of    from its expected value is assessed by 

reference to the critical lines according to relevant studies (Durbin 1969; Brown, Durbin, 

and Evans 1975; Johnston and DiNardo 1997). The CUSUM of squares test on pt+1 

shows that there is a structure change in farmland prices estimation at 1997 in the CAPM 

model at 5% significance level. 

As we can see in figure 3.3, both the nominal and real farmland prices turned 

around in the year of 1987, going out of the shadow of the farm crisis of the mid-1980s. 

After 1987, real farmland prices increased persistently: between 2 and 4 percent annually 

between 1994 and 2004, 16 and 11 percent in 2005 and 2006, and 6-7 percent in 2007 
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and 2008 (Nickerson et al 2012). This persistent rise drives farmland prices further and 

further away from its capital formula valuations.  

The 1996 farm bill brought the "freedom to farm" reforms, remodeling 

counterproductive outdated agriculture programs originated in the Depression era. The 

most important accomplishment of the 1996 farm bill was to end the annual acreage 

reduction programs (ARPs), which severely restricted the ability of U.S. farmers to 

produce for the world marketplace, and depressed the rural economy (Frydenlund 2002). 

Since 1997 the amount of acreage rented by U.S. farmers has remained below 40 

percent, meaning a higher ownership acreage in the U.S. farm sector. In other words, the 

1996 farm bill may have caused a boom in farmland prices through enhanced demand of 

farmland in production. 

 

 

Figure 3.3. Observed Farmland Prices of Pt+1 during the Period of 1980-2010 
 

Note:  USDA data are cited as in Nickerson et al, 2012 

Source: USDA, National Agricultural Statistics Services, 2012  

  



 

 

49 

 

3.3.2.2 GMM breakpoint tests 

According to the graphs of CUSUM and CUSUM of squares tests, we test the 

stability at two time spots and find instability in both years of 1987 and 1997, as we can 

see in table 3.2. 

 

Table 3.2. GMM Breakpoint Tests for pt+1 
 

 1987  1997 

 Test Statistic   p-Value   Test Statistic      p-Value 

Andrews-Fair Wald                -           - 

Andrews-Fair LR-type D         9.24E-14 0.9999         -7.82E-14 - 

Hall and Sen O       13.0497 0.0423        16.0568 0.0135 
 

Note:   GMM breakpoint tests are performed on the estimation of      as in: 

                          (
  

    
)
   

(
  

    
)    

    

  
         (3.3) 

 The test statistics are calculated as: 

 Andrews-Fair Wald:             
  

 

  
  

   
 

  
  

             

 Andrews-Fair LR-type D:                

 Hall and Sen O:           
 

 

The GMM Breakpoint test is similar to the Chow Breakpoint Test, but it is 

geared towards equations estimated via GMM rather than least squares. We calculate 

three different types of GMM breakpoint test statistics: the Andrews and Fair (1988) 

Wald Statistic, the Andrews-Fair LR-type Statistic, and the Hall and Sen (1999) O-

Statistic. The first two statistics test the null hypothesis that there are no structural breaks 

in the equation parameters, while the third statistic tests breaks in the over-identifying 

restrictions. All three test statistics have an asymptotic    distribution: the first two with 

(m-1) k degrees of freedom, and O-statistic with 2*(q-(m-1)k) degrees of freedom. m is 



 

 

50 

 

the number of subsamples, k is the number of coefficients in the original equation, and q 

is the number of time series in the equation.  

Similar to the Chow Statistics, the data are partitioned into different subsamples, 

and the equation is re-estimated for each subsample to calculate the GMM breakpoint 

test statistics. The major difference between the GMM breakpoint test and the Chow test 

procedures is that the Chow Statistic is calculated with constant variance-covariance 

matrix of the error terms of the entire sample, but the GMM breakpoint statistic allows 

the variance-covariance matrix of the error terms vary between the subsamples. The 

Andrews-Fair Wald test for single breakpoint is based on the test statistic: 

           
  

 

  
  

   
 

  
  

             

where  

   = the coefficient estimates from subsample i, 

   = the number of observations in subsample i,  

    the estimate of the variance-covariance matrix for subsample i. 

The Andrews-Fair LR-type statistic is a comparison of the J-statistics:  

               

where 

    the J-statistics estimates from subsample i, 

    the J-statistics calculated with the original equation's residuals, and a combined 

GMM weighting matrix that equals the weighted (by number of observations) sum of the 

estimated weighting matrices from each of the subsample estimations. 
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The Hall and Sen O-Statistic is calculated as: 

         

As we can see in table 3.2, the Andrews-Fair Wald Statistic and the Andrews-

Fair LR-type Statistic fail to provide evidence of the parameter breakpoints in 1987 or 

1997. The Hall and Sen O-Statistic shows breakpoints in overidentifying restrictions in 

both 1987 and 1997 at 5% significance level. 

After generating new time series variables as defined in Section II, we test the 

stationarity and stability of the regressions used for forecasting in this Section. All 4 

residuals pass the stationarity tests and this reinforces the validity of our analysis. 

However, the stability tests show 2 significant breakpoints in the GMM estimation. 

Therefore, we define 3 stages in the studied period accordingly: 

a. 1982~1987  busting stage 

b. 1988~1997  stable stage 

c. 1998~2009      booming stage 

Here we follow Falk (1991) on the definition of different stages. Falk (1991) 

tested the present value model with Iowa farmland price and rent data during the period 

of 1921-1986. He found that price movements are not always consistent with the 

implications of the present value model, and there are persistent predictable excess 

positive and negative returns in the farmland market. We define the stage when the 

farmland prices are persistently higher than the implication of the present value model as 

a booming stage, persistently lower as a busting stage, and consistent as a stable stage. In 

this chapter we follow the agricultural economics literature and refer to the three stages 
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of land prices as “boom”, “bust”, and “stable” (Schmitz 1  5). Further research relating 

these notions to the mathematics of the Characteristic equation (Box and Jenkins 1976) 

is certainly worthwhile. 

The following sections will study the forecast errors in each stage and compare 

them to evaluate the economic information in predictions of farmland prices in different 

scenarios. 

 

3.4. Forecast Error Variance Decomposition Procedure 

As discussed in Section I, we adopt the Forecast Error Variance Decomposition 

(FEVD) procedure to study the QRE predictions. In this section, we study the forecast 

error variance of Yt and Pt, farmland price, in different stages over time. Three typical 

steps are taken to obtain FEVD. First, we write out the impulse response functions in the 

matrix form, second, we write out the moving average representation of forecast errors, 

and third, we calculate the forecast error variance decomposition for CAPM impacts. 

 

3.4.1. Impulse Response 

First, Impulse responses for errors in Xt, Yt, and Zt are calculated for equation 

(3.13), the nonlinear matrix form developed in Section II (Koop, Pesaran, and Potter 

1996; Potter 2000). We denote the impulse response function of Xt, Yt, and Zt as a 3 by 3 

matrix    . 
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3.4.1.1. Column 1,        

First, we write out the three elements in column 1,       for 3 periods. 

          ,           ,              

                                                         

                  [

    

    

      

]   [

    
              

    

] [

 
 
   

]   [

 
 
   

]   [

 
 
   

]

                   (3.15a) 

                  [

    

    

      

]    [

    
              

    

] [

 
 
   

]  [

 
 
   

]  

 [

  

              
   

]                (3.15b) 

                  [

    

    

      

]    [

    
              

    

] [

  

             
   

]  

[

 
 
   

] 

     [

  
 

   
                        

   

]              (3.15c) 

 

3.4.1.2. Column 2,       

Second, we write out the three elements in column 2,       for 3 periods. 

          ,            ,             
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                                                                 

                  [

    

    

      

]   

[

    
              

    

] [

 
 
   

]   [

 
          

   

]   [
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                   (3.16a) 

                  [

    

    

      

]    [

    
              

    

] [

 
          

   

]  
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]   [

 
          

 

   

]                (3.16b) 

                  [

    

    

      

]    [

    
              

    

] [

 
          

 

   

]  
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]   [

 
          

 

   

]                (3.16c) 

 

3.4.1.3. Column 3,       

Third, we write out the three elements in column 3,       for 3 periods. 

          ,            ,             

                                                         
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                  [

    

    

      

]   [
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]   [

 
  

   

]   [
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                   (3.17a) 

                  [
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]                (3.17b) 

                  [

    

    

      

]   

 [

    
              

    

] [

 
              

    

]  [

 
 
   

]  

 [

 
                          

   

  
 

  

]              (3.17c) 

 

3.4.2. Moving Average Representation of Forecast Error 

Next, the forecast error of Yt+1 is written out with the error terms of Xt, Yt, and Zt 

according to impulse responses functions specified in section 3.4.1. (Swanson and 

Granger 1997). 
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3.4.2.1. Write out Forecast Error Terms 

We denote a venter as      and its forecast as   
   , so the forecast error,       , 

is the difference between      and   
   . 

                                               (3.18a) 

  
        

 
   

                                      (3.18b) 

                               (3.19a) 

                                     (3.19b) 

                                           (3.19c) 

 

3.4.2.2 Zero One Simulation of the MA Representation 

In order to specify the MA representation for decomposition, we substitute the 

impulse response function, [equation (3.15), equation (3.16), equation (3.17)], into 

equation (3.19). 

             [

      

                                

      

]              (3.20a) 

                    [
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 [

        

                                
                            

        

] 

                      (3.20b) 

                           [

      

                                

      

] 
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 [

        

                                
                            

        

]

 [

  
       

[   
                        ]                

        

  
       

]

   

  

                                                              [[                          
   ]       ]

   

 

                       (3.20c) 

The deduction details could be found in Appendix E. 

 

3.4.3. Forecast Error Variance Decomposition 

Finally, we decompose the forecast error of      and     . Quasi-rational 

expectation forecasts are generated from the general DLPM developed in Chapter 2 

using the chain rule. By definition, both the short-run and long-run forecast error 

variance decompositions sum to 100%. The coefficients and residuals used in the 

calculation are reported in table 3.4. Since we do not orthogonalize the data, we include 

the correlations significant at 5% level. The residuals correlations and their p-values are   



 

 

58 

 

Table 3.3. Correlations between Residuals in the Recursive Estimations 
 

Year                           

1982 Correlation -0.2779 0.4067 0.0587 -0.2497 -0.6020 -0.1072 

  P-value 0.1236 0.0209 0.7495 0.1682 0.0003 0.5593 

1983 Correlation -0.1090 0.4548 -0.0016 0.1480 -0.6546 -0.4166 

  P-value 0.5460 0.0078 0.9928 0.4112 0.0000 0.0159 

1984 Correlation -0.2365 0.3551 0.0794 -0.2410 -0.6394 -0.1876 

  P-value 0.1780 0.0393 0.6553 0.1698 0.0000 0.2879 

1985 Correlation 0.0192 0.2454 0.0087 -0.2050 -0.4097 -0.2932 

  P-value 0.9130 0.1553 0.9603 0.2375 0.0145 0.0874 

1986 Correlation -0.0186 0.2904 0.0272 -0.1301 -0.6384 -0.2964 

  P-value 0.9144 0.0857 0.8747 0.4496 0.0000 0.0792 

1987 Correlation 0.0788 0.2998 -0.0414 0.0515 -0.6420 -0.3480 

  P-value 0.6428 0.0714 0.808 0.7620 0.0000 0.0348 

1988 Correlation 0.0321 0.2976 -0.0307 0.0660 -0.6253 -0.1855 

  P-value 0.8484 0.0696 0.8548 0.6939 0.0000 0.2647 

1989 Correlation 0.0269 0.3015 -0.0525 0.0576 -0.6144 -0.2452 

  P-value 0.8709 0.0622 0.7512 0.7277 0.0000 0.1325 

1990 Correlation 0.0622 0.3278 -0.0105 0.0720 -0.6161 -0.1576 

  P-value 0.7032 0.0390 0.9486 0.6586 0.0000 0.3316 

1991 Correlation 0.0445 0.3096 -0.0072 0.0878 -0.6410 -0.1189 

  P-value 0.7825 0.0489 0.9643 0.5852 0.0000 0.4589 

1992 Correlation 0.0214 0.3222 0.0344 -0.2102 -0.5942 -0.0934 

  P-value 0.8929 0.0374 0.8288 0.1816 0.0000 0.5563 

1993 Correlation 0.0695 0.3053 -0.0831 -0.0237 -0.6443 -0.3181 

  P-value 0.6577 0.0465 0.5961 0.8799 0.0000 0.0376 

1994 Correlation 0.1207 0.3002 -0.0609 -0.0320 -0.6187 -0.2998 

  P-value 0.4352 0.0477 0.6947 0.8364 0.0000 0.0480 

1995 Correlation 0.0539 0.2734 -0.0655 -0.0297 -0.6307 -0.3068 

  P-value 0.7253 0.0692 0.6692 0.8463 0.0000 0.0404 

1996 Correlation 0.0586 0.2845 -0.0542 -0.0261 -0.6269 -0.2908 

  P-value 0.6988 0.0553 0.7208 0.8635 0.0000 0.0499 

1997 Correlation 0.0665 0.2855 -0.0604 -0.0077 -0.6462 -0.2978 

  P-value 0.6568 0.0517 0.6869 0.9588 0.0000 0.0420 

1998 Correlation 0.0707 0.2841 -0.0572 -0.0116 -0.6311 -0.2906 

  P-value 0.6332 0.0503 0.6992 0.9375 0.0000 0.0451 

1999 Correlation 0.0738 0.2786 -0.0697 0.0071 -0.6201 -0.3012 

  P-value 0.6142 0.0526 0.6344 0.9616 0.0000 0.0355 

2000 Correlation 0.0651 0.2747 -0.0904 0.0407 -0.6354 -0.3152 

  P-value 0.6533 0.0535 0.5324 0.7792 0.0000 0.0258 

2001 Correlation 0.0779 0.2872 -0.0694 0.0678 -0.6340 -0.3040 

  P-value 0.5868 0.0410 0.6286 0.6362 0.0000 0.0301 
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Table 3.3. Continued 
 

Year                           

2002 Correlation 0.0402 0.2574 -0.0772 0.1167 -0.5599 -0.2188 

  P-value 0.7774 0.0654 0.5863 0.4098 0.0000 0.1191 

2003 Correlation 0.0032 0.2639 -0.0497 0.1125 -0.6365 -0.2853 

  P-value 0.9816 0.0562 0.7236 0.4226 0.0000 0.0384 

2004 Correlation 0.0892 0.2325 -0.0089 -0.1821 -0.4149 0.0033 

  P-value 0.5214 0.0907 0.9491 0.1876 0.0018 0.9813 

2005 Correlation 0.2547 0.2444 -0.0153 -0.1421 -0.3541 0.0448 

  P-value 0.0606 0.0722 0.9118 0.3006 0.0080 0.7453 

2006 Correlation 0.0405 0.2650 -0.0217 0.0651 -0.5465 -0.2919 

  P-value 0.7671 0.0484 0.8736 0.6336 0.0000 0.0290 

2007 Correlation 0.0395 0.2226 -0.0517 0.0492 -0.4110 -0.2648 

  P-value 0.7702 0.0960 0.7025 0.7164 0.0015 0.0465 

2008 Correlation 0.0380 0.2613 -0.0299 0.0846 -0.1776 -0.1709 

  P-value 0.7771 0.0476 0.8239 0.5276 0.1823 0.1995 

2009 Correlation 0.0728 0.2893 0.0026 0.0730 -0.5986 -0.2146 

  P-value 0.5838 0.0263 0.9847 0.5829 0.0000 0.1027 
 

Note:       is the correlation between residual        and        or         

                          (3.6) 

                                  (3.5) 
                          (3.7) 

                          (3.8) 

Equation (3.6), (3.7), and (3.8) are estimated with OLS in Stata11. 

Equation (3.5) is estimated with Two-stage GMM in Eview7. 
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Table 3.4. The Values of Data, Coefficients, and Residuals Used in the Calculation of Forecast Variance Decomposition 
 

Year                             
    

    
    

  

1982 0.8246 1.0906 0.0042 0.7241 0.2851 0.7300 -0.0011 0.6998 0.5411 0.0000 0.0026 0.0006 0.0010 

1983 0.8068 1.0477 0.0049 0.6949 0.3695 0.6508 0.0193 0.3437 0.7582 0.0000 0.0012 0.0008 0.0004 

1984 0.8298 1.0684 0.0045 0.7313 0.2417 0.7728 0.0088 0.6801 1.7787 0.0000 0.0051 0.0004 0.0022 

1985 0.7256 1.0633 0.0040 0.7727 0.2402 0.7711 0.0090 0.4022 0.9375 0.0000 0.0012 0.0004 0.0001 

1986 0.6809 1.0332 0.0031 0.8487 0.2682 0.7456 0.0203 0.5078 1.4341 0.0000 0.0022 0.0005 0.0008 

1987 0.6475 1.0628 0.0027 0.8823 0.3807 0.6397 0.0396 0.2043 0.9075 0.0000 0.0028 0.0008 0.0009 

1988 0.6760 1.0297 0.0018 0.9469 0.3366 0.6816 0.0550 0.0462 0.9490 0.0000 0.0034 0.0006 0.0013 

1989 0.7030 1.0531 0.0019 0.9430 0.3659 0.6544 0.0548 0.0171 1.0005 0.0000 0.0032 0.0007 0.0011 

1990 0.7169 1.0891 0.0025 0.9056 0.3789 0.6416 0.0447 0.1135 0.9179 0.0000 0.0029 0.0007 0.0010 

1991 0.7491 1.0509 0.0018 0.9532 0.3862 0.6348 0.0366 0.2594 1.0985 0.0000 0.0031 0.0007 0.0012 

1992 0.7190 1.0527 0.0021 0.9339 0.4026 0.6163 0.0020 0.6988 0.0882 0.0000 0.0045 0.0007 0.0015 

1993 0.8053 1.0398 0.0018 0.9608 0.3800 0.6396 0.0223 0.4844 0.6408 0.0000 0.0024 0.0006 0.0009 

1994 0.8157 1.0438 0.0027 0.9048 0.3891 0.6309 0.0177 0.5385 0.5485 0.0000 0.0023 0.0006 0.0008 

1995 0.8670 1.0449 0.0021 0.9537 0.3805 0.6390 0.0203 0.5185 0.5226 0.0000 0.0024 0.0006 0.0009 

1996 0.9130 1.0552 0.0026 0.9225 0.3776 0.6415 0.0192 0.5367 0.4982 0.0000 0.0024 0.0006 0.0009 

1997 0.9462 1.0397 0.0028 0.9135 0.3796 0.6394 0.0225 0.5152 0.4277 0.0000 0.0026 0.0006 0.0011 

1998 1.0017 1.0431 0.0027 0.9180 0.3802 0.6388 0.0199 0.5335 0.3966 0.0000 0.0024 0.0006 0.0009 

1999 1.0559 1.0421 0.0026 0.9274 0.3767 0.6422 0.0221 0.4869 0.3630 0.0000 0.0023 0.0006 0.0009 

2000 1.1193 1.0406 0.0024 0.9396 0.3755 0.6433 0.0315 0.3910 0.3436 0.0000 0.0027 0.0005 0.0011 

2001 1.1780 1.0431 0.0030 0.9032 0.3845 0.6346 0.0350 0.3550 0.3244 0.0000 0.0029 0.0006 0.0012 

2002 1.2268 1.0333 0.0028 0.9301 0.3857 0.6340 0.0477 0.0778 0.0778 0.0000 0.0027 0.0005 0.0010 

2003 1.3148 1.0412 0.0015 1.0009 0.3962 0.6241 0.0592 0.1675 0.1675 0.0001 0.0041 0.0006 0.0018 

2004 1.3252 1.0456 0.0024 0.9617 0.2724 0.7398 -0.0060 0.6573 0.0717 0.0001 0.0023 0.0003 0.0002 

2005 1.5969 1.0424 0.0036 0.9076 0.3176 0.6971 -0.0053 0.6771 0.0423 0.0001 0.0027 0.0004 0.0002 

2006 1.8557 1.0430 0.0032 0.9283 0.3897 0.6299 0.0445 0.3420 0.1764 0.0001 0.0050 0.0005 0.0018 

2007 2.0500 1.0535 0.0026 0.9585 0.3265 0.6893 0.0385 0.2426 0.1086 0.0001 0.0037 0.0004 0.0010 

2008 2.1808 1.0424 0.0038 0.9091 0.2597 0.7517 0.0300 0.1879 0.4159 0.0001 0.0036 0.0003 0.0005 

2009 2.1003 1.0082 0.0034 0.9324 0.3141 0.7007 0.0459 0.4824 0.0875 0.0001 0.0075 0.0004 0.0038 
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Table 3.4. Continued  
 

Note:     and    are new time series defined as:                  , and       
 

  
(

    

  
)
   

(
    

  
) 

   and    are coefficient estimates for exogenous variables: 

                           (3.6) 

                           (3.7) 

                           (3.8) 

  is the coefficient estimate in CAPM model: 

                         (
  

    
)
   

(
  

    
)    

    

  
         (3.3) 

  
  is the estimated variance of the residuals in the time series predictions above. 
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Estimated Coefficients for Exogenous Variables 

 

                     

 
  

                    

 
 

                    

    
 

Figure 3.4. Estimated Coefficients for     ,      and      over Period 1950-1982 to 

1950-2009 
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Figure 3.5. Estimated Residuals for Yt over Period 1950-2009  
 

Note:          is the estimated residual in 

                                  (3.5) 

Equation (3.5) is estimated with Two-stage GMM in Eview7. 

 

 

 

reported in table 3.3. Figure 3.4 demonstrates recursively estimated coefficients for Xt+1, 

Zt+1, and vt+1 over the period of 1950-2009, and figure 3.5 demonstrates estimated 

residuals for Yt+1 in the period of 1950-2009. 

 

3.4.3.1. Forecast Error Decomposition for      

By the definition of        in equation (3.11) 

                                                                (3.11) 
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We have the forecast error term of      

                                                          

     (                                                     )           

                              
                              

                               (3.21) 

As table 3.3 shows, the significance level of correlations between 

                , and                  is higher than 5% in the whole sample. Therefore, 

we assume               and               at significance level 5%.  
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   (           )                 
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 ][                  

      
           

 ]                           (3.22c) 

The deduction details could be found in Appendix F. 

 

3.4.3.2. Forecast Error Variance Decomposition For Farmland Prices,      

By definition, we have                , and                     . 

According to table 3.3, the significance level of correlations between                  is 

higher than 5% in the whole sample. Therefore, we assume               at 

significance level 5%. 

       

             
  ,                            

                                               (3.23a) 

   (           )     (           )    
            

                   

                                  (3.24a) 

                                                        (3.23b) 

   (           )     (           )       
    

               
         

       
                                           

     
                                (3.24b) 
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Forecast Error Variance Decomposition  

1 step ahead 

 
 

2 steps ahead 

 
 

3 steps ahead 

 
 

Figure 3.6. Percentages of Forecast Error Variance Decomposed into the Total and Independent Impacts of CAPM Error on 

Farmland Prices 
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                                            
                    (3.23c) 

   (           )     (           )    
   

             
         

       
    

          
                                    

            
     

 [                        
      

     
 ]                             (3.24c) 

 

3.4.3.3. The Short-Run Forecast Variance Decomposition 

When we substitute the values of data and coefficients listed in table 3.3 and 3.4 

into equation (3.24a), the variance of forecast errors for pt+1 deducted in 3.2, we can 

calculate the percentage that specific error term(s) are of the total variance, or the impact 

of a time series on the forecast errors of farmland in the short run. This allows us to 

study the value of information carried in CAPM model. 

First, as we have discussed in Section II, the prediction matrix for Yt+1 is 

nonlinear in Xt, Yt, and Zt. The variance of forecast errors of Yt+1 contains both the 

independent impacts of Yt denoted in error terms of Yt with non-stochastic data and 

coefficients, and the joint impacts of Yt and other time series denoted in error terms of 

Yt and Zt with non-stochastic data and coefficients. Second, since we do not 

orthogonalize data before impulse response analysis, the variance of forecast errors of 

pt+1 contains covariance terms denoted in error terms of Yt and vt with non-stochastic 

data, coefficients, and correlation. Therefore, figure 3.6 shows 2 percentages of the 

CAPM errors over the variance of forecast errors of pt+1: percentage of independent 

impact and percentage of total impact with both independent and joint impacts. 
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Figure 3.6, 1 step ahead FEVD, shows that in both the busting and booming 

stages, the total impacts of CAPM errors are bigger than those in the stable stage, and 

the total impacts have more variation in the booming stage than in the busting stage. 

This result is consistent with the general findings on the higher volatility of bigger 

amount of information. For instant, Zarnowitz and Lambros (1987) found that 

expectations of higher inflation generate greater uncertainty about inflation. Kagel and 

Levin (1986) also found that public information about the value of the item increases 

seller revenue in the absence of a winner's curse, but produces the contrary result in its 

presence, which means higher price variation in general. 

 

3.4.3.4. The Middle-Run and Long-Run Forecast Variance Decomposition with Chain 

Rule  

When we substitute the values of data and coefficients into equation (3.24b), the 

variance of forecast errors for pt+2 as in 3.2, we can calculate the impacts of CAPM 

errors on the forecast errors of farmland in the middle run. Figure 3.6, 2 steps ahead 

FEVD, also shows that in both the busting and booming stages, the total impacts of 

CAPM errors are bigger than those in the stable stage, and the total impact has more 

variations in the booming stage than in the busting stage over a middle term. As defined 

in Section III  . , “We define the stage when the farmland prices are persistently higher 

than the implication of the present value model as a booming stage, persistently lower as 

a busing stage, and consistent as a stable stage.” 
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When we substitute the values of data and coefficients into equation (3.24c), the 

variance of forecast errors for pt+3 deducted in 3.2, we can calculate the impacts of 

CAPM errors on the forecast errors of farmland in the long run. Figure 3.6, 3 steps ahead 

FEVD, shows that the total impacts of CAPM errors are bigger in the busting stage than 

those in the stable stage, and bigger than those in the booming stage. 

The above findings are consistent with existing literature on the absorption 

behavior of economic information: information is not completely absorbed in the short 

run, but it is almost futile in the long run. For instance, Piotroski (2000) found that only 

one-sixth of the annual return difference between ex ante strong and weak firms is 

earned over the four three-day periods surrounding their quarterly earnings 

announcements. The market does not incorporate financial information into prices in a 

timely manner. Campbell et al (2003) found that in a stock market the economic 

consequences of information disclosure are trivial over the long run. 

 

3.4.3.5. Further Discussion 

Since traditional FEVD in orthoganalized linear models only contains direct 

impacts that are all positive, every decomposed portion is less than the summation of 

FEVD, 1. However, general FEVD with un-orthoganalized nonlinear models like the 

one in this chapter, may result in decompositions bigger than 1, as observed in figure 

3.6. Next we discuss several relevant aspects of the range of decompositions in general 

models. 
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3.4.3.5.1. Explanation for (Percentage of Independent Impact of CAPM Error) Greater 

Than 1 

To illustrate why the forecast error variance decomposition for pt+1 could be 

bigger than 1, we first write out the forecast error variance of pt+1. As table 3.3 shows, 

              and               at significance level 5%,  

          .  

   (           )                 
   

  

          
   

                  
   

             
    

   
  

              
              

Also, we have               at significance level 5%, 

       

   (           )     (           )    
            

          

                          

                
   

            
   

                  
   

   

           
    

   
                

               
       

     
                                    

Percentage of independent impact of CAPM error  

          
   

     (           ) 

Percentage of total impact with both independent and joint impacts of CAPM error 

           
   

            
    

   
            

           

   (           )  
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As we can see in table 3.3,        ,       , and       , therefore, it is possible that 

         
   

     (           )  

 Percentage of independent impact > 1 

By the same token, the forecast error variance decomposition for pt+2 and pt+3 

could also be bigger than 1. 

 

3.4.3.5.2. Economic Implications for (Percentage of Independent Impact of CAPM 

Error) Greater Than 1 

Since the error term in the random walk of transaction cost is negatively 

correlated to the error term in the CAPM (     ) and adjusted growth rate of 

disposable income (     ), the error terms of forecast under QRE for farmland prices 

(   (           )) could be smaller than those under RE (         
   

 ). 

 

3.4.3.5.3. Summation of (Percentage of Impact of Error Terms) Equals 1 

It is straight forward to prove that for all kinds of forecast error variance 

decompositions, with or without orthogonalization: 

Sum (Percentage of joint impacts) + Sum (Percentage of independent impacts) = 1 

(3.25) 

In linear models, terms like           
    

   
  do not exist, and 

orthogonalization makes correlations like       , causing terms like      

     
           . Therefore, Percentage of joint impacts = 0, and equation (3.25) 

reduces to  
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Sum (Percentage of independent impacts) = 1                 (3.26) 

 

3.4.3.5.4. Attenuating Joint Impacts   

As we can see, there is a trend that the joint impacts at horizon 1 are larger in 

absolute value, as a decomposed ratio, than at horizon 2 and 3. The explanation is 

straightforward. 

Since we use the chain-rule and assume iid for inter-temporal error terms, part of 

the joint impacts in horizon 1, some correlation type of joint impacts, become 0 in 

horizon 2. Therefore the decomposed ratio of all joint impacts becomes smaller in 

horizon 2 in absolute value than in horizon 1 (given that all correlations included are of 

the same sign as the total impacts). By the same token, the decomposed ratio of all joint 

impacts becomes smaller in horizon 3 in absolute value than in horizon 2. 

The story behind this is that the joint impacts from non-linearity are persistent, 

while those from un-orthogonalization fade away in time. In an infinite horizon, the 

decomposed ratio of the un-orthoganalized joint impacts will approach that of the 

orthoganalized ones over time.  

 

3.5. Conclusion 

In this essay we follow the agricultural economics literature and refer to the three 

stages of land prices as “boom”, “bust”, and “stable” (Schmitz 1  5). Further research 

relating these notions to the mathematics of the characteristic equation (Box and Jenkins 

1976) is certainly worthwhile. 
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The moving average representation shows that in the short run, the CAPM 

portion of the variance of QRE forecast errors are significantly higher in a boom or bust 

stage than in a stable stage. This means that the market values the economic information 

from the CAPM more in an unstable stage than in a stable stage. Since CAPM explains 

different levels of the uncertainty in the different stages of land valuation (i.e., boom, 

bust, and stable), the market is reacting differently to economic information over cycles. 

Thus static time invariant representations of land valuation models are not capturing the 

entire picture of land valuation.  

Further, the higher portion of the CAPM variance disappears quickly in the long 

run forecasts in a boom stage with chain rule, which could be explained by the expected 

market adaptation for farmland prices. The fact that discrepancies between information 

utilization in the stable versus non-stable stages diminishes over time – suggests that 

markets are adapting to this information over a longer time horizon. 

In conclusion, the farmland market absorbs economic information in a 

discriminative manner according to the stability of the market, and the market (and 

actors therein) responses to new information gradually as suggested by the theory. This 

discriminative market behavior in the absorption of CAPM information helps to explain 

the overpricing of farmland, but this explanation works primarily in the short run.  

Additional work contrasting FEVD from the nonlinear model with more 

structural linear model FEVD would be worth consideration. Here we find several 

decompositions exceeding 100%, due to our inability to break the movement of two 

correlated variables. Further research explaining this result would be beneficial. 
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Additional work could also be done with the orthogonalization of the error terms among 

different time series. Finally, the long run analysis could be more meaningful with high 

frequency data, such as futures, stocks, and foreign exchanges. 
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CHAPTER IV 

THE DUAL EFFECTS OF CLIMATE CHANGE AND DIRECT GOVERNMENT 

PAYMENTS ON FARMLAND VALUATION 

 

In this chapter, we study the dual effects of climate change and direct 

government payments on farmland valuation, through their effects on revenues and 

interactions with risk aversion. We adopt the DLPM developed in Chapter II to a panel 

data set for U.S. farmland valuation at state level, during the period of 1960-2007. This 

study denotes heterogeneity of risk aversion across different states and time periods with 

a semi-parametric form. The parameter α, reflecting Risk Aversion Coefficient (RAC), is 

defined as a smooth coefficient function of direct government payments and climate 

change, to enhance the robustness of the panel model against risk aversion 

misspecifications. 

 

4.1. Background 

Climate change and direct government payments can affect farmland prices via 

two paths. First, both climate change and direct government payments have impacts on 

crop revenues, which in turn determine net income and are capitalized into land values. 

Second, both climate change and direct government payments affect risk aversion of the 

farmers by changing crop revenues and farm wealth levels, and the risk aversion of 

farmers affects land values through discounting factors. It is well documented that farm 
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wealth levels are related to relative-risk-aversion-coefficient (Pratt 1964; Arrow 1965), 

and risk aversion affects land prices (Just and Miranowski 1993). 

A dynamic land pricing model (DLPM) is a CAPM extension, which discounts 

future revenues into a present value of the asset. Traditional DLPMs include farm 

revenues as data in their model and estimate risk aversion as a fixed parameter (Chavas 

and Thomas 1999). For instance, if a piece of farmland is subject to better weather 

conditions or receives higher amounts of government payments, the crop revenues of 

this farm will be higher. A traditional DLPM tells us that this farmland would be worth 

more on the real estate market due to its higher future revenues. Obviously, traditional 

DLPMs capture the revenue effects of climate change and direct government payments 

on farmland valuation. However, the traditional approach estimates risk aversion as a 

fixed parameter, which omits the influence of climate change and direct government 

payments on the degree of risk aversion. Therefore, traditional DLPMs are vulnerable to 

risk aversion misspecifications in the discounting process of CAPM. 

The objective of this essay is to investigate the duel effects of direct government 

payments and climate change on farmland values, using a smooth coefficient semi-

parametric panel data model. This essay adopts a model that overcomes the limitation of 

fixed parameter for risk aversion by allowing the risk aversion to change over time and 

space. A semi-parametric estimator, smooth coefficient estimation, is used to estimate 

the risk aversion in DLPMs. DLPMs are extended to capture the dual effects of climate 

change and direct government payments on farmland prices, through both the influence 

on future revenues and discounting process. Specifically, we extend the general DLPM 
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developed in Chapter II to deal with climate change and government payments in a panel 

model.  

Although most present value models are rejected by empirical data (Falk 1991; 

Schmitz 1995), we believe that risk aversion misspecification is a missing key to the 

farmland valuation puzzle in those models. Our model will take consideration of the 

variation of risk aversion, and estimate DLPM under the supposition that the risk 

aversion changes geographically and temporally (Gómez-Limón, Arriaza, and Riesgo 

2002). We expect our empirical results to be consistent with the major findings of the 

present value capitalization formula, and provide evidence for the omitted risk aversion 

effect of climate change and government payments on farmland valuation (Moss and 

Katchova 2005). 

 

4.1.1. Climate Change and Farmland Values 

A number of studies have examined the effect of climate change on land values. 

Principal approaches have involved the Ricardian approach and spatial correlations. 

 

4.1.1.1. Ricardian Approach 

The Ricardian approach to examine climate change effects on land values is 

straight forward. The unit farmland rental rates across different locations are regressed 

on climate data in those locations with US county data. Mendelsohn, Nordhaus, and 

Shaw (1994) found that higher temperatures reduce farm values, while more 

precipitation increases farm values, in all seasons except autumn. They also studied the 
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relationship between climate and farm revenues. The climate data used by Mendelsohn, 

Nordhaus, and Shaw includes four season temperatures in degrees Fahrenheit, 

precipitation in inches per month, and their squares. 

 

4.1.1.2. Spatial Correlation 

Schlenker, Hanemann, and Fisher (2006) extended the Ricardian approach to 

account for spatial correlation across regions. Schlenker, Hanemann, and Fisher (2006) 

used logged farmland values as the dependent variable, and a climate variable “degree 

days” which is a nonlinear transformation of the climatic variables in the growing 

season. The climate data they used include degree days, its square and square root, as 

well as precipitation and its square. Further, Schlenker, Hanemann, and Fisher (2006) 

used their spatial estimates for predictions, and found a significant effect of climate 

change on farmland values. 

 

4.1.2. Government Payments and Farmland Prices 

Besides climate itself, government policies are also determinants of farmland 

valuation. However, there are no conclusive findings on the effect of government 

payments on farmland prices (Moss and Katchova 2005). For instance, Chavas and 

Shumway (1982) found that an increase of 10% in corn prices would raise the expected 

land prices in Iowa by 2.5% ~ 4.2%. But Moss, Shonkwiler, and Reynolds (1989) found 

that government payments had little effect on farmland values in the long run and a 

decreasing effect in the short run. 
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4.1.2.1. The 2008 Farm Act  

“The Food, Conservation, and Energy Act of  00 ” (the  00  Farm Bill) was 

enacted into law in June 2008. The 2008 Farm Bill governs the substance of Federal 

agriculture and related programs for 5 years: June 2008- May 2013. The 15 titles of the 

2008 Farm Bill include administrative and funding authorities for a wide range of 

programs. Figure 4.1 shows annual Government Payments of different programs to the 

farm sector during 1996~2008 (Young, Oliveira, and Claassen 2008). There are two 

kinds of programs that alter farmland revenues: commodity programs and conservation 

programs. 

 

4.1.2.1.1. Commodity Programs  

Commodity programs are intended to help farmers stabilize their incomes. Price 

and income supports are provided through core programs for grains, oilseeds, fiber, 

dairy, and sugar. The expenditures of commodity programs vary significantly over time, 

and they are heterogeneous in space. For instance, commodity programs are 

concentrated in major producing areas: highest in the Southeastern Coastal Plain, where 

cotton and peanuts are produced, and along the lower Mississippi River, where cotton 

and rice are grown. 

  



 

80 

 

 
Figure 4.1. Government Payments of Different Programs during 1996~2008 
 

Note: USDA data are cited as in Young, Oliveira, and Claassen 2008. 08F = Forecast for 2008. 

 

 

 

Figure 4.2. Conservation Payments Distribution across US during 2004-2007 
 

Note: USDA data are cited as in Young, Oliveira, and Claassen 2008. Source: USDA, Economic Research 

Service using data from USDA, Farm Service Agency and USDA, National Agricultural Statistics Service, 

2009  
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4.1.2.1.2. Conservation Programs  

Conservation programs are intended to help farmers address environmental 

concerns. The two largest agri-environmental programs are the Conservation Reserve 

Program (CRP) and the Environmental Quality Incentives Program (EQIP). Wu, 

Ziberman, and Babcock (2001) studied the distributional impacts of conservation 

payments, and found that price feedback effects associated with negatively sloped output 

demand are important to the optimal design of targeting criteria. 

The 2008 Farm Bill established the Conservation Stewardship Program (CSP), to 

replace the Conservation Security Program established under the 2002 Farm Bill. The 

2008 Bill also increases funding for the EQIP and CSP to better address environmental 

needs for land in production. But the 2008 Bill reduces expenditures on the CRP for land 

retirement. These changes will shift spending from reservation areas to primary 

production regions such as the Corn Belt and Delta States (Young, Oliveira, and 

Claassen 2008). Figure 4.2 shows the conservation payments distribution across US 

during 2004-2007. 

 

4.1.2.1.3. The 2008 Farm Bill and Farmland Pricing 

Now, we explore why the 2008 Farm Bill might impact farmland pricing. The 

2008 Farm Bill introduces Average Crop Revenue Election (ACRE) program payments, 

and offers farmers the choice to remain in 2002 Direct and Counter-Cyclical Programs 

(DCP) or to enroll in a new ACRE program. The ACRE program protects farmers 

against revenue losses due to falling prices and low yields. By enrolling in ACRE, 
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farmers renounce 20 percent of their certain direct payment for the potential of a larger 

ACRE payment in a bad year. For farmers enrolling in ACRE, larger government 

payments would be expected when low prices or reduced yields cut farm revenues.  

The decision to enroll in either DCP or ACRE will affect farm profits and in turn 

farmland values. The enrollment in farm programs varies across the nation. First, 

farmers producing cotton, peanut, and rice are less likely to enroll in ACRE, because 

they would forego high payments provided under the DCP program. Second, farmers 

producing corn, soybean, and wheat are more likely to enroll in ACRE, because current 

market prices are well above the target prices set in the DCP program. Third, farmers 

located in states with more volatile yields, such as wheat farmers in Oklahoma, are the 

most likely to enroll in ACRE (Briggeman and Campiche 2010). Therefore, the enacting 

of the 2008 Farm Bill has a heterogeneous impact on farmland values through altered 

farmland revenues. 

 

4.1.2.2. Direct Government Payments under the Act 

Under the provisions of the 2008 Farm Bill, direct government payments include 

payments for commodity programs such as direct payments (DPs), counter-cyclical 

payments (CCPs), as well as marketing loan benefits such as marketing loan gains 

(MLGs), loan deficiency payments (LDPs), and certificate gains. Also included in direct 

government payments are emergency and disaster payments, tobacco transition 

payments, conservation program payments, and ACRE program payments. 
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4.1.2.2.1. Direct Government Payments under the 2008 Farm Bill 

Direct payments have accounted for a significant portion of farm program 

payments since 2003. According to USDA's annual Agricultural Resource Management 

Survey (ARMS), 37 percent of all farms were eligible to receive government payments 

in calendar year 2009. The average payment was $11,549, accounting for 5.5 percent of 

gross farm level cash income, or 23.6 percent of net farm level cash income. Receipt of 

direct government payments is unevenly distributed, with most going to large farms. The 

largest 12.4 percent of eligible farms received 62.2 percent of all government payments 

in 2009 (USDA Economic Research Service, November 07, 2012). This information is 

found at: http://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/govern 

ment-payments-the-farm-sector.aspx. 

 

4.1.2.2.2. Direct government payments and crop revenue 

Figure 4.3 shows the percentage of direct payments relative to crop revenue, by 

county, 2004-2008. As we can see in figure 4.3, direct payments are highest relative to 

crop revenues in the Northern Plains, Southern Plains, Mountain, Delta, and Southeast 

regions. Ifft et al (2012) found that direct payments per farm tend to be the highest in the 

Delta and Southeast regions. 

 

http://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/govern%20ment-payments-the-farm-sector.aspx
http://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/govern%20ment-payments-the-farm-sector.aspx
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Figure 4.3. Direct Payments as a Percent of DP Program Crop Revenue, by County, 

2004-2008 
 

Note: USDA data are cited as in Ifft et al 2012. Source: USDA, Economic Research Service calculations 

based on National Agricultural Statistics Service Quick Stats data; Economic Research Service and 

National Agricultural Statistics Service 2007 Census of Agriculture data; and USDA, Farm Service 

Agency Direct and Counter-Cyclical Payment Program farm crop, contract and producer payment data. 

Blank areas identify counties with no direct payments, or fewer than 2,000 base acres or fewer than 5,000 

cropland acres in 2007 Census of Agriculture. 
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Figure 4.4. Maximum Impact of Capitalized Direct Payments on Cropland Values per 

Acre, 2004-2008 
 

Note: USDA data are cited as in Ifft et al 2012. Source: USDA, Economic Research Service calculations 

based on USDA, National Agricultural Statistics Service June Area Survey data and the USDA, Farm 

Service Agency base acre and Producer Payment Reporting System Payment files. 

Cropland values are an average of both irrigated and non-irrigated cropland values from the USDA, 

National Agricultural Statistics Service June Area Survey. Blank areas identify counties with no direct 

payments, insufficient observations for disclosure, or fewer than 2,000 base acres per county. Counties 

where base acres account for less than a third of cropland acres were excluded, as average cropland values 

in such counties would be less representative of farms with base acres. 
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4.1.2.2.3. Direct Government Payments and Farmland Values 

First, direct government payments have a significant impact on farmland values. 

Goodwin, Mishra, and Ortalo-Magné (2003) looked at the effect of payments on land 

values and found that a $1-per-acre increase in production flexibility contract (PFC) 

payments was associated with a $5-per-acre increase in farmland prices. Latruffe and Le 

Mouël (2009) reviewed a group of studies on US farmland prices, and found that 12% 

~40% of the farmland prices were attributable to government payments.  

Second, direct government payments impact farmland values in a heterogeneous 

pattern. Ifft et al (2012) studied the relationship between cropland values and expected 

earnings from future direct payments. They calculated the ratio of “capitalized direct 

payments” to cropland values as an estimate of the maximum potential contribution of 

direct payments to land values. Figure 4.4 exhibits this maximum impact of capitalized 

direct payments on cropland values per acre during 2004-2008. As we can see in figure 

4.4, the estimated maximum contribution of direct payments to cropland values varies 

significantly by region. In the Corn Belt and Lake States, estimated ratios of capitalized 

direct payments to per-acre cropland values were relatively low (less than 15 percent). In 

contrast, estimated ratios in the Northern and Southern Plains, as well as part of the 

Delta States and the Mountain region, were relatively high (more than 30 percent). 

Nickerson et al (2012) also found that the correlation between government payments and 

cropland values varies regionally. 
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4.1.3. Semi-Parametric Approach and Curse of Dimensionality 

We adopt a semi-parametric method to estimate our empirical model: to estimate 

the relative risk aversion coefficient with a non-parametric form of Smooth Coefficient 

Estimation (Li et al 2002, Li and Racine 2007a), and to estimate other coefficients as 

parameters in a Seemingly Unrelated Regression (Henderson et al 2010). 

Hayfield and Racine (2007 and 2008) and Racine (2009) demonstrated that the 

performance of semi-parametric models in “in-sample fit” lies in between that of the 

misspecified parametric models and that of the fully nonparametric models. They also 

note that the nonparametric approach relaxes the usual assumptions of parameters, and 

allows us to uncover structures in the data that might be missed otherwise. Therefore 

fully nonparametric models provide more flexibility. 

However, many nonparametric methods are affected by the so-called “curse of 

dimensionality”, caused by the sparsity of data in high-dimensional spaces. As the 

dimension of the regressor vector increases, the sparseness of data in high dimensional 

model causes the variances of the estimates to increase and they ultimately become 

unacceptably large under fully nonparametric methods (Geenens 2011). Thus in order to 

allow the risk aversion to shift with climate but still get low coefficient estimate 

variances in our model, we use a semi-parametric method. 

The remainder of the essay is organized as follows. Section II describes the 

model. Section III details the construction of data and estimation procedures. Section IV 

illustrates the empirical results. Section V summarizes and concludes the essay. 
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4.2. The Model 

We adopt the same model set up as that in Chapter II, with a Recursive Utility 

form (Koopmans 1960): 

     [       
 
     

 
]
 

         (2.3) 

where 

         |           
  

 
  

The model is specified in terms of the First Order Conditions of the Dynamic Land 

Pricing Model: 

The marginal utility of the current sacrifice = The marginal utility of the future gain 

As discussed in Chapter 2, the three equations stand for the equilibrium between 

consumption and investment, cash, and farmland respectively. 

              
                                    (2.15a) 

              
                                       (2.15b) 

              
              

    

    
                                          (2.15c) 

where  

   
    ⁄

  ̅   
 

or 

      ⁄          
                    ̅             (4.1a) 

      ⁄          
                       ̅             (4.1b) 

      ⁄          
              

    

  
                ̅                

           (4.1c) 
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With most parameters and variables defined identically to those in Chapter II, 

there are 2 substantial differences between the current model and that in Chapter II: 

 Instead of a time series model, we will use a panel data model to study the 

climate change and government payment’s effects on farmland prices for 

different states in different years. Many data variables have two subscripts: time 

and U.S. state in this Chapter. 

 We treat α, defined as in equation (2.3) as a smooth coefficient, rather than a 

parameter, and it is expressed in a nonparametric form of variables Zit. As we 

have discussed in Section I. 3, the nonparametric approach will overcome the 

risk aversion misspecification problem in the panel model. 

The current model is rewritten as follows. 

      ⁄ (           )
   

                       ̅             (4.2a) 

      ⁄ (           )
   

                          ̅            (4.2b) 

      ⁄ (           )
   

               
      

    
                    ̅           

                    (4.2c) 

where 

          and                                       

Variables in the above equations (4.2a), (4.2b), and (4.2c) are defined as follows: 

 :itq    Consumer Price Index(1982~1984:1) ‏for state i period t 

 :ity    disposable income of farm population for state i period t ($trillion)‏ 

 :itR gross rate of return on farm equity for state i period t   
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 :itA   farm wealth levels (equity) for state i period t ($100million)‏ 

 :itr    Interest rate on U.S. treasury bills (%)‏for state i period t 

 :itp    Farm land price for state i period t ($1,000/acre)‏ 

 :/1, itti a  net farm income per acre ($1000/acre)‏ 

 
itv :  transaction costs of year t in farmland market for state i ($1,000/acre)‏ 

 
itQ :  land quantity for state i period t 

 
itRain : Precipitations in inches for state i period (annual data) 

 
iteTemperatur :Average Annual Temperatures in °F for state i period t 

 
itGP : Government Payments for state i period t 

 

4.3. Data and Estimation 

The above model is developed for a representative agent and we assume that all 

the functional forms hold in aggregated panel data. The data on land values are collected 

from the USDA website, http://www.ers.usda.gov/data-products/farm-income-and-

wealth-statistics.aspx. Farmland prices, acres used in productions, farm gross income, 

and other variables are collected during the period of 1960~2008 at the US state level. 

The climatic data are collected from NOAA using the National Climatic Data Center at 

website, http://www.ncdc.noaa.gov/oa/climate/research/cag3/cag3.html.  

 

  

http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics.aspx
http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics.aspx
http://www.ncdc.noaa.gov/oa/climate/research/cag3/cag3.html
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4.3.1. Data 

Figure 4.5 shows the annual average state level precipitation in inches for the 48 

contiguous US States over the period of 1960-2007, figure 4.6 shows the annual average 

state level temperatures in degrees Fahrenheit for the US States, 1960-2007, and figure 

4.7 shows the annual Government Payments in thousand dollars for the US States, 1960-

2007. As we can see in figure 4.5-7, the variables, climate changes and Government 

Payments, have 3 important characteristics during the period of our research: 

 Precipitation has higher volatility than does temperature, which indicates that 

precipitation may contain more information and act as a better explanatory 

variable than temperature. 

 Annual average temperatures have a positive trend over time. This trend reflects 

climate change in the last 50 years in the US as discussed in Intergovernmental 

Panel on Climate Change (IPCC 2007). 

 Government Payments increased between 1980 and 2007 with large year to year 

variability. It is apparent that government payments demonstrate two different 

patterns before and after 1980. This means that the distribution of government 

payments at low level may be significantly different from that at high level. 
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Figure 4.5. Annual Average Precipitations in Inches for US States (Except For Hawaii And Alaska),1960-2007.  
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Figure 4.5. Continued 
 

Note: The states are listed alphabetically in rows starting with Alabama and going through Wyoming.

 

1 2 3 4 5 6 7

Vermont Virginia Washington West Virginia Wisconsin Wyoming 

Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah

New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon

Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey

Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota

Florida Georgia Idaho Illinois Indiana Iowa Kansas

Alabama Arizona Arkansas California Colorado Connecticut Delaware
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Figure 4.6. Annual average Temperatures in Degrees Fahrenheit for US States (except for Hawaii and Alaska), 1960-2007 
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Figure 4.7. Annual Government Payments in Thousands of Dollars for US States (except for Hawaii and Alaska), 1960-2007 
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Figure 4.8. Panel Data for Equation (4.4b) at US States Level (except for Hawaii and Alaska), 1960-2007 
 

Note: Yit =the inflation adjusted interest rate, Xit = the real growth of disposable income   
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Figure 4.8. Continued 
 

Note: Xit = the real growth of disposable income  
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Figure 4.8. Continued 
 

Note: Yit =the inflation adjusted interest rate 
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4.3.2. Estimation Approach 

In order to obtain an estimable form of the model developed in section II, we 

take the natural log on both sides of system (4.2): 

           (4.3a) 

           (4.3b) 

  

           (4.3c) 

where        ,                           ,   and                                                                

Rearrange system (4.3), we have the following seemly unrelated regression 

                                                                                                                                (4.4a) 

                                                                                                                                    (4.4b) 

 

                                                                                                                                    (4.4c) 

where )()/)(2ln()/~2ln( ititIV ZZg     and )1(    

Equation (4.4b) is of the form of a popular semi-parametric specification of a partially 

linear model (Robinson 1988; Stock 1989): 

 

As we can see in equation (4.4b), Yit denotes the inflation adjusted interest rate, 

and Xit denotes the real growth in disposable income. Figure 4.8 shows the interest rate 

and real growth panel data used in equation (4.4b) at US States level during 1960-2007. 

They are Yit versus Xit, Xit versus year, and Yit versus year. It is obvious that the 
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relationship between Yit and Xit may not be best estimated as a linear one, and the non-

parametric form provides flexibility to capture this nonlinearity in data. 

We first obtain a consistent estimate of the smooth coefficient )( itZ  from the 

following form of equation (4.4b) (Li et al 2002). Then, we substitute the estimated 

smooth coefficient )(ˆ itZ  into the above system and estimate the rest of the coefficients 

as parameters in a seemingly unrelated regression (Henderson et al 2010). GMM will 

provide a consistent and efficient estimate for the system with covariance matrix 

information (Hansen 1982). 

 

4.4. Estimation Results 

The smooth coefficient model is estimated with R General user interface (RGui) 

2.13.1 and our script is listed in Appendix G. The estimation results with the variables of 

temperature, precipitation and government payments respectively are summarized in 

table 4.1. For those 3 models, the estimation uses 2256 training points of 1 explaining 

variable in the smooth coefficient, with fixed bandwidth, and second-order Gaussian 

kernel.  
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Table 4.1. Summary of Smooth Coefficient Model Estimations 
 

 Explanatory Variable Used in the Nonparametric Form 

 GP Temp Rain 

Bandwidth 58125.0500 5648.5890  4.1212 

Residual standard error         6.7509e-05       6.8715e-05  6.7242e-05 

R-squared         1.9833e-02       6.1531e-04  2.3673e-02 

Intercept Mean        -1.7940e-02      -1.7913e-02 -1.7853e-02 
 

Note:  The above results are retrieved with R command  

model.scoef <- npscoef(y ~ x| Z, betas = TRUE, data = panel). 

y = the inflation adjusted interest rate,  

x = the real growth of disposable income, 

Z = the variable used in the nonparametric form 

 

 

 

4.4.1. Bandwidth 

First we review the bandwidth calculations with all 3 variables, and compare 

their plots to identify the best model among the 3. Second, we look at the bandwidth 

calculation of the best model, and discuss the results in that model. 

The bandwidth is calculated using R command "npscoefbw", and the smooth 

coefficient is calculated using "npscoef". Both commands are referred to Li and Racine 

(2007b), who proposed a data-driven cross-validatory bandwidth selection method. This 

method can handle the presence of potentially irrelevant regressors, and increase 

efficiency in finite-sample estimation. Table 4.1 reports the bandwidth estimated for 

every variable used in the model. Figure 4.9, 4.10, and 4.11 show us the distribution of 

calculated data in every bandwidth estimated in those models.  
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Figure 4.9. Computed Bandwidth for a Smooth Coefficient Kernel Regression Estimates 

with Government Payments as the Explanatory Variable in the Nonparametric Form 
 

Note:  The above results are retrieved with R command  

bw <- npscoefbw(formula=y~x|Z, data = panel). 

y = the inflation adjusted interest rate,  

x = the real growth of disposable income, 

Z = direct government payments in thousands dollars  
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Figure 4.10. Computed Bandwidth for a Smooth Coefficient Kernel Regression 

Estimates with Temperatures as the Explanatory Variable in the Nonparametric Form 
 

Note:  The above results are retrieved with R command  

bw <- npscoefbw(formula=y~x|Z, data = panel). 

y = the inflation adjusted interest rate,  

x = the real growth of disposable income, 

Z = average annual temperatures in degrees Fahrenheit  
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Figure 4.11. Computed Bandwidth for a Smooth Coefficient Kernel Regression 

Estimates with Precipitations as the Explanatory Variable in the Nonparametric Form 
 

Note:  The above results are retrieved with R command  

bw <- npscoefbw(formula=y~x|Z, data = panel). 

y = the inflation adjusted interest rate,  

x = the real growth of disposable income, 

Z = annual precipitation in inches 
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Figure 4.9 shows the bandwidth for a smooth coefficient kernel regression 

estimate of equation (4.4b) with government payments (GP) as the explanatory variable. 

As we can see, Yit changes significantly from bandwidth to bandwidth of GP over the 

range of Xit, which cannot be completely captured in a linear relationship. Figure 4.10 

shows the bandwidth estimated with temperature as a variable. In contrast to figure 4.9, 

Yit increases stably for every bandwidth of temperature over the range of Xit, which 

indicates a linear relationship between temperature and data. Figure 4.11 shows the 

bandwidth estimated with rain as a variable. Similar to figure 4.9, Yit also changes 

significantly from bandwidth to bandwidth of rain over the range of Xit. However, the 

bandwidth plot of rain is much smoother than that of GP, which means that rain might be 

a better variable than GP in the model.  

In short, figures 4.9, 4.10, and 4.11 reveal that Rain appears to yield a reasonable 

bandwidth selection with “npscoefbw” among the 3 variables. In contrast, the bandwidth 

selection with GP appears to be undersmoothing, leading to too many false modes, while 

the bandwidth selection with Temperature appears to be oversmoothing, leading to a 

linear estimate that obscures the possible nonlinear nature of the underlying distribution 

(Li and Racine 2007a, section 1.3.3). Here the mode of a continuous probability 

distribution is the value of a variable at which its probability density function has its 

maximum value, or, the mode is at the peak (Economic Statistics by Wikimedia 

Foundation). 
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Figure 4.12. Estimates of the Impacts of Annual Precipitations on U.S. Farmland Valuations in a Smooth Coefficient Model 
 

Note:  The above results are retrieved with R commands:   model.scoef <- npscoef(y ~ x| Z)  
plot(model.scoef) 

y = the inflation adjusted interest rate,  

x = the real growth of disposable income, 

Z = annual percipiation in inches 
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Figure 4.12. Continued 
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To further explain why temperature does not perform well as an independent 

variable in the non-parametric form, we would recall that figure 4.6 shows that the 

current measurement of temperature, annual average of the state in Fahrenheit degree, 

does not have enough variation in the model to justifiably represent the variable of 

temperature. Or, "annual average of the state in Fahrenheit degree" has lost most of the 

essential information in the variable of temperature in this case. Pertinent literature uses 

“degree days” (Mendelsohn, Nordhaus, and Shaw 1994) to measure temperature, and 

“degree days” could be a reasonable alternative measurement of temperature for the 

semi-parametric smooth coefficient model. 

 

4.4.2. Economic Implications 

Now we look at figure 4.12 to study the economic implications of the estimates 

of the smooth coefficient model using precipitations as an explanatory variable in the 

nonparametric form. R command “model.scoef <- npscoef(y ~ x| Z)” estimates a smooth 

coefficient kernel regression: 

 

and returns the predicted value of the dependent variable, 
itY  

where 

Yit =the inflation adjusted interest rate,  

Xit = the real growth of disposable income,  

itZ =Rainit = Annual Precipitation in inches.  

We rewrite the estimation formula used in figure 4.12 into the plot equation: 

ititititit VXZZY  )()(  
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In other words,  it is plotted as a function of Xit and Zit, or Rainit in figure 4.12. 

Therefore, the three dimensions in figure 4.12 are   for  it, X for Xit, and Rain for 

Rainit. 

When we omit the correlation restrictions between equations in system (4.4) in 

our semi-parametric approach, the seemly unrelated regression (SUR) estimation is the 

same as that from equation (4.4b) (Henderson et al 2010). In the SUR we derived in 

Section III, equation (4.4b) and (4.4c) shares the same terms on the right hand side, 

except for the error terms. In other words, we could also use the plots of figure 4.12 to 

explain the left hand side of equation (4.4c) instead of equation (4.4b), since error terms 

are omitted in those plots. The left hand side of equation (4.4c) is the inflation adjusted 

farmland valuation growth. Figure 4.12 tells us the impact of rain on inflation adjusted 

farmland valuation growth over the range of growth of disposable income for a 

representative agent in farm sector. 

To simplify our analysis, we could hold all other variables constant, and allow 

only the future farmland prices ( it), disposable income growth (Xit), and rain (Rainit) to 

vary, since the change of future farmland prices is a reasonable approximation of the 

change of  it when all the other variables are fixed in the inflation adjusted farmland 

valuation growth. A plane of Y-Rain crossing axis X at a certain point shows the impacts 

of rain on future farmland prices at a certain disposable income growth rate, and it 

should be a smooth curve as indicated in the plot equation: 

 

itititit XZZY )()(ˆ   

itititit XZZY )()(ˆ   
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A plane of Y-X crossing axis Rain at a certain point shows the relationship between 

future farmland prices and disposable income growth rate at a certain rain level, and it 

should be a straight line as indicated in the plot equation. 

 

4.4.1.1. Booming Stage 

We first look at plots [theta=90, phi=0]. The edge of the bandwidth plot toward 

us (highlighted in red) shows the impacts of rain on future farmland prices when 

disposable income growth rate is high as 0.3. In equilibrium, high growth rate in 

disposable incomes means high consumption growth, high investment growth, and a 

highly growing economy in the whole, so this scenario is the booming stage of the 

economy. 

As we can see in this plot, the farmland prices increase as rain amounts increase 

from 0 to 50 inches, decrease as rain amounts increase from 50 to 60 inches, then 

increase again when rain amounts increase from 60 to 72 inches, and decrease again 

when rain amounts increase from 72 to 80 inches. The first increase in farmland prices 

corresponding to increase of rain (0-50) is straightforward. It is probably related to cost 

savings from irrigation and revenue increases from higher crop yields. The second 

increase in farmland prices corresponding to increase of rain (60-72) is probably the 

results of adaptation. When the amount of rain exceeds a certain threshold, say 60 

inches, the land is too wet and is not suitable for certain kinds of production. Therefore, 

when the crop land receives rain more than 60 inches, the farmers may switch to 

different crops to adapt to this climate change. This adaptation in turn increases revenue 
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due to higher crop yields and or values, and corresponds to a new mode in farmland 

valuation.  

Schlenker, Hanemann, and Fisher  006 found a “valley” shaped effect of degree 

days (8–32° C) on farmland values by the combination of degree days and its square 

terms. Schlenker and Roberts 2009 demonstrated a nonlinear effect of temperature on 

yields as an eighth-order polynomial. Although researchers have long realized the 

nonlinear nature of the effects of climate change, no direct nonlinear relationships have 

been found between rain and farmland prices. The bimodal effect of rain on farmland 

prices from our semi-parametric model is an interesting finding. First, the direct revenue 

effect of rain is already captured in the DLPM through the farmland income discounted, 

and the bimodal effect plotted here in [theta=90, phi=0] shows the risk aversion effect of 

climate change on farmland prices. This finding detangles the revenue effect from the 

risk aversion effect of climate change. Second, the nonparametric form gives us more 

flexibility in estimation and allows us to explore the true structure of data that might be 

otherwise omitted in a parametric approach. Third, we use dollar amount in our variable 

measurements, which prevents omitting important crops and their yields’ effect on 

farmland values. 

 

4.4.1.2. Recession Stage 

Next, we look at plot [theta=270, phi=0]. The edge of the bandwidth plot toward 

us (highlighted in red) shows the impacts of rain on future farmland prices when 

disposable income growth rate is low as -0.2. In equilibrium, low growth rates in 
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disposable incomes, means low consumption growth, low investment growth, and a 

shrinking economy in the whole, so this scenario represents the recession stage of the 

economy.  

As we can see in this plot, the impacts of rain on farmland prices almost reverse 

from those in the booming economy. The future farmland prices remain constant as rain 

amounts increase from 0 to 30 inches, decrease as rain amounts increase from 30 to 40 

inches, increase as rain amounts increase from 40 to 60 inches, then decrease again when 

rain amounts increase from 60 to 72 inches, and increase again when rain amounts 

increase from 72 to 80 inches .  

The differences between the rain’s effects on farmland prices in the booming 

stage and the recession stage could be explained by the differences of crops planted by 

farmers in the two different stages. First, in the recession stage, the farmers will choose 

more economical crops in production. Not only the crops are cheaper to sell to 

consumers in a market, they are also more cost efficient in production. That is probably 

why we do not observe an increase in farmland prices when the rain amounts increase 

from 0-30 inches. And when rain amounts exceed 30 inches, those crops become less 

cost efficient, till first adaptation occurs at 40 inches, and second adaptation at 72 inches. 

Second, in the recession stage, the farmers will adopt less varieties and scales of crops in 

production. This explains the less stable or shorter trend of rain’s effects on farmland 

prices. In the booming stage, farmland prices go through 4 trends as rain amounts range 

from 0-80 inches, while in the recession stage, farmland prices go through 5 trends in the 

same range of rain amounts.  



 

113 

 

4.4.1.3. Rain Abundant Region 

Next, we look at plot [theta=180, phi=0], and the edge of the bandwidth plot 

(highlighted in red) shows the impacts of disposable income growth rate on future 

farmland prices when the rain amount is high as 75 inches . This plot shows that the 

future farmland prices increase significantly as disposable income growth rate increases. 

It is intuitive that the farmland prices in a productive region are highly sensitive to the 

economy cycle. When the economy is booming, the future farmland prices will increase 

a lot, and when the economy is in recession, the future farmland prices will decrease a 

lot. 

 

4.4.1.4. Rain Scarce Region 

Last, we look at plot [theta=360, phi=0], and the edge of the bandwidth plot 

toward us (highlighted in red) shows the impacts of disposable income growth rate on 

future farmland prices when the rain amount is low as 0 inches. This plot shows that the 

future farmland prices decrease slightly as disposable income growth rate increases. It is 

apparent that crops could not grow on farmland without irrigations in a region of 0 inch 

rain. When the economy is booming, more farmland will be used in the production. The 

increased cost of recourses, such as irrigation, and decreased prices of crops, due to 

higher yields, could all contribute to a low farmland price for those regions in a booming 

stage. 

The angle system used in figures 4.9-4.12 are the so-called "x-convention," the 

most common definition of the rotation given by Euler angles (phi, theta, psi), 
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where 

 the first rotation is by an angle phi about the z-axis (here Y) using D, 

 the second rotation is by an angle theta in [0,pi] about the former x-axis (here X) 

using C, and 

 the third rotation is by an angle psi about the former z-axis (here Y') using B. 

(Not applied in figure 4.9, 4.10, or 4.11) 

 , 

 , 

    . 
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Figure 4.13. Estimates of the Smooth Coefficient )( itZ  with Government Payments as the Explanatory Variable in the 

Nonparametric Form 
 

Note:  The above results are retrieved with R commands:  model.scoef <- npscoef(y ~ x| Z) 

scoef_intercept <- coef(model.scoef)[,1] 

y = the inflation adjusted interest rate, x = the real growth of disposable income, and Z = direct government payments in thousands dollars
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Figure 4.14.  Estimates of the Smooth Coefficient )( itZ with Temperatures as the Explanatory Variable in the Nonparametric 

Form 
 

Note:  The above results are retrieved with R commands:  model.scoef <- npscoef(y ~ x| Z) 

scoef_intercept <- coef(model.scoef)[,1] 

y = the inflation adjusted interest rate, x = the real growth of disposable income, and Z = average annual temperatures in degrees Fahrenheit
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Figure 4.15. Estimates of the Smooth Coefficient )( itZ  with Precipitations as the Explanatory Variable in the Nonparametric 

Form 
 

Note:  The above results are retrieved with R commands:  model.scoef <- npscoef(y ~ x| Z) 

scoef_intercept <- coef(model.scoef)[,1] 

y = the inflation adjusted interest rate, x = the real growth of disposable income, and Z = annual precipitations in inches  
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4.4.2. Estimation 

Although table 4.1 shows that the mean of the estimated intercept )(ˆ itZ is not 

sensitive to the variable used in the model, figure 4.13, 4.14, and 4.15 tell us that both 

the range and the shape of the estimated intercept are significantly different in those 

models. As figure 4.13 shows, the estimated intercept )(ˆ itZ with GP as IV ranges from 

-0.022 to -0.014, and it has significantly more variations in the later years than the early 

years. As figure 4.14 shows, the estimated intercept )(ˆ itZ with temperature as IV stays 

closely to its mean, and it demonstrates a linear random effect estimation of the panel 

model. Figure 4.15 shows the estimated intercept )(ˆ itZ with rain as IV. The intercept 

varies a lot in some states, ranging from -0.0195 to -0.0170, but stays closely to its mean 

in others.  

Corresponding to our analysis of bandwidth, we look at figure 4.15 to study the 

Chapter 4 section III, )()/)(2ln()/~2ln( ititIV ZZg    , and in Chapter 

2 section II,   reflects the risk aversion of a representative agent. Therefore, in our 

semi-parametric model, the intercept captures risk aversion of the farmers, and it is 

denoted as a nonparametric form of Zit, or Rainit in figure 4.15. Figure 4.15 presents the 

estimated intercept over years 1960-2007 across states. As we can see, in most states, the 

estimated intercept changes significantly over the years, meaning that the risk aversion is 

time variant in those states. Further, the shape of the intercept differs significantly from 

state to state, which means that the risk aversion is heterogeneous among the states in 

US. This finding on time and space heterogeneity of risk aversion is consistent with 
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existing researches (Mendelsohn, Nordhaus, and Shaw 1994, Schlenker, Hanemann, and 

Fisher 2006), since Mendelsohn, Nordhaus, and Shaw 1994 have documented the 

heterogeneous impacts of climate change in time, and Schlenker, Hanemann, and Fisher 

2006 in space. 

The estimated intercept in figure 4.15 is denoted as a nonparametric form of 

Rainit. This figure tells us that rain has a heterogeneous effect on future farmland prices 

(Yit) through the intercept, or risk aversion of the farmers. Recall that figure 4.11 shows 

the correlation between farmland prices and rain amounts through bandwidth 

distribution; figure 4.15 organizes the estimated intercepts as a function of rain amounts 

in a year-state panel, to illustrate the mechanism of this correlation. Figure 4.15 

specifically demonstrates the risk aversion effect of rain on farmland prices. 

In short, these results confirm our hypothesis that risk aversion (captured in the 

intercept) changes across states and time periods. In other words, the semi-parametric 

approach allows risk aversion to vary and it does vary in reality. Our model effectively 

captures this variation in the risk aversion coefficient in its estimation, and makes our 

model robust against risk aversion misspecifications in panel data. 

After estimating the smooth coefficient of intercept in the semi-parametric model, we 

substitute the estimated intercept )(ˆ itZ  into the panel data, and estimate the parametric 

coefficients in a SUR panel model using EView 7. GMM estimator uses the long term 

covariance matrix as a weighting matrix in the regression, and generates an efficient 

estimate for the model. Since government payments and climate change are not used in 
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the parametric estimation, we do not report the GMM results in this chapter. But GMM 

panel results are consistent with those from the time series model. 

 

4.5. Conclusion 

Our results indicate that government payments and Climate change affect the 

change in farmland valuation through discounted revenues and the discounting factors, 

the latter which includes interest rate, inflation, time preference, and risk aversion. While 

interest rate, inflation, and time preference are well captured by the literature on 

farmland pricing, the heterogeneity of risk aversion among the agents on farmland 

markets is seldom considered. This essay shows that a non-parametric form for RAC 

could be an effective instrument against risk aversion misspecifications in dynamic 

farmland pricing models.  

We find that precipitation is a good explanatory variable for the smooth 

coefficient semi-parametric model to study the risk aversion effect of climate change. In 

particular, rainfall affects land values in a bimodal nature in a boom economy, with the 

first mode at 40 inches per year and second at 70. The bimodal nature indicates that 

farmland prices could have multiple peaks in precipitation due to farmers’ adaption to 

the amount of precipitation through crop selection and technology alternation. As a 

cautionary note, we have few observations on rainfall exceeding 70 inches per year, 

where the second mode of farmland valuation is at. Our estimation may be less confident 

in this portion of the data. Additional issues related to aggregation within each state have 
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not been addressed here and may also account for the bimodal relation between farmland 

valuation and rainfall. 

Our estimation shows that annual precipitation in inches affect the inflation 

adjusted farmland valuation growth rate in US states through a time and space variant 

intercept of -0.0195 to -0.0170. This modest variation of the intercept in farmland 

valuation growth rate is generally not captured by previous works in the area 

(Mendelsohn, Nordhaus, and Shaw 1994; Schlenker, Hanemann, and Fisher 2006).  

Failure to recognize this variation might cause distortion in our understanding in 

farmland valuation, potentially leading to inaccurate assessments of consequences in 

areas of crop insurance and other general government policies. 

In short, we demonstrate that land valuation has two paths of causal influence: 

first, climate change and government payments influence land valuation though 

discounted revenues, and second, land values are influenced by way of risk aversion of 

heterogeneous agents which in turn are influenced by climate factors. It is this second 

path of influence by climate factors that is our primary contribution of this chapter, as 

others have identified the first path in previous works.  

Additional work could be done by including climatic extremes data, such as 

Palmer Drought Severity Index and extreme high low temperature days, in the 

nonparametric form as done in section III. Another limitation is that we omit soil types 

in our model. All explanatory variables are measured in monetary units and not crop 

yields. Further research could investigate the effects of varying soil types, which could 

further illustrate the effects of climate change on farmland valuations. Moreover, the 
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Euler equation model used in this chapter hardly captures the effects of temperature 

through RAC. This failure is mainly related to the fact that temperature does not vary 

much over the time period while farmland revenue does. Use of the nonparametric form 

in a longer-run panel setting to consider broader effects of climate change as they act 

across the panel would be a useful extension. The issue to be investigated in future 

research is that climate is a long-run phenomenon (Granger 1981), but it is used to 

account for changes in growth rate on a year to year basis as modeled here. Future 

research might profitably explore ways to model climate’s effect on the long-run 

movement in growth rates. 
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CHAPTER V 

CONCLUSION 

 

The three essays of this dissertation use financial econometric models to study 

the three aspects of farmland valuation puzzle. Essay I addresses the short-term boom-

bust cycles in farmland values, employing a general dynamic land pricing model under 

concave returns. Essay II examines overpricing of farmland utilizing a decomposition of 

the variances of the error terms from the essay I model, in the framework of quasi 

rational expectations. Essay III investigates the dual effects of direct government 

payments (DGP) and climate change on farmland values, in a semi-parametric 

coefficient model extended from essay I with panel data. 

Essay I, “Asset Returns and Boom-Bust Cycles in Farmland Prices”, examines 

the causes of boom-bust cycles using a flexible DLPM using US farmland data. The 

model assumes general, instead of linear, homogeneity in budget constraint and profit 

function.  

The estimated homogeneity degree of the profit function used in budget 

constraint demonstrates concavity, indicating diminishing reruns as land expands, and 

we mathematically prove that dynamic optimizations are likely to be unstable under 

concave returns. In other words, concavity of returns can result in embedded instability 

in farmland pricing. We also find that intertemporal elasticity of substitution, risk 

aversion, and transaction costs are important determinates for farmland value. Farmers’ 

willingness to delay consumption, as found through their high elasticity of substitution, 
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indicates they may be willing to hold on to land through bust cycles and thus raises the 

value of land and shortens the bust.  High elasticity of substitution also means that 

farmers may be more willing to forgo consumption and acquire more land during a 

boom cycle prolonging the boom and inflating land values. Farmland price rigidity, 

related to low risk aversion in farmers, also helps to explain the prolonged boom stages 

and inevitability of bust stages in farmland valuation. While we find, as others have 

found (Chavas and Thomas 1999), that transaction costs vary across different stages of 

farmland valuation cycle, we argue these costs do not give rise to the cycle. That is to 

say, our explanation of the boom-bust cycle relates to diminishing returns, elasticity of 

substitution and risk aversion.  

Our model generates better out-of-sample predictions than the linear 

homogeneity models, and provides empirical evidence of the connection between 

diminishing or concave returns with the boom-bust cycles in farmland prices. The 

DLPM framework under concave returns provides scholars a platform to calculate the 

stability range of the investment-consumption elasticity, and therefore better predict 

future boom-bust cycles in farmland prices.  

Essay II, “The Value of Economic Information in Predictions of Farmland 

Prices”, is an analysis of the value of economic information.  This analysis decomposes 

variance of farmland value predictions under quasi rational expectations with 

components form forward looking CAPM and back ward looking random walk.  

This study first identifies structural changes in farmland prices over the period of 

1970-2010, and then defines different stages according to those changing points. The 



 

125 

 

DLPM framework under concave returns (developed in Essay I) is adopted to generate 

predictions. The variance of the predictions is decomposed into the CAPM (forward) 

part and RW (backward) part. The moving average representation shows that in the short 

run, the CAPM portion of the variance of the forecast errors is significantly higher in a 

booming/busting stage than in a stable stage. This means that the market values the 

economic information more in an unstable stage than it does in a stable stage. However, 

the higher portion of the CAPM variance disappears quickly in the long run forecasts in 

a booming stage, which could be explained by the expected market adaptation. This 

finding is consistent with existing literature on the absorption behavior of economic 

information. The differential use of the information emanated from the CAPM model 

over the boom-bust farmland valuation cycle helps to explain the overpricing of 

farmland, but this explanation works primarily in the short run. Since CAPM explains 

different levels of uncertainty in the different stages of land valuation (i.e., boom, bust, 

and stable) the market is reacting differently to economic information through time.  

Thus time invariant representations of land valuation models do not capture the entire 

land valuation picture.  We show that farmland values do respond to new information, 

but this response is not instantaneous.   

Further research relating these notions to the mathematics of the characteristic 

equation (Box and Jenkins 1976) is certainly worthwhile. Also additional work 

contrasting FEVD from the nonlinear model with more structural linear model FEVD 

would be worth considering. Additional work could also be done with the 

orthogonalization of the error terms among different time series. The long run analysis 
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could be more meaningful with high frequency data, such as futures, stocks, and foreign 

exchanges. 

Essay III, “The Dual Effects of Climate Change and Direct Government 

Payments on Farmland Valuation”, is a study on the dual effects of climate change and 

DGP on farmland prices. We extend the DLPM developed in Essay I to a panel data set 

of US states data in 1960-2007. This study allows heterogeneity of risk aversion across 

different places (US states) and time periods with a semi-parametric form. The 

parameter α, reflecting RAC, is defined as a smooth function of direct government 

payments and climate change, to make the panel model robust against risk aversion 

misspecifications.  

We find that a non-parametric form of RAC could be an effective instrument 

against misspecifications of risk aversion in dynamic farmland pricing models. 

Precipitation is a found to be a good candidate for the smooth coefficient semi 

parametric model to study the effects of climate change on farmland prices. In particular, 

rainfall is found to affect land values in a bimodal manner in a booming economy. 

Rainfall exhibits influences both through farmland prices and farmer risk aversion in 

rain abundant regions. Annual precipitations in inches affects the inflation adjusted 

farmland valuation growth in US states through a time and space variant intercept of     

(-0.0195, -0.0170). This demonstrates that climate change and government payments 

influence land valuation through two paths: first, they influence land valuation though 

discounted revenues, and second, through the risk aversion of the farm sector. 
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Additional work could be done by including climatic extremes data, such as 

Palmer Drought Severity Index and extreme high low temperature days, in the 

nonparametric form as done in section III. Another limitation is that we omit soil types 

in our model. All explanatory variables are measured in dollar amounts. Further research 

could investigate the effects of varying soil types and crops plus use a longer run model, 

which could further illustrate the effects of climate change on farmland values. 
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APPENDIX A 

DEDUCTION OF FIRST ORDER CONDITIONS, EQUATION (15) 

 

This appendix shows the deduction of equations (15a), (15b), and (15c) in 

Chapter II. 
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APPENDIX B 

DEDUCTION OF TIME-ADDITIVE PREFERENCES 

 

This appendix shows the deduction of time-additive preferences in Chapter II. 
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APPENDIX C 

SPECIAL CASES 

 

This appendix discusses several special cases of the dynamic land pricing model 

in Chapter II. 

As we have specified in Section 2 Chapter II, the traditional assumption of linear 

homogeneity of gross return function is unrestricted, and we assume general 

homogeneity in gross return function. Our general DLPM nests the linear homogeneity 

model as a special case of homogeneity. Further, our DLPM also nests several other 

models as special cases with specific values of parameters. Here we discuss four other 

special cases to illustrate the generality of our model. 

In our model set up, we first define the utility framework as equation (2.3) 

     [       
 
     

 
]
 

          

where           
      

Then, in our specifications, we simplify the original utility framework into equation 

(2.8), 
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      ̇   
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where     ̇  
  

 

   
  and     ⁄  

In this section, we discuss several special cases nested in the general utility function 

form. When parameters α, ρ, and γ take some specific values such as 0 or 1, the general 
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utility function reduces to extreme risk aversion, risk neutrality, static CAPM, random 

walk, and expected time-additive utility forms respectively. 

1. When α = 0 or 1, and 1 > ρ > 0  
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2. When 1 > α > 0, and γ = 0  
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3. When 1 > α = ρ > 0   
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APPENDIX D 

PROOF OF INSTABILITY UNDER CONCAVITY OF RETURN FUNCTION 

 

This appendix proves the instability of the optimization of dynamic CAPM under 

concave return functions in Chapter II. 
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APPENDIX E 

ZERO ONE SIMULATION OF THE AR REPRESENTATION 

 

This appendix shows the zero one simulation of AR representation in Chapter III. 
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APPENDIX F 

FORECAST ERROR DECOMPOSITION FOR      

 

This appendix shows the forecast error decomposition for      in Chapter III. 
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APPENDIX G 

R SCRIPT CODE FOR SMOOTH COEFFICIENT ESTIMATION OF PANEL 

MODEL 

 

This appendix shows the R script code for smooth coefficient estimation of panel 

model in Chapter IV. 

 

# install packages ‘np’ and ‘nplplot’ from menu 

# load packages ‘np’ and ‘nplplot’ from menu 

 

# set working dir 

setwd("C:/Users/jxu/Desktop/New folder (2)") 

getwd() 

# import data 

panel=read.table('PanelData05.txt', header = TRUE) 

panel 

 

#plot data # save as emf file or 100% JPG file 

coplot(GP ~ year|state, type="l", data=panel) # Lines 

coplot(Rain ~ year|state, type="l", data=panel) # Lines 

coplot(Temp ~ year|state, type="l", data=panel) # Lines 

coplot(y ~ year|state, type="l", data=panel) # Lines 

coplot(x ~ year|state, type="l", data=panel) # Lines 

 

#scoef 

model.scoef <- npscoef(y ~ x| GP, betas = TRUE,errors = TRUE,  data = panel) 

model.scoef <- npscoef(y ~ x| Temp, betas = TRUE,errors = TRUE,  data = panel) 

model.scoef <- npscoef(y ~ x| Rain, betas = TRUE,errors = TRUE,  data = panel) 

summary(model.scoef) 

colMeans(coef(model.scoef)) 

#plot(model.scoef) 

 

#bw <- npscoefbw(formula=y~x|GP,  data = panel) 

#bw <- npscoefbw(formula=y~x|Temp,  data = panel) 

bw <- npscoefbw(formula=y~x|Rain,  data = panel) 

#summary(bw) 

 

plot(bw, theta=-295, phi=10) 

plot(bw, theta=-235, phi=10) 

plot(bw, theta=-175, phi=10) 
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plot(bw, theta=-115, phi=10) 

plot(bw, theta=-55, phi=10) 

plot(bw, theta=5, phi=10) 

 

#scoef_intercept_GP <- coef(model.scoef)[,1] 

#scoef_intercept_Temp <- coef(model.scoef)[,1] 

scoef_intercept_Rain <- coef(model.scoef)[,1] 

 

#coplot(scoef_intercept_GP~year|state, type="l", data=panel) # Lines 

#coplot(scoef_intercept_Temp~year|state, type="l", data=panel) # Lines 

coplot(scoef_intercept_Rain~year|state, type="l", data=panel) # Lines 

 

# We could manually plot fitted values and error bounds as follows: 

upper <-predict(model.scoef)+2*se(model.scoef) 

lower <-predict(model.scoef)-2*se(model.scoef) 

#plot(y~x) 

coplot(y~x|state, data = panel) 

#lines (predict(model.scoef)~x|state, type="l", data = panel) 

# lines (upper~x, lty=2,col="red", type="l", data = panel) 

# lines (lower~x, lty=2,col="red", type="l", data = panel) 

 

#write.csv(scoef_intercept_GP,file = "gp.txt") 

#write.csv(scoef_intercept_Temp,file = "temp.txt") 

write.csv(scoef_intercept_Rain,file = "rain.txt") 

 

Note: The above code refers to  

R Graphical Manual, Smooth Coefficient Kernel Regression, at website 

http://rgm3.lab.nig.ac.jp/RGM/r_function?p=np&f=np.smoothcoef 

R-Package-np / man / np.smoothcoef.Rd, at website https://github.com/JeffreyRacine/R-

Package-np/blob/master/man/np.smoothcoef.Rd 

Hayfield, T., & Racine, J. S., 2007. “Nonparametric Kernel Smoothing Methods for 

Mixed Datatypes”. R Package Version 0.13-1. 

 

Hayfield, T., and Racine, J. S., 2008. “Nonparametric Econometrics: The NP Package.” 

Journal of Statistical Software 27(5):1-32. 

 

Racine, J. S., 2009. “Nonparametric and Semiparametric Methods in R.” Advances in 

Econometrics 25:335-375. 

http://rgm3.lab.nig.ac.jp/RGM/r_function?p=np&f=np.smoothcoef
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