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ABSTRACT 

This dissertation examines the causes of variations in tropical cyclone 

precipitation (TCP) and the relationship between TCP and river discharge in Texas. The 

dissertation has three major objectives: 1) investigate the spatial and temporal variations 

of TCP in Texas from 1950 to 2009, 2) construct seasonal statistical forecast models for 

TCP and identify the primary factors controlling TCP in Texas, and 3) examine how 

TCP contributes to the extreme precipitation and river discharge in watersheds 

surrounding the city of Houston. 

An automated extraction method is developed to identify TCP from 60 years of 

precipitation data from Cooperative Observing Network gauges. Texas receives an 

average of 123.5 mm of TCP/year, which is ~13% of the state’s mean annual 

precipitation. September is the month with the most TCP, and it receives an average of 

18.5 mm. Long-term trends (>50 years) in TCP are evident at some locations, but there 

are no statistically significant long-term trends in aggregated annual TCP metrics. 

Despite the lack of long-term trends, TCP metrics show some spectral power at 

periodicities of ~2-3 years, ~5-8 years, and >10 years. Areas within 400 km of the coast 

have higher risk of extreme daily TCP (>100 mm), but inland Texas can also 

occasionally experience extreme TCP. In some areas in southeastern Texas the 

probability of receiving >100 mm of daily TCP in any given year is ~0.30 (i.e., daily 

TCP exceeds 100 mm, on average, 1 out every 3 years). 

The best seasonal forecast models of TCP can explain >20% variance based on 

three or fewer predictors. ENSO is the most important control of TCP in Texas. La Niña, 
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the major driver in all TCP models, reduces the vertical wind shear in the Caribbean and 

tropical Atlantic and therefore generates more precipitating storms in Texas. Maximum 

Potential Velocity (MPV) in the Gulf of Mexico and vorticity in the Atlantic Hurricane 

Development Region (MDR) are also important predictors of TCP and they can increase 

the R2 by ~0.2. The negative relationship between MPV and vorticity with the TCP are 

due to the fact that TCs with weaker wind speed and slower translation speed tend to 

contribute much more to both extreme and total TCP. Sea level pressure in the Gulf of 

Mexico, SST in the Caribbean and North Atlantic Oscillation are also identified as 

useful predictors in some of the models. 

TCP is associated with many of the annual maximum discharge events in 

watersheds near Houston. Urbanization can significantly increase river discharge 

generated by TCP. Both the annual maximum discharge and 90 percentile discharge 

have increased significantly in many watersheds in Houston. Although no long-term 

trend can be observed in the TCP and TCP-related extreme discharge, there may be an 

increased risk of floods from TCP because of the statistically significant increases in 

annual maximum discharge that have been observed. There are also increased 

uncertainties in flood risk because extreme precipitation, including TCP, is projected to 

become more variable in the future. 
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NOMENCLATURE 

AO Arctic Oscillation (unitless), global predictor 

ATL Atlantic Ocean (100ºW to 2.5ºW, 0ºN to 30ºN), regional domain 

ATP Air Temperature at the surface, local predictor (ºC) 

CAR Caribbean sea (87ºW to 61ºW, 9.5ºN to 21.5ºN), regional domain 

CST Central Standard Time 

CV Cross Validation 

ECA Eastern Caribbean Sea, based on dividing the Caribbean Sea into  

 two sub-regions at 74ºW, regional domain 

EGM Eastern Gulf of Mexico, based on dividing the Gulf of Mexico  

 into two sub-regions at 87.5ºW, regional domain 

EMD Eastern hurricane Main Develop Region, based on dividing the  

 MDR into these two sub-regions at 52ºW, regional domain 

ENSO El Niño-Southern Oscillation 

GMX Gulf of Mexico (95ºW to 80ºW, 20ºN to 30ºN) regional domain 

HURDAT Atlantic basin hurricane database 

IDW Inverse Distance Weighting 

ITCZ Inter-tropical convergence zone  

J2M June of previous year to May 

LULCC Land Use Land Cover Change 

M2M March to May 

MAE Mean Absolute Error 
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MAY May 

MDR Atlantic Main Development Region (MDR) (85ºW to 20ºW, 10ºN  

 to 20ºN) regional domain 

MPV Maximum potential wind velocity (m/s), regional predictor 

MRBT Moving ROCI Buffer Technique  

NAO North Atlantic Oscillation (unitless), global predictor 

NCAR The National Center for Atmospheric Research 

NCEP National Centers for Environmental Prediction 

NIÑO34 Niño 3.4 (170ºW to 120ºW, 5ºS to 5ºN), global domain 

NIÑO3 Niño 3 (150ºW to 90ºW, 5ºS to 5ºN), global domain 

NIÑO4 Niño 4 (160ºE to 150ºW, 5ºS to 5ºN), global domain  

OSAT Objective Synoptic Analysis Technique  

PDO Pacific Decadal Oscillation (unitless), global predictor 

PREW Precipitable Water, local predictor (kg/m2) 

QBO Quasi-Biennial Oscillation (unitless), global predictor 

RHUM Relative Humidity, local predictor (%) 

ROCI Radius of Outer Closed Isobar  

RSST Relative SST, difference between the target region SST and  

 tropical SST, regional and global predictor 

SAPI Sahel Precipitation Index (unitless), global predictor 

SHUM Specific Humidity, local predictor (kg/kg) 

SLP Sea Level Pressure, local and regional predictor (millibars) 
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SOI Southern Oscillation Index (unitless), global predictor 

SOM Soil Moisture, local predictor (mm) 

SST Sea Surface Temperature, regional and global predictor (ºC) 

TC Tropical Cyclone 

TCP Tropical Cyclone Precipitation 

TMPA Multisatellite Precipitation Analysis  

TRMM Tropical Rainfall Measuring Mission  

TX Texas (94.5ºW to 107ºW, 25.5ºN to 36.5ºN), local domain 

UWIND Zonal Wind, local predictor (m/s) 

USGS U.S. Geological Survey 

UTC Coordinated Universal Time 

WCA Western Caribbean Sea, based on dividing the Caribbean Sea into  

 two sub-regions at 74ºW, regional domain 

WGM Western Gulf of Mexico, based on dividing the GMX into            

 two sub-regions at 87.5ºW, regional domain 

WRF Weather Research and Forecasting Model 

VOR 850 mbar Vertical Vorticity (× 10−5 s−1), regional predictor 

VSHR 850–200 mbar Vertical Shear (kt), regional predictor 

VWIND Meridional Wind, local predictor (m/s) 

WMD Western Hurricane Main Develop Region, based on dividing the  

 MDR into these two sub-regions at 52ºW, regional domain 
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1. INTRODUCTION* 

1.1 Research Background 

Tropical Cyclones (TC) have a major impact on people and the environment 

because they cause wind damage, storm surge and inland flooding with loss of life and 

major economic damage [Pielke and Landsea, 1998; Landsea et al., 1999; Pielke and 

Landsea, 1999; Villarini and Smith, 2010a; Emanuel, 2011]. Pielke et al. [2008] 

demonstrated that storms from the 1996-2005 caused the second most damage when 

compared to the past 11 decades. In addition, hurricanes cost the U.S. $150 billion 

during 2004 and 2005 seasons combined.  

The risk of TC-related disasters has the potential to increase in the future because 

TC systems are closely connected with global and regional oceanic and atmospheric 

conditions. Observational and modeling studies have demonstrated that higher sea 

surface temperatures (SSTs) are typically associated with more intense TCs [Emanuel, 

2005]. Increases of Atlantic TC frequency in the 20th century are closely associated with 

both the absolute sea surface temperature in the North Atlantic [Goldenberg et al., 2001; 

Holland and Webster, 2007] and the relative Atlantic SST (RSST) [Vecchi et al., 2008] 

compared with the whole tropic ocean.*

                                                 

* Part of this section is reprinted with permission from “Variations in Tropical Cyclone Precipitation in 
Texas (1950 to 2009)” by Zhu and Quiring, 2012. Journal of Geophysical Research-Atmospheres, in 
press, Copyright [2012] by John Wiley & Sons, Inc. 
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On the other hand, there are also arguments that the recent increases in TC 

activity are due to natural variability [Landsea et al., 2006] or improvement in observing 

practices [Henderson-Sellers et al., 1998; Chang and Guo, 2007; Lau et al., 2008]. Some 

model simulations predict a global and regional decrease in the overall frequency of TCs 

in the 21st century warming conditions [Knutson and Tuleya, 2004; Bender et al., 2010; 

Knutson et al., 2010]. Examinations of possible variations of TC activity in a warming 

climate in the 21st century generally agree that the intensity of TCs in the Atlantic will 

increase, while the frequency will decrease or remain unchanged [Emanuel et al., 2008; 

Bender et al., 2010; Knutson et al., 2010; Villarini and Vecchi, 2012].  

 In addition to strong winds and storm surge, TCs frequently produce extreme 

precipitation. TC precipitation (TCP) accounts for a considerable portion of both total 

annual precipitation and extreme precipitation along the Atlantic and Gulf of Mexico 

coasts in United States [Knight and Davis, 2007; 2009; Kunkel et al., 2010]. TCP related 

inland flooding can also result in significant economic damage and loss of life 

[Rappaport, 2000; Pielke et al., 2002]. Compared with abundant discussions for TC 

frequency and intensity, fewer studies have focused on generating long-term TCP 

climatology at the regional scale, especially with high density observations and accurate 

TCP extraction method. At the smaller scale, TCP may also be enhanced by the urban 

heat island [Burian and Shepherd, 2005] and aerosols [Li et al., 2008]. Intensified 

precipitation, accompanyed by the impervious surfaces caused by the rapid process of 

urbanization [Olivera and DeFee, 2007; Brody et al., 2008], can significantly increase 

flood risk in urban watersheds. This study will investigate the historical TCP 
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climatology in Texas, explain which factors control its interannual variations, and finally 

show the hydrological impacts of TCP in Houston and the accompanying changes in 

local environment. 

1.2 Research Objectives 

This study will answer three questions: 

1. How has TCP varied temporally and spatially in Texas? 

2. Which global, regional and local factors control the interannual variations in 

TCP in Texas? 

3. How does TCP contribute to annual extreme precipitation and discharge 

events in Houston watersheds undergoing rapid urbanization? 

To answer the first question, 60 years of TCP climatology will be collected from 

rain gauges in Texas using a new extraction metholology and the spatial and temporal 

variations in TCP will analyzed. To answer the second question, multiple linear 

regression models of TCP will be constructed from multiple climatic/oceanic forcings. 

The models will be examined and evaluated both in terms of their predictive skill and 

with regards to identifying plausible physical mechanisms. To answer question three, 

histrorical discharge data will be gathered for watersheds near Houston from USGS and 

compared with annual extreme precipitation (especially the TCP) and histrorical Land 

Use Land Cover Change (LULCC).  
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1.3 Intellectual Merit and Broader Impacts 

This is the first analysis of TC precipitation and associated inland flooding that is 

based on a long-term (60 year) record. A new method for estimating TC precipitation 

from rain gauges has been developed and automated into set of FORTRAN codes. This 

method can be applied to the extraction of TCP from rain gauges in other states prone to 

TCs. A detailed climatology will be contructed specifically for TCP in Texas, providing 

a reference to the climate modeling community and state decision makers. This will also 

be the first study using statistical models to make seasonal forecast of TCP in a region of 

U.S. It will serve as a useful baseline for future simulations of TCP using high resolution 

regional climate models. Finally, the hydrological analysis will be the first long-term 

study that identifies the contribution of TCP to extreme precipitation and discharge in 

watersheds undergoing rapid changes in land use in the Houston area.  

 With a broader prospective, this research will help people living in Texas better 

understand TCP and the related flood risk. Besides its disastrous influences, TCP can 

also provide an important source of fresh water in Texas, which is especially precious 

during droughts. 
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2. STATE OF THE KNOWLEDGE* 

2.1 TCP Characteristics 

Recent studies indicate that extreme precipitation in the U.S. increased during the 

twentieth century [Groisman et al., 2005] and this trend is expected to continue in the 

21st century [Min et al., 2011]. Knight and Davis [2007] demonstrated that the 

contribution of extreme TCP to overall precipitation increased in the southeastern U.S. 

between 1980 and 2004 is mainly due to an increase in the number of tropical storms. At 

a larger scale, there is an increasing trend in the contribution from TCs in the North 

Atlantic to both annual total rainfall and extreme rainfall events (i.e., top 5% of rainfall 

events) [Lau et al., 2008]. Kunkel et al. [2010] reported that TC-related extreme 

precipitation events in the eastern U.S. doubled during 1994-2008 as compared to the 

long-term (1895-2008) average. Knight and Davis [2009] also showed that the TCP 

contribution to extreme precipitation increased during 1972 to 2007 due to increases in 

both storm frequency and intensity. Nogueira et al. [2010] found increasing trends in 

both annual TCP volume and affected area in the eastern U.S. since 1995, which are 

attributed to increases in TC frequency. Generally, these large-scale studies show 

increases in TCP in recent years, both in terms of extreme precipitation and the 

contribution to annual precipitation. Increases in TC frequency are responsible for much 

of this trend.*

                                                 

* Part of this section is reprinted with permission from “Variations in Tropical Cyclone Precipitation in 
Texas (1950 to 2009)” by Zhu and Quiring, 2012. Journal of Geophysical Research-Atmospheres, in 
press, Copyright [2012] by John Wiley & Sons, Inc. 
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Previous studies of TCP have primarily examined TCP over the ocean [Lau et 

al., 2008], or at continental [Larson et al., 2005] or regional scales [Shepherd et al., 

2007; Knight and Davis, 2009; Nogueira and Keim, 2010]. There have also been a 

number of case studies focused on precipitation from a single TC or a small number of 

TCs [Rodgers and Pierce, 1995; Medlin et al., 2007; Matyas, 2010]. However, very few 

studies have developed a long-term record of the spatial and temporal variations in TCP 

at the state level. Although several studies have investigated short-term forecasting of 

TCP [Sippel and Zhang, 2010] and patterns of extreme TCP cases [Arndt et al., 2009; 

Bosart et al., 2011], no one has examined the long-term TCP variations specifically in 

Texas.  

2.2 TC and TCP Modeling 

While complexities exist in both predicting long term trend of TC activities, 

statistical models have skills in forecasting seasonal TC frequency. Gray first used 

multiple linear regression models to make skillful seasonal forecast of TC frequency in 

the Atlantic [Gray, 1984a; b]. He showed that ENSO, Pacific Decadal Oscillation 

(PDO), Quasi-Biennial Oscillation (QBO) and West African rainfall are important 

variables for explaining seasonal variations in TC counts in the Atlantic [Gray, 1984b; 

Gray et al., 1993; 1994; Klotzbach and Gray, 2003]. Poisson series models are also 

applied to forecast seasonal TC counts [Elsner and Schmertmann, 1993; Elsner and 

Jagger, 2004; 2006; Villarini et al., 2011b] because their strengths in fitting statistical 

distribution of extreme values like TC activities. They indicated that North Atlantic 
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Oscillation (NAO), Southern Oscillation and the Tropical mean SST can also be used to 

model the U.S landfall hurricanes counts. 

Although heavy precipitation is an important feature of landfall TCs [Konrad, 

2001; Nielsen-Gammon et al., 2005; Konrad and Perry, 2010; Barlow, 2011] and plays a 

considerable role in both hydrological extremes and total budget, few studies have 

constructed statistical models to forecast seasonal TCP amount for the U.S. This is 

mainly because the difficulties in accurately forecasting/modeling TCP events and the 

lack of an accurate long-term record of TCP. The characteristics and dynamics of a 

single TC are highly complex and TCP varies a lot from TC to TC [Rodgers et al., 1994; 

Rogers et al., 2003; Villarini et al., 2011a]. 

2.3 Extreme Precipitation, Extreme Discharges, and TCP 

Several studies have shown increases in precipitation and streamflow for the 

continental U.S. from the historical observations [McCabe and Wolock, 2002a; McCabe 

and Wolock, 2002b; Groisman et al., 2004]. Some have also shown an increasing trend 

in heavy (90th–95th percentile) or very heavy (99th–99.7th percentile) precipitation in the 

U.S. [Groisman et al., 2005; Kunkel et al., 2007]. Kunkel et al. [2012] analyzed all 

meteorological causes of extreme precipitation events in the U.S. They demonstrated 

that TCs accounted for ~13% of all daily extreme events in the U.S. since 1908. Kunkel 

et al. [2010] and Knight and Davis [2009] both revealed recent upward trends in TC-

related extreme precipitation for the continental U.S. Spatial differences may exist if we 

look at the TCP at the regional scale.  
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Besides climate change, human activities can also alter the characteristics of 

localized precipitation and discharge [Karl and Trenberth, 2003]. Burian and Shepherd 

[2005] discovered that the urban area and the urban downwind region recieved 59% and 

30% more rainfall from noon to midnight than the upwind region in Houston. Orville et 

al. [2001] and Li et al. [2008] argued that the enhanced precipitation are possibly 

associated with the transportation of anthropogentic aerosols from the indusries in 

Houston. The increased urban land cover was also linked to increased precipitation in 

the Houston area and this was demonstrated with a coupled land surface and atmospheric 

model simulation by Shepherd et al. [2010]. Theoretically, the increased urban area 

leads to increases in surface temperature [Kalnay and Cai, 2003] and this enhances 

atmospheric convergence, instability and convective rainfall initiation [Collier, 2006]. 

Urbanization also increases impervious surfaces which reduces the time of concentration 

for runoff and increases peak discharge [Smith et al., 2002; Ogden et al., 2011].  

Olivera and Defee [2007] examined discharge in Whiteoak Bayou watershed in 

Houston area and concluded that runoff depths and peak flows have increased by 146% 

and 159% as a result of the increases in impervious surfaces, and urbanization accounts 

for 77% and 32% of the increase. While there are many studies that have examined the 

impacts of climate change, urbanization, aerosols on extreme precipitation and 

discharge, few have focused on the influence of TCP on discharge. This study also 

considered how rapid urbanization contributes to changes in discharge.  
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3. STUDY AREA, DATA AND METHODOLOGY* 

3.1 Study Area 

Texas borders the Gulf of Mexico and has a long coastline, so it is frequently 

influenced by damaging TCs [Keim and Muller, 2007; Islam et al., 2009]. The most 

recent major hurrcane, Hurricane Ike, caused severe damages and many deaths in Texas 

in 2008. There were 74 deaths directly or indirectly related to the Hurricane Ike 

according to Zane et al. [2011]. Much of the inland flooding that occurs in Texas can be 

attributed to TCs [Burnett, 2008]. Texas is the study area for this dissertation because if 

its geographical location in the coast of the Gulf of Mexico and the area it covers. 

Objectives 1 and 2 (Figure 3.1a) will focus on the entire state and Objective 3 will 

examine TC-induced flooding in the San Jacinto river basin. The San Jacinto River is 

located in southeastern Texas (Figure 3.2) and includes watersheds that cover portions of 

the Houston Metro Area. These watersheds are dominated by developed land use and 

rapid urbanization. This study will select the most representative watersheds with the 

most complete records. *

                                                 

* Part of this section is reprinted with permission from “Variations in Tropical Cyclone Precipitation in 
Texas (1950 to 2009)” by Zhu and Quiring, 2012. Journal of Geophysical Research-Atmospheres, in 
press, Copyright [2012] by John Wiley & Sons, Inc. 



 

  9 

 

 

F
ig

u
re

 3
.1

. 
a
. 
D

is
tr

ib
u

ti
o
n

 o
f 

C
O

O
P

 s
ta

ti
o
n

s 
u

se
d

 i
n

 t
h

e 
st

u
d

y
 (

o
n

ly
 t

h
e 

st
a
ti

o
n

s 
w

it
h

 c
o
m

p
le

te
 6

0
 y

ea
r 

re
co

r
d

s 

(r
ed

 c
ro

ss
) 

a
re

 u
se

d
 i

n
 t

h
e 

ti
m

e 
se

ri
es

 a
n

a
ly

si
s,

 s
ta

ti
o
n

s 
w

it
h

 5
0
+

 y
ea

r 
re

co
r
d

s 
(b

lu
e 

d
o
ts

) 
a
re

 u
se

d
 i

n
 t

h
e 

sp
a
ti

a
l 

a
n

a
ly

si
s)

, 
b

. 
A

n
 e

x
a
m

p
le

 o
f 

h
o
w

 a
 T

ro
p

ic
a
l 

C
y
cl

o
n

e 
P

re
ci

p
it

a
ti

o
n

 (
T

C
P

) 
d

a
y

 i
s 

d
ef

in
ed

 a
n

d
 t

h
e 

b
o
u

n
d

a
ry

 u
se

d
 

to
 e

x
tr

a
ct

 r
a
in

 g
a
u

g
es

. 
T

h
is

 e
x
a
m

p
le

 i
s 

fr
o

m
 H

u
rr

ic
a
n

e 
Ik

e 
(S

ep
te

m
b

er
 1

2
-1

4
, 
2
0
0
8
).

 

 



 

  10 

 

 

 
Figure 3.2. The San Jacinto River Basin and the selected watersheds. 
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3.2 DATA 

3.2.1 TC track Data & Precipitation Data 

Information about the position, size and maximum wind speed of TCs was 

extracted from the National Hurricane Center’s Atlantic basin hurricane database 

(HURDAT). HURDAT has 6-hour observations of TC positions dated from 1895 to 

present. All tropical disturbances, depressions, storms, and category 1–5 hurricanes were 

included if they made landfall in Texas or passed within 500 km of Texas. Many long-

term TCP studies have relied on rain gauge data [Konrad et al., 2002; Kunkel et al., 

2010; Nogueira and Keim, 2010; Barlow, 2011]. Gauge data provide the opportunity to 

characterize long-term variations in TCP. The accuracy of gauge-based data are highly 

dependent on the density and uniformity of the gauge network. There are 1358 stations 

from the Cooperative Observing Network within Texas, but only 353 have relatively 

complete records (51 to 60 years) and only 220 are serially complete (Figure 3.1a). In 

this study the 353 gauges with relatively complete records were used to evaluate the 

spatial variations in TCP and the 220 serially complete gauges for the temporal analysis. 

The larger number of gauges used for the spatial analysis (353) provides a more 

complete spatial coverage than the 220 gauges. The temporal analysis only uses serially 

complete gauges to avoid biases due to differences in record length. Both the TC track 

and precipitation data were used for the first objective 
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3.2.2 Climatic/Oceanic Forcing Data 

The second objective is to use the climatic/oceanic forcing variables as potential 

predictors to construct statistical models for seasonal TCP metrics in Texas. The 

NCEP/NCAR reanalysis provides global atmospheric/oceanic variables at a resolution of 

2 degree on a daily basis from 1948-present. Different potential independent variables 

were calculated from the reanalysis data. Several climatic indices were also derived from 

the NCEP Climate Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices/). The 

different spatial domains that were used to average the predictors are defined in Table 

3.1. Four time periods (1, 3, 6, 12 months before the hurricane season) were used for the 

temporal averaging, they are abbreviated as MAY (May), M2M (March to May), D2M 

(December of previous year to May), and J2M (June of previous year to May). The 

independent variables (Table 3.2) can be classified into global, regional or local 

predictors according to the spatial domain that was used to calculate the variable. A 

number of different regions in the oceans were defined including the North Atlantic 

(NATL), Main Develop Region (MDR), Caribbean (CAR) and Gulf of Mexico (GMX) 

(Figure 3.3). All possible spatial and temporal combinations of variables that may 

influence the frequency and characteristics of TCs (e.g., size, intensity and translation 

speed) that influence Texas were considered. A total of 400 potential predictors were 

considered.  

  

http://www.cpc.ncep.noaa.gov/data/indices/
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Table 3.1. Description of spatial averaging areas. 

Abbreviation Description, unit and domain 
ATL Atlantic Ocean (100ºW to 2.5ºW, 0ºN to 30ºN), regional domain 

NIÑO34 Niño 3.4 (170ºW to 120ºW, 5ºS to 5ºN), global domain 
NIÑO3 Niño 3 (150ºW to 90ºW, 5ºS to 5ºN) , global domain 
NIÑO4 Niño 4 (160ºE to 150ºW, 5ºS to 5ºN) , global domain 

MDR Atlantic Main Development Region (MDR) (85ºW to 20ºW, 10ºN 
to 20ºN) , regional domain 

WMD and 
EMD 

Western MDR and Eastern MDR, based on dividing the MDR into 
these two sub-regions at 52ºW, regional domain 

GMX Gulf of Mexico (95ºW to 80ºW, 20ºN to 30ºN) , regional domain 
WGM and 

EGM 
Western GMX and Eastern GMX, based on dividing the GMX into 

two sub-regions at 87.5ºW, regional domain 
CAR Caribbean sea (87ºW to 61ºW, 9.5ºN to 21.5ºN) , regional domain 

WCA and ECA Western CAR and Eastern CAR, based on dividing the CAR into 
two sub-regions at 74ºW, regional domain 

TX Texas (94.5ºW to 107ºW, 25.5ºN to 36.5ºN), local domain 
 
  



 

  14 

 

Table 3.2. Description of potential predictors used in the statistical modeling. 

Abbreviation Description and unit Property Usage in 
Model 

ATP Air temperature at the surface, local 
predictor (ºC ) 

Basic c 

SHUM Specific humidity, local predictor (kg/kg) Basic c 
RHUM Relative humidity, local predictor (%) Basic c 
SOM Soil moisture, local predictor (mm) Basic c 

SLP Sea level pressure, local and regional 
predictor (millibars) 

Basic c, s 

U & V 
WIND 

Zonal wind and meridional wind, local 
predictor (m/s) 

Basic c 

PREW Precipitable water, local predictor 
(kg/m2) 

Basic c 

SST Sea surface temperature, regional and 
global predictor (ºC ) 

Basic c, s, ss 

RSST 
Relative SST, difference between the 
target region SST and tropical SST, 

regional and global predictor 

Basic c, s, ss 

VSHR 850–200 mbar vertical shear (kt), 
regional predictor 

Basic c, s 

VOR 850 mbar vertical vorticity (× 10−5 s−1), 
regional predictor 

Thermo-
dynamic 

c 

MPV Maximum potential wind velocity (m/s), 
regional predictor 

Thermo-
dynamic 

c 

SAPI Sahel Rainfall Index (unitless), global 
predictor 

Basic c, s, ss 

SOI Southern Oscillation Index (unitless), 
global predictor 

Basic c, s, ss 

NAO North Atlantic Oscillation (unitless), 
global predictor 

Basic c, s, ss 

QBO Quasi-Biennial Oscillation (unitless), 
global predictor 

Basic c, s, ss 

PDO Pacific Decadal Oscillation (unitless), 
global predictor 

Basic c, s, ss 

AO Arctic Oscillation (unitless), global 
predictor 

Basic c, s, ss 
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The global scale predictors include indices representing signals of ENSO, NAO, 

QBO, and PDO. ENSO influences the global circulation and vertical shear in the 

Atlantic, so a variety of different ENSO indices are included. These include SST and 

Relative Sea Surface Temperature (RSST) for Niño 3, Niño 4 and Niño 3.4 regions in 

the Pacific, and Southern Oscillation Index (SOI). RSST was calculated by taking the 

differences between the average SST in Niño regions and the whole tropical ocean. The 

idea of Niño RSST is based on the concept of Atlantic RSST defined by Vecchi et al. 

[2008]. Niño RSSTs share very similar information with the original Niño SST, but they 

improve the predictive skill of the TCP models. NAO describes the sea level pressure 

differences in the North Atlantic and it influences hurricane tracks in the North Atlantic 

[Elsner and Kocher, 2000; Kossin et al., 2010]. QBO is the quasi-biennial oscillation of 

upper-level winds and it was found to be highly correlated with Atlantic hurricane 

activity [Gray, 1984a]. However, the relationship is now under debate because of its 

disappearance after the 1990s [Camargo and Sobel, 2010]. Pacific Decadal Oscillation 

(PDO) is a sea surface temperature pattern in the Pacific that can intensify (attenuate) the 

ENSO’s influence on Atlantic hurricane activity when they are in (out of) phase 

[Klotzbach and Gray, 2003]. 

The regional variables consist of oceanic and atmospheric variables and the 

thermo-dynamic variables derived from them. SST is considered to be the most 

important driver of all TC systems because it is highly related to the genesis, track and 

intensity of TCs [Gray, 1984b; Emanuel, 1991]. RSST is defined as the SST difference 

between the North Atlantic and the tropical mean (30 °N to 30 °S). There is a very 
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strong relationship between RSST in the Atlantic and the TC frequency in the North 

Atlantic [Vecchi et al., 2008]. Here the original Atlantic RSST and RSST of other spatial 

averaging domains are both used to obtain additional predictors. Vertical shear (VSHR) 

is another important predictor since reduced vertical shear is associated with enhanced 

TC activity [DeMaria, 1996; Vecchi and Soden, 2007]. VSHR is calculated as the 

difference between the winds at 200 mb and 850 mb. TCs are not able to form with a 

zero vorticity of the air flow because it helps TCs to keep on spinning [Emanuel, 2003]. 

Low level vorticity may influence TC’s destruction power (highly related to the 

maximum wind speed) [Emanuel, 2007] and the motion (track) [Flatau et al., 1994; 

Emanuel, 2003]. The TC vortices can alter their environmental vorticity distribution and 

induce a poleward and westward drift of the TC [Davies, 1948; Rossby, 1949]. The large 

background vorticity can also interact with vertical shears and produce beta gyres with 

profound influences to TC tracks [Shapiro, 1992; Wu and Emanuel, 1995; Smith et al., 

2000]. Low level vorticity is frequently used in the seasonal TC genesis prediction 

[Camargo et al., 2009; Belanger et al., 2010] and the power dissipation index estimation 

[Emanuel, 2005; 2007]. Emanuel [2005] also mentioned that the potential intensity, low-

level Vortices and vertical wind shear are highly correlated with each other. The 

maximum potential velocity (MPV) was included because it describes the theoretical 

maximum wind speed that storms can attain [Emanuel, 1995; Holland, 1997]. It is 

calculated from the interactions between sea surface temperature and atmospheric 

thermodynamic profiles [Emanuel, 1991; Holland, 1997]. Emanuel’s version of MPV 

(maximum wind velocity) is used as a predictor. A TC system is characterized by a low-
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pressure convection center [Landsea et al., 1999], so sea level pressure (SLP) has been 

used in many seasonal TC counts forecasting models and is also included here.  

Since TCs can interact with the land surface after they make landfall, a number 

of local predictors are also evaluated [Bosart et al., 2000; Wu et al., 2006; Matyas, 

2008]. Air temperature, specific and relative humidity, precipitable water, and soil 

moisture have all been included as potential predictors. SLP and zonal and meridional 

winds have also been included as potential predictors since they may impact the 

movement and duration of TCs. All of these local variables are obtained by averaging 

over Texas. All independent variables mentioned above are standardized into z scores 

before fitting to the model. All the dependent variables are kept in their original unit. 

3.2.3 USGS Historical Discharges and Land Use/Cover Change Data 

The San Jacinto River basin is the study area for objective 3. It is located in 

southeastern Texas (Figure 3.2) and includes watersheds covering the metro and 

suburban area of Houston. They are either dominated by intensely developed land or 

have been undergoing rapid urbanization. The eight selected river gauges have complete 

data record (Table 3.3) and covers different types of watershed characteristics (size, 

shape, and land use condition). Watersheds for gauges 8045000, 8076500, 8073500, 

8075000 (Whiteoak Bayou, Halls Bayou, Buffalo Bayou, and Brays Bayou) are located 

near the center of Houston. The remaining four watersheds are located in suburban areas 

north of Houston, which are undergoing rapid urbanization. Daily stream discharge for 

all eight watersheds was extracted from the U.S. Geological Survey (USGS) database 

(http://nwis.waterdata.usgs.gov/nwis/) from 1950 to 2009. 

http://nwis.waterdata.usgs.gov/nwis/
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Table 3.3. Summary of the stream flow data and watershed characteristics 

associated with the selected USGS stations. 

Station Lat Lon Contributing 
Area (km2) 

Record 
Length (yrs) Station Name 

8074500 29.78 -95.40 242.7 60 Whiteoak Bayou at 
Houston, TX 

8076500 29.86 -95.33 88.4 55 Halls Bayou at 
Houston, TX 

8073500 29.76 -95.61 724.2 60 Buffalo Bayou nr 
Addicks, TX 

8075000 29.70 -95.41 276.8 60 Brays Bayou at 
Houston, TX 

8070500 30.26 -95.30 271.6 60 Caney Ck nr 
Splendora, TX 

8068000 30.24 -95.46 2147.3 60 W Fk San Jacinto Rv 
nr Conroe, TX 

8068500 30.11 -95.44 1054.3 60 Spring Ck nr Spring, 
TX 

8069000 30.04 -95.43 725.2 60 Cypress Ck nr 
Westfield, TX 
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Daily precipitation data are from 27 Cooperative rain gauges (black dots in 

Figure 3.2), a subset of the 220 gauges selected for objective 1. They all have a complete 

60 year observation record. Gauge precipitation is interpolated using Thiessen polygons 

[Thiessen, 1911]. Thiessen polygons were then used to calculate the weighted surface 

precipitation for each selected watershed.  

Historical Land Use/Cover data from four periods (1980, 1992, 2001 and 2006) 

were used to evaluate the influence of urbanization on discharge in selected watersheds. 

The 1980 land use data are from the ‘Enhanced Historical Land-Use and Land-Cover 

Data Sets of the U.S. Geological Survey’. It has a 30 by 30 meter resolution and it 

demonstrates the Land Use/Cover information from the 1970s and 1980s [Price, 2006]. 

The 1992, 2001 and 2006 land use/cover raster are obtained from the USGS Multi-

Resolution Land Characterization (MRLC) Consortium with the same 30 by 30 meter 

resolution (www.mrlc.gov/). The original classifications have been reclassified into 5 

major classes (Table 3.4) for better interpretation of major changes in the Land 

Use/Cover. 

3.3 Methods and Models 

3.3.1 TCP Extraction, Interpolation and Statistical Analysis for Objective 1 

Typically a 500 km buffer has been used as the search radius in previous TCP 

studies [Kunkel et al., 2010; Larson et al., 2005] because the radius of outer closed 

isobar (ROCI) in the Atlantic is typically less than 550 km [Merrill, 1984]. The ROCI is 

defined as the average of distance from the TC center to the closed isobar in four  
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 directions (north, east, south and west) [Merrill, 1984]. However, using a uniform ROCI 

radius (500 km) to search for the TCP region can be problematic because it may 

underestimate or overestimate the entire region where TC-related precipitation is 

occurring. About 10% of TCs have an ROCI larger than 550 km [Kimball and Mulekar, 

2004]. Although the average TC size in the Atlantic Ocean is smaller than in the Pacific 

Ocean [Merrill, 1984], TCs in the Gulf of Mexico tend to have larger ROCI and smaller 

eyes [Kimball and Mulekar, 2004] and their sizes are more variable than other regions 

within the Atlantic [Quiring et al., 2011]. Translation speed defines how fast the TC 

moves and it also vary greatly in different TCs [Rego and Li, 2009]. TCP can extend 

beyond a distance of 500 km even when considering an average size TC moving at an 

average speed over a 24 h period. Therefore, this study used a new method called the 

Moving ROCI Buffer Technique (MRBT) to identify daily TC precipitation from a 

network of rain gauges.  

The Moving ROCI Buffer Technique (MRBT) used in this study was inspired by 

the Objective Synoptic Analysis Technique (OSAT) developed by Ren et al. [2007]. The 

OSAT was first applied to TCs in China and it produced results that are comparable to 

TCP partitioning done by weather forecasters [Ren et al., 2006]. The OSAT procedure 

was tested in Texas and it was found that the original parameters used by Ren et al. 

[2007] are not appropriate in Texas because of differences in gauge density and TC size. 

In addition, both the OSAT and the standard approach of using a set radius (e.g., 500 

km) are not ideal for identifying TCP because they fail to consider the TC translation 

speed. Both methods use only one location for the TC each day. This may result in an 
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underestimation of TCP if the TC is very large and/or the TC is moving rapidly. Most 

previous studies have also not considered the difference between the time when the rain 

gauges are read (time of observation) and when the position of the TC is recorded. 

HURDAT records the location of the center of circulation four times/day at 0:00, 6:00, 

12:00 and 18:00 Coordinated Universal Time (UTC), while precipitation measurements 

for the Cooperative Observing Network are primarily made in the morning (e.g., 7 a.m. 

local time). These shortcomings in the methodologies that have previously been applied 

to extract TCP from a network of rain gauges motivated the development of MRBT. The 

MRBT approach is accurate, straightforward to apply and is easily transferable to other 

regions.  

 The radius of outer closed isobar (ROCI) was used for identifying locations 

receiving TCP because Matyas [2010] found that the ROCI encompasses the entire rain 

field in 90% of the cases they examined. HURDAT provides relatively complete 

information about ROCI for most of TCs examined in this study (ROCIs are available 

for 71% of the storms). For those observation times where the ROCI is missing, it is 

replaced with the median ROCI (333 km) calculated using all TCs with ROCI available 

in the study region. Since most of COOP stations recorded precipitation in the morning, 

the HURDAT observations times were converted from Coordinated Universal Time 

(UTC) to the Central Standard Time (CST). Then 12:00 (day -1), 18:00 (day -1), 0:00 

(day 0), and 6:00 (day 0) CST have been  selected as the HURDAT observations for 

measuring daily TCP. This accounts for the position and movement of the TC from the 

afternoon of the previous day (day -1) through the morning of the current day (day 0). 
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This is a better method to match the position of the TC with the COOP observations 

since it assumes all of the gauges measure precipitation in the morning. The MRBT uses 

the HURDAT information on the location of the center of the TC to construct four 

circles whose radii are based on the HURDAT ROCI. The four circles are then merged 

and the combined area is used to identify COOP gauges that may be receiving TCP 

(Figure 3.1b). This approach is repeated for each TCP day, so that the size of the 

contributing area varies as a function of the location and forward speed of the TC and as 

a function of the ROCI associated with the TC. All of the gauges that are located within 

this area on a given TCP day will be considered for calculating the TCP metrics. The 

spatial analysis includes a slightly larger number of TCP days than the temporal analysis 

because it is based on 353 gauges while the temporal analysis is only based on 220 

gauges. Therefore, some of the TCs that only influence a small area of Texas (e.g., they 

graze the western boundary of the state) are not captured by the less dense gage network 

used for the temporal analysis. The spatial and temporal results will be interpreted and 

presented separately for this reason. 

Daily TCP data from gauges were interpolated to a 0.25° grid covering Texas 

using Inverse Distance Weighting. This grid size was selected because it is commonly 

used for many precipitation products (e.g., Tropical Rainfall Measuring Mission 

(TRMM) Multisatellite Precipitation Analysis, or TMPA) [Huffman et al., 2007], and 

modeling studies [Chen and Knutson, 2008; Shepherd et al., 2007; Vorosmarty et al., 

1996]. A gridded field was generated for every TCP day and the daily fields were 

aggregated for the monthly and annual analyses. The annual TCP metrics that were 
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considered in this study include: TCP depth, TCP’s contribution to the total precipitation 

and TCP volume. Daily TCP depth, area, and annual maximum event TCP were also 

calculated by determining the mean based on all of the TCP days within a given year.   

 Since the size of the region receiving TCP varies significantly from day to day, it 

is necessary to use an area-weighted approach when calculating the annual TCP depth. 

For each TCP day a coefficient was calculated as the TCP area for that day divided by 

the annual averaged daily TCP area for the year. Area-weighted daily TCP is obtained 

by multiplying the daily coefficients with corresponding daily TCP depths (calculated by 

averaging the daily TCP across the grid cells with rainfall). Finally, annual TCP are 

based on summing the area-weighted TCP for all days. The area-weighted aggregation 

helps to account for variations in the area that receives TCP. Seven metrics were 

calculated for objective 1 on a annual basis: annual TCP (mm), annual TCP volume 

(km3), TCP within 100 km of the center of the TC (mm), annual TCP days (number of 

days), mean daily TCP area (km2), mean daily TCP (mm), and maximum daily TCP 

(mm). The timeseries of each metric is evaluated to identify linear trends and low 

frequency variability (9-year moving average).  

Some statistical tests were utilized to analyze the time series in objective 1. The 

Mann-Kendall test [Mann, 1945; Kendall, 1975] is a nonparametric method of trend 

detection that has been applied in climatology and hydrology studies [Kunkel et al., 

2010; Mattar et al., 2011; Morin, 2011]. It is based on the correlation between ranks of a 

time series and their time order [Hamed, 2008]. The significance of the trends in all 

possible time series larger than 10 years for all gauges (will be discussed in section 4) 
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was evaluated using α=0.05. One issue with the Mann-Kendall test is the influences 

from the serial correlations in the time series [Hirsch et al., 1982; Hamed and 

Ramachandra Rao, 1998; Villarini et al., 2009]. Although most of the TCP time series 

are annual extreme values that can be categorized as stochastic processes, the modified 

Mann-Kendall test proposed by Hamed and Ramachandra Rao [1998] was still applied. 

The modified approach computes the new variance of the Mann-Kendall trend test 

statistic by considering the effects from the autocorrelation in the time series. An 

autocorrelation analysis was also applied to test whether the annual values of the 7 

metrics are serially correlated. 

Finally, the de-trended time series was analyzed with the multitaper spectral 

analysis method [Thomson, 1982]. This methodology reduces the variance of spectral 

estimates by using small set of tapers [Thomson, 1982; Ghil et al., 2002]. The approach 

of Mann and Lees [1996] was used to implement this method. The autocorrelation 

coefficients (ρ) were estimated for each of the TCP time series and the AR(1) “red” 

noise background signals were generated from the autocorrelations. The spectra were 

compared between the original TCP time series and their corresponding AR(1) “red” 

noise background. The “red” noise represents the simplest null hypothesis of stochastic 

processes in the atmosphere [Frauenfeld et al., 2005] and it allows me to test whether 

the TCP spectra are statistically significant relative to the null hypothesis of stochastic 

variability. 
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3.3.2 Multiple Regression Model for Objective 2 

There are many different types of statistical models that have been employed for 

modeling TC activity. Linear models are used in many studies for skillful forecasting of 

seasonal TC counts [Gray, 1984a; Gray et al., 1993; 1994; Klotzbach and Gray, 2003] 

and TC size [Quiring et al., 2011]. However, strict linear regression model requires the 

response variables to be normally distributed, which is sometimes not true for the highly 

stochastic TC datasets. Non-linear models, such as the Poisson series and regression 

trees have also successfully been applied in several TC activity modeling studies. For 

example, Poisson models have been used to predict TC frequency and intensity [Jagger 

and Elsner, 2006; Villarini et al., 2010] because of their strengths in fitting extreme 

value distributions such as the hurricane occurrence. The regression tree model has no 

prerequisite for the distribution of data and sometime has very good prediction skills. 

Konrad and Perry [2010] used the regression tree model to describe impacts from TC 

characteristics (speed of movement, size, and strength) and the synoptic features to the 

amount of TCP in individual storms for the Carolina region.  

Both the linear and the Poisson series models have been tested for this study. 

They finally ended up with very similar predictive skills with same number of 

independent variables. The regression tree model has also been tested. They can attain 

more fitting accuracy but with more independent variables, which make the models very 

complex. And pruning those regression trees into several predictors (~3) will reduce the 

predictive power significantly, even worse than the linear and Poisson series models. In 

this dissertation, only results from linear models will be presented because of their 
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simpler structure and the available knowledge about the physical mechanisms for the 

model parameters.  

Three response variables selected for this study are the annual TCP, annual 

TCP’s contribution and annual TCP events. Probability curves were constructed for all 

three response variables in comparison with their corresponding normal distributions 

(Figure 3.4). The response variables basically fit the normal distribution fairly well. 

Some deviations are evident in both tails of the distribution. The deviations at the low 

ends are caused by the 6 years with no TCs. Zeros are difficult to predict in multiple 

linear models. The higher end deviations are mainly due to the highly stochastic nature 

of TC genesis, tracks and variability in the precipitation generated by individual storms. 

Those values are kept in the linear models although removing them can improve model 

predictive skills. The integrity of the response variables was kept because they basically 

fit the normal distribution as shown by Figure 3.4.  
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Figure 3.4. Probability of annual TCP (ATCP), TCP percentage(ATCPP) and TCP 

events (ATCPE) compared with probability of their associated normal distribution 

(ATCP, ATCPP and ATCPE are normalized to fit in the same scale). 
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 There are 400 potential predictors, so a data mining approach was adopted to 

select the most appropriate combination of variables that fits the model. During that 

process, the physical meaning of the predictors was considered. The “leaps” function 

(freely available from the R statistical package) uses an efficient branch-and-bound 

algorithm [Miller, 2002] to select variables that best fit the regression model. The 

rationale is to exhaustively search combination of variables attaining the largest adjusted 

R2 for each model. A maximum of 3 variables were allowed in the final models in order 

to avoid over-fitting and to make it possible to explain the physical meaning of the 

model. Final models were evaluated based on both statistical performance and physical 

interpretations. I have assessed goodness of fit by calculating both modeled and cross 

validation mean absolute error, R2 and adjusted R2. A leave-one-out cross validation 

[Gray et al., 1992] was applied for all the selected models to test their stability and 

predictive skill.  

3.3.3 Statistical Tests for Objective 3. 

Different statistical tests were used to examine the variability and trends in the time 

series of maximum annual precipitation, TCP, daily discharge and TCP-related 

discharge. Daily discharge ratios were calculated by dividing the measured discharge by 

the area of individual contributing watersheds. Annual maximum discharge ratios were 

compared with the annual TCP related maximum discharge ratios during 60 years. The 

TCP related maximum discharge is defined as the maximum daily discharge between 

day -1 and day +3 of all TCP days during a year. Some studies used a day -3 to day +7 

window to select maximum TC-related daily discharge in the eastern U.S [Waylen, 
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1991; Hart and Evans, 2001; Villarini and Smith, 2010a]. Considering the smaller size 

of contributing area of the watershed and the local land use [Rose and Peters, 2001], the 

selection of shorter screening window is believed to be more appropriate and accurate.  

The Pettitt test [Pettitt, 1979] is applied in change point detection for many annual 

hydrological time series [Tomozeiu et al., 2000; Zhang et al., 2008; Smith et al., 2010; 

Villarini and Smith, 2010]. The method uses a rank-based Mann-Whitney statistics to 

test whether the means of two samples are different. It is a non-parametric test and so it 

has fewer constraints regarding the distribution of data [Pettitt, 1979; Reeves et al., 

2007; Villarini and Smith, 2010a]. The TC related extreme precipitation and discharges 

have skewed time series with outliers, so the Pettitt test is appropriate for identifying 

change points. The purpose of the change point detection is to compare the happening 

year of abrupt changes in the hydrological extreme time series and the land use/cover 

changes. For example, if abrupt changes are detected simultaneously, it may indicate that 

the severe changes in land use/cover change have major impacts on the hydrological 

extremes. The change points have been tested for both the mean and variance in the time 

series for annual maximum discharge, the 90 percentile precipitation and the 90 

percentile discharge, which are all continuous time series (no zero-inflated). The 

variance is also tested because it reveals the changes in the oscillation magnitude in the 

time series of extreme values [Katz and Brown, 1992; Meehl et al., 2000]. The method 

of variance calculation was adopted from Villarini and Smith [2010a]: the squared 

residuals to the means of a local polynomial “loess” (Local regression) function with a 

span of 0.75 [Cleveland, 1979].  
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The Mann-Kendall test [Mann, 1945; Kendall, 1975] was selected to examine the 

monotonic trend in all the time series at the 95% significance level. I also used the 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [Kwiatkowski et al., 1992] tests whether 

the time series is stationary around a deterministic trend by examining whether the 

random walk has zero variance. Since there are 60 years of data, the KPSS test provides 

some knowledge about whether the trends are stationary.  

Finally, some ensemble analyses were undertaken to investigate the relationships 

between the dynamics of land use/cover and extreme precipitation and discharge 

(especially related to TCs). Since only four discrete time steps are available for the land 

use change (1980, 1992, 2001 and 2006), the precipitation and discharge information 

were also averaged into four periods (1970-1979, 1980-1989, 1990-1999 and 2000-

2009).  
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4. TEMPORAL AND SPATIAL VARIATIONS IN TCP IN TEXAS* 

4.1 Spatial Variation of TCP 

4.1.1 Daily TC Characteristics and TCP 

 TC characteristics are summarized in Figure 4.1a since they have a significant 

influence on the spatial distribution of daily TCP. Figure 4.1a summarizes the direction 

of movement for all TC days that are considered in Texas. The direction is defined as the 

angle from the vector of TC movement (black arrow in Figure 3.1b) to the north 

(clockwise). Since the direction of movement commonly changes during each TCP day, 

the direction of movement was determined using the first and last observations of TC 

position recorded in HURDAT for each TCP day. Most of the TCs that contribute TCP 

to Texas moved towards the north or west when they make landfall. As the TCs continue 

to move further inland they are influenced by both the Coriolis force and the increased 

jet stream and upper-level westerlies, therefore they tend to be moving towards the north 

and east as they exit the state. This typical path is illustrated by Hurricane Ike (Figure 

3.1b). During the first TCP day associated with Hurricane Ike the TC moved towards the

west.*

  

  
                                                 

* Part of this section is reprinted with permission from “Variations in Tropical Cyclone Precipitation in 
Texas (1950 to 2009)” by Zhu and Quiring, 2012. Journal of Geophysical Research-Atmospheres, in 
press, Copyright [2012] by John Wiley & Sons, Inc. 
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On the second TCP day the direction of movement shifted to the northwest and during 

the third day Ike was moving in a northeasterly direction when it exited the state. Of 

course there is a large amount of variability in TC tracks and direction of movement. In 

Texas, some TCs can stall and move back towards the south. These cases are important 

because they are often associated with slow moving systems that generate extreme 

precipitation. Figure 4.1b is a histogram of daily TC translation speed. There is a large 

range in the translation speed of TCs in Texas, although most of the TCs travel at 

<30km/h. This variability illustrates why it is important to consider TC translation speed 

in the TCP extraction method developed for this paper. The translation speeds have been 

averaged for each storm and compared with the total TCP volume generated in Texas for 

each storm (Figure 4.2). Many of the storms that generated large amounts of TCP 

(e.g., >25 km3) are associated with relatively slow translation speeds (<10 km/hr). 

However, there are also many smaller TCP events that are associated with slow moving 

storms, making the sample size for the first box (storms with translation speed <10 

km/hr) very large (71 out of 152 events). Only 3 of the storms with a translation speed 

greater than 20 km/h had larger than normal TCP (two had < 30 km3 of TCP). However, 

there are fewer TC events associated with higher translation speeds (only 45 events had 

a translation speed >15 km/hr). 
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 Figure 4.3 shows the variation of daily TCP as a function of distance from the 

center of the storm and it is separated into quadrants (e.g., left front, right front, left rear, 

right rear) based on the TC’s direction of movement. The gauge and grid-based TCP 

data both show a similar pattern. Most daily TCP are below 200 mm, but there are some 

extreme cases ranging from 300 to 700 mm. The locations that receive less than 100 mm 

of daily TCP are distributed over a broad area that ranges from 0 to ~1000 km from the 

storm center. However, TCP is most highly concentrated within 400 km of the storm 

center. Locations that receive extreme daily TCP (>300 mm) are almost found within 

200 km of the storm center. This agrees with previous studies that have identified that 

precipitation is closely related to hurricane intensity and extreme TCP mostly occurs 

within ~100 km of the center of circulation [Molinari et al., 1999; Matyas, 2010]. The 

asymmetrical structure of TCs is evident from the spatial distribution of daily TCP and 

the results conform to those from other TCP studies [Lonfat et al., 2004; Atallah et al., 

2007; Jiang et al., 2008; Villarini et al., 2011a]. The front half of TCs is typically 

associated with more TCP than the rear half because storm motion causes heavier 

precipitation ahead and to the right of the storm [Matyas, 2010]. More locations 

receive >200 mm on the right side (right-front and right-rear) of the TC than on the left 

side. Vertical wind shear influences the distribution of the convection in TCs 

[Corbosiero and Molinari, 2002], so the down-shear part (right side in this case) of the   
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Figure 4.3. Distribution of daily precipitation (mm) (interpolated and gage-based) 

by quadrant with respect to the direction of movement and center of the TC. 
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storm is associated with greater precipitation intensity. Many extreme daily TCP events 

(>300 mm) are all located in the left-rear or right-rear quadrant. Many of these cases 

(including the historical event with >650 mm daily TCP) were associated with TCs 

stalled by troughs of cold air mass from the north. These TCs were sometimes pushed 

back towards the south or were relatively stationary (TS Alison 2001 and TS Claudette 

1979).  

4.1.2 Monthly TCP 

 Mean TCP was calculated for each month of the Atlantic hurricane season (June 

- October) based on 60 years of data from 353 gauges (Figure 4.4. Texas has 65 TCP 

days in June, coastal Texas receives ~10 mm TCP and the locations with the highest 

TCP are found in eastern Texas. Although July has 67 TCP days, TCP decreases in 

terms of the area affected and amount. In August as the TC activity increases (125 TCP 

days), TCP spreads deeper inland and shows two TCP maxima in eastern and southern 

Texas. September is the peak of the hurricane season (174 TCP days) and Texas receives 

the most TCP in September. The spatial pattern of precipitation is dominated by 

decreases in TCP as one moves inland from the coast. There is a ~100 km wide belt 

formed along the coast that, on average, receives >30 mm of TCP during September. 

The amount of TCP decreases greatly in October because of the sharp decrease in TC 

activity (52 TCP days). Only a few locations in southern and eastern Texas receive ~10 

mm of TCP. When the monthly TCP is aggregated for the whole state, September ranks 

first in monthly mean, maximum and minimum TCP (Table 4.1). Monthly TCP in Texas 

is basically in phase with variations in Atlantic hurricane activity, which peaks in August 
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and September [Hart and Evans, 2001]. The monthly TCP variations described here 

basically match with long-term monthly variations in hurricane frequency in Texas 

shown by Islam et al. [2009]. Monthly TCP in Texas is primarily controlled by TC 

frequency. On average, months with more TC activity receive more TCP. 

4.1.3 Annual TCP 

 A total of 495 days were identified as TCP days between 1950 and 2009. On 

average there are ~8 TCP days/year. Mean annual TCP (Figure 4.5a) shows a 

pronounced coast-to-inland gradient. Locations near the coast typically receive much 

more TCP than inland locations. Those spatial patterns basically agree with the Texas 

portion of the analysis of annual TCP completed by Knight and Davis [2009]. Locations 

in southeastern corner of Texas receive >80 mm annual TCP, which is the maximum in 

Texas. However, even regions in far western and northern Texas receive some TCP (<20 

mm).  TCP’s contribution to the annual precipitation is calculated for each location by 

dividing mean annual TCP by mean annual precipitation (i.e., all sources of 

precipitation). Generally, TCP contributes >3% to mean annual precipitation in more 

than half of Texas (Figure 4.5b). Figure 4.5b shows a similar pattern as Figure 4.5a (e.g., 

influence of TCP decreases as you move further inland), but there is more spatial 

variability. TCP contributes ~8% of annual precipitation in coastal areas. TCP 

contributions to annual precipitation are higher in southern Texas than in eastern Texas 
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Table 4.1. Monthly TC precipitation (mm) based on the entire rainfall region. 

  

 
 June July August September October 

Mean 10.1 5.6 10.9 18.5 3.6 
Maximum 92.8 82.7 54.5 137.6 44.7 

Standard Deviation 22.2 13.6 14.8 27.7 8.4 



 

  43 

 

  

 

Figure 4.5. Spatial distribution of a. Mean annual TC precipitation (mm), b. 

Contribution of TC precipitation to annual precipitation (%). 
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partly because mean annual precipitation is lower in southern Texas. The maximum 

TCP’s contribution in total precipitation in Texas is somewhat greater than previously 

reported by Knight and Davis [2007] (>15% vs. ~12%). The results also show some 

differences in the spatial pattern of the contribution of TCP to annual precipitation. For 

example, larger area can be identified in southern and central Texas than shown by 

Knight and Davis [2007] where the contribution of TCP was >8%. In addition, TCP’s 

contribution in the southern and eastern Texas from Knight and Davis [2007] is ~3%-4% 

smaller than the 1931-1961 estimation by Cry [1967]. Finally, none of the previous 

studies have captured the contribution of TCP in western and central Texas. The signal 

in this region is likely due to several rare TCs that caused extreme precipitation.  

4.2 Temporal Variation 

 The trend in annual TCP was evaluated for each of the 220 gauges by 

considering all possible combinations of >10 year periods [McCabe and Wolock, 2002b]. 

The number of significant trends for each starting and ending year combination are 

summarized and displayed (Figure 4.6 and 4.7). There are 1250 time periods between 

1950 and 2009 that are >10 years. The number of gauges with significant trends (Mann-

Kendall, p ≤ 0.05) is counted for each period. The analysis was repeated for three of the 

most important TCP metrics, namely: annual TCP, mean daily TCP and maximum daily 

TCP.  
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 There are relatively few statistically significant decreasing and increasing trends 

for annual TCP (Figure 4.6). The highest concentration of decreasing trends is associated 

with the time period starting around 1975 and ending around 2000. A maximum of 28 

stations (out of 220) have decreasing trends (approximately 13% of the stations). There 

are also a few decreasing trends starting around 1960. Generally, there are more 

statistically significant increasing trends (3232) than decreasing trends (1866). There are 

clusters of statistically significant increasing trends for time periods that start in 1950, 

1965 and 1985. Most of those trends have durations less than 30 years. There are only 3 

gauges (out of 220) that have statistically significant increasing trends when considering 

the entire 60 years. The maximum number of stations with increasing trends are found 

during the period from 1950 to 1961 (12 years of duration) when 90 gauges (41%) have 

a statistically significant increasing trend.  

 The trends in the daily TCP metrics (Figure 4.7) are similar to those found in the 

annual TCP metrics. There is a relatively high concentration of statistically significant 

decreasing trends for time periods starting between 1970 and 1980. Similar to Figure 

4.6, increasing trends for daily TCP metrics in Figure 4.7 are concentrated in three 

clusters with starting years around 1950, 1965 and 1985, respectively. These results 

indicate that TCP in Texas is most strongly influenced by intra-decadal variability and 

that there is no evidence of a statistically significant long-term trend in TCP. 
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 TCP metrics are displayed as black lines in Figure 4.8, the 60-year linear trend 

(red solid line) and the 9-year moving average (blue solid line) are also shown. There is 

substantial interannual variability in the TCP metrics (Figure 4.8a & b). The annual 

average TCP is 123.5 mm with the maximum of 537.4 mm obtained in 1979 (Figure 

4.8a). The TCP volume accounts for variations in the number of TCP days, daily TCP 

area and depth and so it serves as an integrative metric (Figure 4.8b). Large interannual 

variability is also observed in the annual TCP volume, with a mean of 17.8 km3 and a 

maximum 77.6 km3 also reached in 1979. Therefore, Texas accounts for ~1/5 of the TCP 

volume in the U.S. since Noguira et al. [2010] showed that the mean annual TCP in the 

U.S. is 107 km3.  

 No statistically significant (p <0.05) trend exists when considering the entire 60-

year time series for annual TCP and TCP volume. This agrees with the results shown in 

Figure 4.6. I also tested the auto-correlations in the annual TCP time series and no 

significant (95% level) auto-correlation lag is observed. The 9-year moving average 

removes the strong interannual variability and emphasizes the inter- and multi-decadal 

signals. 
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 Both annual TCP depth and volume are determined by daily precipitation depth, 

TCP area and the annual TCP days. These metrics still have large interannual variability 

shown in their time series (Figure 4.8c, 4.8d, 4.8e, and 4.8f) and standard deviations 

(Table 4.2). Since they are showing different information about daily TCP, the signals 

share less similarity when compared with the signals for annual TCP. The annual TCP 

days (Figure 4.8c) show good correspondence with the annual TCP, which suggests 

thatthe TC frequency and duration are important factors for annual TCP in Texas. The 

daily TCP area (Figure 4.8d) and depth (Figure 4.8e) correspond with each other 

relatively well, indicating that larger storms may produce more cases of intense daily 

TCP. The time series for the maximum daily TCP demonstrate abrupt changes, such as 

the extreme case in 1979 (TS Claudette) and 2001 (TS Allison) (Figure 4.8f). However, 

the year with the maximum daily TCP intensity is not the year with annual average daily 

TCP depth and area. The time series for daily TCP metrics also do not show significant 

autocorrelation.  

 I have also compared the spectra for all TCP metrics and their associated red 

noise backgroud (Figure 4.9). Although there are peaks in spectral power that are above 

the red noise threshold at interannual, biennual, 5-8 year, and >10 year cycles, none of 

these peaks are statistically significant at the 95% confidence level. The physical 

mechansims responsible for these patterns are beyond scope of this study. 
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Table 4.2. Summary of annual and daily TC precipitation metrics. 

 Annual 
TCP (mm) 

Annual 
TCP 

Volume 
(km3) 

Annual 
TCP within 

100 km 
(mm) 

Annual 
TCP Day 

(Days) 

Annually 
averaged 

Daily TCP 
area (km2) 

Mean 123.5 17.8 107.1 8 110416 
Maximum 537.4 77.6 629.9 22 297920 
Standard 
Deviation 113.3 17.9 114.1 6 71973 
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4.3 TCP Extremes 

4.3.1 Probability of Extreme TCP Events 

 The probability of extreme TCP events is determined by counting the number of 

times that TCP has exceeded 50 mm (~2 in.) and 100 mm (~4 in.) at each location. The 

50 mm and 100 mm have been chosen as extreme daily precipitation thresholds based on 

previous studies [Easterling et al., 2000]. Daily TCP >50 mm has occurred at least once 

in most locations in Texas during the last 60 years (Figure 4.10). Not surprisingly, many 

of the locations with higher frequencies (e.g., >0.10) are in coastal areas. The highest 

frequencies are located in eastern Texas, where >50 mm daily TCP occur nearly once 

every two years (>0.5 frequency).  

 Days with TCP >100 mm are far less frequent (Figure 4.10b). Regions within 

150 km to the coastline have frequencies ranging from 0.1 to 0.2. The highest frequency 

areas are also located in eastern Texas with a frequency of ~0.3. There are a few inland 

locations that show higher than expected frequencies. These locations are associated 

with TCs that may re-intensify from interacting with local conditions (e.g., topography 

or soil moisture), or interacting with extra-tropical frontal systems. Although these 

situations are relatively rare, they can produce very intense precipitation locally. The 

frequency analysis generally confirms the findings of Kunkel et al. [2010] given that 

they also found coastal areas are associated with higher probabilities of extreme TC 

precipitation. 
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Figure 4.10. Spatial distribution of annual frequency of a. Daily TCP >50 mm, b. 

Daily TCP >100 mm (calculated from stations with 50+ years of data).  
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4.3.2 Historical Maximum Events 

 Historical maximum daily TCP events are associated with a relatively small 

number of TCs. The historical maximum daily TCP value was selected for each location 

in Texas and the specific storm that produced it was identified (Figure 4.11). Tracks are 

shown for 10 TCs that covered the greatest area in Texas (Figure 4.11a). A strong coast-

to-inland decreasing pattern is evident (Figure 4.11a). Many coastal locations have daily 

TCP extremes >350 mm (maximum = 515 mm). However, there is a great deal of 

variability in the spatial pattern. There are numerous locations of high TCP in central 

Texas that are associated with these high impact TCs (Figure 4.11b). Together, these 10 

TCs cover 2/3 of Texas. The three most important storms, in terms of area affected, are 

TS Dean (1995), TS Deila (1973) and TS Erin (2007). Many TC systems travel towards 

the north and west after landfall. Typically TCP intensity gradually decreases as the TC 

moves inland. However, sometimes TC re-intensify because of interactions with other 

weather systems or local conditions. These inland TCP events can generate large 

amounts of precipitation in western and northern Texas, such as the >500 mm/day of 

TCP that fell in western Texas from Hurricane Alice (1981), or the clusters of TCP 

extremes (~250 mm/day) in northern Texas associated with TS Dean (1995) and TS Erin 

(2007). Antecedent soil moisture conditions are one of 
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Figure 4.11. a. Spatial distribution of maximum daily TC precipitation (mm), b. 

Ten extreme TCs that influenced the greatest area in Texas for the maximum daily 

TCP, c. Month of occurrence of the maximum daily TCP value at each grid point. 
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the factors that led to the re-intensification of TS Erin (2007) [Evans et al., 2011]. In 

other cases inland TCP maxima are associated with TCs that become stalled due to weak 

steering winds or interactions with mid-latitude weather systems (TS Claudette in 1979 

and TS Delia in 1973). Other TCs that generated extreme amount of precipitation did so 

because they reversed course (TS Alison in 2001 and Hurricane Beulah in 1967). TS 

Claudette and TS Alison are associated with the record daily TCP in Texas (~1000 mm) 

and the heavy precipitation and slow movement caused major inland flooding. These 

events have occurred most commonly in August and September (Figure 4.11c). In 

August, locations with TCP maxima are mostly distributed across inland areas of north, 

central and west Texas. In September, the TCP maxima are concentrated on the eastern 

and southern Gulf coast. This also agrees with the spatial pattern shown for mean 

monthly precipitation in these months (Figure 4.4c & d).  

4.4 Conclusions 

 Sixty years of tropical cyclone precipitation data were extracted from the rain 

gage data using the MRBT automated extraction method. The new MRBT method 

provides more complete and accurate estimations of daily TCP rain regions by 

considering both the TC size and TC translation speed from observations. The spatial 

pattern of daily TCP field generally agrees with previous studies [Molinari et al., 1999; 

Lonfat et al., 2004; Matyas, 2010]. TCP is widely distributed and can occur up to 1000 

km from the center of circulation. However, most extreme TCP (>300 mm) occurs 

within 200 km of the TC. Generally, the front half and right side of the TC receive more 
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frequent and intense precipitation than the rear half and the left side. The largest TCP 

events in Texas are associated with slow moving or stalled TC systems.  

 August and September are two months with the most extensive and heaviest TCP 

in Texas since this is when TC landfalls are most frequent [Islam et al., 2009]. Monthly 

TCP, annual TCP and its contribution to annual total precipitation all decrease with 

distance from the coast, but there are exceptions at several locations where TCs re-

intensified or stalled. Coastal areas also generally have a higher probability of 

experiencing extreme daily TCPs (>50 or >100 mm), and local maxima are located in 

southeastern Texas. The historical maxima for daily TCP (>300-mm) also occurred 

mostly in coastal locations in Texas. However, rare TCs can produce extreme daily TCP 

at some inland locations (Hurricane Gilbert, >400 mm) in western Texas. Maximum 

daily TCP occurs most commonly in August and September.  

 Texas has 123.5 mm and 17.8 km3 of TCP annually. Texas TCP accounts for 

~20% of all TCP that occurs in the U.S. These values are somewhat greater than those 

reported in previous studies [Knight and Davis, 2009; Nogueira and Keim, 2010]. This is 

partly because a denser network of stations was used, longer time period for the analysis, 

and a TCP extraction method that considers the translation speed of TCs.  

 The analysis considered all possible trends longer than 10 years for all stations. 

In contrast to previous studies, which tend to show positive trends in TCP both during 

recent years and over the long-term [Knight and Davis, 2009; Kunkel et al., 2010], no 

statistically significant long-term trend (>50 years) can be observed in the annual and 

daily TCP metrics. There are statistically significant increasing and decreasing trends at 
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some gauges over shorter time periods (10-30 years), but most gauges (>75%) do not 

have any statistically significant trends.   

 Many of the annual and daily TCP metrics have spectral power at interannual, 

biennual, 5-8 year, and >10 year oscillations, but none of these are statistically 

significant at the 95% confidence level. There is more variability in the spectra for the 

daily TCP metrics than the annual metrics. The results demonstrate that Texas TCP is 

dominated by interannual oscillations and there is no evidence of long-term trends in 

TCP. 
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5. STATISTICAL FORECASTING MODELS FOR SEASONAL TCP IN TEXAS 

5.1 Model Comparison 

 Three dependent variables have been calculated to describe the seasonal TCP in 

Texas. The annual TCP is calculated by summing the TCP within each grid cell 

throughout a hurricane season and then averaging all grids with none-zero seasonal TCP. 

It provides information about the average amount of TCP in Texas within a year. The 

second variable is the TCP percentage. It calculates the ratio of seasonal TCP in total 

annual precipitation for each rain station and then takes the average for all stations with 

non-zero seasonal TCP. The annual TCP event summarizes the number of TCs with the 

precipitation impacts in Texas.  

Three models (red, green and blue lines) have been constructed for each of the 

three response TCP variables (Figure 5.1a, b and c). The comprehensive models (redline, 

models with c) are constructed from all 400 variables including all basic and thermo-

dynamic atmospheric and oceanic conditions at all different scales (Table 3.2). The 

independent variables are separated as basic and thermo-dynamic. The basic variables 

are scalar and vector variables directly measured by the instruments, such as the 

temperature, pressure, humidity, wind speed, etc. Two thermo-dynamic variables are 

used in our models, they are either calculated to represent the dynamical interactions 

between the SST and the atmosphere (Maximum Potential Velocity) or fluid dynamics 

of the atmosphere on the earth (vorticity).  
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Figure 5.1. Observed and modeled TCP: (a.) annual TCP (models with n1), (b.) 

TCP percentage (models with n2), (c.) TCP events (models with n3). The black line 

is for observation, the red line is for the comprehensive model (‘c’ series), and the 

green and blue represent two simple models (‘s’ and ‘ss’ series). 
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The simple models are based on basic predictors used by previous TC frequency and 

intensity forecasting studies [Gray, 1984a; Gray et al., 1994; Elsner and Jagger, 2006]. 

Two simple models have been generated for each of annual TCP metric: models (with 

“s” in their names, green line) based on one regional variable (SLP) and one global scale 

signal (ENSO), and models (with “ss” in their names, blue line) constructed on only 

global scale variables (NAO and ENSO signals).  

The parameter information for all models are shown in Table 5.1. The statistics 

of model accuracy and cross validation error are shown in Table 5.2. Basically, the 

models for the TCP events have the best skills in the modeled and cross validated (CV) 

MAE (all < 50% of the observed mean). The annual TCP models have the second best 

skill in terms of modeled and CV MAE (48.2% to 57.4% of the observed mean). The 

models for the TCP percentage have the most unstable prediction modeled and CV MAE 

ranging from 52.7% to 73.3% of the observed mean. The comprehensive models (“c” 

series) have significant improvements in the explained variance when compared with the 

simple models (“s” and “ss” series). With one more predictor, the comprehensive models 

for the annual TCP and TCP percentage have ~0.20 larger R2 than the same series of 

simple models. Figure 5.1 reveals that much of the improvement is from the high value 

years. Simple models for the TCP events have less cross validation error when compared 

with simple models for other two TCP metrics (Table 5.1c). The simple models for TCP 

events also have good and stable MAE, R2, and adjusted R2. In contrast, simple models 

for the annual TCP and the TCP percentage (Table 5.2a&b) have big drops from the 

modeled R2 to the CV R2. Some simple models for the annual TCP and the TCP  
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Table 5.1. Model parameters and coefficients. 

Dependent 
variable 

Model 
Name Parameters Coefficient t 

value 
P 

value 

 (Annual 
TCP, mm) 

 

n1c 
 

CONSTANT 86.1 11.43 <0.001 
MAY_VOR_MDR -23.1 -2.85 0.006 
D2M_MPV_GMX -42.3 -5.41 <0.001 

M2M_SOI 18.7 2.24 0.029 
     

n1s 
 

CONSTANT 86.1 9.80 <0.001 
MAY_SLP_GMX -23.9 2.48 0.016 

MAY_RSST_NIÑO34 -36.7 -3.80 <0.001 
     

n1ss 
 

CONSTANT 86.11 9.60 <0.001 
D2M_SST_NIÑO4 18.67 1.89 0.06 

MAY_RSST_NIÑO34 -34.75 -3.52 0.001 
      

 (TCP 
percentage, 

%) 
 

n2c 

CONSTANT 4.25 12.76 <0.001 
MAY_VOR_MDR -1.29 -3.78 <0.001 
D2M_MPV_GMX -1.40 -4.12 <0.001 

MAY_SOI 0.72 2.10 0.04 
     

n2s 
CONSTANT 4.25 11.07 <0.001 

D2M_SST_CAR 0.89 2.26 0.027 
MAY_RSST_NIÑO34 -1.33 -3.40 0.001 

     

n2ss 
CONSTANT 4.25 11.06 <0.001 
MAY_NAO -0.87 -2.24 0.029 

MAY_RSST_NIÑO34 -1.23 -3.16 <0.002 
      

 
 
 
 (TCP Events) 

 

n3c 
 

CONSTANT 2.55 14.36 <0.001 
D2M_MPV_GMX -0.60 -3.32 0.02 

MAY_RSST_NIÑO34 -0.76 -4.21 <0.001 
     

n3s 
 

CONSTANT 2.55 14.14 <0.001 
MAY_SLP_GMX -0.45 -4.62 <0.001 

MAY_RSST_NIÑO34 -0.73 -3.65 <0.001 
      

 n3ss 
 

CONSTANT 2.55 13.67 <0.001 
M2M_SST_NIÑO4 0.60 2.16 0.035 

MAY_RSST_NIÑO34 -1.16 -4.16 <0.001 
 
  



 

  64 

 

Table 5.2. Observations and statistical measures of model fit and leave-one-out 

cross validation (CV) for a. annual TCP, b. TCP percentage, and c. TCP events. 

 
(a) Model Statistics for annual TCP (mm) 

  n1c n1s n1ss 
 Observ

ed 
Model CV Model CV Model CV 

Mean 86.1 86.1 85.3 86.1 86.2 86.1 77.7 
SD 75.5 49.7 48.3 31.7 32.1 32.2 80.1 

Max 330.1 312.9 291.7 157 171.4 148.6 148.8 
Min 0 1.7 1.8 6.2 7.1 16.8 -483.7 

MAE  45.4(52.7%) 48.5(56.3%) 52.2(60.6%) 54.7(63.5%) 52.9(61.4%) 63.1(73.3%) 
R2  0.43 0.36 0.18 0.11 0.18 0.05 

Adj R2  0.40 0.34 0.15 0.09 0.15 0.03 
 

 
(b) Model Statistics for TCP percentage (%) 

  n2c n2s n2ss 
 Observed Model CV Model CV Model CV 

Mean 4.25 4.25 4.22 4.25 4.27 4.25 4.26 
SD 3.28 2.10 2.03 1.48 1.49 1.47 1.51 

Max 13.53 12.04 10.41 7.08 7.11 7.52 8.26 
Min 0 -0.21 -0.24 0.72 0.81 -0.77 -0.99 

MAE  2.05(48.2%) 2.19(51.2%) 2.31(54.4%) 2.42(56.9%) 2.32(54.6%) 2.44(57.4%) 
R2  0.41 0.34 0.20 0.14 0.20 0.13 

Adj R2  0.38 0.31 0.18 0.12 0.18 0.12 
 

 
(c)  Model Statistics for TCP events (ATCPE) 

  n3c n3s n3ss 
 Observed Model CV Model CV Model CV 

Mean 2.5 2.6 2.6 2.5 2.5 2.6 2.5 
SD 1.6 0.9 1 0.9 0.9 0.8 0.8 

Max 6 5.6 6.3 4.5 4.6 4.6 4.6 
Min 0 0.6 0.3 0.4 0.5 0.9 0.9 

MAE  1.1(45.2%) 1.2(47.6%) 1.1(45.6%) 1.2(48%) 1.1(44%) 1.2(46.8%) 
R2  0.32 0.27 0.27 0.23 0.25 0.19 

Adj R2  0.30 0.24 0.24 0.22 0.23 0.18 
*Statistical measures of model fit include mean absolute error (MAE), coefficient of determination (R2), and adjusted 
coefficient of determination (Adj R2). 
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percentage also demonstrate several negative values in the modeled and CV predictions, 

which are physical impossible. So the simple models for the annual TCP and TCP 

percentage are not as stable as the simple models for the TCP events. 

The annual TCP presents the major information about how much TCP has been 

generated in Texas every year. The n1c model stands for the comprehensive models for 

the annual TCP. It is the best model with ~7 mm less modeled MAE and 0.25 more in 

Modeled R2 than other two simple models for the annual TCP (n1s and n1ss). Those 

simple models are very unstable for the annual TCP because their CV MAE and the R2 

deteriorate very fast. This is also demonstrated by their high CV standard deviation (SD) 

and the physically impossible negative CV minimum (Min) in n1ss.  

The TCP percentage has the combined information from both the seasonal TCP 

and total annual precipitation amount. Similar to models for annual TCP, the 

comprehensive model fits better with the addition of thermo-dynamic variables (MPV 

and vorticity). Both the comprehensive and simple models are relatively stable, with 

relative less difference between the modeled and CV statistics (MAE, R2 and Adj R2, 

Table 5.2b). The two simple models are not able to accurately predict years with extreme 

values (Figure 5.1b) and have similar predictive skills and cross validation errors (Table 

5.2b).  

 Generally all models for the TCP events have good skill and small CV error. The 

thermo-dynamical variable again provides better skills for the comprehensive (n3c) 

model than the simple models (n3s and n3ss), but the improvement is not as large as the 

models for annual and TCP percentage. Removing one predictor (2 compared to 3 in 
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other models, Table 5.1) reduced some skills in the n3c, but the simpler model still has 

strong predictive power and the CV is stable. On the other hand, there are significant 

improvements in both modeled and CV performance for the simple models (n3s and 

n3ss). The simple models for the TCP events are more stable than the simple models for 

annual TCP and TCP percentage because they have less differences between modeled 

and CV statistics. The n3ss has smaller modeled and CV MAE than its comprehensive 

model counterpart (n3c).  

5.2 Parameter Analysis and Possible Physical Mechanisms 

 Seasonal TCP in Texas is a complex function of many interacting factors. 

However, the complex information can be divided into two basic parts. One important 

factor is how many TCs have made landfall and generated precipitation in Texas in each 

season. This information is directly modeled (TCP events) and it also influences the 

models of annual TCP and TCP percentage. Another important factor is how much 

precipitation is generated by each individual storm. This is highly variable, since each 

storm is different in terms of its type, size, translation speed, track, and interactions with 

the local environment. The constructed models have provided some useful and 

interesting information on TCs in Texas and have revealed some of the major physical 

mechanisms that control variations in TCP. For each of model, maps were generated for 

the spatial distributions of the correlations between the response variables (TCP metrics) 

and important predictors (climatic forcings) in the final models (Figure 5.2, 5.3, 5.4, 

5.5).  
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Figure 5.3. Pearson’s correlations between regional predictors and the annual TCP 

(ATCP): a. May vorticity and ATCP, b. December to May Maximum Potential 

Velocity (MPV) and ATCP, c. May sea level pressure and ATCP, the black dots are 

points with correlation significant at 90% confidence level. 
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Figure 5.4. Pearson's correlations between regional predictors and TCP percentage 

(ATCPP): a. May vorticity and ATCPP, b. December to May Maximum Potential 

Velocity (MPV) and ATCPP, c. December to May SST and ATCPP, the black dots 

are points with correlation significant at 90% confidence level. 

  



 

  70 

 

 
Figure 5.5. Pearson's correlations between regional predictors and the TCP events 

(ATCPE): a. December to May Maximum Potential Velocity (MPV) and ATCPE, 

b. May sea level pressure and ATCPE, the black dots are points with correlation 

significant at 90% confidence level. 
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5.2.1 ENSO 

ENSO is the most importance variable in all of the models. In particular, La Niña 

(Niño 3.4 SST cooling) signal is the major control of Atlantic TC frequency. But the 

Niño 4 SST warming (Central Pacific Warming, CPW) signal was also mentioned to be 

positively related to the frequency of landfall TCs in the Gulf of Mexico and the 

Caribbean [Kim et al., 2009]. Many studies [Gray, 1984b; Gray et al., 1993; 1994; 

Elsner et al., 1999; Klotzbach and Gray, 2003; Klotzbach, 2011] have demonstrated that 

ENSO has a major influence on seasonal TC frequency in the Atlantic by altering the 

Walker circulation. In typical ENSO warming events (Niño 3.4 SST warming), the 

weaker than normal Walker circulation makes an eastward shift, so there is an increased 

upper-level westerly wind over Caribbean and tropical Atlantic. The strong westerly 

may combine with lower-level easterly wave and generate a high vertical wind shear 

environment, which is not favorable to TC formation and movement [Gray, 1984a; 

DeMaria, 1996; Goldenberg and Shapiro, 1996; Knaff et al., 2004; Klotzbach, 2011]. 

Therefore, in the negative phase of ENSO (La Niña), the environment conditions are 

more favorable for TCs in the Atlantic and Caribbean to develop, persist and make 

landfall. More TCs make landfall in the U.S. during La Niña years than El Niño or 

neutral years [Pielke and Landsea, 1999; Smith et al., 2007; Mann et al., 2009].

 All the final models have one predictor pertaining to the La Niña signal, but 

taking different forms (Table 5.1). A La Niña signal here means cooler pre-hurricane 

season SST in the Niño 3.4 region will cause more TC activities and TCP in Texas. I 

believe this strong La Niña signal controls the TCP in Texas by influencing the annual 
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landfall TC counts. I computed the Pearson correlations between the TCP events and 

each gridded SST in the Niño 4 and Niño 3 regions (Figure 5.2). The spatial patterns of 

the La Niña signal (negative correlation between SST and TCP events) are pretty strong 

and dominate in the eastern central Pacific (Niño 3.4 region). 

The Southern Oscillation Index (SOI) is the ENSO predictor used in the n1c and 

n2c models. The SOI is an important component of the ENSO cycle [Deser and 

Wallace, 1987; Trenberth and Shea, 1987; Trenberth and Hoar, 1996]. All SOI 

predictors in the models have positive signs, which are correspondent to the La Niña 

phase. Previous modeling [Villarini et al., 2011b] also indicated that remote influences 

of SOI and tropical mean SST can explain part of the U.S. landfall hurricanes counts.  

All Niño 3.4 RSST predictors have negative signs, meaning the Niño 3.4 cooling 

relative to the tropical mean SST are corresponding with more TCP in Texas. Those 

Niño 3.4 RSST signals are in the same direction with the La Niña signal.  

 Two simple models (n1ss and n3ss) are solely based on ENSO signals. Besides 

the La Niña signal, the positive sign of Niño 4 SST predictors indicates that the warm 

SST in the western central Pacific region (5S-5N, 160E-150W) may be favorable to 

more TCP in Texas. Several studies have already investigated the impacts from the 

shifting patterns of Pacific Ocean warming on the North Atlantic TCs [Kim et al., 2009; 

Lee et al., 2010; Larson et al., 2012]. Kim et al. [2009] showed that the Gulf of Mexico 

coast and Central America will have above average TC frequency and increased TC 

landfall probability under the Central Pacific Warming (the Niño 4 region). I believe that 
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Central Pacific Warming is related to the inhomogeneous impact from the whole Niño 3 

and Niño 4 SST to the Texas TCP events. 

5.2.2 MPV and Vorticity 

5.2.2.1 MPV, vorticity definition and their signals the models 

MPV and the vorticity are two important thermo-dynamical variables that 

improved the performance of the comprehensive models significantly (~0.20 in R2) 

when compared with the simple models (Table 5.2). Their coefficients are negative in all 

comprehensive models.  

MPV stands for the maximum potential velocity, an index originally developed 

by Emanuel [1995] and Holland [1997] to describe the limit for the maximum wind 

velocity that is approachable in TCs based on the ocean and atmosphere energy 

conditions. Previous studies usually shows storms with stronger winds are associated 

with larger amount of precipitation [Cerveny and Newman, 2000], especially in the inner 

core area [Rodgers et al., 1994]. However, the relationships between MPV and TCP 

metrics in our models are all negative, which indicates that larger TCP may be produced 

by weaker storms. And the negative correlations between MPV and the TCP metrics are 

pretty spatially consistent in the Gulf of Mexico as shown in Figure 5.3b, 5.4b, 5.5a, 

corresponding to the negative signs of D2M_MPV_GMX predictors in the models. 

Those previous analyses showing positive relationships were primarily based on 

individual or a group of TCs in the ocean, while our study is for the seasonal 

accumulated TCP metrics in Texas during 60 years. Many TCs with relative low 
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maximum wind speeds have generated large amounts of precipitation in coastal areas of 

the U.S. Tropical Storm Alison in 2001, Hurricane Irene (Category 1-3) in 2011, and 

Hurricane Isaac (Category 1) in 2012 are all recent examples of TCs with relatively low 

winds that produced large amounts of precipitation and caused severe inland flooding. 

 Low level (850 mb) MDR vorticity in May (MAY_VOR_MDR) is another 

thermo-dynamic predictor appeared in the comprehensive models for the annual TCP 

and TCP percentage. Vorticity is a numerical description for the rotational 

characteristics of the atmosphere movements [Hoskins et al., 1985]. The TCs are vortex 

systems themselves and they are embedded in the large scale environmental vortex 

systems [Emanuel, 2003]. The environmental vorticity may influence the TC genesis, 

tracks and intensity [Davis and Emanuel, 1991; Jones et al., 2003; Emanuel, 2007] 

[Flatau et al., 1994; Emanuel, 2003]. It was more frequently used in the seasonal TC 

genesis prediction [Camargo et al., 2009; Belanger et al., 2010] and the power 

dissipation index estimation [Emanuel, 2005; 2007]. Emanuel [2005] also mentioned 

that the potential intensity, low-level vorticity and vertical wind shear are highly 

correlated with each other. So enhanced low-level vorticity prior to the hurricane season 

may be one of the contributors to high wind speed in TCs during the season. Most 

studies have shown that enhanced vorticity produces more convection, higher wind, and 

more intense precipitation. However, the models constructed by this study all show 

negative coefficients for the MDR May vorticity (Table 5.1). Spatially, those negative 

correlations are mostly located in western MDR near the Gulf of Mexico (Figure 

5.3a&5.4a). One of reasons may be the same with the negative relationships found in 
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MPV; storms with weaker winds produced more precipitation because low vorticity 

basically means low wind speed. In addition, less vorticity in the western MDR may 

result in TCs with larger size and lower translation speed before they enter the Gulf of 

Mexico. It has also been suggested that a smaller TC radius is associated with larger 

values of vorticity [May and Holland, 1998]. Vorticity can also have complex impacts 

on TC movement based on the physical interaction between TC’s own vorticity and the 

environmental flow [Holland, 1983; Shapiro, 1992; Flatau et al., 1994]. The track and 

translation speed of a TC are important factors determining how much precipitation it 

will produce in Texas. It is possible that slower spinning storms may travel with lower 

speed and have more accumulated precipitation.  

5.2.2.2 TCP and TC characteristics (size, intensity and translation speed)   

MPV and vorticity significantly determine the TC characteristics including the 

wind intensity, spatial coverage and translation speed. The models show negative 

relations between MPV/vorticity and TCP metrics. Therefore, it is reasonable to test the 

relationships indicated by the statistical models: do storms with weaker winds and 

slower translation speeds generate more TCP in Texas historically? This study examined 

how the maximum wind speed, translation speed and TCP coverage are related to the 

amount of precipitation generated by individual TCP days in Texas. Daily TC maximum 

wind speed and translation speed were averaged from observations for each TCP day 

from the 6 hour observations. The daily TCP volume is calculated for each TCP day by 

aggregating all precipitation amounts from the non-zero grids. There are 30 TCP days 

out of the whole sample (495 days) with only one observation of spatial position. They 
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were not used in the analysis because they had very minor precipitation impact in Texas 

and treating their traveling speed as 0 km/hr will introduce bias in the analysis. The 

remaining 465 TCP days were divided into two equal parts: the first 233 TCP days all 

have TCP covering less than 13% of Texas and account for only 8% of the TCP volume; 

while all remaining 232 TCP days have covered 13-64% of Texas and together account 

for 92% of the TCP volume.  

The Box-Whisker plots (Figure 5.6) were constructed for the relationships 

between daily TCP volume and TCP maximum speed, and between the TCP volume and 

TC translation speed. In Figure 5.6a&b, The first two boxes (TCP days with maximum 

speed <14 m/s) have very large sample size (169 out of 232 days for Figure 5.6a, 180 out 

of 233 days for Figure 5.6b) with many cases of low precipitation storms. On the other 

hand, fewer TCP days are in the other two high wind speed boxes (63 for both 3rd and 4th 

box in Figure 5.6a, 52 for both 3rd and 4th box in in Figure 5.6b). For the extreme values, 

low wind speed boxes (<14 m/s) are associated with much more TCP days with outliers 

(e.g., > 1 km3 for Figure 5.6a, >10 km3 for Figure 5.6b) than the high wind speed boxes. 

The historical record of daily TCP (~ 28 km3) is related to the rare storms with both 

heavy wind (22.4-67.1 m/s) and high precipitation. Overall, it indicates that TCs with 

slow or medium maximum wind speed account for most of the TCP because they 

occurred more frequently and contributed most of the large events. The means of the 

four boxes show no statistical significant difference in Figure 5.6a and 5.6b using the 

Bonferroni adjustment on a 95% significance level. 
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Similar relationships are demonstrated between the TC translation speed and the 

daily TCP in Figure 5.6c&d. Many TCP days with large amounts of precipitation (e.g., > 

1 km3 for Figure 5.6a, >10 km3 for Figure 5.6b) are associated with very slow translation 

speeds (<10 km/hr). Sample size is still larger for the first two boxes. TCP days in those 

two boxes take most of the TCP outliers. In Figure 5.6d, the median precipitation in the 

first box is ~2 km3 larger than the median of the 4th box, although the first box has much 

larger sample size and is associated with many small TCP days. The historical high daily 

TCP is in the first box with lowest TC translation speed (<10 km/hr). Therefore, TCs 

with lower translation speed normally generate more extreme TCP events and account 

for a greater proportion of TCP in Texas. The means of the four boxes show no 

statistical significant difference in Figure 5.6c using the Bonferroni adjustment on a 95% 

significance level. However, the both 3rd and 4th box in Figure 5.6d are showing 

significantly smaller mean value than then 2rd box using the same test. 
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 Figure 5.7a and 5.7b are histograms of the maximum wind speed and the 

translation speed for all the TCP days. Quartiles are divided by the maximum wind 

speed and the translation speed. TCP amounts are accumulated in each quartile with the 

same number of TCP days. The TCP mean show no statistical significant difference in 

maximum wind speed quartiles (Figure 5.7a) using the Bonferroni adjustment on a 95% 

significance level. The TCP mean also show no statistical significant difference in TC 

translation speed quartiles (Figure 5.7a) using the Bonferroni adjustment on a 95% 

significance level. However the low wind speed quartiles have much less mean TCP 

than the high wind quartiles. 

Both the Box-Whisker and quartile analysis have provided some interpretations 

for the physical mechanisms behind the negative signs of MPV and vorticity coefficients 

in our models. The TC events with lower or medium maximum wind speed and slower 

translation speed actually generated more big TCP events and therefore account a greater 

proportion of the total TCP in Texas. Therefore, the lower preseason regional MPV and 

vorticity are important factors for more of those weaker and slow moving TC systems in 

Texas. 
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Figure 5.7. Histograms of daily TC maximum wind speed and translation speed 

and their quartile divisions.  
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5.2.3 Other Predictors  

 Besides ENSO, MPV and vorticity, some other climatic variables also appear in 

some of the models. May sea level pressure in the Gulf of Mexico (MAY_SLP_GMX) 

shows negative coefficients in two simple models for both annual TCP and TCP events. 

Sea level pressure was mentioned in many previous studies as an important predictor for 

hurricane frequencies [Ray, 1935; Landsea et al., 1998; Landsea et al., 1999; 

Goldenberg et al., 2001]. Gray et al. [1993] showed that low June to July sea level 

pressure are corresponding to larger amount of TC activities in the Atlantic basin after 

August 1st. Another early study by Shapiro [1982] displayed a strong negative 

correlation (~-0.3) between the May-June-July sea level pressure in the Gulf of Mexico 

and the Autumn-September-October hurricane activities in the Atlantic Ocean from 

historical record from 1899 to 1978. Gray et al. [1993] explained that the low sea level 

pressure in the MDR strengthens the inter-tropical convergence zone (ITCZ) and is more 

favorable for cyclongenesis [Gray, 1968]. Figure 5.3c and 5.4b show that negative 

correlations for the sea level pressure are consistent in the Gulf of Mexico and north 

tropical Atlantic. Knaff [1997] indicated that the low regional sea level pressure is 

associated with deeper moist boundary, warmer middle level temperatures and weaker 

vertical wind shear. Therefore, the low sea level pressure in the Gulf of Mexico prior to 

the hurricane season might be more favorable to the formation and development of TCs 

in the Gulf of Mexico and so more TCP for Texas.  

 The December-May SST in the Caribbean (D2M_SST_CAR) shows a positive 

sign in model n2s for the TCP percentage. Inoue et al. [2002] argued that the 
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strengthened easterly trade wind may create low SST, high sea level pressure and more 

outgoing longwave radiation in the Caribbean in some years, which are unfavorable for 

development of TCs. In addition to that, warmer SST in the Caribbean is favorable to the 

traveling of TCs from the Atlantic [Vecchi and Knutson, 2008; Kossin et al., 2010] 

 North Atlantic Oscillation (NAO) is defined as the large-scale alternation of 

atmospheric mass between subtropical high surface pressure (near Azores) and subpolar 

low surface pressure (extending to east of Greenland) in the Atlantic [Lamb and Peppler, 

1987]. Some studies suggest that annual Atlantic and U.S. landfall TC frequencies are 

closely related to NAO [Emanuel, 2005; Kossin et al., 2010]. One of our models for the 

TCP percentage has the May NAO showing a negative coefficient sign. Kossin et al. 

[2010] indicated that the May-June NAO controls the position of the North Atlantic sub-

tropical high, which modulates the tracks of the “straight moving” hurricanes during the 

season. The “straight moving” hurricanes is defined as ones that formed in deep tropics, 

travelled straight westward with little recurvature, and finally made landfall in the 

Caribbean or the Gulf coast [Elsner, 2003; Kossin et al., 2010]. Some of the TCs 

produced precipitation in Texas can be those “straight moving” hurricanes. In addition, 

negative NAO are related to the winter precipitation decrease in southeastern U.S 

[Hurrell, 1995]. Less winter precipitation may lead to less annual precipitation, and so 

more TCP’s contribution. NAO was also mentioned to be negatively correlated with 

drought-busting Tropical Cyclones in the southeastern U.S [Maxwell et al., 2012]. All 

those support the negative NAO coefficient in the n2ss model for the TCP percentage. 
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5.3 Summary and Conclusions 

 Multiple linear regression models were built for forecasting annual TCP, the 

percentage of TCP, and TCP events in Texas. Three models were constructed for each of 

the TCP metrics: one comprehensive model including all thermo-dynamic and simple 

forcing variables, two simple models using only the simple forcing variables. The 

comprehensive models can explain 32%-43% of the variance of the seasonal TCP 

metrics, and the simple models can explain 18%-27% of their variance. Nearly all the 

parameters in the final models have statistical significant p values (<0.05). The modeled 

cross-validation statistics show that most of the models are stable and robust. 

 ENSO is the most important factor in the final models, but it takes different 

forms (RSST_NIÑO34, SOI, and SST_NIÑO4). The primary signal is related to La 

Niña, which reduces the upper tropospheric winds and so the vertical shear in the 

Caribbean and tropical Atlantic [Gray, 1984a; b]. The Central Pacific Warming (CPW) 

[Kim et al., 2009; Lee et al., 2010] related variables appeared in the models for the 

annual TCP and TCP events, but the signal is still weak. 

 The addition of thermo-dynamic predictors (MPV and vorticity) have 

significantly increased predictive skills and cross-validation accuracy of the 

comprehensive models for the annual TCP and TCP percentage. Pre-season MPV in the 

Gulf of Mexico and vorticity in the MDR are connected to the maximum wind speed, 

translation speed and size of the Texas landfall TCs. Their negative relationship between 

the two thermo-dynamic predictors and the TCP metrics in Texas can be validated by 

patterns in TC characteristics and TCP amounts.  
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 Other predictors in models all have physical connections to seasonal TCP in 

Texas. Low sea level pressure in the Gulf of Mexico is favorable to the formation and 

development of TCs in the Gulf of Mexico and it produces more TCP in Texas. Warmer 

than normal SSTs in the Caribbean enhance TC genesis and also support TCs that 

formed in the Atlantic and then move through the region. The negative NAO may 

produce more westward “straight moving” TCs and less winter precipitation, and 

therefore make more TCP’s contribution in annual precipitation of Texas. 

 This is the first regional study using multiple linear regression models to predict 

seasonal TCP in Texas. Statistically robust models can be constructed using ≤3 

independent variables (many just have two) with both statistical skills and physical 

interpretations. An important finding is that thermo-dynamic variables can improve the 

performance of the TCP models significantly when working together with ENSO signal 

and other signals. The negative relationships between the thermo-dynamical variables 

and TCP can be explained by the observations of TCP and TC characteristics in Texas. 

Simple models based only on global variables still have predictive and cross validation 

skill.  
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6. EXTREMES IN TROPICAL CYCLONE PRECIPITATION AND 

DISCHARGE IN WATERSHEDS NEAR HOUSTON 

6.1 Land Use/Cover Change for the Selected Watersheds 

The third objective is to examine how extreme TCP effects discharge in 

watersheds near Houston. The San Jacinto River is the study area for objective 3. It is 

located in southeastern Texas (Figure 3.2) and includes watersheds covering the metro 

and suburban area of Houston. They are either dominated by intensely developed land or 

have been undergoing rapid urbanization. The eight selected river gauges have complete 

data record (Table 3.3) and covers different types of watershed characteristics (size, 

shape, and land use condition). Thiessen polygons were then used to calculate the 

weighted surface precipitation for each selected watershed. Historical Land Use/Cover 

data from four periods (1980, 1992, 2001 and 2006) were used to evaluate the influence 

of urbanization on discharge in selected watersheds. Different statistical tests were then 

used to examine the variability and trends in the time series of maximum annual 

precipitation, TCP, daily discharge and TCP-related discharge. 

 Land use/land cover data from 4 years between 1980 and 2009 have been used in 

this study (Figure 6.1 & 6.2). Figure 6.1 demonstrates the dramatic changes in land 

surface near Houston. The urban area has been expanding in every direction (especially 

to the north Houston), while vegetated areas have been decreasing at the same time. 

Figure 6.2 shows variations in the proportion of land cover associated with the five most 

common land use types (wetlands, water, forest, grass and agriculture, developed land). 

Figure 6.2a to 6.2d shows changes in land cover over time for watersheds located near  
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Figure 6.1. Land Use and Land Cover for Houston area between 1980 and 2006. 
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Figure 6.2. Changes in land cover (in percentage) for different watersheds between 

1980 and 2006 (8074500: Whiteoak Bayou, 8076500: Halls Bayou, 8073500: Buffalo 

Bayou, 8075000: Brays Bayou, 8070500: Caney Ck, 8068000: W Fk San Jacinto Rv, 

8068500: Spring Ck, 8069000: Cypress Ck). 
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downtown Houston. Figure 6.2e to 6.2h shows changes in land cover for suburban 

watersheds located in the northern Houston. Most of the downtown watersheds show 

dramatic increases in the developed land (+40%) and decreases in grassland and 

agriculture (-40%) from 1980 to 2006. There are also significant increases in developed 

land in the suburban watersheds (~20%) and most of them have seen reductions in 

forested area by approximately -40%. 

6.2 Annual Maximum Discharge, TCP and Related Discharge 

In Figure 6.3 many maximum TCP discharge ratios (red lines) are similar to the 

annual maximum discharges ratio (black lines). This shows the importance of TCP in 

producing the extreme discharge in those watersheds. There is a great deal of interannual 

variability exists in the discharge ratios and precipitation, but generally large TCP 

discharge ratios correspond to large amounts of TCP (blue bars). This indicates that TCP 

is an important cause of extreme discharge.  

Watersheds with a great proportion of developed land (Figure 6.1a, b, and d) 

have larger annual maximum discharge ratios (both in terms of the mean and maximum) 

than watersheds that are less developed (Figure 6.1e, f, g, and h). Buffalo Bayou 

(8073500) is one exception. It has low discharge ratios even though it is highly 

developed. This can be explained by a flood control project completed before the 1950s 

and modified in the 1950s and 1960s. Addricks and Barker reservoirs are two large 

floodwater detention basins that are located upstream of Buffalo Bayou (where gauge 

8073500 is located). Baker Dam was completed in 1945 and Addicks Dam in 1948  
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Figure 6.3. Annual maximum TCP (mm), annual maximum daily discharge ratio 

(cm km-2) and maximum daily discharge ratio associated with the annual maximum 

TCP for each watershed (8074500: Whiteoak Bayou, 8076500: Halls Bayou, 

8073500: Buffalo Bayou, 8075000: Brays Bayou, 8070500: Caney Ck, 8068000: W 

Fk San Jacinto Rv, 8068500: Spring Ck, 8069000: Cypress Ck). 
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[Storey, 1998]. Since both of these flood control structures were built before 1950, the 

extreme discharge ratios (Figure 6.3e) for Buffalo Bayou (gauge 8073500) do not vary 

much from year to year. 

The change points, linear trends and stationarity have been tested for time series 

in Figure 6.3 and their variances. Most watersheds have significant increasing trends or 

change points in the annual maximum discharge ratios (Mann-Kendall Test, 95% 

Significance, Figure 6.4a). Watersheds for Caney Ck and Cypress Ck (gauge 8070500 

and 8069000) have statistically significant change points in the variance of annual 

maximum discharge ratios (Figure 6.4b). This means that the amplitude of interannual 

variation in the annual maximum discharge ratios in these two watersheds have 

increased since 1993.  

There is no statistically significant trend or change point in the mean and 

variance of maximum TCP and TCP-related discharge due to the large interannual 

variability in TC activity. During the Tropical Storm Allison in 2001, gauge 8074500 

received >350 mm of TCP. This is the largest daily TCP event to occur in the eight 

watersheds (Figure 6.3). 
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Two very large TCP events are observed in Whiteoak Bayou watershed (gauge 

8074500) in 1998 and 2001 (Figure 6.3a). The watershed contains a large portion of 

downtown Houston and has the largest percentage of developed land (Figure 6.1 and 

6.2). Many extreme TCP cases (>200 mm) also happened in suburban watersheds 

located in the north of Houston (gauge 8070500, 8068500, 8069000, Figure 6.1). Those 

events can be possibly related to the precipitation enhancing effect from the transported 

aerosols [Orville et al., 2001; Li et al., 2008]. Some studies argued that the sea breeze 

can transport the aerosols to the downwind direction (North) of the pollutant sources in 

Houston and produce enhanced precipitation in north Houston [Darby, 2005; Fast et al., 

2006]. Since most of the TCs made landfall in Texas travelled towards north or 

northwest directions [Zhu and Quiring, 2013], they may bring some anthropogenic 

aerosols to northern Houston and enhance TCP.  

 Maximum TCP discharge shows larger differences between the more urbanized 

and less urbanized watersheds (red line, Figure 6.3). Watersheds that are more urbanized 

generally have a larger maximum TCP discharge ratios, except for Buffalo Bayou 

watershed (gauge 8073500). Whiteoak Bayou (Gauge 8074500) reached the largest 

discharge ratio (2.22 mm km-2) in 2001 from Tropical Storm Allison. This is due to the 

large amount of precipitation and the fact that this watershed has the highest percentage 

of developed land. Watersheds for Whiteoak Bayou (gauge 8074500) and Brays Bayou 

(gauge 8075000) frequently experienced extreme discharges after 1980, especially TCP-

related discharges. In both watersheds the percentage of developed land changed from 

~40% in 1980 to >90% in 2006 (Figure 6.2a & 6.2d). They also had the grass and 
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agriculture land reduced from >50% in the 1980s to near zero in 2006. Urban 

development results in more impervious surface in the watershed, it reduces infiltration 

of rainfall into the soil and the time of concentration for runoff, and it increases 

discharge [Hollis, 1975; Hundecha and Bardossy, 2004]. Therefore, the frequency and 

magnitude of extreme discharge expected to increase due to these changes [Jennings and 

Jarnagin, 2002; Ogden et al., 2011]. The larger discharge ratios in Whiteoak Bayou 

(gauge 8074500), Halls Bayou (gauge 8076500) and Brays Bayou (gauge 8075000) are 

likely associated with increases in impervious surfaces due to urbanization. The less 

urbanized watersheds (8070500, 8068000, 8068500, 8069000) also have seen increases 

in developed land. Several high values exist in the time series of maximum discharge 

ratios. The events in Caney Ck (gauge 8070500), W Fk San Jacinto Rv (gauge 8068000) 

and Spring Ck (gauge 8068500) may also be associated with the reduction in forested 

area in these watersheds after 1980 (Figure 6.1 & 6.2) 

6.3 Annual Daily Precipitation and TCP Days Exceeding the 90th Percentile 

 The annual 90th percentile daily precipitation is indicated by the red line in 

Figure 6.5 and the TCP days exceeding the 90th percentile is indicated with the blue line. 

Linear trend and stationarity tests have been done for both time series and the change 

point test has been processed only for the 90th percentile daily precipitation. Many 

change points have been detected in both annual daily precipitation and its variance in a 

number of watersheds (Figure 6.6a & 6.6b). All more urbanized watersheds have 

increasing change point or linear trend in their time series for the 90th percentile daily 

precipitation (8074500, 8076500, 8073500 and 8075000, Figure 6.6a). All of the change 
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points occur after 1970 in the more urbanized watersheds (Figure 6.6a). The mean values 

after the change points are ~3-5 mm larger than before. These results match with the 

rapid urbanization that has occurred in these watersheds (Figure 6.1 & 6.2). The less 

urbanized watersheds also demonstrate increases in the 90th percentile daily 

precipitation. Watersheds for W Fk San Jacinto Rv (gauge 8068000) and Caney Ck 

(gauge 8070500) have a statistically significant positive linear trend. They are both are 

located north of Houston. Watersheds for Spring Ck and Cypress Ck (gauge 8068500 

and 8069000) have change points in 1956, with the post-1956 precipitation being 

significantly greater. The majority of the variance of the 90th percentile daily 

precipitation has a change point or linear trend that is associated with increasing 

precipitation variability in the latter part of the record (Figure 6.6b). This indicates that 

most watersheds have experienced increases in the interannual variability of the 90th 

percentile daily precipitation.  
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Figure 6.5. Time series of the 90th percentile daily precipitation and TCP days with 

precipitation larger than the 90th percentile daily precipitation. Change points 

(Pettitt) are detected for the time series of the 90th percentile daily precipitation. 

Mean values before and after the change point are displayed if the change point is 

statistically significant at the 5% level (dash lines), otherwise the whole sample 

mean is displayed (dash lines). Linear trends are also shown for time series (solid 

straight lines) (8074500: Whiteoak Bayou, 8076500: Halls Bayou, 8073500: Buffalo 

Bayou, 8075000: Brays Bayou, 8070500: Caney Ck, 8068000: W Fk San Jacinto Rv, 

8068500: Spring Ck, 8069000: Cypress Ck). 
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Figure 6.6. Significant linear trends and change points in the time series of mean 

and variance of the 90th percentile precipitation (6.6a & 6.6b) and 90th percentile 

discharge (6.6c & 6.6d) for all watersheds. MKT represents the Mann-Kendall 

linear trend test, a “+” (“-“) indicates the trend is increasing (decreasing); “Sta” 

(“No Sta”) means the trend is stationary (not stationary) as determined by the 

Kwiatkowski–Phillips–Schmidt–Shin approach; CPT indicates change points that 

were identified by the Pettitt test. The year of the change is also indicated as well as 

whether the changes was due to an increase (“+”) (decrease “-“). 
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 No statistically significant trend exists in the TCP days above the 90th percentile 

daily precipitation (blue line in Figure 6.5). There is also not a significant difference in 

the mean between the more developed and less developed watersheds. However, the 

more urbanized watersheds tend to have higher values in extreme years (>15 days), and 

most of the extreme years have occurred after 1980. Watersheds for Buffalo Bayou 

(gauge 8073500) and W Fk San Jacinto Rv (gauge 8068000) have significant increasing 

trends in the variance of TCP days above the 90th percentile. This indicates that there is 

increased interannual variability in the frequency of TCP events. There is a great deal of 

interannual variability in the time series of TCP days exceeding the 90th percentile. This 

variability is controlled by the number of rain-generating TCs that make landfall in the 

study area, how fast they move across the study area, how much precipitation they 

brought, and how large an area they effected. Whether there is increase in the global 

landfall TC frequencies is still under debate [Henderson-Sellers et al., 1998; Landsea et 

al., 2006]. This regional analysis reveals no significant trends in the number of TCP days 

above the 90th percentile, but the mean value of the 90th percentile precipitation has 

increased in most watersheds. This indicates that there has been an increase in the 

intensity of heavy TCP events (exceeding the 90th percentile threshold), but generally no 

change in the frequency. The increased variance means more interannual variability in 

the magnitude and frequency of these heavy TCP events.  
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6.4 Annual Discharge Ratios and TCP-related Discharge Ratios Exceeding the 90th 

Percentile 

The 90th percentile daily discharge ratio has a very different pattern than the 90th 

percentile daily precipitation (Figure 6.6c & 6.6d & 6.7). There are statistically 

significant increasing trends in most of the highly urbanized watersheds (8073500, 

8074500, and 8075000), and in half of the less urbanized watersheds (8069000 and 

8075000). That means that the extreme discharge ratios are steadily increasing in most 

watersheds. Figure 6.7 demonstrates the steep slope of the 90th percentile discharges in 

watersheds with more developed land (gauge 8074500, 8073500 and 8075000). Nearly 

all of the more urbanized watersheds in Figure 6.2 have experienced statistically 

significant increases in developed land (>40%) between 1980 and 2006. The absence of 

significant increasing trend in Halls Bayou watershed (gauge 8076500) may be due to 

the already very high proportion of developed land at the beginning of the 1980s (~60%, 

Figure 6.2). There are also 3 years of missing discharge data in this watershed after 

2006.  
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Figure 6.7. Time series of the 90th percentile of daily discharge and days with TCP-

related discharge (-1 to +2 days to the TCP day) larger than the 90th percentile of 

daily discharge. Change points (Pettitt) are detected for the time series of the 90th 

percentile of daily discharge. The sample mean is shown (dash lines). Linear trends 

are also shown for time series (solid straight lines) (8074500: Whiteoak Bayou, 

8076500: Halls Bayou, 8073500: Buffalo Bayou, 8075000: Brays Bayou, 8070500: 

Caney Ck, 8068000: W Fk San Jacinto Rv, 8068500: Spring Ck, 8069000: Cypress 

Ck). 
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 Among the less urbanized watersheds, Caney Ck (gauge 8070500) and Cypress 

Ck (gauge 8069000) show significantly increasing trends in the 90th percentile discharge. 

Watershed for Caney Ck (gauge 8070500) has the largest reduction in forested area (> 

50%) between 1980 and 2006 (Figure 6.2). Watershed for Cypress Ck (gauge 8069000) 

had a ~20% increase in developed land and ~10% reduction in both forest and grassland. 

Forests have shown to play an important role in reducing runoff, even extreme rainfall, 

and reducing the magnitude of discharge [Jones and Grant, 1996; Prosser and Williams, 

1998; Sun et al., 2002]. Developed land generates more runoff due to the increased 

impervious surface. Increases in the 90th percentile discharge in less urbanized 

watersheds may be due to decreases in forested area and increases in impervious 

surfaces. 

Several increasing change points and one statistically significant increasing trend 

have been detected in the variance of the 90th percentile discharge ratio (Figure 6.6d). 

Increases in the variance indicate that there has been an increase in the interannual 

variability in extreme discharge. Several watersheds are showing increases (either 

change point or linear trend) in both the mean and the variance (gauge 8074500, 

8075000 and 8070500). This may make flood control and prevention more difficult 

because it means that extreme discharge is increasing and interannual variability is also 

increasing. Based on these results, it is apparent that changes in land use/cover have a 

major influence on the extreme discharge in watersheds near Houston. 

 No significant trend can be detected in the TCP-related daily discharge ratios that 

exceed the 90th percentile (blue line in Figure 6.7). Therefore, the mean number of 
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extreme TCP discharge events is basically unchanged in all of the selected watersheds 

during the last 60 years. However, the mean number of extreme events in the more 

urbanized watersheds is ~1-2 days more than that in the less urbanized watersheds. For 

example, both Whiteoak Bayou (gauge 8074500) and Brays Bayou (gauge 8075000) 

have seen more active years (> 10 days) in the time series, especially after 1980 (Figure 

6.7a & 6.7d). Both of these watersheds are highly developed and have experienced 

substantial urbanization between 1980 and 2006.  

There is substantial interannual variability in the time series of TCP discharge 

ratios exceeding the 90th percentile. Whiteoak Bayou (gauge 8074500) is the only one 

showing statistically significant increasing trends in the variance. However, most of the 

years with >10 days have occurred since 1980. The increases in the 90th percentile along 

with the substantial interannual variability suggest that the risk of flooding due to 

extreme TCP-generated discharge has increased.  

 In this section, precipitation and discharge data have been reorganized into 

composites corresponding to the four periods of the available land use data (Figure 6.1). 

This approach will help to quantify how urbanization has influenced TCP and discharge. 

Decadal means have been calculated for the precipitation and discharge ratios using the 

year from which land use data is available as the mid-point. For example, land use data 

from 1980 is compared to precipitation and discharge data from 1976 to 1985. The 1980 

land use data are assumed to be representative of the entire 10 year period.  

 Figure 6.8 shows variations in the annual maximum daily precipitation/TCP, and 

annual maximum daily discharge ratio/TCP discharge ratio. The annual maximum 
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precipitation had more pronounced changes in the more urbanized watersheds. Three out 

of four (8074500, 8076500, and 8073500) watersheds with more developed land have 

increases in annual maximum precipitation (Figure 6.8, blue lines). Two out of four 

(8068500 and 8069000) of the less urbanized watersheds also show increases in annual 

maximum precipitation. They are the two showing largest increased in developed land 

among the four less urbanized watersheds (Figure 6.2).  

 There are more variations in the annual maximum TCP (red lines in Figure 6.8) 

during the four periods. Several watersheds show no change or slight decreases in 

maximum TCP. This is due to the high interannual variability in the TCP. Watersheds 

for Whiteoak Bayou (gauge 8074500) and Caney Ck (gauge 8070500) are the two 

demonstrating some increasing patterns in the maximum TCP.  
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Figure 6.8. Variations of the annual maximum daily precipitation, maximum TCP, 

maximum discharge, and maximum TCP discharge for different watersheds 

between 1980 and 2006 (8074500: Whiteoak Bayou, 8076500: Halls Bayou, 

8073500: Buffalo Bayou, 8075000: Brays Bayou, 8070500: Caney Ck, 8068000: W 

Fk San Jacinto Rv, 8068500: Spring Ck, 8069000: Cypress Ck). 
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Patterns of the maximum discharge ratios have larger contrasts between the more 

urbanized and less urbanized watersheds (bars in Figure 6.8). Except for the engineering 

controlled watershed (Buffalo Bayou, gauge 8073500), all other three more developed 

watersheds (8074500, 8076500, and 8075000) have significantly larger composite 

discharge ratios than the less urbanized watersheds. The majority of watersheds have 

increased discharge ratios (both annual maximum and TCP related maximum) from the 

1980 era to the 2006 era, even though some watersheds show no change or even 

decrease in the annual maximum precipitation or maximum TCP. This demonstrates that 

urbanization has a strong and widespread effect on intensifying discharges in the rivers 

around Houston.  

 Finally, the same 10-year averages have been calculated for the 90th percentile 

precipitation/discharge ratios and TCP days/discharge ratios exceeding the 90th 

percentile (Figure 6.9 & 6.10). Figure 6.9 shows no significant changes in the 90th 

percentile daily precipitation for almost all watersheds from the 1980 composite to the 

2006 composite (lines). The TCP days exceeding the 90th percentile have not changed or 

have slightly decreased for several watersheds, with larger averages in the more 

urbanized watersheds (bars in Figure 6.9a).  
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The 90th percentile discharge ratios again show very noticeable increases for all 

8 watersheds (lines in Figure 6.10). Mean values of the discharge ratio for the more 

urbanized watershed (Figure 6.10a) are almost twice of the less urbanized watersheds. 

This is impressive because Figure 6.9 shows that there is not much difference in the 90th 

percentile precipitation between the more and less urbanized watersheds. The 

composites generally agree with the results obtained from the 60-year time series 

analysis. Most of the changes in TCP-related discharge are mainly due to the land use 

change. 

6.6 Conclusion and Discussion 

Objective 3 investigated variations in TCP and extreme discharge in watersheds 

undergoing rapid land use/cover change near Houston. More urbanized watersheds have 

larger annual maximum discharge ratios. Many watersheds undergoing rapid 

urbanization have significant increasing trends or change points in their annual 

maximum discharge ratios. This is partially due to more runoff rapidly generated from 

the impervious surface and less infiltration from the reduced vegetation. Engineering 

projects (such as dams and water holes) also play an important role in reducing the peak 

flows in one controlled watersheds. Many of the annual maximum discharge events are 

caused by TCP. This is especially pronounced after 1980. No trend exists in the 

maximum TCP and most watersheds receive similar mean TCP. In certain years, some 

watersheds have much larger extreme TCP values than other watersheds. These extreme 

TCP events tended to occur more often after 1980. 
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Some watersheds have statistically significant increasing trends in the 90th 

percentile of annual precipitation and some have increased change points. No change is 

observed in the annual TCP days exceeding the 90th percentile. All watersheds have ~ 5 

days every year with TCP greater than the annual 90th percentile precipitation. This 

demonstrates the importance of TC systems in generating extreme precipitation in 

Texas. Years with more severe TCPs are more likely to happen in watersheds with more 

developed land cover after 1980 (gauge 8076500, 8073500 and 8075000). There are 

watersheds showing increased variances in both the 90th percentile precipitation and the 

frequency of TCP days exceeding that threshold. This indicates that the risk of heavy 

TCP has increased and that variability in TCP has also increased. 

The annual 90th percentile discharge ratio demonstrates a larger spatial contrast 

determined by the land use. The more urbanized watersheds basically have larger mean 

discharge ratios. The most highly urbanized watersheds have the most pronounced 

increasing trends. Many of time series have both experienced increases in both the mean 

and variance. Two less urbanized watersheds also demonstrate statistical significant 

increasing trends, but their magnitudes are not as big as those for the more urbanized 

watersheds.  

The more urbanized watersheds also have more TCP discharge exceeding the 

90th percentile (~3 cases annually on average) than the less urbanized watersheds (< 2 

cases). Because of the high interannual variability in TC activity, no statistically 

significant trend exists in the TCP discharge exceeding the 90th percentile. Only 

Whiteoak Bayou watershed (gauge 8074500) has an increasing trend in its variance. The 
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more urbanized watersheds tend to have more years with >10 TCP discharges exceeding 

the 90th percentile after 1980.  

The composite analysis shows similar results to the 60-year time series. Many 

watersheds have increased annual maximum precipitation and TCP from the 1980 era to 

the 2006 era. The increasing patterns are more uniform for the annual and TCP-related 

maximum discharge ratios. Urbanized watersheds have larger extreme discharge ratios 

on average. No change is evident in the 90th percentile precipitation. The TCP days 

exceeding the 90th percentile basically have no change or slight decreases. Despite this, 

the 90th percentile discharge ratios have substantial increased in all watersheds. The 

more urbanized watersheds also have around twice the 90th percentile discharge ratios as 

compared with the less urbanized watersheds. Most watersheds show no changed or 

slightly decreased number of TCP discharge events that exceed the 90th percentile.  

This is the first study exploring the contributions from both the TCP and 

urbanization to the extreme precipitation and discharge in watersheds located in the 

rapidly developing city of Houston. There are increases in the annual maximum and the 

90th percentile precipitation. The increases in the maximum and the 90th percentile 

discharge ratios are more obvious than the precipitation. The discharge intensifying 

effects from more impervious surfaces are very strong and widespread, with more 

pronounced effects in the more urbanized watersheds. No trend can be detected in the 

TCP days and discharges exceeding the 90th percentile thresholds. But the TC 

contributed many cases of the annual maximum discharge and very large discharges. 

Years with many extreme TCP and discharges tend to happen more in the more 
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urbanized watersheds after 1980. Some watersheds also show increased variances in the 

annual TCP discharge ratios exceeding the thresholds. Although no long-term trend 

exists in the TCP and TCP-related extreme discharge, there may be an increased risk of 

floods from the TCP because of the statistically significant increases in annual maximum 

discharge and 90th percentile discharge that have been observed. There is increased 

uncertainty in this flood risk because the increased variability in the most extreme 

precipitation like TCP, possibly influenced by urban heat island, aerosols, and climate 

change. 
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7. SUMMARY AND CONCLUSIONS 

7.1 Summary 

Tropical cyclones (TC) can cause lots of damage to the environment and people 

in Texas. Heavy precipitation is a very important component of TCs and is one of the 

major causes of inland flooding in Texas. This dissertation used 60 years of precipitation 

and streamflow data to improve understanding of three related topics on TCP in Texas: 

1) How has TCP varied temporally and spatially in Texas? 2) Which global, regional and 

local factors control the interannual variations in TCP in Texas? 3) How does TCP 

contribute to annual extreme precipitation and discharge events in Houston watersheds 

undergoing rapid urbanization? TCP has been extracted from rain gauges using a newly 

developed objective method (MRBT). Spatial patterns and temoporal trends have been 

analyzed for the daily, monthly and annual TCP metrics. Regional and large-scale 

climatic and oceanic forcing variables have been extracted from the NCEP/NCAR 

reanalysis. Seasonal forecasting models have been constructed for the annual TCP, TCP 

percentage and TCP event of Texas. Interpretations of physical mechanisms have been 

made for all parameters in the constructed models by using the current knowledge and 

available observations. Finally, TCP was compared with annual extreme precipitation 

and discharge in watersheds near Houston. Land use/cover change was analyzed to 

determine how it has influenced TCP-related extreme discharge in these watersheds.  
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7.2 Conclusions 

This study uses both quantitative evaluations and statistical models to investigate 

a long-term climatology of TCP and its impacts in Texas. The spatial pattern of the TCP 

reveals that most extreme daily TCP (>300 mm) occurs near the center of circulation and 

in the front half and right side of the TC. The largest TCP events in Texas are associated 

with slow moving or stalled TC systems. August and September recieve the most 

extensive and heaviest TCP in Texas. Coastal areas generally have more frequent and 

intense daily TCP (>50 or >100 mm). Rare TCs can produce extreme daily TCP at some 

inland locations (Hurricane Gilbert, >400 mm) in western Texas. Texas has 123.5 mm 

and 17.8 km3 of TCP annually, which accounts for ~20% of all TCP that occurs in the 

U.S. No statistically significant long-term trend (>50 years) can be observed in the 

annual and daily TCP metrics. There are statistically significant increasing and 

decreasing trends at some gauges over shorter time periods (10-30 years). Texas TCP is 

dominated by interannual, biennual, 5-8 year, and >10 year oscillations.  

ENSO is the most important variable in the statistical models. La Niña reduces 

vertical shear in the Caribbean and tropical Atlantic and increases the probability of 

cyclogenesis [Gray, 1984a; b]. The addition of thermo-dynamic predictors (MPV and 

vorticity) have significantly increased predictive skill and cross-validation accuracy of 

the comprehensive models for the annual TCP and TCP percentage. Pre-season MPV in 

the Gulf of Mexico and vorticity in the MDR are connected to the maximum wind speed, 

translation speed and size of TCs that make lanfall in Texas. Other predictors in our 

models all have physical connections to seasonal TCP in Texas. For example, low sea 
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level pressure in the Gulf of Mexico is favorable to the formation and development of 

TCs in the Gulf of Mexico and it produces more TCP in Texas. Warmer than normal 

SSTs in the Caribbean enhance TC genesis and also support TCs that formed in the 

Atlantic and then move through the region. The negative NAO may produce more 

westward “straight moving” TCs and less winter precipitation, and therefore increase 

TCP in Texas. 

Urbanization may enhancing annual maximum precipitation and maximum TCP. 

There are increases in the annual maximum and the 90th percentile precipitation 

thresholds. Increases in the maximum discharge and the 90th percentile discharge ratios 

are more obvious than the precipitation. Increases in discharge appear to be driven by the 

increased impervious surfaces and they are most pronounced in the more urbanized 

watersheds. No trend can be detected in TCP days and TCP discharge exceeding the 90th 

percentile. However, TCs are frequently responsible for the annual maximum discharge. 

There is a tendency for their to be more extreme TCP events since 1980. Some 

watersheds also show increased variance in the annual TCP discharge ratios. Although 

no long-term trend can be observed in the TCP and TCP-related extreme discharge, there 

may be an increased risk of floods from TCP because of the statistically significant 

increases in annual maximum discharge and 90th percentile discharge that have been 

observed. There is increased uncertainty about flood risk because of the increased 

variability in extreme precipitation (including TCP).  

The three major findings of this disservation are: 
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 A new MRBT method provides more complete and accurate estimations 

of daily TCP rain regions by considering both the TC size and TC 

translation speed from observations. 

 Multiple linear regression models can provide good skill in forecasting 

annual TCP, TCP percentage, and TCP events in Texas. The 

comprehensive models can explain between 32% and 43% of the variance 

of the seasonal TCP metrics, and the simple models can explain 18% to 

27% of the variance. Nearly all the parameters in the final models have 

statistical significant p values (<0.05) and reasonable physical 

interpretations. The modeled and cross-validation statistics show that 

most of the models are stable and robust. 

 The case study of Houston reveals that urbanization may intensify the 

impacts of TCP-related flooding. 

7.3 Future Research 

I will keep improving my objective method (MRBT) by targeting uncertainties in 

the missing values of TC sizes and the observation bias of gauged precipitation 

introduced by high wind speeds. I will compare the results from the improved objective 

method with remotely-sensed precipitation products such as the TRMM Multisatellite 

Precipitation Analysis (TMPA) and radar data. I also plan to construct long-term TCP 

climatology for other regions. 

I would like to investigate how urbanization influences extreme discharge 

(especially the TC-related discharge) in the whole U.S. This will involve analyzing 
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historical patterns and trends in the TCP extracted by the improved MRBT method and 

the river gauge data. This can also help to identify hot spots for physically-based 

modeling studies. I also plan to couple the high resolution Weather Research & 

Forecasting Model (WRF) and the fully distributed hydrological model to investigate the 

TCP’s hydrological response in selected watersheds. 

 I want investigate the impacts of TCP on infrastructure and society. For 

example, I plan to incorporate the extreme TCP and floods into the prediction models for 

hurricane power outages. I plan to new versions of power outage prediction models, 

compare their performance, and evaluate the role of TCP in them. 
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