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ABSTRACT 

 

 Femtosecond time scale allows us to follow and control atomic and molecular 

motion. The atomic vibrations happen in the range of femtosecond scale. Thus, 

femtosecond technology effectively measures the atomic vibration. However, to 

determine electron motion, one needs to reach sub-femtosecond time scale that is in 

attosecond time scale. 

 High Harmonic Generation (HHG) is a non-linear process that converts infrared 

light to shortest wavelength, such as in the XUV regime. HHG allows to explore 

electronic motion and to control electron dynamics. HHG easily reaches to XUV region 

and is enabling attosecond pulse generation. 

 In this thesis we focused to generate attosecond pulses by using noble gases and 

their mixtures.  We used only argon gas, only hydrogen molecule and their mixture with 

neon gas. We wanted to improve the conversion efficiency (10-6) of the fundamental 

light into high harmonics.  We use Ne and H2 gas mixture to look enhancement of the 

HHs. 
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NOMENCLATURE 

 

as   Attosecond 

CCD   Charged Coupled Device 

fs   Femtosecond 

HHG   High Harmonic Generation 

MCP   Micro Channel Plate 

SLM   Spatial Light Modulator 

t   Time 

XUV  Extremely Ultra Violet 
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1 INTRODUCTION 

 

The study of light-matter interactions was started with the discovery of the 

photoelectric effect by Heinrich Hertz in 1887 and with studying of hydrogen emission 

lines (Balmer lines) by Johann Balmer in 1885. After Einstein studied the photoelectric 

effect in 1905, and Bohr introduced a quantum model of atom in 1913, Bohr then 

reproduced the Balmer’s spectral line series. The understanding of emission and 

absorption of atoms and molecules brought science a better knowledge of the nature of 

light. This knowledge of the atoms and molecules resulted in the development of 

quantum mechanics at the beginning of the 20th century [1]. 

After the invention by Mairman of a ruby laser in 1960, intense laser fields with 

intensities ranging from          ⁄  to          ⁄  have started to be used in 

laboratories all over the world. In quantum mechanics, particles can pass through 

classically forbidden regions by tunneling through the barrier. When to the Coulomb 

potential of an atom is strongly distorted by the laser field, an electron from outer shell 

of the atom can tunnel from the bound state to the continuum (Keldysh 1965), and such 

laser fields are called strong fields [2]. Pulsed lasers exist that can produce short pulses 

with durations from nanoseconds (1 ns=10-9 s) to femtoseconds (1 fs=10-15 s). In the 

latter case, lasers commonly use a wavelength of around 800 nm. If electrons experience 

a strong interaction with the laser field they ionize, acquire kinetic energy in the laser 

field and then recombine with parent ions; the whole process results in large number of 

laser photons converted into one photon with frequency equal to a multiple of the laser 
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frequency. This can take place for many atoms interacting with laser field, and this 

process is called high harmonic generation (HHG) [1]. 

Laser radiation-matter interaction is not only an interesting subject in its own 

right, but is also related to a broad range of fields, for instance for tracing chemical 

reactions, since an ultra-short (femtosecond) pulse can be used for detection of 

molecular vibrations. The HHG is also used to create attosecond pulses (1 as=       ) 

[3]. With attosecond pulses one can detect electron dynamics, which is much faster than 

the molecular motion [4]. Moreover, the HHG can be used to determine intermolecular 

distance [5], [6] or photo recombination cross section [7]. 
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2 INTERACTION OF INTENSE LASER PULSES WITH ATOMIC AND 

MOLECULAR SYSTEM 

 

2.1 The Laser Field 

The classical electromagnetic field is described by the electric   and the 

magnetic   field vectors. These fields satisfy the Maxwell’s Equations [8], [9]. The 

electric field and the magnetic field are derived from scalar     and vector ( ) 

potentials. 

                
 

  
             ( ) 

                        ( ) 

Electric and magnetic fields are invariant under the gauge transformation because 

  and   potentials are not exactly defined according to Eq. 1 and Eq. 2.      

   ,         
  

k, where k is a real function depends on r and t. One can choose the 

vector potential. 

                      ( ) 

If the   satisfies condition in Eq. 3, we are in the Coulomb gauge. This choice is 

possible when there is not any source. Then one can take     and   satisfies the wave 

equation.  

          
 

  
  

   
                 ( ) 
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where c is the velocity of the light in vacuum; 

The solution is written for a monochromatic field 

        
  

  
                      ( ) 

                                ( ) 

            
  

  
                     ( ) 

where k is the wave vector that is the propagation direction of the electromagnetic 

field,       is the angular frequency, and   is the phase of the laser field. 

The electric field of the one atomic unit is given by    
 

      
         

  
 

  
 

where   is the electric charge,    is the Bohr radius and    is the vacuum permittivity. 

Then the intensity of the one atomic unit is the time averaged Poynting vector (the rate 

of energy transfer per unit area)     
    

 

    
           

 

   
  , where    is the vacuum 

permeability. This determines the relationship between electric field and the intensity in 

the atomic unit [1] : 

   √
 ( 

   
⁄ )

         
          ( ) 
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2.1.1 Generating Femtosecond Pulses 

Since the laser was invented in 1960, lasers have been used as a high power light 

source. Lasers can produce high power with low pulse energy with duration time of 

<100 fs, but their energy decreases with repetition rate. The pulse energy of low 

repetition rate femtosecond lasers can be in the order of 1 J, whereas the pulse energy is 

in the order of mJ for most kHz lasers. Ti:Sapphire is a commonly used gain medium for 

femtosecond lasers since it has a wavelength of approximately 800 nm. Femtosecond 

oscillators using gain medium (Ti:Sapphire) can reach pulses with milijoule-level 

energies, but direct amplification of the pulse to millijoule level can cause a damage to 

the laser crystal. To avoid the damage, the pulses from the oscillator are stretched to 

hundreds of picoseconds to have a lower peak power. Then the pulses need to be 

amplified by using a regenerative amplifier that is similar to a laser oscillator so that the 

pulses with high energies reach the femtosecond duration [10]. 

2.2 Ionization 

Ionization is a transfer of an electron through a continuum from a bound state of 

an atom. Rare gases are generally used in HHG to generate attosecond pulses because 

they can withstand high laser intensity [10]. Then the electron turns back the ground 

level and it emits its kinetic energy as a XUV light. There are several basic requirements 

for femtosecond lasers to produce the attosecond pulses. First, the intensity on the gas 

target must be around          ⁄  to ionize rare gases, and the pulse energy must also 

be 100 J to reach required intensity. The second, the pulse duration should be short 

enough (<100 fs) for generating single attosecond pulses.  



6 
 

Hollow-core fibers filled with noble gases are suitable for broadening the 

spectrum of laser pulses with higher energies because the ionization potentials of noble 

gases are much larger than that of solids. By using solid materials, there is also a limit 

because the fiber can be damaged by the intense laser field. However, gases can recover 

after the ionization when the laser pulses are gone, but using solid materials can be 

permanently damaged by the laser [10]. For these reason, gas-filled hollow-core fibers 

are commonly used for attosecond pulse generation. 

Ionization occurs because when the strong laser field tunnel ionizes the gas target 

they create an electron wave packet that is driven back and forth by the laser field. When 

the driven electron wave packet recombines the core, it emits an attosecond pulse [11].  
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3 THEORETICAL DESCRIPTION OF HHG 

 

3.1 Three Step Model  

High harmonic generation stems from electron-ion interactions. That means there 

is a probability for an electron to return to the parent atom with a high kinetic energy for 

each laser cycle. At the highest intensities, the bound electrons tunnel into the continuum 

over the Coulomb barrier. Then HHs decrease in low intensity, but then we observed a 

plateau where the intensity of the HHs remains approximately same. The plateau ends up 

with a sharp decrease called high harmonic cutoff where high harmonic generation ends, 

Fig. 1. The cutoff energy depends on linearly on the increasing laser intensity [12]. The 

cutoff energy also depends on the ponderomotive energy that refers to free electrons 

averaged kinetic energy gained in the laser electric field [13]. In the HHG process, when 

the gas atoms or molecules are driven by the intense laser field of frequency   , they 

emit radiation of higher frequencies     where q is odd integer in Fig .2. 
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Figure 1 High Harmonic Spectra where spacing between the harmonics is regular and 
odd multiplier of the driving laser frequency     

 

 The cutoff (             ) is given as [14], [15]. 

                         ( ) 

where        ⁄  a.u  is the ponderomotive energy,   is the laser intensity,   is the 

frequency, and the    is the atomic ionization potential of considered atom. This shows 

that harmonics are mostly generated with the highest frequency and the shortest 

wavelengths. 
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Figure 2 High Harmonic Generation (HHG) Process 

The high harmonic generation has been explained by the three-step model in 

Fig.3 [16]. Initially, the electrons are confined by the coulomb potential of the nucleus. 

The laser electric field lowers the potential barrier at each optical half cycle. When the 

intensity is high enough, electrons can tunnel through the barrier, and go into the 

continuum. This is the first step. During the continuum, the Coulomb potential is ignored 

and the electrons are considered as classical particles. The laser field accelerates the 

electrons away from the parent ion and drives back when the electric field sign is 

changed. During this process, the electrons will gain larger kinetic energy from the laser 

electric field. This is the step two. In the step three, the electrons recombine the parent 

ion, and emit their kinetic energy as         [13], [17]. 
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Figure 3 Three Step Model of HHG 

Taking into account linearly polarized laser electric field in the z direction is 

given 

                              (10) 

where    and    are the laser field’s amplitude and the frequency, respectively. If the 

electron is initially considered at        position and the  ̇     , we will have the 

position of the electron with the initial conditions as 

     
  
 

   
             

                 
  (  ) 

     
  

  
 [                        ] (  ) 

 

 

 

 

  

 

Step 1 Step 2  Step 3 

Electron acceleration in the laser field Tunnel ionization Recombination  

XUV 
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where the       is the phase. We also obtain the kinetic energy is      
 

 
 ̇  in a.u 

and we get 

where     
  
 

   
  in atomic unit. Then the emitted photon energy is given by 

                     (  ) 

In Eq. 13 the electron is recombined if the ionization phase is between      
 

 
 , and 

it never returns back if   
 
      .      has the maximum value at         and 

       ,             and then the cutoff energy is  found by            

      .  

One can determine the phase of ionization    and the phase of recombination    

if knowing the     . 

[                          ]         (  ) 

             
  

    

   
        (  ) 

The trajectory is the path of the electron from    to   . There are two trajectories 

below the             in Fig. 4. They are that the short trajectory is for        

   ,             and the long trajectory is for                       . 
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Figure 4 Behavior of the electron in oscillating field 

The high harmonics are emitted each half cycle of the laser fields and the 

harmonic fields       can be expressed as 

          (  
  

  
)    (  

 

  
)          (  

 

  
)  

  (  
  

  
)             (  ) 

The Eq.16 can take nonzero values only at odd multiplies of    that explains why we 

only see the odd harmonics [16]. 

High harmonics are kind of train of the pulse repeated every half cycle of the 

laser field of the fundamental wave as shown in Fig. 5 [18]. 
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Figure 5 Bursts of HH radiation during two cycles of the fundamental optical field. 

3.2 Lewenstein’s Model 

HHG is theoretically explained by Lewenstein’s model that gives quantum-

mechanical justification of the 3 step model that is classical explanation of the HHG [19] 

, [16]. The interaction of the laser field is described by the time-dependent Schrödinger 

equation (TDSE) 

 
 

  
       [

  

 
               ]           (  ) 

where      is the atomic potential and      is linearly polarized laser field in the z 

direction. To solve TDSE, there is an assumption called strong field approximation, the 

SFA model [19]. 

 The contribution of all the excited states can be  neglected 

 The depletion of the ground state can be neglected 

0 T/2 T 3T/2 2T 

Fundamental field Harmonic intensity 
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 The role of the atomic potential      on the motion of the continuum electron 

can be neglected. 

Under this approximation, the time-dependent dipole moment 

     ⟨      |  |      ⟩ is given by, 

     ∫    
 

  
∫     (      )   [           ]      (       )       (  ) 

where p is the canonical momentum and d(p) is the dipole transition matrix element. 

     ∫        is the vector potential and           is the semi-classical action, which 

means that the            describes the free electron motion in the laser field with a 

constant momentum and electron leaves from the parent atom at time    and returns back 

the same position at time  , defined as 

          ∫     (
[   (   )]

 

 
   )

 

  
       (  ) 

The approximation for the hydrogen atom, 

      
  √ (   )

   

 

 

(     )
         (  ) 

Also the ground state wave function is alternatively given 

     (     
  

 ⁄ )   [
   

(   )
]       (  ) 

where    

  
 is the spatial width. 
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Eq. 18 is consistent with the three step model,       (       ) corresponds to the 

ionization at time    , and    [           ]  gives the propagation from    to   

and   (      ) describes the recombination at time   [16]. 
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4 EXPERIMENTAL SETUP AND CONDITIONS FOR HHG 

 

4.1 Laser Systems 

Our laser system consists of four lasers feeding each other. They are named by 

the manufacturer as Millenia V, Kapteyn-Murnane (KM oscillator), Evolution and 

Spitfire (regenerative amplifier) [20], [21]. 

4.1.1 Millenia V 

The Millennia V is a solid-state, high power, visible continuous wave (CW) laser 

that supplies larger than 5 W of green 1064 nm output pulse from the output of a diode 

pumped intracavity Nd: YAG laser. The emission is then frequency doubled by a 

temperature tuned lithium triborate (LBO) crystal resulting in radiation at 532 nm. In our 

system, Millennia V is used to pump the femtosecond oscillator Kapteyn-Murnane (KM) 

with a continuous optical power of 5.5 W at 532 nm wavelength [22]. 

4.1.2 Kapteyn-Murnane (KM) Oscillator 

KM is a mode-locked Ti:Sapphire femtosecond oscillator pumped by Millennia 

V. To achieve the Kerr lens effect, concave mirrors are placed which form the telescope 

with the crystal in the focal plane. In Fig. 6 Ti:Sapphire femtosecond oscillator is shown 

where M1, M2, M3, M4, M5 are the cavity mirrors, and where M3 is also the output 

mirror. The group velocity dispersion experienced by the laser pulse traveling inside the 

crystal is compensated by a pair of prisms P1 and P2 that are also used to compensate 

the dispersion in the crystal. The output of the oscillator is a train of pulses emitting from 
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780 nm to 830 nm, pulse duration is about 35 fs, repetition rate close to 80 MHz, pulse 

energy 5 nJ/pulse and the average power is about 400 mW [20]. 

 

 

 

 

 

 

 

Figure 6 Schematic demonstration of the KM oscillator 

4.1.3 Evolution V 

Evolution is a Q‐switched Nd:YAG laser (Spectra Physics, Merlin) at a repetition 

rate 1 kHz, output power 10 W emitting at 532 nm wavelength with ~10 ns pulse 

duration. The gain medium and pump lasers are enclosed inside the laser head and co‐

located in a directly water cooled resonant cavity. The evolution is used to pump the 

spitfire. 

4.1.4 Spitfire (Regenerative amplifier) 

The regenerative amplifier technique is used to amplify femtosecond pulses. In 

our system in Fig 7, it is used to amplify a seed pulse (KM Oscillator) that generates 
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thousands of pulses with repetition rate around 80 MHz. However, the amplifier is 

pumped by evolution that has repetition rate of several kHz. Thus only small part of the 

pulses from the oscillator is allowed to be amplified. The seed pulse will be inside the 

cavity when the pump pulse passes through the crystal. When the gain is saturated, the 

amplified pulses are let out of the cavity. For this reason a fast optical switch that has a 

response time in the nanosecond range is required. Our Spitfire contains three main 

parts, stretcher, regenerative cavity and compressor. The seed pulses are expanded in a 

gain stretcher during the time. A Photodiode that is placed behind one of the cavity 

mirrors helps one to monitor trace of the femtosecond pulses on the oscilloscope. The 

Pockels cell changes the refractive index of the material under the applied electric field. 

So the linearly polarized pulse is generated. The amplifier is pumped by evolution at a 

repetition rate 1 kHz. The output of the amplifier      mW is a train of the pulses 

having repetition rate 1 kHz, pulse energy 0.8 μJ and pulse duration is 50 fs [10], [20]. 

 

 

 

 

 

Figure 7 Schematic of Regenerative Cavity 
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4.2 Pulse Measurement 

4.2.1 Frequency Resolved Optical Gating (FROG) – GRENOUILLE 

Frequency resolved optical gating (FROG) helps researchers characterize the 

pulses in the temporal domain. FROG has the ability to measure femtosecond pulse’s 

intensity vs. time [23]. The FROG setup shown in Fig. 8 consists of an auto-correlation 

and a spectrometer’s setup. Autocorrelation separate a laser pulse in two and delayed 

one pulse with respect the other and focusing and recombining them on the nonelinear 

medium (Second Harmonic Crystal). The SHG crystal produces twice the frequency of 

the input laser [23] and the spectrometer determines the shape and the phase of the laser 

pulse. The FROG is updated by Trebino et al. They replaced the beam splitter, delay line 

and beam combining optics with Fresnel biprism [20]. 
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Figure 8 (a) Optical scheme of SHG FROG. (b) GRENOUILLE is the simplest version 
of the FROG. 

Grenouille is a combination of two cylindrical lenses, Fresnel biprism, SHG 

crystal. The first lens focuses the beam in to SHG crystal, the Fresnel biprism splits the 

beam, and delays the beam one another, and the second lens focuses the beam in to CCD 

camera. In Fig.9 show the results of the pulse shape and duration taken from the 

Grenouille (8-20, Swamp Optic) [20]. 
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Figure 9 (a) Images of femtosecond pulse taken from GRENOUILLE. (a) Compressed 
pulse at 52 fs. (b) Stretched at 81 fs. (c, d) Retrieved images are from compressed pulse 

and the stretched pulse, respectively. 
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4.3 Optical Setup 

  In our setup, we focused light from a 1 kHz Ti:Sapphire laser system that 

produces 50 fs duration pulses with pulse energy of 0.5 mJ into a 1 mm thickness gas jet 

filled with low pressure argon. The Fig. 14, which is general setup of experiment, is 

shown on page 27. Before the beam reaches the gas jet, the beam hits the SLM. In our 

experiment, the SLM (Hamamatsu LCOS-SLM X10468-02) was used, which is suitable 

to have femtosecond radiation in our setup since the SLM is able to withstand intensities 

up to         c  ⁄  [24]. Also it was designed to work efficiently within a 

wavelength range of 750 nm to 850 nm. The phase modulation of the SLM was 

produced 2π radians of phase modulation for 800 nm wavelength according to factory 

calibration [24]. In Fig. 10 gives the configuration of the LCOS-SLM. It is made of a 

glass substrate, an alignment films, a liquid crystal layer, a dielectric mirror and a silicon 

substrate. Voltage is applied to the silicon substrate, and the phase is modulated by the 

alignment of the liquid crystal and the dielectric mirror is used to reflect a broad 

spectrum of light, for example the entire spectrum of the Ti: Sapphire laser. However, 

for different wavelengths the produced phase shift is different, and in general this effect 

should be taken into account, i.e. 633 nm He-Ne laser has a larger phase modulation of 

        [24]. The SLM is replaced one of the mirrors to enable manipulation with 

the wave front of the laser beam that was necessary for other experiments that are not 

part of this work. In the present work a constant voltage was provided on all pixels of the 

SLM, corresponding to a constant phase shift across the beam, which did not affect 

physical mechanisms described in this project. 
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Figure 10 Configuration of LCOS-SLM 

An important tool in our setup is an XUV McPherson Monochromator (model 

248/310G) that is designed to cover wavelength region from 1 nm to 300 nm. The 

McPherson Monochromator (model 248/310G) permits the user to adjust the entrance 

slit, exit slit and grating mount to accommodate gratings whose radius of curvature vary 

slightly from nominal radius (998.8 mm or 39.323 inches). The McPherson 

Monochromator is related to actual wavelength by a relationship in Eq. 22 that is plotted 

in Fig. 11: 
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where    is the wavelength in nanometer, d is the grating function (  
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     degree is the incident angle, L is the counter reading in inch,    
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radius of the Rowland circle,    is the grating radius            .  
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Figure 11 A typical wavelength calibration charts for the distance reading in terms of 

inches along the Rowland circle 

  
4.4 Micro-channel plate (MCP) and Charge-coupled device (CCD) 

An electronic camera (CCD) has been used to measure the duration of single 

isolated attosecond pulses. An attosecond camera converts temporal information into 

momentum information. The momentum of electrons can be measured using the well-

developed TOF spectrometer (Time of Flight) techniques. The electronic camera works 

to convert light images to electronic signal. The electron images are then processed by 

applying 2.5 kV voltage to the micro-channel plate (MCP). MCP is usually used in 

detectors for electrons, ions, and high-energy photons (UV to x-ray). An MCP looks like 

the round thin glass plate, with a diameter of 40 mm and thickness of 0.5 mm. It is made 

by fusing several millions of thin glass tubes together. When an incident photon of light 

hits the front face of the MCP, it frees electrons. The freed electrons are gained 

acceleration inside the tiny channels of the MCP applying voltage difference between 
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the front and the back surfaces of the plate. The freed electrons are hit by the wall of the 

channel and knock out more electrons, that process is occurred approximately 12 times. 

As a result, for one incident particle,      electrons can be released from the rear 

surface. When a pulsed voltage is applied on the MCP, the gain can be turned on and off 

very rapidly, which serves as a shutter Fig. 12. 

 

 

 

 

 

 

 

 

 

 

Figure 12  Schematic of a micro-channel plate (MCP) 

The main component of a MCP is that it includes a photocathode, a focusing 

lens, a deflection plate, and a phosphor screen. The electron optic lens images the slit to 

the phosphor screen, which can be recorded by a CCD camera. Then the computer 

screen connected by the CCD camera brings us the harmonic picture for our experiment. 

Also the MCP and the CCD can be scanned along the Rowland circle to catch different 

XUV radiation. In Fig. 13, the XUV radiation comes through to grating that makes 
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    degree angle with the Rowland circle. The grating then disperses the XUV 

radiation to different odd harmonics on the Rowland circle. Then MCP (Micro-channel 

plate), similar to electron multiplier, detects the electrons or ions. Finally imaged 

electrons by MCP are transmitted to the lens where images are dropped on the CCD 

camera that it magnifies and centers the electrons on the computer screen [10]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Schematic of the McPherson Monochromator 
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Figure 14 Schematic of the setup for HH generation 

We need low vacuum (      mbar) in the chambers then we use 6 pumps, two 

of them are backing pumps to reach     mbar and four turbo molecular pumps to 

reach    mbar. In the first pumping stage where HHG is originated the pressure is 

around      mbar in the chamber. In the second pumping stage where the McPherson 

spectrometer is located the pressure is around      mbar. We need such a pressure since 
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the MCP channel would be oxidized in high pressure (low vacuum) then MCP would be 

damaged, also the XUV light is mostly absorbed in air so XUV required high vacuum 

(low pressure       mbar ) for transmission [25] , [26]. 

4.5 Gas Jet 

Noble gases are usually used as the detection gas since they have the large 

ionization potential. When the femtosecond pulses are focused on the atomic gas jet, gas 

jet behaves as a photocathode. Then the bound electrons confined by Coulomb potential 

in the gas atoms can leave the gas jet as the XUV photons in Fig. 15. The gas target is 

located in the chamber vacuumed                . Due to the low photon flux of the 

attosecond pulses, the challenge is to have a high length-pressure product to absorb 

enough XUV photons [10]. 

 

 

 

 

 

 

 

 
Figure 15 Schematic of the gas jet 
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Moreover, we calculate the pressure on the gas jet as following way: 

Conservation of mass is given: 

         
              (  ) 

Where         c     is pumping rate of chamber,    is density of gas in the 

chamber,    is the radius of hole on the gas jet,    √
    

 
         is velocity of the 

gas, and    is the density of the gas in the gas jet,   is the molar mass,     

  
      is 

the constant for a monoatomic gas . Then pressure on the jet is given: 

   
  

 
    

       

     
   

         (  ) 

where             gr/cm3, R is the molar gas constant, T is the room temperature. 

Then we find the pressure on the gas jet is around         mbar. 

4.6 Mixture of Gases 

 In the experiment, we try to obtain spectrum from mixture of gases. Ne-H2 and 

Ne-Ar gases were mixed for different pressure. The setup is given in Fig. 16. Before 

mixing the gases, the mixture bottle was completely pumped then the experiment was 

run. The volume of the mixture bottle is around        c        c  .  

An important part of this experiment is that two gases with different ionization 

potentials are mixed. These mixtures are Ar- Ne, and   -Ne mixtures. The harmonics 

from Ar and    gases increase the harmonics from Ne. This process is called Dramatic 

enhancement (DE) [27]. As a result, harmonics are enhanced and extended by many 
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orders compared the only Ar or    gas is used. Since there is a large difference in their 

ionization potentials, first XUV harmonics comes from Ar or    gases. Then the first 

XUV harmonics boost the harmonic generation to higher orders from Ne atoms. 

 

 

 

 

 

 

 

 

 

 

 
Figure 16 Schematic of the Mixture of Gas Experiment 

4.7 Determination of the Beam Size and Intensity 

In laser physics, laser beams can be often described in the form of a Gaussian 

beam. The radial intensity distribution of the Gaussian beam can be written as 

        
       

 
         (  ) 

M
ix

tu
re

 

G
as

 1
 

G
as

 2
 

Experiment 

Exhaust 
Pumping 

Gas jet 



31 
 

To determine the radius of the beam (    one can use an aperture and measure the power 

of the beam limited by this aperture set to different sizes in Fig. 17. Beam power passing 

through a circle with a radius r is: 

 
 

 

 

 

Figure 17 Schematic of the beam size calculation through an iris. 
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   is the total power of the beam,    is the beam radius; at      the 
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In calculating the beam radius, we use an iris to block a part of the beam, Fig. 17. 

We change the radius of the iris in small steps from 0 to 3.5 mm. Then, we measure the 

power for a set of values of r. When the iris radius is 0 mm, the beam is completely 

blocked, but if it is >3.5 mm almost the whole beam goes through the iris. Total average 

power of the beam when the iris is completely open is around 400 mW. Calculating the 

beam radius according to Eq.26 for each pair {      } where eight pairs were taken and 

calculating the average we determine the beam radius            with error       

mm. 

4.8 Estimates for Kerr – Lens Effect 

We produce high harmonic generation (HHG) with a 1 kHz Ti: sapphire laser; 

the laser pulse at the focusing lens has an energy 0.9 mJ and approximately 50 fs 

duration. The calculations of intensities and the Kerr-effect estimates for different 

optical elements are illustrated by Fig. 18. 

The intensity in the focused beam is calculated in the following way. The laser 

intensity of the initial laser pulse is: 

   
  

√    
            

   ⁄        (  ) 

where           is the pulse energy,    is the laser pulse duration and         

         is the area of the unfocused beam. 

Then the beam is partially focused at the chamber window and its intensity for 

the partially focused beam is  
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      [
  

     
]
 

          
    

   ⁄        (  ) 

Finally the beam is fully focused at the argon gas by a lens with a focal length       

cm has intensity 

  
     

    
            

   ⁄        (  ) 

where      =   

√    
=          and the focused beam area is 

       
            c   where             cm  is the focused beam radius. 

 

 

 

 

 

 

 

 
Figure 18 The calculation of the Kerr effect in the propagation of the laser beam through 

optical elements. 
 

Then we calculate the Kerr effect since the refractive index is affected by the 

intensity (dynamic Kerr effect), during the high intensity of laser pulse, the nonlinear 

response play remarkably important role. The refractive index of the medium depends on 

the laser intensity. It increases from the linear refractive index    to      given as [10]: 
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                    (  ) 

where    is the nonlinear refractive index. 

 

 

 

 

 

Figure 19 Kerr lens effect on the pulsed (Green) and the continuous light (CW). 
 

The nonlinear refractive index is the maximum at the center of the beam, and 

gradually decreased to the edge. Laser beam propagates through the nonlinear medium it 

is focused due to changing nonlinear refractive index. In Fig. 19 is shown that the pulsed 

laser has strong Kerr lens effect than continuous wave since the pulsed laser has higher 

intensity than other [20]. 

In the high harmonic generation setup in Fig. 18, the laser beam passes two 

lenses where the second lens are due to Kerr effect, the window of the vacuum chamber, 

and the argon gas jet and their refracting indices are also affected by the high intensity of 

the laser pulse. The lens and the window of the chamber are made of BK7 glass, whose 

nonlinear refractive index is                   
 

 ⁄  [28]. 

Pulsed  

Intensity  

CW  Kerr medium 



35 
 

The Kerr effect for the lens is                              where we 

used for estimate the linear refractive index of the lens,         and the intensity for 

an unfocused beam                  ⁄ . Thus the Kerr effect for the lens system is 

small. 

The Kerr effect due to chamber window and find                  

          for with window’s linear refractive index         . This effect due to 

chamber of the window is also negligible in our system. 

The Kerr effect due to Argon gas is                           with 

nonlinear refractive index of Argon at 1 bar                   
 

 ⁄  at 800 nm, 

            
      

 

 ⁄  at 800 nm [28], [29], and at 1 atm 

            
      

 

 ⁄  [30]. Then we use the value of argon refractive index for 

800 nm and intensity at the focus is           c  ⁄  . 

The Kerr effect creates an additional lens which is second lens on Fig. 18 with 

the nonlinear focal distance 

    
  
 

           
         (  ) 

Also chamber of the window creates Kerr effects and its nonlinear focal length is 
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where            cm is the thickness of the lens. The lens and the window are made 

of BK7 glass, whose nonlinear refractive index is                   
 

 ⁄  [28]. 

According to the Eq. 32 and Eq. 33 the nonlinear focal length for the lens and the 

window are approximately f        , and f         , respectively. 

The final position of the focus position of the lens system in Fig. 18 is that 
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Accepting that  
   

 and  

    
 is much smaller than  

  
 and using power series expansion we 

get total focus shift  

    
 

   
  
  

 

    
       

        (  ) 

The window is located at a distance of      c  away from the focusing lens. 

The original focal length of the focusing lens is       c . Then the total shift of the 

focus position is found             

4.9 Absorption of XUV Radiation in the Gas Jet Medium 

Transmission of HHs in the medium is described by the factor      

           . The absorption coefficient    is determined by the absorption cross-

section     and the neutral atom density      

                     (  ) 
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where       is the neutral atom density of argon that is approximately              at 

the               and the absorption cross section’s values for argon changes in the 

interval from                      to             c  by harmonic number from 

29th harmonic to 11th harmonic, is calculated [31]. Using the above values and the 

thickness        of the argon gas jet we calculated total absorption for three values 

of the gas pressure P=10,50 and 100 mbar  in the HHG region for several harmonics as 

shown in Fig. 20. The jumps on the Fig. 20 are due to    edge of the absorption at the 

wavelength around 42 nm (28 eV). That means transition from 3s level to higher level. 

Absorption dominates lower harmonics at relatively high gas pressures.  
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Figure 20 Transmission (    ) for several harmonics 
 

4.10 Phase Relations in HHG 

There are several approaches to get XUV pulse energy in order to reach 

attosecond pulse duration. The fields that are emitted by the gas atoms in the propagation 

direction are in the same phase and if they constructive each other so they are said in 

phase. 

Phase matching between the fundamental wave and the generated high harmonic 

is important for efficient HHG. In this nonlinear process, phase matching depends on 

both the intensity of the electromagnetic radiation and the order of the nonlinear process.  

HHG is usually realized in a gas medium by focusing the initial laser beam. Therefore, 

 Wavelength (nm) 

 

Tr
an

sm
is

si
on

 E
xp

 [-
κ
 
] 



39 
 

the degree of focusing and the dispersion of the medium strongly affect the nonlinear 

interaction process. The degree of focusing determines the highest intensity that is 

reached and the rate at which the phase changes near the focus due to the Gouy phase 

change [32]. The dispersion of the refractive index of the medium results in different 

phase velocities for waves with different frequencies, and causes a phase mismatching 

[33]. 

The coherence length is the propagation distance from an initial wave to a XUV 

wave where it maintains specified degree of coherence.  

Lc≈π/|  |          (  ) 

where Δk is the wave vector mismatch. The total accumulated phase difference in the 

medium is proportional to Δk and the propagation length (L) in the medium [34] . 

In high-harmonic generation, the gas medium under high laser intensity is turned 

into mixture of neutral atoms and plasma since the ionization of the gas is unavoidable. 

To calculate phase relations in the HHG, the phase mismatch of the harmonic and the 

driving infrared field will be considered [34]. The phase mismatch can be presented as a 

sum of four terms: dispersion in the neutral gas    
 
     

 , dispersion in the generated 

plasma    
 
     , the variation of the dipole phase           and the phase change 

occurring during focusing of the fundamental Gaussian beam (Gouy phase)            

       
 
    

 
    

     
 

       (  ) 
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The first term is related to the difference between the refractive indices of the gas 

for the fundamental radiation and the higher harmonic. If    is the refractive index of qth 

harmonic, then 

   
 
            

    

 
        (  ) 

where the c is the speed of light and    is the fundamental frequency corresponding to 

the wavelength of the pump beam of 800 nm. The refractive index for the wavelength 

range of high harmonics from 11th to 65th   is shown in Fig.21 [35]. 

 

Figure 21 Argon’s refractive index for the wavelength interval corresponding to 
harmonics from 11th to 65th 
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The refractive index for argon at the 800 nm is               [36]. We have 

calculated the phase mismatch contribution.     
 
c    in neutral gas for several 

harmonics as shown in Table 1. 

The second phase mismatch contribution in Eq. 38    
  is caused by the 

generated plasma. Ionization is an inherent process in the HHG. This plasma term 

depends on the difference of the refractive indices for the fundamental and high 

harmonics radiation due to the free electron density created: 

   
 
    

 
   

 
 
    

 
         (41) 

The refractive index of plasma is given by    
 
 √  

  
 

   
 , where    is the 

plasma frequency,    √
     

    
⁄  is the plasma frequency,    is the density of 

charges (their number per unit volume),     and    are the charge and the mass of a free 

electron, and     is the permittivity of free space.  

The electron density is  

                     (  ) 

                  is the density of the argon at the pressure of         ,    is the 

Avogadro number and                   . The quantities the P1 and the P2 are the 

ionization fractions of singly and doubly ionized ions of Ar subjected to the high-

intensity pulses.  These fractions can be roughly estimated by using the data of [15], 
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where the ionization of Ar was calculated for 18 fs pulse with a peak intensity 

of           c   . Taking into account that we have 2.5 times longer pulses for the 

ionization fractions at the typical value of the intensity in our experiments (it 

corresponds to the cutoff energy 68 eV for     and       fo      , respectively), we 

get P1      and P2    . 

Then for the free electron density we obtain                    and we 

have calculated    
 
   c     for several harmonics, as is shown in Table 1. 

The third term in the above Eq.38      is caused due to change of the dipole 

phase induced by the variation of the intensity along the beam in the gas cell. This is 

given by 

   
   

 

  
(

      

   (
 

  
)
 )         (  ) 

where    is the harmonic dipole [37];          
   ⁄  is the Rayleigh length,      

           ⁄   is the beam radius at the focus and    is the wavelength.          is 

the iris diameter.      reaches maxima at two different z positions for the long trajectory 

(typical value                    c 
 

 ⁄  ) and for the short trajectory (typical 

value                  c 
 

 ⁄  ).      has a maximum value of      to     c    

for long trajectory and    to    c    for short trajectory at     
√  
⁄ .      c    
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The phase difference between the long and the short trajectories on a 1 mm for P=100 

mbar is about radian. Typical values of      are also shown in Table 1. 

The last term in Eq.38 occurring while focusing of the fundamental Gaussian 

beam is called the Gouy phase shift. It is the phase difference between a focused 

Gaussian beam and a plane wave. The value of the phase changes from –π/2 to π/2 for z 

is from - to       c     

   
       

 

  
(     

 

  
)        (  ) 

It has the maximum value at     and its changes are related to phase variations in the 

focusing on the fundamental Gaussian beam. We also calculated the       c     for 

several harmonics in Table 1.  

 

Table 1 Phase mismatch for 11th, 19th and 29th harmonics 
 

As shown from the Tab. 1 the phase mismatch gets higher for the higher 

harmonics. This happens because the higher harmonic has higher energy. We lost the 

phase matching in the higher harmonics. The prevailing phase mismatch comes from the 

neutral gas phase mismatch and it increases for higher order harmonics. 

HH number    
 
 c       

 
 c       

  c       
  c    

11th -217.38 66.29     Long 
trajectory 
-16 to -20 

Short 
trajectory 
-1 to -4 

30.06 
19th -656.02 115.14 54.11 
29th -652.82 176.02 84.18 
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4.11 Kerr Lens Mode-locking 

In optics, mode-locking technique is used to generate a laser pulse of light for an 

extremely short duration, on the order of picoseconds (       ) or even few 

femtoseconds (      ). The laser resonator must be synchronized in order to generate a 

short pulse. The synchronization can be achieved by using an element that periodically 

modulates the losses in the resonator. We use such a laser, a femtosecond oscillator, 

which employs a Kerr-lens mode-locking effect. In Fig. 22 a laser resonator with two 

mirrors is shown. One of them is close to being 100% reflective and it plays the role of 

end mirror. The other mirror is partially reflective and serves as a coupling mirror to 

output the laser radiation. When the losses in the resonator are smaller than the gain, a 

laser pulse can be generated. The laser pulse moves back and forth inside the laser cavity 

and a part of the pulse goes out of the cavity each time when the pulse is reflected from 

the coupling mirror, so that the repetition rate of the laser pulse train is     

 
     [38], 

which is an inverse of the pulse round trip time of the pulse in the resonator     

 
  , 

where L is the length of the laser cavity and the c is the speed of light. 
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Figure 22 Schematic of a laser resonator with a passive mode-locking. 

 

At the end of the 1980s, Ti: sapphire crystal         was discovered as an 

appropriate laser medium with a sufficient broad gain bandwidth to support the 

generation of femtosecond pulses. This mode-locking is realized by a Kerr-lens mode-

locking mechanism. The refractive index increases according to         when a 

higher intensity is passing by the crystal. Even though the KLM mechanism can provide 

laser pulses with a typical duration of 15-100 fs, it is not self-starting. The switching 

from the CW operation to a mode-locking regime is achieved by an abrupt perturbation 

which is created by an initial spike in the intensity. For instance, by mechanically 

knocking the laser cavity mirror, or as we do in our laser, by clicking of the prisms in the 

prism pair that is used inside the laser cavity for compensation of the light dispersion. 

Light–matter interactions start with the response of the electrons to the light 

fields. Light is considered as electromagnetic wave under the Maxwell equation. At a 
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given spatial point, the electric field of a linearly polarized monochromatic laser (also 

known as continuous wave (CW) laser) with angular frequency   can be expressed as 

                     (  ) 

Where    is amplitude of the laser electric field. The magnetic field’s amplitude is  

                     (  ) 

The amplitude of the magnetic field is    
  

 
  where c is the speed of light in vacuum. 

Mode locking is understood as a linear cavity with a length of L in the z 

direction, which contains two mirrors and the gain medium. The electric field of the 

laser can be given as 

                        (  ) 

In one laser cycle, the electric field repeats itself with certain frequencies  

       where q is integer number and    is given depending of period of the one 

laser cycle   

        
  

 
         (  ) 

Electric field having these kind of frequency  is called the longitudinal modes. 

Electric field after the cavity takes form       (        ) . Basicly, assuming the 

electric fields of all the modes are identical       and if we reach the phase of all  

modes to be the same,        then we can have mode-locked laser [10]. 
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There is a limit for the laser peak power not the damage the material due to high 

intensity. The critical peak power given as: 

                 
   

       
        (  ) 

For our system, we have 800 nm laser light,         
   

 
 and              

   

 
 are 

the linear and the nonlinear refractive index of the titanium sapphire, respectively. Thus 

the critical power can be determined according to Eq. 47                MW. Then the 

laser intensity will be lower if Kerr effect is not enough to distort the properties of the 

laser pulse. Moreover, large power damages the optics and gain materials [10]. 

 

 

 

 

 

 

 

 

 



48 
 

5 EXPERIMENTAL RESULTS 

 

The nonlinear interaction between the laser light and the gas atoms produces high 

harmonics. Photon generation is explained by three step model in the previous chapter. 

In the experiment, Ti:sapphire laser with a pulse width 50 fs and the central wavelength 

of 800 nm was focused in the 1 mm gas jet using a 40 cm focal length lens. The laser 

passes inside the jet while making two holes across the jet that the holes size is small 

enough to transmit the laser mode. If the pressure on the chamber where the gas jet is 

located is higher than           , the large number of generated photons is reabsorbed 

and HHG efficiency would be decreased. For this reason, we need to pump our system. 

The gas jet was separately included Argon, Hydrogen, Neon, and Mixture Ne-H2, and 

Mixture Ne-Ar gases, respectively. The laser intensity at the focus is 

around           c  ⁄ . Total pressure of the chamber, where the gas jet is located, 

is              , also the pressure in the gas jet is 1.22 mbar. 

5.1 HHG in Argon  

In the experiment, the spectrum obtained for Ar gas. The signals from 11th to 23rd 

order were observed. In the experiment, a Ti:Sapphire laser with pulse width 52 fs and a 

central wavelength of 800 nm was focused in the gas cell containing mixed gas Ne and 

Ar. A 40 cm lens was used to focus the laser beam in the gas cell. The focused intensity 

is around        
   

, and the average power of the spitfire is 930 mW with 1 kHz 

repetition rate. 
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We observed the HHs from 21st to 11th for Argon gas. In Fig. 23 gives the plateau from 

21st to 15th harmonic. Then the cutoff energy is appeared on the 23rd harmonic. Also, we 

estimate the ponderomotive energy for intensity        
   

, and it is          , and 

using the ponderomative energy, the cutoff energy for argon gas is              eV 

that corresponds to 23rd harmonic. 

 

 

 

 

 

 

 

 

 
Figure 23 Results for HHG in Ar: (a) Image taken by CCD camera in the experiment 

with argon, (b) spectrum of HHs in Ar vs. wavelength. 

 

5.2  HHG in Hydrogen Molecule 

In the experiment, the spectrum obtained for    gas. The signals from 11th to 21st 

order were observed. In the  experiment, a Ti:Sapphire laser with pulse width 52 fs and a 
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central wavelength of 800 nm was focused in the gas cell containing mixed gas Ne and 

Ar. A 40 cm lens was used to focus the laser beam in the gas cell. The focused intensity 

is around        
   

, and the average power of the spitfire is 930 mW with 1 kHz 

repetition rate. The high harmonics from hydrogen molecule is observed up to 19th 

harmonic, and the cutoff harmonic appears at 21st harmonic in Fig. 24. 

The harmonic spectrum using Ne gas was not observed since Ne ionization 

potential (21.5 eV) [39] is high to be ionized for our laser, but we easily determined the 

harmonics by argon gas with ionization potential 15.6 eV [39] and hydrogen gas with 

ionization potential 13.6 eV [40]. The high intensity must be reached to observe HHs 

with Neon gas. Also the cutoff energy for hydrogen gas is              eV that 

corresponds to 21rd harmonic. 
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Figure 24 Results for HHG in H2: (a) Image taken by CCD camera in the experiment 
with hydrogen, (b) spectrum of HHs in H2 vs. wavelength. 

 

5.3 Neon and Argon Mixture 

  We mixed Ne and Ar gases. The pressure of the Ne gas is 1.44 bar and the 

pressure of the Ar gas is 0.69 bar. In this mixture Ne does not help the enhancement the 

HHs. The harmonic orders were not observed by using only Ne gas. However, the 

spectrum obtained with the Ar and Ne- Ar mixture gas gives the same HHs in Fig. 25 

[27], [41]. The harmonic intensity is lower in the mixture gas than only Ar gas spectrum. 

This may be absorption of the Ne gas. 
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 In an experiment, the  Ti:Sapphire laser with pulse width 52 fs and a central 

wavelength of 800 nm was focused in the gas cell containing mixed gas Ne and Ar. The 

40 cm lens was used to focus the laser beam in to the gas cell. The focused intensity is 

around       
   

, and the average power of the spitfire is 860 mW with 1 kHz repetition 

rate. 

 

 

 

 

 

 
Figure 25 Enhancement of harmonic by mixed gases of Ne and Ar: (a) HH with 1.4 bar 

Ne, 0.6 bar Ar mixture. (b) HH with 1 bar Ne, 1.7 bar Ar mixture. 
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H2 are used, respectively. Blue indicates the spectrum when a mixed gas of Ne and H2 is 

used. In Ne and H2 mixture, we observed remarkably enhancement of the HHs. When 

the Ne pressure is lower than the H2, we see the harmonics enhanced in (a), (b) of Fig. 

26. However, in (c) of Fig. 26 the Ne pressure is larger than the H2, the HHs intensity is 

decreased. Also the HHs intensity is decreased in Fig. 26 (d) when the pressure is 

decreased. These are because of the fact that in low pressure HHs are more absorbed 

[27], [41]. 
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Figure 26 In (a), (b), and (c) Enhancement of harmonic by mixed gases of Ne and H2. In 

(d) HHs in H2 gas for different pressure (mbar). 
 

In an experiment, the Ti:Sapphire laser with pulse width 52 fs and a central 

wavelength of 800 nm was focused in the gas cell containing mixed gas Ne and Ar. The 

40 cm lens was used to focus the laser beam in the gas cell. The focused intensity is 

around       
   

, and the average power of the spitfire is 860 mW with 1 kHz repetition 

rate. For the spectrum obtained using only Ne gas, harmonic orders did not observed and 

30 40 50 60 70
0

5

10

15

Wavelength nm

In
te

n
si

ty
ar

b
.u

n
it (a) 

 

11th 

13th 
15th 

17th 

19th 

30 40 50 60 70
0

5

10

15

Wavelength nm

In
te

n
si

ty
ar

b
.u

n
it (b) 

 

19th  

17th  

15th  
13th  

11th  

30 40 50 60 70
0

5

10

15

Wavelength nm

In
te

n
si

ty
ar

b
.u

n
it (c) 11th 

13th 15th 17th 
19th 

30 40 50 60 70
0

5

10

15

20

Wavelength nm

In
te

n
si

ty
ar

b
.u

n
it (d) 

17th  15th  13th  

11th           

          

       

H2-Ne 

H2 

Ne 

H2-Ne 

H2 

Ne 

H2-Ne 

H2 

Ne 



55 
 

the spectrum obtained only H2 gas, 11th to 15 th harmonics are observed. However, the 

spectrum obtained with the Ne-H2 mixture gas gives the HHs of 11th to 19th.  
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6 CONCLUSIONS 

 

Spectra of HHs in the XUV region were observed with a table-top laser system at 

the 800 nm excitation wavelength. The spectra of HHG from a gas jet filled with argon 

gas, hydrogen molecule or their mixtures with neon gas have been experimentally 

investigated. The harmonic spectrum using Ne gas was not observed for the used 

intensities and gas pressure. However, the spectra of HHs up to 21st order were observed 

for argon and hydrogen gas when the laser power was 930 mW.  

In Ar-Ne mixtures, spectrum does not extend to higher harmonics compared to 

Ar gas alone. In H2-Ne mixtures, the cutoff of HHG was extended compared to H2, 

namely, HHs were observed up to 19th order for the mixtures, while the spectrum for 

only H2 gas extended only up to 15th harmonic. In H2-Ne mixtures, for improving the 

conversion efficiency (that is usually in the order of 10-5 or 10-6) of the fundamental light 

into high harmonics in Ne, we use Ne and H2 gas mixture. We observed up to 20-fold 

increase in the output of the HHs to higher orders by using moderate laser intensities. 

We relate the enhancement mechanism to a more efficient ionization of Ne with 

addition of H2. At moderate intensities the ionization of H2 is relatively easy, leading to 

HHG in the hydrogen component first. Then the ionization of Ne can be produced via 

several channels: (1) the generated 11th harmonic leads to a transition from the ground 

state of Ne to an intermediate state, from which the ionization can be performed with a 

photon of the third harmonic; (2) the 13th harmonic can resonantly excite from the 

ground state to a state, from which ionization can be achieved by a single photon of the 
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fundamental radiation; (3) the tunneling ionization from the excited states has much 

higher probability than from the ground state. The laser-induced dynamic Stark shift also 

affects the probabilities of these transitions. We report on the observation of the 

enhancement effect for different laser intensities and mixing ratios. 
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