
  

 

SUCCESSIVE BACKWARD SWEEP METHODS FOR OPTIMAL CONTROL 

OF NONLINEAR SYSTEMS WITH CONSTRAINTS 

 

A Dissertation 

by 

DONGHYURN CHO 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,  Srinivas Rao Vadali 

Committee Members, Shankar P. Bhattacharyya 

 Raktim Bhattacharya 

 John Hurtado 

Head of Department, Rodney Bowersox 

 

August 2013 

 

Major Subject: Aerospace Engineering 

 

Copyright 2013 DongHyurn Cho



 

ii 

 

 

ABSTRACT 

 

Continuous and discrete-time Successive Backward Sweep (SBS) methods for 

solving nonlinear optimal control problems involving terminal and control constraints 

are proposed in this dissertation. They closely resemble the Neighboring Extremals and 

Differential Dynamic Programming algorithms, which are based on the successive 

solutions to a series of linear control problems with quadratic performance indices. The 

SBS methods are relatively insensitive to the initial guesses of the state and control 

histories, which are not required to satisfy the system dynamics. Hessian modifications 

are utilized, especially for non-convex problems, to avoid singularities during the 

backward integration of the gain equations.  The SBS method requires the satisfaction of 

the Jacobi no-conjugate point condition and hence, produces optimal solutions. The 

standard implementation of the SBS method for continuous-time systems incurs terminal 

boundary condition errors due to an algorithmic singularity as well as numerical 

inaccuracies in the computation of the gain matrices. Alternatives for boundary error 

reduction are proposed, notably the aiming point and the switching between two forms 

of the sweep expansion formulae. Modification of the sweep formula expands the 

domain of convergence of the SBS method and allows for a rigorous testing for the 

existence of conjugate points.  

Numerical accuracy of the continuous-time formulation of the optimal control 

problem can be improved with the use of symplectic integrators, which generally are 

implicit schemes in time. A time-explicit group preserving method based on the Magnus 
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series representation of the state transition is implemented in the SBS setting and is 

shown to outperform a non-symplectic integrator of the same order.  

Discrete-time formulations of the optimal control problem, directly accounting 

for a specific time-stepping method, lead to consistent systems of equations, whose 

solutions satisfy the boundary conditions of the discretized problem accurately. In this 

regard, the second-order, implicit mid-point averaging scheme, a symplectic integrator, 

is adapted for use with the SBS method. The performance of the mid-point averaging 

scheme is compared with other methods of equal and higher-order non-symplectic 

schemes to show its advantages. The SBS method is augmented with a homotopy-

continuation procedure to isolate and regulate certain nonlinear effects for difficult 

problems, in order to extend its domain of convergence. The discrete-time SBS method 

is also extended to solve problems where the controls are approximated to be impulsive 

and to handle waypoint constraints as well.  

A variety of highly nonlinear optimal control problems involving orbit transfer, 

atmospheric reentry, and the restricted three-body problem are treated to demonstrate the 

performance of the methods developed in this dissertation. 
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1. INTRODUCTION 

 

Over the last fifty years, many direct, indirect, and hybrid methods have been 

developed to solve optimal control problems (OCP) involving nonlinear dynamical 

systems with constraints [1-2]. Direct methods, such as collocation and transcription, 

convert the dynamic optimal control problem into a parameter optimization problem, 

involving discretized states and controls. The discretized problems are solved with the 

help of available nonlinear programming software. Indirect methods convert the OCP 

into a multi-point boundary value problem, involving the costate (adjoint) vector, by the 

application of Pontryagin’s principle. A hybrid method is part direct and part indirect, 

i.e., the objective function is directly optimized, without the explicit satisfaction of one 

or more necessary conditions. Often, these methods deliver extremals that may not be 

optimal. A check for optimality is performed by testing a solution against the second-

order necessary and sufficient conditions.  

Several time-discretization approaches have also been proposed to convert 

optimal control problems into optimization problems, which are solved using nonlinear 

programming approaches. Alternatively, an OCP can be directly formulated in discrete-

time using the discrete minimum principle [3]. Highly nonlinear optimal control 

problems such as those involving atmospheric reentry, interplanetary orbit transfer, and 

the restricted three-body problem (RTBP) prove challenging due to their sensitivity to 

initial guesses of the costate or control variables and the lack of continuity of solutions 

with respect to initial conditions and system parameters. These types of problem are 
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easily solved using any of the discretization approaches.  

Methods based on the second variation enforce the necessary and sufficient 

conditions for optimality. Jacobson developed the second-order differential dynamic 

programming (DDP) method [4-5] to solve continuous and discrete-time, constrained 

nonlinear optimal control problems. In this approach, the principles of dynamic 

programming are applied to a converging sequence of perturbed problems, involving a 

linearized state model and a quadratic approximation of the performance index (LQ). 

Subsequently, the DDP approach has been extensively developed and applied, leading to 

the modified DDP [6] and the hybrid differential dynamic programming [7] (HDDP) 

methods. The DDP method shares many similarities with the method of neighboring 

extremals [8-14]. The neighboring extremal problem can be solved either by using a 

state transition matrix (STM) approach or the sweep method. The SBS method solves a 

sequence of neighboring extremal problems to achieve a solution to a nonlinear OCP by 

using the sweep method. The sweep method is based on the solution to a Riccati 

equation, which plays an important role in checking for the satisfaction of the sufficient 

condition for optimality. This method is the focus of study in this dissertation. 

The suboptimal state dependent Riccati equation (SDRE) method [15-16] has 

found many applications in the aerospace field. This method, dependent on the 

factorization of a nonlinear system into a non-unique pseudo-linear form, has been 

applied to the solution of optimal control problems [17] by using a successive 

approximating sequence method. More recently, this approach has been extended to 

problems involving terminal constraints by Parsley and Sharma [18]. However, the 
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solutions obtained by these methods do not necessarily satisfy the sufficient conditions 

for optimality and they are not applicable to problems which require accurate 

satisfaction of terminal and control constraints. When applicable, the SDRE approach 

does provide a constructive method to determine an initial control approximation. 

The success of the SBS method depends on the proper construction of the 

quadratic approximation of the original nonlinear problem, i.e., the Hessian for each sub-

problem. At the beginning of the solution process, especially for a poor initial guesses of 

the state and control variables, a second-order approximation may result in large 

corrections, invalidating the linearization process and requiring the need for a step-size 

control algorithm. Hence, a first-order algorithm is recommended far from the optimal; 

the second-order terms accelerate convergence near the optimal solution. In this thesis, 

solutions to sensitive problems are obtained by initially neglecting some of the second-

order contributions from the Hamiltonian to the LQ sub-problems. 

In the continuous-time setting, the optimal feedback control determined for the 

linearized problem by the sweep method results in a boundary condition error, due to the 

inaccuracy of the numerical integration method and its effect on the solution to the 

terminal constraint Lagrange multiplier vector. Furthermore, the solution to the Riccati 

equation is not necessarily bounded, even in the absence of conjugate points. A simple 

method for applying the check for satisfaction of the Jacobi condition for nonlinear 

OCPs has been presented by Jo and Prussing [19]. Mereau and Powers [20] also present 

a specialized treatment of conjugate points for the LQ problem with terminal constraints. 

As suggested by these and other works related to the sweep method, it is beneficial to 
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use an alternate representation, requiring a reduced number of gains, for the costate 

vector as a function of the current state and the terminal constraint specifications. 

Furthermore, the Jacobi, no-conjugate point sufficient condition can be directly checked 

by following this approach. The method is adapted to develop a robust numerical 

method that can accommodate poor initial guesses for the state and control variables and 

satisfy the terminal constraints accurately. Sequential solutions of LQ problem are at the 

heart of the SBS method.  

Methods based on the Magnus series expansion [21] generate high accuracy 

solutions to linear, time-varying differential equations, compared to those obtained from 

non-symplectic Runge-Kutta integrators of the same order. The Magnus series expansion 

represents the STM as a product of matrix exponentials, to a prescribed order of 

accuracy. The exponential of a the Hamiltonian matrix is symplectic, The Magnus series 

representation preserves the symplectic property of the STM for Hamiltonian systems 

even under truncation. The higher accuracy provided by the exponential integrators can 

be traded for larger step sizes of integration and smaller computation times.  

Applying the optimal control necessary conditions to the discrete-time system 

has an advantage of minimizing boundary condition errors, since the dynamics of the 

integrator can be accounted for in the discretization scheme. As mentioned before, of 

special interest for the study of Hamiltonian systems are the symplectic integrators, 

which preserve certain constants of integration over a long duration during a numerical 

simulation. In general, symplectic schemes are time-implicit. However, for linear 

systems, they can be expressed as time-explicit schemes, provided an average control is 
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defined to make the system causal. The implicit midpoint rule has been used extensively 

for the study of discrete dynamical systems and optimal control [22]. Fortunately, since 

the SBS method progresses by successive linearization, the time-explicit form of the 

midpoint rule can be adopted.  

The midpoint rule is also applied to problems involving impulsive controls [23]. 

Furthermore, it has been extended to handle waypoint constraints as well. The waypoint 

scheme allows one to deal with sensitive problems and long simulation times. 

Continuation or homotopy methods can also alleviate the sensitivity issues associated 

with many optimal control problems. A homotopy approach [24-25] in the context of the 

SBS method is developed to increase its convergence robustness. This method is of 

particular use for problems with multiple extrema of two body problems. It is possible to 

isolate for certain problems, the global minimum, as a continuation parameter is varied 

slowly. A variety of highly nonlinear examples are considered to demonstrate the 

performance of the SBS method, including atmospheric reentry and orbit transfer 

problems for two-and three-body problems.  

The contents of the sections following are summarized in the following. 

 

1.1 Overview 

◦ Section 2  

This section presents the continuous-time formulation of a standard optimal 

control problem as well as the first and second order necessary conditions. The 

neighboring extremal problem is discussed and the importance of its STM is highlighted 
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in connection with the check for conjugate points. The SBS method is presented next. 

Methods for limiting the input updates and Hessian modification are described. Several 

methods of handling singularities in the calculation of the terminal constraint Lagrange 

multipliers are also discussed. An alternate form of the gain equations is derived to 

facilitate the conjugate point condition check. This modification reduces the number of 

gains required to be computed over a large segment of the trajectory.  

◦ Section 3  

The adaptation of a 4th order Magnus series representation scheme for the state 

transition matrix of the linearized problem under the standard and modified SBS 

applications is presented in this section. The accuracy offered by the Magnus series 

representation of the STM is evaluated.  

◦ Section 4  

Discrete-time formulations of the optimal control problems using the explicit 

midpoint rule is presented in this section. The application of the SBS method is 

presented for this and other time-explicit numerical integration schemes and 

performance comparisons are provided. The SBS method is extended to solve problems 

for which the control is a series of impulses. Finally, the waypoint scheme is developed 

to reduce convergence sensitivity associated with highly nonlinear problems. 

◦ Section 5  

The homotopy based SBS method is developed as another approach to solve 

long-duration, sensitive optimal control problems. The continuation parameter gradually 

modulates the nonlinearity in the system. This approach is able to navigate around 
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multiple local minima to seek the optimal solution for an orbit transfer problem.  

◦ Section 6  

The low thrust transfer orbit from L1 and L2 liberation point in the Earth-moon 

system is considered. A modification to the performance index using the Jacobi constant 

is proposed as a means to improve convergence of the SBS method and reduce 

sensitivity for this class of problems. Multiple solutions are obtained to a liberation point 

transfer problem and the optimality of these trajectories is investigated by using the 

conjugate point check. 

◦ Section 7  

This section presents a summary of the results obtained and the concluding 

remarks.  
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2. CONTINUOUS-TIME FORMULATION OF THE SBS METHOD* 

 

This section presents the continuous-time formulation of a standard optimal 

control problem, including the treatment of first and second-order necessary conditions. 

The features of the SBS method for solving continuous-time nonlinear optimal problems 

with terminal constraints directly follow from these developments.  

 

2.1 Continuous-time nonlinear optimal control 

A large class of continuous-time nonlinear optimal problems are formulated as 

follows [8]: 

Determine the control input to minimize: 

 

0

[ ( )] ( , , )
T

t

J x T q x u t dt     (2.1) 

Subject to: 

 ( , , )x f x u t  (2.2) 

 [ ( )] fx T   (2.3) 

 

where J  is the performance index, x  is the vector of state, u  is a vector of control 

inputs, [ ( )]x T is the terminal penalty function,
 

( , , )f x u t  is the vector of system 

dynamics, [ ( )]x T is a vector function of the final state, and f is a constant. It is 

                                                 
*Part of this section is reprinted with permission from “The Successive Backward Sweep Method for 
Optimal Control of Nonlinear Systems with Constraints” by Cho,D.H, Vadali,S.R, 2013. Advances in the 
Astronautical Sciences, Volume 147, pp 163-183, Copyright [2013] by American Astronautical Society 
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assumed that the final time, T , is fixed and the terminal constraint vector is regular, i.e., 

its Jacobian is of full rank. The necessary and sufficient conditions for optimality are 

compactly presented in terms of the control Hamiltonian, defined as:  

 

 ( , , , ) ( , , ) ( , , )TH x u t q x u t f x u t    (2.4) 

 

where and   is the costate vector. The first-order necessary conditions can be obtained 

from the Hamiltonian as follows:  

 

 x H f   (2.5) 

 T

x x xH q f      (2.6) 

 arg min( )u H  (2.7) 

 

and the transversality condition 

 

 ( ) ( )( ) T

x T x TT   
 

(2.8) 

 

where   is a vector of Lagrange multipliers and the subscripts represent partial 

derivatives, e.g., H is the gradient of H  with respect to  . In the absence of control 

constraints, to first order, Eq. (2.7) is equivalent to  
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 0 T

u u uH q f     (2.9) 

 

2.2 Sufficient conditions and neighboring extremal paths 

A solution satisfying the necessary conditions of Eqs. (2.5-2.8) has to be tested 

further for the satisfaction of the sufficient conditions for the existence of neighboring 

extremal paths in a weak sense (allowing small variations in the states and controls). As 

shown in reference [8], these are 1) the strengthened Legendre-Clebsch condition 

( ) 0uuH t  , 2) normality condition, 3) the Jacobi no-conjugate point condition. These 

three conditions are related to the existence of neighboring extremal paths, which can be 

obtained from a linearization of Eqs. (2.5-2.8). The linearized system is governed by the 

Hessian matrix entries, , , ,  and xx xu x uuH H H H . Along the neighboring extremal paths, 

the costate and final boundary condition deviations can be expressed as follows: 

 

 ( ) ( )t S x t P     (2.10) 

 ( )T

f P x t W     (2.11) 

 

where ( )x t , ( )t  are the perturbed state and costate vectors,   is the perturbed 

Lagrange multiplier, and 
f  is the terminal constraint deviation vector. The Jacobi 

condition is  

 

 1 TS S PW P      finite for     
0 ft t t   (2.12) 
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The Jacobi condition can be related to the elements of the STM 11 12

21 22

 


 

 
  
 

, 

defining the backward-time relationship obtained by back integration. 

 

 11 12

21 22

( )( )

( )( )

f

f

x tx t

tt

 

 

   
    

     
 (2.13) 

 

where 
11 12

21 22

( ) ( )
( )

( ) ( )

f f

f

f f

t t
t I

t t

 


 

 
  
 

, and I  is the identity matrix of appropriate 

dimension. Written out in scalar form, these relationships are  

 

 
11 12( ) ( ) ( )f fx t x t t       (2.14) 

 
21 22( ) ( ) ( )f ft x t t       (2.15) 

 

Equation (2.14) results in  

 

 1

11 12( ) [ ( ) ( )]f fx t x t t       (2.16) 

 

Substituting Eq. (2.16) into Eq. (2.15), one obtains the result  

 

 1 1

21 11 22 21 11 12( ) ( ) ( ) ( )ft x t t             (2.17) 
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Focusing for simplicity on linear terminal constraints of the type ( )f fx t x , it can be 

shown that ( )ft  . Equations (2.10) and (2.17) show that 

 

 1

21 11S     (2.18) 

 1

22 21 11 12P       (2.19) 

 1

11 12W     (2.20) 

 

Equation (2.10) also can be expressed in terms of ( )x t  and ( )fx t  by the use 

of Eq. (2.11), since for linear terminal constraints, ( )f fx t  . Thus, an alternate 

representation for ( )t is obtained as follows:
 

 

 1 1( ) ( ) ( ) ( ) ( ) ( )T

f ft S PW P x t PW x t S x t P x t           (2.21) 

 

where 

 
1 TS S PW P   (2.22) 

 
1P PW  (2.23) 

 

Equation (2.21) can be used to determine the neighboring feedback control, if the 

gains  and S P  are directly available. In that case, there is no need to compute W and its 

inverse.  

 It also can be shown from Eqs. (2.14-2.15) that 
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 1

12 11( ) [ ( ) ( )]f ft x t x t       (2.24) 

and 

 1 1

22 12 21 22 12 11( ) ( ) ( ) ( )ft x t x t             (2.25) 

 

The gain matrices  and S P  can also be expressed in terms of the elements of STM by 

comparing Eqs. (2.21) and (2.25): 

 

 1

22 12S     (2.26) 

 1

21 22 12 11P       (2.27) 

 

The Jacobi condition, Eq. (2.12), requires that the matrix S  remain finite in the interval 

0 ft t t  . This condition is satisfied if 
12 remains nonsingular. Since S  cannot be 

calculated near 
ft  from Eq. (2.26), due to a singularity, it must be indirectly computed 

from Eq. (2.22) over a finite time period, during the back integration. It is important to 

note that even though ( )S t may become unbounded at a particular time, the matrix S  can 

remain finite. Hence, a switch from Eq. (2.22) to Eq. (2.26) can be made as soon as the 

conditioning of the matrix 
12  allows it. Equation (2.18) shows that ( )S t  becomes 

unbounded if 
11 is singular. Occurrence of singularities 

12  in 0 ft t t   indicates the 

existence of conjugate points.  
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2.3 The SBS method 

The SBS method proceeds with a linearization of the nonlinear Hamiltonian 

system and boundary conditions, given by Eqs. (2.5-2.8), about a nominal reference 

trajectory:  

 

 
x ux H x H u      (2.28) 

 ( )xx xu xH x H u H         (2.29) 

 0u ux uu uH H x H u H        (2.30) 

 ( )( ) [ ( ) ] ( ) [ ( ( ) ) ]T T T

xx x x x T x xx x xt T t T
T x T x         

 
       (2.31) 

 

where  

 x uH H x H u       (2.32) 

 
x xx xu xH H x H u H       (2.33) 

 
u ux uu uH H x H u H       (2.34) 

 

and , ,x u   indicate the nominal state, input, and costate, respectively and , ,  

represent the nonlinearity of the state, input and costate. The control input u  can be 

calculated from Eq. (2.30) as follows:  

 

 1( ) uu ux uu H H x H       (2.35) 
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The backward sweep method is based on the costate and linearized terminal 

constraint Eq. (2.3) representations of the form: 

 

 Sx P V     (2.36) 

 

and  

 ( )( ( )) [ ( ) ( )] 0x

T

fT fx T x T x T P x N W             (2.37) 

 

Equation (2.36) is substituted into Eq. (2.29) to obtain the following differential 

equations for the gains. The terminal boundary conditions of the gains can be determined 

from Eqs. (2.31) and (2.37). 

 

           1( ) ( ) 0x x xu u uu ux u xxS SH H S H SH H H H S H   
       ,      

                     
( ) [ ( ) ]T

xx x x t T
S T   


      (2.38) 

 1[( ) ] 0xu u uu u xP H SH H H H P  
    ,                               ( )( ) T

x TP T       (2.39) 

           
1 1[( ) ] ( ) 0xu u uu u x xu u uuV H SH H H H V H SH H S                

         
( ) [ ( ( ) ) ]T

x xx x x t T
V T x   


       (2.40) 

 1 0T

u uu uW P H H H P 
  ,                                                             ( ) 0W T     (2.41) 

         1[ ( )] 0T

u uu uN P H H H V      ,                     ( ) ( ( ) )x t T
N T x x 


     (2.42) 

 

Equation (2.37) shows that   can be computed at any time instant at which the matrix 
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W  is nonsingular. 

 

2.4 Input update and Hessian modification  

In order to maintain the validity of the LQ approximation, and a weak control 

variation, the control update must be appropriately small in magnitude. This is achieved 

by introducing a new parameter 
ua

 
and the update rule 

 

 * (1 )u uu a u a u   ,                      0 1ua   (2.43) 

 

where *u is the current computed input and u is the nominal input. The parameter ua  can 

be determined to minimize a cost function through a line search. A sufficient condition 

for the existence of a positive definite solution to the modified Riccati Eq. (2.38) is that 

xxH be positive definite along the trajectory. During the initial convergence process, the 

nature of this matrix proves important and a method to shape it is discussed. A special 

modification to the performance index is proposed as follows:  

 

 
0

1
[ ( ( )) ]

2

T

T TJ x Q F x x u Ru dt    (2.44) 

 ( ) ( )T T

fxF x a x xI xx   (2.45) 

 

where fxa is a non-negative coefficient related with F , a positive semi-definite matrix 
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function evaluated on the reference trajectory. The matrix F  satisfies the property  

 

 ( ) 0F x x   (2.46) 

 

Hence, F  does not affect the performance index when x x , i.e., as the converged state 

is approached. The modification automatically vanishes upon convergence of the 

process. 

One of the goals of this research is to develop a simple nonlinear optimal method 

that is relatively insensitive to initial guesses. For poor initial solutions, the high-order 

nonlinearity resulting from f  and q  often causes convergence difficulties. Therefore, 

terms involving the second partial derivatives of H , arising from the terms involving   

are neglected during the initial stages of computation: 

 

 ( )T

xx xx x xH q f    (2.47) 

 ( )T

xu xu x uH q f    (2.48) 

 ( )T

ux ux u xH q f    (2.49) 

 ( )T

uu uu u uH q f    (2.50) 

 

In most cases, the second order terms are reinstated after sufficient progress 

toward reductions in the values of the performance index and constraint violations are 

achieved. For problems posed in the Mayer form, with 0uuq  , a small correction term 
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is added to make 0uuH  . For some highly nonlinear problems, a modification of the 

simple form is applied:
 

 

 
0xx xx hxxH H C I   (2.51) 

 
0 hu uu uuuH H C I   (2.52) 

 

where 
0xxH  and 

0uuH  are the elements of the original Hessian matrix and 
hxxC  and 

huuC  

are the positive scalars, introduced to satisfy convexity conditions and achieve 

convergence from arbitrary initial guesses.  

 

2.5 Evaluation of the performance index 

Two different forms of the performance index are introduced to verify the 

accuracy of the converged solutions. For a quadratic index of the form 

 

 1

0

1
( )

2

T

T TJ x Qx u Ru dt   (2.53) 

 

associated with the linearized system of Eq. (2.28) and linear terminal constraint 

( ) 0x T  , it is easy to verify that if the state-costate differential equations and the 

boundary conditions are satisfied, the cost-to-go function can be written as: 
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2

1 1
( ) ( ) ( )

2 2

T

T T

t

J t x t t dt      (2.54) 

 

where   is defined by Eq. (2.32). Note that for systems which are linear in x  and u  to 

begin with, 0  . The derivation of Equation (2.54) is presented in Appendix A. 

One way to evaluate the degree of sub-optimality of a solution is to determine the 

difference between the two indices. If the converged values of the two are the same, it 

can be concluded that an obtained solution has indeed been obtained, without having to 

verify the result via an open-loop solution. Numerical experiments show that 
2J  is 

sensitive to integration error much more so than is
1J . Therefore, the difference between 

the two indices also indicates the degree of integration error. 

 

2.6 Methods for determining   

The Lagrange multiplier   for each sub-problem is a constant vector, and it can 

be computed at any time other than the final time. However, due to numerical 

inaccuracies, it varies along the trajectory, if evaluated from Eq. (2.37). Typically, it is 

calculated from Eq. (2.37) at the initial time. It has been observed by numerical 

experiments that it is better to continuously update   using any one of the following 

methods.  

 

 2.6.1. Pseudoinverse method 

A pseudoinverse solution to the following equations is sought at each time 
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instant: 

 

 ( );  1;  1fW Px N ax bx T a b a         (2.55) 

 

where  and a b  are parameters with ideal values, 1a   and 0b  . Equations (2.55) can 

be expressed in matrix form as: 

 

 

( ) ( ) ( ) ( )

0 1 1 1

0 1 0 1

fW t x x T P t x N t

a

b

        
     
     
          

 (2.56) 

 

The pseudoinverse method is not applicable near the final time. In the results 

provided in this method, the update for ( )t  is carried out partially over a domain, e.g., 

0[ ,0.9 ]t t T  and the value of (0.9 )T  is used in the region [0.9 , ]t T T . 

 

 2.6.2 Aiming point method 

                                        

                                       Figure 2.1: Aiming point vector 

 

Figure 2.1 shows the relationship between the aiming point 
fx and the terminal 
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boundary point 
fx . The aiming point is initially unknown, but is iteratively adjusted as 

in the augmented Lagrangian method or the method of multipliers [26]. For a finite 

scalar terminal penalty weight, there exists an aiming point which leads to the 

satisfaction of the terminal constraint.  For the case of a quadratic terminal penalty 

function with a unit scalar weight, the multiplier   is related to the miss distance from 

an aiming point through the transversality condition:  

 

 ( ) ( ) fT x T x     (2.57) 

 

In the aiming point method, 
fx is determined at each iteration, instead of  . At the end 

of the solution process,  satisfies the relationship: ( ) f fT x x    . The sweep 

expansion for   is a modified version of Eq. (2.36): 

 

 
fSx Px V     (2.58) 

 

The substitution of Eq. (2.58) in Eq. (2.29) results in the following gain 

equations, some of which have been obtained previously. 

 

 1( ) ( ) 0x x xu u uu ux u xxS SH H S H SH H H H S H   
       ,         ( )S T I  (2.59) 

 1[( ) ] 0xu u uu u xP H SH H H H P  
    ,                                       ( )P T I   (2.60) 

1 1[( ) ] ( ) 0xu u uu u x xu u uuV H SH H H H V H SH H S                  ( ) 0V T    (2.61) 
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 1 0T

u uu uW P H H H P 
  ,                                                              ( ) 0W T   (2.62) 

 1[ ( )] 0T

u uu uN P H H H V                                                     ( ) 0N T   (2.63) 

 

Except for the boundary conditions on Eq. (2.60), Eqs. (2.38-2.40) and Eqs. 

(2.59-2.61) are respectively very similar. Differences between Eqs. (2.41-2.42) and Eqs. 

(2.62-2.63), respectively, are limited to changes in the signs of certain expressions. The 

aiming vector fx  can be calculated as:  

 

 
1[ ( ) ]T

f fx W x P x t N    (2.64) 

 

Equation (2.64) is applicable for computing fx  in a domain excluding the end point.  

Equation (2.64) shows that the aiming point is generally not the terminal boundary point. 

 

2.7 The modified SBS method  

This method implements the ideas presented in section 2.2 to eliminate the need 

for computing   over a significant portion of the trajectory.   is a constant vector and it 

can be computed at any time other than the final time by using Eq. (2.37) as follows: 

 

 

 
1( )T

fW P x N      (2.65) 
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Equation (2.65) is substituted into Eq. (2.36) to obtain  

 
1 1 1( )T

fS PW P x PW V PW N         (2.66) 

 

Equation (2.66) can be represented in an alternate form as follows: 

 fSx P V     (2.67) 

where 

 
1V V PW N   (2.68) 

 

Equation (2.67), when substituted into Eq. (2.29), results in the following gain equations, 

which are similar to those obtained previously in Eqs. (2.38-2.40). 

 

 1( ) ( ) 0x x xu u uu ux u xxS SH H S H SH H H H S H   
        (2.69) 

 1[( ) ] 0xu u uu u xP H SH H H H P  
     (2.70) 

1 1[( ) ] ( ) 0xu u uu u x xu u uuV H SH H H H V H SH H S                (2.71) 

 

The advantage of switching to the modified sweep formulation is that only three 

gain equations (2.69-2.71) need be integrated, after the switch is made. Furthermore, the 

Jacobi, no-conjugate point sufficient condition, which requires that ( )S t  be finite along 

the trajectory, can be checked directly. However, since ( )S T  cannot be evaluated due to 

the singular boundary condition ( ) 0W T  , Eqs. (2.69-2.71) are applied over the domain, 
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0[ ,0.9 ]t t T  and the original gain differential equations (2.38-2.42) are used in the 

region [0.9 , ]t T T . The values of ( ), ( ), ( ), ( ), ( )S t P t V t W t N t  serve to determine 

( ), ( ), ( )S t P t V t  of Eqs. (2.22-2.23) and Eq.(2.68) at 
1 0.9t T . 

 

2.8 The SBS method with control constraints 

The SBS method with bounded control inputs can also be applied to problems 

with control constraints. For each control, two possibilities have to be considered, 

depending on the control constraint being inactive or active. 

 

1( ) uu ux uu H H x H     
 

(control constraint inactive, same as Eq. (2.35)) 

 mu u   (control constraint active) (2.72) 

 

Equations (2.35) and Eq. (2.72) can be combined into a single expression as follows:  

 

 1{ }( )c m uu ux uu Pu H H x H        (2.73) 

 

where cP is a diagonal matrix with entries of ones or zeros, one for a saturated control 

and a zero otherwise. The operator {} 
 
introduces zeros along the row corresponding to 

a saturated control. For example, in the case of two inputs, if 1u  is saturated, cP and   

are written as follows: 
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1 0 0 0

, {}
0 0

cP
X X


   

     
   

 (2.74) 

 

where X is used to indicate the unchanged entries of its argument. 

If the control input 
2u  is saturated, 

cP  and   are written as 

 

 
0 0

, {}
0 1 0 0

c

X X
P 

   
     
   

 (2.75) 

 

If the control input 
1u  and 

2u are saturated, cP and   are  

 

 
1 0 0 0

, {}
0 1 0 0

cP 
   

     
   

 (2.76) 

 

 Therefore, the general form of the SBS method can handle optimal problems 

with bounded control inputs. Equations (2.38-2.42) are generalized to account for 

control constraints as follows: 

 

 1( ) { }( ) 0x x xu u uu ux u xxS SH H S H SH H H H S H             

  ( ) [ ( ) ]T

xx x x t T
S T   


     (2.77) 

 1[( ) { } ] 0xu u uu u xP H SH H H H P       ,                        ( )( ) T

x TP T   (2.78) 
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              1 1[( ) { } ] ( )xu u uu u x xu u uuV H SH H H H V H SH H                

          ( ) 0xu u c mS H SH Pu        ( ) [ ( ( ) ) ]T

x xx x x t T
V T x   


      (2.79) 

 1{ } 0T

u uu uW P H H H P    ,                                                    ( ) 0W T   (2.80) 

1[ { }( )] 0T

u c m u uu uN P H Pu H H H V         , ( ) ( ( ) )x t T
N T x x 


   (2.81) 

 

The gain differential equations for the aiming point method with bounded control 

inputs are expressed (instead of Eqs. (2.59-2.63)) as: 

 

 1( ) { }( ) 0x x xu u uu ux u xxS SH H S H SH H H H S H           , ( )S T I   (2.82) 

 1[( ) { } ] 0xu u uu u xP H SH H H H P       ,                                  ( )P T I   (2.83) 

          1 1[( ) { } ] ( )xu u uu u x xu u uuV H SH H H H V H SH H                

          ( ) 0xu u c mS H SH Pu        ( ) 0V T   (2.84) 

 1{ } 0T

u uu uW P H H H P    ,                                                         ( ) 0W T   (2.85) 

 1[ { }( )] 0T

u c m u uu uN P H Pu H H H V                                ( ) 0N T   (2.86) 

 

Finally, the gain differential equations of the modified SBS method with bounded 

control inputs can also be expressed (instead of Eqs. (2.69-2.71)) as follows: 

 

 1( ) { }( ) 0x x xu u uu ux u xxS SH H S H SH H H H S H            (2.87) 

                     1[( ) { } ] 0xu u uu u xP H SH H H H P       ,                         (2.88) 
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                     1 1[( ) { } ] ( )xu u uu u x xu u uuV H SH H H H V H SH H                

                    ( ) 0xu u c mS H SH Pu          (2.89) 

 

2.9 Numerical examples  

Several examples are presented to illustrate the performance of the SBS method 

for solving continuous-time OCPs. All the examples are simulated by using the 5th order 

RK (Fixed-step, 5th order part of the Runge-Kutta-Fehlberg method) algorithm [27]. 

 

 2.9.1 Example 2-1: A 1-D Nonlinear problem without state and  

            control constraints 

This example was introduced by Jacobson [4] and it uses the hyperbolic tangent 

function to limit the effect of the control in the system. The system dynamics and cost 

function are: 

 

 0.2 tanh( )x x u   (2.90) 

 
0.5

2 2

0

210 ( ) (10 )J x T x u dt    (2.91) 

 

The given initial state is 0( ) 5x t  .  The Hamiltonian for this problem is 

 

 2 2( , , , ) 10 ( 0.2 10tanh( ))H x u t x u x u       (2.92) 
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The partial derivatives 
uH  and 

uuH  are  

 

 22 10 (1 tan ( )h ) 0uH u u    (2.93) 

 
25(1 tanh ( ))

u

u
  


 (2.94) 

 
22 20 tanh( )(1 tan ( ))

2 4 tanh( ) 0

huuH u

u u

u

 






 (2.95) 

 

Since 0uH   and the convexity condition 0uuH   is satisfied, the Hamiltonian is 

indeed minimized. Therefore, the optimal solution can be determined by using the SBS 

method. Simulation results are presented for the following conditions: 

 

Table 2.1: Simulation conditions for Example 2-1 

Variable Value 

Number of data points ( n ) 150/250/500/1000/5000 

Input correction ( ua ) 0.5 

 

The nominal state and control are arbitrarily chosen to be and1  1x u  . These 

choices are inconsistent with respect to Eq. (2.90). The simulation results are 

summarized in Table 2.2. Figs. 2.2-2.5 are simulated in n =5000.  
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Table 2.2: The results of simulation for Example 2-1 

Method n
 0  ( )x T  J 

Open-loop 5000 23.9866 0.0354 1J =41.5953 

SBS Method 150 24.0491 0.0387 1J =41.6036, 
2J =41.4307 

SBS Method 250 23.9864 0.0349 1J =41.5954, 
2J =41.4906 

SBS Method 500 23.9865 0.0351 1J =41.5953, 
2J =41.5431 

SBS Method 1000 23.9866 0.0353 1J =41.5953, 
2J =41.5692 

SBS Method 5000 23.9866 0.0354 1J =41.5953, 2J =41.5901 

 

     

        Figure 2.2: State history for Example2-1              Figure 2.3: Input history for Example 2-1 
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  Figure 2.4: Costate history for Example 2-1   Figure 2.5: The cost value history for Example2-1 

 

In Figs. 2.2-2.4, the red lines indicate the results of an open-loop solution, the 

blue dotted lines indicate the nominal trajectory variables, and the black dotted lines 

indicate the result obtained from the SBS method. The open-loop solution is obtained by 

using a single-shooting method initialized by the initial costate resulting from the SBS 

method. Figures 2.2-2.4 clearly show that the solutions from the shooting and SBS 

method agree. Figure 2.5 shows that the values of 1J and 2J  differ significantly during 

the initial iterations, but converge on the 4th iteration. This indicates that the obtained 

solution is indeed an optimal solution.  

However, if the number of data points is decreased from n =5000 to n =150, the 

numerical integration error is increased because of the large time step used. In this case, 

the discrepancy between 1J and 2J in Table 2.2 is indicative of the integration error. 

Table 2.2 shows that 2J  is more sensitive to numerical integration error than is 1J . 
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 2.9.2 Example 2-2: A 2-D nonlinear problem with final state constraints 

 

 
1 2

5

2 1 1

x x

x x x u



  
 (2.96) 

 
5

2 2

2

0

1
( )

2
J x u dt   (2.97) 

 

The given initial and final states are 
0( ) [1 1]x t   and ( ) [0.5 0.5]x T  . This 

problem involves a highly nonlinear term (5th order) and, unless the initial guess is 

excellent, the solution process requires a modification of the 
xxH  term to achieve 

convergence. The nominal trajectory is defined by arbitrary choices for the state, control, 

and costate histories: , 0.1u  , and [0.1 0.1]  . Since the terminal 

constraint is linear, . In this situation, convergence can be achieved by using the 

F  modification matrix, defined by Eq.(2.45). The simulation conditions are provided in 

Table 2.3. 

  

[1 1]x 

( )T 
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Table 2.3: Simulation conditions for Example 2-2 

Variable Value  

Number of data points (n) 500 

Input correction (
u ) 1 

Iteration number 20 

The coefficients of F ( fxa ) 5/10/50/100 

 

The results of simulation are summarized in Table 2.4. 

 

Table 2.4: The results of simulation for Example 2-2 

Method 0  | ( ) |fx T x  J  

Shooting (25.044,9.420) 0.000 8.801 

SBS Method (25.059,9.410) 0.002 8.803 

 

     

        Figure 2.6: State history for Example2-2              Figure 2.7: Input history for Example 2-2 
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     Figure 2.8: Costate history for Example2-2               Figure 2.9: The cost convergence vs.

       iterations for Example2-2 
 

In Figs. 2.6-2.8, the red lines indicate the results of the open-loop solution, the 

blue dotted lines indicate the nominal variables, and the black dotted lines indicate the 

results of the SBS method. The open-loop solution is obtained by using a single-shooting 

method based on the costate values obtained from the SBS method. Figures 2.6-2.8 show 

that the open-loop results match the respective SBS solutions exactly. Figure 2.9 shows 

the convergence history of J  with respect to the number of iterations, as the parameter 

fxa is varied. If the value of fxa is too large, the convergence rate slows down. 
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 2.9.3 Example 2-3: A 1-D classical example 

This example serves to review the well-known result that an unbounded solution 

to the Riccati equation is not indicative of the presence of a conjugate point for a 

terminally-constrained OCP. Consider the OCP given by.  

 

 
0, ( ) ( ) 0x u x t x     (2.98) 

 2 2

0

1
Min : ( )

2
J u x dt



   (2.99) 

 

This problem has been extensively treated in the literature, e.g., Bryson and Ho 

[8]. The solution to the problem by the application of the first-order necessary conditions 

leads to the following differential equation: 

 

 ( ) ( ) 0x t x t   (2.100) 

 

The Hamiltonian for this problem satisfies the convexity condition, 0uuH  . Eq. 

(2.100) is satisfied by a family of solutions, given by  

 

 ( ) sin( )x t a t  (2.101) 

 

where a is any constant, indicating that the initial time point is conjugate to the final time 

point. The cost J, on any solution to Eq. (2.100) is zero. The analytical solutions to the 
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gains are: 

 

 ( ) tan( );  ( ) sec( );  ( ) tan( )S t t P t t W t t         (2.102) 

 

Equations (2.102) show that ( )S t  is unbounded at 
2

t


 . However, ( )S t  is 

bounded for 0 t   : 

 

 1( ) ( ) ( ) ( ) ( ) cot( )TS t S t P t W t P t t     (2.103) 

 

Therefore, back integration using the modified SBS method can proceed without 

encountering a singularity for 0 t   , whereas the original SBS method cannot be 

used while approaching the point 
2

t


 . 

 

 2.9.4 Example 2-4: Earth to Mars orbit transfer problem with control  

            constraints 

The Earth to Mars orbit transfer problem with terminal constraints and a bounded 

input is considered. The difficulty with the solution to this problem stems from the bang-

off-bang nature of the control and the lack of knowledge of the switching structure a 

priori. This example taken from Ref.[7] is presented to compare the performance of the 

SBS method implemented with several options for computing   or fx . The object of 

this problem is to minimize the final mass with a thrust-limited engine. The system 
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dynamic equations [7] are  

 

 
xx V  (2.104) 

 yy V  (2.105) 

 
zz V  (2.106) 

 
3

x
x s

Tx
V

r m
    (2.107) 

 
3

y

y s

Ty
V

r m
    (2.108) 

 
3

z
z s

Tz
V

r m
    (2.109) 

 
0 sp

T
m

g I
   (2.110) 

 

where , ,x y z  are the positions of vehicle, , ,x y zV V V  are velocities of vehicle, s  is a 

gravitational constant, spI  is the specific impulse, T  is thrust, which can be expressed as 

follows: 

 

 2 2 2

x y zT T T T    (2.111) 

 

When the thrust is saturated
 

,,x zyT T T  are defined as: 
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maxmax max

2 2 2 2 2 2 2 2 2
, ,

yx z
x y z

x y z x y z x y z

T TT T T T
T T T

T T T T T T T T T
  

     
 (2.112) 

 

The parameters used in simulation are presented in the Table 2.5. The boundary 

conditions are represented in the Table 2.6. 

 

Table 2.5: Simulation parameters for Example 2-4 

Variables Value  

Maximum Thrust(
maxT ) 0.5N  

Specific Impulse ( spI ) 2000s  

Initial mass (
0m ) 1000kg  

Time of flight( ft ) 348.795days  

 

Table 2.6: The boundary conditions for Example 2-4 

Variables Initial values Final values 

x  -140,699,693(km) -172,682,023(km) 

y  -51,614,428(km) 176,959,469(km) 

z  980(km) 7,948,912(km) 

xV  9.774596(km/s) -16.427384(km/s) 

yV  -28.07828(km/s) -14.860506(km/s) 

zV  -4.337725* 410 (km/s) 9.21486* 410 (km/s) 
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In this problem, the maximum thrust input is limited to 0.5N. Two different 

forms of control smoothing are used to deal with the discontinuous thrust. In the first 

approach, used to determine the open-loop solution, the input is approximated by using 

the exponential function [28]. 

 

 max

11 exp( / )

T
T

SF 



 (2.113) 

 

where SF indicates a switching function and 
1  is a continuation parameter. For the 

application of the SBS method, the problem formulation is modified by defining the 

performance index as follows: 

 

 2 2 2

2

0

1
( ) ( )

2

ft

f x y zJ m t T T T dt      (2.114) 

 

where 2  is a continuation parameter. The integration time step size is / 300ft t  . The 

results obtained for the orbit transfer problem are presented in Table 2.7 for various 

combinations of methods and continuation parameter values. 
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Table 2.7: Simulation results for Example 2-4 

Method 1  or 
2  ( )m T  | ( ) |fx T x  

Open-loop (
1 ) 

1 0e  532.721 0.000 

1 1e  596.122 0.000 

1 2e  603.765 0.000 

1 3e  603.974 0.000 

SBS method (
2 ) 

(  evaluated at 
0t ) 

1 0e  560.939 0.006 

1 1e  574.719 0.007 

1 2e  618.284 0.024 

1 3e  644.554 0.062 

1 4e  650.672 0.091 

SBS method ( 2 ) 

(pseudoinverse 

method  

  for  ) 

1 0e  561.417 0.008 

1 1e  575.386 0.008 

1 2e  613.814 0.011 

1 3e  624.023 0.023 

1 4e  624.487 0.022 

SBS AP method (
2 ) 

(determination of fx ) 

1 0e  561.423 0.008 

1 1e  575.703 0.008 

1 2e  613.992 0.012 

1 3e  623.093 0.022 

1 4e  624.934 0.023 

 

The results presented in Table 2.7 are obtained without considering the 2nd order 

terms in the Hamiltonian. In this simulation, a relatively large time step size is used to 

reduce the simulation time. In this case, if the 2nd order terms are considered, the 

controls exhibit significant roughness. Furthermore, if   is evaluated only at the initial 
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time, then relatively large boundary condition errors result. Table 2.7 shows that the 

boundary condition errors can be reduced by using the pseudoinverse and AP methods. 

The  values are evaluated for an update region 
0[ ,0.5 ]t t T . 

 

     

       Figure 2.10: Input history for Example2-4             Figure 2.11: Input history for Example2-4 

                         (Open-Loop)                                                              (SBS- ( 0t )) 

 

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

t

T

 

 
eps=1

eps=1e-1

eps=1e-2

eps=1e-3

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

t

u

 

 

eps=1

eps=1e-1

eps=1e-2

eps=1e-3

eps=1e-4



 

- 41 - 

 

 

     

     Figure 2.12: Input history for Example2-4              Figure 2.13: Input history for Example2-4 

                           (SBS-Pseudoinverse)                                                (SBS-AP fx )                    

 

Figures 2.10-2.13 show that the continuation process has the ability to converge 

toward the exact solution. Figure 2.11 shows the input history if   is evaluated only at 

the initial time. The sharp switching structure cannot be captured unless the integration 

step-size is reduced further. However, these converged solutions are good approximating 

solutions. If the SBS method switches to a multiple-shooting method near the end of 

iterative process, the true optimal solution can be easily obtained. Starting from the 

solution of Fig. 2.11, for 4

2 1 10   , the optimal solution can be found after 38 

iterations using multiple-shooting. For the remaining two methods(the pseudoinverse 

and AP methods), the optimal solution can be obtained in less than 30 iterations.  
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3. THE SBS METHOD INCORPORATING A MAGNUS INTEGRATOR* 

 

In this section, the adaptation of the SBS method for use with a Magnus 

integrator is described.  

 

3.1 The Magnus integrator 

The Magnus integrator [21] is an exponential integrator, obtained by using the 

Magnus series expansion for the solution to a linear, time-varying matrix differential 

equation. This integrator is more accurate, for a given step size, than a polynomial 

integrator, e.g., the non-symplectic Runge Kutta method of the same order. Therefore, 

the boundary error resulting from numerical inaccuracies can be reduced with this 

approach. Equations (2.28-2.29) are represented to eliminate the control by substituting 

Eq. (2.30) as follows: 

 

 
1x Ax B d    (3.1) 

 
2

TQx A d      (3.2) 

where 

 1

u uu uxA H x H H H 
   (3.3) 

 1

uu uuB H H H 
  (3.4) 

                                                 
*Part of this section is reprinted with permission from “The Successive Backward Sweep Method for 
Optimal Control of Nonlinear Systems with Constraints” by Cho,D.H, Vadali,S.R, 2013. Advances in the 
Astronautical Sciences, Volume 147, pp 163-183, Copyright [2013] by American Astronautical Society 
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 1

xx xu uu uxQ H H H H   (3.5) 

 1

1 u uud H H    (3.6) 

 1

2 xu uud H H    (3.7) 

 

Equations. (3.1-3.2) can be expressed in the form of a non-homogeneous linear matrix 

differential equation 

 

  
1

2
T

dx xA B

dQ A 

      
               

 (3.8) 

 

Equation (3.8) can be converted into the homogeneous equation by following 

arrangement [29]: 

 

 

1

2

0 0 0 0 1

T

x A B d x

Q A d 

    
           
        

 (3.9) 

 

Equation (3.9) is represented as 

 

 ( , )Y A t Y Y  (3.10) 

 

where [ , ,1]TY x   and ( , )A t Y  is a time-varying matrix of appropriate dimensions. The 
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solution to Eq. (3.10) is expressed as an explicit exponential mapping in discrete-time by 

using the nonlinear Magnus expansion as follows: 

 

 
1

( )h

k kY e Y

   (3.11) 

 

In this research, the 4th order Magnus expansion for ( )h  is calculated 

sequentially [30], with [0,  ]s h  as a dummy variable, representing time: 

 

Order 1: 

 [1] 2( ) ( , ) ( )k ks sA t Y O h    (3.12) 

Order 2: 

 
[1]2] ( 3[ )( ) [ ( , ) ( , )] ( )

2

s

k k k k

s
s A t Y A t s e Y O h      (3.13) 

Order 3: 

 

[3] [2]

2 2 2

[2]

2

4

( ) [ ( , ) 4 ( / 2) ( )] [ ( / 2), ( / 2)]
6 3

[ ( ), ( )] ( )
12

k k

s s
s A t Y A s A s s A s

s
s A s O h

     

  

 (3.14) 

Order 4: 

 

[4] [3]

[3] [3]

3 3

[3] [3] [3

3 3

]

3 3

4
( ) ( , ) ( / 2) [ ( / 2), ( / 2)]

6 6 3

[ ( / 2),[ ( / 2), ( / 2)]] ( )
18 6

[ ( ), ( )] [ ( ),[ ( ), ( )]]
12 72

k k

s s s
s A t Y A s s A s

s s
s s A s A s

s s
s A s s s A s

    

   

    

 (3.15) 
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where 

[2] ( )

2( ) ( , )s

k kA s A t s e Y  ,  
[3]

3

( )( ) ( , )s

k kA s A t s e Y 
 

 

Substitution of Eqs. (3.12-3.14) into Eq. (3.15) leads to the following discrete-

time mapping of Eq. (3.9): 

 

 

1 11 12 11

1 21 22 22

0 0 0 0 1

k k

k k

x F F D x

F F D 




     
     
     
          

 (3.16) 

 

Equation (3.16) can be solved in partitioned form, as required for the application 

of the SBS method. 

 

3.2 The SBS method using a Magnus integrator 

Equation (3.16) can be solved in partitioned form, with 
k  assumed as in Eq. 

(2.36): 

 

 k k k k kS x P V     (3.17) 

 

The gain difference equations can be obtained by substituting Equation (3.17) into 

Equation (3.16): 
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 1

22 1 12 1 11 21( ) ( )k k kS SF F S F F

    ,                           [ ( ) ]T

n xx x x k n
S   


   (3.18) 

 1

122 12 1( )k k kP S FF P

   ,                                                                   
n

T

n xP   (3.19) 

 1

22 1 12 1 1 11 22( ) ( )k k k kV F S F V S D D

      ,    [ ( ( ) ) ]T

n x xx x x k n
V x   


    (3.20) 

 
1 1 12

T

k k k kW W P F P   ,                                                                         0nW   (3.21) 

 
1 1 12 11( )T

k k k kN N P F V D    ,                                     ( ( ) )n x k n
N x x 


   (3.22) 

 

3.3 The modified SBS method using a Magnus integrator 

In contrast to Eq. (3.17), the modified form of the gain equation is used over a 

restricted domain 

 

 
   1[0 1]k n    (3.23) 

 

where  is the index representing the final time and 
1n  is the time index where the gains 

are switched during the sweep operation. Equation (3.17) is used for 
1[ 1]n k n   . The 

process for determining the gain difference equations is exactly the same as mentioned 

previously, and the results are 

 

For
 

 

 1

22 1 12 1 11 21( ) ( )k k kS SF F S F F

    ,                               
1 1 1 1 1

1

n n n n nPPS S W   (3.24) 

k k k k f kS x P V   

n

1[0 1]k n  
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 1

122 12 1( )k k kP S FF P

   ,                                                            
1 1 1

1

n n nP WP   (3.25) 

 1

22 1 12 1 1 11 22( ) ( )k k k kV F S F V S D D

      ,                    
1 1 1 1 1

1

n n n n nV V P W N   (3.26) 

 

The gain differential equations for 
1[ 1]n k n    are defined as in Eqs. (3.18-

3.22). The three gain Eqs. (3.24-3.26), are respectively identical in form to Eqs. (3.18-

3.20). The boundary conditions for Eqs. (3.24-3.26) are determined by using the gain 

values obtained from Eqs.(3.18-3.22) at the switching point.  

 

3.4 Numerical examples 

Three numerical examples are presented to demonstrate the performance of the 

Magnus series-based modified SBS method. These examples are simulated by using the 

5th order Runge-Kutta algorithm as well as the 4th-order Magnus integrator. The focus is 

on comparing the achieved accuracies in satisfying the terminal boundary conditions.  

 

 3.4.1 Example 3-1: A 2-D nonlinear problem with final state constraints 

The problem of Example 2-2 is used to compare the performance of the modified 

SBS method. For this problem, the simple modification of Eq. (2.51) is applied: 
hxxC  is 

set to 5 at the beginning of the iterations and it is subsequently reduced to 0. The 

simulation conditions are provided in Table 3.1. 
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Table 3.1: Simulation conditions for Example 3-1 

Variable Value  

Number of data points ( n ) 500/50 

Number of iterations 20 

Input correction (
u ) 1 

Switching time to the 

modified SBS method (
1t ) 

0.9T  

 

Table 3.2 presents the data on the boundary error norms for the various 

integration methods and procedures for calculating  . The boundary error for each 

method is an indicator of its numerical accuracy. 

 

Table 3.2: The results of simulation for Example 3-1 

Method Integrator n  ( ) fx T x  Computation Time 

(normalized)  

Original SBS; 
is evaluated at 0t  

RK-5th 500 0.008 1 

MI 500 1.405e-15 9.93 

MI 50 1.435e-14 1.07 

The modified 

SBS method 

RK-5th 500 1.581e-6 2.43 

MI 500 1.554e-14 11.57 

MI 50 1.688e-13 1.07 

     * RK-5th : the 5th order Runge-Kutta algorithm ,  MI : Magnus Integrator 

 

Regardless of the method used to solve for  , the accuracy of the 4th order 

Magnus integrator is significantly higher than that of the RK-5th integrator, for the values 

of n  considered. Moreover, the computational time required for the Magnus method can 
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be reduced by selecting larger step sizes. Even for the case of 50n  , the Magnus 

integrator is highly accurate, while its computational burden is nearly the same as that of 

the RK-5th integrator. The modified SBS method with the RK-5th integrator reduces the 

boundary error significantly. Figures 3.1-3.4 show the results of simulation by using the 

modified SBS method with the Magnus integrator for 50n  . 

  
     Figure 3.1: State history for Example3-1           Figure 3.2: Input history for Example3-1 

 

  
  Figure 3.3: Costate history for Example3-1    Figure 3.4: The cost value history for Example3-1 
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 3.4.2 Example 3-2: A hypersensitive problem  

Consider an example of a hypersensitive problem [31]. This problem is difficult 

to solve by using an indirect method. The system dynamics and cost function are  

 

 
1 2

3

2 1 1

x x

x x x u



   
 (3.27) 

 
40

22

2

0

1

21
( )

2
J x x u dt    (3.28) 

 

The given initial and final states are 0( ) [1 0]x t   and ( ) [0.75 0]x T  . The nominal 

trajectory variable histories are selected as for the previous example: [1 1]nx  , 

0.1nu  , [0.1 0.1]n  . The simulation parameters are provided in the Table 3.3.  

 

Table 3.3: Simulation conditions for Example 3-2 

Variable Value 

Data points ( n ) 500 

Iteration number 10 

Input correction ( u ) 1 

Switching time to the 

modified SBS method (
1t ) 

0.9T  
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      Figure 3.5: State history for Example3-2            Figure 3.6: Costate history for Example 3-2 

 

Figures 3.5-3.6 show the state and costate history of Example 3-2. The standard 

SBS method with the RK-5th integrator fails to produce a converged solution even after 

several attempts to modify the Hessian. However, the solution of this problem can be 

easily obtained when the modified SBS method with the Magnus integrator is used. The 

boundary error norm of the converged solution is ( ) 8.623 15T e   .  

 

 3.4.3 Example 3-3: The atmospheric reentry problem 

Atmospheric reentry is a well-known example of a highly nonlinear problem. 

The system dynamic model is given by [32-33] the following equations: 

 

 sinr V   (3.29) 

 
cos cos

cos

V

r

 
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
  (3.30) 
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cos sinV

r

 
   (3.31) 

 
2

sinV D
r


    (3.32) 

 
2

cos
cos cos

V L

r V r V

 
       (3.33) 

 
cos cos sin sin

cos cos

V L

r V

   


 
    (3.34) 

 

where r  is the position of vehicle,   is the longitude,   is the latitude, V  is the velocity 

of vehicle,   is the flight path angle,   is the heading angle,   is a gravitational 

constant and   is the control bank angle. The performance index to be minimized is a 

weighted combination of the aerodynamic loading and connective heating:  

 

 2 2 3

0

[ ]
T

J L D V dt     (3.35) 

 

where   is chosen to reflect equal weightage on the two factors. The density of 

atmosphere is defined as: 

 

 ( )

0
ek r kre     (3.36) 

where 0 is the density at sea level, k  is an atmospheric scale height, er  is the radius of 

the Earth. The lift and drag forces per unit mass are represented as: 
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21

2
lL C SV  (3.37) 

 
21

2
dD C SV  (3.38) 

 

where 
lC  is the lift coefficient, 

dC  is the drag coefficient, and S  is the normalized 

reference area. The parameters used in the simulations are presented in the Table 4. 

Although the distance unit for the data shown in Table 3.4 is the foot, the unit of distance 

used in the simulations is the mile, and the value of   accounts for this normalization.  

 

Table 3.4: Simulation parameters for Example 3-3 

Variable Value  

Density ( 0 ) 3 32.7*10 /slug ft  

Atmospheric scale height ( k ) 54.2*10 / ft  

Gravitational constant ( ) 16 3 21.4077*10 /ft s  

Lift coefficient (
lC ) 0.35  

Drag coefficient ( dC ) 1.3  

Reference area ( S ) 0.3752 2 /ft slug  

Scaling factor ( ) 61.0538*10  

 

The boundary conditions at initial and final points are given in Table 3.5. 
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Table 3.5: Boundary conditions for Example 3-3 

Variables Initial values Final values 

Time ( t ) 0(s) 390(s) 

Altitude ( r ) 400,000(ft) - 

Longitude ( ) 0(rad) 0.330(rad) 

Latitude ( ) 0(rad) -0.025(rad) 

Velocity (V ) 36,000(ft/s) 2,640(ft/s) 

Flight path angle ( ) -6.5(deg) - 

Heading angle ( ) 0(deg) - 

 

For this problem, the number of integration data points selected is 500n  . The 

nominal trajectory is obtained by integrating the equations of motion with a constant 

bank angle 0.8  . The costates are also selected to be constants over the entire 

trajectory: [0.1 0.1 0.1 0.1 0.1 0.1]T  . This problem is challenging because 

uuH  can become zero at isolated instants of time and hence, a perturbation factor of 1  is 

added to 
uuH , which is subsequently reduced to 1 7e . The convergence criterion is 

( ) 1 8fx T x e   . For the control and costate guesses selected, the standard SBS gain 

back propagation is carried up to the switch point 1 0.1t T  initially, because of the 

conditioning of the gain matrices. After about 30 iterations, the switch time is moved to 

1 0.9t T . The simulation results are shown in Table 3.6.  
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Table 3.6: Simulation results for Example 3-3 

Variables Initial values Desired values Final values 

Altitude ( r ) 400,000(ft) - 105,800(ft) 

Longitude ( ) 0(rad) 0.33(rad) 0.330(rad) 

Latitude ( ) 0(rad) -0.025(rad) -0.025(rad) 

Velocity (V ) 36,000(ft/s) 2,640(ft/s) 2,640(ft/s) 

Flight path angle ( ) -6.5(deg) - -13.33(deg) 

Heading angle ( ) 0(deg) - -20.89(deg) 

Cost ( J ) - - 13.33 

 

     

   Figure 3.7: Altitude history for Example3-3       Figure 3.8: Longitude history for Example3-3 
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  Figure 3.9: Latitude history for Example3-3         Figure 3.10: Velocity history for Example3-3 

 

     

           Figure 3.11: Flight path angle history                  Figure 3.12: Heading angle history  

                               for Example3-3                                                     for Example3-3                 
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  Figure 3.13: The input history for Example 3-3         Figure 3.14: Cost convergence vs.                                                                                                   

        iterations for Example3-3 

 

Figure 3.15: The terminal constraint violation  

                   ( ) fx T x
 
for Example 3-3           

 

Figures 3.7-3.14 show three sets of data for the states, control, and the objective 
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(MSBS-MI). The initial costates used for the shooting method were obtained from 

MSBS-MI. The results from the two methods match very well and are indistinguishable 

to the scales of the figures. Figure 3.14 shows the convergence history for the 

performance index and Fig. 3.15 shows that for the constraint satisfaction error. Both of 

the indicators converge rapidly during the initial iterations. MSBS-MI obtains the least 

boundary condition error. 

 

Table 3.7: Boundary satisfaction accuracy for Example 3-3 

Method Integrator Iteration #
 

n
 

( ) fx T x  Simulation Time 

(normalized) 

 is 

evaluated at 

0t  

RK-5th 200 1,300 0.01 1 

MI 47 1,300 4.895e-10 0.68 

MI 47 500 2.712e-9 0.25 

The 

modified 

SBS method 

RK-5th 200 1,300 4.985e-5 1.26 

MI 49 1,300 1.049e-11 0.75 

MI 47 500 2.744e-11 0.26 

 

Table 3.7 shows that the computation burden of the Magnus integrator can be 

traded for larger step sizes. Either of the SBS methods used with the RK-5th integrator 

requires nearly 200 iterations to find a converged solution. However, MSBS-MI finds a 

high accuracy solution within 50 iterations. Note that the computation times can be 

significantly lower for more accurate initial guesses.  
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Figure 3.16: Neighboring reentry trajectories for Example 3-3 (MSBS-MI) 

 

One advantage of the SBS method is that it produces the feedback gains required 

for perturbation guidance. The gains computed for the nominal trajectory can be used for 

computing control solutions for trajectories with perturbed initial conditions. Figure 3.16 

shows the sensitivity when small perturbations are applied to the initial altitude and 

velocity, centered on their nominal values. The red line indicates the nominal trajectory 

obtained by MSBS-MI. The perturbations are 4,000 ft  in the initial altitude and  

1,000 / secft  in the initial velocity. For each method, the perturbed trajectories are 

propagated using the same integrator as used for computing the nominal trajectory and 

the gains. The gain values stored at evenly spaced time points are held constant between 

the nodes, during the integrations of the perturbed trajectories.  
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Table 3.8: The average error in the final velocity for Example 3-3 

Method Integrator n  
The average error in the final velocity  

(ft/sec) 

 is evaluated 

at 
0t  

RK-5th

 1,300 84.14 / secft  

MI 1,300 28.29 / secft  

MI 500 27.93 / secft  

The modified 

SBS method 

RK-5th

 1,300 13.38 / secft  

MI 1,300 0.70 / secft  

MI 500 0.76 / secft  

 

The data of Table 3.8 indicate that MSBS-MI provides accurate satisfaction of 

the terminal boundary conditions for the class of perturbations considered, compared to 

the unmodified SBS method as well as the MSBS-RK-5th methods. An increase of the 

step size or alternatively, a reduction in the number of data points from 1300 to 500 (for 

a fixed final time) shows only a slight increase in the average terminal error in the final 

velocity. 
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4. DISCRETE TIME FORMULATION OF THE SBS METHOD 

 

Coupling of the discretization scheme to the derivation the necessary conditions 

has distinct advantages, reduction in the terminal boundary error being the foremost. The 

SBS method can be applied in two ways, leading to the same results. The first 

application is to linearize a continuous-time system and then convert it to a discretized 

system. The second is to apply the discretization and then linearize the discrete time 

necessary conditions. The former approach is followed in this section. 

 

4.1 The discretized SBS method 

To begin with, the linearized, continuous-time necessary conditions for the 

control constraint problem are given by Eq. (3.8) and the associated boundary 

conditions. Equation (3.8) is reproduced in this section 

 

 
1

2
T

dx xA B

dQ A 

      
               

 (3.8) 

 

Equation (3.8) can be expressed in the simple form 

 

 X FX D   (4.1) 

 

where X  indicates [ ]'X x  . The respective entries of Eq. (3.8) are modified from 
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those in Eqs. (3.3-3.7) because of the control constraint.  

 

 1{ }ux u uxuA H H H H  
   (4.2) 

 1{ }uu uuB H H H    (4.3) 

 1{ }xx xu uu uxQ H H H H    (4.4) 

 1

1 ( { } )c mu uud H Pu H      (4.5) 

 1

2 ( { } )c mu ux ud H Pu H      (4.6) 

 

With all the variables as defined previously, these equations can be expressed in a matrix 

form as in Eq. (4.1), which can be solved by any discretization of choice. In this section, 

six discretization schemes are used. The selected discretization schemes are 1) Euler 

forward method, 2) Euler backward method, 3) The midpoint rule, 4) Trapezoidal rule, 

5) Simpson’s rule, and 6) The discretization by using RK 4th [34]. Among these methods, 

the first five schemes are presented in the following and the algorithm of discretization 

by using the RK 4th method is described in Appendix B.  

The left hand side of Eq. (4.1) commonly is discretized as follows:  

 

 1k kX X
X  



 (4.7) 

 

where   is a time step ( 1k kt t  ). The right hand side of Eq. (4.1) is discretized by 
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selecting one of the following schemes  

 

     Euler forward method: 

 
1,k kx x      (4.8) 

 

     Euler backward method: 

 1,k kx x     (4.9) 

 

     The implicit midpoint rule: 

 1 1,
2 2

k k k kx x
x

 
  

   (4.10) 

 

     Trapezoidal Rule: 

 1 1 1( ) ( )

2
k k k k k kF X D F X D

FX D     
   (4.11) 

 

     Simpson’s Rule: 

 
2 1

( int ) ( )
3 3

Simpson Rule Midpo averaged rule Trapezoidal rule   (4.12) 

 

The second-order implicit midpoint rule of Eq. (4.10) provides many advantages. 

It is symmetric and is also a symplectic scheme,  preserving constants of integration to 

second order. However, since it is an implicit scheme, it is applied in an explicit form in 
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the SBS approach by introducing an averaged input u . For example, the system  

 

 x u  (4.13) 

 

can be discretized by using the midpoint rule as follows: 

 

 1 1

2
k k k kx x u u  




 (4.14) 

 

Equation (4.14) is not causal, a requirement for the use of the SBS method.  

However, Eq. (4.14) can be made causal by defining an average control 
ku  such that

 

 

 1

2
k k

k

u u
u  

  (4.15) 

 

The SBS method is fully developed for use with the midpoint discretization 

scheme in the following. Equation (3.8) can be converted into a linear discrete-time 

system by substituting Eq. (4.10) into Eq. (3.8) as follows: 

 

 
1

2

1

1

222

222
TT

k k

k k

x x dI A BI A B

dQ I AQ I A  




          
                  

 (4.16) 

 

Note that for the discrete-time approximation by the midpoint rule, 1k   appears on the 
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right hand side of Eq. (4.16). The state and costate equations in the discrete time system 

can be easily obtained by using the inverse transformation in Eq. (4.16).  

 

 
1 11 12 11

121 11 21

k k

T

k k

x xF F D

F F D 





      
       
      

 (4.17) 

 

where 

 
11 12

21 11

T

F F
F

F F

 
  
 

1

2 2

2 2T T

I A B I A B

Q I A Q I A


      
   
      

 (4.18) 

 
11

21

D
D

D

 
  
 

1

1

2

22

22 T

dI A B

dQ I A


    

       
 (4.19)

 

 

Equation (4.17) can be solved in partitioned form by substituting the expression 

k  as given by Eq. (3.17). The differential gain equations of the discretized SBS method 

are obtained as follows: 

 

 21 11 1 11

T

k kS F S FF K  ,                                             [ ( ) ]T

n xx x x k n
S   


   (4.20) 

 11 1 12 1( )T

k k kP IF S KF P   ,                                                              
n

T

n xP   (4.21) 

11 1 12 1 21 11 1 11( )T T

k k k kV I S KF V D F S KF D      , [ ( ( ) ) ]T

n x xx x x k n
V x   


    (4.22) 

 1 1 12 1

T

k k k kW W P KF P    ,                                                                   0nW   (4.23) 

 1 1 12 1 11( )T

k k k kN N P K F V D     ,                              ( ( ) )n x k n
N x x 


   (4.24) 
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where 

 1

12 1( )kK I F S 

   (4.25) 

 

The discretized input variable can be obtained by using the stationary condition. 

The stationarity condition in the discrete-time system is represented as: 

 

 1 1( ) ( ) 0
2 2

k k k k
ux uu k u k

x x
H H u H 

 
  

     (4.26) 

 

The discretized control input can be obtained by substituting the Eq. (4.17) and 

Eq. (3.17) into Eq. (4.26). 

 

1

11 12 1 1 11

1
[( ) ( )( ) 2 ]

2
k ux u k u u k k u k uuuu H H K F x H K F P V H K D   

           (4.27) 

 

where 

 1( )u ux u kK H H S K    (4.28) 
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4.2 The discretized SBS method for free final time problems 

 The SBS method can also be extended to solve free final time problems. A free 

final time problem can be converted into a fixed final time problem by defining a 

nondimensional time [35] as follows: 

 

 (0 1)
f

t

t
     (4.29) 

 

The final time can be considered as a trivial state variable.  The linearized necessary 

conditions in the continuous-time domain can be expressed as follows: 

 

 x u bx H x H u H b         (4.30) 

 ( )xx xu x xbH x H u H H b          (4.31) 

 ( )bx bu b bbH x H u H H b          (4.32) 

 1{ }( )c m uu ux u ubu Pu H H x H H b        (4.33) 

 

where   is the costate corresponding to ft , designated by the new variable b , and   

indicates the derivative with respect to   

 

 x u bH H x H u H b         (4.34) 

 
x xx xu x xbH H x H u H H b       (4.35) 
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b bx bu b bbH H x H u H H b       (4.36) 

 
u ux uu u ubH H x H u H H b       (4.37) 

 

where b indicates the nominal value of  b , the final time.  Substitution of Eq. (4.33) into 

Eqs. (4.30-4.32) results in the state and costate equations: 

 

 
1

1{ }u uu ux Ax H H H Bb d        (4.38) 

 2( )TQx A Cb d        (4.39) 

 3( )T TC x B Db d        (4.40) 

 

where 

 1{ }x u uu uxA H H H H  
   (4.41) 

 1{ }b u uu ubB H H H H  
   (4.42) 

 1{ }xb xu u ubuC H H H H    (4.43) 

 1{ }bb bu u ubuD H H H H    (4.44) 

 1{ }xx xu u uxuQ H H H H    (4.45) 

 1

1 ( { } )u c m uud H Pu H      (4.46) 

 1

2 ( { } )xu c m uud H Pu H      (4.47) 

 1

3 ( { } )bu c m uud H Pu H      (4.48) 
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Equations (4.38-4.40) are discretized by the explicit midpoint rule, Eq. (4.10) and 

Eq. (4.15), resulting in the matrix form  

 

1

1 1

1

1

1

2

3

2 { } 0 2 { } 0 2 2

2 0 2 0 2 2

2 2 2 2

u uu u uu

T T

u k u k

k k

T T T T

k k

I A H H H x I A H H H x B d

Q I A Q I A C b d

C B C B D d

    

 

 









               
                            
                          

(4.49) 

 

After performing the matrix inverse, Eq. (4.49) is transformed into 

 

 

1 11 12 11 11

21 11 1 21 21

31 32 1 31 31

0

0

1

k k

T

k k

k k

x F F x C D

F F C b D

F F C D

 

 







         
           
         
                  

 (4.50) 

 

where 

11 12

21 11

31 32

0

0

1

T

F F

F F F

F F

 
  
 
  

1
1 12 { } 0 2 { } 0

2 0 2 0

2 2

u uu u uu

T

u u

T T

T

T T

I A H H H I A H H H

Q I A Q I A

C B C B

    


       
   
      

         

 (4.51)

 

 

11

21

31

C

C C

C

 
  
 
  

1
12 { } 0 2

2 0 2

2 2

u u u

T T

u

T

I A H H H B

Q I A C

C B D

 


     
   
     

       

 (4.52)

 

 

11

21

31

D

D D

D

 
  
 
  

1

2

3

1
12 { } 0 2

2 0 2

2 2

u u u

T

u

T

T

I A H H H d

Q I A d

C B d

  


    
        
       

 (4.53)
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The gain differential equations are obtained by assuming 
k  as in in Eq. (3.17): 

 

 
k k k k k kS x P M b V      (4.54) 

 

Boundary values of gain matrices can be determined from Eqs. (4.55-4.57). 

 

 
n n

T T

n xx xn x n n n n nx b S x P M b V            (4.55) 

 
n

T

n n nn x n n nbx b P x W G b N          (4.56) 

 T T

n n nn n nM x G K b Z      (4.57) 

 

where 

 bn

T

b nH       (4.58) 

 

Finally, the equations for propagating the gain matrices are obtained by 

substituting Eq. (4.54) into Eq. (4.50) as follows: 

 

 21 11k hS KF F  ,                                   [ ( ) ( ) ]T T

n xx x x x x k n
S b  


     (4.59) 

 11 1

T

k g kP KF P  ,                                                                             
n

T

n xP   (4.60) 

 11 1 11 21

T

k g k hM K M K C CF                                                     ,
 n

T

n xM   (4.61) 

 11 1 11 21

T

k g k hV K V K D DF    ,  [ ( ( ) ( ) ) ]T T

n x xx x x x x k n
V b x   


      (4.62) 
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 1 1 12 1

T

k k k kW W P KF P    ,                                                              0nW   (4.63) 

 1 1 12 1 11( )T

k k k kG G P K F M C     ,                                                 bnG   (4.64) 

 1 1 12 1 11( )T

k k k kN N P K F V D     ,                     ( )
nn

k n
n bxN x b  


    (4.65) 

 
1 1 31 11k i k k mK K M K C K C     ,                                                  

bnK   (4.66) 

 
1 1 31 11k i k k mZ KV Z D K D     ,                         ( )

nn
k n

n bxZ x b


    (4.67) 

 

where 

 1 12g kK I S KF   (4.68) 

 11 1

T

h kK F S K  (4.69) 

 32 12i mK F K F   (4.70) 

 32 1 1( )T

m k kK F S M K    (4.71) 

 

The stationarity condition for this problem (midpoint rule equivalent to Eq. 4.33) is 

 

 1 1( ) ( ) 0
2 2

k k k k
ux uu k u ub k

x x
H H u H H b

 
  

      (4.72) 

 

The averaged control variable can be obtained by substituting in Eq. (4.72), the first of 

Eqs. (4.50) for 1kx  , and the equivalent of Eq. (4.54) for 1k  .  
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1

11 12 1 1

12 1 11 1

12 1 11 1

1
[( ) ( )

2

[2 ( ) ] 2

( ) ]

k ux k j k u k

ub

uu j

j k u k

j k u k u k

u H H K F x K F P H P

H K F M C H M b

K F v D H v H





 









 

 

 

    

    

   

 (4.73) 

 

where 

 1( )ux u kjK H H S K    (4.74) 

 

4.3 The discretized SBS method with impulsive control 

For an autonomous linear system given by 

 

 x Ax Bu   (4.75) 

 

with ( )u t  assumed to be piecewise constant, with discontinuities only at times k (a 

zero-order hold), the discrete-time system can be obtained as follows: 

 

 

( 1)

(( 1) )

1

k

A A k

k k k

k

x e x e Bd u 
 

  





    (4.76) 

 

On the other hand, if the input ( )u t  is a series of impulses acting at times kt k  , the 

discrete-time system is 

 

 1

A A

k k kx e x e B 

    (4.77) 
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where 

 

( 1)

( )

k

k

k

u d  
 



   (4.78) 

 

Since the continuous-time, linearized system obtained at each iteration of the 

SBS method is non-autonomous, other forms of discretization than those discussed 

previously have to be employed. The explicit midpoint rule can be applied to a linear 

system of the form  

 

 x Ax Bu     (4.79) 

 

 

Figure 4.1: The time index and time step of impulsive control 

 

with the impulse application scheme shown in Fig. 4.1. The impulse application times 

are not necessarily synchronized with the discretization steps. In Figure 4.1, the indices  

i  and k  , respectively indicate the data points and the impulse application times;   is 

the time step between two successive impulses and several smaller propagation steps of 

size   are used in-between. Between two successive propagation steps, the discrete-time 

system matrices are  

i=k=1 

 i=2 i=3 

k=2 



k=3 
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 1(2 ) (2 )iA I A I A     (4.80) 

 1(2 ) 2iB I A B    (4.81) 

 1(2 ) 2iD I A    (4.82) 

 

The discretized equation for stepping between consecutive impulse application times is  

 

 1k k k k k kx A x B d     (4.83) 

 

where 

 1 1k nnA A A A    (4.84) 

 1 2nk n kB A A A B    (4.85) 

 3 21 2 1 1 1( ) ( )k n nn nn n nd A A A D A A A D A D D           (4.86) 

 

and n  is the number of data points between [ k , 1k  ]. The optimal impulse vector can 

be obtained by using the stationarity condition:
 

 

 
1

1 1 1 1[ ( ) ]k ux k u k k k k k k u kimp kK H x H S A x P H S     

           (4.87) 

 

where 

 1imp uu u k kK H H S B    (4.88) 
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4.4 The discretized SBS method with a waypoint scheme 

Generally, highly nonlinear OCPs posed over long time intervals are difficult to 

solve due to numerical sensitivity issues. Introduction of waypoints ameliorates the 

situation by restricting the integration domain in each segment or stage. If the waypoint 

( , )x t  corresponds to a point on the optimal trajectory and the original problem admits 

continuous costates [36], then they should not exhibit discontinuities at the segment 

boundaries.   If however, the waypoints are arbitrarily prescribed by the initial guess, 

then the costate jumps  can be used as error indicators to be corrected to produce the 

optimal waypoint locations. In this section, the main idea is developed for the case of 

two waypoints. Without loss of generality, this procedure can be easily extended to the 

problem with any number of waypoints.  

The waypoint ( , )x t
 
locations chosen as initial guesses are refined iteratively to 

produce the converged trajectory. In the following, it is assumed that the waypoint time 

is fixed, but its spatial coordinates are free to be selected. The total cost is the sum of the 

cost values incurred on each segment. 

 

 1 2 3J J J J    (4.89) 

 

where iJ is the cost for the ith segment. The segment costs are represented as: 

 

 1 0 0 0 1 10 0 1 0 0 0 0 1 1 1

1 1

2 2

T T T T T TJ x S x x P x V W N x           (4.90) 
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 2 1 1 1 1 1 2 1 1 2 1 2 1 2 2 2

1 1

2 2

T T T T T TJ x S x x P x V W N x           (4.91) 

 3 2 2 2 2 2 3 2 2 3 2 3 2 3 3

1 1

2 2

T T T T T

f

TJ x S x x P x V W N x           (4.92) 

 

where 

 1

1 0 1 0 0 0[ ]TW x P x N     (4.93) 

 2 1 2 1 1 1

1[ ]TW x P x N     (4.94) 

 3 2

1

2 2 2[ ]f

TW x P x N     (4.95) 

 

The condition that the costates have to be continuous at a waypoint can be expressed as 

follows [36]: 

 

 1 2

1 1 1

0
J JJ

x x x

 
  

  
 (4.96) 

 32

2 2 2

0
JJJ

x x x


  

  
 (4.97) 

 

Developed fully, Eqs. (4.96-4.97) can be expressed in the matrix form  

 

1 2 2 2

1 11 1 1
0 0 0 0 1 1 1 110 1 1 1 1 1 1

1 11 1 1
1 21 1 21 2 2 2 2

( )

( )

TT

T T
f

W P x N PW N VxW S PW P PW

W N PW x N VxW P W S PW P

   

   

        
                

 (4.98) 
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Hence, the optimal waypoints also can be obtained by using the inverse transformation  

 

1 1 11 1 1
0 0 0 0 1 1 1 11 0 1 1 1

1 2 2

1 1 1

1 11 1 1
1 22 1 2 2 2 2 21 1

( )

( )

TT

T T
fwp

W P x N PW N Vx W S PW P PW

W N PW x N Vx W P W S PW P

    

   

       
                

 (4.99) 

 

4.5 Numerical examples  

 

 4.5.1 Example 4-1: A 2-D nonlinear problem with final state constraints 

Example 2-2 is used in this section to benchmark the performances of the 

discretized methods considered in this section. The previous formulations, Example 2-2 

and Example 3-1, required Hessian modifications. However, the discretized SBS method 

can easily find a converged solution even for a relatively large time step size, without 

requiring a modification of the Hessian. The discretization methods of Eqs. (4.8-4.12) 

and also the RK-4th method are compared. The simulation conditions are the same as in 

Example 2-2. The convergence tolerance for the total cost used to determine the number 

of iterations is 1 3e . 
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Table 4.1: Simulation results for the Example 4-1 

Method n
 

Error 
1x  (Max) Error 

2x  (Max) Iteration # J  

Euler forward  

method 

5 2.1036 3.2123 14 414.82 

10 0.4785 1.3280 5 22.53 

50 0.0497 0.0813 5 10.05 

100 0.0239 0.0342 5 9.40 

Euler backward  

  method 

5 0.3534 0.1601 6 1.32 

10 0.2250 0.0464 5 3.86 

50 0.0465 0.0380 5 7.70 

100 0.0232 0.0240 5 8.24 

RK 4th order  

5 X X X X 

10 X X X X 

50 0.0026 0.0080 5 8.84 

100 0.0007 0.0020 5 8.81 

Trapezoidal  

rule 

5 0.3341 0.9838 45 9.22 

10 0.0976 0.1555 8 11.09 

50 0.0027 0.0101 5 8.83 

100 0.0007 0.0026 5 8.81 

Simpson’s rule 

5 0.2425 0.7903 7 8.63 

10 0.0722 0.2572 5 9.06 

50 0.0027 0.0107 5 8.81 

100 0.0007 0.0027 5 8.80 

The explicit 

midpoint rule 

5 0.2492 0.7835 5 8.08 

10 0.0648 0.2869 5 8.62 

50 0.0026 0.0111 5 8.79 

100 0.0006 0.0028 5 8.80 

 X indicates no converged solution  
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 The results of the numerical experiments are summarized in Table 4.1. As 

expected, the first order Euler forward/backward methods have the maximum error for a 

given step size. Trapezoidal rule requires the largest number of iterations for n = 5. An 

interesting pattern is noticed for the cost resulting from the two methods. For the Euler 

forward method, the cost converges from above, with a decrease in the discretization 

step size and the opposite trend is observed for the backward Euler method. The error for 

the midpoint rule is quite insensitive to step size variation. On the other hand, the RK 4th 

order method cannot find a converged solution for large step sizes ( n =5,10). 

 

 

 Figure 4.2: 21 &x x Trajectory     Figure 4.3: 21 &x x Trajectory     Figure 4.4:
 21 &x x Trajectory 

( 5n  , Euler forward method)  ( 5n  , Euler backward method)  ( 5n  , Trapezoidal rule) 
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Figure 4.5: 21 &x x Trajectory     Figure 4.6: 21 &x x Trajectory  

       ( 5n  , Simpson’s rule)         ( 5n  , Midpoint rule) 

 

Figure 4.7: 21 &  Trajectory     Figure 4.8: 21 &  Trajectory     Figure 4.9:
 21 &  Trajectory 

( 5n  , Euler forward method)  ( 5n  , Euler backward method)   ( 5n  , Trapezoidal rule) 

 
Figure 4.10: 21 &  Trajectory     Figure 4.11: 21 &  Trajectory  

       ( 5n  , Simpson’s rule)         ( 5n  , Midpoint rule) 
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Figure 4.12: 21 &x x Trajectory  Figure 4.13: 21 &x x Trajectory   Figure 4.14:
 21 &x x Trajectory 

( 10n  , Euler forward method)  ( 10n  , Euler backward method)  ( 10n  , Trapezoidal rule) 

 

Figure 4.15: 21 &x x Trajectory     Figure 4.16: 21 &x x Trajectory  

     ( 10n  , Simpson’s rule)        ( 10n  , Midpoint rule) 

 

Figure 4.17: 21 &  Trajectory   Figure 4.18: 21 &  Trajectory  Figure 4.19:
 21 &  Trajectory 

( 10n  , Euler forward method) ( 10n  , Euler backward method) ( 10n  , Trapezoidal rule) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

40

60

80

100

t

la
m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

t

la
m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

t

la
m



 

- 82 - 

 

 

 

Figure 4.20: 21 &  Trajectory     Figure 4.21: 21 &  Trajectory  

       ( 10n  , Simpson’s rule)         ( 10n  , Midpoint rule) 

 

Results for discretizations with n = 5 and n = 10 are shown in Figs. 4.2-4.11 and 

Figs, 4.12-4.21, respectively. In each of Figs. 4.2-4.6 and 4.12-4.16, the red lines 

indicates the open-loop trajectory variables, the blue lines indicate the corresponding 

converged solutions, and the green lines indicate the intermediate solutions obtained 

during the iteration process. Figures 4.7-4.11 and 4.17-4.21 show only the converged 

SBS and the corresponding open-loop solutions.  The open-loop solutions result from a 

shooting method (Matlab, fsolve) with a small time step of 0.01. Figures 4.2-4.21 and the 

data of Table 4.1 show that the explicit midpoint rule is the best performer among all the 

methods considered. As seen from Fig. 4.21, the costate convergence for the explicit 

midpoint rule, at n =10, is remarkable.  

A least squares fit of the state error of the form qch  [37] is produced for the 

various methods considered by varying the step size between n =50 and n =100. The 

results are summarized for the exponent, q , for each state in Table 4.2. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

t

la
m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

t

la
m



 

- 83 - 

 

 

Table 4.2: The results of 
( )( ) i

i

q xx ch  between n =50 and n =100 

Method q (
1x ) q (

2x ) Average q  

Euler  

forward method 
1.057 1.249 1.153 

Euler  

backward method 
1.001 0.663 0.832 

RK 4th order  1.893 2 1.947 

Trapezoidal rule 1.947 1.957 1.952 

Simpson’s rule 1.947 1.987 1.967 

The explicit midpoint rule 2.148 1.988 2.068 

 

The data from Table 4.2 clearly show the expected behavior for all the methods 

except for the Simpson’s rule and RK 4th method, for which the convergence rate is 

quadratic and not quartic. Overall, the results of Table 4.1 and 4.2 show that the explicit 

midpoint rule has performed better than the other methods on the example considered. 
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 4.5.2 Example 4-2: A 2-D nonlinear problem with free final time 

 

 
1 2

5

2 1 1

x x

x x x u



  
 (4.100) 

 2 2

2

0

1
( )

2

ft

J x u dt   (4.101) 

 

Example 4-1 is considered again, but with a free final time. A nondimensional 

time variable  is defined over the domain between 0 and 1, to convert the problem into 

one with a fixed final time. The transformed system and the performance index can be 

expressed in the   domain by introducing a new parameter b  as follows: 

 

 
1 2

5

2 1 1( )

x bx

x b x x u

 

   
 (4.102) 

 
1

2 2

2

0

1
( )

2
J b x u d   (4.103) 

 

Figures 4.22-4.25 show that the simulation results of 2D nonlinear problem with 

free final time. 
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      Figure 4.22: State history for Example4-2          Figure 4.23: Input history for Example4-2 

     

     Figure 4.24: Costate history for Example4-2        Figure 4.25: The cost value for Example4-2 

 

Table 4.3: The results of simulation for Example 4-2 

Method J  ft (s) 

SBS Method 

( ft free) 8.7846 3.95 
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The results of SBS method for the free final time problem are shown in Table 4.3. The 

obtained optimal final time ft  is 3.95s. The number of iterations required for 

convergence is 10. 

 

 4.5.3 Example 4-3: A 2-D linear problem with final state constraints and  

            bounded input 

This problem is selected to investigate the performance of the SBS method with 

bounded inputs. It was introduced by Jacobson [5] and it involves a simple linear system 

with a control magnitude constraint. The system dynamics and performance index are as 

follows: 

 

 

1 2

1 2

1

2

3 3 4

4 3 4

0.5 5

5 0.5

0.6 10

10 0.6 , 1

x x x

x x x u

x x x

x x x u u

  

   

  

    

 (4.104) 

 4( )J x T  (4.105) 

 

The Hamiltonian for this problem depends linearly on the control. The given initial and 

final states are 0( ) [10,10,10,10]x t   and 1 2 3( ) [ ( ), ( ), ( )] [2.3, 2.4,1.5]x T x T x T x T  . 

The explicit midpoint rule is applied to solve this problem. The problem is regularized 

by redefining the performance index as 
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2.5

4

2

0

1
( )

2
J x uT dt    (4.106) 

 

where 

 

is a small smoothing parameter. The input approaches a bang-bang profile as 

the value of 

 

is reduced. A new variable P is introduced to define the boundary 

satisfaction error as follows: 

 

 
2 2 2

1 1 32 32( ( ) ) ( ( ) ) ( ( ) )f f fP x T x x T x x T x       (4.107) 

 

The simulation conditions used for this example are summarized in Table 4.4. 

 

Table 4.4: Simulation conditions for Example 4-3 

Variable Value 

Number of data points (n) 300 

Input correction ( ua ) 0.5 

 

The nominal trajectory is given by the inconsistent choices for the state and 

control: and1  0x u  . The open-loop solution is obtained by using a multiple-

shooting method based on the costate and switching times obtained from the SBS 

method. The simulation results are summarized in Table 4.5. 
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Table 4.5: The results of simulation for Example 4-3 

Method   P  J 

SBS method 

(The explicit 

midpoint  rule) 

1e-0 1.97e-27 2.435 

1e-1 2.03e-25 2.321 

1e-2 3.87e-28 2.315 

 

     

        Figure 4.26: Input history for Example4-3           Figure 4.27: Input history for Example4-3 

                        (SBS- 1 0,1 1,1 2e e e     )                                  (open-loop) 

 

Figure 4.26 shows the control input profiles obtained for different choices of  . These 

results converge to the open-loop control profile shown in Fig. 4.27 as the smoothing 

parameter value is reduced. 
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 4.5.4 Example 4-4: A hypersensitive problem by using the waypoint scheme 

The so called hypersensitive problem is difficult to solve by a shooting method 

because it involves a highly nonlinear system and a long time duration. The waypoints 

scheme proves useful for solving this problem. Only two waypoints are sufficient to 

produce a converged solution from relatively poor initial guesses. The system dynamics 

and cost function are as for Example 3-2. The nominal trajectory is also the same as used 

for Example 3-2.  

 

     

      Figure 4.28: State history for Example4-4          Figure 4.29: Input history for Example4-4 

 

The obtained waypoints and optimal cost value are as follows.  
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Waypoint 1 : 1 1e-004*[1.443  -1.563]wpx   

Waypoint 2 : 2 1e-004*[1.123  0.978]wpx 
 

 

where 1wpx is the position of the first waypoint and 2wpx  is the position of the second 

waypoint. Analytical solutions for the waypoint locations are at the origin of the state 

space.  The total cost value is 1.689J  . Figures 4.28 and 4.29 show the presence of 

boundary layers, involving rapid changes in the state and control variables.  

 

 4.5.5 Example 4-5: A linear problem with impulsive control 

A simple nonlinear problem is solved by using the impulse approximation. The 

system dynamics and cost function [38] are as follows: 

. 

 
1 2

2

x x

x u




 (4.108) 

 
3

2

0

1

2
J u dt   (4.109) 

 

The given initial and final states are  0( ) [1 0]x t   and ( ) [0 0]x T  . The nominal 

trajectory variables are arbitrarily selected as [0 0], 0.1, [0.1 0.1]x u    . The 

simulation conditions are summarized in Table 4.6. 
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Table 4.6: Simulation conditions for Example 4-5 

Variable Value 

The number of impulse ( impn ) 2/5/10/100 

The data points between impulses 100 

Iteration number 10 

Input correction (
u ) 1 

 

This example is solved for a various number of impulses, impn : ( impn =2, 5, 10, 100). 

 

     

  Figure 4.30: State trajectory for Example4-5           Figure 4.31: State trajectory for Example4-5   

                         ( impn =2)                                                                  ( impn =5) 
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   Figure 4.32: State trajectory for Example4-5        Figure 4.33: State trajectory for Example4-5   

                         ( impn =10)                                                                  ( impn =100) 

 

Fig. 4.30-4.33 show the 
1 2,x x  phase plots for the various numbers of impulses. As the 

number of impulses increases, e.g., the 100 impulse case of Fig. 4.33, the solution 

approaches that for the optimal continuous control.  
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5. THE SBS METHOD AUGMENTED WITH A HOMOTOPY ALGORITHM 

 

The homotopy algorithm provides a robust method for determining optimal 

control, in some cases the global minimum solution, as a continuation parameter is 

varied gradually to regulate the contributions of the nonlinear terms. In this section, the 

SBS method is augmented with a homotopy algorithm. The approach is effective for 

highly nonlinear problems with multiple locally optimal solutions. The system dynamics 

is represented as: 

 

 ( )x Ax f x Bu d     (5.1) 

                                          (linear) (nonlinear) 

 

where   is continuation parameter , Ax  is the linear part of system and ( )f x  is the 

nonlinear part of system. The continuation parameter in Eq. (5.1) can regulate the 

nonlinear contributions to the system. The parameter [0,1]  is gradually increased 

from 0 to 1 in an automatic fashion. The homotopy algorithm is used to solve for the 

unknown parameters through an embedding [39] defined as: 

 

 [ ( ), ] 0F z s s   (5.2) 

 

where s is the independent variable and the sweep equation error function F  and the 

unknown vector z  are defined as  
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 0T

fF P x W N x      (5.3) 

 [ ]z    (5.4) 

 

The nonlinear function F  is constructed such that it satisfies Eq. (5.3) exactly when 

0  . The solution to the problem is obtained for 1  , by requiring that the unknown 

vector z  satisfy the differential equation as a function of s : 

 

  
[ ( ), ]

0
dF z s s

ds
  (5.5) 

 

The substitution of Eq. (5.3) into Eq. (5.5) results in 

 

 0
TP W N

x W
s s

 


  

     
    

     
 (5.6) 

 

Equation (5.6) can be expressed in matrix form as follows: 

 

 0
TP W N s

x W

s




  

 
     

    
     
  

 (5.7) 

Equation (5.7) enables continuous updates of the values of   and   by 

integrating along the curve defined by s. In this section, the homotopy algorithm is 
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applied in the regular SBS method and it can easily be extended to the modified SBS 

method.  The sensitivities required for solving Eq. (5.7) are those of the sweep method 

gains with respect to  . These sensitivities can be propagated by simultaneously 

integrating in backward time, the following equations and the gain matrices of the sweep 

method, Eqs. (2.38-2.42): 

 

1 1( ) ( )uu ux

x x
x x

xx
u xuu u uu u

H Hd S S S
H S S H

dt

HS S
H H H H S H SH H H 

 
 

 

    

  
 

    
     

     

 
    
  

, ( ) 0
S

T






(5.8) 

1 1[( ) ]x
uu u xu u uuu u x

Hd P S P
H H H P H SH H H H

dt


   
   

     
       

      
, ( ) 0

P
T







 (5.9) 

1 1

1

[( ) ]x
uu u xu u uu u x

u

u

u u

Hd V S V
H H H V H SH H H H

dt

S S
H H S


   



   

 
 

   

 



    
       

      

   
   
   

( ) 0
V

T






 (5.10) 

 
1 1

T
T

uu uu u uu u

d W P P
H H H P P H H H

dt
  

  
    

  
   

,                      ( ) 0
W

T






 (5.11) 

1 1[ ( ) ] ( )
T

T

uu uu uu uu

d N P V
H H H V P H H H

dt
  


 

   
     

     
    

,   ( ) 0
N

T






(5.12) 

 

where  

 
xH

H x




 


 

                                             
 (5.13) 

 
xx x

x

H H
H x 

 


  

 
  

                                       
 (5.14) 
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The Lagrange multiplier   is updated by using the Eq. (2.65), instead using Eq. (5.7) for 

reducing the integrating error. The Hessian modification can also be applied, if 

necessary, to improve further the robustness of the method when the initial guesses are 

poor. 

The coefficients of Eqs. (2.51-2.52) are selected such that the convergence rate is 

adequate, as functions of   : 

 

 0 (1 )n

hxx hxxC C  
                        

  (5.15) 

 0(1 )n

huu huuC C  
                        

  (5.16) 

 

where 
0 0,hxx huuC C

 
are the initial values of coefficients and n is a constant that determines 

the convergence rate. The coefficients 
hxxC  and 

huuC
 
gradually vanish as   changes from 

0 and 1. The value of n depends on the nonlinearity of system. Generally, n =2 or 3 has 

worked well for the examples considered. A flowchart for the homotopy-SBS algorithm 

is depicted in Figure 5.1. 
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Figure 5.1: The SBS method augmented by a homotopy algorithm 
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
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5.1 Numerical examples 

To illustrate the performance of the homotopy-augmented SBS method, three 

highly nonlinear problems having multiple solutions are considered. 

 

 5.1.1 Example 5-1: A simple two point boundary value problem  

             without control inputs 

This is a TPBVP without a control input. This type of nonlinear problem also can 

also be solved by using the SBS method. This problem has been treated in Ref. [40] in 

connection with another approach, called the optimal descent vector (ODV) method. The 

ODV algorithm is described in Appendix C. The given system dynamic model is  

 

 
23

2
x x  (5.17) 

 

and the initial and final states are, respectively, 0( ) 4x t   and
 

( ) 1x T   at 1T  . The 

continuation parameter   is applied to the nonlinear term in Eq. (5.17): 

 

 
23

2
x x  (5.18) 

 

Equation (5.18) is linearized by using the Taylor series expansion as follows:  
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23

(3 )
2

x x x x Ax d      (5.19) 

 

where  

 
23

2
f x  (5.20) 

 3A x  (5.21) 

 
23

2
d f Ax x     (5.22) 

 

Equation (5.19) can also be represented in the state space form by defining 
1x x  and 

2x x . 

 

 
1 2

2 1

x x

x Ax d



 
 (5.23) 

 

The variable x  can be considered to be the costate for the application of the SBS 

method: 

 

 ( )fx Sx Px t V    (5.24) 

 ( ) 0T

f fP x Wx t N x     (5.25) 

 

Since the boundary condition ( )fx t  is linear, Eq. (2.64) can be expressed as  
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 1( ) ( )T

f fx t W P x N x     (5.26) 

 

The gain differential equation can be derived by using Eq. (5.23) and Eqs. (5.24-

5.25):  

 

                            
TS S S A                                                ( ) 0S T   (5.27) 

                            P SP                                                        ( )P T I  (5.28) 

                            V SV d                                                    ( ) 0V T   (5.29) 

                            
TW P P                                                     ( ) 0W T   (5.30) 

                            
TN P V                                                    ( ) 0N T   (5.31) 

 

The gain differential equation with respect to   also can be obtained by using the 

backward integration to Eqs. (5.27-5.31). 

 

 
Td S S S A

S S
dt    

          
          

          
,                  

( )
0

S T







 (5.32) 

 
d P S P

P S
dt   

       
       

       
,                                

( )
0

P T







 (5.33) 

 
d V S V d

V S
dt    

          
          

          
,                  

( )
0

V T







 (5.34) 

 

T

Td W P P
P P

dt   

       
       

       
,                         

( )
0

W T







 (5.35) 
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T

Td N P V
V P

dt   

       
       

       
,                         

( )
0

N T







 (5.36) 

 

where  

 3A x   (5.37) 

 
23

2
d x    (5.38) 

 

Simulation conditions are summarized in Table 5.1. 

 

Table 5.1: Simulation conditions for Example 5-1 

Variable Value 

Number of data points  

in time domain ( n ) 
10 

Number of data points  

in arc length domain ( an ) 
10 

Input correction ( ua ) 1 

Iteration number  5 

 

The nominal trajectory is arbitrary chosen: 1x  . The exact analytical solution is 

represented as follows: 

 

 
2

4
( )

(1 )
x t

t



 (5.39) 
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The analytical solution is used to check the performance of the SBS and ODV 

methods.  

 

     

       Figure 5.2: State history for Example5-1          Figure 5.3: State error history for Example5-1 

                           (SBS-homotopy)                                              ae x x   (SBS-homotopy) 

     

       Figure 5.4: State history for Example5-1          Figure 5.5: State error history for Example5-1 

                           (ODV)                                                                ae x x   (ODV) 
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In Figs. 5.2 and 5.4, the red lines indicate the analytical solutions and the blue 

dotted lines, respectively, indicate the results of the SBS and ODV methods. Figures 5.3 

and 5.5, respectively, show the maximum error between the analytical solution and the 

results of the SBS-midpoint and the ODV methods. The ODV implementation uses the 

central difference scheme for the numerical solution of Eq. (5.18). The SBS-homotopy 

method finds the converged solution within the 3 iterations, while the ODV method 

requires 20 iterations. The maximum errors between the solutions obtained from each 

method and the analytical solution are shown in Table 5.2 

 

Table 5.2: The converged maximum error for Example 5-1 

Method max( )ax x  

Optimal descent vector  0.0047 

SBS Method with 

continuation parameter 
0.0068 

 

where ax  is the state obtained from the analytical solution. 
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 5.1.2 Example 5-2: The Earth to Mars orbit transfer problem 

This example is the classical minimum-fuel, coplanar Earth-Mars orbit transfer 

problem. This problem has multiple local optimal solutions. Among these multiple 

solutions, the global minimum solution can be obtained by using the SBS-homotopy 

method for a large number of initial guesses. The simulation is performed in a 

heliocentric reference frame and system dynamics is represented in the polar coordinates 

[33] as follows: 

 

 r u  (5.40) 

 
2

2 r

v
u u

r r


    (5.41) 

 
uv

v u
r

    (5.42) 

 
v

r
   (5.43) 

 

where r  is the radial distance from the sun, u  is the radial velocity, v  is the tangential 

velocity,   is the angular displacement, ru  is the radial thrust , u  is the tangential thrust 

and   is the gravitational constant. In this example, canonical units are selected such 

that 1  . The canonical unit of time for the heliocentric system is 1 TU

58.132821 days .  
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The performance index is defined as follows: 

 

 
0

2 21
( )

2

f

r

t

J u u dt   (5.44) 

 

The terminal constraint is given as follows: 

 

 

( )

( ) ( )

( )

f f

f f f

f f

r t r

t u t u

v t v



 
 

  
  

 (5.45) 

 

where , ,f f fr u v  are final desired states. The boundary conditions are summarized in the 

Table 5.3. 

 

Table 5.3: Boundary conditions for Example 5-2 

Variables Initial value Final value 

Time 0 3.0964 TU 

r  1 1.524fr   

u  0 0 

v  1 / fr  

  0 free 


 

0.5 1 
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The simulation conditions are summarized in Table 5.4. 

 

Table 5.4: Simulation conditions for Example 5-3 

Variable Value  

Number of data points in time domain ( n ) 100 

Number of data points in arc length domain (
an ) 20 

Input correction (
u ) 1 

Iteration number 50 

The coefficients of hessian matrix ( hxxC )  1 

 

As previously mentioned, this problem has multiple local minimum solutions, three of 

which are shown in Figures. 5.6-5.8. The solutions for Cases 1, 2, and 3 were obtained 

by a random selection of the guesses of the initial costates.  The SBS method also 

converges to the same solutions from a close neighborhood, indicating that each 

trajectory is a local minimum solution. 
 

     
       Figure 5.6: Trajectory for Example 5-2                  Figure 5.7: Trajectory for Example 5-2 
                         (case 1)                                                                   (case 2) 
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Figure 5.8: Trajectory for Example 5-2  

                  (case 3)         

 

The performance indices returned by the three local minimum solutions are given in 

Table 5.5. 

 

Table 5.5: The initial costate and cost value for multiple minimum trajectories 

Method Case 
0  Cost value ( J ) 

Open-loop 

(shooting 

method) 

Case1 (-0.680,-0.084,1.639,0) 3.408 

Case2 (1.200,0.672,0.984,0) 0.567 
 

Case3 (-0.264,-0.154,-0.257,0) 0.040 

 

It can be easily confirmed from the data in Table 5.5 that the trajectory of Case 3 

is the global minimum solution for the case of continuous control. The converged initial 

costate, 0 for each case is shown in Table 5.5. Since 0 is also the sensitivity of the cost 

to the initial state, the trajectory corresponding to Case 3 is the least sensitive among the 
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three solutions, to changes in the initial values of r and v . The naive initial guess used 

for obtaining the solution depicted in Fig. 5.9 is 0,  0.1,  0.1x x u    . Moreover, the 

solution of Case 3 is consistently obtained by the SBS-homotopy method, even if the 

converged solutions for Cases 1 and 2 are used as starting guess. The results of 

simulation are shown in Figs. 5.9-5.11. 

    
     Figure 5.9: Trajectory for Example 5-2                  Figure 5.10: Trajectory for Example 5-2         
                       (naive initial guess)                                                   (case 1) 

 
   Figure 5.11: Trajectory for Example 5-2 (case 2) 
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In Figs. 5.9-5.11, the blue line indicates the initial nominal trajectory and the red line, the 

converged optimal trajectory obtained by the SBS-homotopy algorithm.  

 

 5.1.3 Example 5-3: Formulation of the orbit transfer problem  

            using orbital elements 

A long duration, minimum fuel transfer orbit from an eccentric initial orbit to a 

geostationary orbit is considered. This problem, taken from Ref. 40, demonstrates the 

performance of the SBS-homotopy algorithm. In Ref. 40, it was originally solved with a 

shooting method, augmented with a homotopy scheme. The formulation uses orbital 

elements, which also helps in sensitivity reduction. The chosen osculating orbital 

elements for the planar problem [41] are 

 

 

 [ , , , ]x yx p e e L  (5.46) 

 

where p  is the semi-latus rectum, e  is the eccentricity vector and L  is the true 

longitude. The Gauss’equations for the orbital elements are 

 

 2

2p p
p u

w
  (5.47) 

 1 2[sin( ) [cos( ) ( cos( )) / ] ]x x

p
e L u L e L w u


     (5.48) 
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 1 2[ cos( ) [sin( ) ( sin( )) / ] ]y y

p
e L u L e L w u


      (5.49) 

 
2w

L
p p


  (5.50) 

 

where  

 1 cos( ) sin( )x yw e L e L    (5.51) 

 

The transformations from the space of the orbital elements into the equatorial-plane, 

Cartesian position and velocity coordinates are  

 

 cos( )
p

x L
w

  (5.52) 

 sin( )
p

y L
w

  (5.53) 

 ( sin( ))yx e L
p


    (5.54) 

 ( cos( ))xy e L
p


    (5.55) 

 

The performance index is defined as: 

 

 1

2

2

2

0

1
( )

2

ft

J u u dt   (5.56) 
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The boundary conditions are summarized in Table 5.6: 

 

Table 5.6: Boundary conditions for Example 5-4 

Variables Initial values Final values 

p  11.625Mm 41.625Mm 

xe  0.75 0 

ye  0 0

 

L    free 

 

The physical parameters and simulation conditions are represented in the Table 5.7. 

 

Table 5.7: Simulation conditions and orbital parameters for Example 5-4 

Variable Value  

Number of data points in time domain ( n ) 3000 

Number of data points in arc length domain ( an ) 100 

Input correction ( u ) 1 

Iteration number 100 

The coefficients of Hessian matrix ( hxxC )  1 

The gravitational constant ( ) 1565.862 3 2Mm h  

The initial mass ( m ) 1500kg 
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     Figure 5.12: Trajectory for Example 5-3                Figure 5.13: Trajectory for Example 5-3  

                       
 ( 15ft  hours)                                                              ( 100ft  hours)          

 

     

     Figure 5.14: Trajectory for Example 5-3                Figure 5.15: Trajectory for Example 5-3  

                       
 ( 500ft  hours)                                                              ( 1000ft  hours)          
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     Figure 5.16: Input history for Example 5-3            Figure 5.17: Input history for Example 5-3  

                       
 ( 15ft  hours)                                                              ( 100ft  hours)          

 

     
     Figure 5.18: Input history for Example 5-3            Figure 5.19: Input history for Example 5-3  

                       
 ( 500ft  hours)                                                              ( 1000ft  hours)          
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Figure 5.12 shows the optimal trajectory for 15ft  hours, with the arbitrary initial 

nominal trajectory variables selected as: 0,  0.1,  0.1x x u    .  The trajectories of 

Figs. 5.13-5.15 are sequentially obtained from the previous converged optimal solution, 

starting with the solution of Fig. 5.12. The SBS-homotopy algorithm is used with 

Hessian modification, as indicated by Eq. (5.15). The corresponding control profiles are 

shown in Figs. 5.16-5.19. This problem is difficult to solve by the standard SBS method, 

even in conjunction with the waypoint scheme.  

These examples demonstrate that the SBS-homotopy algorithm is an effective 

method for solving problems of low-thrust trajectory optimization. Often, these 

problems have multiple local minima. The SBS-homotopy method enables one to 

gradually seek a global minimum for certain classes of problems.  

  



 

- 115 - 

 

 

6. THE RESTRICTED THREE BODY PROBLEM (RTBP) 

 

In this section, an optimal low-thrust transfer orbit from the L1 to L2 liberation 

point in the Earth-moon system is considered. The RTBP [42] is well known to have rich 

dynamics, involving chaotic regimes and bifurcations. Hence, any gradient-based 

method will encounter convergence difficulties on certain classes of problems of the 

RTBP, unless a root tracing method is employed. Convergence can be achieved by 

neglecting second-order derivatives of the Hamiltonian during the initial stages of the 

iteration process. Unfortunately, this seemingly reasonable approach, in some cases, 

results in convergence on a solution which may not be optimal. Therefore, a method to 

constrain the solution to a certain neighborhood of the phase space is required. This goal 

is achieved by adding a penalty on the variation of the Jacobi constant in the 

performance index, especially for long transfer times. In this section, multiple solutions 

to the same problem, satisfying the first-order conditions, are investigated for local 

optimality using the no-conjugate point check. The elements of the STM of the 

linearized system obtained with reference to a nominal optimal trajectory play an 

important role in this determination.  

Non-dimensional parameters are introduced to simulate the problem. 

Characteristic parameters [43] in the Earth-moon system are summarized in Table 6.1. 
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Table 6.1: Non-dimensional parameters for RTBP 

Quantity Value  

Earth mass (
eM ) 5.974*1e+24 (kg) 

Lunar mass (
mM ) 7.348*1e+22 (kg) 

The gravitational constant ( ) / ( )e mmM M M  

Earth moon distance ( *l ) 3.844*1e+5 (km) 

Characteristic time ( *t )  3.752*1e+5 (sec) 

 

This problem is to find the low thrust trajectory between L1 and L2 liberation 

points in the Earth-moon system. The locations of thee equilibrium points can be easily 

calculated in a synodic coordinate system, rotating with the Earth-moon line, given the 

parameter  . The position of moon in this coordinate system is ( , , ) (0.9878,0,0)x y z   

and the position of Earth is ( , , ) (0.0122,0,0)x y z  . The non-dimensional position of 

L1 and L2 liberation points for the Earth-moon system are as follows: 

 

L1 point : ( , , ) (0.83691531,0,0)x y z   

L2 point : ( , , ) (1.15568202,0,0)x y z   

 

The system dynamics of the RTBP is represented as: 

 

 xx   (6.1) 

 yy   (6.2) 

 zz   (6.3) 
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 32x y xT
x

 


  


 (6.4) 

 32 yy x T
y

 


   


 (6.5) 

 3
zz T

z



 


 (6.6) 

 

where, , , , , ,x y zx y z     are the Cartesian position and velocity coordinates of a satellite 

with respect to the Earth-moon barycenter and the potential  

 

 
2 2

1

3

2

1 1 1
( , , , ) ( ) (1 )

2 2
x y z x y

r r

 
  


        (6.7) 

 
2 2 2 2

1 ( )r x y z     (6.8) 

 
2 2 2 2

2 ( 1)r x y z      (6.9) 

 

The performance index considered in this section is  

 

 

0

2 2 2

2

1
( )

2

ft

t

x y zJ T T T dt    (6.10) 

 

As mentioned previously, a neighboring problem is considered by adding a 

penalty, based on the Jacobi constant, in Eq. (6.10). The Jacobi constant is  
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 2
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2 2 2 2

1

1 1 1
( ) ( )

2 2
c x y z x y

r r

 
        (6.11) 

 

The Jacobi constant is an integral of motion along coasting arcs. The penalty function is 

formulated, depending on whether the final velocity is free or required to be zero, as 

follows: 

 

Free final velocity 

 

0

2 2 2 2

1 2 0

1
[ ( ) ]

2

ft

x y

t

j zJ J J Q c c T T T dt        (6.12) 

 

Zero final velocity 

 

0

2 2 2 2

1 2

1
[ ( ) ]

2

ft

slj z

t

x yJ J J Q c c T T T dt        (6.13) 

 

where, 1J  is the cost value related with the Jacobi constant, 0c  is the Jacobi constant at 

the initial point, fc  is the Jacobi constant at the final point, jQ  is a weighting factor, c  

is the time derivative of the Jacobi constant, and slc  is the slope of Jacobi constant 

between an initial and a final point. The Jacobi constant c  is considered as an additional 

state when the suboptimal method is applied to the RTBP. The variation of the Jacobi 

constant along thrusting arcs is given by 
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 x x y y z zc T T T      (6.14) 

 0( ) /sl f fc c c t   (6.15) 

 

The simulation conditions are summarized in the Table 6.2. 

 

Table 6.2: Simulation conditions for RTBP 

Quantity Value  

Number of data points ( n ) 1000 

Input correction ( u ) 1 

Iteration number  200 

The coefficient of hessian  

modification (
0hxxC ) 

1 

 

Four solutions to the L1-L2 optimal transfer have been obtained for a transfer 

time of 10 days, by using a shooting method. The Jacobi constant penalty function is not 

required for this transfer. The four solutions are shown in Figs. 6.1-6.4 and the respective 

variations in the Jacobi constant are shown in Figs. 6.5-6.8. 



 

- 120 - 

 

 

    

               Figure 6.1: Trajectory1 for RTBP                       Figure 6.2: Trajectory2 for RTBP       
 

 

           Figure 6.3: Trajectory3 for RTBP                         Figure 6.4: Trajectory4 for RTBP       
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   Figure 6.5: Variation of the Jacobi integral          Figure 6.6: Variation of the Jacobi integral 

                          (Trajectory1)                                                       (Trajectory2) 

 

      
Figure 6.7: Variation of the Jacobi integral          Figure 6.8: Variation of the Jacobi integral 

                            (Trajectory3)                                                    (Trajectory4) 

 

The simulation results of the four local minimum solutions are presented in Table 

6.3. 
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Table 6.3: The simulation results for the four local minimum solutions 

Trajectory Initial costate (
0( )t ) J (cost) 

Trajectory 1 (-0.384 ,-0.395, 0,-0.163, -0.102, 0) 0.041 

Trajectory 2 (-1.549 ,-0.164, 0,-0.419, -0.214, 0) 0.058 

Trajectory 3 (-3.017 ,-0.232, 0,-0.721, -0.361, 0) 0.194

 

Trajectory 4 (-0.021 , 0.770, 0, 0.260, -0.419, 0) 0.286 

 

The Jacobi constant variations are significantly larger for the two higher-cost solutions, 

it being the most gentle for the lowest cost trajectory, Fig. 6.1.  

The modified SBS method is applied to these four solutions to check for the 

satisfaction of the second order conditions. Trajectories 1, 2, and 4 show the existence of 

neighboring extremal trajectories, thus proving that conjugate points do not exist for 

them. Trajectory 3, however, fails to produce a neighboring extremal trajectory. All the 

four trajectories are further tested for the no-conjugate point sufficient condition using 

the sub-matrices of the STM, as described in Section 2.2. Figures 6.9-6.16 show the 

traces of 
11det( )  and 

12det( ) along the four trajectories. 
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         Figure 6.9: Variation of 
11det( )                    Figure 6.10: Variation of 

12det( )  

                           (Trajectory1)                                                       (Trajectory1) 

 

    

         Figure 6.11: Variation of 
11det( )                     Figure 6.12: Variation of 

12det( )  

                              (Trajectory2)                                                       (Trajectory2) 
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         Figure 6.13: Variation of 
11det( )                    Figure 6.14: Variation of 

12det( )  

                              (Trajectory3)                                                     (Trajectory3) 

 

    

       Figure 6.15: Variation of 
11det( )                      Figure 6.16: Variation of 

12det( )  

                             (Trajectory4)                                                      (Trajectory4) 
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Data from these figures indicate that 
12det( ) 0   at all points except the final time.  

However, 
12det( ) values are quite small on large segments of the trajectories for all the 

cases. There are two singular points for 
11 (

11det( ) 0  ) for trajectories 1 and 4, and only 

one each for trajectories 2 and 3. Hence, a time point can be found when Eq. (2.26) can 

be used for computing S . Therefore, 
12det( )  is evaluated when the magnitude of 

11det( )  becomes to zero for the first time during the back integration. These results are 

shown in Table 6.4. 

 

Table 6.4: The magnitude of 
12det( )  at 

11det( ) 0   

Type of trajectory 
Time 

1t  

(
11det( ) 0  )

 
12det( )

 

Trajectory 1
 

1.4497 8.941e-5 

Trajectory 2
 

1.6156 6.632e-6 

Trajectory 3
 

1.6988 1.415e-6 

Trajectory 4 1.3904 1.946e-4 

 

The results presented in Table 6.4 show that the value of 
12det( )  at the critical 

time is the smallest for trajectory 3. Such a low value of  
12det( )  prevents the initiation 

of the modified SBS method.  As a further check, condition numbers of 
11  and 

12  are 

plotted in Figs. 6.17-6.24. 
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         Figure 6.17: Condition # of 
11                    Figure 6.18: Condition # of 

12  

                           (Trajectory1)                                                       (Trajectory1) 

 

 

         Figure 6.19: Condition # of 
11                    Figure 6.20: Condition # of 

12  

                           (Trajectory2)                                                       (Trajectory2) 
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         Figure 6.21: Condition # of 
11                        Figure 6.22: Condition # of 

12  

                             (Trajectory3)                                                     (Trajectory3) 

 

 

         Figure 6.23: Condition # of 
11                        Figure 6.24: Condition # of 

12  

                           (Trajectory4)                                                       (Trajectory4) 
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As mentioned in Section 2, 
11 must remain nonsingular for the gain S to remain 

finite. Similarly, 
12  must be nonsingular for S to remain finite. The Jacobi no-

conjugate-point condition requires that S remain finite along the trajectory, except at the 

final time. A comparison of Figs. 6.18, 4.20, 6.22, and 6.24 shows that the condition 

number of 
12  along trajectory 3 is significantly higher, indicating that it is ill-

conditioned. Hence, a conjugate point exists on trajectory 3. This is the reason for the 

lack of neighboring extremals for this trajectory and the failure of the SBS method.  

Trajectory 1 is extended for longer durations with the inclusion of the penalty 

function based on the Jacobi constant.  The converged solution for the 10-day optimal 

trajectory is used to initiate a sequential process to determine trajectories for increasing 

durations. The converged solution for one problem is used as the initial guess for the 

next problem in the sequence. The midpoint-SBS method is used to determine L1-L2 

optimal solutions with free as well as zero final velocities. Figures 6.25-6.30 show the 

free-final-velocity trajectories obtained  for final times ranging from 10days to 60days. 

The corresponding Jacobi constant variations are shown in Figs. 6.31-6.36. 
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        Figure 6.25: Trajectory             Figure 6.26: Trajectory                Figure 6.27: Trajectory 
     (10days-free final velocity)       (20days-free final velocity)        (30days-free final velocity) 

 

        Figure 6.28: Trajectory             Figure 6.29: Trajectory               Figure 6.30: Trajectory 
     (40days-free final velocity)      (50days-free final velocity)         (60days-free final velocity) 

 

    Figure 6.31: Jacobi constant      Figure 6.32: Jacobi constant      Figure 6.33: Jacobi constant   
     (10days-free final velocity)      (20days-free final velocity)         (30days-free final velocity) 
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    Figure 6.34: Jacobi constant      Figure 6.35: Jacobi constant     Figure 6.36: Jacobi constant   
     (40days-free final velocity)      (50days-free final velocity)         (60days-free final velocity) 

 

Table 6.5: The cost values at each final time (the free final velocity)  

J (Cost) 10 days
 

20 days 30 days 40 days 50 days
 

60 days 

1J  0.0012 0.0007 0.0006 0.0006 0.0006 0.0007 

2J  0.0217 0.0068 0.0045 0.0032 0.0026 0.0022 

J  0.0229 0.0075 0.0051 0.0038 0.0032 0.0029 

 

Cost values for each final time are shown the Table 6.5. As given by Eqs. (6.10) 

and (6.12-13), the total cost ( J ) is a combination of the penalty function (
1J ) and the 

control effort (
2J ). The results indicate that there is little change in 

1J  for trajectories 

with final times greater than 20 days. The control cost 
2J   steadily decreases with 

increasing final times. The trajectories in Figs. 6.25-6.30 show increased spiraling about 

the L1 point as the final time is increased. There are no significant changes in the 

trajectories near L2. The reason for this behavior is seen from the performance index of 

Eq. (6.12), which penalizes deviations in the Jacobi constant from that for L1. Figures 
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6.31-6.36 show that the temporal variations of the Jacobi constant diminish as the final 

time increases.  

 

 

        Figure 6.37: Trajectory              Figure 6.38: Trajectory              Figure 6.39: Trajectory 
(10days-fixed final velocity)      (20days-fixed final velocity)       (30days-fixed final velocity) 

 

 

        Figure 6.40: Trajectory              Figure 6.41: Trajectory              Figure 6.42: Trajectory 
(40days-fixed final velocity)      (50days-fixed final velocity)       (60days-fixed final velocity) 
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    Figure 6.43: Jacobi constant      Figure 6.44: Jacobi constant      Figure 6.45: Jacobi constant   
   (10days-fixed final velocity)      (20days-fixed final velocity)     (30days-fixed final velocity) 

 

 

    Figure 6.46: Jacobi constant      Figure 6.47: Jacobi constant      Figure 6.48: Jacobi constant   
   (40days-fixed final velocity)      (50days-fixed final velocity)     (60days-fixed final velocity) 

 

Table 6.6: The cost values at each final time (the fixed final velocity) 

J (Cost) 10 days
 

20 days 30 days 40 days 50 days
 

60 days 

1J  0.0011 0.0004 0.0002 0.0001 0.0001 0.0001 

2J  0.0413 0.0185 0.0131 0.0090 0.0076 0.0062 

J  0.0424 0.0189 0.0133 0.0091 0.0077 0.0063 
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Figures 6.37-6.42 and Figs. 6.43-6.48 show the trajectories and the 

corresponding Jacobi constant histories for increasing final times for the case of zero 

final velocity. The results for the cost values for each final time selected are shown in the 

Table 6.6. Unlike the free-final-velocity trajectories, the zero-final-velocity trajectories 

show symmetrical spiral motion near the two liberation points. For both the cases, there 

is a gradual deformation of the trajectories as the final time is increased. Such is not the 

case without the use of the Jacobi constant penalty function. As shown by Eq. (6.14), the 

variation of the Jacobi constant on a thrusting trajectory decreases with the thrust level. 

Figs. 6.43-6.48 show a reflection of this property, since an increase in the final time 

reduces the thrust level required.  
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7. CONCLUSIONS 

 

This dissertation presents a variety of continuous and discrete-time Successive 

Backward Sweep (SBS) methods to solve nonlinear optimal control problems, without 

the need for accurate or consistent initial guesses. Several methods of handling 

algorithmic and numerical singularities are proposed to increase the domain of 

convergence of these methods. An aiming point method has been developed to improve 

terminal constraint satisfaction, especially for arbitrary initial guesses for the states and 

controls. The use of a 4th order Magnus integrator in conjunction with the continuous-

time SBS method is shown to improve terminal constraint satisfaction error over that 

from a non-symplectic integrator of the same order. The Magnus integrator allows for a 

trade of reduced computational time for larger step sizes, without a significant reduction 

in accuracy. 

A modified SBS method is developed by incorporating a change in the sweep 

equations that directly check for conjugate points in the theory of the calculus of 

variations. This approach eliminates the need for computing the terminal Lagrange 

multiplier over a significant portion of the trajectory and improves the constraint 

satisfaction accuracy. This modification allows for a wider domain of application of the 

SBS method and provides a verification of the sufficient condition for optimality. 

Formulating the optimal control problem in the discrete-time domain has several 

advantages, such as the incorporation of the time stepping scheme into the derivation of 

consistent necessary conditions for optimality and accurate satisfaction of the boundary 
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condition. The time-explicit form of the midpoint rule has been extensively employed in 

this work in conjunction with the SBS method. This second-order scheme is shown to 

have the same error characteristics as that of a 4th order non-symplectic scheme on 

several test problems. The SBS method has been extended to solve optimal control 

problems with impulsive controls.  A waypoint scheme has also been proposed to solve 

highly sensitive problems.  

The SBS method is augmented with a homotopy-continuation procedure to 

isolate and regulate certain nonlinear effects in difficult problems in order to extend its 

domain of convergence. In certain problems of orbit transfer in the two-body setting, the 

homotopy approach is able to find global minimum solutions.  

The application of the modified SBS method to evaluate the optimality of 

transfer trajectories between liberation points of the restricted three-body problem has 

produced interesting results. Multiple solutions are obtained for the same optimal control 

problem and the modified SBS and STM methods are applied to these solutions to check 

the no-conjugate point condition. Of the four solutions found for a particular example, 

three are determined to be locally optimal. An attempt is also made to characterize these 

multiple solutions based on their Jacobi constant variations. The Jacobi constant penalty 

function can also be used to augment the performance index for long duration 

trajectories to obtain suboptimal solutions with reduced sensitivity. 
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APPENDIX A 

 

THE DERIVATION OF ALTERNATE FORMS OF 

THE PERFORMANCE INDEX 

 

Note that 
x xH f   and 

u uH f   in Eq.(2.28). Consider the dynamic system and cost-

to-go, given as: 

 

x ux f x f u    ,     
 

1
( )

2

f

T

t

T

t

J x Qx u Ru dt 
 

 

where 
x uf f x f u     and f & all partials are evaluated on a nominal trajectory.  

The Hamiltonian is defined as:  

 

1
( ) ( )

2

T T T

x uH x Qx u Ru f x f u       

0T

u uH Ru f     → 
1 T

uu R f    

1 T

x u ux f x f R f      

T

xQx f     

 

It follows that 
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11 1 1 1 1 1
( )
2 2 2 2 2 2

T T T T T T T

u u

d
x x x x Qx f R f

dt
             

11 1 1
( ) ( )
2 2 2

T T T T T

u u

d d
x x Qx f R f J

dt dt
           

 

Hence, upon integration 

 

1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2

T

t

T T TJ t x t t x T T dt        

 

Under the ( ) 0x T  assumption 
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2 2
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T TJ t x t t dt       
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APPENDIX B
 

 

THE DISCRETIZATION BY USING THE RK-4TH ORDER METHOD [Ref. 31] 

 

( , , )x f x u t
 

1 ( , )k k k kx g x u 
 

 

The state transition and control influence matrices are  

 

,k k
k k

k k

g g
A B

x u

 
 
 

 

 

The formula of Runge-Kutta 4th order method is 

 

1 2 3 4( 2 2 )

6
k k

k k k k
g x

  
 

 

 

where 

1 ( , , )k k kk hf x u t
 

12 ( / 2, , / 2)k k kk hf x k u t h  
 

3 2( / 2, , / 2)k k kk hf x k u t h  
 

4 3( , , )k k kk hf x k u t h  
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and h  is the time span of discrete time system. Hence, 

 

21 3 41
( 2 2 )

6 k k

k

k k

kk k k
A I

x x x x

  
    
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1 32 41

( 2 2 )
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kk k k
B

u u u u
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   

   
 

 

where I is the identity matrix. Furthermore, 

1 1,
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APPENDIX C 

 

THE ALGORITHM OF OPTIMAL DESCENT VECTOR [Ref. 39] 

 

The ODV algorithm for Example (5-1) is based on a central difference scheme for 

discretizing 
iF . Algorithmically, the ODV method is  
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where i  is the number of data points , k  is the number of iterations, 0 1 
 
and 

F
B

x




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