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ABSTRACT

Bivariate B-splines and its Applications in Spatial Data Analysis. (August 2011)

Huijun Pan, B.S., University of Science and Technology of China;

M.S., Texas A&M University

Co-Chairs of Advisory Committee, Dr. Jianhua Huang
Dr. Lan Zhou

In the field of spatial statistics, it is often desirable to generate a smooth surface

for a region over which only noisy observations of the surface are available at some

locations, or even across time. Kriging and kernel estimations are two of the most

popular methods. However, these two methods become problematic when the domain

is not regular, such as when it is rectangular or convex. Bivariate B-splines developed

by mathematicians provide a useful nonparametric tool in bivariate surface modeling.

They inherit several appealing properties of univariate B-splines and are applicable in

various modeling problems. More importantly, bivariate B-splines have advantages

over kriging and kernel estimation when dealing with complicated domains. The

purpose of this dissertation is to develop a nonparametric surface fitting method by

using bivariate B-splines that can handle complex spatial domains.

The dissertation consists of four parts. The first part of this dissertation explains

the challenges of smoothing over complicated domains and reviews existing methods.

The second part introduces bivariate B-splines and explains its properties and imple-

mentation techniques. The third and fourth parts discuss application of the bivariate

B-splines in two nonparametric spatial surface fitting problems. In particular, the

third part develops a penalized B-splines method to reconstruct a smooth surface
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from noisy observations. A numerical algorithm is derived, implemented, and applied

to simulated and real data. The fourth part develops a reduced rank mixed-effects

model for functional principal components analysis of sparsely observed spatial data.

A numerical algorithm is used to implement the method and tested on simulated and

real data.
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CHAPTER I

INTRODUCTION

Suppose a target variable, for example temperature or ozone concentration, has

values over a two-dimensional domain. It is a common problem in spatial data analysis

to derive the value of the the target variable at any location in the domain based on

discrete observations disturbed by noises.

This problem is reasonable and feasible to solve because of the existence of spatial

variation and spatial dependence. Spatial variation means that the target variable

has different values at different locations; while spatial dependence means that the

variable value at one location is correlated with that at some other locations.

There are different ways to describe these two properties. One is a stochastic

view which treats the value of a target variable at each location as a random variable

and use the covariance function between these random variables or a variogram to

represent the correlation; another is to use a deterministic surface function to describe

the variations and connections among values at different locations. This work takes

the latter point of view. To be more specific, we are interested in estimating a smooth

function f(x, y) over some bounded domain Ω ⊆ R2 given observations {zi}ni=1 at a

collection of discrete points {vi = (xi, yi)}ni=1 in the domain.

Two issues make this problem challenging. One is the data structure and the

other is the domain shape. Data structure means how the data is generated. Some

datasets are dense in locations while others are sparse. Some are measured at one

The style of this dissertation follows Journal of Statistical Planning & Inference.
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moment while others are measured across time and therefore have time-specific varia-

tions. Domain shape indicates, for example, whether the domain has holes inside or it

is just simply connected or it is a polygon. These characteristics affect the efficiency

of estimation methods and can even paralyze some methods.

Some literatures analyze spatial data with complicated structures on regular

domains but the methods may fail when applied to complicated domains. Others

propose techniques to handle complicated domains but for simple data structures and

models, such as least square regression model on dense observations with identical

independent white noise, and these techniques have issues in interpretation or may

not be adopted to complicate models accounting for complicated data structures.

To conquer the challenges, we introduce a collection of bivariate splines to handle

complicated domain and propose several models for different data structures by using

these splines. This collection of bivariate splines have several advantages. First,

it spans a reasonably rich function space to approximate the true functions over

complicated domains. Second, it can be easily incorporated into many widely used

functional data models tailored for different data structure. Third, the computation

costs for splines evaluation and model calibration and model selection are acceptable.

The splines we introduce are called bivariate B-splines. They are well-developed by

mathematicians but seldom used in statistical community. Only two papers have used

it so far (Guillas and Lai, 2010; Lai and Wang, 2010).

We apply this collection of splines in two different scenarios. For each scenario, we

give statistical model based on the bivariate B-splines, along with discussions on the

estimation procedure, model selection and other statistical issues. The first scenario

is when the observations are dense in location and are a snapshot of the surface. In

other words, the observations have independently and identically distributed noises.

For example, we estimate the temperature surface over a county for a specific day from
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the observations for that day at all stations in the county. A penalized smoothing

model is used for this case. Second, we deal with the case that the data is sparse

in location but we have several snapshots of the surface. Following the temperature

example, now we have records of the temperature for several days but with limited

data on each day. We assume that there is no evolution or correlation over days.

But the deviation of the observations from true values is day-specific. Therefore

the measurement errors are no longer identically distributed over days. We cannot

get a stable estimation of the temperature surface for each day in this case, but we

can estimate the mean surface of all days by excluding the day-specific variation. A

reduced rank mixed-effects model is proposed.

The structure of this work is as follows. Chapter II introduces bivariate B-splines

and shows its mathematical properties. Chapter III and Chapter IV cover the two

scenarios discussed above respectively.
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CHAPTER II

BIVARIATE B-SPLINES

2.1 Introduction

The design of splines plays an important role in spline-based nonparametric sta-

tistical methodology. For smoothing over complicated spatial domains, we expect that

the splines have at least the following four properties. First, the splines are bivariate

functions and well defined on complicated domains in the sense that their application

will not introduce extra spatial correlations over the holes in the domains. Second, the

splines span a considerably rich function space that contains or is close to the target

true function. Third, the computational cost of the analysis procedure when applying

the splines is affordable. Fourth, the splines can be used for different modeling tasks.

Bivariate B-splines, piecewise polynomials defined on triangle division of the domain,

satisfy these four criteria. Some properties of bivariate B-splines are similar to those

of univariate B-splines and the similarity is where the name comes from. This chap-

ter introduces bivariate B-splines and shows their mathematical properties relevant

to our applications in Chapters III and IV. Bivariate B-splines are well developed by

mathematicians and Lai and Schumaker (2007) provides a comprehensive reference.

2.2 Barycentric coordinates

Given a non-degenerate a triangle A with vertices counter-clock numbered as

< v1, v2, v3 >, any point v ∈ R2 can be written as

v = b1v1 + b2v2 + b3v3, with b1 + b2 + b3 = 1. (2.1)
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The coefficients (b1, b2, b3) are called the barycentric coordinates of point v with re-

spect to the triangle A, denoted as bv = (b1, b2, b3). Here the constraint b1 +b2 +b3 = 1

guarantees the unique representation of point v. Although all points in R2 could be

represented as (2.1), we only consider the points inside the triangle A in this work.

So far we have two representation systems for points in R2: cartesian coordinates

and barycentric coordinates. There is one-to-one mapping between these two systems.

Assume the cartesian coordinates of v1, v2 and v3 are v1 = (x1, y1), v2 = (x2, y2), v3 =

(x3, y3), and v = (x, y). Then

x = b1x1 + b2x2 + b3x3, y = b1y1 + b2y2 + b3y3,

which converts the barycentric coordinates to the cartesian coordinates. Reversely,

by solving the equation system
1 1 1

x1 x2 x3

y1 y2 y3



b1

b2

b3

 =


1

x

y

 , (2.2)

we get

b1 =
(x2y3 − y2x3)− x(y3 − y2) + y(x3 − x2)

2 · Area(T )
,

b2 =
(x3y1 − y3x1)− x(y1 − y3) + y(x1 − x3)

2 · Area(T )
,

b3 =
(x1y2 − y1x2)− x(y2 − y1) + y(x2 − x1)

2 · Area(T )
. (2.3)

Apparently, (b1, b2, b3) are linear in (x, y).

The constraint b1 + b2 + b3 = 1 on barycentric coordinates makes them identifi-

able. There exist other constraints that make the coordinates unique. We adopt this

one because it gives barycentric coordinates an interesting geometric interpretation.

When point v is located inside or on the edges of the triangle T , we connect the point
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v with v1, v2 and v3 to generate three triangles {A1, A2, A3} as Figure 1, then the

barycentric coordinates are

v2 v3

v1

v
A1

A2A3

Figure 1: Triangle with one point inside.

bi =
Area ofAi
Area ofA

, i = 1, 2, 3. (2.4)

In spatial analysis, we could choose any two orthogonal directions and any point as

original point to build up the cartesian coordinates. Therefore, all statistical analysis

tools are desirable to be invariance to linear transformation of cartesian coordinates.

Now we prove that barycentric coordinates have this property.

Theorem 2.2.1. Barycentric coordinates are invariant to linear transformation of

cartesian coordinates.

Proof. Assume that point v = (x, y) ∈ R2 has barycentric coordinates bv = (b1, b2, b3)

with respect to a triangle A =< v1, v2, v3 > with vi = (xi, yi). Then, (b1, b2, b3)

satisfies (2.2), which in turn can be written as

b1 + b2 + b3 = 1 (2.5)
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and  x1 x2 x3

y1 y2 y3



b1

b2

b3

 =

 x

y

 . (2.6)

Applying the linear transformation x∗

y∗

 =

 α1

α2

+

 β11 β12

β21 β22


 x

y

 (2.7)

to all points (x, y) and (xi, yi) appeared on two sides of (2.6), we obtain

 x∗1 x∗2 x∗3

y∗1 y∗2 y∗3



b1

b2

b3

 =

 x∗

y∗

 . (2.8)

Combining (2.5) and (2.8), we know that (b1, b2, b3) is barycentric coordinates of

(x∗, y∗) with respect to the transformed triangle A∗ =< v∗1, v
∗
2, v
∗
3 >, where v∗i =

(x∗i , y
∗
i ), i = 1, . . . , 3.

Theorem 2.2.1 shows that the barycentric coordinates are invariant to linear

transformations. In following sections, bivariate B-splines and all model equations

are built on barycentric coordinates and therefore they are unchanged with respect

to linear transformations.

2.3 Bivariate B-splines

After introducing barycentric coordinates, we define bivariate B-splines in this

section. Given a triangle A and a point v ∈ A with coordinates bv = (b1, b2, b3). We

define functions for pre-fixed non-negative integer d

Bd,ijk(v) :=
d!

i!j!k!
bi1b

j
2b
k
3, i+ j + k = d, b1 + b2 + b3 = 1, v ∈ A. (2.9)
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Here i, j, k are nonegative integers. We call the set of polynomials

Bd := {Bd,ijk}i+j+k=d (2.10)

bivariate B-splines with respect to triangle A. Figure 2 gives an example of Bd for

d = 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
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6
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0
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2
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4

0.
6
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4

0.
6

0.
8

1.
0

Figure 2: Complete collection of bivariate B-splines when domain is a triangle and
d = 2. When d = 2, Bd contains six functions shown above. The functions values
vary between 0 and 1.

We have known that b1, b2, b3 are all linear polynomials in x and y. It follows

that Bd,ijk(v) is a polynomial in x and y with degree d. Let Pd(A) be the space of

polynomials defined on the triangle A with degree d, then Bd,ijk ∈ Pd(A). In fact, Bd

does not only belong to the space Pd(A) but can also form its basis as stated in the

following theorem.
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Theorem 2.3.1. The set of bivariate B-splines Bd forms a basis for space Pd(A) and

1)
∑

i+j+k=d

Bd,ijk(v) = 1, for all v ∈ A.

2) 0 ≤ Bd,ijk(v) ≤ 1, for all v ∈ A.

3) Bd,ijk has a unique maximum at the point ξijk = (iv1 + jv2 + kv3)/d ∈ A.

Proof. 1) and 2) are straightforward according to
∑

i+j+k=d

d!
i!j!k!

bi1b
j
2b
k
3 = 1.

Now we prove 3) and the claim that Bd is a basis for Pd. Rewrite bivariate

B-splines in (2.9) by absorbing the constrain b1 + b2 + b3 = 1, we have

Bd,ijk(v) =
d!

i!j!k!
bi1b

j
2(1− b1 − b2)k.

Then take derivative with respect to b1 and b2 and set these derivatives to zero, we

have

i− (i+ k)b1 − ib2 = 0 (2.11)

and

j − (j + k)b2 − jb1 = 0. (2.12)

Solving these equations we get b1 = i/d, b2 = j/d, b3 = k/d, so the point ξijk =

(iv1 + jv2 + kv3)/d is an extreme value point. By checking the sign of the second

derivative, we know that Bd,ijk reaches maximum at ξijk

Theorem 2.3.1 tells us that Bd is a basis for Pd. It follows that for any function

s ∈ Pd(A), there exist coefficients {cijk} such that

s(v) =
∑

i+j+k=d

cijkBd,ijk(v), (2.13)

or in vector form

s(v) = BT
d (v)c, (2.14)
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where

Bd(v) = {Bd,d,0,0(v), Bd,d−1,1,0(v), Bd,d−1,0,1(v), ..., Bd,0,0,d(v)}T (2.15)

and

c = {cd,0,0, cd−1,1,0, cd−1,0,1, cd−2,2,0, ..., c0,0,d}T. (2.16)

In (2.16), cijk is corresponding to the lth element in vector c where

l =
d−i∑
m=0

m+ 1− j. (2.17)

Note that the ordering of the elements of c is not important. Our choice is just one

possibility; using a different choice won’t influence our method.

2.4 Directional derivatives

This section gives the expressions of the directional derivatives of bivariate B-

splines. Directional derivative of a multivariate smooth function f at point v with

respect to direction w is generally defined as

Dwf(v) :=
∂

∂t
f(v + tw)|t=0 = lim

t→0

f(v + tw)− f(v)

t
. (2.18)

Assume that the direction w has barycentric coordinates (w1, w2, w3). Define

bv = (b1, b2, b3) (2.19)

and

bv+tw = (b1 + tw1, b2 + tw2, b3 + tw3). (2.20)

Plugging (2.19) and (2.20) back into (2.18), we immediately get

DwBd,ijk(v) (2.21)

= d[w1Bd−1,(i−1)jk(v) + w2Bd−1,i(j−1)k(v) + w3Bd−1,ij(k−1)(v)].
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We can calculate higher order derivatives Dn
wBd,ijk(v) by iteratively applying (2.21).

After knowing the directional derivatives of basis functions, we can easily derive

the directional derivatives of a function s ∈ Pd(A) as follow.

Theorem 2.4.1. Assume we have a bivariate function s(v) with the basis expansion

s(v) =
∑

i+j+k=d

cijkBd,ijk(v).

For all (i, j, k) that i+ j + k = d, we define

c
(0)
ijk(w) = cijk (2.22)

and

c
(m)
ijk (w) := w1c

(m−1)
i+1,j,k + w2c

(m−1)
i,j+1,k + w3c

(m−1)
i,j,k+1, form = 1, ..., d. (2.23)

Then,

Dm
w s(v) =

d!

(d−m)!

∑
i+j+k=d−m

c
(m)
ijk (w)Bd−m,ijk(v). (2.24)

Proof. When m = 1, we need to show that

Dws(v) = d
∑

i+j+k=d−1

c
(1)
ijk(w)Bd−1,ijk(v). (2.25)

Once we prove the result for m = 1, the result for all other m’s can be proved easily

by repeatedly applying (2.25) .

According to definition (2.22)

c
(1)
ijk = w1ci+1,j,k + w2ci,j+1,k + w3ci,j,k+1. (2.26)
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Applying (2.21) and (2.26), we have

Dws(v) =
∑

i+j+k=d

cijkDwBd,ijk(v)

=
∑

i+j+k=d

cijkd[w1Bd−1,(i−1)jk(v) + w2Bd−1,i(j−1)k(v)

+w3Bd−1,ij(k−1)(v)]

= d
∑

i+j+k=d

c
(1)
ijk(w)Bd−1,ijk(v).

This is (2.25). Thus the proof is complete.

2.5 Smoothness conditions

V3 V2

V1

V4

A1

A2

Figure 3: First example of two triangles sharing an edge.

Now assume that we have two trianglesA1 :=< v1, v2, v3 > andA2 :=< v4, v3, v2 >

sharing a common edge e =< v2, v3 > with the bivariate B-splines {B(1)
d,ijk}i+j+k=d de-

fined on A1 and {B(2)
d,ijk}i+j+k=d on A2. See Figure 3. If we have a polynomial p1(v)
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defined on A1 and a polynomial p2(ṽ) on A2, then according to Theorem 2.3.1, we

have coefficients {c(1)
ijk}i+j+k=d and {c(2)

ijk}i+j+k=d such that p1(v) =
∑

i+j+k=d

c
(1)
ijkB

(1)
d,ijk(v)

and p2(ṽ) =
∑

i+j+k=d

c
(2)
ijkB

(2)
d,ijk(ṽ).

In some situations, we want these two polynomials to connect smoothly over

the common edge e. We call this issue as smoothness constraint. Latter sections

will explain why we are interested in such issue and give more detailed description

of the scenarios under which it rises. Here we skip its application but just find the

conditions under which the smoothness constrains are satisfied.

We say that the two bivariate functions defined on two adjacent triangles connect

smoothly on the common edge with order r if they have same rth and less order

derivatives along any direction on the common edge. We have following theorem to

give the conditions under which two bivariate functions are smoothly connected.

Theorem 2.5.1. Suppose there are two triangles A1 and A2 sharing edge e. w is any

direction unparallel to common edge e and Dn
wp(v) is nth order derivative in direction

w at point v. Then

Dl
wp1(v) = Dl

wp2(v), all v ∈ e and l = 0, .., r (2.27)

if and only if

c
(1)
ljk =

∑
ν+µ+κ=l

c
(2)
ν,k+µ,j+κB

(2)
l,νµκ(v4), j + k = d− l, l = 0, ..., r. (2.28)

Proof. In the following proof, point v is always on common edge e. The barycentric

coordinates (b1, b2, b3) of v ∈ e with respect to triangle A1 could be written as (0, b2, 1−

b2). Then the barycentric coordinates of v with respect to triangle A2 are (0, 1−b2, b2).

Therefore functions p1(v) and p2(v) are reduced to univariate functions

p1(v) =
∑
j+k=d

c
(1)
0jk

d!

j!k!
bj2(1− b2)k (2.29)



14

and

p2(v) =
∑
j+k=d

c
(2)
0jk

d!

j!k!
(1− b2)j(b2)k. (2.30)

In this case, p1 and p2 join continuously on edge e if and only if c
(1)
0jk = c

(2)
0kj which is

the form of (2.28) when r = 0.

Now we show the result for r > 0. We choose two unparallel directions w1 =

v3 − v2 and w2 = v4 − v2. Derivatives along other directions are linear combinations

of the derivative along these two. Thus, if we can prove the equality along these two

directions, the equalities along other directions are affirmed automatically. It is easy

to prove that Dl
wp1(v) = Dl

wp2(v) along these two directions by comparing (2.29) and

(2.30).

(2.28) gives us the conditions for smoothness constrains. One thing to notice

is that the smoothness conditions (2.28) are linear in coefficients {c(1)
ijk, c

(2)
ijk}. This

linearity will be used in lemma 2.7.1.

2.6 Triangulation

Consider a collection of N triangles ∆ := {A1, ..., AN} on the domain Ω.

Definition 2.6.1. A collection ∆ of triangles that covers a domain Ω is called a

triangulation of the domain, given that if a pair of triangles in ∆ intersect, then their

intersection is either a common vertex or a common edge.

For computer implementation, we need to represent the structure of triangula-

tions in a convenient and concise way. There are several approaches in the literature

and we pick one here based on our personal preference. First label all vertices in the

triangulation in any order as long as there are no duplicate labels and then construct

two lists. One is the vertex list with the ith row storing the cartesian coordinates

(xi, yi) for the ith vertex. The other list is the triangle list with ith row, a triple
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(li1, li2, li3), recording that the ith triangle is comprised of the li1th, li2th and li3th

points in the vertex list.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

v1 v2

v3v4

A1

A2

Figure 4: Second example of two triangles sharing an edge.

Table 1: Vertex list for triangulation in Figure 4.

vi xi yi
1 0 0
2 .5 0
3 .5 .5
4 0 .5

Table 2: Triangle list for triangulation in Figure 4.

vertice 1 vertice 2 vertice 3
1 2 3
1 3 4

As an example, Tables 1 and 2 gives the two-list representation of the of triangular

giving in Figure 4. Here, the first row of the triangle list records that the first triangle

A1 that consists of vertices < v1, v2, v3 > while the second triangle A2 consists of
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< v1, v3, v4 >. The locations of vertices v1, v2, v3 and v4 are listed in vertex list. The

representation is not unique; for example, the first row of the triangle list could be

< 2, 3, 1 > instead. But using different representations does not change the structure

of the corresponding triangulation.

2.7 Smoothness conditions

We extend the definition of bivariate B-splines to a triangulation of a spatial

domain and derive some useful representations of smoothness conditions.

2.7.1 Smoothness restrictions

Given a triangulation ∆, we can define bivariate B-splines Bd,i, as introduced

in Section 2.1, on each triangle Ai ∈ ∆. The subscript i in Bd,i indicates that this

collection of splines is corresponding to triangle Ai and therefore is differernt from the

meaning of i in (2.9). Since each Bd,i spans the polynomial space Pd(Ai), the whole

collection of bivariate B-splines {Bd,i}Ni=1 span a spline space

Sd(∆) = {s : s|Ai
∈ Pd(Ai), i = 1, 2, ..., N}. (2.31)

Then for any s ∈ Sd, there exists a vector ci as in (2.16) such that

s|Ai
= BT

d,ici.

Then

s = BT
d c,

where Bd = (BT
d,1,B

T
d,2, ...,B

T
d,N)T and c = (cT

1 , c
T
2 , ..., c

T
N)T.

The least square approximation of a target function f in the space Sd is defined

as the solution of the optimization problem

Mins||s− f ||2 = Minc||BT
d c− f||2. (2.32)
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Although s ∈ Sd is a polynomial when restricted to one triangle, it is not con-

tinuous everywhere in the domain Ω. There may be jumps across the common edges

of neighboring triangles. This property is not desirable. Recall that (2.28) gives us

the conditions for smoothly joining two polynomials defined on two neighboring tri-

angles. It is easy to extend these conditions to the whole triangulation if we need the

smoothness across every common edge. Then we have following lemma.

Lemma 2.7.1. Given a triangulation ∆ and a function s that s|Ai
(v) = BT

d,i(v)ci, for

integer r = 0, 1, ..., d, s is rth order differentiable everywhere in domain Ω if and only

if there exists a matrix H such that Hc = 0. Matrix H depends on d, r and the

structure of triangulation.

The matrix H, by controlling the values of coefficients, enforces smoothness over

every shared edge in the triangulation. We can construct H by applying (2.28) on

every two triangles that share an edge.

2.7.2 Construction of the smoothness matrix

Equation (2.28) provides the basis for constructing smooth matrix H. We ex-

plain the detailed steps of the construction here through an example. Consider the

triangulation in Figure 4 with d = 2 and r = 0. There are (d + 1)(d + 2)/2 = 6

bivariate B-splines defined on each triangle with corresponding coefficients {c(1)
ijk} and

{c(2)
ijk}. Following (2.28) we have that

when l = 0,

c
(1)
0jk = c

(2)
0kjB

(2)
000(v4) = c

(2)
0kj,

for any non-negative intergers (k, j) that k + j = d.
(2.33)

when l = 1,

c
(1)
1jk = c

(2)
1kjB

(2)
1,100(v4) + c

(2)
0,k+1,jB

(2)
1,010(v4) + c

(2)
0,k,j+1B

(2)
1,001(v4),

for any non-negative intergers (k, j) that k + j = d− 1.
(2.34)
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when l = 2,

c
(1)
200 = c

(2)
200B

(2)
2,200(v4) + c

(2)
020B

(2)
2,020(v4) + c

(2)
002B

(2)
2,002(v4)

+c
(2)
110B

(2)
2,110(v4) + c

(2)
101B

(2)
2,101(v4) + c

(2)
011B

(2)
2,011(v4).

for any non-negative intergers (k, j) that k + j = d− 1.

(2.35)

Denote a vector c = (c
(1)
d,0,0, c

(1)
d−1,1,0, ..., c

(1)
0,0,d, c

(2)
d,0,0, c

(2)
d−1,1,0, ..., c

(2)
0,0,d)T as the union

of {c(1)
ijk} and {c(2)

ijk} listed in order as (2.16). Evaluating bivariate B-splines defined

on triangle A1 at point v4, the smoothness matrix is as follows with the first three

rows corresponding to (2.33), fourth and fifth row to (2.34) and sixth row to (2.35).

H =



−1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0 1 0 0 0

0 −1 0 0 0 0 1 1 0 −1 0 0

0 0 0 0 −1 0 0 1 1 0 −1 0

0 0 −1 0 0 0 1 2 1 −2 −2 1


. (2.36)

The triangulation in Figure 4 is symmetric around the sharing edge and both

triangles are sosceles triangles, so the elements in matrix H are coincidently 0 , 1 and

-1. We consider another irregular triangulation in Figure 5. The vertex list and the

triangle list are given in Tables 3 and 4, the smoothness matrix H is given in (2.37).

Table 3: Vertex list for triangulation in Figure 5.

vi xi yi
1 0 0
2 .8 0
3 1 1
4 -0.75 1
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Table 4: Triangle list for triangulation in Figure 5.

vertice 1 vertice 2 vertice 3
1 2 3
1 3 4

H =



−1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0 1 0 0 0

0 −1 0 0 0 0 1 .471 0 −.471 0 0

0 0 0 0 −1 0 0 1 .471 0 −.471 0

0 0 −1 0 0 0 1 .941 .221 −.941 −.443 .221


(2.37)

-0.5 0.0 0.5 1.0

0.0
0.2

0.4
0.6

0.8
1.0

x

y

A1

A2

V1 V2

V3V4

Figure 5: Third example of two triangles sharing a edge.
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CHAPTER III

PENALIZED SPATIAL SMOOTHING

3.1 Introduction

Estimating a smooth surface over a two-dimensional domains is a common prob-

lem in spatial data analysis. Assume we have observations zi at locations (xi, yi) ∈ R2

that

zi = f(xi, yi) + εi, εi ∼ N(0, 1), i = 1, 2, ..., n.

Our problem is estimating a bivariate function f given the data {(xi, yi, zi)} for some

unknown function f . For example in Figure 6, red dots represent the locations where

soil organic matters were measured. Then GIS software generates continuous color

maps of the density of organic matters over the whole area by interpolating the

unobserved from surrounding observed data.

Figure 6: Heatplots of estimated soil organic matter surface based on GIS data. Red
points show the locations of observations.

Wavelet-based methods, kernel smoothing, kriging and spline smoothing are four

commonly used techniques for smoothing surface estimation. All these methods work
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well for rectangular domains with measurements on grid, as Figure 6. However, they

become inefficient or even problematic for complex domains. Wavelet-based methods

(Horgan, 1999) cannot be applied when domains are not rectangular. Kernel smooth-

ing (Wand and Jones, 1995) and kriging (Cressie, 1993) assume that the similarity

between two locations depending on their Euclidean distance and therefore estimate

function values as weighted sums of observations around with weights depending on

the Euclidean distances. However, the usage of the Euclidean distance causes prob-

lems when estimating the surface. We explain the disadvantage of the Euclidean

distance in the following example.

Figures 7 and 8 are examples of complicated domains studied in literatures.

Consider four outlined points in Figure 7. The similarity between the points outlined

by square will not be equal to that of the points outlined by triangles although the

two pairs of points have the same the Euclidean distances. In Figure 8, The hole in

the southern part of the island is an airport and the one in the north-eastern end is

an oil refineries and a water purification plant. These two holes are not part of the

domain and the spatial correlations between residency on opposite sides of each hole

is broken down.

To fix the problem brought by the Euclidean distance, Wang and Ranalli (2007)

proposed low-rank thin-plate splines defined as functions of the geodesic distance in-

stead of the Euclidean distance, while Eilers (2006) employed the Schwarz-Christoffel

transform to convert the complex domains to regular domains. We can also apply

the kernel method and kriging on the geodesic distance. These modifications can

be viewed as mapping the original domains and functions to the new domains and

functions, then optimal smoothers can be found. But since the smoothness penalties

are defined on converted functions, what they measure on original functions are no

longer clear.
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Figure 7: Horseshoe-shaped domain.

Figure 8: Island of Montreal with dots representing the centroid of units where census
data are summarized.

Based on discussions above, we prefer to work on original domains with the Eu-

clidean distances. We will focus on spline-based methods because we can define locally

supported splines with supports inside the domains. In this way, we will overcome the

challenges of holes and concave boundaries. The rest of this chapter is structured as

follow. In Section 3.2, we list and review some existing spline-based smoothing meth-

ods focusing on complex two-dimensional domains. Then we introduce the splines

and corresponding models in Section 3.3 and discuss future work in Section 3.4.
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3.2 Literature review

Spline-based smoothing generally minimizes an objective function within a func-

tion space spanned by a collection of splines. The objective function is the squared

distance between observed data and a spline function, adding a roughness penalty

(Greens and Silverman, 1994). Let Ω be the domain, We have n observations zi at

location (xi, yi). Two kinds of objective functions are widely used so far. They are

PLS1(f) =
n∑
i=1

(
zi − f(xi, yi)

)2

+ λ

∫
Ω

(fxx + fyy)
2 dxdy, (3.1)

and

PLS2(f) =
n∑
i=1

(
zi − f(xi, yi)

)2

+ λ

∫
Ω

(f 2
xx + 2f 2

xy + f 2
yy) dxdy, (3.2)

where λ in both functions is the smoothing parameter that trades off the goodness-

of-fit of the data and the smoothness of the fitted function.

Traditional spline-based work on smoothing over a two-dimensional domain use

either tensor-product splines or thin-plate splines (Duchon, 1977). Tensor-product

splines are tensor products of univariate splines defined on grids. They cannot exclude

interior holes or gaps and therefore will smooth over these areas. This behavior will

introduce extra dependence between locations and produce bias. Thin-plate splines,

defined on the Euclidean distance, will have the same problem as kernel smoothing

and kriging.

In the statistical literature, two collections of splines are studied when considering

complex domain. One is the soap smoother and the other is the finite element splines

from the applied mathematics. Now we start to review these methods.

3.2.1 Finite element smoother

The finite element technique is a sophisticated method in applied mathematics.

Finite elements have three components: partition, nodes and basis. We partition the
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domain, identify locations of nodes and then define a group of basis, called nodal basis,

on each piece of the partition according to the nodes. The basis spans a continuous,

piecewise polynomial function space, in which we approximate the real function. We

call this space the finite element space S0. Hansen et al. (1998) first introduced this

technique to the statistical community to deal with complex domains. Ramsay (2002)

found minimizer of PLS1 subject to certain constraint in the finite element space.

Koenker and Mizera (2004) proposed a new penalty called total variation penalty

that calculated the wiggleness of continuous but not smooth bivariate function and

then found the minimizer in the finite element space.

Denote Hm(Ω) as the space of all continuous functions on a domain Ω whose

mth-order partial derivatives are all square integrable and whose partial derivatives

of order less thenm are all continuous. One big problem of the finite element technique

is that the functions it defines are surely continuous everywhere but not guaranteed

to be differentiable. Therefore, PLS1 and PLS2 are not well defined. Hansen et al.

(1998) and Koenker and Mizera (2004) only focused on continuous but not smooth

functions, so they had different scopes from us. Ramsay (2002) imposed normal

derivatives zero boundary condition to make the minimizer of PLS1 in S0 ∩ H2

equivalent to solution of a system of partial differential equations that only involve

first order derivatives. In this way, the problem can be easily solved by finite element

method. But the constraints of normal derivatives zero on boundary is arbitrary and

may not be satisfied in many cases.

3.2.2 Soap film smoother

Wood et al. (2008) followed the variational method of deriving thin-plate spline

to find the closed form for the minimizer of PLS1 which is a linear combination of

Green’s functions and functions in the null space of the smoothness penalty. However,
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the Green’s functions can only be solved when boundary values are given. He proposed

that minimizer of PSL1 in (3.1) subject to known boundary conditions must satisfy

the following differentiable equations

∂2f

∂x2
+
∂2f

∂y2
= ρ, (3.3)

where
∂2ρ

∂x2
+
∂2ρ

∂y2
= 0 (3.4)

except at data points {(xk, yk)} which are pre-selected, and ρ = 0 on the boundary.

For each data point (xk, yk), there is a function gk(x, y) that satisfies (3.3) and (3.4)

except at (xk, yk). Then a linear combination of all {gk}, called the soap film smoother

f =
∑n

k=1 γkgk(x, y), is a solution to (3.3) and (3.4) except at all knots, therefore f

is the minimizer to PSL1.

The process of building the soap film smoother requires function values on the

boundary are known. When function values are unknown on the boundary, Wood

et al. (2008) proposed an approach to approximate the minimizer by representing

function values on the boundary as a weighted sum of cyclic basis {αj} with un-

known basis coefficients. So when studying unknown boundary minimizing problem,

Wood et al. (2008) used two collections of basis that one captures function variation

within domain and the other represents function values on the boundary. Finally, the

minimizer without boundary conditions is of the form

f(x, y) =
J∑
j=1

αjaj(x, y) +
n∑
k=1

γkgk(x, y). (3.5)

Each data point determines one basis function in {gk(x, y)}nk=1 and J is the number

of cyclic basis we use to express the boundary. Coefficients {αj}Jj=1 and {γk}nk=1 are

estimated by minimizing PLS1. We call f(x, y) given in (3.5) a soap film smoother.

When the size of the dataset is large, it is computationally heavy and not worthwhile

to use the complete basis {gk(x, y)}nk=1. Wood et al. (2008) provided a low rank
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approximation by replacing data points with small number of pre-selected knots when

constructing basis {gk}.

3.2.3 Bivariate B-spline smoother

The bivariate B-splines, also defined on each piece of the partition as nodal basis,

is a special case of the finite element. The difference between bivariate B-splines and

nodal basis is that the smoothness constraints are enforced to make the smoothers

built on bivariate B-splines to have the second and higher continuous derivatives.

Then these derivatives, and therefore the penalty matrix, are well defined. The

theory of bivariate B-splines is popular in mathematics but not familiar to statistical

community. A comprehensive reference is Lai and Schumaker (2007). Guillas and

Lai (2010) is the pioneer in using bivariate B-splines in statistical problems. They

applied these splines in spatial functional regression problem. Later on, Lai and Wang

(2010) adopted bivariate B-splines in penalized spatial regression problem and built

up a theory on the convergency rate. Although their paper showed theoretically the

convergency on penalized bivariate regression splines, the implement is unclear. This

work studies the same penalized regression problem but gives details on computational

techniques. In addition, their paper used pre-determined smoothing parameter. We

using GCV to choose the smoothing parameter.

3.3 Proposed method

Our proposed method is a penalized smoothing model by applying bivariate B-

splines.

3.3.1 Penalized smoothing model

Chapter II has introduced bivariate B-splines and its mathematical properties.

We know that a collection of bivariate B-splines defined on each triangle of a trian-
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gulation define a space Sd,

Sd(∆) = {s : s|Ai
∈ Pd(Ai), i = 1, 2, ..., N}. (3.6)

When we add smoothness matrix H discussed in Section 2.6, we have a new space

Srd(∆) that

Srd(Ω) = {s ∈ Cr(Ω)|s|Ai
∈ P d(Ai)}

= {s ∈ Cr(Ω)|s = Bc,Hc = 0}.

Minimizing either PLS1 or PLS2 in space Srd, the problem is now converted to

Min
c

{
‖z −Bc‖2 + λcTPc

}
subject to Hc = 0, (3.7)

where P =
∫

Ω
(Bxx + Byy)

2 dx dy for PLS1 and P =
∫

Ω
(B2

xx + 2B2
xy + B2

yy) dx dy for

PLS2.

Minimizing (3.7) is not straightforward because of the constraint Hc = 0. We can

release the constraints via QR decomposition on the transpose of matrix H and then

problem (3.7) is converted to a conventional penalized regression problem without

any restriction. More specifically, we assume

HT = QR = [Q1Q2]

 R1

R2

 , (3.8)

where Q is an orthogonal matrix and R is an upper triangle matrix. The submatrix

Q1 is the first r columns of Q where r is the rank of matrix H. Then we find c̃ that

c = Q2c̃. It is guaranteed that Hc = 0. The problem (3.7) is changed to

Min
c̃

{
‖z −BQ2c̃‖2 + λ(Q2c̃)

TP (Q2c̃)

}
. (3.9)

Given the smoothing parameter λ, the estimated coefficient vector ĉ is

ĉ = Q2
ˆ̃c = Q2Q

T
2 (BTB + λP )−1Q2Q

T
2B

T z. (3.10)
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3.3.2 Smoothing parameter

Recall that our spatial fitting problem is

Min
c̃

{
‖z −BQ2c̃‖2 + λ(Q2c̃)

TP (Q2c̃)

}
. (3.11)

Given the smoothing parameter λ, this minimizing problem can be solved easily. The

problem now is choosing proper λ. This parameter controls the trade-off between

data-fitting and model parsimony. Large λ enforces smoother fitted function while

small one gives model more flexibility and smaller fitting errors. Cross Validation

(CV) is a well-known technique to choose smoothing parameter by minimizing pre-

diction errors. Moreover, CV has a closed form for linear least square problems and is

generalized to the so-called generalized cross-validation (GCV) (Craven and Wahba,

1979; Wahba, 1990). The closed form of GCV is (Wood et al., 2008; Ramsay, 2002).

G(λ) =
n||z − A(λ)z||2

[tr(I − γA(λ))]2
, (3.12)

here A(λ) in equation (3.12) is the hat matrix depending on λ with the form

A(λ) = BQ2Q
T
2 (BTB + λP )−1Q2Q

T
2B

T (3.13)

and γ ≥ 1 is the scaling parameter.

Obviously, numerical searching algorithm should be adopted to find the optimal

λ . We follow the methods in (Wood, 2004) which searched for the optimal λ with the

Newton updates of η = log(λ). In detail, we first replace λ with eη. Then according

to the Newton method, the ith update is

η(i+1) = η(i) −M−1m, (3.14)

where m and M are the values of the first and second derivatives of GCV score with

respect to η evaluated at η(i). Once the algorithm is converged, we find the optimal

η and therefore λ = eη. The transformation from λ to η guarantees that the chosen

λ at convergence step is non-negative.
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3.4 Computational issue

So far, we have discussed how to theoretically solve the spatial smoothing problem

by using bivariate B-splines. However, in practice, there are some computational

issues left for discussion. One issue is how to choose a good triangulation and how to

implement it in programming software such as R. Another issue is the computational

cost of the estimation procedure.

3.4.1 Appropriate triangulation

In univariate spline smoothing problems, the number of knots and the locations of

knots have remarkable effects on the convergence rate of the splines built on the knots.

Similar situations happen to bivariate B-splines whose convergence rate is affected

by the number and shapes of triangles in the triangulation and how these triangles

are neighbored with each other, e.g., sharing edges or only vertices. Hansen (1998)

proposed an adaptive method to find the optimal triangulation in the framework of

model selection. This dissertation uses penalty to control model complexity so we do

not discuss data-driven triangulation design.

We introduce some notations before going to the details. For one triangle A,

define |A| as the largest diameter of circle containing A, and ρA the smallest radius

of the circle contained in A. The ratio βA = ρA/|A| measures the shape of triangle.

When the triangle is equilateral triangle, the ratio reaches its maximum while when

the triangle is long and lean, the ratio becomes small. Then, consider triangulation ∆.

Let |∆| = max{|Ai| | Ai ∈ ∆} and ρ∆ = min{ρAi
| Ai ∈ ∆}. Then β∆ = ρ∆/|∆|. In

general, the larger the ratio β is and the more triangles we have, the better the fitting

is in sense of smaller in-sample fitting errors. We have built a R package that generates

triangulation automatically (users can specify the maximum |∆|). Moreover, how the

triangles in the triangulation are connected with each other affects the performance
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of the splines defined on them. We call this the shape of the triangulation. See Lai

and Schumaker (2007) for more details on different shapes of triangulations.

However, the increase in the number of triangles will increase the number of

splines, or equivalently the dimension of the space Srd, tremendously. So we prefer

a reasonable number of triangles to comprise between the goodness of data-fitting

and computation. Lai and Wang (2010) studied the convergence rate of bivariate B-

splines in penalized regression problems. The main results are quoted here. Denote

the true function as f and the estimated function as fλ when the penalty parameter

is λ.

Assume following conditions are satisfied:

• The true function f belongs to the Sobolev space W l+1,∞(Ω) = {u ∈ Lp(Ω) :

Dαu ∈ Lp(Ω), ∀|α| ≤ l + 1} for an integer l ≥ 1.

• The noise ε satisfies that lim
η→∞

E[ε2I(ε > η)] = 0. The standard deviation σ(x)

is continuous on Ω and 0 < cσ ≤ inf
x∈Ω

σ(x) ≤ Cσ <∞ for some constants cσ and

Cσ.

• The constants F1 and F2 defined as follow F2/F1 = O(1). Here F1 and F2 are

positive constants that are independent of function f that satisfies,

F1||f ||∞,Ω ≤
{ ∑
xi∈Ω,i=1,...,n

f(xi)
2

}1/2

≤ F2||f ||∞,Ω.

• The number of triangulation N and the sample size n satisfies that N � n1/(l+2).

• The penalized parameter λ satisfies λ = o(n
l

2(l+2) ).

Then the convergence rate is

||fλ −m||∞,Ω =

Op

{
λ

n|Ω|3 |m|2,∞,Ω +

(
1 + λ

n|∆|5

)
F2

F1
|∆|l+1|m|l+1,∞,Ω

}
.

(3.15)
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3.4.2 Computation

Both the parameter estimation (3.10) and the GCV evaluation (3.12) involve the

inversion of the matrix (BTB + λP ) where B is the evaluation matrix ob bivariate

B-splines and P is the penalty matrix. When we have N triangles, (BTB + λP ) is

a N(d + 1)(d + 2)/2 × N(d + 1)(d + 2)/2 matrix. This matrix could be very large

and the computation of its inverse becomes infeasible when the domain is irregular

with a curvy boundary and requires a lot of small triangles to mimic the boundary,

such as the second triangulation example in Section 3.2. However, thanks to the

locality of bivariate B-splines, matrix BTB and P is block diagonal with each block

of dimension (d+ 1)(d+ 2)/2× (d+ 1)(d+ 2)/2. Thus, in practice, we can calculate

the inversion of each small block to derive the inversion of the whole matrix. We can

also define sparse matrices B,P and H by only storing the non-zero elements. These

representations save a lot of memory space and therefore speed up the computing.

3.5 Simulation

This section compares the bivariate B-splines smoothing and soap file smoother

on simulated datasets to show the strength of the bivariate B-splines methods.

3.5.1 Complicated domains

First simulation is designed on the horseshoe-shaped domain as shown in Fig-

ure 9. This is a widely studied domain in the literatures on the topic of smoothing

over difficult domains (Wood et al., 2008; Ramsay, 2002).

The surface function is

f(x, y) = 8sin(xy) (3.16)

as shown on the top left panel of Figure 10. We uniformly sampled n = 300 locations

in the domain and then estimated the surface based on the evaluations of the true



32

function at these locations plus white noises from N(0, σ2) with σ = .1, 1 and 2.

Three estimation methods: i) soap film smoother (soap), ii) thin-plate regression

splines (tprs) and iii) bivariate B-splines (BBS) were applied and compared in terms

of out-of-sample mean squared errors (MSE). The bivariate B-splines method used

triangulation as displayed in Figure 9 with d = 3 and r = 1. Out-of-sample mean

squared errors were derived based on intensive 70× 70 grid by taking the mean of all

squared prediction errors at grid points which are inside the domain. All smoothing

parameters were chosen by the GCV. We repeated the simulation procedure for each

method at each level of noise for 400 times and then compared the distribution of

MSE. The result of one replicate of estimation is shown in Figure 10 and the summary

of all 400 replicates are in Figure 11.
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Figure 9: Triangulation on horseshoe-shaped domain.
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Figure 10: Heatplots with contour lines of the true surface and estimated surfaces
over horseshoe-shaped domain at σ = .1. Top left panel is the true surfaces and
others are estimated surface. Top right panel is from the soap film smoother with
32 knots and 39 cyclic splines on boundary. Bottom left panel is from the thin-
plate regression splines with k=100 splines. Bottom right panel is from the bivariate
B-splines smoothing with triangulation shown in Figure 9 and d=3, r=1.
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Figure 11: Comparison of out-of-sample MSE for three methods. We use soap file
smoother (soap), thin-plate splines (tprs) and bivariate B-splines (BBS) at three levels
of random errors σ = .1, 1 and 2 in the example of smoothing over the horseshoe-
shaped domain.

Figure 10 shows that compared with the bivariate B-splines, the soap film smoother

gives bigger prediction errors where function has large absolute values. Results in Fig-

ure 11 confirms that the bivariate B-splines outperforms the soap film smoother at

each level.



35

3.5.2 A simple domain

Section 3.5.1 has shown that both bivariate B-splines and soap film smoother can

be applied on complicated domains and the bivariate B-splines provide smaller out-

of-sample MSE than the soap film smoother. In this section, we study the smoothing

problem over a simple rectangular domain as shown in Figure 12 to see how the

bivariate B-splines perform when we could solve the problem by simply using the

thin-plate regression splines.

Figure 12: Triangulation on a rectangular domain.

The true function is

f(x, y) = .75
π0.3·0.4 exp

(
− (x−.2)2

0.32
− (y−.3)2

0.42

)
+ .45
π0.3·0.4 exp

(
− (x−.7)2

0.32
− (y−.8)2

0.42

)
.

(3.17)

This function, studied in Wood et al. (2008) and shown on the upper left panel of

Figure 13, defines a smooth surface over the rectangular domain [0, 1] × [0, 1] with

two peaks at points (0.2, 0.3) and (0.7, 0.9).
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Figure 13: Heatplots with contour lines of true surface and estimated surfaces over
simple domain at σ = .2. The top left panel is true surface and others are estimated
surface; the top right panel is from the soap film smoother with 16 knots and 39
cyclic splines on the boundary; the bottom left panel is from the penalized thin-plate
regression splines with k=100 ; the bottom right panel is from the penalized bivariate
B-splines.
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We uniformly sampled 500 locations in the domain. Our simulated observations

were true function values at those 500 locations plus identical independent random

noises from N(0, σ2) with σ of three levels: .01, .05, and .2. We fitted the soap film

smoother, thin plate splines and bivariate B-splines for each noise level. The soap

film smoother used 100 knots and 39 cyclic splines for the boundary as described in

Wood et al. (2008). Bivariate B-splines used the triangulation shown in Figure 12

with d = 3, r = 1 and so the true degree of freedom was 69. We repeated these three

estimation procedures 400 times to compare the out-of-sample MSE. All smoothing

parameters were chosen by GCV. Figure 13 is one replicate of the fitting result at

σ = 0.2 and the summary of all 400 replicates are shown in Figure 14 and Table 5.

The simulation results show that the thin-plate regression splines method has

the smallest MSE at each level. The bivariate B-splines and soap film smoother lose

some accuracy on simple domains. But the differences between MSEs of thin-plate

regression splines and that of the soap film smoother or bivariate B-splines are small

compared with the average MSE of the thin-plate splines. In addition, the bivariate B-

splines method always gives smaller average MSE than soap film smoothing methods

for all three noise levels.

When we compare estimated surface by the soap film smoother in two simula-

tion examples (Top right panel in Figure 10 and Figure 14), we find the common

phenomenon of some wiggles on contour lines. The locations of the wiggle are exactly

where knots are placed. It indicates that the soap film smoother produces a surface

that is not smooth and therefore increase the prediction errors around knots. This

problem results from the procedure of deriving the soap film smoother.
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Table 5: Summary of MSE0.2 in simulation on simple domain.

σ = .2 σ = .05 σ = .01
Min Max Mean Min Max Mean Min Max Mean

Soap .285 .384 .323 .211 .276 .228 .182 .215 .191
Tprs .272 .344 .305 .182 .241 .201 .114 .169 .129
BBS .272 .345 .309 .193 .228 .210 .149 .168 .154

soap tprs BBS soap tprs BBS soap tprs BBS
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0
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Figure 14: Comparison of out-of-sample MSE for the three methods. We use soap file
smoother (soap), thin-plate splines (tprs) and bivariate B-splines (BBS) at three levels
of random errors σ = .01, .05 and .2 in the example of smoothing over the rectangular
domain.
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3.6 Texas temperature surface analysis

In this section, we apply bivariate B-splines in a real example of constructing the

temperature surface over texas based on data collected by the International Research

Institute for Climate and Society (IRICS).
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Figure 15: Stations in Texas and monthly temperatures. Source: IRICS. Top left
panel shows the locations of all stations. Top right panel shows the temperatures
over time for two stations highlighted on top left panel. The discontinuous parts
indicate missing data at those times. Bottom two panels show that stations having
observations on December and August in 1987. The larger the triangular size is, the
higher the temperature is.
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The dataset consists of monthly average temperatures at 52 stations in the state

of Texas from Jan, 1867 to Dec, 1995. Figure 15 gives a summary of the temperatures.

In some time periods, most stations have no record. For example, only 15 stations

have records of the temperatures in 1989 and 11 stations in 1990. But almost all

stations have records between 1930 and 1987.

We designed the following triangulation in Figure 16 that covers the irregular

spatial domain such that there are observations in each triangle and set d = 3, r = 1.

We can reconstruct one temperature surface for each month based on the data for all

stations in that month. In order to check the accuracy of surface reconstruction, we

randomly sampled 4 stations (10% of the total stations) out for testing and use the rest

station data for modeling. Squared prediction errors are recorded. We repeated this

training and testing procedure 100 times for four representative months (December,

1987; August, 1987; December, 1986; August, 1986), two of which are in summer

and the others two are in winter. Figure 17 shows the contour plots of the estimated

surfaces.
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Figure 16: Triangulation on Texas and station locations.
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Figure 17: Contour plots of estimated temperature surface for four selected months.

Figure 18 presents the boxplots of squared prediction errors for each selected

month. From the boxplots, we observed that the mean squared prediction errors is

small relative to the variation of the true monthly temperatures. Some extreme values

in the plots come from locations where the geological characteristics are different from

the surrounding area. For example, the highest outlier in the each of the four boxplots

comes from corresponding stations indexed 1 and 2 in Figure 19. Station 1 is close

to Amistad National Recreation Area and Station 2 is in Sabine National Forest. It

is reasonable to infer that the geological changes in these areas cause the significant
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Figure 18: Boxplots of the squared prediction errors for four selected months.
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Figure 19: Stations with large prediction errors.

differences in temperatures and therefore the spatial smoothing based prediction fails.
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CHAPTER IV

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR SPARSE SPATIAL

DATA ANALYSIS

Spatial surfaces are often observed across time or in different situations. Each

surface, called one subject, are measured at an irregular and sparse set of locations

which may change completely over subjects. We use a reduced rank mixed-effects

model to identify the mean surface and subject-specific variations; penalized bivariate

B-splines are used to model the mean surface and functional principal components.

This method works well when the locations of measurements vary over subjects and

are sparse for each subject.

4.1 Introduction

In spatial data analysis, one general problem is to estimate the target continuous

surface over the whole domain based on discrete observations of the surface. However

the number and locations of observations affect the estimates accuracy. Figure 20

displays two estimations of the same soil organic matter surface from different num-

bers of GIS observations using the same method. It shows that the sparse dataset

may generate significantly different surface, unlike from the dense datasets.

In real world, spatial data sparse in location is a general case due to time limit

or technique limit or others. One example is the dataset of monthly average tem-

peratures in Texas quoted form the International Research Institute for Climate and

Society. The dataset contains monthly mean temperatures for 52 stations in Texas

from January, 1967 to December, 1995. But for each month, on average only 20

stations have records. Theoretically the temperature distribution over Texas for one
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Figure 20: Estimation of soil organic matter surface from two different GIS datasets

[Estimation of soil organic matter surface from two different GIS datasets.]

specific month could be estimated from the observations for that month. However,

the sparsity of observations makes the estimate inconsistent and unstable.

To fix the problem above, additional data is in general collected to give more

information on the shape of the surface. To be more specific, assume that we have

a complicated domain Ω and target surface µ(v), v ∈ Ω. We observe the surface

for n days to get independent n subjects. For subject i, we have mi observations

zij, j = 1, ...,mi at locations vij = (xij, yij). Each of the observations is disturbed

by random noise which is correlated with other noises within the same subject but

independent from those of other subjects. Estimating mean surface µ(v) and the

mode of subject-specific variation from the mean given the whole dataset (zij, vij) is

the problem we are interested in.

4.2 Existing methods

To derive mean temperature surface, one straightforward method is fitting data

for one subject i. But this method is inaccurate and inconsistent since the observa-

tions are sparse. In addition, it does not utilize the whole dataset.

Another method is pulling all data from different time together and treat them
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with identical independent errors. Then the whole dataset is dense in locations and

we can fit a penalized least square model to it. However, the aviations of subjects from

mean function is not consistent over subjects. Some subjects may have huge aviations

while others have small. These subject-specific differences are due to the condition of

measurements or other factors. Therefore, this estimation method of fitting one least

square model to the whole dataset ignores the variability over subjects and brings

extra errors.

An alternative method is to choose a collection of appropriate bivariate splines,

then project everyday’s data separately to the splines and finally apply classic prin-

cipal component analysis on the estimated spline coefficients or the resulted ”data”

by evaluating the estimated surface at a fine grid. There are two drawbacks for this

approach. First, fitting a surface to one-day data, as mentioned above, may pro-

duce inaccurate result due to the sparsity of data. Second, this approach uses the

same weight on each day’s observations and therefore does not take into account the

subject-specific variations. In this dissertation, we propose a reduced rank mixed-

effects model to solve the problem.

In longitudinal data analysis, estimating the mean curve from curves measured

at sparse time points were well studied (James et al., 2000; Peng and Paul, 2009).

However, modeling surface over two-dimensional domain with observations sparse in

location were paid few attentions in spatial data analysis, even though it is a common

situation. This dissertation tries to fill in the gap. We extend and adjust the model

proposed in James et al. (2000) to the settings of spatial data analysis.

In the following part of this section, we will first introduce a mixed-effects model

(MEM) which accounts for both the systematical mean surface and daily variation.

Then we will propose a reduced rank mixed-effects model (RMEM) based on the

mixed-effects model to deal with the issue of data sparsity.
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4.3 Reduced rank mixed-effects model

4.3.1 Mixed-effects model

Observed surface function is

fi(v) = µ(v) + εi(v), v ∈ Ω, i = 1, ..., n. (4.1)

The simplest assumption is that {εi, i = 1, ..., n} is independently and identically from

normal distribution. Then ordinary least square regression will give an estimation of

the mean function. But in our sparse data analysis, the deviation of observation from

the evaluation of mean function is not identically distributed. It can be decomposed

into two parts: subject-specific variation and white noise. To take into account of

this variance structure, we propose a mixed-effects model:

fi(v) = µ(v) + hi(v) + εi(v), (4.2)

where v ∈ R2 is location, µ(v) is mean surface and hi(v) represents ith subject-

specific variation from the mean. Random error ε(v) is so far assumed to have normal

distribution with constant variance. More complicated error structure may be studied

in future.

This is a functional version of mixed-effects model in ANOVA analysis. There are

several nonparametric methods to estimate the surface functions µ(v) and {hi(v)}.

Classical methods includes kriging or kernel smoothing. As we discussed in Chapter

III, bivariate B-splines outperforms kriging and kernel functions when the domain is

complicated. So we use bivariate B-splines here.

We use bivariate B-splines b(v) = {b1(v), b2(v), ..., bK(v)}T to represent func-

tions µ(x, y) and hi(x, y). Then we have

fi(v) = bT(v)θµ + bT(v)γi + εi(v), i = 1, 2, ...,N. (4.3)
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γi ∼ N(0, D), εi ∼ N(0, σ2I).

θµ is the basis coefficient vector for mean function and γi is the coefficient vector for

function hi. Let Bi be the evaluation of basis bi at vi, then the corresponding data

model to the mixed-effects model (4.3) is

zi = Biθµ + Biγi + εi, (4.4)

γi ∼ N(0,Γ), εi ∼ N(0, σ2I).

This is a mixed-effects model (MEM). We can use Restricted Maximum Likelihood

(REML) to estimate parameters θµ and Γ.

4.3.2 Reduced rank mixed-effects model

In model (4.4), Γ is a K × K matrix of K(K + 1)/2 parameters and θµ of K

parameters. The total number of parameters in the mixed-effects model is large com-

pared with the sparse dataset. In this situation, the estimation would be significantly

unstable. So we reduce model rank by using function principal component to describe

the mode of daily variation and get a model called reduced rank mixed-effects model.

fi(v) = µ(v) + gT(v)αi + εi(v), i = 1, ..., n, (4.5)

εi(v) ∼ N(0, σ2), αi ∼ N(0, D).

Here g(v) = (gT
1 (v), gT

2 (v), ..., gT
J (v))T are J (J � K) mutual independent bivariate

functions that are orthonormal in sense that∫
Ω

gTi (v)gj(v)dv = δij. (4.6)

These functional principal components represent the trends in daily difference.

The principal component score αi is a J dimensional random vector. By using these

principal component functions, we reduce the rank of model from K in (4.3) to J
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in (4.6). Again, using basis set b(v) to represent functions µ(v) and {gj(v)}j in

the model, we have µ(v) = BT θµ, andgj(v) = BT θj. Collecting all θ′js in a matrix

Θ = (θ1, θ2, ..., θJ), we have the model in matrix form

zi = BTθµ + BTΘαi + εi, i = 1, ..., n, (4.7)

εi(v) ∼ N(0, σ2), αi ∼ N(0, D).

Both Θ and αi are unknown, so the model is unidentifiable. Consider (4.6), we add

restrictions that

ΘTΘ = I,

∫
Ω

BT (v)B(v)dv = I. (4.8)

to make the model identifiable. Our basis must be orthonormalized before using it.

Now the RMEM is

zi = BTθµ + BTΘαi + εi, i = 1, ..., n, (4.9)

εi(v) ∼ N(0, σ2), αi ∼ N(0, D),∫
Ω

BT (v)B(v)dv = I, ΘTΘ = I.

Parameter set is M = {θµ,Θ, D, σ2}. Because D is a J × J matrix where J � K,

the number of parameters for RMEM is much less than that of MEM and this rank

reduction makes the estimation procedure stable when the size of the dataset is small.

4.3.3 Penalized likelihood

Model (4.9) is still a mixed-effects model and the log-likelihood, given data z =

(zT
1 , ..., z

T
n )T is

−2logL(M |z) =
n∑
i=1

(
milog(2π) + log|σ2I +BiΘDΘTBT

i |

+(zi −Biθµ)T (σ2I +BiΘDΘTBT
i )−1(zi −Biθµ)

)
.
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According to the discussion in Chapter III, the roughness penalties for functions

f = Bθµ and {gi = Bθi} are

SP (f) = θTµPθµ,

SP (gi) = θTj Pθj.

Therefore the penalized log-likelihood is

−2logL(M |z) =
n∑
i=1

(
milog(2π) + log|σ2I +BiΘDΘTBT

i |

+(zi −Biθµ)T (σ2I +BiΘDΘTBT
i )−1(zi −Biθµ)

)
+λµθ

T
µPθµ + λf

K∑
j=1

θTj Pθj.

4.4 Model estimation

Theoretically, we can use MLE or REML to estimate unknown parameters. In

maximizing likelihood estimation, we take the first-order partial derivative of the

−2logL with respect to each parameters and then set the partial derivatives to zero

and solve the equations. There is no close form for the estimates of parameters. We

need some numerical methods to find the optimal set M that minimize −2logL. We

could use the Newton-Raphson or simplex or other methods. More details are given

seen in Peng and Paul (2009). However, because the domain for each parameter is a

bounded space and some parameters are of high dimension, the searching procedure

is in practice difficult. We propose an EM algorithm here to estimate the parameters

in set M .
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4.4.1 Penalized joint likelihood

In this dissertation, we treat {αi}N
i=1 as missing data instead of random variables

and use the EM algorithm to estimate parameters in set M . The penalized joint

log-likelihood is

PSL (M |α, z) ∝∑n
i=1

(
milogσ2 + 1

σ2 (zi −Biθµ −BiΘαi)
T (zi −Biθµ −BiΘαi)

+log|D|+ αTi D
−1αi

)
+ λµθ

T
µPθµ + λf

∑J
j=1 θ

T
j Pθj.

(4.10)

According to EM algorithm, we need to calculate conditional marginal likelihood

Eα|z
[
PSL(M |α, z)

]
and then optimize it with respect to all parameters in M .

4.4.2 EM steps

The αi appears in PSL(M |α, z) in the form of αi and αiα
T
i , so we just need to

derive the conditional expectations E[αi|zi] and E[αiα
T
i |zi] to replace corresponding

αi and αiα
T
i in (4.10).

Both αi and zi are normally distributed, so their joint distribution is normal

 αi

zi

 = N


 0

Biθµ

 ,

 D αTi ΘTBT
i

BiΘαi σ2I +BiΘDΘTBT
i


 . (4.11)

We could derive E[αi|zi] and E[αiα
T
i |zi] easily and therefore Eα|z

[
PSL(M)

]
. This

is the E-step in EM algorithm. Then maximize Eα|z
[
PSL(M)

]
with respect to each

parameter in M-step. The detailed EM algorithm is as follow.

1. Given current estimates for all parameters, predict αi and αiα
T
i .

As we know
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According to the properties of multivariate normal distribution, we could derive

the conditional distribution from (4.11) that

E(αi|zi) = DΘTBT
i (σ2I +BiΘDΘTBT

i )−1(zi −Biθu)

= (D + ΘTBT
i BiΘ/σ

2)−1ΘTBT
i (zi −Biθu).

V ar(αi|zi) = D −DΘTBT
i (σ2I +BiΘDΘTBT

i )−1BiΘD

= (D + ΘTBT
i BiΘ/σ

2)−1.

Thus, we know that

α̂i = E(αi|zi, θ̂u, Θ̂, σ̂2, D̂)

= (σ̂2D̂−1 + Θ̂TBT
i BiΘ̂)−1Θ̂TBT

i (zi −Biθ̂u).

α̂iαTi = E(αiα
T
i |zi, θ̂u,Θ, σ̂2, D̂) = α̂iα̂

T
i + (D̂−1 + Θ̂TBT

i BiΘ̂/σ̂
2)−1.

2. Given current estimates for αi, θu and Θ, we estimate σ2 and D

σ̂2 = 1∑
ni

N∑
i=1

E[εTi εi|zi]

= 1∑
ni

N∑
i=1

E[(zi −Biθ̂u −BiΘ̂αi)
T (zi −Biθ̂u −BiΘ̂αi)|zi]

= 1∑
ni

N∑
i=1

(
(zi −Biθ̂ −BiΘ̂α̂i)

T (zi −Biθ̂ −BiΘ̂α̂i)

+trace[BiΘ̂(D̂−1 + Θ̂TBT
i BiΘ̂/σ̂

2)−1Θ̂TBT
i ]

)
.

D̂jj = 1
N

N∑
i=1

E[α2
ij|zi] = 1

N

N∑
i=1

(E2[αij|zi] + V ar(αij|zi))

= 1
N

N∑
i=1

(
α̂ij + (D̂−1 + Θ̂TBT

i BiΘ̂/σ̂
2)−1
jj

)
, j = 1, ..., J.

3. Given current estimates for σ2, D and αi, we estimate Θ and θu by minimizing

N∑
i=1

[
(zi −Biθ̂u −BiΘ̂α̂i)

T (zi −Biθ̂u −BiΘ̂α̂i)

]
+λuσ

2θTuKθu + λfσ
2
∑J

j=1 θ
T
j Kθj

(4.12)
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Therefore

θ̂u =

( N∑
i=1

BT
i Bi + λuσ

2K

)−1 N∑
i=1

BT
i (zi −BiΘ̂α̂i).

For matrix Θ we have two approaches to estimate it. One is to use iterative

procedure to update each column of Θ iteratively till converge while the other

one is to re-formalize the model to derive a closed form for the MLE of Θ.

• In the first approach, the ith column θ̂j in matrix Θ is

θ̂j =

(
N∑
i=1

α̂2
ijB

T
i Bi + λfσ

2K

)−1

N∑
i=1

BT
i

(
α̂ij(zi −Biθ̂u)−

∑
k 6=j

α̂ijαikBiθ̂k

)
.

(4.13)

Repeat this procedure for each column of Θ till there is no significant

change in the estimates of Θ.

• The second approach derives the closed-form for Θ through rewriting the

model. We define a matrix B̃i = (Biαi1, ..., BiαiJ), K̃ = K ⊗ IJ and

Θ̃ = (θT1 , ..., θ
T
J )T . Then zi = Biθu + B̃iΘ̃ + εi. So straightforwardly

ˆ̃Θ =

( N∑
i=1

B̃T
i B̃i + λuσ

2K̃

)−1 N∑
i=1

B̃T
i (zi −Biθ̂u).

Compared with the first approach, the second one gives more accurate estima-

tion since it is in closed form but it might cost more computation time because

larger matrix operations are involved.

4. Repeat above three steps till convergency.

5. Orthogonalize matrix Θ by setting Θ to be the first J eigenvectors of Θ̂T D̂Θ̂.

Above are the iteration part of EM algorithm. The problem left is providing

initial values. First, We use zi regress on Bi to get an initial estimate of θu. Second,
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for each subject, we use the fitting error from the above simple regression to regress on

Bi again to get estimation of Θαi. Third, we collect all {Θαi} and decompose them

to Θ and αi’s. Finally, we calculate the empirical variance of αi as initial estimate of

D̂ and the residual mean square error as the initial estimate of σ2.

4.5 Model selection

Two parts should be considered for model selection. One part is triangulation

and penalty parameters while the other is the selection of the number of significant

principal surfaces.

4.5.1 Triangulation

Both the triangulation and penalty parameters determine the complexity of the

model. Hansen et al. (1998) did not use smoothness penalty term but use the Rao

statistic to choose an optimal triangulation. In contrast, Koenker and Mizera (2004)

used an arbitrary triangulation and then used a penalty term to restrict the com-

plexity of the model. We adopt the philosophy of roughness penalty as Koenker

and Mizera (2004). Penalties on the roughness of mean function and that of princi-

pal functions are introduced in (4.9). Cross-validation, generalized cross-validation,

AIC/BIC are generally used criteria to choose penalty parameters. However, it is

not easy to derive a form for generalized cross-validation or define AIC/BIC. So we

use crossing-validation. Simplex method is used to find the penalty parameters to

minimize −2logL in (4.10) calculated from cross-validation.

4.5.2 Number of principal surfaces

Identifying the number of principal component surfaces is important in sparse

data analysis. Extra principal component functions take into account of the vari-

ation in mean function. Lack of principal component functions cannot capture all
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subject-specific variation and leave the white noise related. In this case, all estima-

tion procedure based on uncorrelated errors will fail.

Several methods are proposed for selecting the number of principal surfaces. We

follow the idea of classic principal component analysis which is to find components

corresponding to significant large eigenvalues. We estimate variance matrix D for

each case J = 1, 2, ... to get a group of estimates D̂1, D̂2, ... with decreasing diagonal

elements in each estimated matrix. Then we choose the J such that

In matrix D̂J ,

J−1∑
j=1

D̂jj < c1

J∑
j=1

D̂jj.

while

In matrix D̂J+1,
J∑
j=1

D̂jj > c2

J+1∑
j=1

D̂jj.

The values of c1 and c2 are determined case-by-case. This idea is also used in James

et al. (2000) and Zhou et al. (2008).

4.6 Simulation

This section sets up some simulations to illustrate our estimation procedure. We

choose a rectangular domain with a hole inside as shown in Figure 21. Test functions

are designed as follow, in which two principal component functions are orthonormal.

zi(x, y) = µ(x, y) + f1(x, y) + f2(x, y) + εi,

where

µ(x, y) = 100

(
1 +

x

100
+ exp(−(x− 60)2

500
)

)
,

f1(x, y) = log(x+ y + 5)/3.363,

f2(x, y) = 2.23(
√
x+ y − .708log(x+ y + 5)).
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Figure 21: Heatplots of pre-selected functions for reduced rank mixed-effects models.
Top left penal shows the mean function; top right panel shows the first principal
component function; bottom left panel is the second principal component function;
bottom right panel is the triangulation we used in the estimation.
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We set up six cases to test the performance of our model and estimation pro-

cedure. In detail, we chose the number of subjects as 100 or 50, and the number

of observations for each subject is uniformly sampled from range of 11 to 20. The

locations of observations are also uniformly sampled from the domain. We considered

two levels of Dα and two levels of σ, which are Dα = (36, 4) or Dα = (6, 4) while

σ = .1 or 1.

We simulated each case for 400 times. Number of principal components is pre-

selected as 2. In each replicate, we get fitted value ẑi and then calculate mean squared

errors between ẑi and true value ztrue defined as

MSE =

[ n∑
i=1

(ẑi − ztrue)
T(ẑi − ztrue)

]
/

n∑
i=1

mi, (4.14)

where mi is number of observations each time. In the meantime, we obtained the esti-

mated mean function µ̂(x, y) and principal component functions f̂1(x, y) and f̂2(x, y)

and calculated integrated squared error defined as

ISE(f) =

∫
Ω

(
f(x, y)− f̂(x, y)

)2

dxdy. (4.15)

The simulation results are reported in Table 6 show that our procedure gives

consistent estimation of the parameters in the model and the mean function and

principal component functions. Even in the last two cases where the diagonal elements

of variance matrix D are close to each other, our estimation procedure could identify

these two components correctly. Figures 22 and 23 show the fitted surfaces in six

scenarios mentioned in Table 6.
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Table 6: Table of simulation results for reduced reank mixed-effects model. ”nsubj” is number of subjects while ”nobs”
is total number of observations; the ”z” column is fifth root of MSE defined in (4.14); the MISE for each smooth function
is defined in (4.15); the MSE for all parameters are shown in last three columns.

MSE0.2) MSE0.2)
nsubj nobs (Dα1, Dα2, σ) z µ f1 f2 D11 (MSE) D22 (MSE) σ(MSE)

50 770 (6,4,1) .685 .569 .442 .508 1.500 1.029 8.702e-4
50 770 (6,4,0.1) .299 .554 .450 .468 1.207 0.813 2.549e-5
50 770 (36, 4, 1) .691 .658 .219 .396 55.810 0.824 8.869e-4
50 770 (36,4,0.1) .304 .703 .197 .274 53.108 0.770 8.008e-6
100 1500 (36, 4, 1) .681 .600 .201 .363 28.455 0.502 4.403e-4
100 1500 (36, 4, 0.1) .288 .590 .192 .264 24.114 0.299 1.090e-5
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Figure 22: Heatplots of fitted functions for one simulated dataset for the first three
settings in Table 6 from left to right.
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Figure 23: Heatplots of fitted functions for one simulated dataset for last three settings
in Table 6 from left to right.
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4.7 Texas temperature analysis

In this section, we analyze the temperature variation over space and time in Texas

by applying our model to monthly average temperatures recorded by International

Research Institute for Climate and Society (IRICS) at 52 weather stations spread out

in Texas.

We first analyze all December temperature over 10 years. A sequence of models

with different numbers of principal component functions are considered. The diagonal

elements of estimated covariance matrix D in decreasing order is given in Table 7.

Table 7: The diagonal elements of estimated covariance matrix D̂ when we choose
three principal components and four.

Number of principal comp. 3
Principal comp. 1 2 3

D̂ 186.55 14.04 11.57
Number of principal comp. 4

Principal comp. 1 2 3 4

D̂ 187.14 16.63 12.47 1.82

We decide to use three principal components for the model based on the results

in Table 7. Figures 24 and 25 show the estimated functions and point-wise bootstrap

standard error for all estimations. 100 resamples are taken in the bootstrap. Mean

function has a strong latitude trend. The first principal component function is close

to a constant function and therefore indicates year-specific aviation from the 100-year

average. The second and third principal component functions show geological varia-

tions. All bootstrap standard deviations are comparatively small except on boundary.

The large standard deviation at the boundary is due to the sparsity of observations.

Figure 26 shows the time series plot of principle scores.
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Figure 24: Estimated mean function and first principal component function.
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Figure 25: Estimated second and third principal component functions.
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CHAPTER V

CONCLUSION AND FUTURE WORK

This work introduced bivariate B-splines and explained its usage in two spatial

problems. These splines, as polynomial functions of barycentric coordinates over

triangle partition of domain, solve the challenge risen when spatial domain is irregular.

It is easy to evaluate and could be widely incorporated to different models. We apply

these splines to estimate smooth surfaces over complicated two-dimensional domain

in two different scenarios and proposed two models: the penalized spatial smoothing

model and the reduced rank mixed-effects model. Simulation results are promising

which demonstrate that bivariate B-splines are powerful and flexible and the models

are appropriate.

In the future, we will work on the dynamic factor model which takes into account

of the dynamic effects over time. We can let αi follow a Vector Auto regressive model

instead of identically and independently sampled from a normal distribution as in the

reduced rank mixed-effects model. The dynamic factor model is

zi = Biθµ +BiΘαi + εi, εi ∼ N(0, σ2I)

αi =
R∑
r=1

ψrαi−r + ηi, ηi ∼ N(0, D)

E(εiηi′) = 0, i, i′ = 1, .., n

ΘTΘ = I

(5.1)

with parameter set M =

{
σ2, D,Θ, θµ, {ψr}Rr=1

}
.

We will also continue to explore the triangulation design for the purpose of

improving modeling accuracy and speeding up the computations.
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