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ABSTRACT

Bivariate B-splines and its Applications in Spatial Data Analysis. (August 2011)
Huijun Pan, B.S., University of Science and Technology of China;
M.S., Texas A&M University

Co-Chairs of Advisory Committee, Dr. Jianhua Huang
Dr. Lan Zhou

In the field of spatial statistics, it is often desirable to generate a smooth surface
for a region over which only noisy observations of the surface are available at some
locations, or even across time. Kriging and kernel estimations are two of the most
popular methods. However, these two methods become problematic when the domain
is not regular, such as when it is rectangular or convex. Bivariate B-splines developed
by mathematicians provide a useful nonparametric tool in bivariate surface modeling.
They inherit several appealing properties of univariate B-splines and are applicable in
various modeling problems. More importantly, bivariate B-splines have advantages
over kriging and kernel estimation when dealing with complicated domains. The
purpose of this dissertation is to develop a nonparametric surface fitting method by
using bivariate B-splines that can handle complex spatial domains.

The dissertation consists of four parts. The first part of this dissertation explains
the challenges of smoothing over complicated domains and reviews existing methods.
The second part introduces bivariate B-splines and explains its properties and imple-
mentation techniques. The third and fourth parts discuss application of the bivariate
B-splines in two nonparametric spatial surface fitting problems. In particular, the

third part develops a penalized B-splines method to reconstruct a smooth surface



v

from noisy observations. A numerical algorithm is derived, implemented, and applied
to simulated and real data. The fourth part develops a reduced rank mixed-effects
model for functional principal components analysis of sparsely observed spatial data.
A numerical algorithm is used to implement the method and tested on simulated and

real data.
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CHAPTER I

INTRODUCTION

Suppose a target variable, for example temperature or ozone concentration, has
values over a two-dimensional domain. It is a common problem in spatial data analysis
to derive the value of the the target variable at any location in the domain based on
discrete observations disturbed by noises.

This problem is reasonable and feasible to solve because of the existence of spatial
variation and spatial dependence. Spatial variation means that the target variable
has different values at different locations; while spatial dependence means that the
variable value at one location is correlated with that at some other locations.

There are different ways to describe these two properties. One is a stochastic
view which treats the value of a target variable at each location as a random variable
and use the covariance function between these random variables or a variogram to
represent the correlation; another is to use a deterministic surface function to describe
the variations and connections among values at different locations. This work takes
the latter point of view. To be more specific, we are interested in estimating a smooth
function f(z,y) over some bounded domain € C R? given observations {z;}I, at a
collection of discrete points {v; = (x;,y;)}"; in the domain.

Two issues make this problem challenging. One is the data structure and the
other is the domain shape. Data structure means how the data is generated. Some

datasets are dense in locations while others are sparse. Some are measured at one

The style of this dissertation follows Journal of Statistical Planning & Inference.



moment while others are measured across time and therefore have time-specific varia-
tions. Domain shape indicates, for example, whether the domain has holes inside or it
is just simply connected or it is a polygon. These characteristics affect the efficiency
of estimation methods and can even paralyze some methods.

Some literatures analyze spatial data with complicated structures on regular
domains but the methods may fail when applied to complicated domains. Others
propose techniques to handle complicated domains but for simple data structures and
models, such as least square regression model on dense observations with identical
independent white noise, and these techniques have issues in interpretation or may
not be adopted to complicate models accounting for complicated data structures.

To conquer the challenges, we introduce a collection of bivariate splines to handle
complicated domain and propose several models for different data structures by using
these splines. This collection of bivariate splines have several advantages. First,
it spans a reasonably rich function space to approximate the true functions over
complicated domains. Second, it can be easily incorporated into many widely used
functional data models tailored for different data structure. Third, the computation
costs for splines evaluation and model calibration and model selection are acceptable.
The splines we introduce are called bivariate B-splines. They are well-developed by
mathematicians but seldom used in statistical community. Only two papers have used
it so far (Guillas and Lai, 2010; Lai and Wang, 2010).

We apply this collection of splines in two different scenarios. For each scenario, we
give statistical model based on the bivariate B-splines, along with discussions on the
estimation procedure, model selection and other statistical issues. The first scenario
is when the observations are dense in location and are a snapshot of the surface. In
other words, the observations have independently and identically distributed noises.

For example, we estimate the temperature surface over a county for a specific day from



the observations for that day at all stations in the county. A penalized smoothing
model is used for this case. Second, we deal with the case that the data is sparse
in location but we have several snapshots of the surface. Following the temperature
example, now we have records of the temperature for several days but with limited
data on each day. We assume that there is no evolution or correlation over days.
But the deviation of the observations from true values is day-specific. Therefore
the measurement errors are no longer identically distributed over days. We cannot
get a stable estimation of the temperature surface for each day in this case, but we
can estimate the mean surface of all days by excluding the day-specific variation. A
reduced rank mixed-effects model is proposed.

The structure of this work is as follows. Chapter II introduces bivariate B-splines
and shows its mathematical properties. Chapter III and Chapter IV cover the two

scenarios discussed above respectively.



CHAPTER II

BIVARIATE B-SPLINES

2.1 Introduction

The design of splines plays an important role in spline-based nonparametric sta-
tistical methodology. For smoothing over complicated spatial domains, we expect that
the splines have at least the following four properties. First, the splines are bivariate
functions and well defined on complicated domains in the sense that their application
will not introduce extra spatial correlations over the holes in the domains. Second, the
splines span a considerably rich function space that contains or is close to the target
true function. Third, the computational cost of the analysis procedure when applying
the splines is affordable. Fourth, the splines can be used for different modeling tasks.
Bivariate B-splines, piecewise polynomials defined on triangle division of the domain,
satisfy these four criteria. Some properties of bivariate B-splines are similar to those
of univariate B-splines and the similarity is where the name comes from. This chap-
ter introduces bivariate B-splines and shows their mathematical properties relevant
to our applications in Chapters III and IV. Bivariate B-splines are well developed by

mathematicians and Lai and Schumaker (2007) provides a comprehensive reference.

2.2 Barycentric coordinates

Given a non-degenerate a triangle A with vertices counter-clock numbered as

< 1, V9,03 >, any point v € R? can be written as

V= bl'Ul -+ bQUQ + b3’U3, with bl + b2 -+ bg =1. (21)



The coefficients (b, by, b3) are called the barycentric coordinates of point v with re-
spect to the triangle A, denoted as b, = (b1, by, b3). Here the constraint by +bs+bg = 1
guarantees the unique representation of point v. Although all points in R? could be
represented as (2.1), we only consider the points inside the triangle A in this work.
So far we have two representation systems for points in R?: cartesian coordinates
and barycentric coordinates. There is one-to-one mapping between these two systems.
Assume the cartesian coordinates of vy, vy and vz are vy = (z1,y1),v2 = (22, y2),v3 =

(23,y3), and v = (z,y). Then
T = bixy + by + baxs, Yy = biyr + bays + b3y,

which converts the barycentric coordinates to the cartesian coordinates. Reversely,

by solving the equation system

1 1 1 by 1
T1 T2 I3 b2 = X ) (22)
Y Y2 Y3 bs y

we get

(xoys — yoxs) — x(ys — y2) + y(x3 — x2)

= 2. Area(T) ’
by — (391 — ysz1) — x(yr — ys) + y(z1 — z3)
? 2. Area(T) ’
(@ —niwe) —2(y2 —y1) +y(w2 — 1)
b = 2 Area(T) ' (2:3)

Apparently, (b1, by, b3) are linear in (z,y).

The constraint b; + by, + b3 = 1 on barycentric coordinates makes them identifi-
able. There exist other constraints that make the coordinates unique. We adopt this
one because it gives barycentric coordinates an interesting geometric interpretation.

When point v is located inside or on the edges of the triangle T', we connect the point



v with vy, v and vz to generate three triangles {A;, Ay, A3} as Figure 1, then the

barycentric coordinates are

\4

A V3

Figure 1: Triangle with one point inside.

b Area of A;
" Areaof A’

1 =1,2,3. (2.4)
In spatial analysis, we could choose any two orthogonal directions and any point as
original point to build up the cartesian coordinates. Therefore, all statistical analysis
tools are desirable to be invariance to linear transformation of cartesian coordinates.
Now we prove that barycentric coordinates have this property.

Theorem 2.2.1. Barycentric coordinates are invariant to linear transformation of

cartesian coordinates.

Proof. Assume that point v = (x,y) € R? has barycentric coordinates b, = (b, ba, b3)
with respect to a triangle A =< wvy,vy,v3 > with v; = (x;,y;). Then, (by,bs, b3)

satisfies (2.2), which in turn can be written as

by + by + by = 1 (2.5)



and
b
Iy T2 I3 X
Y Y2 Y3 y
bs
Applying the linear transformation
x* aq P bz x
= + (2.7)
y" o2 Par P22 Y
to all points (z,y) and (x;,y;) appeared on two sides of (2.6), we obtain
by
by | = . (2.8)
i oY Y3 Y’
bs

Combining (2.5) and (2.8), we know that (by,bs,b3) is barycentric coordinates of
(z*,y*) with respect to the transformed triangle A* =< o, vy, v >, wherev] =

(xf,yf),i=1,...,3. ]

Theorem 2.2.1 shows that the barycentric coordinates are invariant to linear
transformations. In following sections, bivariate B-splines and all model equations
are built on barycentric coordinates and therefore they are unchanged with respect

to linear transformations.

2.3 Bivariate B-splines

After introducing barycentric coordinates, we define bivariate B-splines in this
section. Given a triangle A and a point v € A with coordinates b, = (by, ba, b3). We

define functions for pre-fixed non-negative integer d

d!

(v) == ngbgb’;, i+j+k=d b +b+b3=1 veEA (2.9)

B ik



Here 1, 7, k are nonegative integers. We call the set of polynomials
By := {Bajk titjrk=d (2.10)

bivariate B-splines with respect to triangle A. Figure 2 gives an example of By for

d=2.

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 2: Complete collection of bivariate B-splines when domain is a triangle and
d = 2. When d = 2, By contains six functions shown above. The functions values
vary between 0 and 1.

We have known that by, by, b3 are all linear polynomials in x and y. It follows
that Bg,jx(v) is a polynomial in x and y with degree d. Let P;(A) be the space of
polynomials defined on the triangle A with degree d, then By ;;; € Py(A). In fact, By
does not only belong to the space P;(A) but can also form its basis as stated in the

following theorem.



Theorem 2.3.1. The set of bivariate B-splines B, forms a basis for space Py(A) and

1) > Bar(v) =1, for allv € A
it+jt+h=d

2) 0 < Bg;jr(v) <1, for allv € A.
3) Bygjr has a unique maximum at the point &, = (iv1 + juve + kvg)/d € A.

Proof. 1) and 2) are straightforward according to  >_ %bﬁbéb’g =1
i+j+k=d

Now we prove 3) and the claim that B, is a basis for P;. Rewrite bivariate
B-splines in (2.9) by absorbing the constrain by + by + b3 = 1, we have

d!

_ . RN . . k
_mw@%“ br=bo)

Baijr(v)

Then take derivative with respect to b; and b, and set these derivatives to zero, we

have

i— (i+ k)b —iby =0 (2.11)

and

Jj—(j+k)by — jby = 0. (2.12)

Solving these equations we get by = i/d, by = j/d, by = k/d, so the point &, =
(iv1 + jvg + kvz)/d is an extreme value point. By checking the sign of the second

derivative, we know that Bg;;, reaches maximum at &, O

Theorem 2.3.1 tells us that By is a basis for P;. It follows that for any function
s € Py(A), there exist coefficients {c¢;;} such that
s(v) = Z CijiBa,ijr(v), (2.13)
i+jt+k=d
or in vector form

s(v) = BX (v)c, (2.14)
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where
Ba(v) = {B,4,00(v), By.g-1,10(v), Byg-1,01(0), .. Baoo.a(v)}" (2.15)
and
C= {Cd,O,O; Cd—1,1,0, Cd—1,0,15 Cd—2,2,05 ---» Co,o,d}T- (2-16)

In (2.16), ¢ is corresponding to the Ith element in vector ¢ where

d—i
[=> m+1—j (2.17)
m=0

Note that the ordering of the elements of ¢ is not important. Our choice is just one

possibility; using a different choice won’t influence our method.

2.4 Directional derivatives

This section gives the expressions of the directional derivatives of bivariate B-
splines. Directional derivative of a multivariate smooth function f at point v with

respect to direction w is generally defined as

Dufe) = g o+ )i = iy L) =L, 2.15)

Assume that the direction w has barycentric coordinates (w;, ws, ws). Define
bv - (bl, bQ, bg) (219)

and

bv+tw = (bl -+ twl, bQ —+ twg, bg -+ twg). (220)

Plugging (2.19) and (2.20) back into (2.18), we immediately get

Dy Baiji(v) (2.21)

= d{w1Ba-1,i-1)x(v) + w2Ba—1,i(j—1)%(v) + wsBa_1ij—1)(v)].
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We can calculate higher order derivatives D} By,;x(v) by iteratively applying (2.21).

After knowing the directional derivatives of basis functions, we can easily derive

the directional derivatives of a function s € P;(A) as follow.

Theorem 2.4.1. Assume we have a bivariate function s(v) with the basis expansion

s(v) = Z Cijk Baijr (V).

i+jt+k=d

For all (i, j, k) that i + j + k = d, we define

0
D (w) = ey

and
cg,? (w) := wlcgfijl}ﬁ + wgcy;:ll)k + wscET;}r)l, form=1,...d.
Then,
m d! (m)
Dys(v) = — Z Cijk (W) Ba—m,ijn(v)-

— |
<d m). i+j+k=d—m

Proof. When m = 1, we need to show that

Dys(v)=d Y e (w)Ba1u(v).

i+j+hk=d—1

(2.22)

(2.23)

(2.24)

(2.25)

Once we prove the result for m = 1, the result for all other m’s can be proved easily

by repeatedly applying (2.25) .

According to definition (2.22)

1) _
Cijk = W1Cit1jk + W2Cijy1k T W3Cijk+1-

(2.26)
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Applying (2.21) and (2.26), we have

Dys(v) = Z Ciji D Baiji(v)

itjtk=d

= Z Cijkdlw1 Ba_1,i-1)k(v) + waBa—1,(j—1)k(v)
i+j+k=d

FwzBa-1,ij(e—1) (V)]

= d Z CZ]k? Bd 11Jk()

i+j+k=d

This is (2.25). Thus the proof is complete.

2.5 Smoothness conditions

Vy

Ay

Figure 3: First example of two triangles sharing an edge.

Now assume that we have two triangles A; :=< vy, v9,v3 > and Ay :=< vy, v3, vy >
sharing a common edge e =< v9, v3 > with the bivariate B-splines {Bc(lli)j»k}i+j+k:d de-

fined on A; and {Bg%k}iﬂ%zd on Ay. See Figure 3. If we have a polynomial p;(v)
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defined on A; and a polynomial py(?) on As, then according to Theorem 2.3.1, we

have coefficients {cgj,l}i+j+k:d and {0532'1)@}1'+j+k:d such that p;(v) = > CS,Z:BSZ)M(U)
i+jth=d
- 2) p(2) [~
and (@) = 5 ARBL(T).

In some situations, we want these two polynomials to connect smoothly over
the common edge e. We call this issue as smoothness constraint. Latter sections
will explain why we are interested in such issue and give more detailed description
of the scenarios under which it rises. Here we skip its application but just find the
conditions under which the smoothness constrains are satisfied.

We say that the two bivariate functions defined on two adjacent triangles connect
smoothly on the common edge with order r if they have same rth and less order
derivatives along any direction on the common edge. We have following theorem to
give the conditions under which two bivariate functions are smoothly connected.
Theorem 2.5.1. Suppose there are two triangles A; and A, sharing edge e. w is any
direction unparallel to common edge e and D?'p(v) is nth order derivative in direction

w at point v. Then

D! pi(v) = D! ps(v), allveeand 1 =0,..,7 (2.27)
if and only if
1 2 2 .
=Y B W), jtk=d—11=0,..7. (2.28)
v+utr=l

Proof. In the following proof, point v is always on common edge e. The barycentric
coordinates (by, by, b3) of v € e with respect to triangle A; could be written as (0, by, 1—
by). Then the barycentric coordinates of v with respect to triangle As are (0, 1—by, bs).
Therefore functions p;(v) and py(v) are reduced to univariate functions

dl
p(v) = Z C‘%)’“‘Wb%(l — by)* (2.29)

j+k=d
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and

d! ,
pa0) = 37 (L= baP ()" (2.:30)
j+k=d o

In this case, p; and p, join continuously on edge e if and only if c(();gc = céi)j which is
the form of (2.28) when r = 0.

Now we show the result for » > 0. We choose two unparallel directions w; =
v3 — v9 and wy = vy — v9. Derivatives along other directions are linear combinations
of the derivative along these two. Thus, if we can prove the equality along these two
directions, the equalities along other directions are affirmed automatically. It is easy

to prove that D! p;(v) = D! py(v) along these two directions by comparing (2.29) and
(2.30). O

(2.28) gives us the conditions for smoothness constrains. One thing to notice
is that the smoothness conditions (2.28) are linear in coefficients {cz(jl,)g,cl(jz,)g} This

linearity will be used in lemma 2.7.1.

2.6 Triangulation

Consider a collection of N triangles A := {4, ..., Ay} on the domain €.
Definition 2.6.1. A collection A of triangles that covers a domain 2 is called a
triangulation of the domain, given that if a pair of triangles in A intersect, then their
intersection is either a common vertex or a common edge.

For computer implementation, we need to represent the structure of triangula-
tions in a convenient and concise way. There are several approaches in the literature
and we pick one here based on our personal preference. First label all vertices in the
triangulation in any order as long as there are no duplicate labels and then construct
two lists. One is the vertex list with the 7th row storing the cartesian coordinates

(x;,y;) for the ith vertex. The other list is the triangle list with ith row, a triple
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(li1, lia, li3), recording that the ith triangle is comprised of the l;1th, l;sth and [;3th

points in the vertex list.

o _ V4 V3

- | A4

S Vi Vo
0‘.0 0‘1 0.‘2 0‘3 0‘4 0‘.5

Figure 4: Second example of two triangles sharing an edge.

Table 1: Vertex list for triangulation in Figure 4.

Vi | Ty | Yi
17010
21510
31.9].5
4101|.5

Table 2: Triangle list for triangulation in Figure 4.

vertice 1 | vertice 2 | vertice 3
1 2 3
1 3 4

As an example, Tables 1 and 2 gives the two-list representation of the of triangular

giving in Figure 4. Here, the first row of the triangle list records that the first triangle

Ay that consists of vertices < wq,vy,v3 > while the second triangle A, consists of
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< v1,v3,04 >. The locations of vertices vy, v9, v3 and v, are listed in vertex list. The
representation is not unique; for example, the first row of the triangle list could be
< 2,3,1 > instead. But using different representations does not change the structure

of the corresponding triangulation.

2.7 Smoothness conditions

We extend the definition of bivariate B-splines to a triangulation of a spatial

domain and derive some useful representations of smoothness conditions.
2.7.1 Smoothness restrictions

Given a triangulation A, we can define bivariate B-splines By;, as introduced
in Section 2.1, on each triangle A; € A. The subscript ¢ in By; indicates that this
collection of splines is corresponding to triangle A; and therefore is differernt from the
meaning of ¢ in (2.9). Since each By, spans the polynomial space P;(A;), the whole

collection of bivariate B-splines {B,;}Y ; span a spline space
Sa(A) ={s:s|a, € Py(A;),i=1,2,...,N}. (2.31)
Then for any s € S,, there exists a vector ¢; as in (2.16) such that
sla, = B;‘Zici.

Then

T
S = BdC,

where Bq = (Bg, By, ..., Bgn)" and ¢ = (cf, c3, ..., cx)".
The least square approximation of a target function f in the space S, is defined

as the solution of the optimization problem

Min,||s — f||* = Min¢||Bjc — f||*. (2.32)
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Although s € Sy is a polynomial when restricted to one triangle, it is not con-

tinuous everywhere in the domain 2. There may be jumps across the common edges
of neighboring triangles. This property is not desirable. Recall that (2.28) gives us
the conditions for smoothly joining two polynomials defined on two neighboring tri-
angles. It is easy to extend these conditions to the whole triangulation if we need the
smoothness across every common edge. Then we have following lemma.
Lemma 2.7.1. Given a triangulation A and a function s that s|4, (v) = Bj(v)c;, for
integer r = 0,1, ..., d, s is rth order differentiable everywhere in domain €2 if and only
if there exists a matrix H such that Hc = 0. Matrix H depends on d,r and the
structure of triangulation.

The matrix H, by controlling the values of coefficients, enforces smoothness over
every shared edge in the triangulation. We can construct H by applying (2.28) on

every two triangles that share an edge.
2.7.2 Construction of the smoothness matriz

Equation (2.28) provides the basis for constructing smooth matrix H. We ex-
plain the detailed steps of the construction here through an example. Consider the
triangulation in Figure 4 with d = 2 and r = 0. There are (d + 1)(d +2)/2 = 6
bivariate B-splines defined on each triangle with corresponding coefficients {cz(;,)c} and

{02(]2,1} Following (2.28) we have that

when [ = 0,
1 2) (2 2
C(()j)k; = C(()k)jB(()o%)(W) = C(()k)j7 (2.33)
for any non-negative intergers (k, j) that k + j = d.
when [ = 1,
1 2) (2 2 2 2 2
ng)k = Cgk)jBi,l)OOQM) + C((),I)c+1,jB§,810(v4) + Cé,l)c,j—&—lBigOl(qM)? (2.34)

for any non-negative intergers (k, j) thatk +j = d — 1.
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when [ = 2,
1 2) (2 2) (2 2) (2
Cgo)o = Cgo)oBéz)oo(m) + C((Jz)oBé,gzo(wL) + 080)235,802@4)
2) (2 2) (2 2) (2
+Cg1)oB§,1)10("U4) + 050)135,1)01 (va) + 681)135,311(1’4)- (2.35)

for any non-negative intergers (k, j) thatk +j = d — 1.

_ (1) 1) (1) (2) (2) (2) T :
Denote a vector € = (405 Cq 11,00 -+ €007 €d.0,00 Cd1,1,00 =+ C0.0.4) &S the union

of {02(]1,1} and {cg,)f} listed in order as (2.16). Evaluating bivariate B-splines defined
on triangle A; at point v4, the smoothness matrix is as follows with the first three

rows corresponding to (2.33), fourth and fifth row to (2.34) and sixth row to (2.35).

-1 0 0 0 0 0 100 0 0 O
0O 0 -1 0 0 010 0 0 0
0 0 0 1001 0 0 0

[ (2.36)
0 0

0

0 0

0o -1 0 0 O 0 110 -1
0 0o -1 0 011 0 —-120
0 0

0o 0 121 -2 =21

The triangulation in Figure 4 is symmetric around the sharing edge and both
triangles are sosceles triangles, so the elements in matrix H are coincidently 0 , 1 and
-1. We consider another irregular triangulation in Figure 5. The vertex list and the

triangle list are given in Tables 3 and 4, the smoothness matrix H is given in (2.37).

Table 3: Vertex list for triangulation in Figure 5.

Vj T Yi
1 0 0
2 8 0
3 1 1
4 1-0.75] 1




Table 4: Triangle list for triangulation in Figure 5.

vertice 1 | vertice 2 | vertice 3

1 2 3

1 3 4
o o0 0 o0 0 1 0 0 0
o 0 -1 0 0 0 1 0 0
o 0 0 0 -1 0 0 1 0

-1 0 0 0 0 1 471 0 -—471

o 0 0 -1 0 0 1 47 0
0o -1 0 0 0 1

0
0
0
0
—.471

0

941 221 —.941 —.443 221

1.0

08

06

04

02

Figure 5: Third example of two triangles sharing a edge.

0.0

0.5

1.0

19

(2.37)
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CHAPTER III

PENALIZED SPATIAL SMOOTHING

3.1 Introduction

Estimating a smooth surface over a two-dimensional domains is a common prob-
lem in spatial data analysis. Assume we have observations z; at locations (x;, ;) € R
that
zi = f(xi, ) + €, e~ N(0,1),i=1,2,....,n.

Our problem is estimating a bivariate function f given the data {(x;,y;, z;)} for some
unknown function f. For example in Figure 6, red dots represent the locations where
soil organic matters were measured. Then GIS software generates continuous color
maps of the density of organic matters over the whole area by interpolating the

unobserved from surrounding observed data.

Figure 6: Heatplots of estimated soil organic matter surface based on GIS data. Red
points show the locations of observations.

Wavelet-based methods, kernel smoothing, kriging and spline smoothing are four

commonly used techniques for smoothing surface estimation. All these methods work
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well for rectangular domains with measurements on grid, as Figure 6. However, they
become inefficient or even problematic for complex domains. Wavelet-based methods
(Horgan, 1999) cannot be applied when domains are not rectangular. Kernel smooth-
ing (Wand and Jones, 1995) and kriging (Cressie, 1993) assume that the similarity
between two locations depending on their Euclidean distance and therefore estimate
function values as weighted sums of observations around with weights depending on
the Euclidean distances. However, the usage of the Euclidean distance causes prob-
lems when estimating the surface. We explain the disadvantage of the Euclidean
distance in the following example.

Figures 7 and 8 are examples of complicated domains studied in literatures.
Consider four outlined points in Figure 7. The similarity between the points outlined
by square will not be equal to that of the points outlined by triangles although the
two pairs of points have the same the Euclidean distances. In Figure 8, The hole in
the southern part of the island is an airport and the one in the north-eastern end is
an oil refineries and a water purification plant. These two holes are not part of the
domain and the spatial correlations between residency on opposite sides of each hole
is broken down.

To fix the problem brought by the Euclidean distance, Wang and Ranalli (2007)
proposed low-rank thin-plate splines defined as functions of the geodesic distance in-
stead of the Euclidean distance, while Eilers (2006) employed the Schwarz-Christoffel
transform to convert the complex domains to regular domains. We can also apply
the kernel method and kriging on the geodesic distance. These modifications can
be viewed as mapping the original domains and functions to the new domains and
functions, then optimal smoothers can be found. But since the smoothness penalties
are defined on converted functions, what they measure on original functions are no

longer clear.
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Figure 7: Horseshoe-shaped domain.

Figure 8: Island of Montreal with dots representing the centroid of units where census
data are summarized.

Based on discussions above, we prefer to work on original domains with the Eu-
clidean distances. We will focus on spline-based methods because we can define locally
supported splines with supports inside the domains. In this way, we will overcome the
challenges of holes and concave boundaries. The rest of this chapter is structured as
follow. In Section 3.2, we list and review some existing spline-based smoothing meth-
ods focusing on complex two-dimensional domains. Then we introduce the splines

and corresponding models in Section 3.3 and discuss future work in Section 3.4.
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3.2 Literature review

Spline-based smoothing generally minimizes an objective function within a func-
tion space spanned by a collection of splines. The objective function is the squared
distance between observed data and a spline function, adding a roughness penalty
(Greens and Silverman, 1994). Let © be the domain, We have n observations z; at

location (x;,y;). Two kinds of objective functions are widely used so far. They are

n

PLS(f) = Z <zi — f(xi,yi))Q + )\/Q(fm + fyy)? dzdy, (3.1)

i=1

and
n

2
PLS,(f) =Y (zi—fm,yi)) oA [ op,+ a3
Q

i=1
where X in both functions is the smoothing parameter that trades off the goodness-

of-fit of the data and the smoothness of the fitted function.

Traditional spline-based work on smoothing over a two-dimensional domain use
either tensor-product splines or thin-plate splines (Duchon, 1977). Tensor-product
splines are tensor products of univariate splines defined on grids. They cannot exclude
interior holes or gaps and therefore will smooth over these areas. This behavior will
introduce extra dependence between locations and produce bias. Thin-plate splines,
defined on the Euclidean distance, will have the same problem as kernel smoothing
and kriging.

In the statistical literature, two collections of splines are studied when considering
complex domain. One is the soap smoother and the other is the finite element splines

from the applied mathematics. Now we start to review these methods.
3.2.1 Finite element smoother

The finite element technique is a sophisticated method in applied mathematics.

Finite elements have three components: partition, nodes and basis. We partition the
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domain, identify locations of nodes and then define a group of basis, called nodal basis,
on each piece of the partition according to the nodes. The basis spans a continuous,
piecewise polynomial function space, in which we approximate the real function. We
call this space the finite element space S°. Hansen et al. (1998) first introduced this
technique to the statistical community to deal with complex domains. Ramsay (2002)
found minimizer of PLS; subject to certain constraint in the finite element space.
Koenker and Mizera (2004) proposed a new penalty called total variation penalty
that calculated the wiggleness of continuous but not smooth bivariate function and
then found the minimizer in the finite element space.

Denote H™(f)) as the space of all continuous functions on a domain € whose
mth-order partial derivatives are all square integrable and whose partial derivatives
of order less then m are all continuous. One big problem of the finite element technique
is that the functions it defines are surely continuous everywhere but not guaranteed
to be differentiable. Therefore, PLS; and PLS5 are not well defined. Hansen et al.
(1998) and Koenker and Mizera (2004) only focused on continuous but not smooth
functions, so they had different scopes from us. Ramsay (2002) imposed normal
derivatives zero boundary condition to make the minimizer of PLS; in S° N H?
equivalent to solution of a system of partial differential equations that only involve
first order derivatives. In this way, the problem can be easily solved by finite element
method. But the constraints of normal derivatives zero on boundary is arbitrary and

may not be satisfied in many cases.
3.2.2  Soap film smoother

Wood et al. (2008) followed the variational method of deriving thin-plate spline
to find the closed form for the minimizer of PLS; which is a linear combination of

Green’s functions and functions in the null space of the smoothness penalty. However,
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the Green’s functions can only be solved when boundary values are given. He proposed
that minimizer of PSL; in (3.1) subject to known boundary conditions must satisfy

the following differentiable equations

Q2f of
922 Tap TP (3:3)
?p  9?p

where 922 +_6’y2 =0 (3.4)

except at data points {(x,yx)} which are pre-selected, and p = 0 on the boundary.
For each data point (z,yx), there is a function gx(z,y) that satisfies (3.3) and (3.4)
except at (xg, yx). Then a linear combination of all {gy }, called the soap film smoother
f =0 wgk(z,y), is a solution to (3.3) and (3.4) except at all knots, therefore f
is the minimizer to PSL;.

The process of building the soap film smoother requires function values on the
boundary are known. When function values are unknown on the boundary, Wood
et al. (2008) proposed an approach to approximate the minimizer by representing
function values on the boundary as a weighted sum of cyclic basis {«;} with un-
known basis coefficients. So when studying unknown boundary minimizing problem,
Wood et al. (2008) used two collections of basis that one captures function variation
within domain and the other represents function values on the boundary. Finally, the

minimizer without boundary conditions is of the form

J n
Fley) =3 esai(@,y) + > wge(w,y). (3.5)

Each data point determines one basis function in {gx(z,y)}7_; and J is the number
of cyclic basis we use to express the boundary. Coefficients {a;}7_; and {v;}_, are
estimated by minimizing PLS;. We call f(z,y) given in (3.5) a soap film smoother.
When the size of the dataset is large, it is computationally heavy and not worthwhile

to use the complete basis {gx(z,y)}7_;. Wood et al. (2008) provided a low rank
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approximation by replacing data points with small number of pre-selected knots when

constructing basis {gy}.
3.2.3  Bivariate B-spline smoother

The bivariate B-splines, also defined on each piece of the partition as nodal basis,
is a special case of the finite element. The difference between bivariate B-splines and
nodal basis is that the smoothness constraints are enforced to make the smoothers
built on bivariate B-splines to have the second and higher continuous derivatives.
Then these derivatives, and therefore the penalty matrix, are well defined. The
theory of bivariate B-splines is popular in mathematics but not familiar to statistical
community. A comprehensive reference is Lai and Schumaker (2007). Guillas and
Lai (2010) is the pioneer in using bivariate B-splines in statistical problems. They
applied these splines in spatial functional regression problem. Later on, Lai and Wang
(2010) adopted bivariate B-splines in penalized spatial regression problem and built
up a theory on the convergency rate. Although their paper showed theoretically the
convergency on penalized bivariate regression splines, the implement is unclear. This
work studies the same penalized regression problem but gives details on computational
techniques. In addition, their paper used pre-determined smoothing parameter. We

using GCV to choose the smoothing parameter.

3.3 Proposed method

Our proposed method is a penalized smoothing model by applying bivariate B-

splines.
3.3.1 Penalized smoothing model

Chapter II has introduced bivariate B-splines and its mathematical properties.

We know that a collection of bivariate B-splines defined on each triangle of a trian-
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gulation define a space Sy,

Sa(A)={s:s

4, € Po(A),i=1,2, ... N}. (3.6)

When we add smoothness matrix H discussed in Section 2.6, we have a new space

SH(A) that

Sa(Q) = {s € C"(Q)ls]a, € PY(A)}

= {se€C"(Q)|s = Be,He = 0}.

Minimizing either PLS; or PLS, in space S}, the problem is now converted to
Min {||z — Be|)* + )\CTPC} subject to He =0, (3.7)

where P = [(Byw + Byy)?dxdy for PLS, and P = [ (B2, +2B2, + B;,) dx dy for
PLS,.

Minimizing (3.7) is not straightforward because of the constraint He = 0. We can
release the constraints via QR decomposition on the transpose of matrix H and then
problem (3.7) is converted to a conventional penalized regression problem without

any restriction. More specifically, we assume

T i
H" = QR =[Q: Q] ; (3.8)
Ry
where () is an orthogonal matrix and R is an upper triangle matrix. The submatrix

(21 is the first r columns of @) where r is the rank of matrix H. Then we find ¢ that

¢ = Q2¢. It is guaranteed that Hc = 0. The problem (3.7) is changed to
i { = BQuEP + A(Qu P(Q:) (39)
Given the smoothing parameter A, the estimated coefficient vector ¢ is

¢ = Qot = QI (B"B+ AP) ' Q2Q3 B 2. (3.10)
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3.3.2  Smoothing parameter

Recall that our spatial fitting problem is

Min {Hz — BQ,d||* + /\(Q25)TP(Q25)}. (3.11)
Given the smoothing parameter A, this minimizing problem can be solved easily. The
problem now is choosing proper A. This parameter controls the trade-off between
data-fitting and model parsimony. Large A enforces smoother fitted function while
small one gives model more flexibility and smaller fitting errors. Cross Validation
(CV) is a well-known technique to choose smoothing parameter by minimizing pre-
diction errors. Moreover, CV has a closed form for linear least square problems and is

generalized to the so-called generalized cross-validation (GCV) (Craven and Wahba,

1979; Wahba, 1990). The closed form of GCV is (Wood et al., 2008; Ramsay, 2002).
nllz — AQN)2|?

G\ = : 3.12
W= T AP 12

here A()) in equation (3.12) is the hat matrix depending on A\ with the form
A(N) = BQ:Q; (B"B + AP)'Q,Q; BY (3.13)

and v > 1 is the scaling parameter.

Obviously, numerical searching algorithm should be adopted to find the optimal
A . We follow the methods in (Wood, 2004) which searched for the optimal A with the
Newton updates of 7 = log()). In detail, we first replace A with €. Then according

to the Newton method, the ¢th update is
ntD =n@ — M~m, (3.14)

where m and M are the values of the first and second derivatives of GCV score with
respect to n evaluated at 7. Once the algorithm is converged, we find the optimal
n and therefore A = €. The transformation from A to n guarantees that the chosen

A at convergence step is non-negative.
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3.4 Computational issue

So far, we have discussed how to theoretically solve the spatial smoothing problem
by using bivariate B-splines. However, in practice, there are some computational
issues left for discussion. One issue is how to choose a good triangulation and how to
implement it in programming software such as R. Another issue is the computational

cost of the estimation procedure.
3.4.1 Appropriate triangulation

In univariate spline smoothing problems, the number of knots and the locations of
knots have remarkable effects on the convergence rate of the splines built on the knots.
Similar situations happen to bivariate B-splines whose convergence rate is affected
by the number and shapes of triangles in the triangulation and how these triangles
are neighbored with each other, e.g., sharing edges or only vertices. Hansen (1998)
proposed an adaptive method to find the optimal triangulation in the framework of
model selection. This dissertation uses penalty to control model complexity so we do
not discuss data-driven triangulation design.

We introduce some notations before going to the details. For one triangle A,
define |A| as the largest diameter of circle containing A, and p4 the smallest radius
of the circle contained in A. The ratio S4 = pa/|A| measures the shape of triangle.
When the triangle is equilateral triangle, the ratio reaches its maximum while when
the triangle is long and lean, the ratio becomes small. Then, consider triangulation A.
Let |A| = max{|A;| | A; € A} and pa = min{pa, | A; € A}. Then Sa = pa/|Al. In
general, the larger the ratio § is and the more triangles we have, the better the fitting
is in sense of smaller in-sample fitting errors. We have built a R package that generates
triangulation automatically (users can specify the maximum |A|). Moreover, how the

triangles in the triangulation are connected with each other affects the performance
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of the splines defined on them. We call this the shape of the triangulation. See Lai
and Schumaker (2007) for more details on different shapes of triangulations.

However, the increase in the number of triangles will increase the number of
splines, or equivalently the dimension of the space S, tremendously. So we prefer
a reasonable number of triangles to comprise between the goodness of data-fitting
and computation. Lai and Wang (2010) studied the convergence rate of bivariate B-
splines in penalized regression problems. The main results are quoted here. Denote
the true function as f and the estimated function as f, when the penalty parameter
is .

Assume following conditions are satisfied:

e The true function f belongs to the Sobolev space W!T>°(Q) = {u € LP(Q) :

D*u € LP(2), VY|a| <1+ 1} for an integer [ > 1.

e The noise ¢ satisfies that lim E[e*I(e > n)] = 0. The standard deviation o(x)
n—00

is continuous on 2 and 0 < ¢, < info(x) < C, < oo for some constants ¢, and
e

Cs.

e The constants F; and F, defined as follow F,/F; = O(1). Here F; and F, are

positive constants that are independent of function f that satisfies,

1/2
Alfla<{ ¥ f@?} <Alflwe

e The number of triangulation N and the sample size n satisfies that N < n!/(+2),

l
e The penalized parameter \ satisfies A = o(n2@2 ).
Then the convergence rate is

[fx—mlleen =

)  \ s (3.15)
Op{ |3 [1]2,00,0 + (1 + n|A5> F?|A|l+1|m|l+1,oo,ﬂ}-
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3.4.2  Computation

Both the parameter estimation (3.10) and the GCV evaluation (3.12) involve the
inversion of the matrix (BT B + AP) where B is the evaluation matrix ob bivariate
B-splines and P is the penalty matrix. When we have N triangles, (BT B + \P) is
a N(d+ 1)(d+2)/2 x N(d+ 1)(d + 2)/2 matrix. This matrix could be very large
and the computation of its inverse becomes infeasible when the domain is irregular
with a curvy boundary and requires a lot of small triangles to mimic the boundary,
such as the second triangulation example in Section 3.2. However, thanks to the
locality of bivariate B-splines, matrix BT B and P is block diagonal with each block
of dimension (d+ 1)(d+2)/2 x (d + 1)(d 4 2)/2. Thus, in practice, we can calculate
the inversion of each small block to derive the inversion of the whole matrix. We can
also define sparse matrices B, P and H by only storing the non-zero elements. These

representations save a lot of memory space and therefore speed up the computing.

3.5 Simulation

This section compares the bivariate B-splines smoothing and soap file smoother

on simulated datasets to show the strength of the bivariate B-splines methods.
3.5.1 Complicated domains

First simulation is designed on the horseshoe-shaped domain as shown in Fig-
ure 9. This is a widely studied domain in the literatures on the topic of smoothing
over difficult domains (Wood et al., 2008; Ramsay, 2002).

The surface function is
f(z,y) = 8sin(xy) (3.16)

as shown on the top left panel of Figure 10. We uniformly sampled n = 300 locations

in the domain and then estimated the surface based on the evaluations of the true
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function at these locations plus white noises from N (0, 0?) with 0 = .1,1and 2.
Three estimation methods: i) soap film smoother (soap), ii) thin-plate regression
splines (tprs) and iii) bivariate B-splines (BBS) were applied and compared in terms
of out-of-sample mean squared errors (MSE). The bivariate B-splines method used
triangulation as displayed in Figure 9 with d = 3andr = 1. Out-of-sample mean
squared errors were derived based on intensive 70 x 70 grid by taking the mean of all
squared prediction errors at grid points which are inside the domain. All smoothing
parameters were chosen by the GCV. We repeated the simulation procedure for each
method at each level of noise for 400 times and then compared the distribution of
MSE. The result of one replicate of estimation is shown in Figure 10 and the summary

of all 400 replicates are in Figure 11.

0.5
|

Figure 9: Triangulation on horseshoe-shaped domain.
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Figure 10: Heatplots with contour lines of the true surface and estimated surfaces
over horseshoe-shaped domain at ¢ = .1. Top left panel is the true surfaces and
others are estimated surface. Top right panel is from the soap film smoother with
32 knots and 39 cyclic splines on boundary. Bottom left panel is from the thin-
plate regression splines with k=100 splines. Bottom right panel is from the bivariate
B-splines smoothing with triangulation shown in Figure 9 and d=3, r=1.
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Figure 11: Comparison of out-of-sample MSE for three methods. We use soap file
smoother (soap), thin-plate splines (tprs) and bivariate B-splines (BBS) at three levels
of random errors ¢ = .1,1and2 in the example of smoothing over the horseshoe-
shaped domain.

Figure 10 shows that compared with the bivariate B-splines, the soap film smoother
gives bigger prediction errors where function has large absolute values. Results in Fig-
ure 11 confirms that the bivariate B-splines outperforms the soap film smoother at

each level.



35

3.5.2 A simple domain

Section 3.5.1 has shown that both bivariate B-splines and soap film smoother can
be applied on complicated domains and the bivariate B-splines provide smaller out-
of-sample MSE than the soap film smoother. In this section, we study the smoothing
problem over a simple rectangular domain as shown in Figure 12 to see how the
bivariate B-splines perform when we could solve the problem by simply using the

thin-plate regression splines.

Figure 12: Triangulation on a rectangular domain.

The true function is

. r—.2)2 -.3)?
flz,y) = ﬁ exp (_ (0.32) - (y0.42) >

a5 @1 (8
+203.04 €XP ( 0.32 0.42

)‘ (3.17)

This function, studied in Wood et al. (2008) and shown on the upper left panel of
Figure 13, defines a smooth surface over the rectangular domain [0, 1] x [0, 1] with

two peaks at points (0.2,0.3) and (0.7,0.9).
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Figure 13: Heatplots with contour lines of true surface and estimated surfaces over
simple domain at o = .2. The top left panel is true surface and others are estimated
surface; the top right panel is from the soap film smoother with 16 knots and 39
cyclic splines on the boundary; the bottom left panel is from the penalized thin-plate
regression splines with k=100 ; the bottom right panel is from the penalized bivariate
B-splines.
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We uniformly sampled 500 locations in the domain. Our simulated observations
were true function values at those 500 locations plus identical independent random
noises from N(0,0?) with o of three levels: .01,.05, and .2. We fitted the soap film
smoother, thin plate splines and bivariate B-splines for each noise level. The soap
film smoother used 100 knots and 39 cyclic splines for the boundary as described in
Wood et al. (2008). Bivariate B-splines used the triangulation shown in Figure 12
with d = 3,7 = 1 and so the true degree of freedom was 69. We repeated these three
estimation procedures 400 times to compare the out-of-sample MSE. All smoothing
parameters were chosen by GCV. Figure 13 is one replicate of the fitting result at
o = 0.2 and the summary of all 400 replicates are shown in Figure 14 and Table 5.

The simulation results show that the thin-plate regression splines method has
the smallest MSE at each level. The bivariate B-splines and soap film smoother lose
some accuracy on simple domains. But the differences between MSEs of thin-plate
regression splines and that of the soap film smoother or bivariate B-splines are small
compared with the average MSE of the thin-plate splines. In addition, the bivariate B-
splines method always gives smaller average MSE than soap film smoothing methods
for all three noise levels.

When we compare estimated surface by the soap film smoother in two simula-
tion examples (Top right panel in Figure 10 and Figure 14), we find the common
phenomenon of some wiggles on contour lines. The locations of the wiggle are exactly
where knots are placed. It indicates that the soap film smoother produces a surface
that is not smooth and therefore increase the prediction errors around knots. This

problem results from the procedure of deriving the soap film smoother.



Table 5: Summary of MSE®? in simulation on simple domain.

o=.2 o=.05 oc=.01
Min Max Mean | Min Max Mean | Min Max Mean
Soap | .285 .384  .323 | .211 276 .228 | .182 .215 .191
Tprs | .272 344 305 | .182 .241 .201 | .114 .169 .129
BBS | .272 .345 .309 | .193 .228 210 |.149 .168 .154
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Figure 14: Comparison of out-of-sample MSE for the three methods. We use soap file
smoother (soap), thin-plate splines (tprs) and bivariate B-splines (BBS) at three levels
of random errors ¢ = .01, .05 and .2 in the example of smoothing over the rectangular

domain.
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3.6 Texas temperature surface analysis

In this section, we apply bivariate B-splines in a real example of constructing the
temperature surface over texas based on data collected by the International Research

Institute for Climate and Society (IRICS).
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Figure 15: Stations in Texas and monthly temperatures. Source: IRICS. Top left
panel shows the locations of all stations. Top right panel shows the temperatures
over time for two stations highlighted on top left panel. The discontinuous parts
indicate missing data at those times. Bottom two panels show that stations having
observations on December and August in 1987. The larger the triangular size is, the
higher the temperature is.
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The dataset consists of monthly average temperatures at 52 stations in the state
of Texas from Jan, 1867 to Dec, 1995. Figure 15 gives a summary of the temperatures.
In some time periods, most stations have no record. For example, only 15 stations
have records of the temperatures in 1989 and 11 stations in 1990. But almost all
stations have records between 1930 and 1987.

We designed the following triangulation in Figure 16 that covers the irregular
spatial domain such that there are observations in each triangle and set d = 3,7 = 1.
We can reconstruct one temperature surface for each month based on the data for all
stations in that month. In order to check the accuracy of surface reconstruction, we
randomly sampled 4 stations (10% of the total stations) out for testing and use the rest
station data for modeling. Squared prediction errors are recorded. We repeated this
training and testing procedure 100 times for four representative months (December,
1987; August, 1987; December, 1986; August, 1986), two of which are in summer
and the others two are in winter. Figure 17 shows the contour plots of the estimated

surfaces.

36

34
\

32
\

latitude

30
\

28
\

26
\

T
-106 -104 -102 -100 -98 -96 -94

longitude

Figure 16: Triangulation on Texas and station locations.
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Figure 17: Contour plots of estimated temperature surface for four selected months.

Figure 18 presents the boxplots of squared prediction errors for each selected
month. From the boxplots, we observed that the mean squared prediction errors is
small relative to the variation of the true monthly temperatures. Some extreme values
in the plots come from locations where the geological characteristics are different from
the surrounding area. For example, the highest outlier in the each of the four boxplots
comes from corresponding stations indexed 1 and 2 in Figure 19. Station 1 is close
to Amistad National Recreation Area and Station 2 is in Sabine National Forest. It

is reasonable to infer that the geological changes in these areas cause the significant
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Figure 18: Boxplots of the squared prediction errors for four selected months.
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Figure 19: Stations with large prediction errors.

differences in temperatures and therefore the spatial smoothing based prediction fails.
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CHAPTER IV

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR SPARSE SPATTAL
DATA ANALYSIS

Spatial surfaces are often observed across time or in different situations. Each
surface, called one subject, are measured at an irregular and sparse set of locations
which may change completely over subjects. We use a reduced rank mixed-effects
model to identify the mean surface and subject-specific variations; penalized bivariate
B-splines are used to model the mean surface and functional principal components.
This method works well when the locations of measurements vary over subjects and

are sparse for each subject.

4.1 Introduction

In spatial data analysis, one general problem is to estimate the target continuous
surface over the whole domain based on discrete observations of the surface. However
the number and locations of observations affect the estimates accuracy. Figure 20
displays two estimations of the same soil organic matter surface from different num-
bers of GIS observations using the same method. It shows that the sparse dataset
may generate significantly different surface, unlike from the dense datasets.

In real world, spatial data sparse in location is a general case due to time limit
or technique limit or others. One example is the dataset of monthly average tem-
peratures in Texas quoted form the International Research Institute for Climate and
Society. The dataset contains monthly mean temperatures for 52 stations in Texas
from January, 1967 to December, 1995. But for each month, on average only 20

stations have records. Theoretically the temperature distribution over Texas for one
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Figure 20: Estimation of soil organic matter surface from two different GIS datasets

[Estimation of soil organic matter surface from two different GIS datasets.]

specific month could be estimated from the observations for that month. However,
the sparsity of observations makes the estimate inconsistent and unstable.

To fix the problem above, additional data is in general collected to give more
information on the shape of the surface. To be more specific, assume that we have
a complicated domain €2 and target surface pu(v),v € . We observe the surface
for n days to get independent n subjects. For subject ¢, we have m; observations
zij,J = 1,...,m; at locations v;; = (x;;,v;;). Each of the observations is disturbed
by random noise which is correlated with other noises within the same subject but
independent from those of other subjects. Estimating mean surface p(v) and the

mode of subject-specific variation from the mean given the whole dataset (z;;, v;;) is

the problem we are interested in.

4.2 Existing methods

To derive mean temperature surface, one straightforward method is fitting data
for one subject 7. But this method is inaccurate and inconsistent since the observa-
tions are sparse. In addition, it does not utilize the whole dataset.

Another method is pulling all data from different time together and treat them
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with identical independent errors. Then the whole dataset is dense in locations and
we can fit a penalized least square model to it. However, the aviations of subjects from
mean function is not consistent over subjects. Some subjects may have huge aviations
while others have small. These subject-specific differences are due to the condition of
measurements or other factors. Therefore, this estimation method of fitting one least
square model to the whole dataset ignores the variability over subjects and brings
extra errors.

An alternative method is to choose a collection of appropriate bivariate splines,
then project everyday’s data separately to the splines and finally apply classic prin-
cipal component analysis on the estimated spline coefficients or the resulted ”data”
by evaluating the estimated surface at a fine grid. There are two drawbacks for this
approach. First, fitting a surface to one-day data, as mentioned above, may pro-
duce inaccurate result due to the sparsity of data. Second, this approach uses the
same weight on each day’s observations and therefore does not take into account the
subject-specific variations. In this dissertation, we propose a reduced rank mixed-
effects model to solve the problem.

In longitudinal data analysis, estimating the mean curve from curves measured
at sparse time points were well studied (James et al., 2000; Peng and Paul, 2009).
However, modeling surface over two-dimensional domain with observations sparse in
location were paid few attentions in spatial data analysis, even though it is a common
situation. This dissertation tries to fill in the gap. We extend and adjust the model
proposed in James et al. (2000) to the settings of spatial data analysis.

In the following part of this section, we will first introduce a mixed-effects model
(MEM) which accounts for both the systematical mean surface and daily variation.
Then we will propose a reduced rank mixed-effects model (RMEM) based on the

mixed-effects model to deal with the issue of data sparsity.
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4.3 Reduced rank mixed-effects model

4.8.1 Mized-effects model

Observed surface function is
fi(w) = p(v) + €(v), veli=1,..,n. (4.1)

The simplest assumption is that {¢;, i = 1,...,n} is independently and identically from
normal distribution. Then ordinary least square regression will give an estimation of
the mean function. But in our sparse data analysis, the deviation of observation from
the evaluation of mean function is not identically distributed. It can be decomposed
into two parts: subject-specific variation and white noise. To take into account of

this variance structure, we propose a mixed-effects model:

fiv) = p(v) + hi(v) + €(v), (4.2)

where v € R? is location, u(v) is mean surface and h;(v) represents ith subject-
specific variation from the mean. Random error €(v) is so far assumed to have normal
distribution with constant variance. More complicated error structure may be studied
in future.

This is a functional version of mixed-effects model in ANOVA analysis. There are
several nonparametric methods to estimate the surface functions u(v) and {h;(v)}.
Classical methods includes kriging or kernel smoothing. As we discussed in Chapter
ITI, bivariate B-splines outperforms kriging and kernel functions when the domain is
complicated. So we use bivariate B-splines here.

We use bivariate B-splines b(v) = {by(v),ba(v), ..., bx(v)}T to represent func-

tions p(z,y) and h;(z,y). Then we have

filv) = bT(V)QM + bT(v)% + €(v), i=1,2,...,N. (4.3)
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¥ ~ N(0, D), e; ~ N(0,0°1).

6, is the basis coefficient vector for mean function and ; is the coefficient vector for
function h;. Let B; be the evaluation of basis b; at vi, then the corresponding data

model to the mixed-effects model (4.3) is
Z; = Bi‘gu + Bif}/i + €, (44)

v ~ N(0,T), € ~ N(0,0%1).

This is a mixed-effects model (MEM). We can use Restricted Maximum Likelihood

(REML) to estimate parameters ¢, and I'.
4.3.2  Reduced rank mized-effects model

In model (4.4), I' is a K x K matrix of K(K + 1)/2 parameters and 6, of K
parameters. The total number of parameters in the mixed-effects model is large com-
pared with the sparse dataset. In this situation, the estimation would be significantly
unstable. So we reduce model rank by using function principal component to describe

the mode of daily variation and get a model called reduced rank mixed-effects model.

fi(w) = p) +g"(V)as + &(v), i=1,..,n, (4.5)
€;(v) ~ N(0,0%), a; ~ N(0,D).

Here g(v) = (gf (v), 25 (v), ...,g) (v))T are J (J < K) mutual independent bivariate

functions that are orthonormal in sense that

/Q g7 (v)g,(v)dv = 6, (4.6)

These functional principal components represent the trends in daily difference.
The principal component score «; is a J dimensional random vector. By using these

principal component functions, we reduce the rank of model from K in (4.3) to J
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in (4.6). Again, using basis set b(v) to represent functions p(v) and {g;(v)}; in
the model, we have pu(v) = B"6,,andg;(v) = B"6;. Collecting all §s in a matrix

© = (01,04, ...,0;), we have the model in matrix form
zi = B0, + BTOq; + ¢, i=1,..,n, (4.7)

€ (v) ~ N(0,0%), a; ~ N(0, D).

Both © and «; are unknown, so the model is unidentifiable. Consider (4.6), we add

restrictions that

e’e =1, / BT (v)B(v)dv = 1. (4.8)

to make the model identifiable. Our basis must be orthonormalized before using it.

Now the RMEM is
Z; = BTON + BT@ai + €, i= 1, P I (49)

e(v) ~ N(0,0%), a; ~ N(0,D),
/ BY(w)B(w)dv=1, ©T'e=1I.

Parameter set is M = {6,,0, D,c*}. Because D is a J X J matrix where J < K,
the number of parameters for RMEM is much less than that of MEM and this rank

reduction makes the estimation procedure stable when the size of the dataset is small.
4.3.83  Penalized likelihood

Model (4.9) is still a mixed-effects model and the log-likelihood, given data z =
(z1,...,z0)7T is
—2logL(M|z) = Z (milog(27r) + log|lo*I + B;6DO" B]|

=1

+(2; — Bi#,)" (6°1 + B;oDO" Bl )" (z; — Bﬁ,)) :
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According to the discussion in Chapter III, the roughness penalties for functions

f = B0, and {g; = Bb;} are

SP(f) = 6P,

SP(g:) = 6TPg;.

Therefore the penalized log-likelihood is

—2logL(M|z) = > (milog(27r) + log|o®I + B;ODOT BY|

=1

+(2 — Bif,)" (0*I + B;ODO Bl )™ (z; — Bieﬂ))

K
+NOL PO, + N> 0T PO,

j=1

4.4 Model estimation

Theoretically, we can use MLE or REML to estimate unknown parameters. In
maximizing likelihood estimation, we take the first-order partial derivative of the
—2logL with respect to each parameters and then set the partial derivatives to zero
and solve the equations. There is no close form for the estimates of parameters. We
need some numerical methods to find the optimal set M that minimize —2logL. We
could use the Newton-Raphson or simplex or other methods. More details are given
seen in Peng and Paul (2009). However, because the domain for each parameter is a
bounded space and some parameters are of high dimension, the searching procedure
is in practice difficult. We propose an EM algorithm here to estimate the parameters

in set M.
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4.4.1 Penalized joint likelihood

In this dissertation, we treat {a;}}, as missing data instead of random variables
and use the EM algorithm to estimate parameters in set M. The penalized joint

log-likelihood is

PSL (M|a,z)
Z?:l (7711‘10g0'2 + 0—12(Zi — Bzeu — Bi@Oéi)T(Zi — BZQ# — B,L@Oél) (410)
+log|D| + oziTDlai> + X070 PO, + A Z;’:l 07 Po;.

According to EM algorithm, we need to calculate conditional marginal likelihood

JONM [PSL(M]@, z)] and then optimize it with respect to all parameters in M.
4.4.2  EM steps

The «; appears in PSL(M|a,z) in the form of o; and o;al, so we just need to
derive the conditional expectations E[o;|z;] and Ela;al |z;] to replace corresponding
a; and ozl in (4.10).

Both «; and z; are normally distributed, so their joint distribution is normal

Q; 0 D aleT B!

, : (4.11)
Zi BZQ,, Bz@az 0'2[ + Bl@D@TBZT

We could derive Eloy|z;] and Elogal|z;) easily and therefore E,,[PSL(M)]. This

is the E-step in EM algorithm. Then maximize E,, [PSL(M)} with respect to each

parameter in M-step. The detailed EM algorithm is as follow.

1. Given current estimates for all parameters, predict o; and a;ar .

i

As we know
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According to the properties of multivariate normal distribution, we could derive

the conditional distribution from (4.11) that
E(oylz) = DOTBI (oI + B;ODO"BI) (2 — Bif,)
= (D+0"BI'B0/s*) e’ Bl (z; — Bib.).
Var(aslz;) = D— DO'Bl(o*I + B;oDe BI™'B,6D

= (D+6'B'Bo/c*)™

Thus, we know that
di = E(Oél'|Z7;, euv éa &Qa [D)

vol = E(aallz,0,,0,6% D) = a0l + (D' +6"B'B,6/6%)!

7

2. Given current estimates for «;, 0, and ©, we estimate o and D

N
o* = Z% Z Ele] ei2]

E[(
ol . o
[B;

©O(D~' +6"BIB;0/52)" 1(3)TBZ.T]).

~ N N
Dj; = % ;E ’Zz] % 2(E2[Oéu|zl} + Var(wi;|zi))
N
= %;(aw D'+ OTBTB, 9/0) ) j=1,..,J

3. Given current estimates for 02, D and «;, we estimate © and 6, by minimizing
N

=1 (4.12)
6T Ko;

Jj=17J

FA020T KO, + Npo?
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Therefore

-1 N

N
0, = (Z BIB; + Au02K> > B'(z — BiO&,).
=1 =1

For matrix ©® we have two approaches to estimate it. One is to use iterative
procedure to update each column of © iteratively till converge while the other

one is to re-formalize the model to derive a closed form for the MLE of ©.

e In the first approach, the ith column éj in matrix © is

N o _1
i=1 (4.13)

)

N ~ A
=1 =

Repeat this procedure for each column of © till there is no significant

change in the estimates of ©.

e The second approach derives the closed-form for © through rewriting the
model. We define a matrix B; = (Biail,...,Biozu),f( = K ® I; and
0= (67, .., 6T)T. Then z; = B;f, + B;© + ¢;. So straightforwardly

. N 1 N
6 — (Z BT+ M%) S BT (a - B
i=1 i=1
Compared with the first approach, the second one gives more accurate estima-
tion since it is in closed form but it might cost more computation time because

larger matrix operations are involved.
4. Repeat above three steps till convergency.

5. Orthogonalize matrix © by setting © to be the first J eigenvectors of 6TDO.

Above are the iteration part of EM algorithm. The problem left is providing

initial values. First, We use z; regress on B; to get an initial estimate of 6,. Second,
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for each subject, we use the fitting error from the above simple regression to regress on
B; again to get estimation of ©«;. Third, we collect all {O«q;} and decompose them
to © and «;’s. Finally, we calculate the empirical variance of «; as initial estimate of

D and the residual mean square error as the initial estimate of o2.

4.5 Model selection

Two parts should be considered for model selection. One part is triangulation
and penalty parameters while the other is the selection of the number of significant

principal surfaces.
4.5.1 Triangulation

Both the triangulation and penalty parameters determine the complexity of the
model. Hansen et al. (1998) did not use smoothness penalty term but use the Rao
statistic to choose an optimal triangulation. In contrast, Koenker and Mizera (2004)
used an arbitrary triangulation and then used a penalty term to restrict the com-
plexity of the model. We adopt the philosophy of roughness penalty as Koenker
and Mizera (2004). Penalties on the roughness of mean function and that of princi-
pal functions are introduced in (4.9). Cross-validation, generalized cross-validation,
AIC/BIC are generally used criteria to choose penalty parameters. However, it is
not easy to derive a form for generalized cross-validation or define AIC/BIC. So we
use crossing-validation. Simplex method is used to find the penalty parameters to

minimize —2logL in (4.10) calculated from cross-validation.
4.5.2  Number of principal surfaces

Identifying the number of principal component surfaces is important in sparse
data analysis. Extra principal component functions take into account of the vari-

ation in mean function. Lack of principal component functions cannot capture all
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subject-specific variation and leave the white noise related. In this case, all estima-
tion procedure based on uncorrelated errors will fail.

Several methods are proposed for selecting the number of principal surfaces. We
follow the idea of classic principal component analysis which is to find components
corresponding to significant large eigenvalues. We estimate variance matrix D for
each case J = 1,2, ... to get a group of estimates Dl, Dg, ... with decreasing diagonal

elements in each estimated matrix. Then we choose the J such that

J—1 J
In matrixﬁj, ZDJJ < Z

while
J+1

In matrix leh Z DJJ > Co Z DJJ

The values of ¢; and ¢y are determined case—by—case. ThlS idea is also used in James

et al. (2000) and Zhou et al. (2008).

4.6 Simulation

This section sets up some simulations to illustrate our estimation procedure. We
choose a rectangular domain with a hole inside as shown in Figure 21. Test functions

are designed as follow, in which two principal component functions are orthonormal.

zi(z,y) = p(w,y) + filz,y) + f2(z,y) + &,

where

_ (z—60)
= 100( 1+ = el

filz,y) = log(z+y+5)/3.363,

fa(z,y) = 2.23(Vx+y— .708log(z +y + 5)).
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Figure 21: Heatplots of pre-selected functions for reduced rank mixed-effects models.
Top left penal shows the mean function; top right panel shows the first principal
component function; bottom left panel is the second principal component function;
bottom right panel is the triangulation we used in the estimation.
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We set up six cases to test the performance of our model and estimation pro-
cedure. In detail, we chose the number of subjects as 100 or 50, and the number
of observations for each subject is uniformly sampled from range of 11 to 20. The
locations of observations are also uniformly sampled from the domain. We considered
two levels of D, and two levels of o, which are D, = (36,4) or D, = (6,4) while
oc=.orl.

We simulated each case for 400 times. Number of principal components is pre-
selected as 2. In each replicate, we get fitted value Z; and then calculate mean squared

errors between z; and true value Z., defined as

n

MSE = [ 301~ m100) " =m0 oms N

i=1
where m; is number of observations each time. In the meantime, we obtained the esti-
mated mean function ji(z, y) and principal component functions fi(z,y) and fa(z,y)

and calculated integrated squared error defined as

ISE(f) = /Q ( fy) — fa, y))dedy. (4.15)

The simulation results are reported in Table 6 show that our procedure gives
consistent estimation of the parameters in the model and the mean function and
principal component functions. Even in the last two cases where the diagonal elements
of variance matrix D are close to each other, our estimation procedure could identify
these two components correctly. Figures 22 and 23 show the fitted surfaces in six

scenarios mentioned in Table 6.



Table 6: Table of simulation results for reduced reank mixed-effects model. "nsubj” is number of subjects while "nobs”
is total number of observations; the ”z” column is fifth root of MSE defined in (4.14); the MISE for each smooth function

is defined in (4.15); the MSE for all parameters are shown in last three columns.

MSE™?) MSE™?)
nsubj nobs (Da1, Das,0) | 2 i fi  fa | D1y (MSE) Ds (MSE) o(MSE)
20 770 (6,4,1) 685 .569 442 508 1.500 1.029 8.702e-4
50 770 (6,4,0.1) 299 554 450 468 1.207 0.813 2.549e-5
20 770 (36, 4, 1) 691 .658 .219 .396 55.810 0.824 8.869¢-4
20 770 (36,4,0.1) 304703 197 274 53.108 0.770 8.008e-6
100 1500 (36, 4, 1) 681 .600 .201 .363 28.455 0.502 4.403e-4
100 1500 (36,4, 0.1) |.288 .590 .192 .264 24.114 0.299 1.090e-5

LS
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Figure 22: Heatplots of fitted functions for one simulated dataset for the first three
settings in Table 6 from left to right.
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Figure 23: Heatplots of fitted functions for one simulated dataset for last three settings
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4.7 Texas temperature analysis

In this section, we analyze the temperature variation over space and time in Texas
by applying our model to monthly average temperatures recorded by International
Research Institute for Climate and Society (IRICS) at 52 weather stations spread out
in Texas.

We first analyze all December temperature over 10 years. A sequence of models
with different numbers of principal component functions are considered. The diagonal

elements of estimated covariance matrix D in decreasing order is given in Table 7.

Table 7: The diagonal elements of estimated covariance matrix D when we choose
three principal components and four.

Number of principal comp. 3
Principal comp. 1 2 3
D 186.55 14.04 11.57
Number of principal comp. 4
Principal comp. 1 2 3 4
D 187.14 16.63 12.47 1.82

We decide to use three principal components for the model based on the results
in Table 7. Figures 24 and 25 show the estimated functions and point-wise bootstrap
standard error for all estimations. 100 resamples are taken in the bootstrap. Mean
function has a strong latitude trend. The first principal component function is close
to a constant function and therefore indicates year-specific aviation from the 100-year
average. The second and third principal component functions show geological varia-
tions. All bootstrap standard deviations are comparatively small except on boundary.
The large standard deviation at the boundary is due to the sparsity of observations.

Figure 26 shows the time series plot of principle scores.
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Figure 24: Estimated mean function and first principal component function.
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Figure 25: Estimated second and third principal component functions.
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Figure 26: Time series plots for the principal component scores.
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CHAPTER V

CONCLUSION AND FUTURE WORK

This work introduced bivariate B-splines and explained its usage in two spatial
problems. These splines, as polynomial functions of barycentric coordinates over
triangle partition of domain, solve the challenge risen when spatial domain is irregular.
It is easy to evaluate and could be widely incorporated to different models. We apply
these splines to estimate smooth surfaces over complicated two-dimensional domain
in two different scenarios and proposed two models: the penalized spatial smoothing
model and the reduced rank mixed-effects model. Simulation results are promising
which demonstrate that bivariate B-splines are powerful and flexible and the models
are appropriate.

In the future, we will work on the dynamic factor model which takes into account
of the dynamic effects over time. We can let a; follow a Vector Auto regressive model
instead of identically and independently sampled from a normal distribution as in the

reduced rank mixed-effects model. The dynamic factor model is

/

Z; = BZQH—FBZ@OQ + €, €~ N(O,O’2[)
R
Q; = > Ui, + i, ni ~ N(0,D)
r=1 (5.1)

E(Eﬂ”]i/) = 0, i,i’zl,..,n

oo =1

\

with parameter set M = {02, D,o,0,, {@Dr}fl}.
We will also continue to explore the triangulation design for the purpose of

improving modeling accuracy and speeding up the computations.
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