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ABSTRACT 

 

Fundamental Investigation of Pore Pressure Prediction  

During Drilling from the Mechanical Behavior of Rock. (August 2011) 

Juan Alberto Rivas Cardona, B.S., Universidad de Guanajuato, Mexico; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Thomas Lalk 
 Dr. Egidio Marotta 

 

An investigation was conducted as a preliminary effort to develop a methodology to 

predict pore pressure in a rock formation during drilling, for all types of rocks and 

situations. Specifically, it was investigated whether or not the virgin pore pressure (the 

pore pressure of the undisturbed rock) can be determined at the drill bit from drilling and 

environmental parameters, as well as solid and pore fluid properties.  

 

Several drilling situations were analyzed to develop models relating pore pressure to 

drilling and environmental parameters, as well as solid and pore fluid properties. Three 

approaches to the modeling of such drilling situations were considered, which were used 

to predict pore pressure and compare the predictions to actual drilling data. The first 

approach used the concept of the effective stress in conjunction to the Mohr-Coulomb 

failure criterion. The second approach used the concept of the mechanical specific 

energy. The third approach made use of basic principles to relating virgin pore pressure 

to drilling and environmental parameters, as well as solid and pore fluid properties. This 

third approach resulted in the proposal of a more fundamental way of viewing 

mechanical specific energy (MSE) and the use of Biot’s poroelasticity theory to describe 

the cutting process of rock. 

 

The first approach did not provide an adequate prediction of virgin pore pressure for all 

types of rocks and situations.  The second approach showed promising results with 
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limited actual drilling data. A sensitivity analysis of the model resulting from the third 

approach indicated that pore pressure, type of rock, and back rake angle of the cutter are 

the most significant factors affecting the energy required to break the rock. Moreover, 

rate of cutting stress, depth of cut, and type of pore fluid become significant factors of 

the cutting process only when a low-porosity, low-permeability rock is considered.  

 

It was concluded that there exists a relationship among pore pressure, drilling and 

environmental parameters, as well as solid and pore fluid properties. Therefore, it is 

possible in principle to determine the virgin pore pressure at the drill bit from drilling 

parameters, environmental parameters, and material properties. However, further work is 

required to establish a quantitative relationship among the significant parameters before 

a methodology to predict virgin pore pressure for all types of rocks and situations can be 

developed.     

 

 



 v

DEDICATION 

 

This work is dedicated to Wendy, who encouraged and supported me throughout this 

endeavor; to my sister, Alejandra, for those great discussions that made us enjoy being 

Ph.D. students; and to my parents Juan Jose and Ma. del Pilar , because they instilled in 

me the joy of learning. 



 vi

ACKNOWLEDGEMENTS 

 

I would like to thank my two advisors: Dr. Tom Lalk, for those long hours of 

discussions, thoughtful insights, and laughs; and Dr. Ed Marotta, for his trust and the 

opportunity to work in his group. They focused on providing a quality education rather 

than training, and that surely helped me in my professional development. Their support, 

encouragement, and help to achieve the completion of this dissertation are greatly 

appreciated. 

 

I would also like to thank Dr. Fred Chester and Dr. Judith Chester for being part of my 

committee, and for providing useful information, insights, and feedback related to this 

work. Similarly, I like to thank Buddy Bollfrass for his assistance and insights provided.  

 

Early stages of this work were supported by BP America, under Project No. 36380. 

Additionally, part of my education was supported by the Mexican National Council of 

Science and Technology (CONACYT for its acronym in Spanish: Consejo Nacional de 

Ciencia y Tecnología) through a national scholarship.  

 

Finally, I would like to express my deep appreciation for all those, close or far away, 

who have supported me in either way during my time in College Station, especially my 

family and my very good friends.     



 vii

NOMENCLATURE 

 

 surface area, in2  ܣ

 ௖௛௜௣  surface area of the lateral face of the rock chip, in2ܣ

AEP3 Acoustical Emission for Pore Pressure Prediction 

CCS  Confined Compressive Strength, psi 

 ௙  compressibility of the fluid, psi-1ܥ

  ௠  compressibility of the solid matrix, psi-1ܥ

 depth measured from the seawater floor, ft  ܦ

 ௕ diameter of the borehole, inܦ

݀௖௨௧  depth of cut, in 

 ௖௨௧  depth of cut, ftܦ
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 Young’s modulus, psi  ܧ

ECD Equivalent Circulation Density, ppg 

EFFM  mechanical efficiency 

 force vector, lbf  ࡲ

 ௖௨௧௧௘௥  cutting force of the drill bit tooth, lbfܨ
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 ௙  bulk modulus of the fluid, psiܭ

 ௠  bulk modulus of the solid matrix, psiܭ
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݉  coefficient of internal friction 

 Biot modulus, psi  ܯ

MSE Mechanical Specific Energy, psi 

MSEBR  mechanical specific energy required solely to break the rock, psi 
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measured downhole, psi 
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environmental conditions to which the rock is subjected, psi 
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rock, psi 

 ே  normal trend of mechanical specific energy, psiܧܵܯ
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MSErock matrix  mechanical specific energy required to break the rock skeleton of 

a rock element, psi 

MSE୰୭ୡ୩ ୱ୲୰୳ୡ୲୳୰ୣ  mechanical specific energy required to counteract the structural 

characteristics of the rock skeleton in order to break it, psi 

MSEୱ୳୰୤ୟୡୣ  mechanical specific energy calculated from drilling parameters 

that are measured at the surface of the rig, psi 

MWD  Measurement While Drilling 

 overburden stress, psi  ܤܱ

 traction vector, psi  ࢖

PDC  Polycrystalline Diamond Compact 

௛ܲ  hydrostatic mud pressure or confining pressure due to the drilling 

mud, psi 

௣ܲ  pore pressure, psi 

 ே  normal pore pressure, psi݌ܲ

PSP3 Principal Stress Pore Pressure Prediction 

 fluid flux vector, ft/s  ܙ

 ௭  fluid flux in the z-direction, ft/sݍ

 moment arm from cylindrical center of bit, in  ݎ

ܴ  radius of the drill bit, in 
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ܴ௡  resistivity of normal trend at same depth as ܴ௢, ohm·m 

ܴ௢   observed resistivity at a given depth, ohm·m 

ROP  Rate of Penetration, ft/h 

RPM  Revolutions per Minute 

ܵ௖   cutting stress, psi 
ሶܵ௖  rate of cutting stress, psi/s 

ܵ଴  cohesion of rock, psi 

T torque, lb·ft 

T୤  temperature of the pore fluid, °F 

TVD  True Vertical Depth, ft 

T௦  temperature of the rock, °F  

v velocity of cutter, in/s 

௕ܸ  bulk volume, ft3 

௣ܸ  pore volume, ft3 

WOB Weight on Bit, lbf 

݉ ௠   main factors of regression model (forݔ ൌ 1,2,3,…) 

݉ ௠௡  interactions between the factors ݉ and ݊ (forݔ ൌ 1,2,3,… and 
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 Biot-Willis coefficient  ߙ

݉ መ௠௡  coefficient estimates of the regression model (forߚ ൌ 1,2,3,… 

and ݊ ൌ 1,2,3, …) 

 ௜௝  Kronecker deltaߜ

߳  random error of regression model 

εୠ  volumetric bulk strain  

 ௜௝  strain tensorߝ

ε୫  volumetric strain of the solid matrix 

 volumetric pore fluid content  ߞ
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ηୡ୳୲୲ୣ୰  efficiency of the energy transferred from the drill bit to the rock. 

η୭୴ୣ୰ୟ୪୪  overall efficiency of the drilling process 

ηୱ୲୰୧୬୥  efficiency of the energy transferred along the drill string from the 

surface to the bottomhole 

 (°) back rake angle of cutter, degrees  ߠ

 permeability (constant), Darcies  ߢ

࢑ന  permeability second-order tensor, Darcies 

 bit-specific coefficient of sliding friction  ߤ

 ௙  dynamic viscosity of the fluid, centipoiseߤ

  Poisson’s ratio  ߥ

 ௕  bulk density of the rock, g/ccߩ

 ௙  density of the pore fluid, g/ccߩ

 ௦  density of the rock matrix, g/ccߩ

 ௦௪ density of seawater, g/ccߩ

 normal stress at the failure plane, psi   ߪ

 Ԣ  effective stress, psiߪ

σୡ  confining stress, psi 

 ௜  intermediate stress, psiߪ

 ௜௝  stress tensor, psiߪ

 ௠௔௫  maximum principal normal stress, psiߪ

 Ԣ௠௔௫   maximum principal effective stress, psiߪ

 ௠௜௡  minimum principal normal stress , psiߪ

 Ԣ௠௜௡  minimum principal effective stress, psiߪ
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CHAPTER I 

INTRODUCTION 

 

Rocks can be described as solid aggregates composed of crystals and amorphous mineral 

particles that are joined by cementitious materials [1]. In general, there are three main 

types of rocks: igneous, metamorphic, and sedimentary. Igneous rocks consist of a 

completely crystalline assemblage of minerals. Metamorphic rocks are formed from 

igneous and sedimentary rocks that were chemically and/or physically modified as a 

result of excessive temperature and pressure. Sedimentary rocks consist of an 

assemblage of mineral grains and particles from other rocks in a matrix of materials such 

as clay minerals, calcite, quartz, etc. Since sedimentary rocks are formed from loose 

material that is then compacted, they can contain voids or empty spaces, some of which 

may form an interconnected system of pores [1]. Sedimentary rocks constitute the 

majority of the oil producing formations since they generally contain fluids within their 

pores. The present work is relevant only to sedimentary rocks. Igneous and metamorphic 

rocks are not included in the scope of this work.  

 

1Unlike other materials, the mechanical behavior of sedimentary rocks depends to a large 

extent on the non-solid part (pores or void space) of the material [2] and the fluids inside 

the pores. The pressure exerted by the fluids trapped inside the pores of a rock is termed 

pore pressure. Pore pressure is an important parameter in the mechanical behavior of the 

rock because it corresponds to the portion of the total stresses applied to the rock that is 

supported by the pore fluid. 

 

Terzaghi [3] used the term effective stress to define the portion of the load supported 

solely by the rock matrix, that is, the total stress minus the pore pressure. Knowledge of 

the pore pressure in the formation is of great importance in the oil and gas industry, 

____________ 
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because a high pore pressure makes a well more prolific, but it also represents a potential 

hazard during drilling.   

 

Drilling fluid is usually circulated when a borehole is being drilled into the Earth. The 

drilling fluid is commonly termed drilling mud or mud. In the oil and gas industry, the 

drilling mud is characterized by its density and the term mud weight is commonly used 

to refer to the density of the mud. Therefore, the adjustments in hydrostatic pressure in 

the borehole are then made by varying the density of the mud (that is, varying the mud 

weight). The circulating mud has several purposes: (1) it carries the crushed rock from 

the bottom hole to the surface; (2) it serves as a cooling fluid for the drilling process; but 

perhaps even more important, (3) the hydrostatic column of mud in the borehole 

maintains equilibrium with the formation pore pressure.   

 

It is desirable that the hydrostatic (mud) pressure be equal to the formation pore pressure 

to maintain a perfect equilibrium during drilling. This requires a means to determine the 

pore pressure ahead of the bit in the formation before drilling into it. A distinction has to 

be made between the formation pore pressure in the undisturbed rock (before drilling), 

which is termed virgin pore pressure in this dissertation, and the modified pore pressure 

at the bit caused by the drilling process.  Ideally, it is desirable that the drilling operator 

would have means to determine and monitor formation virgin pore pressure ahead of the 

drill bit during drilling.  With this information, the drilling mud weight (density) could 

subtly, and by choice, be changed to prevent the flow of formation fluids into the drill 

bore and/or minimize mud flow into the oil producing formation. With this capability, 

petroleum engineers could minimize formation damage, whether due to drilling mud 

invasion or to later formation outflow, which would result in maximum formation 

production life.  Additionally, an ability to alter drilling fluid density by choice behind 

the bit would support remote and real-time intervention from the surface. 
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Any improvement in the drilling process that reduces formation degradation caused by 

an over-balanced situation will ultimately increase formation production volume and 

producing life. An increase in the production provides the opportunity to receive billions 

of dollars of additional revenue per well. Problems associated with controlling 

abnormally pressurized formations and wellbore instability were estimated to cost the oil 

and gas industry $7 – $8 billion annually [4]. Current efforts at minimizing drilling mud 

weight increase the risk of gas kicks or blowouts, reservoir flow damage, wellbore 

instability, and subsequent sticking of tools or pipe. In 2004, a study in the Gulf of 

Mexico revealed that non-productive time associated with formation-fluid influx, 

drilling fluid loss, and wellbore instability was responsible for more than 40% of all non-

productive time during well construction [4]. Such expenses at BP America generate 

average losses of $180 million per annum. For these reasons, there is a need to develop 

a method that could be used to determine the virgin pore pressure ahead of the bit 

during drilling. BP America asked the Department of Mechanical Engineering at Texas 

A&M University to investigate the possibility of developing such methods. Because of 

the significance of any such methodologies and subsequent technologies that could 

reduce this loss, BP America asked that the investigation begin with a thorough 

evaluation of existing technologies, as well as existing or potential theories. 

 

A functional decomposition allowed identifying two main top-level functions for the 

design of a methodology that could be used to determine virgin pore pressure ahead of 

the bit during drilling. The two functions of such methodology are: (1) to provide means 

to determine the virgin pore pressure at the bit, and (2) to provide means to relate the 

virgin pore pressure at the bit to the virgin pore pressure at the far-field. The far-field is 

defined as the location away from the drill bit where the pore pressure has not been 

altered by the drilling process.   

 

In early stages of the project with BP America, a literature search for methods to 

measure pressure or formation properties was conducted. The literature database was 
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then used to aid in the generation of the concepts that could satisfy the need. Two 

selected concepts (Acoustical Emission for Pore Pressure Prediction, AEP3, and 

Principal Stress Pore Pressure Prediction, PSP3) were chosen for further investigation 

and evaluation. Both concepts were proposed as possible means to determine the virgin 

pore pressure at the bit. However, the need remains for a concept that can be used to 

relate the pore pressure at the bit to the pore pressure at the far-field. Detailed 

descriptions of these processes and results have been given previously in Interim Reports 

to BP America [5-7] and are not described in this dissertation. Additionally, early stages 

of the development of the PSP3 concept have been described by Richardson [8]. The 

work presented in this dissertation is a continuation of the investigation on the PSP3 

concept conducted for BP America from a fundamental perspective rather than an 

empirical approach. Work done on the AEP3 concept is not part of the scope of this 

dissertation.  

 

The PSP3 concept was originally thought to be a method that could relate drilling 

measurements already available to virgin pore pressure, making it relatively inexpensive 

to implement. The hypothesis was that the virgin pore pressure at the bit could be 

determined during drilling by identifying the effective stresses of the rock being drilled, 

in combination with a Mohr-Coulomb failure criterion. Empirical previous work on the 

PSP3 concept indicated that, besides the effective stress, a relationship between the 

amount of energy required to fragment the rock and virgin pore pressure might exist. 

Teale [9] used the term Mechanical Specific Energy (MSE) to designate that amount of 

energy per unit volume required to fragment the face of a solid wall of rock. A 

mathematical expression that could describe such a relationship was also developed, and 

it conveniently expressed the virgin pore pressure as a function of mechanical specific 

energy, hydrostatic (mud) pressure, and rock properties. However, the virgin pore 

pressure determined with this PSP3 equation could not be validated against the actual 

virgin pore pressure (at the bit) provided.  
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The lack of validation of the PSP3 equation has led us to reconsider the basis of the PSP3 

concept from a different perspective. For instance, material properties such as cohesion 

and friction angle of the rock formation have already been considered in the 

development of the PSP3 equation. However, other properties such as porosity and 

permeability have not been considered and they might have a significant influence on the 

virgin pore pressure encountered in the formation. Ultimately, it is desirable to develop a 

methodology that can be used to determine virgin pore pressure from drilling parameters 

that would be reliable for all types of rocks and situations. The different situations 

encountered in a formation during drilling will depend on the environmental conditions, 

which can be described by several parameters. Environmental parameters can be divided 

in two groups: the external parameters describing the surrounding conditions to which a 

rock element is subjected during drilling, for example, confining stresses from Earth, and 

hydrostatic (mud) pressure; and (2) the internal parameters describing the conditions at 

the interior of the solid matrix such as type of fluid inside the pores, pore pressure, and 

temperature. 

 

Therefore, the objective of this work is to determine whether or not it is possible to 

determine the virgin pore pressure at the drill bit from drilling parameters, 

environmental parameters, and material properties.  

 

In order to satisfy this objective, three approaches have been considered in an effort to 

establish a relationship among virgin pore pressure, drilling parameters, environmental 

parameters, and rock properties. The first and second approaches considered were 

developed empirically. Results from the first and second approach indicated that a 

fundamental understanding of the relationship among virgin pore pressure, drilling 

parameters, environmental parameters, and rock properties is required. Therefore, a 

fundamental approach (third approach) considering fluid mechanics, porous media, heat 

transfer, thermodynamics, and rock mechanics, is proposed to explain the role of virgin 

pore pressure in the mechanical behavior of rock during drilling. This fundamental 
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approach could eventually evolve into a methodology for virgin pore pressure 

determination that would be reliable for all types of rocks, and situations. 

 

This dissertation begins with a background of the work conducted to provide means to 

predict virgin pore pressure at the drill bit from drilling parameters, environmental 

parameters, and material properties (Chapter II). Then, the development of the PSP3 

concept is presented in Chapter III, which includes the results of the attempts to validate 

this concept. The second approach that proposes to use the fundamental parameter MSE 

in Eaton’s equation [10] (instead of electrical resistivity or sonic log data) is described in 

Chapter IV. Subsequently, a fundamental approach to relating pore pressure to drilling 

parameters, environmental parameters, and material properties is presented in Chapter V. 

As part of this fundamental approach, a numerical analysis based on Biot’s poroelasticity 

theory was conducted, which considers fluid mechanics, rock mechanics, and porous 

media interactions. Results from the numerical analysis are presented in Chapter VI 

which allow determining the significant parameters of the drilling process. Numerical 

experiments were also run to determine whether the PSP3 concept and the concept of 

using the fundamental parameter MSE in Eaton’s equation comply with basic principles 

of fluid mechanics, rock mechanics, and porous media. A summary of this work is 

presented in Chapter VII, along with the conclusion of the investigation. Finally, 

recommendations for future work are presented in Chapter VIII.  
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CHAPTER II 

BACKGROUND 

 

In this chapter, the background and motivation of the current investigation is presented. 

A definition of basic terms used in this dissertation is presented first, followed by a 

description of the current methods used to predict pore pressure in industry. Then, a need 

analysis is presented where the functions needed to satisfy the objective of this 

dissertation are identified. A historical background of the approaches considered in the 

course of this investigation in order to address the functions identified in the need 

analysis is also presented.  The ideas presented in this chapter are accompanied with a 

literature review of relevant investigations that have addressed or attempted to address 

some of the functions that have been identified in the present work as needed to satisfy 

the objective.   

 

2.1 Definition of terms 

Underground formations are the result of multiple layers of sediment that were 

sequentially deposited over previous layers. This process is conducted over geological 

time. The underground formation has to carry the weight of the overlying formations. 

The vertical stress at the bottom of a column of rock sediments is known as overburden, 

and it can be expressed mathematically as  

 

ܤܱ ൌ ௦௪ܦ௦௪݃ߩ ൅ න ݖሻ݃݀ݖ௕ሺߩ
஽

଴
 (2.1)

 

where ߩ௦௪ is the density of seawater, ܦ௦௪ is the depth of seawater, ߩ௕ሺݖሻ ൌ

ሺ1 െ ߶௦ሻߩ௦ሺݖሻ ൅ ߶௦ߩ௙ሺݖሻ is the bulk density of the rock [11], ߩ௦ is the density of the 

rock matrix, ߩ௙ is the density of the pore fluid, ߶௦ is the porosity of the rock, ݃ is the 

acceleration of gravity, ܦ is the depth measured from the seawater floor (mudline), and 

the ݖ-direction is pointing vertically downwards and has its origin at mudline. Equation 
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(2.1) implies that the overburden stress is the pressure exerted by all overlying material, 

both solid and fluid (and both, fluid above the rock and fluid within the rock). The 

typical gradient of overburden stress is ~1 psi/ft [2].  

 

As the rock sediments are deposited, the formation is compacted, the pore size 

decreases, and the fluids are expelled from the pores. In formations with high 

permeability (which accounts for the connectivity of the pores), the pore fluid can escape 

and migrate to the surface at about the same rate as the rate of compaction. In this case, 

the fluid in the pores will only support the weight of the fluid column above, and a 

normal trend of pore pressure is maintained. The normal pore pressure at a given depth 

D from the mudline can be expressed as 

 

ே݌ܲ ൌ න ݖሻ݃݀ݖ௙ሺߩ
஽

଴
 (2.2)

 

where ߩ௙ሺݖሻ is the density of the  pore fluid, ݃ is the acceleration of gravity, ܦ is the 

depth from the mudline, and the ݖ-direction is pointing vertically downwards and has its 

origin at the mudline. The typical gradient of normal pore pressure is 0.45 psi/ft [2]. It 

can be observed from Equation (2.2) that the normal pore pressure trend can be readily 

known if the density of the pore fluid is known. In real drilling situations, however, it is 

common to encounter formation zones where the pore pressure is significantly different 

from the normal pore pressure. These zones are termed abnormally-pressured, and it is 

said that they exhibit an abnormal pore pressure. Usually, abnormally-pressured zones 

exhibit pore pressure that is above the normal pore pressure. In this case, it is said to be 

an over-pressured zone. It is extremely important to detect over-pressured zones before 

drilling into them since they represent a potential hazard during drilling. Figure 2.1 

illustrates the typical situation of overburden stress, normal trend of pore pressure, and 

over-pressured zones encountered in offshore drilling. Figure 2.1 also shows the fracture 
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pressure which is the pressure required to induce fractures in the rock formation at a 

given depth. 

 

 
Figure 2.1 Typical overburden, fracture pressure, and normal pore pressure trends in 

offshore drilling. 
 

 

There are several mechanisms that can cause a zone to be over-pressured. Fjaer et al. [2] 

groups the causes of over-pressure from investigations done by other researchers [12-14] 

in three main mechanisms: “(1) the rate of sedimentation and compaction is higher than 

the rate of fluid expulsion and migration, (2) tectonic loading that leads to undrained 

shear stress with associated pore pressure development, and (3) pore fluid generation or 

expansion by thermal or chemical processes.”  

 

It is important to note that the definitions of pore pressure (either normal or abnormal 

pressure) described above refer to the virgin pore pressure of the formation. That is, the 

pore pressure on the undisturbed rock that has been in equilibrium for a long period of 

time, and before any external process (such as drilling) has perturbed the formation. 

Furthermore, the drilling process causes a local change in the formation pressure due to 

the large stresses imposed on the rock to break it and the pressures of the drilling mud. 
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In this dissertation, the terms pore pressure and abnormal pore pressure refer to the 

virgin pore pressure (either normal or abnormal), even if not specified, unless otherwise 

stated.  

 

Regardless of the cause of abnormal pore pressure, the ultimate goal is to determine the 

(abnormal) virgin pore pressure ahead of the bit during drilling. A brief review of the 

current methods to predict abnormal pore pressure is presented in the following section.  

 

2.2 Current pore pressure prediction methods 

The history of pore pressure prediction dates back to the 1930s when Terzaghi [3, 15] 

introduced the concept of effective stress. Terzaghi used the term effective stress to 

define the portion of the load supported solely by the soil skeleton. Terzaghi related the 

effective stress to the total stress and to the pore pressure as 

 

ᇱߪ ൌ ்ߪ െ ௣ܲ (2.3)

 

where  ߪԢ is the effective stress,  ்ߪ is the total stress, and ௣ܲ is the pore pressure. 

Terzaghi used the adjective effective to remark that  only a fraction of the total stress (the 

effective stress) is effective in causing important changes in strength, volume, or shape 

of the solid matrix. The concept of effective stress was developed empirically for soils, 

but it was theoretically proved correct several years later with Biot’s general theory of 

consolidation [16], and its application was extended to rocks. 

 

Although Terzaghi’s work on soil mechanics was presented in the 1930s, it was until the 

1960s that pore pressure prediction became a serious pursuit in the oil industry [17].  In 

1965, Hottmann and Johnson [18] presented probably the first formal method for 

predicting abnormal pore pressure using resistivity and sonic log data. The method of 

Hottmann and Johnson was based on the effective stress concept of Terzaghi and the 

observations of Hubbert and Rubey [19] of the effective stress changes in clay. Hubbert 
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and Rubey observed that the effective stress in porous clay depended solely upon the 

degree of compaction of clay. Since the porosity of clay is a useful indicator of the 

degree of compaction, it was inferred that for each value of porosity there exists a 

maximum value of effective stress which the clay can support. Therefore, Hottmann and 

Johnson proposed that the fluid pressure could be related to the degree of compaction of 

the rock, and the porosity of the rock could be used as a measure of the degree of 

compaction. Moreover, the porosity of the rock could be estimated from acoustic or 

resistivity methods. Therefore, Hottmann and Johnson proposed a method for 

determining abnormal pore pressure from resistivity and sonic logs. Hottmann and 

Johnson observed from acoustic and sonic logs that the porosity decreases as a function 

of depth in formation zones that exhibit a hydrostatic (normal) pore pressure. Hottmann 

and Johnson found that the porosity as function of depth in zones with a normal pore 

pressure trend exhibits a normal compaction trend (NCT). In abnormally-pressured 

zones, the data from sonic or resistivity logs deviated from the NCT. In order to 

determine the abnormal pore pressure, Hottmann and Johnson proposed to measure the 

amount of divergence (at a given depth) from the NCT and relate it to the observed 

pressure in adjacent reservoir formations.  

 

In 1975, Eaton [10] extended the work of Hottmann and Johnson by incorporating the 

effects of the overburden stress to the method of determining pore pressure. He 

presented in equation form a method to determine abnormal pore pressure from the 

electrical resistivity. The equation proposed by Eaton was 

 

௣ܲ

ܦ ൌ
ܤܱ
ܦ െ ൤

ܤܱ
ܦ െ ൬ ௣ܲ

൰ேܦ
൨ ൬
ܴ௢
ܴ௡
൰
௡

 (2.4)

 
௉೛
஽

 = virgin pore pressure gradient (psi/ft) 

ை஻
஽

 = overburden stress gradient (psi/ft) 
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ቀ௉೛
஽
ቁ
௡

 = normal virgin pore pressure gradient (psi/ft) 

ܴ௢ = observed resistivity at a given depth (ohm.m) 

ܴ௡ = resistivity of normal trend at same depth as ܴ௢ (ohm.m) 

 

In Equation (2.4), the expression ቂை஻
஽
െ ቀ௉೛

஽
ቁ
ே
ቃ represents the effective stress of the 

formation in normal compaction; whereas the n-power of the ratio ቀோ೚
ோ೙
ቁ represents the 

ratio of the effective stress in the abnormally-pressured zone to the effective stress in the 

hypothetical normal-pressured zone at the same depth. It is important to mention that 

Equation (2.4) was developed from trial-and-error fitting of data. After evaluation of 

Equation (2.4) with available data, Eaton found that the ݊ coefficient with a value of 1.2 

better fit the resistivity data that was used. Eaton also recognized that the ratio of other 

measurements could be utilized in Equation (2.4) instead of electrical resistivity. He 

proposed the use of electrical conductivity (which is the inverse of resistivity), the 

corrected d-exponent, and sonic-log data (with a value of 3 for the exponent).  

 

In principle, Eaton’s reasoning to develop Equation (2.4) seems to be logical. By using 

the ratio of actual resistivity to the resistivity in a normal compaction situation, Eaton 

attempted to determine the portion of overburden load supported by the fluid. The 

question remains of whether or not electrical resistivity (or any of the other parameters 

used by Eaton) is the best parameter to track a change in the normal virgin pore pressure 

trend.  

 

It was reasoned originally that electrical resistivity would be a good indicator of the 

water content in the rock [18]. Moreover, it was assumed that the more water content the 

higher (virgin) pore pressure and the lower the resistivity would be. However, this 

theory, which is the basis for the Eaton’s equation, remains questionable [20].  Electrical 

resistivity is affected by other factors such as porosity of the rock, permeability, moisture 

content, concentration of dissolved electrolytes, temperature, phase of the pore fluid, 
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clay content, among others. Thus, there might be other parameters that affect the 

resistivity value of a rock but have negligible effect on the virgin pore pressure. In other 

words, a change in the value of resistivity from its normal trend might have, in certain 

occasions, nothing to do with abnormal virgin pore pressure. Nevertheless, Eaton’s 

equation is until today one of the most commonly used relationships to determine virgin 

pore pressure [21]. 

 

Since Eaton presented his famous equation, there has been an enormous amount of 

publications and proprietary work on pore pressure predictions. According to Standifird 

et al. [4], investment to better understand abnormal pore pressure can be categorized into 

three areas: data acquisition, modeling, and software. Currently, the main sources of data 

acquisition to understand rock and fluid properties are surface logging, electric logging 

(wireline or logging while drilling [22]), and seismic reflection. A big effort has been 

focused on developing deterministic and stochastic models [23, 24] to better translate the 

measurements into the desired properties [4]. Advancements in software improve the 

efficiency of using the available models. However, the pore pressure prediction methods 

are still based on the concept of effective stress and Eaton’s equation. That is, current 

pore pressure prediction is primarily based on the divergence of the petrophysical 

measurements from the normal compaction trend [25-27]. This implies that well 

planning to estimate the pore pressures is based on neighboring well information and 

usually seismic data of the well being planned (since seismic data can be gathered before 

the well is drilled).  

 

Neighboring wells provide the most accurate information for pore pressure prediction. 

This is valid because formation layout can span several hundred miles. After a well is 

drilled, wireline operations can be used to measure other properties of formations 

adjacent to the wellbore. This data can then be applied to the new well site within close 

proximity. However, these formations may be separated by faulting, and the new well 

site will exhibit different properties.  
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Seismic modeling can also provide valuable pre-drill data. However, the most advanced 

seismic methods, seismic tomography, have a resolution on a readable scale of half a 

kilometer [28] when used from the surface. These methods may allow for ballpark 

estimates, but abnormal pressures variations may occur within a few hundred feet. These 

methods can be improved by applying down-hole seismic measurement data, cuttings 

data, leak-off test data, and other drilling information to improve the model. Pore 

pressure can also be estimated using inference methods, but these methods estimate 

pressures in shale, not sand. The pressures in nearby regions of sand and shale are not 

necessarily the same; therefore, there is no way to predict pressure changes at their 

boundaries until they have been crossed.  

 

An advanced method of monitoring downhole pressure is measurement while drilling 

(MWD). MWD data can be taken by several tools. These tools are able to measure direct 

formation pressure by inserting a probe or drawing down on the formation. The 

instruments measure the formation pressure after allowing the pressure to equilibrate. 

Though helpful, this technique cannot be applied to shales that have a very low 

permeability since the time for pressure equilibration is extremely long. Furthermore, 

these measurements must be taken behind the bit, and the pore pressure of neighboring 

sand/shale formations cannot be assumed to have the same formation pressure. 

Therefore, the pore pressure will be previously encountered before the formation 

pressure can be measured. Even though pore pressure problems can be prepared for in 

advance, the drilling operator will not know at what exact depth they will occur. Thus, 

the need is sill for a method that can be used to predict pore pressure ahead of the bit 

during drilling. Next section describes a need analysis conducted in an effort to identify 

the functions that are necessary for a methodology that can be used to determine pore 

pressure ahead of the bit.   
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2.3 Need analysis 

In a perfect drilling situation, the hydrostatic (mud) pressure would always equal the 

virgin pore pressure. This perfect drilling situation would be easily accomplished if the 

virgin pore pressure could be exactly determined at each depth. In real drilling situations, 

however, the hydrostatic (mud) pressure is kept above the pore pressure to equilibrate 

small or unexpected variances in virgin (abnormal) pore pressure, but below the fracture 

pressure to prevent damage to the formation. Thus, the pressure of the hydrostatic 

column of mud must be controlled between two boundaries: the formation pore pressure 

and the formation fracture pressure (see Figure 2.1). If the hydrostatic pressure of the 

mud column decreases to a value lower than the pore pressure (under-balanced 

situation), the fluids in the formation will flow into the wellbore and drilling must be 

stopped to prevent kicks, blowouts, or collapses. In an over-balanced situation, the mud 

pressure is higher than the formation pore pressure. However, if the mud pressure is 

increased above the fracture pressure of the exposed formation, the mud will flow into 

the formation and mud circulation within the wellbore will be lost, increasing the risk of 

collapses and damage of the reservoir formation.  

 

The difference between the hydrostatic (mud) pressure and the pore pressure in the 

formation is termed differential pressure. The margin of safety provided by a positive 

differential pressure must be increased as the uncertainty in virgin pore pressure at the 

bit increases. Due to the pressure difference, drilling rates of penetration in an over-

balanced situation are decreased and a portion of the mud flows into the formation. Mud 

flow into the formation is undesirable because it damages the future reservoir’s 

production volume and life. If the formation virgin pore pressure ahead of the bit is 

known, that gives time to the drilling operator at the surface to properly adjust the mud 

density in order to match the hydrostatic pressure to the virgin pore pressure at the drill 

bit when that formation is reached. Drilling with a small margin of safety could be 

effective in formations with high permeability that maintain a constant virgin pore 

pressure gradient (~ 0.45 psi/ft), until an unexpected zone with abnormal pressure is 
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encountered in the formation. If an unexpected zone of abnormal pore pressure is 

reached during drilling, and the hydrostatic mud pressure is significantly less than the 

abnormal pore pressure, the risk of gas kicks or blowouts, reservoir flow damage, 

wellbore instability, and sticking of tools or pipe increases dramatically. Thus, there is a 

need to provide means to determine the virgin pore pressure ahead of the bit during 

drilling.  

 

In order to satisfy the need, it would be desirable to develop a method that could be used 

to determine virgin pore pressure from parameters that can be easily determined and/or 

measured during drilling. Furthermore, it would be desirable that such a method would 

be generally applicable for all types of rock and situations.  

 

Parameters that are currently measured during drilling (using drilling monitoring 

systems) are torque, rate of penetration (ROP), weight on bit (WOB), bit revolutions per 

minute (RPM), equivalent circulation density (ECD), among others. These parameters 

are termed drilling parameters throughout this dissertation. The type of rock can be 

characterized with the material properties of both the solid matrix and the pore fluid. 

Tools such as logging while drilling (LWD) and measurement while drilling (MWD) 

provide measurements of natural gamma ray, neutron porosity, electrical resistivity, 

density and photoelectric index, etc., which can be used to infer the material properties 

of rock. However, rock properties can also be estimated using sonic or seismic 

techniques before drilling. Different situations can be described with environmental 

parameters which can be subdivided in two groups: (1) the external parameters defining 

the surrounding conditions to which a rock element is subjected during drilling, for 

example, confining stresses from Earth, the hydrostatic (mud) pressure, the load imposed 

by the drill bit, the overburden; and (2) the physical internal conditions of rock, such as 

pore pressure and temperature.  
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Following this reasoning, the ultimate goal would be to develop a method that could be 

used to determine virgin pore pressure ahead of the bit during drilling from drilling 

parameters, environmental parameters, and material properties.  

 

A functional decomposition allowed identifying two main top-level functions for the 

design of a methodology that could be used to determine virgin pore pressure ahead of 

the bit during drilling from drilling parameters, environmental parameters, and material 

properties. The drilling process affects the original (virgin) state of the rock, both the 

stress state and pore pressure, due to the large stresses that the drill bit imposes on the 

rock. Since the drilling parameters are measured at the bit, it was hypothesized that the 

virgin pore pressure at the bit could be determined first, and then it could be related to 

the pore pressure ahead of the bit. Thus, the two functions for the design of this 

methodology are: (1) to provide means to determine the virgin pore pressure at the bit 

from drilling parameters, environmental parameters, and material properties; and (2) to 

provide means to relate the virgin pore pressure at the bit to the virgin pore pressure at 

the far-field. The far-field is defined as the location ahead of the drill bit where the pore 

pressure has not been altered by the drilling process.   

 

The first top-level function has been identified from the hypothesis that the drilling 

parameters should be affected by the initial state of the virgin formation (including the 

pore pressure). However, there is a possibility that the virgin pore pressure has a 

negligible effect on the drilling parameters for a given set of environmental parameters. 

That is, the virgin pore pressure could be determined at the bit if at least one drilling 

parameter were significantly affected by the pore pressure. Therefore, it is necessary to 

determine if such drilling parameter(s) exists. For this reason, the objective of this 

dissertation is to determine whether or not it is possible to determine the virgin pore 

pressure at the bit from drilling parameters, environmental parameters, and material 

properties. The second top-level function is not addressed in detail in this dissertation. 

However, a recommended approach to satisfy this function is proposed in Chapter VIII. 
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Three functions have been identify to be needed in order to be able to predict virgin pore 

pressure at the bit from drilling and environmental parameters, and material properties: 

(1) provide means to identify the drilling and environmental parameters that are affected 

by the virgin pore pressure, (2) provide means to identify the material properties that 

play a role in the physics of the drilling process, (3) provide means to relate the virgin 

pore pressure, drilling parameters, environmental parameters, and material properties. A 

function structure of the methodology to determine pore pressure is presented in Figure 

2.2. The function structure is an aid to visualize all the functions that are needed in order 

to satisfy the objective. 

  

 

 

Figure 2.2 Function structure of the methodology to predict pore pressure ahead of the 
bit from drilling parameters, environmental parameters, and material properties. 

 

 

The darker box in Figure 2.2 corresponds to the function that is the objective of this 

dissertation. A description of the approaches considered in order to address the functions 
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that are needed to satisfy the objective of this dissertation is presented in the next 

section. 

 

2.4 Approaches considered to address the functions from the need analysis  

Three approaches have been considered in an attempt to address all the functions 

described in the previous section for a methodology to determine virgin pore pressure 

ahead of the bit from drilling parameters, environmental parameters, and material 

properties. A historical background of the reasoning pursued on each approach is 

presented in this section. Technical details and developments from each approach are 

presented in Chapters III, IV, and V, respectively. The approaches considered are 

presented in the chronological order in which they were conceived. The work done in all 

three approaches considered attempts to address the three bottom-level functions in the 

function structure (see Figure 2.2): (1) provide means to identify the drilling and 

environmental parameters that are affected by the virgin pore pressure, (2) provide 

means to identify the material properties that play a role in the physics of the drilling 

process, (3) provide means to relate the virgin pore pressure, drilling parameters, 

environmental parameters, and material properties.  

 

2.4.1 First approach considered 

The first approach considered is the Principal Stress Pore Pressure Prediction (PSP3) 

concept, which initially developments were reported to BP America [5-7]. Early work on 

the PSP3 concept has also been presented in [8]. The Principal Stress Pore Pressure 

Prediction (PSP3) concept has been developed under the hypothesis that the virgin pore 

pressure at the bit could be determined during drilling by identifying the effective 

stresses (from drilling parameters) of the rock being drilled, in combination with a 

Mohr-Coulomb failure criterion. The concept of effective stress implies that it is the 

effective stress, rather than the total stress, that determines whether the rock fails or not 

due to an external load. Furthermore, it has been recognized that the drilling parameters 

are not independent from each other, but they could be grouped into a fundamental 
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parameter: the mechanical specific energy (MSE). Teale [9] used for the first time the 

term Mechanical Specific Energy (MSE) to designate that amount of energy per unit 

volume required to fragment the face of a solid wall of rock, even though previous 

investigations on the energy requirements for rock fracture had been conducted by 

Simon [29]. The concept of mechanical specific energy has been used in the oil and gas 

industry as a quantifier of common drilling problems [30], as an indicator used to 

maximize the rate of penetration [31], and in general, as an index to evaluate the drilling 

performance [32]. However, there is no information available in current open literature 

that suggests the use of MSE to predict virgin pore pressure. The PSP3 concept has been 

developed under the premise that the MSE should be a function of the effective stress 

rather than the total stress of the rock, and from this relationship the virgin pore pressure 

could be predicted.  

 

If effective stresses in the drilling process and the Mohr-Coulomb failure envelope of the 

rock being drilled are identified, it is possible to solve for the virgin pore pressure. An 

expression to determine virgin pore pressure was derived in terms of drilling parameters, 

the hydrostatic mud pressure (environmental parameter), and the failure envelope 

parameters (material properties). Thus, empirical work on the PSP3 concept indicates 

that, besides the effective stress, a relationship between the amount of energy required to 

fragment the rock and virgin pore pressure might exist. However, results show that the 

calculated virgin pore pressure is not always in agreement with the virgin pore pressure 

from a post-drill analysis (considered as the true value of virgin pore pressure) of three 

wells for which data is available.  Details of the development of the PSP3 concept and its 

results are presented in Chapter III.  

 

The lack of validation of the PSP3 concept led to believe that the parameters used in the 

PSP3 concept are not enough to correctly describe the drilling process. It was recognized 

that there are other parameters and material properties that are not accounted for in the 

PSP3 concept, for example, porosity, permeability of the rock, type of fluid in the pores, 
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and temperature, which might have an important effect in the formation virgin pore 

pressure. These shortcomings suggest that a fundamental understanding of the 

parameters that affect or are affected by virgin pore pressure is required in order to 

achieve a successful virgin pore pressure prediction methodology. 

 

In order to gain a better understanding of the PSP3 concept (first approach considered) 

and use it to proposed a second approach to address the functions presented in the 

function structure (see Figure 2.2), a literature review was conducted to identify if there 

were any prior fundamental investigations of virgin pore pressure prediction from 

drilling and environmental parameters. Besides Eaton’s equation, Equation (2.4), two 

perspectives were identified from the literature to be important in the fundamental 

understanding of the role of virgin pore pressure in the mechanical behavior of rock.  

 

The first perspective is the work developed by Detournay and Atkinson [33]. By using 

the effective stress concept and the Mohr-Coulomb failure criterion, Detournay and 

Atkinson developed a relationship between mechanical specific energy and pore 

pressure by analyzing the forces applied to the rock by a cutting tool during the cutting 

process. Detournay and Atkinson had previously investigated the decomposition of 

forces acting on rock by the cutting tools [34, 35] during the cutting process. They based 

their analysis of forces on previous analyses conducted by Merchant for metal cutting 

[36, 37]. By using the effective stress concept and the Mohr-Coulomb failure criterion, 

Detournay and Atkinson were able to derive a relationship for the MSE (drilling 

parameters) as a function of differential pressure (environmental parameters), 

geometrical parameters of the drill bit (drilling parameters), and failure parameters 

(material properties). The relationship derived by Detournay and Atkinson [33] 

expresses MSE as the dependent variable. Physically this is true, since the specific 

energy required to fracture a rock must be a function of the initial state of that rock 

(including the pore pressure), but the virgin pore pressure is by no means affected by the 

energy applied to break the rock. Nevertheless, if the MSE is known (or calculated from 
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drilling parameters), as well as the geometrical parameters of the bit, the pore pressure 

can be back-calculated. 

 

Detournay and Atkinson [33] reasoned that the pore volume increases at the shear zone 

during rock cutting since the rock expands. As the volume of the pores increases, the 

pore pressure in low-permeability rock decreases if enough fluid is not supplied into the 

expanded pores. Because of the low permeability, the rapid decrease in pore pressure can 

be so large that cavitation in the shear zone might occur (the pore pressure would be 

effectively zero). Therefore, Detournay and Atkinson [33] concluded that, in the cutting 

process of low-permeability rocks, MSE is independent of the virgin pore pressure and 

depends only on the hydrostatic (mud) pressure. They supported their conclusion with 

experimental work conducted by Zijsling [38]. However, Zijsling’s findings are only 

consistent with Detournay and Atkinson’s theory for one set of data run for a medium-

hard illitic Mancos shale that was initially under-saturated. Furthermore, the earlier work 

of Zijsling showed that for a fully saturated soft montmorillonitic Pierre shale, the 

cutting process was affected by both, the pore pressure and the hydrostatic pressure, 

which is in disagreement with Detournay and Atkinson’s conclusion.  

 

The work presented by Detournay and Atkinson [33] is probably the only one that 

attempts to describe the relationship between pore pressure at the shear zone and pore 

pressure in the far-field from basic principles. However, the relationship presented by 

Detournay and Atkinson between mechanical specific energy and pore pressure does not 

seem to be derived from basic principles. Detournay and Atkinson expresses that the 

MSE is a function of differential pressure, material properties, and geometric properties 

of the drill bit. A relationship based on a fundamental approach should not be a function 

of geometric parameters of the cutting tool, because it should not matter how the energy 

is applied to break the material, but how much energy is applied and absorbed by the 

material.  

 



 23

The second perspective, the US Patent 7,412,331-B2 by Calhoun, et al., claims a method 

to predict rate of penetration (ROP) of a drill bit drilling a wellbore, that uses an 

equation based upon specific energy principles [39]. The method uses several 

relationships among the confined compressive strength (CCS), the bit-specific 

coefficient of sliding friction ሺߤሻ, mechanical efficiency (EFFM), weight on bit (WOB), 

bit RPM. Even though the claim of the patent is to predict the rate of penetration of a 

drill bit in a drilling process by using specific energy principles, special emphasis was 

placed on the calculation of the in-situ (virgin) pore pressure. It is noteworthy to point 

out that this work attempts to determine the change in virgin pore pressure at the shear 

zone rather than assuming that the pore pressure at the shear zone in low-permeability 

rock is effectively zero as concluded by Detournay and Atkinson [33]. That change in 

pore pressure at the shearing zone was determined by the so-called Skempton [40] pore 

pressure coefficients. The concepts and relationships described in the patent could be 

utilized to calculate virgin pore pressure, assuming that the ROP is known. Thus, the 

relationships on this patent also attempt to relate pore pressure to MSE (drilling 

parameters), material properties, and environmental conditions [39]. 

 

Attempts to validate the relationships from these two perspectives with drilling log data 

failed. Details of the attempted validation are presented in [7]. The lack of validation led 

to explore ideas for a more fundamental approach to the problem of pore pressure 

prediction, which prompted the proposal of the second approach presented in this 

dissertation.  

 

2.4.2 Second approach considered 

The second approach considered in the course of this investigation is the proposal of a 

fundamental parameter that can be used in Eaton’s equation [Equation (2.4)] to replace 

the parameters originally proposed by Eaton [10]. After reviewing the ideas presented by 

Eaton [10] and analyzing drilling data (torque, ROP, resistivity, RPMs, WOB) of logs 

from three wells available to the author, it was reasoned that a fundamental parameter, 
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such as MSE, could be used as the variable in the ratio in Eaton’s equation. This 

reasoning is explained in Chapter IV, and attempts of validation of this concept are 

presented as well. Validation of this new equation against post-drill pore pressure, using 

drilling log data from three different wells, shows promising results. However, it is also 

recognized that further work is needed in order to understand why this relationship 

correctly predicts the pore pressure for the data used in the validation. Therefore, a 

fundamental approach based on basic principles is proposed to understand the solid-fluid 

interactions of rock during drilling. This fundamental approach is the third approach 

considered in this dissertation.  

 

2.4.3 Third approach considered 

The third approach considered is a fundamental approach to relating pore pressure, 

drilling parameters, environmental parameters, and material properties. The background 

of this fundamental approach is presented in this section and technical details are 

presented in Chapter V.  

 

It has been recognized that a fundamental understanding of the rock-fluid interactions 

during drilling could provide an insight of the relationships among pore pressure, drilling 

parameters, environmental parameters, and material properties. In order to understand 

the possible relationship between pore pressure and mechanical specific energy, a more 

fundamental way of viewing MSE is proposed (see Chapter V). It has also been 

recognized that a fundamental approach based on basic principles such fluid mechanics, 

porous media, thermodynamics, and rock mechanics, could be used to explain the role of 

virgin pore pressure in the mechanical behavior of rock and eventually evolve into a 

methodology for virgin pore pressure prediction that would be reliable for all types of 

rocks, and situations.  

 

In order to identify the basic principles that describe the rock-fluid interactions during 

the drilling process, the cutting process of rock during drilling must be analyzed. The 
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failure of rock during drilling is caused by the large stresses imposed on the rock by the 

drill bit. These stresses cause the rock to deform until failure is reached. The process of 

deformation of rock results in a change in pore volume. Depending on the permeability 

of the rock (which dictates how fast the pore fluid can be expelled from or filled in the 

pores), the local pore pressure at the cutting zone can either increase or decrease. It was 

mentioned above that the pore pressure plays an important role in the mechanical 

behavior of rock, since part of the stress applied to the rock are supported by the pore 

fluid. Thus, a change in pore pressure during drilling will result in a change in the 

mechanical behavior of rock, but a change in the mechanical deformation results in a 

change in pore pressure too. That is, there is a two-way coupling between the 

mechanical deformation and the pore pressure of rock. The general theory that accounts 

for this coupled hydro-mechanical behavior is poroelasticity [1]. This theory was first 

proposed by Biot [16] in 1941, and developed further by Rice and Cleary [41], and 

Detournay and Cheng [42], among others. This theory accounts for deviatoric stresses, 

as well as hydrostatic stresses, and pore fluid pressures.  

 

For many years, Biot’s poroelasticity theory [16] was used only to solve problems 

involving consolidation of soils. However, a few decades later the equations of 

poroelasticity were successfully applied to solve problems in tectonophysics [43], 

petroleum-related rock mechanics [1], and even in the medical field to study the 

behavior of bones [44]. In petroleum-related rock mechanics, the effort has been 

concentrated on borehole stability, hydraulic fracturing, and compaction near pumping 

wells [45, 46]. However, to the best knowledge of the author, there are no investigations 

available in open literature that attempt to describe the drilling process (rock cutting) 

using poroelasticity equations.  

 

Nevertheless, there are no indications that suggest that the equations of poroelasticity 

should not be used to describe the process of cutting rock.  This is one of the main 

contributions of the present work: the use of the poroelasticity equations to describe the 
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cutting of rock. The equations of poroelasticity are solved numerically using the 

commercial software COMSOL Multiphysics. The proposed model is presented in 

Chapter V along with details of the poroelasticity equations. The model is validated with 

experimental data available in open literature. Once the model is validated it can be used 

to identify the drilling parameters, environmental parameters, and material properties 

that significantly affect (or are affected) by the drilling process (functions 1 and 2 in 

bottom level of function structure in Figure 2.2). In order to identify the significant 

parameters, a sensitivity analysis is conducted. The poroelastic model of the cutting 

process is also used to investigate if the PSP3 concept (first approach considered) and the 

concept of using MSE as a new parameter in Eaton’s equation (second approach 

considered) comply with basic principles of fluid mechanics, rock mechanics, and 

porous media. With this information, the question (and objective of this dissertation) of 

whether or not it is possible to determine the virgin pore pressure at the drill bit from 

drilling parameters, environmental parameters, and material properties may be answered.  

 

In summary, the first and second approaches are empirical approaches for addressing the 

functions needed to satisfy the objective of this dissertation; whereas, the third approach 

is a fundamental approach based on basic principles including rock mechanics, porous 

media, and fluid mechanics. 

 

In this chapter, the background of the investigation presented in this dissertation has 

been described. Next chapter of this dissertation presents technical details of the 

development of the PSP3 concept.  
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CHAPTER III 

PRINCIPAL STRESS  

PORE PRESSURE PREDICTION (PSP3) 

 

The work done on the first approach considered in this dissertation in order to determine 

whether or not it is possible to determine pore pressure at the bit from drilling 

parameters, environmental parameters, and material properties is presented in this 

chapter. The first approach considered is the Principal Stress Pore Pressure Prediction 

(PSP3) concept. The PSP3 concept has been developed under the hypothesis that the 

virgin pore pressure at the bit could be determined during drilling by identifying the 

effective stresses (from drilling and environmental parameters) of the rock being drilled, 

in combination with the Mohr-Coulomb failure criterion (material properties). This 

chapter describes the theoretical background used as a basis for the development of the 

PSP3 concept. Subsequently, the development of the PSP3 concept is presented, which 

includes the identification of the stress state of the rock during drilling, and geometric 

relations used to determine the PSP3 equation (which expresses pore pressure as a 

function of drilling parameters, environmental parameters, and material properties). 

Finally, attempts to validate the PSP3 concept with post-drill pore pressure data available 

from three oil wells are presented.  

 

3.1 Theoretical background of the PSP3 concept 

The theoretical background used as a basis for the development of the PSP3 concept is 

presented in this section. The graphical representation of the stress state of a rock, which 

is based on the analysis of stress in two dimensions, is presented first. Subsequently, the 

Mohr-Coulomb failure criterion is described.  

 

3.1.1 Graphical representation of stress 

In rock mechanics, the forces acting at any point in the interior of a rock body are best 

described with the concept of stress, since the force applied usually varies from point to 
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point. Stress is defined as the force acting on a surface area. The analysis of stress is a 

matter of pure statics and does not depend on the material properties [47]. The 

discussion of representation of stresses is presented in two dimensions since it is simpler 

than in three dimensions, without lost of generality.  

 

The forces acting at a point in the interior of a body may be described by considering the 

ratio of the force to an area in a plane that passes through the same point. The limiting 

value of such a ratio when the area tends to zero is the stress vector or traction vector, 

and it is mathematically expressed as 

 

࢖ ൌ lim
ఋ஺՜଴

ࡲߜ
(3.1) ܣߜ

 

where  ࢖ is the traction vector, ࡲߜ is the force acting on a plane of area ܣߜ. 

 

In the above definition, there is no restriction on the orientation of ܣߜ. This implies that 

the traction vector can be different at any given point on different planes that pass 

through that point. This complication is eliminated by the introducing the concept of 

stress (by Cauchy in 1823 [1]). If a rectangular coordinate system in two dimensions (x, 

y) is considered, in which ܣߜ is perpendicular to the x-direction, the traction vector ࢖ 

has components ߪ௫, ߬௫௬ on the x- and y-directions, respectively. The component ߪ௫ is 

the normal stress, since this component of the traction vector acts perpendicular to ܣߜ, 

while the component ߬௫௬ is the shear stress, since it acts parallel to ܣߜ. Similarly, if ܣߜ 

is oriented perpendicular to the y-direction, the traction vector ࢖ has components ߬௬௫, 

 ௬. These quantities form the stress tensor, which in two dimensions is expressed asߪ

 

ቂ
௫ߪ ߬௫௬
߬௬௫ ௬ߪ ቃ (3.2)
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The physical significance of the stress tensor is illustrated in Figure 3.1, which shows a 

two-dimensional rock element whose faces are each perpendicular to one of the 

coordinate axes. Each of the components of the stress tensor, Equation (3.2), can be 

considered a vector. In rock mechanics, compressive stresses are considered as positive 

since they are much more common than tensile stresses.  

 

 
Figure 3.1 Stress components acting on a rock element. 

 

 

It is important to recall that the interest is to determine the forces that act on a rock body 

at any point. Since the stress is the ratio of force to differential area, then the interest 

becomes to determine the stresses of a rock element at any plane. In order to determine 

the transformation of stress components at any plane, a triangular element of rock 

subjected to compression can be considered, see Figure 3.2. The triangular element 

shown in Figure 3.2 results from a plane (whose outward normal vector is rotated 

counterclockwise from the x-direction by an angle ߚ) that crosses the rock element in 

Figure 3.1.  
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Figure 3.2 Triangular rock element used for stress transformation equations,  

after Jaeger et al. [1]. 
 

 

The normal and shearing stresses acting on a plane whose outward unit normal vector is 

rotated counterclockwise from the x-direction by an angle ߚ can then be determined 

from  

 

ߪ ൌ
1
2 ൫ߪ௫ ൅ ௬൯ߪ ൅

1
2 ൫ߪ௫ െ ߚ2ݏ݋௬൯ܿߪ ൅ ߬௫௬(3.3) ߚ2݊݅ݏ

߬ ൌ
1
2 ൫ߪ௬ െ ௫൯ߪ sin ߚ2 ൅ ߬௫௬ cos (3.4) ߚ2

 

Details of the derivation of Equations (3.3) - (3.4) are explained in [1].  

 

Mohr [48] proposed a simple graphical construction to represent the state stress of a 

material at any point. It can be established from Equations (3.3) and (3.4) that there are 

planes on which the shear stress vanishes. The normal stresses at planes where the shear 

stress is zero are known as principal normal stresses. Besides acting on planes on which 

there is no shear, the normal stresses are also a maximum and a minimum normal 

stresses that act on any plane. If the coordinate system is chosen so that the principal 

stresses act on the direction of the coordinate system (and in which the shear stresses are 

zero), Equations (3.3), and (3.4), take the form  
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ߪ ൌ
ሺߪ௠௔௫ ൅ ௠௜௡ሻߪ

2 ൅
ሺߪ௠௔௫ െ ௠௜௡ሻߪ

2 (3.5) ߚ2ݏ݋ܿ

߬ ൌ െ
ሺߪ௠௔௫ െ ௠௜௡ሻߪ

2 sin (3.6) ߚ2

 

where ߪ௠௔௫ is the maximum principal stress, ߪ௠௜௡ is the minimum principal stress, and 

 and ߬ are the normal and shear stresses, respectively, at any plane whose normal ߪ

vector is rotated counterclockwise by the angle ߚ.  

 

In can be observed that Equations (3.5) and (3.6) are the equations of a circle in the 

ሺߪ, ߬ሻ plane, with center at ቂߪ ൌ ఙ೘ೌೣାఙ೘೔೙
ଶ

, ߬ ൌ 0ቃ, and with radius ሺఙ೘ೌೣିఙ೘೔೙ሻ
ଶ

, see 

Figure 3.3. Many of the important properties of the two-dimensional stress tensor can be 

read directly from the Mohr’s circle.  

 

 
Figure 3.3 Mohr’s circle representation of stresses. 

 

 

The maximum principal stress (ߪ௠௔௫) is at the intersection between the normal stress 

axis (ߪ) and the farthest point of the Mohr’s circle from the origin. At this state, shear 

stress is not being applied to the element and the largest normal stress is equal to the 

principal stress. The other intersection of the normal stress axis with the Mohr’s circle is 

the minimum principal stress (ߪ௠௜௡). At this state, shear stress is also not being applied 

to the element and the smallest normal stress is equal to the principal stress. 
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Mohr’s representation of stresses can also be applied to a three dimensional element as 

the one shown in Figure 3.4. If only principal stresses are applied to the external faces of 

the element, the stress state of that element can be represented with Mohr’s circles as 

shown in Figure 3.5. 

 

 

 
Figure 3.4 Three-dimensional stress element. 

 

 

 

 
Figure 3.5 Mohr’s circle representation of a three-dimensional stress element. 
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It can be seen from Figure 3.5 that to draw the outer Mohr’s circle only the maximum 

and minimum principal stresses need to be defined. That is, the maximum shear stress in 

the three-dimensional element is found in the plane [ߪ௠௜௡ ,  ௠௔௫ሿ. The intermediateߪ

stress (σi), which lies on the range σmin ≤ σi ≤ σmax, does not need to be defined in order to 

determine the maximum shear stress within the rock element. This has an important 

implication in the failure of rock under shearing, as it is explained in the next section. If 

the stresses on the rock are increased, the rock will be deformed until failure occurs. In 

order to determine the stress state of the rock when failure occurs, a failure criterion 

must be defined.  One of the more common failure criteria used in rock mechanics is the 

Mohr-Coulomb failure criterion. This failure criterion is used in the development of the 

PSP3 concept. Therefore, a brief description of the Mohr-Coulomb failure criterion is 

presented in the next section.  

 

3.1.2 Mohr-Coulomb failure criterion 

The Mohr-Coulomb failure criterion is probably the simplest and most important failure 

criterion used in rock mechanics. Although it is known as the Mohr-Coulomb criterion, 

it is important to notice that Mohr and Coulomb theories of rock failure have a different 

physical background.  

 

Coulomb [49] introduced his failure criterion in 1773, after having conducted an 

extensive experimental investigation of friction in rock. From the findings of his 

investigation, Coulomb suggested that failure in rock and soil occurs along a plane due 

to shear stress acting on that plane. He also observed that motion of sliding surfaces 

along the failure plane appear to be resisted by a frictional-type force which was 

proportional to the normal stress acting along that plane. However, in contrast to sliding 

along non-welded surfaces, motion along the initially intact failure plane appeared to be 

resisted by an internal cohesive force of the material. That is, in the absence of a normal 

stress, a finite shear stress, ܵ଴, is still needed to initiate failure. Thus, Coulomb proposed 

that failure will occur along a plane where 
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|߬| ൌ ܵ଴ ൅ (3.7) ߪ݉
 

where ߬ is the shear stress, ܵ଴ is the cohesion of rock, ݉ is the coefficient of internal 

friction, and ߪ is the normal stress. The sign of the shear stress affects only the direction 

of sliding after failure. Coulomb failure criterion states that failure occurs on any plane 

for which |߬| ൒ ܵ଴ ൅ ,ߪIn the plane ሾ .ߪ݉ |߬|ሿ, Equation (3.7) is a straight line with slope 

݉ ൌ tan߶, where ߶ is the angle of internal friction of rock. The Mohr’s circle 

corresponding to any stress state that leads to failure will be tangent to this line. It is 

important to point out that, despite the historical its importance, the Coulomb failure 

criterion is unrealistic in two aspects: (1) it over-predicts the unconfined tensile strength 

of rock, and (2) experimental data shows that the compressive stress required to cause 

failure does not increase linearly with the confining stress. Mohr [50] suggested that 

Coulomb’s Equation (3.7) be corrected by a more general relation of the form 

 

|߬| ൌ ݂ሺߪሻ (3.8)
 

 

Mohr suggested that the shear stress that causes failure could be a non-linear function of 

the normal stress. The function in Equation (3.8) is usually determined experimentally 

by inserting a cylindrical rock specimen in a press and loading the specimen until it 

fractures. The stress required to break the rock specimen is defined as the rock 

compressive strength. Stress can also be applied to the sides of the specimen during 

testing, which is defined as the confining stress. When the specimen is loaded on three 

different axes, the test is termed a tri-axial test. Figure 3.6 shows a rock specimen under 

tri-axial stress conditions and the stresses being applied to it. 
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Figure 3.6 Tri-axial test. 

 

 

As the confining stress (σmin) is increased, the compressive stress (σmax) required to 

fracture the rock also increases. If the tri-axial tests of increasing confining stress, and 

the resulting σmax required to break the specimen are plotted as Mohr’s circles, Figure 

3.7 can be developed. 

 

 
Figure 3.7 Mohr's envelope for a series of tri-axial tests. 

 

 

Each circle is the graphical representation of the stress state of a rock sample at fracture. 

The function |߬| ൌ ݂ሺߪሻ is the envelope that tangentially intersects all the Mohr’s 

circles, and is termed as Mohr’s envelope. The envelope encompasses all the Mohr’s 

circles. A property of the Mohr’s envelope is that it is unique for different rocks. That is, 

the function |߬| ൌ ݂ሺߪሻ will be different for each type of rock. Even though the function 

is not linear, the basic ideas originally proposed by Coulomb’s model are still valid. 
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Specifically, failure occurs if one of the Mohr’s circles intersects the Mohr’s envelope 

(also known as failure envelope). The value of the intermediate stress, for a situation 

such as the one shown in Figure 3.4 and Figure 3.5, does not affect the onset of failure. 

Furthermore, the Mohr-Coulomb theory predicts that the failure plane passes through the 

direction of the intermediate stress, and its normal vector makes an angle ߚ with the 

direction of the maximum principal stress. It can also be recognized that the function 

|߬| ൌ ݂ሺߪሻ may be replaced by a spline function characterized by several linear 

functions valid for a small range of normal stresses.  

 

Another important consideration is the fact that rocks are porous materials that are 

usually saturated with a fluid. It has been mentioned before that the mechanical behavior 

of rock is affected by the presence of the pore fluid. Thus, it is plausible to expect that 

the effect of the pore fluid must be considered in rock failure. The pore pressure (internal 

pressure exerted by the pore fluid) can be regarded to act outward from the pore space. 

Moreover, pore pressure acts in some sense like a tensile stress. This reasoning leads to 

the Terzaghi’s effective stress concept [3]. There were two arguments that led Terzaghi 

to the concept of effective stress: (1) increasing the external confining pressure results in 

the same volume change of the material as reducing the pore pressure by the same 

amount, (2) the shear strength depends only on the difference between the normal stress 

and the pore pressure. From these arguments, Terzaghi concluded that the effective 

stress is the portion of the load supported solely by the solid matrix and it is equal to the 

total stress minus the pore pressure, Equation (2.3).   

 

The second statement above implies that it is the effective stress, rather than the total 

stress, that determines whether the rock fails or not due to an external load. It is 

reasonable to assume that the concept of effective stress is applicable to soils. However, 

some discrepancies may occur if the concept is applied to rocks. The Mohr-Coulomb 

criteria for failure of rock in terms of effective stress holds reasonably well provided that 

the permeability is sufficient to allow movement of fluid and that connected systems of 
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pores exist. Also, it is required that the pore-fluid is inert, so that the effects are purely 

mechanical. If these conditions are met, Equations (3.7) and (3.8) may be rewritten in 

terms of the effective stresses, and the failure criteria becomes 

 

|߬| ൌ ܵ଴ ൅ Ԣ (3.9)ߪ݉
|߬| ൌ ݂ሺߪԢሻ (3.10)

 

where ߪԢ is the effective stress expressed as ߪ െ ௣ܲ. Although the concept was proposed 

on an empirical basis, it has subsequently proved correct using Biot’s poroelasticity 

theory [16]. Moreover, most experiments on rocks support the conclusion that the 

effective stress concept is valid [1]. In the context of Mohr’s circles, replacing the total 

stresses ߪ with the effective stresses ߪԢ has the effect of translating the Mohr’s circle to 

the left by the magnitude of ௣ܲ, while maintaining the same diameter. This behavior is 

illustrated in Figure 3.8. It can be observed from Figure 3.8 that the increase of pore 

pressure brings a rock element closer to the failure envelope.  

 

 
Figure 3.8 Effect of pore pressure on mechanical behavior of rock. 

 

 

In this section, the theoretical background used as a basis for the development of the 

PSP3 concept has been described. The development of the PSP3 concept that led to an 

equation for pore pressure determination is presented in the next section.  
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3.2 Development of the PSP3 concept 

The purpose of the development of the PSP3 concept is to determine a relationship 

among drilling parameters, environmental parameters, and material properties. It is 

desirable to determine such a relationship only among the parameters and material 

properties that play a significant role in the physics of the drilling process. In the 

development of the PSP3 concept, it was reasoned that the significant drilling and 

environmental parameters could be determined if the stress state of rock during drilling 

is determined. Furthermore, the stress state of the rock during drilling corresponds to the 

stress state at failure. Since the failure enveloped is unique for each type of rock, a 

relationship among drilling parameters, environmental parameters (including pore 

pressure), and material properties can be determined from the relationship between the 

stress state at failure and the failure envelope.  

 

In this section, the development of the PSP3 concept is presented. The stresses acting on 

the rock during drilling are identified first. Then, the equation to determine pore pressure 

at the drill bit is presented, which is developed from geometric relations between the 

failure envelope and the Mohr’s circle that represents the stress state of the rock during 

drilling.  

 

3.2.1 Determination of the stress state of rock during drilling 

In order to determine the stress state of rock at drill bit during drilling, a simplified two-

dimensional model of the cutting process during drilling is considered. A schematic of a 

single cutter cutting on rock is illustrated in Figure 3.9. 

 

 
Figure 3.9 Two-dimensional sketch of a single cutter cutting a rock chip. 
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The two-dimensional model of the rock chip in Figure 3.9 resembles a tri-axial test. The 

maximum principal stress (ߪ௠௔௫) is defined by the horizontal stress applied to the chip 

since this is the stress that breaks the rock chip away from the rock formation. The 

minimum principal stress (ߪ௠௜௡) is then defined as the vertical stress acting on top of the 

rock chip. The shear stress (߬௦) and the normal stress (ߪ௦) act along the failure plane. 

These two stresses correspond to the intersection of the Mohr’s envelope and the Mohr’s 

circle as shown in Figure 3.10. 

 

 
Figure 3.10 Mohr’s circle representation of the stress state of the rock chip. 

 

 

It has been mentioned in Chapter II that a mud fluid is used during drilling of a borehole. 

The hydrostatic pressure of the mud column acts, in addition to the cutting stress, in all 

directions around the rock chip in Figure 3.9. Therefore, the maximum and minimum 

principal stresses shown in the two-dimensional simplification of the drilling process 

(Figure 3.9) can be defined as: 

 ௠௔௫: Maximum Stress - Stress applied by the cutting force that acts over theߪ •

lateral face of the rock chip plus the mud pressure acting on the bit. 

) ௠௜௡: Minimum Stress – Stress that results from the hydrostatic pressureߪ • ௛ܲሻ  of 

the drilling mud acting on top of the rock chip. 

 

This is represented schematically in Figure 3.11. 
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Figure 3.11 Two-dimensional stress element of rock chip with pore pressure.   

 

 

It can be observed, by comparing Figure 3.9 and Figure 3.11 that the maximum principal 

stress (ߪ௠௔௫) in Figure 3.9 is defined as the summation of the cutting stress (ܵ௖) applied 

horizontally and the hydrostatic mud pressure. It is important to recall that, for a 

saturated porous material such as rock, the failure criterion must be defined in terms of 

the effective stresses.  Therefore, the maximum effective stress ሺߪԢ௠௔௫ሻ  for the two-

dimensional model in Figure 3.9 is defined as the sum of the cutting stress (ܵ௖ሻ and the 

hydrostatic mud pressure, minus the pore pressure. Similarly, the minimum effective 

stress applied vertically (ߪԢ௠௜௡) to the chip is defined as the differential pressure 

( ௛ܲ െ ௣ܲ).  

 

If a three-dimensional stress element is considered, then the third stress (ߪԢ௜) is the 

confining stress on the element. This stress is a function of the load applied to the 

element by the overburden. Since this stress does not break the rock, it is assumed to be 

lower than the maximum stress (ߪԢ௠௔௫ ), but higher than the vertical stress (ߪԢ௠௜௡). 

Therefore, since the confining stress is bounded by ߪԢ௠௜௡ ൑ Ԣ௜ߪ  ൑  Ԣ௠௔௫, then theߪ

confining stress is not required to draw the largest Mohr’s circle, as it is shown in Figure 

3.5.  

 

At this point, three variables have been identified to play a role in the two-dimensional 

simplification of the drilling process: (1) pore pressure, (2) the hydrostatic mud pressure, 
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(3) the cutting stress. Since the objective is to determine the pore pressure, a relationship 

among the pore pressure, the hydrostatic mud pressure (environmental parameter), and 

the cutting stress must be determined. In a drilling situation, the hydrostatic pressure at 

the bottom hole is easily determined, since the density of the drilling mud is always 

known. Therefore, the cutting stress must be determined from of drilling parameters to 

facilitate the determination of pore pressure, from drilling parameters, environmental 

parameters, and material properties.  

 

The cutting stress can be defined as 

 

ܵ௖ ൌ
௖௨௧௧௘௥ܨ
௖௛௜௣ܣ

 (3.11)

 

where ܨ௖௨௧௧௘௥ is the cutting force of the drill bit tooth, and ܣ௖௛௜௣ is the surface area of the 

lateral face of the rock chip. 

 

To determine the cutting force, it is assumed that the single cutter shown in Figure 3.9 is 

one of many teeth on a PCD bit (polycrystalline diamond compact) which rotates at a 

given angular velocity while engage to the formation. Moreover, it is assumed that all 

teeth of the PCD bit are applying a stress larger than the compressive strength of the 

rock when a bit is cutting the formation. Therefore, the rock breaks away from the 

formation. If the bit is cutting efficiently (in absence of bit balling, missing teeth, etc) 

then all of the teeth will be engaged simultaneously. If the bit is assumed to be fully 

engaged, then all the teeth of the bit can be combined to form an “effective tooth.” The 

“effective tooth” will have the cross-sectional area of the distance from the center line of 

the drill-string to the outer diameter of the hole by the depth of cut. This is can be seen in 

Figure 3.12. 
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Figure 3.12 Area of effective tooth of a PDC drill bit. 

 

 

From these assumptions, the integral of torque over the tooth can be defined by Equation 

(3.12) and rearranged to solve for the cutting stress, Equation (3.14). A schematic 

representation of the differential element in the torque integral is shown in Figure 3.13. 

 

ܶ ൌ න ܵ௖ · ௖௨௧ܦ · ݎ · ݎ݀
ோ

଴
 (3.12)

ܶ ൌ
ܵ௖ܦ௖௨௧ܴଶ

2 · (3.13)

ܵ௖ ൌ
2ܶ

௖௨௧ܴଶܦ
 (3.14)

 

where ܵ௖ is the cutting stress applied by drill bit (psi), ܶ is the torque of the PDC bit 

(lb·ft), ܴ is the radius of the drill bit (in), ܦ௖௨௧ is the depth of cut (ft), ݎ is the moment 

arm from cylindrical center of bit (in). 

 

 
Figure 3.13 Differential element for torque integral. 
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The cutting stress can then be determined from Equation (3.14). Torque is a drilling 

parameter that is measured during drilling. Therefore, the only unknown in Equation 

(3.14) is the depth of cut (Dcut). The depth of cut must be determined to calculate the 

cross-sectional area to which the cutting force is applied. The penetration of the teeth can 

be determined as a function of volume of material removed per revolution. Therefore, 

the depth of cut is defined as 

  

௖௨௧ܦ ൌ
ܴܱܲ
(3.15) ܯܴܲ

 

where ROP is the rate of penetration (ft/h) and RPM is the angular velocity (revolutions 

per minute) of the drill bit. Similar to torque, both ROP and RPM are drilling parameters 

currently measured during drilling.  

 

Substituting Equation (3.15) into Equation (3.14), and introducing a unit conversion 

factor, the following expression for the cutting stress can be determined: 

 

ܵ௖ ൌ
480ሺܴܲܯሻሺܶሻ
ሺܴܱܲሻሺܦ௕ଶሻ

 (3.16)

 

where all the variables are defined as in Equations (3.14) and (3.15) (with the same 

units). It can be seen that Equation (3.16) corresponds to one of the two components of 

the mechanical specific energy (MSE) expression originally derived by Teale [9]. MSE 

expression for rotary drilling accounts for the work done by both, the thrust and the 

torque, and is given by 

 

ܧܵܯ ൌ
480ሺܴܲܯሻሺܶሻ
ሺܴܱܲሻሺܦ௕ଶሻ

൅
ܤܱܹ
ܣ  (3.17)
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Mechanical specific energy (MSE) is defined as the amount of energy per unit volume 

required to fragment the face of a solid wall of rock [9]. MSE is commonly used to 

indirectly determine the downhole drilling environment from drilling measurements. 

Drilling measurements, including torque (T), rate of penetration (ROP), weight on bit 

(WOB), revolutions per minute (RPM), and diameter of the borehole (ܦ௕), are combined 

in an equation that accounts for the input energy per unit volume required to fragment 

the rock formation. The units of MSE and rock strength are those of stress (typically in 

psi), which leads to the conclusion that MSE could be a function of the stress state at the 

borehole bottom. Since the pore pressure can also be defined as a stress, the hypothesis 

is that MSE can be correlated to the pore pressure (Pp). Currently, the MSE concept is 

utilized in industry only as a measurement of drilling efficiency, but not for determining 

pore pressure. The PSP3 concept goes beyond the MSE measurement of efficiency to 

predict the pore pressure of the wellbore during drilling. 

 

In summary, the stress state of a rock that is subjected to stresses by a drilled bit and by 

the drilling mud during drilling (at the very moment of failure onset) is determined by 

the principal stresses ߪ௠௔௫ and ߪ௠௜௡. The effective stresses corresponding to the 

maximum and minimum principal stresses are determined from 

 

௠௔௫ߪ
ᇱ ൌ ܵ௖ ൅ ௛ܲ െ ௣ܲ (3.18)
௠௜௡ߪ
ᇱ ൌ ௛ܲ െ ௣ܲ (3.19)

 

respectively, where ܵ௖ is determined from drilling parameters according to Equation 

(3.16). It is important to note that, if the effective stresses are represented in a Mohr’s 

circle as in Figure 3.10, the diameter of the Mohr’s circle represents a magnitude equal 

to the cutting stress of the rock (see Figure 3.14).  

 



 45

 
Figure 3.14 Graphical representation of the cutting stress in the Mohr’s circle. 

 

 

Once the stress state of the rock during drilling is determined in terms of the effective 

stresses, the Mohr-Coulomb failure criterion can be applied in combination to geometric 

relations from the Mohr’s circle representation of the stress state of the rock in order to 

determine the relationship among pore pressure, drilling parameters, environmental 

parameters, and material properties. The development of this relationship is described in 

the next section.  

 

3.2.2 PSP3 equation for pore pressure prediction 

When the rock chip in Figure 3.9 reaches failure, the Mohr’s circle that represents the 

effective stresses on the rock chip will tangentially intersect with the Mohr’s envelope of 

that type of rock. Assuming a linear Mohr’s envelope of the form given in Equation 

(3.9), and using the segment lengths defined in Figure 3.15, the minimum effective stress 

can be expressed in terms of the radius of the Mohr’s circle (ݎெሻ and the segments ܮଵ 

and ܮଶ as 

 

௠௜௡ߪ
ᇱ ൌ ଵܮ െ ሺܮଶ ൅ ெሻ (3.20)ݎ

 

where ܮଵ ൌ
௥ಾ
ୱ୧୬థ

, and ܮଶ ൌ
ௌబ

୲ୟ୬థ
.  
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Figure 3.15 Geometric relations of the cutting stress in the Mohr’s circle and Mohr’s 

envelope. 
 

 

The rock cohesion (ܵ଴ሻ represents the intercept of the Mohr’s envelope with the shear 

stress axis at zero normal stress; whereas, the coefficient of internal friction (݉ሻ 

represents the slope of Mohr’s envelope. The coefficient of internal friction is related to 

the angle of internal friction of the rock by  

 

݉ ൌ tan߶ (3.21)
 

 

Substituting the expressions for ܮଵ and ܮଶ into Equation (3.20), knowing that the 

diameter of the Mohr’s circle is equal to the cutting stress, and solving for pore pressure, 

the following equation can be determined 

 

௣ܲ ൌ
ܵ௖
2 ൬1 െ

1
sin߶ ൰ ൅ ௛ܲ ൅

ܵ଴
݉ (3.22)

 

 

Equation (3.22) can be rearranged, using Equation (3.21), as 
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௣ܲ ൌ
ܵ௖
2 ቆ1 െ

√1 ൅݉ଶ

݉ ቇ ൅ ௛ܲ ൅
ܵ଴
݉ (3.23)

 

 

It should be noted that the virgin pore pressure ሺ ௣ܲሻ is not physically a function of 

cutting stress ሺܵ௖ሻ. On the contrary, the hypothesis in the PSP3 concept is that the cutting 

stress (which is a fraction of the MSE) depends on the virgin pore pressure. Since ܵ௖ can 

be calculated from drilling measurements, the pore pressure can be back calculated if the 

relationship among the cutting stress, the hydrostatic pressure, and pore pressure is 

identified. Equation (3.23) provides such a relationship and it is the final form of the 

PSP3 concept to determine pore pressure at the bit during drilling from drilling 

parameters [cutting stress (ܵ௖ሻ, Equation (3.16)], environmental parameters ( ௛ܲሻ, and 

material properties (݉, ܵ௢ሻ. Attempts to validate Equation (3.23) have been conducted 

using drilling log data of three oil wells and compared to the post-drill pore pressure of 

each well. The results of the pore pressure determined with Equation (3.23) are 

presented in the next section. 

 

3.3 Results of pore pressure prediction from the PSP3 concept 

Comparisons of pore pressure profiles of three oil wells determined from post-drill pore 

pressure analyses with predictions of pore pressure determined with the PSP3 equation, 

Equation (3.23), are presented in this section. The post-drill pore pressure analysis of 

each well is considered as the true value of pore pressure for validation purposes.  

 

The drilling and environmental parameters needed in Equation (3.23) are determined 

from drilling log data of the three oil wells considered, which are located in the Gulf of 

Mexico. The wells analyzed are termed Well 1, Well 2, and Well 3 in this dissertation. 

The cutting stress (which can be thought as the energy required to break the rock) was 

calculated using available data of torque, weight on bit, RPM, and rate of penetration 

data, from the drilling logs of each well. Well 1 has a sandstone lithology; whereas, Well 
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2 and Well 3 have a predominantly shale lithology. Rock properties are not available 

from the data, but typical values were assumed from the literature. As mentioned above, 

the failure envelope of rock is typically a non-linear function of principal stress (see 

Figure 3.7). However, the PSP3 concept has been derived under the assumption that the 

failure envelope varies linearly with effective stress. In order to minimize the error 

introduce by this assumption, a spline function can be used for the failure envelope. 

With as spline function, a linear behavior can be assumed for small ranges of effective 

stress, and different linear functions can be assumed at different ranges of effective 

stress. The failure envelope parameters for Well 1 (sandstone) were estimated from data 

published by Murrell [51], as well as other works  [2, 52-54]; whereas, the failure 

envelope parameters for Well 2 and Well 3 were estimated from the data in [55]. In 

order to estimate the failure envelope parameters, the cutting stress ܵ௖ was calculated 

from the drilling parameters. The cutting stress corresponds to the diameter of the 

Mohr’s circle, as shown in Figure 3.14. If the diameter of the Mohr’s circle is known 

[from Equation (3.16)], as well as the non-linear failure envelope from [2, 51-55], the 

line that tangentially touches the Mohr’s circle at the point of contact with the non-linear 

failure envelope might be regarded as the linear approximation of the failure envelope at 

that normal stress. The values of failure parameters (rock properties) that were used in 

Equation (3.23) for each well are shown in Table 3.1.   

 

 

Table 3.1 Assumed rock properties used in the validation of the PSP3 concept. 

Name of well Angle of internal friction, ߶ Cohesion, ܵ଴ 

Well 1 47° 1,000 psi 

Well 2 55° at depth ൑ 15,000 ft 

45° at depth ൐ 15,000 ft 

900 psi at depth ൑ 15,000 ft 

1,800 psi  at depth ൐ 15,000 ft 

Well 3 55° at depth ൑ 15,000 ft 

50° at depth ൐ 15,000 ft 

900 psi at depth ൑ 15,000 ft 

1,200 psi at depth ൐ 15,000 ft 
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Figure 3.16 is a plot showing a comparison of the pore pressure determined from 

Equation (3.23) with the pore pressure from a post-drill analysis (considered as the true 

value of pore pressure for validation purposes) for Well 1. The pore pressure determined 

from Equation (3.23) is plotted in green; whereas, the post-drill pore pressure is plotted 

in red. The pore pressure was determined in the range from 9,100 ft to 17,500 ft of 

depth. After calculating the cutting stress ܵ௖ along the depth of Well 1, it was determined 

that the failure envelope could be described with a single linear function rather than a 

spline function due to the small variation of Mohr’s circle diameter. As mentioned in 

Table 3.1, the angle of internal friction was estimated to be ~47°, and the cohesion of the 

rock ~900 psi.  

 

 

 
Figure 3.16 Comparison of pore pressure determined with Eq. (3.23) against post-drill 

pore pressure for Well 1, both as a function of depth. 
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It can be observed from Figure 3.16 that in general the pore pressure determined with 

Equation (3.23) follows the trend of the post-drill analysis along the depth of the well, 

except in the ranges from 10,400 ft to 12,000 ft and from 12,800 ft and 13,100 ft. The 

scattering in the data of pore pressure determined with Equation (3.23) is due to the 

scattering in the data of the drilling parameters (torque, rate of penetration, RPM). The 

bandwidth of the scattering in the pore pressure determined with Equation (3.23) is ~700 

– 1000 psi at any given depth. Nevertheless, the average value of pore pressure 

determined with Equation (3.23) at any given depth is within 10% of the post-drill pore 

pressure, except in the ranges from 10,400 ft to 12,000 ft and from 12,800 ft and 13,100 

ft. At these two regions (from 10,400 ft to 12,000 ft, and from 12,800 ft and 13,100 ft) 

the pore pressure determined with Equation (3.23) is over predicted by 15-20%. Data of 

the rock properties as a function of depth was not available. It is hypothesized that the 

over prediction of pore pressure might be due to the fact that these two regions have a 

different lithology than the one assumed for the rest of the well. Another potential reason 

of discrepancy between the pore pressure determined with Equation (3.23) and the post-

drill analysis is the value of the efficiency assumed in the calculation of the cutting stress 

ܵ௖. This efficiency is defined as the ratio of the energy required to break the rock to the 

input energy measured at the drill bit. Since downhole data was available (that is, 

drilling parameters were measured just above the drill bit), an efficiency of 100% was 

assumed in the calculation of the cutting stress. In other words, it was assumed that all 

the input energy measured at the drill bit was used to break the rock. However, this is 

assumption might not be appropriate if a wear bit is used or a significant amount of 

energy is lost by friction (or any other means) at the cutter-rock interface.  

 

A second attempt to validate Equation (3.23) was conducted using drilling data from 

Well 2. The comparison of the pore pressure determined from Equation (3.23) with the 

post-drill analysis of Well 2 is presented in Figure 3.17. The pore pressure in Well 2 was 

determined from 7,000 ft to 16,500 ft. According to the drilling data, the rock 

composition in Well 2 is mainly shale, except from 9,600 ft to 15,300 ft where a salt 
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dome was found. Pore pressure was not determined at the salt dome. The failure 

envelope was estimated using a spline function with the parameters provided in Table 

3.1. The drilling data used to determine the cutting stress was taken downhole. 

Therefore, an efficiency of 100% (defined as the ratio of the energy required to break the 

rock to the input energy measured at the drill bit) was assumed in the calculation of the 

cutting stress.   

 

 
Figure 3.17 Comparison of pore pressure determined with Eq. (3.23) against post-drill 

pore pressure for Well 2, both as a function of depth. 
 

 

It can be observed from Figure 3.17 that there is a considerable discrepancy in the pore 

pressure determined with Equation (3.23) with respect to the post-drill pore pressure at 

shallower depths (about 35% at 7,000 ft). However, the pore pressure prediction [from 

Equation (3.23)] significantly improves as the depth of the well increases. In fact, it can 

be observed that, from 9,300 ft and deeper (except at the salt dome), the pore pressured 

determined with Equation (3.23) predicts within 10% the post-drill pore pressure.  
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It was found from the calculated values of cutting stress at shallower depths (above 

8,000 ft) that the Mohr’s circles corresponding to the stress state at shallower depths are 

too small in comparison to the available data in [55] from which the failure enveloped 

was determined. This suggests that this region (above 8,000 ft) of Well 2 might be a 

region of poorly consolidated sediments; and therefore, the failure parameters in Table 

3.1 might not be representative of this region. Further work is needed to determine 

whether choosing the appropriate failure parameters suffices to prove the validity of 

Equation (3.23).  

 

A third comparison of the pore pressure determined from Equation (3.23) with the post-

drill analysis is presented in Figure 3.18 for Well 3. According to the drilling data, the 

rock composition in Well 3 is mainly shale, except from 10,000 ft to 16,000 ft where a 

salt dome was found. The pore pressure in Well 3 was determined from 7,100 ft to 

17,400 ft, except at salt dome and at the range from 16,300 to 17,000 ft where data was 

not available. The failure envelope was estimated using a spline function with the 

parameters provided in Table 3.1.  

 

Downhole data was available only from 7,000 ft to 10,000 ft for Well 3. However, a 

zone of great interest for pore pressure prediction is the region below the salt dome (at 

16,000 ft), since this is an over-pressured zone. Therefore, the cutting stress was 

calculated from drilling parameters measured at the surface, and the percentage of 

energy lost along the drill string was estimated by comparing the cutting stress at the 

regions where both, downhole data and surface data were available (from 7,000 ft to 

10,000 ft). It was found that approximately 75% of the input energy measured at the 

surface is lost along the drill string. Thus, the cutting stress was calculated with surface 

data, and an efficiency of 25% (defined as the ratio of the energy required to break the 

rock to the input energy measured at the surface) was assumed. It is important to note 

that the definition of efficiency used for Well 1 and Well 2 (where the input energy is 

measured at the drill bit) is different than the definition of efficiency used for Well 3 
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(where the input energy is measured at the surface). The efficiency in Well 3 is used to 

estimate the energy loss along the drill string, and the reported efficiency is consistent 

with values reported in literature [30, 31]. Moreover, it is assumed that the cutting 

efficiency at the rock-cutter interface is 100% for all three wells. A detailed explanation 

of the definitions of these efficiencies is provided in Chapter V, Section 5.1. 

 

 
Figure 3.18 Comparison of pore pressure determined with Eq. (3.23) against post-drill 

pore pressure for Well 3, both as a function of depth. 
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pressure as it increases in depth. From 9,400 ft and below, the pore pressure determined 

with Equation (3.23) is always in agreement (within 5%) with the post-drill pore 

pressure. Unfortunately, there was no data available at the region from 16,300 ft to 

17,000 ft to further validate the model in the over-pressured zone. 

 

Figure 3.19 shows a comparison of predicted pore pressure with Equation (3.23) for 

Well 1, Well 2, and Well 3 to the post-drill pore pressure expressed in terms of a ratio of 

predicted to post-drill pore pressure. Note that a ratio of one would signify perfect 

agreement between predicted and post-drill values; whereas a value greater than one 

would signify over prediction.  

 

 
Figure 3.19 Ratio of predicted pore pressure from Equation (3.23) to post-drill pore 

pressure for Well 1, Well 2, and Well 3.  
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observed that the pore pressure is significantly over predicted for Well 2 (up to 35%) and 

Well 3 (up to 30%) at 7,000 ft of depth. However, as the depth increases the over 

prediction decreases until the trend is corrected from 9,300 ft and below. It was found 

that failure parameters used in Equation (3.23) can significantly affect the prediction of 

pore pressure. It is important to emphasize that the failure parameters used in this 

analysis were estimated from the information available in the drilling logs. However, 

specifics of the type of rock in each well were unknown. Further work is needed to 

determine whether the pore pressure can be correctly predicted at all depths if the actual 

failure parameters corresponding to the type of rock of each well are used. However, 

there is also the possibility that the PSP3 concept does not capture the overall physics of 

the drilling process, and thus, the lack of correct prediction at shallow depths.   

 

In this chapter, a description of the development of the PSP3 concept to determine pore 

pressure at the bit from drilling parameters, environmental parameters, and material 

properties, as well as results of the attempts to validate the PSP3 concept has been 

presented. Several plots are presented in order to visualize the comparison of the pore 

pressure determined from the PSP3 concept [Equation (3.23)] with the post-drill pore 

pressure of each of the three oil wells. The lack of validation of the PSP3 concept led to 

believe that this model might not capture the overall physics of the complex drilling 

process. It was recognized that there are other parameters that are not accounted for in 

Equation (3.23), such as the pore size, porosity, permeability of the rock, type of fluid in 

the pores, and temperature that might play a significant role in the physics of the drilling 

process. All these parameters might have an important effect in the formation pore 

pressure too. Furthermore, the model presented in Figure 3.9 might be oversimplified to 

represent the actual stress state of a rock during drilling.  

 

These shortcomings suggest that a fundamental understanding of the parameters that 

affect or are affected by pore pressure is required in order to achieve a successful pore 

pressure prediction methodology. As a first step of a fundamental approach, a literature 
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review was conducted to identify if there were any prior fundamental studies of pore 

pressure prediction. Details of this literature review have been presented in Chapter II.  

 

As a result of the ideas and work reviewed from the literature, a second approach was 

considered in this dissertation where a new way to mathematically describe the 

relationship between pore pressure and the energy required to break the rock (MSE) is 

suggested. It is important to remark that the second approach considered still focuses on 

the objective of determining whether or not it is possible to determine pore pressure at 

the bit from drilling parameters, environmental parameters, and material properties. 

Details of the second approach considered are presented in the next chapter. 
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CHAPTER IV 

THE USE OF MSE IN EATON’S EQUATION 

TO DETERMINE PORE PRESSURE  

 

The second approach considered in this dissertation in order to determine whether or not 

it is possible to determine pore pressure at the bit from drilling parameters, 

environmental parameters, and material properties is presented in this chapter. The 

second approach is the development of the concept of using a fundamental parameter 

(the energy required to break the rock) in Eaton’s equation. This new concept has been 

developed empirically, as a consequence of the lack of validation of the PSP3 concept, 

by pursuing reasoning similar to Eaton [10]. 

 

The PSP3 concept presented in Chapter III showed agreement with some post-drill data 

(for deeper regions), and inadequate prediction of pore pressure for other data (shallower 

depths). The inadequacy of the pore pressure prediction using the PSP3 equation might 

be due to the fact that other parameters that possibly affect the virgin pore pressure have 

not been taken into account. A major concern is that the current PSP3 equation is based 

on a theory that is applicable to rocks where the permeability is high enough to allow 

sufficient movement of fluid, and that connected systems of pores exist [47]. However, 

two (out of three) sets of data used in the attempt to validate the PSP3 equation were 

obtained from wells for which the rock formation was predominantly shale (which is a 

low-permeability rock), and even for this data agreement with the post-drill pore 

pressure data was found at deeper regions. In order to clarify this behavior it has been 

recognized that a more fundamental understanding of the relationships among pore 

pressure, rock properties, drilling parameters, and environmental parameters is required.  

 

As a first step of the initiation of a fundamental approach, a literature review was 

conducted to identify if there were any prior fundamental studies of pore pressure 

prediction. Although there are some investigations in literature that present a relationship 
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among pore pressure, drilling parameters, environmental parameters, and material 

properties [33, 39], the objective of these investigations did not focus on the pore 

pressure prediction. It was found from the literature review that Eaton’s equation is one 

of the most commonly used relationships to determine virgin pore pressure [21]. 

Furthermore, current efforts to improve pore pressure prediction focus on improving the 

methods to measure or infer the parameters that can be used in Eaton’s equation 

(resistivity, conductivity, wave velocity from sonic and seismic data, d-exponent). 

However, it is important to recall that Eaton’s equation was developed empirically, 

rather than from basic principles. Thus, a review of the ideas that led Eaton to develop 

his equation for pore pressure prediction was conducted in detailed. From this review, 

and pursuing reasoning similar to Eaton, it is proposed in this work that a fundamental 

parameter (such as the energy required to break the rock) can be used in Eaton’s 

equation.  

 

In this chapter, a review of the development of Eaton’s equation is described first. 

Subsequently, an analysis of the reasoning followed by Eaton to develop his equation for 

pore pressure prediction is presented. Then, a fundamental parameter is proposed to be 

used in Eaton’s equation in order to predict pore pressure. Finally, results of pore 

pressure prediction using this fundamental parameter in Eaton’s equation are presented.  

 

4.1 Review of the development of Eaton’s equation 

In 1975, B.A. Eaton presented an equation for pore pressure prediction from well logs. 

This equation is one of the most commonly used relationships to predict pore pressure 

[21] in the formation. Eaton assumed that the effective stress in a low-permeability rock 

is a fraction of what it would be in high-permeability rock, because an additional part of 

the total stress is supported by the pore pressure in the case of the low-permeability rock. 

That is, when the permeability of the rock is very high, the pore pressure is equal to the 

hydrostatic pressure. However, in low-permeability rock the pore pressure is larger than 

the hydrostatic pressure and the effective stress is lower.  To calculate the fraction of the 
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effective stress for the case of low-permeability rocks, Eaton proposed to consider the 

ratio of the electrical resistivity of the rock for a normal trend (representative the 

hydrostatic pressure) to the resistivity at an abnormal pore pressure.  

 

Eaton’s idea of comparing electrical resistivities was based on the observations of 

Hottman and Johnson for shale [18]. Hottman and Johnson were the first to observe that 

shale resistivity decreases in over-pressured zones. They reasoned that electrical 

resistivity is larger in the rock matrix than in the formation water. Thus, a well 

compacted shale containing less water is more resistive that a shale containing more 

water. Moreover, a sequence of normally compacted sediments should have a normally 

increasing resistivity trend. They supported their theory with resistivity plots from actual 

well logs, and established that any resistivity decrease from this normal trend was 

associated with abnormally high-pressure zones. However, this theory, which is the basis 

for the Eaton’s equation, remains questionable [20].   

 

It was obvious to Eaton, based on the observations from Hottman and Johnson, that there 

should be a relationship between abnormal pore pressure and any deviation of resistivity 

from the normal trend. Eaton used the effective stress concept, Equation (2.3), and 

expressed the pore pressure gradient (dividing all terms by depth, D) as 
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where: 
௉೛
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 = virgin pore pressure gradient (psi/ft) 

ை஻
஽

 = overburden stress gradient (psi/ft) 
ఙᇱ
஽

 = effective stress gradient (psi/ft) 

 depth (ft) = ܦ
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Equation (4.1) expresses a relationship among pore pressure, overburden stress and 

effective stress for a sequence of normally compacted sediments. It was also recognized 

that normally compacted sediments allow the formation fluid to escape freely. Thus, the 

normal trend of pore pressure is the hydrostatic pressure normal trend, and the effective 

stress in such situation is expressed as 

 

ቆ
Ԣߪ
ቇ௡௢௥௠௔௟ܦ

ൌ
ܤܱ
ܦ െ ൬ ௣ܲ

൰௡௢௥௠௔௟ܦ
 (4.2)

 

 

Eaton hypothesized that the effective stress in an over-pressured zone should be a 

fraction of the normal effective stress, because part of the total stress is supported by the 

pore fluid. Since electrical resistivity seemed to track changes in pore pressure, Eaton 

suggested that the fraction of effective stress should be expressed in terms of a ratio of 

the resistivities of the actual to normal trends. He proposed the following equation form 

to describe the abnormal effective stress 
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൰
୬

 (4.3)

 

where ܱܾ݀݁ݒݎ݁ݏ ܴ௦௛ is the actual value of resistivity at a given depth (see Figure 4.1), 

 ,௦௛ is the resistivity for the normal trend at the same depth (see Figure 4.1)ܴ ݈ܽ݉ݎ݋ܰ

and ݊ is an exponent to fit the data. 

 

It is important to mention that the form of Equation (4.3) was developed from trial-and-

error fitting of data. The original value of the exponent was ݊ ൌ 1.5. Substituting 

Equation (4.2) into Equation (4.3), and Equation (4.3) into Equation (4.1), the expression 

to calculate abnormal pore pressure in shale formation [10] becomes  
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where 
௉ು
஽

 = virgin pore pressure gradient (psi/ft) 

ை஻
஽

 = overburden stress gradient (psi/ft) 

ቀ௉ು
஽
ቁ
ே

 = normal virgin pore pressure gradient (psi/ft) 

ܴ௢ = observed resistivity at a given depth (ohm.m) 

ܴே = resistivity of normal trend at a the same depth as ܴ௢ (ohm.m) 

 

 
Figure 4.1 Log-resistivity data for a South Louisiana well presented by Eaton [10]. 

Reproduced with permission of the copyright owner, © SPE, 1975. 
 

 

In Equation (4.4), the expression ቂை஻
஽
െ ቀ௉೛

஽
ቁ
ே
ቃ represents the effective stress of the 

formation in normal compaction; whereas the ݊-th power of the ratio ቀ ோ೚
ோ೙
ቁ represents the 

ratio of the effective stress in the over-pressured zone to the effective stress in the 

hypothetical normal-pressured zone at the same depth. After evaluation of Equation (4.4) 
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with available data, Eaton found that the ݊ coefficient with a value of 1.2 better fit the 

data. Eaton also recognized that the ratio of other measurements could be utilized in 

Equation (4.4) instead of electrical resistivity. He proposed the used of electrical 

conductivity (which is the inverse of resistivity), the corrected d-exponent (which 

produces a plot that is similar to the plot in Figure 4.1), and sonic-log data (with a value 

of 3 for the exponent). An analysis of the validity of the arguments that led Eaton to 

develop Equation (4.4) is presented in the next section. 

 

4.2 Analysis of Eaton’s equation 

In principle, Eaton’s reasoning to develop Equation (4.4) seems to be logical. When 

sediments in a saturated formation are compacted, the pore size decreases and fluids are 

expelled from the pores. If the pore fluid can escape and migrate to the surface at about 

the same rate as the rate of compaction, a normal pore pressure gradient is maintained. 

That is, if the formations are highly permeable, fluid within the pores would only 

support the weight of the water above. However, if the fluid in the pores is unable to 

communicate with other pores, the fluid must support a greater portion of the overburden 

load. That extra portion of the overburden load that is supported by the pore fluid 

corresponds exactly to the decrease of effective stress. By using the ratio of actual 

resistivity to the resistivity in a normal compaction situation, Eaton attempted to 

determine that portion of overburden load supported by the fluid. The question remains 

of whether or not electrical resistivity (or any of the other parameters used by Eaton) is 

the best parameter to track a change in the normal pore pressure trend.  

 

It was reasoned originally that electrical resistivity would be a good indicator of the 

water content in the rock. Moreover, it was assumed that the more water content the 

higher pore pressure and the lower the resistivity would be. However, electrical 

resistivity is affected by other factors such as porosity of the rock, permeability, moisture 

content, concentration of dissolved electrolytes, temperature, phase of the pore fluid, 

clay content, among others. The important point is that there might be other parameters 
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that affect the resistivity value of a rock but have negligible effect on the pore pressure. 

In other words, a change in the value of resistivity from its normal trend might have, in 

certain occasions, nothing to do with abnormal pore pressure.  

 

As an example, Figure 4.2 shows a plot of the electrical resistivity along with the pore 

pressure, both as a function of depth. The data corresponds to drilling logs from Well 2. 

As mentioned in Chapter III, the lithology of this well is mainly shale except for the salt 

dome clearly marked in Figure 4.2. The linear scale for the pore pressure curve is the 

horizontal red axis at the bottom (psi) of the plot, and the logarithmic scale for resistivity 

is the horizontal blue axis at the upper part of the plot (Ohm-m). It is important to note 

that this plot does not seek to compare pore pressure to resistivity, quantitatively. 

However, this plot is useful to determine qualitatively if there is any relationship 

between the trends of pore pressure and resistivity.  

 

 
Figure 4.2 Comparison between electrical resistivity (log blue scale) and pore pressure 

(linear red scale) as a function of depth for Well 2. 
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Several observations can be made from the plot in Figure 4.2. First, it can be noticed that 

pore pressure increases with a constant gradient (constant slope of the pore pressure 

curve) at depths between 4,500 ft and 6,900 ft. This section of the curve corresponds to 

the shallow unconsolidated sediment that extends from the mudline (sea floor) down to 

the depth where the compaction disequilibrium dewatering (CDD) process begins [25]. 

The pressure gradient at this section of unconsolidated sediments is 0.447 psi/ft. It can 

be clearly seen that electrical resistivity at this region, between 4,500 ft and 6,900 ft, 

does not exhibit a constant slope. Moreover, resistivity increases from 4,800 ft to 5,400 

ft, but then it decreases from 5,400 ft to 6,900 ft.  

 

Second, the transition zone as defined in [25] is located in region from 6,900 ft to 9,700 

ft. At this region, fluid flows upward as a result of the gradual pressure gradient increase 

(from 0.447 psi/ft to 0.73 psi/ft). This is the region where the normal compaction trend 

can be established. However, it can be seen from Figure 4.2 that the normal compaction 

trend of resistivity is present only in the range from 6,900 ft to 8,000 ft; whereas, the 

normal compaction trend for pore pressure extends to the entire transition zone (6,900 ft 

to 9,700 ft). This can be an indication that not all the changes in the resistivity are due to 

the pore pressure change.  

 

Finally, the pore pressure is abnormally high at about 15,300 ft, that is, the pore pressure 

is higher than would be predicted from the normal trend. The resistivity at this point 

appears to respond to the increase in pore pressure by exhibiting a considerably lower 

value. However, it has already been observed that not all the changes in the resistivity 

are due to pore pressure.  

 

Even though the electrical resistivity (or conductivity) of the rock might not be the best 

parameter to relate the change between normal and abnormal pore pressure, the form of 

Equation (4.4) seems to be appropriate if the following reasoning is considered. 

Equation (4.4) describes that the pore pressure at a given depth is equal to the 
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overburden (total stress) minus the actual effective stress in Equation (4.3). The effective 

stress at a normally pressured zone is always the difference between the overburden and 

the hydrostatic pressure. Equation (4.3) established that the actual effective stress would 

be equal to the effective stress in a hypothetically normally pressurized zone at the same 

depth multiplied by some factor. That factor should be less than unity in the common 

case of over pressurized zones, because a larger portion of the total stress is supported by 

the pore pressure. Furthermore, Eaton expressed that factor as the ratio of actual to 

normal resistivities raised to the n-th power.   

 

Eaton’s expression might work well if: (1) a hypothetical normal trend of the parameter 

used in the ratio (for example, resistivity) could be established, and (2) if any deviations 

of such parameter from the normal trend would be solely due to changes in pore 

pressure, rather than a multiplicity of factors. 

 

A normal trend would be defined as a monotonic increase or decrease of the values of 

that parameter as a function of depth. Similarly, the normal trend of pore pressure is 

defined as the monotonic increase of pore pressure as a function of depth, which is 

usually the hydrostatic pressure encountered in high-permeability rock. Pursuing 

reasoning similar to that of Eaton, and using the above definition for a normal trend, a 

fundamental parameter is proposed to be used in Eaton’s equation. That parameter is the 

mechanical specific energy, which has been previously defined as the energy (per unit 

volume) required to break the rock. This is a fundamental parameter that comes directly 

from thermodynamic principles. The development of this approach is presented in the 

next section. 

 

4.3 Proposed fundamental parameter to be used in Eaton’s equation 

It has been previously mentioned that Eaton’s expression might work well if: (1) a 

normal trend of the parameter used in the ratio of his equation could be established, and 

(2) if any deviations of such parameter from the normal trend would be solely due to 
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changes in pore pressure, rather than a multiplicity of factors. On the other hand, the 

PSP3 equation and the results from the attempt of validation of the PSP3 concept indicate 

that there might be a relationship between the energy required to break the rock (ܵ௖, 

which is a portion of MSE) and the virgin pore pressure. It was reasoned that, if MSE is 

a function of the virgin pore pressure, then it could be used to track the changes of pore 

pressure. Therefore, instead of using electrical resistivity, a more fundamental parameter 

such as MSE could be used in Eaton’s expression. Moreover, it was also reasoned that 

MSE may fit the definition of normal trend provided in the previous section, since it can 

be readily established that MSE increases nearly linearly as a function of depth, in the 

theoretical case where the pore pressure follows a normal trend and no changes in 

lithology are present. This reasoning led to believe that Equation (4.4) could be used to 

predict pore pressure behavior at a given depth using MSE as the parameter to use in the 

ratio of the equation. The proposed equation would be expressed as 
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where ܧܵܯ௢ is the actual mechanical specific energy calculated with Equation (3.17) 

from drilling parameters, and ܧܵܯ௡ is the hypothetical value of MSE resulting if the 

normal trend were followed. 

 

It seems from drilling log data that establishing a normal trend of MSE in a region of 

normal pore pressure is fairly straight forward. However, there is a more important issue 

that needs to be addressed so that Equation (4.5) can be used to predict pore pressure. 

This issue is whether it is realistic that any deviation in MSE from the established 

normal trend must result from changes in pore pressure. Moreover, if any other factors 

affect the normal trend of MSE, any changes due to those factors must be very small in 

comparison to the changes resulting from a change in pore pressure if MSE is to be an 

accurate predictor of pore pressure changes. Thus, Equation (4.5) could be a plausible 

expression to predict pore pressure for all types of rock provided that MSE is 
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significantly affected by changes in virgin pore pressure. At this point, it is worthwhile 

to recall that Detournay and Atkinson [33] concluded that MSE might be independent of 

virgin pore pressure for shale (see Chapter II), due to the low permeability of this type of 

rock. Therefore, if the hypotheses proposed in this section are correct, they would be 

contradictory to Detournay and Atkinson’s theory. To address this issue, actual drilling 

data for shale has been analyzed to determine whether or not there is a relationship 

between MSE and virgin pore pressure.  

 

Figure 4.3 shows the post-drill analysis of virgin pore pressure as a function of depth (in 

red), as well as the calculated MSE as a function of depth (in blue) for Well 2. The 

lithology of Well 2 is mainly shale, except for the salt dome clearly marked in the figure. 

However, no information on the actual permeability of this shale is available to the 

author. Figure 4.3 suggests, in a qualitative manner, that there is a relationship between 

MSE and virgin pore pressure.  

 

 
Figure 4.3 Comparison of the trends of MSE (blue curve) and Pp (red curve) as a 

function of depth for Well 2. 
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As explained above for Figure 4.2, at depths between 4,500 ft and 6,900 ft, the pore 

pressure corresponds to the hydrostatic pressure of seawater since this is a zone of 

unconsolidated sediments. At 6,900 ft the transition zone begins and there is a change in 

the slope of pore pressure that keeps increasing until the salt dome is reached (9,600 ft). 

It is at this region where the normal pore pressure trend is usually established, see [25]. 

It can be observed that a linear trend of MSE can be readily established at the region 

between 6,900 ft and 9,600 ft. That is, from 6,900 ft to 9,600 ft, both pore pressure and 

MSE increase linearly. Coming out of the salt dome, at about 15,300 ft, the pore pressure 

reaches values greater than the ones predicted by its normal trend (dotted black line). It 

can be clearly observed that in this region of abnormal pore pressure, MSE is decreased 

considerably from its normal trend, reaching values even smaller than pore pressure. 

Since a fundamental assumption is that increased pore pressure results in decreased 

MSE, the observed behavior is to be expected and it contradicts Detournay and 

Atkinson’s conclusion (unless this is atypical shale with high permeability).  

 

The MSE plotted in Figure 4.3 was calculated using downhole measurements of torque, 

ROP, RPM, and WOB. If downhole data is not available, MSE can still be calculated 

from surface data. However, it has to be considered that part of the calculated MSE 

(input energy) is not actually used to break the rock. It has been found in other works 

[30, 31] that only between 30-40% of this energy is actually utilized in breaking the rock 

formation, and the rest is lost resulting from other factors (for example, friction along the 

drill string or at the cutter-rock interface). Fortunately, this is not an issue for the use of 

Equation (4.5), since the ratio of MSE is what is needed. Therefore, if only a fraction of 

the energy input is used to break the rock, and this fraction remains constant, that factor 

cancels out when the ratio of actual to normal trend MSE is formed. The findings in 

Figure 4.3 suggest that the form of Equation (4.5) might be appropriate to relate pore 

pressure to mechanical specific energy. It is important to note that a previous work 

presented by Moore [56] describes a similar idea to the concept presented in this chapter. 

In his work, Moore [56] proposes that a change of pore pressure from the normal trend 
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can be track from the change in mud weight provided that the rate of penetration is 

maintained at the normal trend and the weight on bit and rotary speed are kept constant.  

However, the concept proposed in this chapter, Equation (4.5), relates the abnormal pore 

pressure to a fundamental parameter: the energy required to break the rock (MSE). 

Furthermore, the MSE accounts for the dependability of parameters such as rate of 

penetration, rotary speed, torque, and weight on bit. That is, instead of attempting to 

maintain any drilling parameters constant during drilling, as proposed by Moore [56], a 

fundamental parameter such as the MSE can take into account the dependable effects of 

all these drilling parameters at once.   

 

Equation (4.5) describes the pore pressure in terms of the MSE by relating a change in 

the effective stress of the rock from the normal trend to a change in MSE from the 

hypothetical normal trend of MSE. However, an important question that is not answered 

in Figure 4.3 is: why is MSE a function of pore pressure? Nevertheless, it is reasonable 

to expect that the energy required to break the rock is a function of the stress state of the 

undisturbed rock, including the pore pressure. The exponent ݊ in Equation (4.5) is 

another important aspect that requires a physical interpretation.  In order to seek an 

answer to these questions, a fundamental approach based on basic principles is proposed 

and addressed in Chapter V. Even though it is not clear at this point why MSE is a 

function of pore pressure and the significance of the exponent ݊, Equation (4.5) has been 

used to determine pore pressure for the same three wells presented in Chapter III, and 

the results have been compared to a post-drill pore pressure analysis (which is 

considered the true value of pore pressure for validation purposes). Results from this 

attempt to validate Equation (4.5) are presented in the next section.   

 

4.4 Results of pore pressure prediction using MSE in Eaton’s equation 

In an attempt to validate Equation (4.5), comparisons of the pore pressure determined 

with Equation (4.5) and the post-drill pore pressure are presented for the same three 
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wells presented in Chapter III. The parameters needed in Equation (4.5) to determine 

pore pressure were determined from drilling log data of each of the wells.  

 

A plot similar to the one presented in Figure 4.3 was developed for each well analyzed, 

to establish the normal trends of pore pressure and MSE. For each well (Well 1, Well 2, 

and Well 3), regions were found with a monotonic increase of pore pressure (at the 

transition zone). That monotonic increase in pore pressure was assumed to be the normal 

trend of pore pressure, ሺ ௉ܲሻ௡,  and a best fit curve was determined. At the same depths 

where the normal trend of pore pressure was established, the normal trend of MSE, 

 ௡, was established and a best fit curve determined. Note that all normal trends, forܧܵܯ

MSE and pore pressure (for all wells), were found to be very close to linear functions.  

 

The other parameter needed in Equation (4.5) (besides the normal pore pressure and the 

normal MSE) is the overburden, for which data was available and a best fit curve was 

also determined. Table 4.1 shows the linear functions of the normal trends for MSE and 

pore pressure, as well as the best fit curve of overburden, that were used in Equation 

(4.5) for each well analyzed. 

 

 

Table 4.1 Normal trends (curve fits) of pore pressure and MSE, as well as the 
overburden function, for the three wells considered.  

Name 

of well 

Ppn (psi) 

z = depth (ft) 

MSEn (psi) 

z = depth (ft) 

Overburden (psi) 

z = depth (ft) 

Well 1 ௣ܲ೙ ൌ ݖ0.602 െ ௡ܧܵܯ 1170 ൌ ݖ0.908 െ 9134 

(downhole data) 

ܤܱ ൌ 4 ൈ 10ି଺ݖଶ ൅ ݖ0.898 െ 3365 

Well 2 ௣ܲ೙ ൌ 0.713z െ ௡ܧܵܯ 1898 ൌ ݖ2.4 െ 14524 

(downhole data) 

ܤܱ ൌ 2 ൈ 10ିଵ଴ݖଷ െ 6 ൈ 10ି଺ݖଶ

൅ ݖ0.986 െ 2356 

Well 3 ௣ܲ೙ ൌ ݖ0.713 െ ௡ܧܵܯ 1898 ൌ ݖ7.2 െ 35200 

(surface data) 

ܤܱ ൌ 3 ൈ 10ିଵ଴ݖଷ െ 8 ൈ 10ି଺ݖଶ

൅ ݖ1.021 െ 2493 
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It can be seen that the normal trend of pore pressure is the same for Well 2 and Well 3. 

Moreover, the overburden functions are similar for Well 2 and Well 3 as well. This is 

expected since both wells are located in the same field and have a very similar lithology. 

MSE is calculated using downhole data whenever possible. However, downhole data 

was not available in the drilling logs for Well 3 at depths greater than 16,000 ft. 

Therefore, a normal trend of MSE calculated from surface data is shown in the table. 

MSE calculated from surface data is greater than MSE calculated from downhole data, 

since the former also accounts for the energy required to overcome the friction all along 

the drill string. Fortunately, this is not an issue when using Equation (4.5) as long as the 

normal trend and the actual value of MSE are both consistently calculated with either 

surface or downhole data.  

 

Figure 4.4 shows the pore pressure calculated with Equation (4.5) for Well 1. The 

lithology of this well is predominantly sandstone.  

 

 
Figure 4.4 Comparison of pore pressure determined with Eq. (4.5) and ݊ ൌ 1 against 

post-drill pore pressure for Well 1, both as a function of depth. 
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The pore pressure determined from a post-drill analysis is also plotted in the figure. As it 

has been stated earlier in this dissertation, the pore pressure from the post-drill analysis 

is considered as the true value for validation purposes.  

 

It can be observed from Figure 4.4 that the data of pore pressure determined from 

Equation (4.5) is considerably scattered at any given depth, but it forms a band that 

follows, in general, the same trend of the post-drill pore pressure. The bandwidth of the 

pore pressure increases with depth from ~500 psi (at 9,100 ft) up to 2,500 psi (at 15,200 

ft and below). The scattering in the pore pressure data is due to the scattering in the 

torque data used to calculate MSE. It can be observed that post-drill pore pressure is on 

the middle of the pore pressure band determined from Equation (4.5), except in the zone 

that extends from 10,350 – 11,700 ft in depth. At this region, it can be seen that the post-

drill pore pressure is slightly higher than the normal pore pressure (~100 psi). However, 

the pore pressure determined from Equation (4.5) over predicts the post-drill pore 

pressure by ~700 psi at this zone (10,350 – 11,700 ft in depth). It is interesting to note 

that the trend of pore pressure determined with Equation (4.5) in Figure 4.4 is 

remarkably similar to the trend of pore pressure determined with the PSP3 equation 

(Figure 3.16). The trends of pore pressure determined from these two concepts [Equation 

(3.23) and Equation (4.5)] were similar only for Well 1. Thus, further work is 

recommended to investigate under which the circumstances both concepts would 

provide similar trends in pore pressure prediction. This knowledge could lead to a better 

understanding of the relationship between pore pressure and the energy required to break 

the rock.  

 

It should be noted that the post-drill pore pressure for Well 1 is known as a function of 

the true vertical depth (TVD); however, the drilling data of Well 1 used to predict the 

pore pressure with Equation (4.5) was only available as a function of the total depth. 

Total depth is usually greater than the TVD because wells are not drilled perfectly 

vertical (the drill string can bent and even turn horizontally). However, the TVD is 
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important in determining the borehole pressures, which are caused in part by the 

hydrostatic pressure of fluid in the wellbore [57]. An estimation of the TVD for Well 1 

was determined from a comparison of the equivalent circulating density (ECD) that was 

available both as a function of total depth and as a function of TVD. However, there 

might be a slight mismatch in depth between the post-drill and the predicted pore 

pressure profiles.  

 

Interestingly, a value of 1 was used for exponent ݊ in Equation (4.5), which suggests that 

the ratio ெௌா೚
ெௌா೙

 is equal to the ratio of the effective stress in the over-pressured zone to the 

effective stress in the hypothetical normal-pressured zone at the same depth. It was 

found that the value of the exponent ݊, if varied from 0.5 to 1.5, does not significantly  

affect the trend of pore pressure. However, decreasing the value of the exponent reduces 

the scattering of the pore pressure data.  

 

Figure 4.5 presents a comparison similar to Figure 4.4 of the pore pressure determined 

from Equation (4.5) with ݊ ൌ 0.5 for Well 1. It can be seen from Figure 4.5 that 

decreasing the value of the exponent ݊ (from 1 to 0.5) decreases the scattering of the 

values of the predicted values while maintaining more or less the same trend. However, 

it can be deduced from Equation (4.5) that as the exponent ݊ approaches a value of zero, 

the predicted pore pressure will approach the normal trend of pore pressure. Although 

not shown in the figure, it was also found that increasing the value of the exponent does 

not significantly affect the trend of the predicted pore pressure, but it results in even 

more scattering of the predicted values.  

 

 



 74

 
Figure 4.5 Comparison of pore pressure determined with Eq. (4.5) and ݊ ൌ 0.5 against 

post-drill pore pressure for Well 1, both as a function of depth. 
 

 

A comparison of the pore pressure calculated with Equation (4.5) with the post-drill pore 

pressure for Well 2 is presented in Figure 4.6. The lithology of this well is primarily 

shale. It can be observed from Figure 4.6 that the trend of the pore pressure predicted 

with Equation (4.5) follows exactly the trend of the post-drill pore pressure. Moreover, 

the pore pressure band formed due to the scattering of the torque data has a width of 

about 600 psi along the well, which is considerable less than the band width for Well 1. 

It is important to remark that the pore pressure band determined with (4.5) is centered 

with respect to the post-drill pore pressure at each depth, except at the zone between 

8,700 ft and 9,000 ft. At this zone, a change in lithology was found from shale to a sandy 

zone. This behavior suggests that Equation (4.5) could be used to predict pore pressure 

as long as the lithology does not change. Otherwise, a different normal trend of MSE 

must be established for the new lithology.   
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Figure 4.6 Comparison of pore pressure determined with Eq. (4.5) against post-drill pore 

pressure for Well 2, both as a function of depth. 
 

 

It is important to recall that the pore pressure determined from the PSP3 concept over 

predicts the post-drill pore pressure of Well 2 for up to 35% at 7,000 psi. However, the 

proposed new expression for pore pressure prediction, Equation (4.5), correctly predicts 

the trend of the post-drill pore pressure above the salt dome. Moreover, the pore pressure 

prediction below the salt dome also follows the trend of the post-drill pore pressure 

within ±300 psi (~10%). A value of 1 was used for the exponent ݊ of Equation (4.5) in 

the determination of pore pressure, which surprisingly remarks the equality between the 

ratio ቀெௌாబ
ெௌா೙

ቁ and the ratio ൬ఙ
ᇲ
ೌ್೙೚ೝ೘ೌ೗
ఙ೙೚ೝ೘ೌ೗
ᇲ ൰. This suggests that a linear relation exists between 

the effective stress of the rock and the energy required to break it (MSE).  

 

Figure 4.7 shows yet another comparison between post-drill pore pressure and pore 

pressure predicted from Equation (4.5). This comparison is for Well 3, for which the 
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lithology is very similar to the lithology of Well 2 (shale). Downhole data was not 

available for this well below the salt dome. Instead, surface data was used to calculate 

the MSE to be used in Equation (4.5).  

 

 
Figure 4.7 Comparison of pore pressure determined with Eq. (4.5) against post-drill pore 

pressure for Well 3, both as a function of depth. 
 

 

Figure 4.7 shows that pore pressure calculated with Equation (4.5) follows exactly the 

trend of the post-drill pore pressure. The pore pressure band formed due to the scattering 

of the torque data has a width of about 300 psi (smaller than the one in Well 2). It can be 

observed that the pressure profile of Well 3 is very similar to the profile of Well 2, since 

both wells are located at the same field. Although there was not enough data available at 

some regions below the salt dome, the regions where the pore pressure could be 

calculated (below the salt dome) suggest a very good prediction of the actual pore 

pressure, within ±300 psi (<5%). As expected from results of Well 2, a value of 1 was 

used for the exponent of Equation (4.5).  
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Figure 4.8 shows a comparison of the pore pressure predictions from Equation (4.5) for 

Well 1 (for both ݊ ൌ 1 and ݊ ൌ 0.5), Well 2, and Well 3, with post-drill pore pressure 

data of each well. In the figure, the ratio of predicted pore pressure to actual pore 

pressure is shown for each well. A ratio value of one means perfect agreement between 

prediction and actual pressure. It can be seen that the ratios for the three wells oscillate 

around one. The ratio data has been smoothed to eliminate the random variations caused 

by the torque data used in the calculation of MSE. The data presented in Figure 4.8 

corresponds to the moving average of the calculated ratios, which allows revealing the 

main feature of each curve.  

 

 
Figure 4.8 Ratio of predicted pore pressure to actual pore pressure using MSE as a new 

parameter in Eaton’s equation for Well 1, Well 2, and Well 3.  
 

 

The percentage variation of the predicted pore pressure to the post-drill pore pressure for 

Well 1 [for ݊ ൌ 1 in Equation (4.5)] is ~10% along the depth of the well, except in the 
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11,700 ft and from 12,700 – 13,100 ft, the percentage variation for Well 1 is the up to 

20% [for ݊ ൌ 1 in Equation (4.5)]. The percentage variation for Well 1 [for ݊ ൌ 0.5 in 

Equation (4.5)] is slightly less than 10% along the depth of the well, including the ranges 

from 10,350 – 11,700 ft and from 12,700 – 13,100 ft. For Well 2, the percentage 

variation of the ratio of predicted pore pressure to post-drill post pressure is less than 

10%, except at the sandy zone (~9,750 ft) where the over prediction goes up to 20%.  

The percentage variation of the ratio of predicted pore pressure to post-drill post pressure 

for Well 3 is ~8%, except at the sandy zone (~9,000 ft) where the over prediction goes 

up to 15%.   

 

It is important to recall that the lithology of Well 2 and Well 3 is shale; whereas, the 

lithology of Well 1 is sandstone. Thus, it can be observed that the use of this new 

approach, Equation (4.5), seems to be promising for predicting pore pressure for 

different types of rock.  

 

Several observations can be made from the results of the new equation, Equation (4.5), 

presented in the above figures. It has to be noted that the normal trends of pore pressure 

and MSE were established by analyzing plots of MSE and post-drill pore pressure as a 

function of depth for the entire well. However, even if the post-drill data is not available 

the normal trends may be inferred, as it is usually done, from information of adjacent 

exploratory wells that share similar lithology. Furthermore, if no information is available 

from adjacent well, the normal trends can be established while drilling in the transition 

zone and Equation (4.5) could be used to predict the pore pressure in the over-pressured 

zones.  

 

Once the normal trends and the overburden are determined, the application of Equation 

(4.5) is straight forward. The only remaining open question is the appropriate value of 

the exponent ݊ in the equation. The results presented above suggested that the exponent 

might not even be needed in the equation. However, the value of one for the exponent of 
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Equation (4.5) to determine the pore pressure of Well 1, Well 2, and Well 3 was an 

empirical finding. Nevertheless, the form of Equation (4.5), which relates pore pressure 

to drilling parameters (MSE), environmental parameters (overburden), seems to 

correctly predict the trends of pore pressure.  

 

Another point to remark is the fact the material properties are not considered in Equation 

(4.5). Indeed, Equation (4.5) is only applicable to wells, or zones within a well, with the 

same lithology throughout. Moreover, it is hypothesized that the normal trend of 

mechanical specific energy (ܧܵܯ௡ሻ is a function of material properties. If this 

hypothesis is correct, a normal trend of MSE could be probably determined from the 

rock properties a priori. This would require a fundamental understanding of the role of 

material properties in the cutting process of rock.  

 

From these observations, it is clear that further work is needed to validate Equation (4.5) 

with more data. Moreover, emphasis should be placed on understanding the reason why 

Equation (4.5) works well in predicting pore pressure. For these reasons, a fundamental 

approach, based on basic principles, to understand the mechanism of rock drilling is 

proposed. The development of this fundamental approach to determine whether or not it 

is possible to predict pore pressure from drilling parameters, environmental parameters 

and material properties is described in the next chapter.  
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CHAPTER V 

FUNDAMENTAL APPROACH TO RELATING PORE PRESURE 

TO DRILLING PARAMETERS, ENVIRONMENTAL PARAMETERS,  

AND MATERIAL PROPERTIES  

 

Two empirical approaches (first and second approaches considered) have been presented 

in previous chapters that attempt to establish a relationship among pore pressure, drilling 

parameters, environmental parameters, and material properties. Although both 

approaches suggest that such a relationship exists, neither approach have been validated 

to definitely prove the existence and form of the relationship. A fundamental approach is 

proposed in this chapter to investigate, from basic principles, the relationship among the 

mentioned parameters and material properties. A more fundamental way of viewing 

mechanical specific energy is described first. Then, a brief summary of the theory of 

Biot’s poroelasticity is presented. Finally, a numerical model based on Biot’s 

poroelasticity theory is proposed to describe the cutting process.  

 

5.1 A more fundamental way of viewing MSE 

In 1965, Teale introduced the term mechanical specific energy (MSE) to describe the 

energy required to break a volume of rock [9]. Teale expressed MSE in terms of drilling 

parameters with Equation (3.17). The equation derived by Teale accounts for two main 

contributions of input energy (per unit volume): (1) the mechanical (shaft) work done by 

the rotary movement of the drill bit [first term in Equation (3.17)], and (2) the work done 

on the rock by the vertical thrust of the drill bit [second term in Equation (3.17)].  

 

The concept of mechanical specific energy has been used in the oil and gas industry as a 

quantifier of common drilling problems [30], as an indicator used to maximize the rate 

of penetration [31], and in general, as an index to evaluate the drilling performance [32]. 

However, there is no information available in current open literature (to the knowledge 

of the author) that suggests the use of MSE to predict virgin pore pressure. Although 
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MSE is not currently used to predict pore pressure, the use rate of penetration has been 

previously suggested in some investigations to predict pore pressure  [56, 58]. 

Furthermore, a relationship between pore pressure and rate of penetration has been 

established in other investigations [59-61], and other works suggest that there is indeed a 

relationship between MSE and pore pressure [33, 39]. The PSP3 concept and the concept 

of using MSE in Eaton’s equation, described in Chapter III and Chapter IV, respectively, 

were developed under the premise that the MSE should be a function of the effective 

stress rather than the total stress of the rock, and from this relationship the virgin pore 

pressure could be predicted.  

 

On the other hand, it can be recognized that drilling parameters (torque, rate of 

penetration, weight on bit, rotary speed) are not independent from each other. That is, 

the variation of one parameter affects the others. Thus, predicting pore pressure from a 

single parameter, such as the rate of penetration, has a limited applicability since it can 

be valid only if the other parameters are maintained constant. Fortunately, a fundamental 

parameter, the MSE, can be used to group the dependent parameters in one single 

parameter and account for the dependability of all the drilling parameters. Another 

important point to consider is the fact that MSE does not depend solely on the pore 

pressure.  MSE depends on other factors (besides pore pressure) such as the type of the 

lithology being drilled, and the environmental parameters (such as the hydrostatic mud 

pressure and the confining stresses). Therefore, it is important to clearly establish all the 

factors that contribute to the energy required to break the rock.  

 

It can also be recognized that the MSE calculated from drilling parameters that are 

measured at the surface is greater than the actual energy required to break the rock at the 

bottomhole, since a significant fraction of the MSE (calculated from surface parameters) 

is used to overcome friction of the drill string along the well. Furthermore, even if the 

MSE is calculated from downhole drilling parameters, a portion of this energy is not 

transfer from the drill bit to the rock since it is lost by friction at the cutter-rock 
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interface. It has been estimated that only 30-40% of the MSE calculated with Equation 

(3.17) (with surface parameters) is actually used to break the rock [31]. This suggests 

that there is an efficiency associated with energy input and the energy required to break 

the rock during drilling. If the drilling parameters to calculate MSE are measured at the 

surface, an overall drilling efficiency can be defined as 

 

η୭୴ୣ୰ୟ୪୪ ൌ
MSEBR

MSEୱ୳୰୤ୟୡୣ
 (5.1)

 

where MSEBR is the mechanical specific energy required to break the rock, and 

MSEୱ୳୰୤ୟୡୣ is the mechanical specific input energy calculated from drilling parameters 

that are measured at the surface. The overall drilling efficiency in Equation (5.1) can be 

also thought as a product of two efficiencies 

 

η୭୴ୣ୰ୟ୪୪ ൌ ηୱ୲୰୧୬୥ · ηୡ୳୲୲ୣ୰ (5.2)
 

where ηୱ୲୰୧୬୥ is the efficiency of the energy transfer along the drill string from the 

surface (where the torque is applied) to the bottomhole, and ηୡ୳୲୲ୣ୰ is the efficiency of 

the energy transfer from the drill bit to the rock. Therefore, the efficiencies in Equation 

(5.2) can be expressed as 

 

ηୱ୲୰୧୬୥ ൌ
MSEୢ୭୵୬୦୭୪ୣ
MSEୱ୳୰୤ୟୡୣ

 (5.3)

 

where MSEୢ୭୵୬୦୭୪ୣ is the mechanical specific energy calculated from drilling 

parameters that are measured downhole, and 

 

ηୡ୳୲୲ୣ୰ ൌ
MSEBR

MSEୢ୭୵୬୦୭୪ୣ
 (5.4)
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The mechanical specific energy required to break the rock (MSEBRሻ  is of particular 

interest. Specifically, it is desired to know what factors contribute to the energy required 

to break the rock for a particular system. It is suggested that the value of MSEBR for a 

particular system might depend on two main contributions 

 

MSEBR ൌ MSE rock 
matrix

൅ MSEୣ୬୴୧୰୭୬୫ୣ୬୲  (5.5)

 

where MSErock matrix is the energy required to break the rock skeleton of a rock element 

that is subject to no external or internal (pore) stresses, and MSEୣ୬୴୧୰୭୬୫ୣ୬୲ is the energy 

required to overcome the environmental conditions to which the rock is subjected such 

as confining stress, temperatures, fluid in pores, pore pressure, and possibly others.  

 

Therefore, it can be said that  

 

MSE rock 
matrix

ൌ f ቀMSE୧୬୲୰୧୬ୱ୧ୡ౨౥ౙౡ ౝ౨౗౟౤౩,MSE୰୭ୡ୩ ୱ୲୰୳ୡ୲୳୰ୣቁ (5.6)

 

where MSE୧୬୲୰୧୬ୱ୧ୡ౨౥ౙౡ ౝ౨౗౟౤౩ is an intrinsic property of the material that constitutes the 

grains of the rock, and MSE୰୭ୡ୩ ୱ୲୰୳ୡ୲୳୰ୣ is the energy required to counteract the 

structural characteristics of the rock skeleton in order to break it. Since 

MSE୧୬୲୰୧୬ୱ୧ୡ౨౥ౙౡ ౝ౨౗౟౤౩ is an intrinsic property of the rock grains, it could be in principle 

determined by a thermodynamically defined strength criterion. An intrinsic property is 

defined as a macroscopic characteristic of a system to which a numerical value can be 

assigned at a given time without knowledge of the previous history of the system. The 

fundamental quantity that characterizes basic properties of a physical system, and which 

is a single-value function of the state of the system, is the internal energy of the system. 

Part of the applied MSEBR is added to the internal energy of the solid matrix until a 

critical value is reached, which is determined by the strength of interatomic bonds 

(MSE୧୬୲୰୧୬ୱ୧ୡ౨౥ౙౡ ౝ౨౗౟౤౩ሻ. A strength criterion can be thermodynamically defined as a 
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critical value of the stored internal energy that does not depend on the type or 

circumstances of deformation, but is a physical constant of the material (rock grains) 

[62]. On the other hand, the pore size, pore structure, and connectivity of the pores 

provide specific structural characteristic to the rock skeleton that modify the overall 

strength of rock. MSE୰୭ୡ୩ ୱ୲୰୳ୡ୲୳୰ୣ is the energy required to counteract these structural 

characteristics of the rock skeleton in order to break it. 

 

The other contribution to MSEBR in Equation (5.5) is the energy required to overcome 

the environmental conditions to which the rock is subjected ሺMSEୣ୬୴୧୰୭୬୫ୣ୬୲ሻ. The 

environmental conditions of the rock are usually manifested as stresses applied on the 

rock. The environmental conditions may be internal or external. Thus, two main 

contributions to the ሺMSEୣ୬୴୧୰୭୬୫ୣ୬୲ሻ can be distinguished 

 

MSEୣ୬୴୧୰୭୬୫ୣ୬୲ ൌ MSEinternal env. ൅ MSEୣ୶୲ୣ୰୬ୟ୪ ୣ୬୴.  (5.7)
 

 

Internal environmental conditions (usually because of the presences of pore fluid) result 

in stresses on the pore walls such as pore pressure and thermal stresses (due to changes 

in temperature), 

 

MSEinternal env. ൌ fሺPp, T୤ሻ  (5.8)
 

where ܲ݌ is the pore pressure, and ௙ܶ is the temperature of the pore fluid. 

 

External environmental conditions subject the rock to stresses from overburden, 

hydrostatic mud pressure, Earth confining stresses, and thermal stresses. For example, a 

rock element in a drilling situation would be subjected to confining stresses from Earth 

and the hydrostatic mud pressure that can significantly increase the apparent strength of 
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the rock element. Thus, more energy to fracture the rock would be required, not because 

of the intrinsic nature of the material but to counteract the external conditions. That is, 

 

MSEୣ୶୲ୣ୰୬ୟ୪ ୣ୬୴. ൌ fሺOB, P୦, σୡ, Tୱሻ  (5.9)
 

where ܱܤ is the overburden, ௛ܲ is the hydrostatic mud pressure, σୡ is the confining 

stress, and ௦ܶ is the temperature. 

 

In summary, MSEBR does not depend solely on the intrinsic strength of the grains that 

constitute the rock. Any physical conditions such as the pore size, pore structure, 

connectivity of the pores, type of fluid inside the pores, pore pressure, temperature, 

overburden, hydrostatic pressures, and confining stresses contribute to significant 

changes to the MSEBR. That is, 

 

MSEBR ൌ f ቀMSE୧୬୲୰୧୬ୱ୧ୡ౨౥ౙౡ ౝ౨౗౟౤౩,MSE୰୭ୡ୩ ୱ୲୰୳ୡ୲୳୰ୣ, Pp, T୤, OB, Ph, σୡ, Tୱቁ (5.10)

 

 

Expression (5.10), and the explanation given for each of the contributions of ܧܵܯ஻ோ, 

indicate that indeed, the virgin pore pressure in the rock element affects the energy 

required to break that rock ሺܧܵܯ஻ோሻ; and in turn, it affects the energy input, 

MSEୢ୭୵୬୦୭୪ୣ or MSEୱ୳୰୤ୟୡୣ, required. More importantly, the above explanations attempt 

to explain why MSEୢ୭୵୬୦୭୪ୣ or MSEୱ୳୰୤ୟୡୣ could be a function of the virgin pore 

pressure.  

 

It can be observed from Equation (5.10) that the energy required to break the rock 

depends on a multiplicity of factors. Since the interest is to determine the pore pressure 

during drilling, it has been recognized that a fundamental understanding of the rock 

cutting process, as well as the fluid-rock interactions during drilling, is required. It has 

been previously stated that a fundamental approach based on basic principles such fluid 
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mechanics, porous media, thermodynamics, and rock mechanics, could be used to 

explain the role of virgin pore pressure in the mechanical behavior of rock and 

eventually evolve into a methodology for virgin pore pressure prediction that would be 

reliable for all types of rocks, and situations. The general theory that is based on basic 

principles of fluid mechanics, porous media, thermodynamics, and rock mechanics to 

describe the two-way interactions between mechanical deformation and pore pressure is 

the Biot’s poroelasticity theory. For these reasons, a model of the cutting process of rock 

(in a drilling situation) using Biot poroelasticity theory is proposed. Biot poroelasticity 

describes the hydo-mechanical coupled behavior of rock under external stresses, but it is 

used in this approach to describe such hydo-mechanical coupled behavior when the rock 

is undergoing failure (cutting process). The brief description of the poroelasticity theory 

is described in the next section. The proposed model of the cutting process using Biot 

poroelasticity theory is presented in Section 5.3, and results of the proposed poroelastic 

model are presented in Chapter VI. 

 

5.2 Biot poroelasticity theory 

The failure of rock during drilling is caused by the large stresses imposed on the rock by 

the drill bit. These stresses cause the rock to deform until failure is reached, but 

deforming the rock also results in a change in pore volume even before failure occurs. 

The permeability of the rock is a material property that accounts for the connectivity of 

the pores in a porous media. As the pore volume changes during deformation, the 

permeability of the rock affects how fast the pore fluid can be expelled from the pores 

(for a decrease of pore volume) or how fast new fluid can fill in the pores (for an 

increase in pore volume). A change in volume and amount of fluid in the pores is likely 

associated with a change in the pore pressure. Thus, depending on the permeability of 

the rock the local pore pressure at the cutting zone can either increase or decrease 

affecting the onset of failure.  
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It was mentioned in previous chapters, the pore pressure plays an important role in the 

mechanical behavior of rock, since part of the stresses applied to the rock are supported 

by the pore fluid. Thus, a change in pore pressure during drilling will result in a change 

in the mechanical behavior of rock, but a change in the mechanical deformation results 

in a change in pore pressure as well. That is, there is a two-way coupling between the 

mechanical deformation and the pore pressure of rock. The general theory that accounts 

for this coupled hydro-mechanical behavior is poroelasticity [1]. For many years, Biot’s 

poroelasticity theory [16] was used only to solve problems involving consolidation of 

soils. However, a few decades later the equations of poroelasticity were successfully 

applied to solve problems in tectonophysics [43], petroleum-related rock mechanics [1], 

and even in the medical field to study the behavior of bones [44]. In petroleum-related 

rock mechanics, the effort has been concentrated on borehole stability, hydraulic 

fracturing, and compaction near pumping wells [45, 46]. However, to the best 

knowledge of the author, there are no investigations available in open literature that 

attempt to describe the cutting process of rock using poroelasticity equations. 

Nevertheless, there are no indications that suggest that the equations of poroelasticity 

should not be used to describe the process of cutting rock. In order to use Biot’s 

poroelasticity theory to model the rock-fluid interactions during drilling, a brief 

description of this theory is presented in this section. Detailed explanation of the 

development of Biot’s poroelasticity theory can be found elsewhere [1, 16, 42]. 

 

In order to describe the development of a linearized theory of poroelasticity (based on a 

continuum approach) for a macroscopic porous rock, it is convenient to first look into 

the micro-structure of the rock and establish the basic solid-fluid relations at the 

microscopic level. Figure 5.1, shows a two-dimensional view of a piece of porous rock 

that is subjected externally to a purely normal stress (confining pressure ௖ܲ), and the 

internal pore walls are subjected to a pore pressure ( ௣ܲ), exerted by the pore fluid.  
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(a) (b) 
  

Figure 5.1 Two-dimensional view of a piece of porous rock, showing (a) the bulk 
volume, pore volume, and solid matrix volume, and (b) the confining and pore pressure, 

modified from Jaeger et al. [1]. 
 

 

The pore fluid is considered to be static and therefore it sustains no shear stresses. Thus, 

the internal pore walls are subjected only to normal stresses. If the model in Figure 5.1 is 

considered, it can be observed that there are two independent pressures acting on the 

rock, and the rock can be described by two independent volumes. Therefore, four 

independent compressibilities can be defined (in terms of the variables in Figure 5.1) as 

 

௕௖ܥ ൌ െ
1

௕ܸ
଴ ൬
߲ ௕ܸ

߲ ௖ܲ
൰
௉೛

 (5.11)
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ቇ
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 (5.14)

 

where the superscript “0” denotes the initial, under-stressed state. The bulk and pore 

strains changes can be expressed in terms of the rock compressibilities as 
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݀εୠ ൌ െ
dVୠ
Vୠ଴

ൌ ௕௖݀ܥ ௖ܲ െ ௕௣݀ܥ ௣ܲ (5.15)

݀ε୮ ൌ െ
dV୮
V୮଴

ൌ ௣௖݀ܥ ௖ܲ െ ௣௣݀ܥ ௣ܲ (5.16)

 

where the bulk strain ݀εୠ is equivalent to the macroscopic volumetric strain defined for 

any homogeneous material. The change in strain of the solid matrix can be deduced from 

the superposition concept assuming that a pore pressure and a confining pressure of the 

same magnitude act on the rock. That is, the strain in the solid matrix can be thought as 

the subtraction of the effects of a rock subjected to both confining and pore pressures 

(which affect both the solid matrix volume and the pore volume) minus a rock subjected 

to only pore pressures (which affects only the pore volume), such that 

 

௠ܥ ൌ ௕௖ܥ െ ௕௣ (5.17)ܥ

݀ε୫ ൌ C୫dP ൌ
݀ܲ
௠ܭ

 (5.18)

 

where ܥ௠ is the compressibility of the solid matrix, ܭ௠ is the bulk modulus of the solid 

matrix, and ݀ε୫ is the volumetric strain change of the solid matrix. The 

compressibilities and volumetric strains defined above have been derived from a 

microscopic point of view. However, these concepts can be also be used to develop the 

equations that describe the mechanical behavior of rock at the macroscopic level.  

 

In order to develop a linearized theory of poroelasticity that describes the behavior of a 

saturated porous rock, a small cubic element of rock which sides are parallel with the 

axes of the coordinate system is considered. This rock element should be large enough 

compared to the size of the pores so that it may be treated as a homogeneous and 

continuum medium. At the same time, the rock element should be small enough 

compared to the scale of the macroscopic phenomena of interest that it can be considered 

infinitesimal. For simplicity, the following equations used to describe the mechanical 
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behavior of rock are presented using the so-called index notation, where a comma 

followed by subscripts denotes differentiation with respect to spatial coordinates and 

repeated indices in the same monomial imply summation over the range of the indices 

(from 1 to n, where n is the number of dimensions considered in the analysis).  From 

solid mechanics, it is well known that the stress-strain relations of a nonporous material 

can be expressed in terms of the shear modulus (ܩ) and the Poisson ratio (ߥ) as 

 

௜௝ߝ ൌ
௜௝ߪ
ܩ2 െ

ߥ
ሺ1ܩ2 ൅ ሻߥ ௞௞ (5.19)ߪ௜௝ߜ

 

where ߝ௜௝ is the strain tensor, ߪ௜௝ is the stress tensor, and ߜ௜௝ is the Kronecker delta 

ሺߜ௜௝ ൌ 1, ݂݅ ݅ ൌ ௜௝ߜ ;݆ ൌ 0, ݂݅ ݅ ് ݆ሻ. It can be seen from Equation (5.19) that a strain in 

the solid element that occurs in a direction parallel to one of the coordinate axes is due to 

the stress applied to the element in that direction (first term on the right-hand side of the 

equation) minus the effect of the normal stresses applied to the solid element (second 

term on the right-hand side of the equation). Any other strain along a direction not 

parallel to any of the coordinate axes is proportional only to the stress applied in that 

direction. The magnitude of the strain is affected by the material properties ܩ (shear 

modulus) and ߥ (Poisson’s ratio).  

 

If a displacement vector (ݑ௜௝) that tracks the movement of the solid element is defined, 

the stress tensor ߝ௜௝ can be expressed in terms of the displacement vector as 

 

௜௝ߝ ൌ
1
2 ൫ݑ௜,௝ ൅ ௝,௜൯ (5.20)ݑ

 

 

Considering now a saturated porous rock which is macroscopically isotropic, it is first 

recognized that the pore pressure does not exerts shear stresses on the pore wall. It can 

be seen from Equation (5.15) that the total volumetric strain (ߝ௕) resulting solely from an 
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applied pore pressure is  – ௕௣ܥ ௣ܲ. Since the pore fluid only exerts normal stresses on the 

pore walls, a change in pore pressure results in equal extensions of the pore volume 

along each of the three mutually orthogonal directions of the coordinate system 

(assuming a three-dimensional rectangular system). This means that one third of the total 

volumetric strain that resulted from the pore pressure application must be added to each 

of the normal strain components. Thus, the equation for the stress-strain relations, 

Equation (5.19), for a saturated porous rock becomes  

 

௜௝ߝ ൌ
௜௝ߪ
ܩ2 െ

ߥ
ሺ1ܩ2 ൅ ሻߥ ௞௞ߪ௜௝ߜ െ

௕௣ܥ
3 ௜௝ߜ ௣ܲ (5.21)

 

 

It can be derived from Equation (5.17) that ܥ௕௣ ൌ ௕௖ܥ െ  ௠. Additionally, theܥ 

compressibility ܥ௕௣ is related to the macroscopic bulk modulus as ܥ௕௣ ൌ
ଵ
௄

, where ܭ is 

the bulk modulus of the rock. Therefore, Equation (5.21) can be rewritten as 

 

௜௝ߝ ൌ
௜௝ߪ
ܩ2 െ

ߥ
ሺ1ܩ2 ൅ ሻߥ ௞௞ߪ௜௝ߜ െ

ߙ
ܭ3 ௜௝ߜ ௣ܲ (5.22)

 

where ߙ is known as the Biot-Willis coefficient defined as ߙ ൌ 1 െ ஼೘
஼್೎

ൌ 1 െ ௄
௄೘

. 

Equation (5.22) shows that a normal strain is the result of the application of a normal 

stress in the same normal direction minus the combine effect of all other confining 

pressures and the pore pressure; whereas, the strain in all other directions depend only on 

the stress in that direction. An expression for the effective stresses in terms of the strains 

is determined by inverting Equation (5.22): 

 

௜௝ߪ െ ௜௝ߜߙ ௣ܲ ൌ ܩ2 ቀߝ௜௝ ൅
ߥ

1 െ ߥ2 ௞௞ቁ (5.23)ߝ௜௝ߜ
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It can be deduced from Equation (5.23) that it is indeed the effective stress (left-hand 

side of the equation) in a saturated porous rock that is responsible of any volume 

changes in the rock (shown as strains in the right-hand side of the equation). In order to 

use the relationship established in Equation (5.23) to model complex, non-homogeneous 

domains, it is convenient to develop a differential set of equations from Equation (5.23). 

Combining conditions for stress equilibrium (ߪ௜௝,௝ ൌ െܨ௜), Equation (5.20), and 

Equation (5.23), the Navier equations of poroelasticity in terms of the displacement 

vector can be written as 

 

௜ݑଶ׏ܩ ൅
ܩ

1 െ ߥ2 ௞,௞௜ݑ ൌ െܨ௜ െ ߙ ௣ܲ,௜
 (5.24)

 

or in vector form as 

 

ଶ࢛׏ܩ ൅
ܩ

1 െ ߥ2 ׏
ሺ׏ · ࢛ሻ ൌ െࡲ െ P୮׏ߙ  (5.25)

 

where ࡲ ൌ  ௜ is a body-force vector (commonly due to gravity). Similar to Equationܨ

(5.23), Equation (5.25) implies that the deformation of the solid matrix is due to forces 

applied to the rock as well as any changes in pore pressure. In the absence of information 

of the shear modulus ܩ, the Young’s modulus can be used to characterized the rock 

using the relation ܩ ൌ ா
ଶሺଵାఔሻ

. 

 

It is important to note that Equation (5.25) is written in vector form; and therefore, it 

represents a set of equations with the same number of equations as the number of 

dimensions in the coordinate system considered for analysis. It can be also observed that 

the displacement vector has one component on each axis of the coordinate system. 

Therefore, there is always one more unknown in Equation (5.25) than the number of 

equations. For example, if a three-dimensional coordinate system is considered, 

Equation (5.25) will have three equations (one for each dimension) with four unknowns 
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(three displacements and the pore pressure). Therefore, an additional equation for pore 

pressure is needed in order to have a complete system of equations.  

 

The additional equation for pore pressure is found from the conservation of mass for the 

pore fluid. The introduction of two new variables is required in order to develop the 

additional equation. First, the variable ߞ is introduced to describe the variation of 

volumetric pore fluid content that is due solely to mass transfer. Second, the flux vector 

ࢗ ൌ  ௜ is used to describe the rate of fluid volume that passes through a unit area ofݍ

porous solid whose normal is in the ݔ௜ direction. It follows from a mass balance that 

 

ߞ߲
ݐ߲ ൅ ׏ · ܙ ൌ 0 (5.26)

 

 

Equation (5.26) represents the conservation of mass for the pore fluid, even though it is 

derived based on volumetric quantities. This is because ߞ is defined as the volumetric 

pore fluid content due solely to the mass transfer. It can be recognized that low flow 

rates are usually encountered in sedimentary rock. Thus, Darcy’s law can be used to 

relate the flux vector ࢗ and the pore pressure. For the general anisotropic case, Darcy’s 

law can be expressed as 

 

ࢗ ൌ െ
࢑ന
௙ߤ
ሺ׏ ௣ܲ െ ࢍ௙ߩ · ࢞ሻ (5.27)

 

where ࢑ന is the permeability second-order tensor, ߤ௙ is the dynamic viscosity of the fluid, 

 is the gravitational acceleration vector. If the ࢍ ௙ is the density of the fluid, andߩ

gravitational effects are disregarded and isotropic rock is considered, combining 

Equation (5.27) into (5.26) yields  
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ߞ߲
ݐ߲ ൌ

݇
௙ߤ
ଶ׏ ௣ܲ (5.28)

 

 

On the other hand, it can be recognized from the microscopic approach that the pore 

pressure is proportional to the dilation of the porous rock and the variation of the fluid 

content, such that 

 

௣ܲ ؠ ߞሺܯ ൅ εୠሻ (5.29)ߙ
 

where ܯ is known as the Biot modulus and it is defined from Equation (5.29) under 

constant bulk strain as 

 

ܯ ൌ ቆ
ߞ߲
߲ ௣ܲ

ቇ
கౘ

 (5.30)

 

 

The inverse of the parameter ܯ is termed the storage coefficient and it represents 

(physically) the amount of fluid which can be forced into the rock under pressure while 

the volume of the rock is kept constant [16]. For the case of an ideal porous material, the 

storage coefficient can be calculated from basic material properties using the relation  

 
1
ܯ ൌ

߶௦
௙ܭ

൅
ߙ െ ߶௦
௠ܭ

 (5.31)

 

where ߶௦ ൌ
௏೛
௏್

 (from Figure 5.1) is the porosity of the rock, ܭ௙ ൌ
ଵ
஼೑

  is the bulk modulus 

of the fluid, ܥ௙ is the compressibility of the fluid, ܭ௠ ൌ ଵ
஼೘

 is the bulk modulus of the 

solid matrix, and ܥ௠ is the compressibility of the solid matrix.  
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Finally, combining Equation (5.29) with Equation (5.28), the rate of change of pore 

pressure in the rock can be expressed as  

 

߲ ௣ܲ

ݐ߲ ൌ
ܯ݇
௙ߤ

ଶ׏ ௣ܲ ൅
εୠ߲ܯߙ
∂t  (5.32)

 

Equation (5.32) states that the rate of change in pore pressure is due to the flow in or out 

of the pore volume (first term on the right-hand side) and to the change in the bulk 

volume of the rock (second term on the right-hand side), which in turn affects the pore 

volume.  

 

Equations (5.25) and (5.32) constitute the final form of the Biot poroelasticity theory. It 

can be observed that there is a two-way coupling of both sets of equation by the pore 

pressure and the total bulk strain of the rock. The physical meaning of this two-way 

interaction is that an increase of pore pressure induces a change in volume of the rock, 

but a change in the bulk volume of the rock (for example, by confining stresses) causes a 

change of pore pressure, which will depend on how easy the fluid can escape or enter the 

pores. That is, the change in pore pressure also depends on the permeability of the rock 

and viscosity of the fluid. It has been previously mentioned in this dissertation that the 

solid-fluid interactions in the rock affect the onset of failure, which in turn affect the 

amount of energy required to break the rock during drilling. In order to understand these 

interactions, and the extent of the effect they have on the cutting of rock, and analysis of 

the cutting process of rock using the Biot poroelasticity theory (which is derived from 

basic principles) is presented in the next section. 

 

5.3 Numerical poroelastic model of the rock cutting process 

It has been stated previously in this dissertation that a fundamental understanding of the 

rock cutting process is required in order to understand the role of pore pressure in the 

mechanical behavior of rock during drilling. In order to address this requirement, an 

analysis of the cutting process using Biot poroelasticity equations has been conducted.  
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One of the most important outcomes of this analysis is the identification the drilling 

parameters, environmental parameters, and material properties that play a significant 

role in the physics of the drilling process, which is a function required to satisfy the 

objective of this dissertation (see Figure 2.2). Parameters that play a role in the physics 

of the drilling process have already been recognized in Section 5.1, Equation (5.10). 

However, Equation (5.10) neither explains the extent to which each parameter affects the 

 ஻ோ. Fromܧܵܯ ஻ோ, nor provides the reason of the effect of these parameters on theܧܵܯ

Equations (5.25) and (5.32), it can be observed that a model of the drilling process using 

poroelasticity equations (which are derived from basic principles) could be used to 

explain the relationship between external stress (such as the cutting stress and the 

hydrostatic mud pressure) and pore pressure, while accounting for the rock-fluid 

interactions at the microscopic level. Furthermore, this model can be used to determine 

the extent of the effect of the drilling parameters, environmental parameters, and 

material properties on the drilling process. It is important to note that the effects of 

temperature are not considered in this model. Further work is recommended to use the 

extended thermoelasticity theory [1] to analyze the effects of temperature in the drilling 

process.  

 

The model and analysis presented in this section are developed under the assumption 

that the cutting of rock occurs by shear. The cutting process of rock is a complex 

processes in which several cutters attached to the rotating drill bit (for PDC bits) shear 

the rock. In order to simplify the development of the model, the mechanism of rock 

shearing by a single cutter in a two-dimensional domain is considered. The simplified 

two-dimensional geometry to model the cutting of rock by a single cutter is shown in 

Figure 5.2. Notice that the geometry considered for this analysis is similar to the 

geometry in Figure 3.9 that was used to developed the PSP3 model, except that the back-

rack angle of the cutter (ߠ) is considered in the model in Figure 5.2.  
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Figure 5.2 Two-dimensional geometry of the rock cutting process with a single cutter.  

 

 

It can be seen in Figure 5.2 that the cutter moves from left to right with a velocity ݒ 

against the rock at an angle ߠ (with respect to the vertical) and a depth of cut ݀௖௨௧. It is 

assumed in this model that the cutting process starts when the cutter has already cut a 

layer of rock (of thickness equal to the depth of cut) approximately half-way (2/ܮሻ from 

left to right. Moreover, any residual rock that has been previously separated from the 

bulk volume of the rock has been cleaned in such a way that the energy applied to the 

cutter transfers completely to the intact rock. It is important to mention that the sketch in 

Figure 5.2 is not to scale. The actual dimensions used in the poroelastic model have 

aspect ratios of  ௗ೎ೠ೟
ு

൏ 0.1, and ௗ೎ೠ೟
௅
൏ 0.04. These dimensions ensure that edge effects 

of the geometry do not affect the analysis of stresses and pore pressure at the shearing 

zone.  

 

Recalling that the objective of this dissertation is to determine whether it is possible to 

predict the pore pressure from drilling parameters, environmental parameters, and 

material properties, it can be observed that the model presented in this section is used to 

solve the inverse problem. That is, an initial value of pore pressure is assumed for the 

rock in Figure 5.2 and the poroelastic model is used to determine the energy required to 

break the rock (ܧܵܯ஻ோ). The rock considered in the poroelastic model is characterized 

by its material properties and it subjected to environmental parameters. The 

poroelasticity model can provide an insight of the validity of Equation (5.10) for 
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different situations and types of rock. In order to determine ܧܵܯ஻ோ for this model, 

Equations (5.25) and (5.32) are solved numerically using the commercial software 

COMSOL Multiphysics.  

 

In general, the following protocol has been used to determine the energy required to 

break the rock (ܧܵܯ஻ோ) using the poroelastic model proposed above:  

(a) Material properties are assigned to the rock domain. 

(b) A uniform initial value of (virgin) pore pressure is set to the rock domain. 

(c) Environmental conditions (boundary conditions) are set at the boundaries of the 

rock domain. 

(d) A cutting stress (as a function of time) is applied to the face of the rock that is in 

contact with the cutter (note that the cutter is not actually modeled, but only the 

stress transmitted to the face of the rock). 

(e) The change in stresses within the rock is monitored as a function of time until 

any part of the rock reaches a stress that corresponds to the initiation of failure.  

(f) The value of the cutting stress that caused the initiation of failure is recorded and 

considered to be the ܧܵܯ஻ோ.  

 

The rock in Figure 5.2 is characterized by the material properties in Table 5.1. Two sets 

of properties can be distinguished from the table, one for the solid matrix and one for the 

pore fluid. Notice how the properties of the solid matrix required for this model not only 

characterized the rock from the mechanical point of view, but also account for the pore 

structure and connectivity of the pores. The failure parameters ܵ଴ and ߶ are not needed 

to solve the poroelasticity Equations (5.25) and (5.32). However, according to the 

protocol mentioned above, they are needed in order to determine the moment at which 

initiation of failure occurs after a cutting stress is applied. Since both failure parameters 

are specific for each type of rock, they are included in the set of material properties 

required to characterize the rock.  
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Table 5.1 Material properties of rock required for the poroelastic model.  

Properties of solid matrix Properties of pore fluid 

Symbol Name Comments Symbol Name 

 ௙ dynamic viscosityߤ  Young’s modulus mechanical behavior ܧ

 ௙ fluidܥ  Poisson’s ratio mechanical behavior ߥ

compressibility 

   ௦ density of matrix mechanical behaviorߩ

߶௦ porosity pore structure   

݇ permeability connectivity of the pores   

 Biot-Willis ߙ

coefficient 

rock structure   

ܵ଴ cohesion  failure parameter   

߶ angle of internal 

friction 

failure parameter   

 

 

Two sets of boundary conditions and an initial condition are required for the solution of 

Equations (5.25) and (5.32), one for each equation. For Equation (5.25), which describes 

the solid mechanics behavior, it is assumed that boundaries of the geometry representing 

the rock are constrained (most likely by confining stresses) in the direction normal to 

each boundary, except for the top boundary which is subjected to the stress of the 

hydrostatic pressure (due to the drilling mud in a drilling situation). For Equation (5.32), 

which describes the fluid flow, it is assumed that the bottom boundary is subjected to the 

same value of the initial (virgin) pore pressure assumed for the rock. Moreover, it is 

assumed that there is no flow across the side boundaries (since it is assume that the pore 

pressure does not significantly vary in the horizontal direction), and the top boundary is 

subjected to the hydrostatic pressure of the drilling mud. Finally, a cutting stress ܵ௖ is 

applied as a function of time to the face of the rock that is in contact in an actual 
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situation with the cutter. All the boundary conditions considered in this numerical model 

are shown in Figure 5.3.  

 

 
Figure 5.3 Boundary conditions for the poroelastic numerical model. 

 

 

The Mohr-Coulomb failure criterion, Equation (3.9), is used to determine the moment at 

which failure initiates due to the application of the cutting stress. To facilitate the 

implementation of the failure criterion in the numerical model, the following expression 

can be derived from Equation (3.9) and the geometric relations in Figure 3.15: 

 

௠௔௫ߪ
ᇱ ൒

2ܵ଴ cos߶
1 െ sin߶ ൅ ௠௜௡ߪ

ᇱ ሺ1 ൅ sin߶ሻ
1 െ sin߶  (5.33)

 

where initiation of failure occurs when the maximum principal effective stress (ߪ௠௔௫
ᇱ ሻ is 

equal or greater than the expression on the right-hand side of Equation (5.33). In the 

numerical model, the solution of Equations (5.25) and (5.32) is determined as a function 

of time. Since the cutting stress ܵ௖ is also applied as a function of time, the principal 

stresses are monitor at each time. The solution is stop when the criterion in Equation 

(5.33) is met. The energy required to break the rock ܧܵܯ஻ோ corresponds to the cutting 

stress ܵ௖ at the moment of failure initiation.  
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Attempts to validate the model proposed in this section with available data from the 

literature are presented in the next chapter. Once the model is validated it can be used to: 

(1) identify the parameters and material properties that play a significant role in the 

cutting process for different types of rock and situations, (2) verify if the PSP3 concept 

complies with the basic principles of rock mechanics and fluid mechanics used in the 

poroelasticity theory, and (3) verify if the concept of using MSE in Eaton’s equation 

complies with the basic principles of rock mechanics and fluid mechanics used in the 

poroelasticity theory. Results of these analyses are presented in the next chapter as well. 
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CHAPTER VI 

RESULTS OF THE POROELASTIC MODEL 

 

The results of the numerical analyses of the cutting process using the poroelasticity 

equations (poroelastic model) are presented in this chapter. The solution of the equations 

of poroelasticity was determined with the aid of the commercial software COMSOL 

Multiphysics. Different types of rock and situations were analyzed in an attempt to 

validate the model, and subsequently to better understand the effect of different 

parameters on the cutting process of rock. Each analysis done in COMSOL Multiphysics 

is a virtual simulation of the actual process of cutting a rock by a single cutter. Thus, the 

simulations run for the numerical analyses presented in this chapter are termed 

numerical experiments. Results of the validation of the poroelastic model are presented 

first. Then, results of the numerical experiments that were conducted to determine the 

significant parameters that play a role in the physics of the drilling process are presented. 

Subsequently, the results of the verification of the PSP3 concept using the poroelastic 

model are presented. Finally, comments on the insights gained from the results of the 

poroelastic model on the concept of using MSE in Eaton’s equation are presented.  

 

6.1 Validation of the poroelastic model 

Two sets of numerical experiments were conducted in order to validate the poroelastic 

model described in the previous chapter. The first set consisted of three-dimensional 

numerical experiments that simulated the compression experiments conducted by 

Murrell [51] on Darley Dale sandstone. The second set consisted of a two-dimensional 

simplification of the experiments conducted by Rafatian et al. [63, 64] on Indiana 

Limestone. Details of both sets of experiments are presented in the next sections.  

 

6.1.1 Validation of the poroelastic model with data from Murrell [51] 

Murrell conducted an extensive series of tri-axial experiments on cylindrical samples of 

Darley Dale sandstone to determine the effect of pore pressure on the strength of the 
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rock. His experiments involved both extension and compression tests. Data from the 

compression experiments conducted by Murrell has been borrowed and used to validate 

the poroelasticity equations proposed in Section 5.2. Numerical experiments using the 

poroelasticity equations were conducted following a similar protocol described in 

Section 5.3. However, the rock geometry used for this set of experiments is different 

from the one proposed in Figure 5.2. Instead, a cylindrical geometry with the same 

dimensions of the cylindrical samples used by Murrell is simulated. The material 

properties of Darley Dale used in the experiments can be seen in Table 6.1. 

 

Table 6.1 Poroelastic properties of Darley Dale sandstone.  

Properties of solid matrix 

Symbol Property Value 

 Young’s modulus 12.8 ൈ 106 psi ܧ

 Poisson’s ratio 0.15 ߥ

 ௦ density of matrix 2.28 g/cm3ߩ

߶௦ porosity 0.21 

݇ permeability 56 mD 

 Biot-Willis coefficient  0.79 ߙ

ܵ଴ cohesion  1990 psi at 0 ൑ ௡ᇱߪ ൏ 4000 [psi] 

3600 psi at 4000 ൑ ௡ᇱߪ ൏ 17000 [psi] 

5177 psi at 17000 ൑ ௡ᇱߪ ൏ 25000 [psi] 

߶ angle of internal friction 45.5° at 0 ൑ ௡ᇱߪ ൏ 4000 [psi] 

37° at 4000 ൑ ௡ᇱߪ ൏ 17000 [psi] 

31° at 17000 ൑ ௡ᇱߪ ൏ 25000 [psi] 

Properties of pore fluid 

Symbol Property Value 

 ௙ dynamic viscosity 6.9 ൈ 10-4 Pa · sߤ

 ௙ fluid compressibility 3.8 ൈ 10-10 1/Paܥ
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As mentioned above, the commercial software COMSOL Multiphysics was used to 

numerically solve the poroelasticity equations. COMSOL Multiphysics uses finite 

element numerical techniques to solve partial differential equations. In order to find a 

solution, a discretization of the domain into small elements must be made. These 

elements are known as the mesh of the domain. The mesh of the geometry considered in 

the first set of numerical experiments used for the validation of the poroelastic model is 

shown in Figure 6.1. 

 

 
Figure 6.1 Mesh of geometry of rock domain for numerical experiments on Darley Dale. 
 

 

According to the information provided in [51], the cylindrical samples used in the 

experiments had dimensions of 1 in. in diameter and 2.875 in. of length. The mesh 

shown in Figure 6.1 consisted of 2,812 hexahedral elements. Even though this seems to 

be a fairly small number of elements, it is important to point out that the mesh was used 

to solve the coupled system of Equations (5.25) and (5.33), which is coupled by the pore 

pressure and the volumetric bulk strain of the rock. A more representative parameter 

(indicative of the computational resources required to solve the system of equations) is 
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the number of degrees of freedom (DOF) for which the equations are solved for. The 

number of DOF solved for the mesh presented in Figure 6.1 was 97,500. This mesh was 

the result of an optimization procedure to balance the demanding computational 

resources of the coupled system of equations to the independence of results from a mesh 

with different number of elements.  

 

The numerical experiments were conducted using the same combination of confining 

pressure and pore pressure used by Murrell for each experiment. In the experiments, the 

confining pressure was applied to the side walls of the cylindrical sample. A load was 

then applied at the top surface to compress the sample until it fails. The experiments 

were conducted under drained conditions. Except for this variation (the application of 

the load in the vertical direction to the top surface of the sample), the protocol described 

in Section 5.3 was followed for each numerical experiment.  

 

Figure 6.2 shows an image from the numerical solution determined from the poroelastic 

model as compare to images of the broken samples from the actual experiments 

conducted by Murrell [51]. In the image from the numerical experiments, the surface in 

red indicates all locations where failure can potentially occur; whereas, the surface in 

blue indicates locations within the rock that are less susceptible to failure (at the given 

conditions). Based on the shape of the red surface, it can be deduced that several 

possible paths for a crack have the potential to occur. The lines in green and yellow 

indicate only two of the possible failure paths. The similitude between the indicated 

possible failure paths and the actual paths in the samples from Murrell is remarkable.   

 

A plot of the load required to break each sample as a function of pore pressure at 

different confining pressures is presented in Figure 6.3. In this figure, the load 

determined from the numerical model (dotted line) is compared with the load determined 

experimentally by Murrell [51].  
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Figure 6.2 Visual comparison of rock failure between numerical experiments using 

poroelastic model and actual experiments conducted by Murrell [51]. 
 

 
Figure 6.3 Comparison of the load determined from poroelastic model with the load 
determined experimentally by Murrell [51], as a function of pore pressure for several 

confining pressures. 
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It can be observed from Figure 6.3 that the load required to break the rock decreases as 

the pore pressure increases, which confirms the hypothesis of the relationship between 

CCS and pore pressure. Moreover, the load is also dependent on the confining pressure, 

since the load increases as the confining pressure increases even if the pore pressure is 

kept constant. This behavior is well known to be exhibit in sandstones, due to the high 

permeability of this type of rock, but it is important to remark that the poroelastic model 

is able to predict this behavior as seen in Figure 6.3. Furthermore, results in Figure 6.3 

confirm the validity of Equation (5.10). In order to visualize the degree of agreement 

between the experimental data from Murrell and results from the poroelastic model, 

Figure 6.4 presents the same results of Figure 6.3, but presented as the ratio of load from 

the poroelastic model to the load found experimentally as a function of pore pressure. As 

mentioned in Chapters III and IV, a ratio equal to one signifies a perfect agreement 

between the experimental and numerical data.  

 

 
Figure 6.4 Ratio of the load determined from poroelastic model to the load determined 

experimentally by Murrell [51], as a function of pore pressure for several confining 
pressures. 
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It can be observed from Figure 6.4 that the load determined numerically from the 

poroelastic model is always in agreement with the load determined experimentally 

within a േ10%, except for two data points where the load determined numerically over 

predicts the load determined experimentally by ~14% (at ܲ݌ ൌ 2,000 psi, ߪ௖ ൌ 2,000 

psi) and ~ 20.5% (at ܲ݌ ൌ 5,000 psi, ߪ௖ ൌ 5,000 psi), respectively.  

 

Results from Figures 6.2-6.4 indicate that poroelasticity theory can be successfully used 

to model the mechanical behavior of rock (or at least for Darley Dale sandstone) 

subjected to different pore pressures and confining pressure. However, it is important to 

note the model proposed in Section 5.3 does not resemble the conditions of the 

experiments conducted by Murrell. Moreover, the breakage of rock under the conditions 

tested by Murrell does not correspond to a true tri-axial test, since the confining stresses 

in two of the three principal directions are equal. In an actual drilling situation, the 

stresses acting on the rock (environmental conditions) do not resemble the situation 

tested by Murrell. The model proposed in Figure 5.2, however, attempts to simulate an 

actual drilling situation with a 2-D simplification of the cutting process. A second set of 

numerical experiments was conducted as an attempt to validate this model (explained in 

Section 5.3). The second set consisted of a two-dimensional simplification of the 

experiments conducted by Rafatian et al. [63, 64] on Indiana Limestone. Details of these 

numerical experiments are presented in the next section.  

 

6.1.2 Validation of poroelastic model with data from Rafatian et al. [63, 64] 

The second set of numerical experiments conducted to validate the poroelasticity 

equations is presented in this section. The model used in this analysis has been described 

in Section 5.3. The poroelastic model has been used to conduct numerical experiments 

that simulate the conditions of the experiments recently conducted by Rafatian et al. [63, 

64] on Indiana limestone. An agreement between the numerical experiments using the 

poroelastic model and the data gathered by Rafatian et al. [63, 64] would further validate 

the poroelasticity equations. The geometry considered in this validation is shown in 
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Figure 5.2, and the boundary conditions are shown in Figure 5.3. The protocol described 

in Section 5.3 has been followed in order to determine the cutting stress required to 

break the rock under the simulated conditions. The material properties of Indiana 

limestone used for the numerical experiments are presented in Table 6.2. The failure 

parameters (ܵ௢ and ߶) were estimated from the confined compressive strength (CCS) 

provided by Rafatian et al. [63, 64].  

 

Table 6.2 Poroelastic properties of Indiana limestone.  

Properties of solid matrix 

Symbol Property Value 

 Young’s modulus 3.6 ൈ 106 psi ܧ

 Poisson’s ratio 0.25 ߥ

 ௦ density of matrix 2.3 g/cm3ߩ

߶௦ porosity 0.15 

݇ permeability 10 mD 

 Biot-Willis coefficient  0.8 ߙ

ܵ଴ cohesion  2800 [psi] 

߶ angle of internal friction 38°  

Properties of pore fluid 

Symbol  Value 

 ௙ dynamic viscosity 1 ൈ 10-3 Pa · sߤ

 ௙ fluid compressibility 3.8 ൈ 10-10 1/Paܥ

 

 

The mesh utilized for the numerical experiments in order to simulate the conditions of 

the experiments conducted by Rafatian et al. [63, 64] is presented in Figure 6.5. The 

mesh consisted of 2,446 quadrilateral elements and 29,985 degrees of freedom. A greater 
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element density can be observed in the area of the domain where the cutting stress is 

applied and shearing occurs. 

  

 
Figure 6.5 Mesh of geometry domain for numerical experiments on Indiana limestone. 

 

 

A comparison of ܧܵܯ஻ோ determined from the poroelastic model with the ܧܵܯ஻ோ 

estimated experimentally by Rafatian et al. [63, 64] is presented in Figure 6.6, as a 

function of confining pressure. A pore pressure equal to the confining pressure was 

considered for each experiment, according to Rafatian’s experimental setup. It can be 

observed from the figure that ܧܵܯ஻ோ determined from the poroelastic model under-

predicts the ܧܵܯ஻ோ estimated by Rafatian et al. [63, 64] as the confining pressure 

increases. Rafatian et al. [63, 64] found that the actual value of MSE (termed ܧܵܯ௔௖௧௨௔௟ 

in the plot) required to fracture the rock was significantly higher than the estimated 

confined compressive stress (ܧܵܯ஻ோ). As mentioned by Rafatian et al. [63, 64] and 

others [65, 66], it seems that the energy spent in the plastic deformation of the crushed 

rock in front of the cutter is much more significant than the elastic energy of failing the 

virgin rock, even under ideal laboratory conditions. 
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Figure 6.6 Comparison of the ܧܵܯ஻ோ determined from poroelastic model with the 
 ௔௖௧௨௔௟ determined experimentally by Rafatian et al. [63, 64], as aܧܵܯ ஻ோ andܧܵܯ

function of confining pressure. 
 

 

Unfortunately, the poroelastic model proposed in this dissertation models neither the 

plastic deformation of rock nor the crushed rock in front of the cutter. This might explain 

why the poroelastic model correctly predicts the ܧܵܯ஻ோ at atmospheric conditions 

(unconfined compressive stress) where the crushed rock is immediately removed from 

the face of the cutter. Furthermore, it can be seen from Figure 6.6, that the ܧܵܯ஻ோ 

determined from the poroelastic model does increase as the confining pressure increases, 

but with a smaller slope than the experimental trend of ܧܵܯ஻ோ determined 

experimentally. The increase in the ܧܵܯ஻ோ determined from the poroelastic model as the 

confining pressure increases it due solely to the additional elastic energy required to 

break the rock as the confining pressure increases. 
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A plot of the ratio of the ܧܵܯ஻ோ determined from the poroelasticity model to the 

confined compressive strength (CCS) of Indiana limestone estimated experimentally by 

Rafatian et al. [63, 64] is presented in Figure 6.7, as a function of confining pressure. 

Similar to previous plots, a value of one indicates perfect agreement.  

 

 
Figure 6.7 Ratio of the ܧܵܯ஻ோ determined from poroelastic model to the ܧܵܯ஻ோ and 

 ௔௖௧௨௔௟ determined experimentally by Rafatian et al. [63, 64], as a function confiningܧܵܯ
pressure. 
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efficiency of the cutting process as defined by Equation (5.4), where the variable 
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However, as the confining pressure increases the efficiency of the cutting process 

decreases to less than 40% at 950 psi.  

 

In summary, it can be concluded from the comparisons of the numerical experiments 

using the poroelasticity model against the experimental data gathered by Murrell [51] 

and Rafatian et al. [63, 64] that the poroelasticity model seems to correctly predict the 

theoretical value of ܧܵܯ஻ோ required to break a rock subjected to external confining 

pressures under ideal conditions. However, the energy applied to break the rock in an 

actual drilling situation is usually significantly greater than the theoretical ܧܵܯ஻ோ, since 

much more energy is required to plastically deform the crushed rock and to overcome 

friction at the rock-cutter interface. Further work is recommended to modify the model 

proposed in this dissertation in such a way that it can account for these factors.   

 

Even though the poroelastic model can only predict the theoretical value of ܧܵܯ஻ோ due 

to the elastic deformation, it can still be used to determine the parameters that have a 

significant effect in the cutting process. The identification of the significant parameters 

in the cutting process is described in the next section.  

 

6.2 Identification of significant parameters in the rock cutting process 

In order to determine whether or not it is possible to predict pore pressure during drilling 

from drilling parameters, environmental parameters, and material properties, it is 

important to determine the extent to which each parameter affects the drilling process. 

Moreover, if a parameter such as MSE (which groups drilling parameters) is to be used 

for the prediction of pore pressure (as proposed in Chapters III and IV), it is important to 

determine what other parameters, besides pore pressure, affect the value of MSE and to 

what extent. In order to identify the parameters that play a significant role in the cutting 

process, a sensitivity analysis of the model described in Section 5.3 has been conducted.  
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A sensitivity analysis consists in determining the variation in the response (output) of a 

model due to the variation of the input parameters of that model. There are several 

procedures to conduct a sensitivity analysis. A sensitivity analysis based on the analysis 

of variance (ANOVA) has been conducted in this dissertation, which is used to 

determine the extent of the effect of each input parameter on the response of the model 

by the use of statistical methods. In order to collect data that can be analyzed by 

statistical methods, a statistical design of experiments (DOE) needs to be planned.  

 

One strategy of experimentations used when several input parameter affect the response 

is to select a baseline value for all input parameters and then successively vary each 

parameter (termed factor) over a range with the other factors held constant at the 

baseline. However, any possible interaction between factors will not be considered if 

this approached is followed. An interaction between factors is defined as the failure of 

one factor to produce the same effect on the response at different levels of another factor 

[67].  Thus, a preferred approach is to conduct a factorial experiment in which all factors 

are varied together instead of one at a time. Details on the concept of factorial 

experiments can be found in [67]. For these reasons, a factorial design of experiments 

was developed to determine the number of numerical experiments, and conditions of 

each experiment, that need to be conducted for the sensitivity analysis of the poroelastic 

model.  

 

The first step is to identify all the factors (input parameters) that are accounted for in the 

model, as well as the desired response (output). A list of all the input parameters 

considered in the poroelastic model is presented in Table 6.3. The parameters are 

categorized in geometric parameters, material properties, environmental parameters, and 

drilling parameters. The response of the poroelastic model is the ܧܵܯ஻ோ.  
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Table 6.3 List of input parameters for the poroelastic model.  

Properties of solid matrix Properties of pore fluid 

Symbol Property Symbol Property 

 ௙ dynamic viscosityߤ Young’s modulus ܧ

 ௙ fluid compressibilityܥ Poisson’s ratio ߥ

௦ density of matrix Geometric parametersߩ

߶௦ porosity ߠ back rake angle (Figure 5.2) 

݇ permeability ݀௖௨௧ depth of cut (Figure 5.2) 

 Biot-Willis coefficient  Environmental parameters ߙ

ܵ଴ cohesion  ௛ܲ confining pressure (hydrostatic pressure 

of drilling fluid) 

߶ angle of internal friction ௣ܲ pore pressure  

  Drilling parameters 

  ሶܵ௖ rate of stress application 

 

 

It can be observed from Table 6.3 that fifteen input parameters (factors) are considered 

in the poroelastic model. If a full factorial design of experiments were conducted 

considering only two levels for each of the factors in Table 6.3, a total of 32,768 

numerical experiments would have to be conducted. However, it is recognized that the 

majority of the factors are material properties which normally do not vary independently. 

For example, different types of rock are characterized with an specific set of properties, 

but some of these properties (such as the density of rock, Poisson ratio and Young’s 

modulus) may not vary significantly from one type of rock to another, and others (such 

as Biot-Willis coefficient, permeability, and porosity; and cohesion and angle of internal 

friction) are dependent on each other. Similarly, pore fluid in rock is commonly either 

brine or gas, which can be described by a specific set of properties. Therefore, in order to 

reduce the number of numerical experiments that need to be conducted, the material 
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properties were grouped in two main factors: type of rock, and type of fluid. This 

reduces the number of factors from fourteen to seven factors. Two levels were 

considered in this design of experiments for each of the seven factors, which resulted in 

a matrix of 128 numerical experiments that needed to be conducted. The two levels of 

each parameter were chosen from typical values encountered in rock drilling. The seven 

factors considered in the design of experiments along with the two levels considered for 

each factor is presented in Table 6.4. 

 

Table 6.4 List of factors considered for the design of experiments.  

Symbol Factor Low level High level 
 Type of rock 

ܧ ൌ 4 ൈ 10଺ psi 
ߥ ൌ 0.2  
௦ߩ ൌ 2.3 ௚

௖௠య 

Shale 
ߙ ൌ 1 

݇ ൌ 1 nD 
߶௦ ൌ 0.05 

 
ܵ଴ ൌ 950 psi 
߶ ൌ 45.2° 

at 0 ൑ ௡ᇱߪ ൏ 2800 [psi] 
 

ܵ଴ ൌ2324 psi 
߶ ൌ 27.3° 

at 2800 ൑ ௡ᇱߪ ൏ 5600 [psi] 
 

ܵ଴ ൌ 3748 psi 
߶ ൌ 14.45° 

at 5600 ൑ ௡ᇱߪ ൏ 10700 [psi] 
 

Sandstone 
ߙ ൌ 0.8 

݇ ൌ 50 mD 
߶௦ ൌ0.2 

 
ܵ଴ ൌ1990 psi 
߶ ൌ 45.5° 

at 0 ൑ ௡ᇱߪ ൏ 4000 [psi] 
 

ܵ଴ ൌ3600 psi 
߶ ൌ 37° 

at 4000 ൑ ௡ᇱߪ ൏ 17000 [psi] 
 

ܵ଴ ൌ5177 psi 
߶ ൌ 31° 

at 17000 ൑ ௡ᇱߪ ൏ 25000 [psi] 
 

 Type of fluid Gas 
௙ߤ ൌ 2 ൈ 10ିହ Pa·s 
௙ܥ ൌ 1 ൈ 10ି଼ ଵ

௉௔
 

 

Liquid 
௙ߤ ൌ 1 ൈ 10ିଷ Pa·s 
௙ܥ ൌ 4 ൈ 10ିଵ଴ ଵ

௉௔
 

 
 back rake angle 0° 40° ߠ
݀௖௨௧ depth of cut 0.05 inches 0.2 inches 
 pore pressure  500 psi 5,000 psi ݌ܲ
௛ܲ confining pressure ௛ܲ ൌ ௣ܲ ௛ܲ ൌ 1.3 ൈ ௣ܲ 
ሶܵ௖ 

 
rate of stress 
application 

1,000 ௣௦௜
௦

 100,000 ௣௦௜
௦
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The ܧܵܯ஻ோ was determined from the poroelastic model (developed in COMSOL 

Multiphysics) using the procedure described in Section 6.1.2, for each of the 128 

combinations of the seven two-level factors in Table 6.4. The results of ܧܵܯ஻ோ 

determined from the poroelastic model where analyzed statistically using the 

commercial software JMP 8. An analysis of variance (ANOVA) was performed in order 

to determine what input factors (and their interactions) have a significant effect on the 

 ஻ோ. The analysis conducted considers only the main effect of each factor and theܧܵܯ

effect of second-order interactions between factors (that is, the effect of varying any 

combination of two factors at the same time on the response). A stepwise model was 

used to determine the significant factors and second-order interactions, and remove the 

non-significant interaction terms. Once these significant parameters were determined, a 

standard least square method was used to develop a regression model for predicting the 

 ஻ோ with the significant terms (main factors and second-order interactions). Theܧܵܯ

regression model for prediction the ܧܵܯ஻ோ had the form  

 

ܯ መܵܧ஻ோ ൌ መ଴ߚ ൅ ଵݔመଵߚ ൅ ଶݔመଶߚ ൅ ൅ڮ ଶݔଵݔመଵଶߚ ൅ ଷݔଵݔመଵଷߚ ൅ (6.1) ߳ڮ
 

where ܯ መܵܧ஻ோ is the estimated value of ܧܵܯ஻ோ from the regression model; 

,መ଴ߚ ,መଵߚ , መଶߚ … , ,መଵଶߚ ,መଶଷߚ …, are the coefficient estimates of the regression model; 

,ଵݔ ,ଶݔ …, are the main factors of the model; ݔଵଶ, ,ଵଷݔ ,ଶଷݔ …, are the second-order 

interactions between factors, and ߳ is a random error. Once the coefficient estimates 

were determined, a series of statistic tests (F-ratio and t-ratio) were performed in order to 

test the effect of each factor and second-order interaction on the response (ܧܵܯ஻ோ). 

Details of the procedure for this type of analysis can be found elsewhere [67, 68].  

 

It was determined from this analysis that fifteen terms (including main effects and 

second-order interactions) play a significant role in the determination of ܧܵܯ஻ோ using 

the poroelasticity model. A list of these parameters is presented in Table 6.5.  
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Table 6.5 Significant parameters of the poroelastic model.   

Term Estimate Std Error t-ratio t-ratio Prob>|t| 
௣ܲ  2021.52 129.32 15.63

 

<0.0001
129.32 1874.65-  ݇ܿ݋ܴ -14.50 <0.0001
129.32 1395.35-  ߠ -10.79 <0.0001
ߠ כ ௣ܲ  -777.77 129.32 -6.01 <0.0001
݀݅ݑ݈ܨ כ ݀௖௨௧  -637.30 129.32 -4.93 <0.0001
݀௖௨௧  -591.60 129.32 -4.57 <0.0001
݇ܿ݋ܴ כ ݀௖௨௧  -591.60 129.32 -4.57 <0.0001
݀௖௨௧ כ ܵ௖ሶ   -515.43 129.32 -3.99 <0.0001
௛ܲ  457.77 129.32 3.54 0.001
ܵ௖ሶ   387.30 129.32 2.99 0.003
݇ܿ݋ܴ כ ܵ௖ሶ   387.30 129.32 2.99 0.003
௣ܲ כ ௛ܲ  386.29 129.32 2.99 0.003
݀݅ݑ݈ܨ כ ܵ௖ሶ   324.41 129.32 2.51 0.014
129.32 262.30  ݀݅ݑ݈ܨ 2.03 0.045
݇ܿ݋ܴ כ 129.32 262.30  ݀݅ݑ݈ܨ 2.03 0.045
 

 

The first column in Table 6.5 corresponds to each term in the regression model (either a 

factor or an interaction between two factors), Equation (6.1). The coefficient estimates of 

each term of the regression model are presented in the second column, along with the 

standard error in the third column. The standard error is calculated as the square root of 

the mean square error divided by the number of experiments conducted ቆටఢതమ

ଶೖ
 ቇ. The t-

statistic is presented in the fourth column and is equal to the ratio of the coefficient 

estimate to the standard error. The greater the t-ratio is, the more significant the term is 

on the response. A very low value of the t-ratio could indicate that the value of the 

coefficient is zero. The chart to the right of the t-ratio values is a plot of the t-ratios for 

each term. It can be observed that the terms have been sorted by the absolute value of the 

t-ratio, showing the most significant effect at the top. Finally, the last column in Table 

6.5 presents the probability (in absolute value) of getting an even greater t-ratio. 

Probabilities less than 0.05 are often considered as significant evidence that the 
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coefficient estimate is not zero; and therefore, that term significantly contributes to the 

value of the response. The two lines in blue in the t-ratio chart correspond to the േ0.05 

significance level of the probability of the t-statistic.   

 

It can be observed from Table 6.5 that out of the fifteen terms that play a significant role 

in the poroelastic model, the pore pressure, the type of rock, and the back rake angle of 

the cutter are the three factors that have the greatest effect on the ܧܵܯ஻ோ. Another 

important point to remark is that all seven factors considered in the analysis and shown 

in Table 6.4 play a significant role in the determination of the ܧܵܯ஻ோ with the 

poroelastic model. Fortunately, pore pressure is among the parameters that have the 

greater effect on the ܧܵܯ஻ோ, which could be helpful in developing a method to 

determine pore pressure from these parameters. Figure 6.8 present a series of charts with 

all the possible second-order interaction between the factors considered in this analysis. 

The charts of the significant interactions (which are included in Table 6.5) are presented 

with a grey background for easy identification. Each chart presented in Figure 6.8 has 

two curves. Each curve is a plot of the ܧܵܯ஻ோ as a function of the corresponding factor 

at the bottom of the figure, for one of the two levels of the corresponding factor to the far 

right of the figure. The scale of ܧܵܯ஻ோ is shown on the left side of the figure. 

 

Several important observations can be made from Figure 6.8. First, it can be observed 

that all the plots presented with a colored background (in grey) have trends of MSE for 

each level that are not parallel to each other. This behavior confirms the interaction 

between the two factors. Moreover, any other interaction charts (shown on a white 

background) have trends of MSE for each level that are parallel to each other. Another 

observation is the fact that the pore pressure and the confining pressure are presented as 

a nested parameter. That is, the confining pressure in a drilling situation depends on the 

expected value of the formation pore pressure, and it is usually kept above the pore 

pressure as a margin of safety. 
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Figure 6.8 Effects of second-order interactions between the factors considered in the 

poroelastic model on the ܧܵܯ஻ோ. 
 

 

This poses a problem for analysis, since the effect of increasing pore pressure and 

confining pressure results in an increase of the ܧܵܯ஻ோ. However, the increase of ܧܵܯ஻ோ 

is most likely due to the differential pressure (confining minus pore pressure), as has 

been determined before for rocks with high permeability [33]. It can be also observed 

that any variations of the type of fluid, the depth of cut, and the rate of cutting stress 

result in a negligible effect on the ܧܵܯ஻ோ when a typical sandstone is considered. The 

greatest effect on the ܧܵܯ஻ோ when cutting a sandstone is caused indeed by the 
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differential pressure, even though the bake rake angle of the cutter also affects the 

energy required to break the rock but to a lower extent than the differential pressure.  

 

This behavior is not observed in the (simulated) cutting of shale. It can be observed from 

Figure 6.8 that not only the differential pressure and bake rake angle of the cutter, but 

also the type of fluid, depth of cut, and rate of cutting stress have a noticeable effect on 

the required ܧܵܯ஻ோ when a shale is considered. In fact, the different behaviors between 

typical sandstone and typical shale are the cause of the three significant interactions on 

the top row in Figure 6.8. It was found from the numerical experiments that the 

difference in mechanical behavior of the sandstone and shale considered in this analysis 

is due mainly to the difference in permeability between the two types of rock, which has 

been discussed before by Detournay and Atkinson [33]. In order to understand the 

different behaviors of rock due to their different permeability, Figure 6.9 and Figure 6.10 

show the distribution of pore pressure at the shearing zone just before failure occurs at 

two rates of cutting stress, 1,000 psi/s and 100,000 psi, respectively.  

 

Figure 6.9 shows the pressure distribution of rock during cutting (just before failure 

occurs) at a relatively low cutting rate of 1,000 psi/s for sandstone and shale. Figure 6.9a 

and Figure 6.9b show the comparison of the pore pressure distribution in  sandstone and 

in shale with virgin pore pressure (initial pore pressure at time zero) of 500 psi, and 

hydrostatic mud pressure of 650 psi after 5 seconds of cutting stress application. It can 

be observed in Figure 6.9a that the pore pressure in a sandstone quickly equilibrates and 

becomes equal to the mud pressure at the shearing zone, and decreases uniformly in the 

downward direction due to the influence of the far-field pore pressure which is equal to 

the virgin pore pressure.   
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(a) (b) 
  

(c) (d)  
  

Figure 6.9 Pore pressure distribution during simulated rock cutting at 5 seconds and a 
cutting rate of 1,000 psi/s, for: (a) sandstone with virgin pore pressure of 500 psi, (b) 
shale with virgin pore pressure of 500 psi, (c) sandstone with virgin pore pressure of 

5,000 psi, and (d) shale with virgin pore pressure of 5,000 psi. 
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The compression of the rock in sandstone due to the action of the cutter seems to have a 

negligible effect on the pore pressure distribution, since as the pore volume is reduced at 

the shearing zone the fluid is expelled from the pores easily due to the high permeability 

of the sandstone. Furthermore, at regions just below the shearing plane where tension 

might be expected, the expansion of the pores can rapidly accept fluid from the 

neighboring shearing zone. A different effect can be observed for the shale shown in 

Figure 6.9b under the same circumstances. As the cutting stress is applied on shale at a 

relatively low rate (1,000 psi/s), the pore pressure at the shearing zone increases 

considerably (nearly three times the value of the mud pressure). Contrary to sandstone, 

the shale considered in this set of numerical experiments has a very low permeability 

(1nD), which signifies that there is a poor communication among the pores in the rock. 

Thus, as the rock is compressed by the action of the cutter, the pores are compressed but 

the pore fluid cannot escape rapidly, and as a result, the pressure in the pores increases. 

Another interesting behavior is found just below the shearing zone, where the pore 

pressure decreases to even negative values. This behavior is consistent with the work of 

Detournay and Atkinson where they found that cavitation might occur in shale at the 

shearing zone if the virgin pore pressure is not sufficiently high [33]. 

 

Figure 6.9c and Figure 6.9d show a similar comparison as Figure 6.9a and Figure 6.9b, 

but for a virgin pore pressure of 5,000 psi and a hydrostatic mud pressure of 6,500 psi. A 

similar behavior is found for both sandstone and shale, respectively, when the pore 

pressure is increased. However, the zone of low pressure in shale does not reach 

cavitation when the pore pressure is higher. Nevertheless, the pore pressure below the 

shearing zone in shale reaches values lower than the virgin pore pressure.   

 

A similar set of contour plots as the one presented in Figure 6.9 is presented in Figure 

6.10 for a rate of cutting stress of 100,000 psi/s. It can be observed that increasing the 

rate of cutting stress from 1,000 to 100,000 psi/s has a negligible effect on the pore 

pressure distribution in the sandstone. The pore pressure distribution in the sandstone is 
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determined only by the pressure difference between the mud pressure (at the boundary of 

the rock) and the virgin pore pressure at the far-field. 

 

(a) (b) 
  

(c) (d)  
  

Figure 6.10 Pore pressure distribution during simulated rock cutting at 0.05 seconds and 
a cutting rate of 100,000 psi/s, for: (a) sandstone with virgin pore pressure of 500 psi, (b) 

shale with virgin pore pressure of 500 psi, (c) sandstone with virgin pore pressure of 
5,000 psi, and (d) shale with virgin pore pressure of 5,000 psi. 
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Increasing the rate of cutting stress from 1,000 psi/s to 100,000 psi/s does not 

significantly affect the pore pressure distribution in shale. However, it can be noticed 

that the pore pressure contours in shale are slightly less uniform when a higher rate of 

cutting stress is considered. Also, the zone of low pressure occupies a slightly greater 

surface (in this 2-D view), and has lower values of pore pressure when cutting occurs at 

100,000 psi/s.  

 

As mentioned above, the behavior of shale under cutting found in the numerical 

experiments presented in this dissertation is similar to the behavior described before by 

Detournay and Atkinson [33]. However, two important distinctions have to be made: (1) 

the zone of low pressure (or probable cavitation) are found below the shearing zone and 

not at the shearing zone as stated by Detournay and Atkinson, (2) the different pore 

pressure distribution in shale does affect the mechanical behavior of rock, but the energy 

required to break a rock is still a function of the initial value of pore pressure (virgin 

pore pressure).  

 

The numerical experiments presented in this section to identify the significant 

parameters that play a role in the cutting process of rock should be considered as the first 

step of a fundamental understanding of the cutting process of rock. From the results 

presented in this section, it was found that several parameters play a significant role in 

the cutting process. Therefore, further work is recommended to investigate the extent of 

the effect of each significant parameter and its interactions. Fortunately, this 

investigation shows that the pore pressure is one of the most significant parameters 

affecting the cutting process, at least in ideal conditions. Further work is also 

recommended to investigate the amount of energy that is spent in the plastic deformation 

of crushed rock when the cutting process is conducted under pressure. The knowledge 

gain from the current and future investigations can evolve into a methodology to predict 

pore pressure in actual drilling situations. Next section presents the results of verifying 

the PSP3 concept with the poroelastic model.  
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6.3 Use of the poroelastic model to verify the PSP3 concept  

The poroelastic model proposed in Section 5.3 was used to verify if the PSP3 concept 

comply with the basic principles of poroelasticity. Specifically, the results of the 

numerical experiments presented in Section 6.2 were used to verify the PSP3 concept. In 

the experiments presented in Section 6.2, a value of virgin pore pressure is assumed as 

the initial value of pore pressure, and the ܧܵܯ஻ோ is determined with the poroelastic 

model for the different combinations of the factors in Table 6.4. Therefore, the PSP3 

concept can be verified with the poroelastic model if the virgin pore pressure is 

determined with Equation (3.23) (using the ܧܵܯ஻ோ determined from the poroelastic 

model) and compared with the original value of pore pressure that was assumed in the 

poroelastic model. It is important to note that the cutting stress assumed in the numerical 

experiments was applied only in the horizontal direction. Thus, the cutting stress defined 

with Equation (3.16) is equivalent to the MSE defined with Equation (3.17) under these 

circumstances.  

 

Results of the verification of the PSP3 concept with the poroelastic model are presented 

in the following three plots. The results are presented as the ratio of pore pressured 

determined from the PSP3 concept, Equation (3.23), to the virgin pore pressure assumed 

in the numerical experiments, as a function of confining (mud) pressure. As mentioned 

before, a ratio equal to one signifies an excellent agreement between the PSP3 concept 

and the poroelastic model. The results of the verification of the PSP3 concept with the 

poroelastic model for sandstone with the properties described in Table 6.4 (with either 

gas or liquid as the pore fluid) are presented in Figure 6.11.  
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Figure 6.11 Ratio of pore pressure determined from the PSP3 concept to the virgin pore 
pressure of the poroelastic model as a function of confining pressure, for the sandstone 

described in Table 6.4 with either gas or liquid as the pore fluid.  
 

 

It can be observed from Figure 6.11 that the pore pressure determined with PSP3 concept 

is in agreement with the virgin pore pressure assumed in the poroelastic model within 

25%, for a back rake angle of the cutter of 0°. If the back rake angle of the cutter 

increases to 40°, the pore pressure from the PSP3 concept over predicts up to 90% the 

virgin pore pressure of the poroelastic model at confining pressures of 500 psi. At this 

point is important to recall that the PSP3 concept has been developed under the 

assumption that the back rake angle of the cutter is 0°. Therefore, it is not surprising 

(although not expected) that the increasing the back rake angle to 40° results in a worse 

prediction of the pore pressure. However, it is interesting to see that the effect of a large 

back rake angle is diminished as the confining pressure increases. On the other hand, it is 

important to point out that a total of thirty two data points are actually plotted in Figure 

6.11, even though only eight data points can be observed. That is, each data point seen in 

the figure actually corresponds to four data points. The data points are collapsed into a 
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single data point since factors such as depth of cut, and rate of cutting stress have a 

negligible effect on the ܧܵܯ஻ோ determined from the poroelastic model. Furthermore, 

results shown Figure 6.11 are identical regardless of the type of pore fluid considered 

(either the gas or the liquid described in Table 6.4). This behavior was only found in 

sandstone. Results of the verification of the PSP3 concept with the poroelastic model for 

shale with the properties described in Table 6.4 and gas as the pore fluid are presented in 

Figure 6.12. 

 

 
Figure 6.12 Ratio of pore pressure determined from the PSP3 concept to the virgin pore 

pressure of the poroelastic model as a function of confining pressure, for the shale 
described in Table 6.4 with gas as the pore fluid.  

 

 

It can be observed from Figure 6.12 that, similar to the case of sandstone, the pore 

pressure determined with PSP3 concept is in agreement with the virgin pore pressure 
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65% at confining pressures of 500 psi, if the back rake angle of the cutter increases to 

40°. However, the prediction of pore pressure from the PSP3, when back rake angles of 

40° are considered, improves at larger values of confining pressure (a maximum over-

prediction of 20% of the virgin pore pressure at 6,500 psi of confining pressure).  

 

It can be observed from Figure 6.12 that, contrary to the case of sandstone, depth of cut 

and rate of cutting stress have an effect on the ܧܵܯ஻ோ determined from the poroelastic 

model which results in the spread of data points at the same conditions of back rake 

angle and confining pressure. That is, different values of the ratio ቆ
௉೛൫ುೄುయ൯

௉೛ሺ೛೚ೝ೚೐೗ೌೞ೟೔೎ሻ
ቇ are 

found if the depth of cut and rate of cutting stress is varied while maintaining the bake 

rake angle and confining pressure constant. Variation of the ratio of pore pressure 

prediction due to changes in depth of cut and rate of cutting stress show that the 

prediction of pore pressure from the PSP3 concept can vary up to 15%, at low confining 

pressures, due to these two factors. This implies that the PSP3 concept fails to capture all 

the significant parameters that affect the drilling process (for this type of shale). For 

example, if the virgin pore pressure is to be determined from the PSP3 concept for a 

situation where shale is drilled using cutters with a back rake angle of 0°, differences in 

depth of cut and angular velocity of the drill bit during drilling (assuming a constant pore 

pressure) can result in variations of the predicted pore pressure from the PSP3 concept of 

up to 15% at low confining pressures (~500 psi). Furthermore, it the effect of the back 

rake angle is introduced (that is, a cutter with a back rake angle different from 0° is used) 

the pore pressure prediction from the PSP3 concept can be up to 65% above the virgin 

pore pressure of the formation at low confining pressures. This over-prediction of pore 

pressure from the PSP3 concept when the back rake angle is not 0° can be lower as the 

confining pressure increases. These findings are under the assumption that the pore fluid 

in the shale is a gas. However, the results are similar if a liquid is considered as the pore 

fluid. Results of the verification of the PSP3 concept with the poroelastic model for the 

shale of Table 6.4 with liquid as the pore fluid are presented in Figure 6.13. 



 130

 

 
Figure 6.13 Ratio of pore pressure determined from the PSP3 concept to the virgin pore 

pressure of the poroelastic model as a function of confining pressure, for the shale 
described in Table 6.4 with liquid as the pore fluid.  

 

 

It can be observed from Figure 6.13 that the effects of depth of cut and rate of cutting 

stress are even more significant when liquid is considered as the pore fluid instead of gas 

(assuming low permeability shale). At confining pressures of ~500 psi, the pore pressure 

predicted from the PSP3 concept can be between -20% to +92% of the virgin pore 

pressure of the poroelastic model, even for back rack angles of 0°. However, it is 

interesting to see that as the confining pressure increases the prediction of pore pressure 

with the PSP3 concept improves nearly to the same degree as in the case of shale with 

gas as the pore fluid (േ25% of the virgin pore pressure). This behavior might explain 

why the pore pressure prediction from the PSP3 concept shown in Chapter III, Figure 

3.17 and Figure 3.18, improves as a function of depth, since the confining pressure 

increases as a function of depth as well. However, it is clear from the results presented 
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above that the PSP3 concept fails to capture the overall physics of the drilling process. 

Therefore, further work is recommended to redefine the PSP3 model to include the 

effects of the type of fluid, back rack angle, and permeability of the rock if it is to be 

used as a methodology for pore pressure prediction that could be reliable for all types of 

rocks and situations. Nevertheless, the insights gained from comparing the poroelastic 

model to the PSP3 concept are extremely valuable. Insights gained from the poroelastic 

model to understand whether the concept of using MSE as a fundamental parameter in 

Eaton’s equation complies with basic principles of rock mechanics and fluid mechanics 

are presented in the next section.  

 

6.4 Insights from the poroelastic modeling on the concept of using MSE in Eaton’s 

equation 

One of the improvements made by Eaton [10] to the model proposed by Hottman and 

Johnson [18] for pore pressure prediction based on resistivity and sonic logs was to 

include the effect of the overburden on the abnormal pore pressure. Eaton recognized 

that there are zones where the compaction and abnormal pore pressures are caused by 

increasing overburden loads [10]. Moreover, Eaton also recognized that the overburden 

stress is a function of depth in areas such as the Gulf of Mexico. For this reason, the 

poroelastic model cannot be directly compared to the concept of using MSE as a 

fundamental parameter in Eaton’s equation, since the effect of compaction as a function 

of depth is not considered in the poroelastic model. However, several observations from 

the results of the numerical experiments conducted using the poroelastic model can be 

useful to verify if the concept of using MSE (instead of resistivity or sonic data) in 

Eaton’s equation complies with the basic principles that the poroelasticity theory is 

based on.   

 

Hottman and Johnson [18] recognized that in regions where a normal pore pressure trend 

could be found, a normal trend of electrical resistivity could be determined if plotted on 

a logarithmic scale. Moreover, a deviation of the pore pressure from its normal trend was 
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accompanied by a deviation of the normal trend of resistivity. Eaton [10] included the 

effect of overburden and proposed Equation (4.4) to determine the abnormal pore 

pressure based on the establishment of normal trends of pore pressure and resistivity. 

The cornerstone of Equation (4.4) is Equation (4.3), which relates the effective stress in 

an abnormally pressured region to the normal effective stress and the ration of 

resistivities. However, it is important to note that there is not a linear relation between 

the effective stress and resistivity. Rearranging Equation (4.3), it can be observed that  

 

log ቆ
௔௕௡௢௥௠௔௟ߪ
ᇱ

௡௢௥௠௔௟ߪ
ᇱ ቇ ൌ ݊ · log ൬

ܴ଴
ܴ௡
൰ (6.2)

 

which implies  

 

log ቆ
௔௕௡௢௥௠௔௟ߪ
ᇱ

௡௢௥௠௔௟ߪ
ᇱ ቇ ן log ൬

ܴ଴
ܴ௡
൰ (6.3)

 

 

Equation (6.3) is the basis for the development of Eaton’s Equation (4.4). Disadvantages 

of using resistivity measurements in Equation (4.4) are explained in Chapter IV. 

Moreover, it is also proposed in Chapter IV that a fundamental parameter such as MSE 

could be used in Equation (4.4) instead of resistivity. Results from the concept of using 

MSE instead of resistivity in Eaton’s equation indicated that Equation (4.5) could 

correctly predict the post-drill pore pressure (within ~20% at location of less than 14,000 

ft and ~10% at deeper locations) of three oil wells, if a value of one was used in the 

exponent of the equation. A value of one in Equation (4.5) has an important implication: 

it implies that the relation between the ratio of effective stresses (abnormal to normal) 

and the ratio of MSEs (observed to normal) is linear. This is not surprising, since it is 

generally assumed that the energy required to break the rock is directly proportional to 

the effective stress of the rock. Moreover, it is generally accepted that the minimum 

MSE required to break the rock is equal to the confined compressive stress (CCS) of the 
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rock being drilled [9, 30, 31]. Results from the poroelastic model also confirm this 

behavior. In order to illustrate this idea, the poroelastic model was used to determine the 

variation of ܧܵܯ஻ோ due to a change in pore pressure, assuming all other parameters 

constant. A baseline value of pore pressure was chosen as the normal pore pressure, and 

three other simulations were run for increasing values of pore pressure (considered as the 

abnormal pressures). The effective stress in the vertical direction was assumed as the 

confining pressure minus the virgin pore pressure (for either the abnormal or normal 

pressures). The results are presented in Figure 6.14, as the ratio of the MSE required to 

break the rock in the abnormal situation (when pore pressure is higher than the baseline 

pressure) to the MSE required in the normal situation (baseline pore pressure), as a 

function of the ratio of abnormal effective stresses to normal effective stress.  

 

 
Figure 6.14 Ratio of MSE abnormal to MSE normal determined from the poroelastic 
model as a function of ratio of abnormal effective stress to normal effective stress.  
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It can be seen Figure 6.14 that there is a small difference in the ܧܵܯ஻ோ among the three 

data points presented; and thus, the ratio ெௌா೚
ெௌாಿ

 is close to one. This small variation of 

 ஻ோ is due to the fact that the pore pressure was varied in a small range (from 5,000ܧܵܯ

to 6,250 psi). The hydrostatic mud pressure was considered to be 6,500 psi. 

Nevertheless, it is important to note that the variation of the ratio of MSEs is a linear 

function of the ratio of effective stresses. Therefore, it can be hypothesized from the 

results presented in Chapter IV, and results from the poroelastic model that  

 

൬
௢ܧܵܯ
ேܧܵܯ

൰ ן ቆ
௔௕௡௢௥௠௔௟ᇱߪ

௡௢௥௠௔௟ߪ
ᇱ ቇ (6.4)

 

and from Figure 6.14, rearranging terms  

 

ቆ
௔௕௡௢௥௠௔௟ᇱߪ

௡௢௥௠௔௟ᇱߪ ቇ ൌ ܽ ൅ ܾ ൬
௢ܧܵܯ
ேܧܵܯ

൰ (6.5)

 

where ܽ and ܾ are the coefficients of the linear function that relates the ratio of effective 

stresses to the ratio of mechanical specific energies.  

 

It has to be pointed out that physically it is the ܧܵܯ஻ோ that depends on the effective 

stress. However, Equation (6.5) has been rearranged because the interest is to determine 

the effective stress from the MSE in order to predict the pore pressure. Using Equation 

(6.5), the equation for pore pressure prediction would have a different form than Eaton’s 

Equation (4.4), and Equation (4.5) proposed in Chapter IV. The new equation for pore 

pressure prediction based on Equation (6.5), and considering the effect of the overburden 

stress could be expressed as 

 

௉ܲ

ܦ ൌ
ܤܱ
ܦ െ ൤

ܤܱ
ܦ െ ൬ ௉ܲ

ܦ ൰ே
൨ ൤ܽ ൅ ܾ ൬

௢ܧܵܯ
ேܧܵܯ

൰൨ (6.6)
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Even though results from Equation (4.5) (presented in Chapter IV) provided an adequate 

agreement between the predicted pore pressure and the post-drill pore pressure, insights 

gained from the results of the poroelastic model suggest that Equation (6.6) could 

described the relation among pore pressure, overburden stress, and mechanical specific 

energy. However, the proposal of this new equation does not disprove the results 

presented in Chapter IV, since it can be noticed that if the relation between the ratio of 

effective stresses and the ratio of mechanical specific energies is one-to-one, Equation 

(6.6) is equivalent to Equation (4.5) with an exponent value of one.  

 

Unfortunately, the information presented in this dissertation is not enough to prove or 

disprove the validity of Equations (4.5) and/or (6.6). Further work is recommended to 

investigate the relationship between the effective stress of the virgin rock and the 

mechanical specific energy as a function of depth for different lithologies.  

 

In this chapter a fundamental approach to relating pore pressure to drilling parameters, 

environmental parameters, and material properties has been presented. The use of 

mechanical specific energy as a fundamental parameter that groups drilling parameters 

has been emphasized. Moreover, factors affecting the mechanical specific energy that is 

required during drilling have been identified. On the other hand, a 2-D poroelastic model 

of drilling process was proposed. Two important findings can be remarked from the 

results of the poroelastic model: (1) the theoretical amount of energy required to break 

the rock under pressure, assuming elastic deformation, is much less than the actual 

amount of energy required to break the rock (determined experimentally) even under 

ideal situations; (2) there are several factors, and interactions between factors, that 

significantly affect the amount of energy that is required to break the rock, assuming 

elastic deformation. If was found that the pore pressure, the type of rock, and the back 

rake angle of the cutter are the three factors that have the greatest effect on the ܧܵܯ஻ோ. 

Importantly, the pore pressure is one of the most significant parameters that affect the 
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energy required to break the rock, which confirms a relationship between pore pressure 

and mechanical specific energy.  

 

The results presented in this chapter (and in general in this dissertation) suggest that it 

can be possible, in principle, to predict pore pressure from drilling parameters, 

environmental parameters, and material properties. However, it has been also found 

from this investigation that the cutting of rock is a very complex process in which 

several factors play a significant role even when a simplified model, such as the 

poroelastic model, is considered. Further work is required to improve this model so that 

it accounts for other effects found in actual drilling situations (such as the plastic 

deformation of rock under pressure, the plastic deformation of the crushed rock, the 

friction at the cutter-rock interface, and effects of temperature). That is, the poroelastic 

model described in this chapter should be extended to a thermo-poroplastic model. If a 

model is developed that can correctly describe the cutting process of actual drilling 

situations (not only ideal situations), it could be used to establish a quantitative relation 

among pore pressure, drilling parameters, environmental parameters, and material 

properties. Moreover, this information could be used to develop a methodology for pore 

pressure prediction from drilling parameters, environmental parameters, and material 

properties for all types of rock and situations.  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

An investigation of whether or not it is possible to predict pore pressure from drilling 

parameters, environmental parameters, and material properties has been conducted and 

presented in this dissertation. A functional decomposition allowed for the identification 

of the functions that need to be satisfied in order to satisfy the objective (see Chapter II). 

Three approaches were considered as possible means to satisfy the objective of this 

investigation. A summary of the developments and findings of each approach considered 

is presented in this chapter. Findings of the PSP3 concept (first approach considered) are 

described first. Then, the findings of the concept of using MSE as a fundamental 

parameter in Eaton’s equation (second approach) are presented. Subsequently, findings 

of the fundamental approach to relating pore pressure to drilling parameters, 

environmental parameters, and material properties (third approach) are presented. 

Finally, the conclusion of this investigation is presented.  

 

7.1 Findings of the PSP3 concept 

The Principal Stress Pore Pressure Prediction (PSP3) concept was developed under the 

hypothesis that the virgin pore pressure at the drill bit could be determine during drilling 

by identifying the effective stress (from drilling and environmental parameters) of the 

rock being drilled, in combination with the Mohr-Coulomb failure criterion (defined by 

rock properties). An expression was developed, Equation (3.23), that conveniently 

expresses the pore pressure as a function of the cutting stress (drilling parameters), the 

hydrostatic mud pressure (environmental parameters), and failure parameters (material 

properties).  

 

In an effort to validate the PSP3 concept, Equation (3.23) was used to determine the pore 

pressure from drilling log data of three oil wells located in the Gulf of Mexico. The pore 

pressure determined with Equation (3.23) was then compared against a post-drill 
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analysis of pore pressure of each well, which was considered as the true value of pore 

pressure for validation purposes. The lithology of one of the three wells (Well 1) was 

sandstone, whereas the other two wells (Well2, and Well3) were shale. Results for Well 

1 indicated that the pore pressure determined with Equation (3.23) predicts the post-drill 

pore pressure within േ20% for deeps shallower than 14,000 ft and within േ10% at 

deeper regions (>14,000 ft). Results for Well 2 and Well 3, indicated that the pore 

pressured determined with Equation (3.23) over predicts the post-drill pore pressure up 

to 35%  at ~7,000 ft. However, the pore pressure determined with Equation (3.23) 

improves its prediction as the depth increases, such that below 10,000 ft and deeper the 

pore pressure from Equation (3.23) is within േ10% (or less) the post-drill pore pressure.  

 

Insights from the results of the poroelastic model presented in Chapter VI, showed that 

there other factors not considered in Equation (3.23), such as the back rake angle of the 

cutters, the type of rock, and the type of fluid in the rock, that affect the drilling process 

and in turn the prediction of pore pressure from Equation (3.23). Furthermore, it was 

found from the results of the poroelastic model that Equation (3.23) tends to over predict 

the virgin pore pressure of rock with low permeability (for example, shale) at low values 

of confining pressure, and the prediction of pore pressure with Equation (3.23) improves 

as the confining pressure increases. These findings were consistent with the results of the 

attempt for validation of the PSP3 concept. Unfortunately, this is a clear indication that 

the PSP3 concept should not be used in its current form to predict virgin pore pressure at 

bit during drilling for all types of rocks and situations. Nevertheless, results from the 

poroelastic model confirm that there exists a relationship among pore pressure, drilling 

parameters, and material properties, as attempted to be described with the PSP3 concept.  

 

The second approach considered in this investigation is the concept of using MSE as a 

fundamental parameter in Eaton’s equation. The findings of the second approach 

considered are presented in the next section. 
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7.2 Findings of the concept of using MSE in Eaton’s equation 

The concept of using mechanical specific energy (instead of electrical resistivity or sonic 

data) as a fundamental parameter in Eaton’s equation has been proposed and described 

in Chapter IV. Pursuing reasoning similar to that of Eaton, it was recognized that MSE 

could be used to track any changes in the effective stress of the rock, since the MSE 

should be (at least in principle) a function of the effective stress. Then, the pore pressure 

could be determined from the effective stress concept. Following this reasoning, 

Equation (4.5) was proposed to determine the virgin pore pressure in abnormally 

pressured zones from the overburden stress and the MSE.  

 

Equation (4.5) was used with the drilling log data of Well 1, Well 2, and Well 3 to 

determine the virgin pore pressure and compare it to the post-drill pore pressure of each 

well. Surprisingly, the pore pressure profile determine with Equation (4.5) for Well 1 

was almost identical to the pore pressure profile determine with Equation (3.23) for the 

same well. That is, the pore pressure determined with Equation (4.5) predicts the post-

drill pore pressure within േ20% for deeps shallower than 14,000 ft and within േ10% at 

deeper regions (>14,000 ft). However, it was found that the virgin pore pressure for Well 

2 and Well 3 determined with Equation (4.5) is in closer agreement to the post-drill 

analysis (േ10%ሻ than the pore pressured profile determined with Equation (3.23) at 

each depth.    

 

Interestingly, a value of one for the exponent in Equation (4.5) was found to be the best 

fit between the post-drill analysis and the predicted pore pressure for the three wells 

considered. This finding suggests that there is a linear relation between the effective 

stress and the MSE. Results from the poroelastic model confirmed this hypothesis. 

However, the relation between the ratio of effective stresses ఙೌ್೙೚ೝ೘ೌ೗
ᇲ

ఙ೙೚ೝ೘ೌ೗
ᇲ  (effective stress of 

the abnormally pressured zone to the effective stress of the normally pressured zone) and 

the ratio ெௌா೚
ெௌாಿ

 (the MSE at the abnormally pressured zone to the MSE at the normally 
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pressured zone) might not necessarily be one to one. Thus, a new expression for pore 

pressure prediction is proposed in Equation (6.6). Even though it seems to be clear that a 

relationship of the form of Equation (6.4) exists, further work is required to determine if 

Equation (6.5) is correct. Moreover, further work is required to determine the 

coefficients of Equation (6.5), provided it is correct, for different lithologies and 

situations.  

 

7.3 Findings of fundamental approach to relating pore pressure to drilling 

parameters, environmental parameters, and material properties 

A fundamental approach to relating pore pressure to drilling parameters, environmental 

parameters, and material properties from basic principles has been proposed and 

presented in Chapters V and VI. First, a new way of viewing MSE has been proposed in 

which different factors that affect the energy required to break the rock are identified. 

This information helped recognizing the complexity of the cutting process of rock and 

the interactions that occur between the pore fluids and the solid matrix of the rock during 

cutting. Thus, it was proposed that the cutting process could be described, as a first step, 

with Biot’s poroelasticity theory which describes the coupled hydro-mechanical 

behavior of rock. A simplified two-dimensional model of the cutting process using 

poroelasticity theory was then proposed.  

 

The poroelastic model was validated with data from Murrell [51], and Rafatian et al. [63, 

64]. Results from the validation with data from Murrell [51] showed that the poroelastic 

model could predict the load required to break the rock in closer agreement (േ10%) with 

the load determined experimentally in a tri-axial test. However, comparisons of the 

results from the poroelastic model to experiments conducted by Rafatian et al. [63, 64] 

indicated that the ܧܵܯ஻ோ determined from the poroelastic model is even lower than the 

confined compressive strength determined by Rafatian et al. [63, 64]. In other words, it 

seems that the poroelastic model correctly predicts the ܧܵܯ஻ோ at unconfined conditions 

(within േ5%), but fails to predict the ܧܵܯ஻ோ as the confining pressure increases. These 
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findings suggest that a more complex mechanism occurs when cutting a rock under 

pressure; and thus, it is not capture with the poroelastic model. Furthermore, it was 

found from other investigations [63-66] that the energy spent (when cutting under 

confining pressures) in the plastic deformation of the rock in front of the cutter is much 

more significant than the elastic energy of failing the virgin rock, even under ideal 

laboratory conditions. Further work is required to investigate the effect of plastic 

deformation of the rock under these conditions in order to improve the poroelastic 

model.  From these findings, it was assumed that the poroelastic model could be useful 

in predicting the theoretical value of ܧܵܯ஻ோ under ideal conditions where the crushed 

rock is immediately clean out from the face of the cutter.  

 

A sensitivity analysis (using an analysis of variance) was then conducted on the 

poroelastic model to determine the significant factors that affect the cutting process. It 

was found from the sensitivity analysis that the seven factors considered in the analysis 

(and seven out of fifteen interactions between factors) play a statistically significant role 

on the determination of ܧܵܯ஻ோ. It was also found that the factors with the greatest 

influence on the ܧܵܯ஻ோ are the pore pressure, the type of rock, and the back rake angle 

of the cutter. Furthermore, results indicated that the type of rock is a significant factor in 

the determination of ܧܵܯ஻ோ not only because of the mechanical strength of the rock 

(defined by the Mohr-Coulomb failure parameters) but also because of the permeability 

and porosity of the rock. It was found that the rate of cutting stress, depth of cut, and 

type of fluid have a negligible influence on the ܧܵܯ஻ோ when a rock of high permeability 

(such as sandstone) is cut. However, each one of these factors (the rate of cutting stress, 

depth of cut, and type of fluid) and its interactions become important when a rock of low 

permeability (and low porosity), such as shale, is cut.  

 

Results also showed that cavitation might occur below the shearing zone if a low 

permeability rock is cut under low pore and confining pressures. Even if cavitation does 

not occur, a zone of pore pressure lower than the virgin pore pressure is developed 
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during cutting just below the shearing zone. Increasing the rate of cutting stress seems to 

move this zone of low pore pressure upwards, closer to the shearing zone.  

 

The developments and findings of each approach considered in this work led to 

formulate a conclusion to the objective of this dissertation established in Chapter I. The 

conclusion is described in the next section.  

 

7.4 Conclusions 

The primary conclusion of this investigation is that, in general, there exists a relationship 

among pore pressure, drilling parameters, environmental parameters, and material 

properties. Therefore, it will be possible in principle to determine the virgin pore 

pressure at the drill bit from drilling parameters, environmental parameters, and material 

properties.  

 

Additionally, it was concluded from the results described in this dissertation that: 

• pore pressure, type of rock, and back rake angle of the cutter will be the most 

significant factors affecting the energy required to break the rock 

• rate of application of cutting stress, depth of cut, and type of pore fluid (gas or 

liquid) will become significant factors of the cutting process only when a low-

porosity, low-permeability rock is considered 

• the model resulting from the first approach will not provide an adequate pore 

pressure prediction for all types of rocks and situations 

• the model resulting from the first approach will fail to capture the effect of 

factors such as permeability, porosity, back rake angle of cutter, which 

significantly affect the cutting process 

• there will be a linear relation between the effective stress and the mechanical 

specific energy 

• the energy required to break the rock (under confining pressures) determined 

from the poroelastic model will be much less than the actual energy required to 
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break the rock, even under ideal laboratory conditions, since part of the actual 

energy will be used to plastically deformed the crushed rock in front of the cutter 

• several interactions between the factors considered in the poroelastic model will 

significantly affect the cutting process.  
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CHAPTER VIII 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

Several recommendations for future research have been generated from the findings of 

the current investigation, in order to satisfy the need of a method to determine the virgin 

pore pressure ahead of the bit during drilling. A functional decomposition allowed 

identifying two top-level functions for the design of such methodology. The two top-

level functions are: (1) to provide means to determine the virgin pore pressure at the bit, 

and (2) to provide means to relate the virgin pore pressure at the bit to the virgin pore 

pressure at the far-field. The work presented in this dissertation focuses on determining 

whether or not it is possible to determine the virgin pore pressure at the bit from drilling 

parameters, environmental parameters, and material properties. That is, the work 

presented in this dissertation attempts to determine if the function (1) can be satisfied if 

drilling parameters, environmental parameters, and material parameters are known.  

 

The results from this investigation indicated that it is possible, in principle, to determine 

the virgin pore pressure at the drill bit from drilling parameters, environmental 

parameters, and material properties. However, a more extensive theoretical and 

experimental investigation of the factors affecting the cutting process of rock is required 

before a methodology to predict pore pressure from drilling parameters, environmental 

parameters, and material properties can be developed for all types of rock and situations. 

Specifically, it is recommended to: 

• extend the scope of the fundamental approach described in Chapter V in order to 

include, in the modeling of the cutting process of rock, the effects of: 

o the plastic deformation of rock under confining pressures 

o the crushed rock in front of the cutter 

o the properties of the drilling fluid (since depending on its properties, the 

mud can infiltrate the rock at different rates affecting the local pore 

pressure) 
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o the temperature of the rock and the drilling fluid 

• design experiments of rock cutting by a single cutter that allow to gather data that 

can be used to validate the model developed from the recommendations 

mentioned above. An experimental setup similar to the one described by Rafatian 

et al. [63, 64] is recommended, but considering the following factors: 

o different types of rock (considering rocks of low and high permeability, 

and low and high porosity) 

o different types of pore fluid (preferably a gas and a liquid) 

o different properties of the drilling fluid  

o different values of the back rack angle of the cutter 

o different values of pore pressure while maintaining a constant value of 

confining pressure 

o different values of confining pressure while maintaining a constant value 

of pore pressure 

• further investigate the interactions of the different factors considered in the rock 

cutting process when a rock of low permeability and low porosity is considered  

 

Additionally, validation of the concept of using MSE (instead of electrical resistivity or 

sonic log date) in Eaton’s equation against post-drill pore pressure, using drilling log 

data from three oil wells, showed promising results if a value of one is used in the 

exponent of the equation. These findings, along with results from the numerical 

experiments using the poroelastic model, suggest that there is a linear relationship 

between the effective stress of the undisturbed rock and the mechanical specific energy 

required to fracture the rock. Further work is recommended to investigate the nature of 

such a relationship. Specifically, it is recommended to: 

• determine whether the relationship between the effective stress of the 

undisturbed rock and the MSE is different for different the lithology (type of 

rock) 
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• further validate Equation (4.5) with new data, or determine whether Equation 

(6.6) provides a better way to relate pore pressure to overburden stress and MSE   

 

Finally, it is envisioned that the top-level function (2) could be satisfied from a 

theoretical perspective using Darcy law for low velocity flows and the principle of mass 

conservation. The sketch in Figure 8.1 can be helpful to illustrate the way this function 

could be satisfied.  The sketch shows the drilling of a well for which two values of pore 

pressure were determined at the bit (when the drill bit was drilling that location). 

Considering the situation in Figure 8.1, it is desirable to satisfy the top-level function (2) 

in order to be able to predict the pore pressure at the far-field (ܲ݌௭ሻ. 

 

 
Figure 8.1 Sketch showing the drilling of a well and the virgin pore pressure ( ௣ܲଵ and 
-ଶ) determined at the drill bit, as well as the unknown virgin pore pressure at the far݌ܲ

field (ܲ݌௭). 
 

 

If a methodology to determine pore pressure at the drill bit during drilling were 

available, the pore pressure ௣ܲଵ and ௣ܲଶ could be determined when the drill bit was 

drilling at each location. In order to determine the virgin pore pressure at the far-field 

 ௭ሻ, it is assumed that the low velocity flows in the undisturbed formation have been݌ܲ)

in equilibrium for a long time. Under this condition, the change in the fluid content in 

the pores with respect to time is effectively zero (steady-state conditions), and the mass 

balance in Equation (5.26) reduces to  
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׏ · ܙ ൌ 0 (8.1)
 

If only the z-direction is considered (as shown in Figure 8.1), Equation (8.1) implies that 

under steady-state conditions the fluid flux ݍ௭ is constant, and from Darcy’s law, 

Equation (5.27), it follows that  

  

௭ݍ ൌ െ
ߢ
௙ߤ
݀ ௣ܲ

ݖ݀ ൅
௙݃௭ߩߢ
௙ߤ

 (8.2)

 
where ߢ is the permeability of the rock that has been considered constant for simplicity, 

and all other variables are the same as defined for Equation (5.27). 

 

For a constant fluid flux, Equation (8.2) can be re-written in terms of the virgin pore 

pressures determined at the drill bit as 

 

௭ݍ ൌ െ
ߢ
௙ߤ

௉ܲଶ െ ௉ܲଵ

ଵܮ
൅
௙݃௭ߩߢ
௙ߤ

 (8.3)

 

or in terms of the virgin pore pressure at the bit 

 

௭ݍ ൌ െ
ߢ
௙ߤ

௉ܲ௭ െ ௉ܲଶ

ଶܮ
൅
௙݃௭ߩߢ
௙ߤ

 (8.4)

 

and combining Equations (8.3) and (8.4), the virgin pore pressure at the far-field can be 

determined as  

 

௉ܲ௭ ൌ ௉ܲଶ ൬
ଶܮ ൅ ଵܮ
ଵܮ

൰ െ
ଶܮ
ଵܮ ௉ܲଵ (8.5)
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It can be observed from Equation (8.5) that the pore pressure ௉ܲ௓ located at a vertical 

distance ܮଶ from the location of ௉ܲଶ (that is, at the far-field) can be easily determined if 

the two values of virgin pore pressure are known, as well as the vertical between those 

two values. Equation (8.5) has been developed under the assumption of constant pore 

fluid properties, constant permeability, and steady-state conditions (constant fluid flux). 

However, if the properties are not constant, it can be demonstrated the pore pressure at 

the far-field could be determined from   

 

௉ܲ௭ ൌ
௙ଶߤ
௙ଵߤ

ଵߢ
ଶߢ
ଶܮ ൬

௉ܲଶ െ ௉ܲଵ

ଵܮ
െ ௙ଵ݃௭൰ߩ ൅ ௙ଶ݃௭ߩଶܮ ൅ ௉ܲଶ (8.6)

 

where the subscript “1” indicates mean properties at the location between ௉ܲଵ and ௉ܲଶ, 

and the subscript “2” indicates the mean properties at the location between ௉ܲଶ and ௉ܲ௭. 

Even though Equation (8.6) is developed under the assumption of constant fluid flux, the 

same equation can be used if the fluid flux is not constant provided that small increments 

Δݖ are considered. That is, Equation (8.6) is still valid if the fluid flux is not constant, 

provided that the vertical distances ܮଵ and ܮଶ are small.  

 

In an actual drilling situation, drilling log data is taken at intervals of less than 1 ft. If a 

methodology to determine pore pressure at the drill bit during drilling were available, 

Equation (8.6) could be used to predict the pore pressure ahead of the fit (at least a few 

feet ahead) based on the previous pore pressures determined at the drill bit. Therefore, it 

is recommended that future work include an investigation of the procedure proposed in 

this section to relate the virgin pore pressure at the bit to the virgin pore pressure at the 

far-field. With this information, the ultimate goal of predicting virgin pore pressure 

ahead of the bit during drilling would be satisfy.  
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