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ABSTRACT

Engineering Incentives in Distributed Systems with Healthcare Applications.

(August 2011)

Brandon Reed Pope, B.S., Abilene Christian University; M.E., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Andrew Johnson
Dr. Abhijit Deshmukh

U.S. healthcare costs have experienced unsustainable growth, with expenditures of

$2.5 trillion in 2009, and are rising at a rate faster than that of the U.S. economy. A

major factor in the cost of the U.S. healthcare system is related to the strategic behavior of

system participants based on their incentives. This dissertation addresses the challenge of

designing incentives to solve problems in healthcare systems. Principal agent theory and

Markov decision processes are the primary methods used to construct incentives.

The first problem considered is how to design contracts in order to align consumer and

provider incentives with respect to preventive efforts. The model consists of an insurer

contracting with two agents, a consumer and a provider, and focuses on the trade off be-

tweenex antemoral hazard and insurance. Two classes of efforts on behalfof the provider

are studied: those which complement consumer efforts, and those which substitute with

consumer efforts. The results show that the provider must begiven incentives when the

consumer is healthy to induce effort, and that inducing provider effort allows an insurer to

save on incentives given to the consumer. The insurer can save on the cost of incentives

by using a multilateral contract compared to the bilateral benchmark. These savings are

illustrated by an example showing which model features affect the savings achieved.
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The second problem addresses the decision to provide knowledge to consumers re-

garding the consequences of health behaviors. The model developed to address this sec-

ond problem extends the literature on incentives in healthcare systems to consider dy-

namic environments and includes a behavioral model of healthcare consumers. By using

a learning model of consumer behavior, a policy maker’s knowledge provision problem is

transformed into a Markov decision process. This frameworkis used to solve for optimal

knowledge provision policies regarding behaviors affecting coronary health. Sensitivity

analysis shows robust threshold features of optimal policies. The results show that knowl-

edge about smoking should be provided at most health and behavior states. As the cost of

providing knowledge increases or aptitude for behavioral change decreases, fewer states

are in the optimal knowledge provision policy, with healthyconsumers dropping out first.

Knowledge about diet and physical activity is provided moreselectively due to the to un-

certainty in the health benefits, and the time delay in accrued rewards.
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NOMENCLATURE

AAD average absolute deviation

AHA American Heart Association

AMI acute myocardial infarction

ARIC Atherosclerosis Risk In Communities

CHD coronary heart disease

CIAD conditional independence - additive dependence

CIMD conditional independence - multiplicative dependence

CMH Cochran-Mantel-Haenszel

EU expected utility

EWA experience-weighted attraction

FOC first order condition

GDP gross domestic product

HDL high-density lipoprotein

IC incentive compatibility

IND independence

IR individual rationality

FOC first order condition

MAD maximum absolute deviation

MH Mantel-Haenszel

MDP Markov decision process

NHLBI National Heart, Lung, and Blood Institute

QALY quality-adjusted life year

SSD sum of squared deviations
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1. INTRODUCTION

The U.S. healthcare system is a world leader in many dimensions, however cost effi-

ciency is not one of them. U.S. healthcare costs have risen ata much higher rate than that

of other developed nations, and in 2009 healthcare spendingstood at 17.3% of the U.S.

GDP (Truffer et al., 2010). By comparison, no other developednation spends more than

11% of GDP on healthcare (Organisation for economic co-operation and development,

2009). These expenditures total $2.5 trillion, and are rising at an unsustainable rate faster

than that of the U.S. economy. Although part of the cost increase can be attributed to the

development of new medications, availability of advanced diagnostic and surgical proce-

dures, and an aging population base, these factors are present in other developed nations,

and in fact the U.S. has one of the youngest median ages of the developed world (Rohack

and Einboden, 2006). Estimates on the excess cost in the system consistently exceed $500

billion (Institute of Medicine, 2010).

The rapid increase in costs has caused engineers to apply their tools and methods

at the healthcare industry, focusing primarily on the delivery and operational aspects

of the system. Such approaches typically neglect the inherently decentralized nature

of the U.S. healthcare system. The strategic behavior of healthcare system participants

is a major factor in the cost increases (Porter and Teisberg,2006), and requires dis-

tributed solutions to control problems. Policy makers and payers have an interest in con-

trolling the autonomous decisions of patients, providers,and other system participants,

which can have enormous implications for healthcare expenditures. An estimated 80%

of heart disease, stroke, and Type 2 diabetes could be prevented by controlling the risk

factors of diet, physical inactivity, and tobacco use (World Health Organization, 2009).

This dissertation follows the style ofManagement Science.
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The estimated cost of these first two diseases alone was $503.2 billion in the U.S. for the

year 2010 (Lloyd-Jones et al., 2010). Incentives are a potential solution garnering increas-

ing interest as a means of distributed control for healthcare systems (Institute of Medicine,

2010; Valdez et al., 2010). Incentives can also perversely influence strategic behavior of

participants in several ways. For example, insurance contracts can reduce incentives for

preventive care by removing the burden of risk from individuals. Since modifying be-

havior through incentives is costly, the problem is to design incentives which balance the

benefits from controlled behavior against the costs of constructing the incentives.

The overall theme for this dissertation is designing incentives in a distributed health-

care system. This research promises to be generalizable to other systems since as systems

become larger and increase in complexity, centralized strategies become harder to imple-

ment and less feasible as means of system control. Other systems such as healthcare and

education systems contain some level of inherent distribution in decision making auton-

omy and thus require distributed solutions to control problems. One means of distributed

control is through the use of incentives to guide autonomousdecisions. The task of en-

gineering incentives has significant potential to improve system outcomes for distributed

systems such as the healthcare system. Contracts, policies,and information are among the

ways that incentives are conveyed to agents in distributed systems. This dissertation inves-

tigates the question of how these tools can be designed to provide incentives to autonomous

agents in the healthcare system. The structure of this dissertation is as follows: Section 2

provides a general review of the literature on healthcare systems engineering research and

the work on incentives and strategic behavior in healthcare. More specific literature related

to each model is discussed within the respective sections. Section 3 studies the question of

how multilateral contracts should be structured when healthcare consumers and providers

can potentially take preventive efforts. Section 4 addresses some of the strong assump-

tions in the first model, and presents a model for designing incentives using information
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for consumers who learn about healthcare behaviors in a dynamic setting. Section 5 takes

the model introduced in Section 4, and applies the model to designing incentives to control

costs from coronary heart disease. Section 6 provides conclusions.
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2. LITERATURE REVIEW

2.1 Distributed Systems

Distributed systems pose challenges for engineers. Rather than optimizing or design-

ing from a centralized perspective, in distributed systemsthe information, resources, and

decision making authority are distributed throughout multiple agents. Shoham and Leyton-

Brown (2009) provide an overview of research in distributed systems including optimiza-

tion, equilibrium concepts, and welfare problems. Much of the focus on distributed sys-

tems has come from the computer science community, where distributed algorithms as

well as parallel and distributed computation are studied (Bertsekas and Tsitsiklis, 1997).

The classic example of a distributed system is an economy, inwhich agents (firms and

consumers) make transactions according to their own preferences and resources. The

foundational theory of Arrow and Debreu (1954) gives conditions under which an effi-

cient outcome for the distributed system is realized. However, many features of real world

distributed systems destroy such efficiencies. Among theseare asymmetric information,

hidden actions, missing markets, externalities, bounded rationality, and bounded compu-

tational abilities. In such environments, system engineers face a challenge to move from

inefficient system outcomes towards efficient outcomes.

Sensor networks, supply chains, and healthcare systems arejust a few other examples

of distributed systems which have garnered the attention ofengineers. Recently, educa-

tion systems have become an interesting application of incentives. Fryer (2010) examines

data from school systems where financial incentives were tested to enhance student per-

formance. Education systems have interesting parallels tohealthcare systems since at least

two groups of decision makers (students and teachers or consumers and providers) need

to have proper incentives for the system to achieve good outcomes.
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An analysis of systems with multiple decision makers is often built upon game theo-

retic principles. Classic game theory was developed in the 1940’s and 50’s by Von Neu-

mann and Morgenstern (1944) and Nash (1951). See Fudenberg and Tirole (1991) for a

comprehensive treatment. The theory seeks to motivate and predict outcomes and pre-

scribe decisions in situations of strategic interdependence. These situations arise when

agents’ optimal decisions depend on the decisions chosen byother agents. The concept

of Nash equilibrium predicts outcomes in which agents best-respond to other agents’ de-

cisions and have mutually consistent beliefs about how other agents play. Distributed sys-

tems engineering makes use of game theoretic principles since designs must be evaluated

in terms of the equilibria they sustain.

The theory of incentives in distributed systems has largelybeen developed within the

economic community. The field of mechanism design (Mas-Colell et al., 1995, Ch. 23)

studies the problem a designer faces in constructing the rules by which a distributed sys-

tem functions. A mechanism designer faces an environment,e∈ E, and an outcome space

Y. Given the designer’s objective correspondenceF : E → Y, and beliefs about equilib-

rium behavior, the goal is to design a mechanismΓ =< M,h > consisting of a message

spaceM and an outcome functionh : M → Y such that the mechanism implements the

designer’s objective correspondence. A primary application of mechanism design theory

is auction theory (Krishna, 2009), where in some circumstances, the rules of the auction

can be designed to meet the designer’s goals of efficiency and/or truthful revelation of pri-

vate information. The special bilateral case of mechanism design is called principal-agent

theory (Laffont and Martimort, 2002). In principal-agent settings, such as the supervisor-

employee, lawyer-client, and teacher-student relationships, the principal wants to contract

with the agent regarding some task in order to ensure preferred outcomes are reached. In

realistic cases when the agent has more information regarding the task at hand, or the prin-

cipal cannot perfectly observe the agent’s action, the fullinformation efficient outcomes
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are generally unattainable. These causes of inefficiency are called adverse selection and

moral hazard, stemming from the insurance literature. Mechanism design and principal-

agent theory have produced results and are increasingly applied in engineering and oper-

ations research Cachon and Zhang (2006); Fuloria and Zenios (2001); Gallien (2006); Su

and Zenios (2006). Bolton and Dewatripont (2005) provide a comprehensive survey of the

literature on contracting in principal-agent and more general multiagent circumstances.

For a summary of the empirical evidence to support the theoryof incentives, see Prender-

gast (1999). As a distributed system, healthcare systems are of particular interest because

of the complexity, cost, and inefficiency.

2.2 Healthcare Systems Engineering

The recent explosion of healthcare costs in the U.S. has led to an equal explosion

in healthcare research in systems engineering and related fields. A large portion of this

growth has focused on applying existing methods to familiarengineering problems in

healthcare settings such as scheduling (Patrick et al., 2008), logistics (Daskin and Dean,

2004), and supply chain management (Pierskalla, 2004). Another component of the growth

can be largely classified as tackling problems in medical decision making, such as optimal

timing of interventions (Denton et al., 2009; Shechter et al., 2008) and optimal procedure

protocols (Lee and Zaider, 2008). Decision making at the policy level has also received

some attention in the areas of substance control and treatment (Tragler et al., 2001), im-

munizations (Engineer et al., 2009), cost-effectiveness studies (Owens et al., 2004), and

the diffusion and value of health information technology (Diana, 2009). Another major

area of interest to policy makers (Antos et al., 2009), yet receiving little attention from the

engineering community, is related to the decision making, as guided by incentives, of the

distributed players in the healthcare system. Existing efforts include Fuloria and Zenios
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(2001) who study incentives between a payer and a provider ina dynamic environment

where treatment intensity is unobservable, and Yaesoubi and Roberts (2009), who study

contracts to coordinate actions between a healthcare purchaser and a provider controlling

the number of individuals receiving an intervention. The majority of the existing liter-

ature studying incentive issues in healthcare systems comes from the health economics

community, where research has focused on incentives between consumers, providers, and

insurers.

2.2.1 Incentives in Healthcare Systems

Consumers of healthcare introduce several inefficiencies into the healthcare system,

stemming from both private information and non-contractible actions. When these are

non-existent, the full information, or first best, insurance contract provides a more risk

averse consumer with full insurance from a less risk averse insurer. However, when unob-

served, or at least non-contractible actions (e.g. diet, exercise) which affect the consumer’s

probability of illness are present, insurance against healthcare costs leads toex antemoral

hazard. Uninsured consumers would take preventive actionswhen the expected benefits

exceed the costs, but insured consumers will have reduced incentive to take such actions

when they are costly. Ehrlich and Becker (1972) first considered this mode of moral haz-

ard and gave conditions under which the second best contractleaves the consumer with

some risk. Theseex antemoral hazard circumstances arise frequently in health insurance

since consumers have many actions which insurers cannot fully observe, yet affect their

risk of healthcare expenditures. In order to leave the consumer with some risk, insurers

write contracts with deductibles, co-insurance rates, andcopayments. Additionally, if true

health states of consumers are impossible or too costly to observe, health insurance con-

tracts cannot be written on the state of the consumer’s health, and therefore contracts are
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frequently written on the basis of healthcare expenditures. Ex postmoral hazard arises

in this environment since consumers who face reduced marginal costs of treatment will

demand treatment at excessive levels. The seminal work of Zeckhauser (1970) studies the

trade off between thisex postmoral hazard and efficiency of risk reduction, then designs

optimal incentive contracts for efficient expenditures. Zweifel et al. (2009, ch.6) present

models for both modes of moral hazard. Withinex antemodels, they focus on binary pre-

ventive efforts and conditions for which full insurance or copayments are optimal. Within

ex postmodels, they conclude that copayments should be used to control moral hazard,

with higher copayments for more price elastic services. Other recent extensions to these

models include Ellis and Manning (2007), who consider a consumer facing bothex ante

and ex postmoral hazard. They considers linear coverage for observable decisions of

prevention and treatment and derive the optimal coinsurance rates for each type of good.

Goldman and Philipson (2007) consider optimal insurance with a consumer underex post

moral hazard with multiple goods. Their conclusions suggest that ceterus paribus, insured

goods which are substitutable will have lower copays, and those which are complements

will have higher copays.

Consumers also have private information regarding their risk types. In these circum-

stances, adverse selection occurs since individuals can select their most favorable plan

from a menu, with sicker consumers choosing more generous plans, and healthier con-

sumers choosing more moderate plans. Adverse selection creates inefficiencies whether

the equilibrium involves pooling or separating of types (Rothschild and Stiglitz, 1976).

These inefficiencies can be controlled by designing an optimal menu of contracts, or by

adjusting insurance parameters based on characteristics of the consumer. For a summary

of the literature on adverse selection see Cutler and Zeckhauser (2000).

While the literature initially focused on demand-side incentives through the consumer’s

insurance contract, provider incentives, especially those specified by their remuneration or
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payment contract, has been another focus of the literature on incentives in healthcare sys-

tems. When providers whose incentives are not perfectly aligned with consumers make

quantity decisions (Ellis and McGuire, 1986), or have the ability to select patients (Ellis,

1998), the strategic behavior of providers driven by supply-side incentives in their remu-

neration contract can create inefficiencies. The consensusof the literature is that when re-

imbursement is contingent on expenditures, retrospectiveschemes (such as fee-for-service,

the most common method) will lead to excessive services and up-coding (reclassifying

patients into more lucrative diagnoses), while prospective schemes will lead to under pro-

vision of services and avoidance of high-severity patients, and that mixed schemes can

balance these trade offs. Prospective schemes include capitation, under which a provider

is paid a set amount per time period for each patient, regardless of services delivered.

Models which consider both consumer and provider incentives are similar to the model

presented in Section 3. This literature is reviewed and related to this dissertation’s model

in the following section.
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3. MULTILATERAL CONTRACTING AND PREVENTION

This section analyzes the problem of designing incentives through contracts taking into

consideration the multilateral interactions in healthcare systems. The primary focus here

is on the trade off betweenex antemoral hazard and insurance, considering both consumer

and provider incentives to solve the problem of optimal contracting in the presence of hid-

den preventive efforts. Results show that if inducing the provider’s effort is optimal, the

provider must be given incentives when the consumer is healthy. That is, the provider must

be better off when consumers are healthy rather than ill. Inducing the provider’s effort al-

lows an insurer to save on incentives given to consumers by distorting incentives from the

bilateral benchmark. The interaction between consumer andprovider efforts is modeled

as both complementary and substitutive, showing the results to be robust. The optimal

multilateral contract is compared with the optimal bilateral benchmark, and an example

illustrates which model features and parameters affect theoverall savings that the multi-

lateral contract is able to achieve. Subsection 3.1 reviewsliterature related specifically to

the model and approach taken in this section. Subsection 3.2introduces the model, nota-

tions, and assumptions. Subsection 3.3 analyzes the insurer’s optimal multilateral contract,

studying the incentives given to each agent and the savings that the multilateral contract

achieves relative to the bilateral contract. Finally, subsection 3.4 summarizes the results

found.

3.1 Literature Review

The research considering the important problem of how incentives interact amongst

agents in the healthcare system has focused primarily on theex postdimension of moral

hazard. Ellis and McGuire (1990) study incentives for a provider and consumer who
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bargain over utilization and conclude that the optimal incentive system gives generous

insurance coverage to consumers, but gives providers incentives to control costs. Ma

and McGuire (1997) consider moral hazard when both a provider and insurer have non-

contractible actions in the production of health, and the insurer sees only a report (possibly

non-truthful) of treatment. Their results show that providers need cost-sharing incentives

when these actions are substitutes, and cost-plus incentives when they are complements.

Ma and Riordan (2002) study optimal contracts using both demand-side and supply-side

incentives, and study the level of utilization incurred relative to the full information bench-

mark. This literature highlights the need to consider both supply-side and demand-side

incentives in order to efficiently control agency in healthcare.

Prevention is an important topic to consider for reasons beyond moral hazard. Kenkel

(2000) provides a general review of the literature on the economics of prevention, includ-

ing moral hazard, externalities, lack of consumer information, and cost-effectiveness. The

model introduced in this section distinguishes itself fromthese efforts by focusing on the

ex antedimension of moral hazard. One of the primary arguments diminishing the impor-

tance ofex antemoral hazard in health insurance has been that non-financialcosts (e.g.

pain, discomfort, suffering) associated with adverse health events are uninsurable, there-

fore even financially insured consumers will have incentives to exert preventive efforts.

Even if this argument has been valid in the past, the trend in medical research and tech-

nology is progressing towards minimizing or completely eliminating these non-financial

costs. For example, the Door-to-Balloon (D2B) Initiative of the American College of Car-

diology encourages hospitals to strive towards reducing the time from when an acute my-

ocardial infarction patient enters the door to the time the angioplasty balloon is in the chest

of the patient to under 90 minutes. Removing the non-financialburden of disease will lead

to increasedex antemoral hazard amongst insured consumers. An example of this unin-

tended consequence could be argued from the case of coronaryheart disease (CHD). From
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1970 to 2006, hospital-case fatality rates for CHD in patients age 65 and over fell substan-

tially from near 40% to just above 10%. This accomplishment of medical science led to a

greatly diminished non-financial risk of CHD. Over the same time horizon, knowledge of

and ability to prevent CHD improved greatly, which would havepresumably contributed

to lowering incidence rates. However, hospitalization rates for the same group of con-

sumers remained roughly constant over the same time horizon(National Heart, Lung and

Blood Institute, 2009). This type of argument echoes Kenkel (2000), who notes that as

prevention and cure become more perfect substitutes, theex antemoral hazard problem

becomes larger.

Empirical evidence forex antemoral hazard in healthcare has been mixed, but appears

to be building. Courbage and de Coulon (2004), using U.K. data,find no evidence forex

antemoral hazard with respect to exercising, check-ups, and smoking. Stanciole (2008),

using U.S. data, does find evidence ofex antemoral hazard in the choice of heavy smoking,

lack of exercise, and obesity. In the work most closely related to this section, Dave and

Kaestner (2009) find aex antemoral hazard effect regarding physical activity and tobacco

consumption, and present evidence that providers do in factinfluence consumer decisions

regarding preventive efforts. This influence of the provider highlights the need to consider

multilateral incentives as modeled in the next subsection.

3.2 Model

In order to create a more efficient healthcare system, solving bilateral incentive prob-

lems is not enough. The interactions of incentives between consumers, providers, and

insurers, and the resulting strategic behaviors must be studied. The main contribution of

this section is the consideration of both the consumer’s andprovider’s roles in preven-

tion, and the implications for the optimal multilateral contract to controlex antemoral
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hazard. While most preventive efforts are ultimately in the hands of consumers, many

consumers look to providers for guidance and direction in prevention (Town et al., 2005),

and thus the provider’s incentives need to be considered. The first provider efforts consid-

ered are those which complement preventive efforts from theconsumer. Examples of such

provider efforts with regard to cardiovascular disease include: asking about tobacco use,

advising every tobacco user to quit, encouraging 30 to 60 minutes of moderate intensity

aerobic exercise most days of the week, assessing body mass index on each visit and con-

sistently encouraging weight maintenance. More generally, these efforts can be thought

of as counseling and promoting the consumer’s preventive effort, explaining the benefits

and consequences of prevention, and educating the consumerabout how to best imple-

ment preventive efforts. Although providers are ethicallymotivated to keep consumers

healthy, poorly designed incentives can put the ethical incentives and financial incentives

in conflict. Ethical motivations instead should support financial incentives to keep patients

healthy. Since the insurer acting as the principal, contracts with both the provider and the

consumer, the solution to the optimal contracting problem should be viewed in the light

of a principal-multiagent problem with heterogeneous agents, and optimal contracts must

consider the interaction of incentives. The issue of adverse selection on the part of the

provider is abstracted away from, taking the consumer to be representative of the popula-

tion.

3.2.1 Basic Assumptions and Notations

The basic model considers a risk averse consumer facing an uncertain health state,

which will be either healthy (h) or ill ( i). That is, there are no varying degrees of illness,

or at least there is a single clear cut treatment option whichrestores the consumer to full

health, and does not vary with the level of illness. While thismay seem like a strong
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assumption, it is approximately valid for acute illness episodes, and this assumption allows

focus on theex antedimension of moral hazard. The consumer may obtain insurance to

alleviate risk stemming from uncertain health states and healthcare expenditures. In the

case of illness, the consumer visits the provider for treatment which costsd to administer.

Let the insurer (I ) offer a contract to the provider (P) and the consumer (C). Both the

consumer and the provider are modeled as having an effort action (eC,eP), with eP,eC ∈
[0,1]. These efforts are hidden from the insurer, and yet relevantfor determining the level

of prevention utilized. The provider’s effort can be thought of as advocating or promoting

the prevention to the consumer, and the consumer’s action can be thought of as physically

taking the preventive action. The provider’s effort incursa costcP(eP), which reflects the

time and other resources required to exert the effort. The provider’s cost is assumed to be

increasing and convex, withcP(0) = 0. This convexity can be explained by arguing that

the provider can initially find the time to exert this effort without sacrificing much in the

way of other activities. As the level of effort increases, increasingly attractive activities

must be sacrificed which could have brought revenue or utility. The provider’s utility is

assumed to be separable in income and effort and initially assume the provider to be risk

neutral. The provider’s effort serves to lower the disutility experienced by the consumer

when the prevention is taken. The consumer experiences disutility ψ(eC,eP) from exerting

effort. This disutility is increasing and convex ineC ( ∂ψ
∂eC

≥ 0,∂
2ψ

∂e2
C
≥ 0) and decreasing both

absolutely and marginally in the provider’s effort (∂ψ
∂eP

≤ 0, ∂2ψ
∂eC∂eP

≤ 0). These decreases

in consumer disutility can be thought of as the benefits of theprovider’s effort from the

insurer’s perspective, and making the assumption that marginal benefits of the provider’s

effort are decreasing (∂2ψ
∂e2

P
≥ 0, ∂3ψ

∂eC∂e2
P
≥ 0). We normalizeψ(0,eP) to 0. The consumer’s

Bernoulli utility function over wealth is denoted byu(·), which is strictly increasing and

concave, and consumer utility is taken as separable in income and effort.
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Figure 3.1 shows the time line of the contracting problem. Inthe first stage, the insurer

offers a contract which is accepted or rejected. In the second and third stages the provider

and consumer respectively choose their efforts, with the consumer observing the effort

level of the provider. In the fourth stage nature determinesthe consumer’s health state,

and finally in the fifth stage the contract is executed.

Figure 3.1. Contract Timeline

Insurer offers contract,
which is accepted

or rejected

Provider chooses

effort level

Health state

is realized

Contract is executed
Consumer chooses

effort level

The consumer’s effort impacts the probability distribution over health states. When

the consumer exerts preventive efforteC, the probability of being healthy isπ(eC) ∈ [0,1],

whereπ′(·) > 0,π′′(·) < 0. Notice that in this model, the provider’s effort and the con-

sumer’s effort are not substitutes in the sense that no amount of effort from the provider can

directly impact the probability over health states. This modeling assumption is geared to-

wards capturing the preventive actions that providers havein influencing consumer choices

such as those mentioned previously for cardiovascular disease. These actions are in con-

trast to preventive actions providers may take which directly substitute for the consumer’s

effort such as vaccinations. The effect of substitutive efforts is considered in subsection

3.4. After receiving provider efforteP, exerting efforteC, and facing incomesyh,yi in the

case of health or illness, the consumer’s expected utility will be
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U(yh,yi,eC,eP) = π(eC)u(yh)+ [1−π(eC)]u(yi)−ψ(eC,eP). (3.1)

The consumer is assumed to be educated regarding the health benefits of the preventive

effort, and maximizes expected utility (EU) with respect tothe prevention decision. Un-

der these conditions, the EU maximizing consumer will exerteffort until the point where

marginal benefit of prevention is equal to the marginal cost,

π′(eC)∆u=
∂ψ
∂eC

(eC,eP). (3.2)

Where∆u = u(yh)− u(yi) is the risk the consumer faces, the marginal value of staying

healthy. Denote this optimal level of consumer prevention as a function of the provider’s

effort and the risk the consumer faces byeC(eP;∆u). Clearly only partially or uninsured

consumers will exert positive effort. Then by assumptions on ψ(·) and π(·), when∆u

is positive,eC(·) is increasing ineP and∆u (see details in Appendix). The insurer can

increase consumer effort by two means; inducing more provider effort and thus lowering

the consumer’s disutility of effort, or increasing the riskthe consumer faces. The two

effects are found empirically by Dave and Kaestner (2009). Both these controls have

costs. Exposing the consumer to greater risk will limit the transfers the insurer can extract

from the consumer (i.e. how much the consumer is willing to pay for the insurance), and

inducing the provider’s effort requires more payments.

3.3 Analysis

The outcome of the system depends on the effort levels exerted by the agents. These

autonomous decisions are products of the agents’ incentives, which can be modified by a

contract. How this contract should be optimally designed isthe main focus of the analysis.
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3.3.1 Private Insurer’s Problem

The analysis is performed from a private insurer’s perspective, with the insurer mod-

eled as having contracting power. This is likely the most realistic assumption since in

many healthcare markets the largest 2 insurers control the bulk of the market (American

Medical Association, 2007). Using data from 44 states, 80% of states have the top two

insurers serving greater than 60% of the market. The averageshare of the top two insurers

across these 44 states is 70.23%. Under this assumption the insurer will offer a contract to

maximize its own objective, taken to be profit (or positive margin in the case of a nonprofit

insurer). The contract offered by the insurer will specify aset of transfers from the con-

sumer and to the provider contingent upon whether the consumer is healthy or ill and the

intended effort levels for the consumer and the provider ({tCh , t
C
i , t

P
h , t

P
i ,eC,eP}), and guar-

antee the provider will treat the consumer in the case of illness. The strong assumption that

transfers can be made contingent on health states is weakened by the minimal health state

space ({h, i}). Under the mild conditions that healthy consumers do not seek treatment

while ill consumers do seek treatment, observing expenditures is equivalent to observing

the binary health state. This argument relates expenditures and health to a single condition

and individual. This presents little conflict with the geographic variations literature, which

casts doubt on the correlation between spending and illnessbased on data encompassing

many individuals, diseases, and other complex factors. Notice that from the insurer’s per-

spective, a contract establishes a random payment to be madeto the provider and a random

payment to be received from the consumer contingent on the health outcome. These ran-

dom variables will be denoted bỹtP and t̃C. For comparison, the first case considered is

when the insurer has complete information regarding the agents’ efforts. Complete infor-

mation could be obtained by a costly observation process. After establishing the complete
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information results, the more interesting and realistic case of hidden information is con-

sidered.

Complete Information

In the case when efforts are observable, the individual rationality (IR) constraints of

the agents are active in the insurer’s problem. These constraints ensure that each agent

receives in expectation at least a reservation level of utility. Each agent’s reservation utility

is the utility they could obtain without participating in the contract. Letuh = u(w− tCh )

andui = u(w− tCi ) denote the utilities of the healthy or ill consumer, with initial wealth

w. Also let f (·) denote the consumer’s inverse utility function (that isf (u(y)) = y), which

is guaranteed to exist by the assumptions onu(·). Assuming that uninsured consumers

receive no effort from a provider, the consumer’s reservation utility can be written as

U0 = π(eC(0;∆u0))u(w)+(1−π(eC(0;∆u0))u(w−d)−ψ(eC(0;∆u0),0),

where∆u0 = u(w)− u(w− d). The provider’s reservation utility will be normalized to

zero. Then the provider’s and consumer’s IR constraints aregiven as

π(eC)t
P
h +(1−π(eC))(t

P
i −d)−cP(eP)≥ 0, (3.3)

π(eC)uh+(1−π(eC))ui −ψ(eC,eP)≥U0. (3.4)

With complete information, the insurer can specify effort levels in the contract, observe

the levels of effort exerted, and heavily penalize the agents if the contracted levels are not
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followed. The insurer’s objective is to maximize expected profits given byE[t̃C − t̃P].

Then the insurer’s problem is given as

max
{uh,ui ,tP

h ,t
P
i ,eC,eP}

π(eC)[w− f (uh)− tP
h ]+ (1−π(eC))[w− f (ui)− tP

i ]

subject to (3.3) and (3.4). Lettingλ andµ denote the Lagrange multipliers of (3.3) and

(3.4), respectively, forming the Lagrangian, and taking derivatives w.r.t.uh,ui, tP
h , andtP

i

yields the following conditions:

λ = 1 ⇒ E[t̃P] = cP(eP)+(1−π(eC))d, (3.5)

µ= f ′(ui) = f ′(uh) ⇒ ui = uh =U0+ψ(eC,eP). (3.6)

The provider’s expected payments only cover the cost of effort plus the expected cost

of treating the consumer. It is worth noting that if the provider were risk averse, an optimal

contract would make him equally well off in each state of nature, similar to the consumer.

Such a contract could only be accomplished by a zero cost sharing scheme, withtP
i − tP

h =

d. The consumer obtains full insurance since marginal utility from income is assumed to

be identical in all states of health. The insurer’s problem then becomes

max
eC,eP

w− f (U0+ψ(eC,eP))−cP(eP)− (1−π(eC))d. (3.7)

Inspecting this objective, whenψ(eC,eP) is convex (for which∂2ψ
∂e2

C

∂2ψ
∂e2

P
≥
[

∂2ψ
∂eC∂eP

]2
is

a sufficient condition), sincef (·) is convex, thenf (U0 +ψ(·)) is as well. Then since
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− f (U0+ψ(·)), −cP(·), andπ(·) are all concave, the insurer’s objective (3.7) is concave.

The first order conditions (FOC) then give that

π′(eC)d =
∂ψ
∂eC

(eC,eP) · f ′(U0+ψ(eC,eP)), (3.8)

c′P(eP) = − ∂ψ
∂eP

(eC,eP) · f ′(U0+ψ(eC,eP)). (3.9)

Here (3.8) shows that the first-best efforts which solve the insurer’s complete informa-

tion problem equate the marginal savings in treatment payments to the provider by in-

creasing consumer effort and the increased cost of ensuringthe consumer’s participation.

Also, (3.9) shows that the increased cost of ensuring provider participation by increasing

provider effort must be equated with the decreased cost of ensuring consumer participa-

tion. By offering a contract which satisfies (3.5),(3.6),(3.8), and (3.9), the insurer will

maximize expected profit while ensuring participation by the consumer and the provider.

Incomplete Information

When efforts are unobservable, the insurer must write the contract to ensure that the

agents exert the specified level of effort and accept the contract. In order for the contract

to be followed by all parties, it must satisfy the incentive compatibility (IC) constraints in

addition to the IR constraints. These IC constraints ensurethat the agents’ best actions are

to exert the effort specified by the contract. The provider’sIC constraint can be written as

eP ∈ argmax
êP

π(eC(êP;∆u))tP
h +[1−π(eC(êP;∆u))](tP

i −d)−cP(êP).



21

The consumer’s IC constraint can be written as

eC ∈ argmax
êC

π(êC)uh+[1−π(êC)]ui −ψ(êC,eP).

When these IC constraints are solutions to concave programs,they can be replaced by

their FOC’s. Earlier assumptions ensure that the consumer’sIC constraint is concave, and

a sufficient condition for concavity of the provider’s IC constraint is thate′′C(·) ≤ 0. This

intuitive condition is that the provider’s effort has decreasing marginal ability to induce

consumer effort. The concavity of both constraints is considered in more detail in the

Appendix, where some mild technical conditions are provided to ensure the concavity of

the IC constraints

π′(eC(eP;∆u))e′C(eP;∆u)[∆tP+d] = c′P(eP), (3.10)

π′(eC)∆u=
∂ψ
∂eC

(eC,eP), (3.11)

where∆tP+d = tP
h − (tP

i −d), is the provider’s marginal value of keeping the consumer

healthy. From (3.10) one can see that the provider must have∆tP+d > 0 in order to exert

any effort. Sinceπ′(·),e′C(·),c′P(·) are all positive, if∆tP+d ≤ 0, then the solution to the

provider’s IC constraint will be to seteP = 0. Therefore, in any situation where inducing

provider effort is optimal, the provider’s remuneration contract must make him better off

when the consumer is healthy as compared to when the consumeris ill. This result is in

contrast to the typical use of cost-plus and fee based schemes where providers are only

reimbursed for procedures and services delivered to ill consumers. In circumstances when

provider efforts have significant influence over a consumer’s preventive behavior, inducing

provider effort is likely desirable, and the insurer’s optimal contract must create marginal

value for the provider when the consumer is healthy.
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The insurer’s incomplete information problem then becomes

max
{uh,ui ,tP

h ,t
P
i ,eC,eP}

π(eC)[w− f (uh)− tP
h ]+ (1−π(eC))[w− f (ui)− tP

i ]

subject to (3.3),(3.4),(3.10),(3.11). Although consumerand provider efforts appear in

the insurer’s contracting problem, they are autonomously chosen, hidden and thus non-

enforcible. However, the contract must be written according to the IC constraints of both

agents. Therefore, the efforts could be dropped from the contract without any effect, the

transfers determine the efforts chosen with the IC constraints are concave. Again letλ,µ

denote the Lagrange multipliers of the IR constraints, and additionally letγ,δ denote the

multipliers of (3.10), and (3.11) respectively. Forming the Lagrangian and taking deriva-

tives with respect touh andui yields

1

u′(w− tCh )
= µ+δ

π′(·)
π(·) + γ

(
∆tP+d

π(·)

)[
π′′(·)e′C(·)

∂eC(·)
∂∆u

+π′(·)∂e′C(·)
∂∆u

]
, (3.12)

1

u′(w− tCi )
= µ−δ

π′(·)
1−π(·) − γ

(
∆tP+d
1−π(·)

)[
π′′(·)e′C(·)

∂eC(·)
∂∆u

+π′(·)∂e′C(·)
∂∆u

]
. (3.13)

The first two terms on the right hand sides of (3.12) and (3.13)are the standard terms found

in the second best bilateral contract between an insurer andconsumer in the presence of

ex antemoral hazard. The final term represents a distortion from theclassic second best

result due to the interaction between the consumer and the provider. The interesting factor

in this term,
∂e′C(eP;∆u)

∂∆u , can be interpreted as the change in the impact of provider effort

due to a change in risk the consumer faces.

Proposition 3.3.1 The consumer’s effort decision is a submodular function of risk and the

provider’s effort, that is
∂e′C(eP;∆u)

∂∆u
≤ 0.
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Proof in Appendix. It is tempting to think this term should bepositive by following the

logic that when the consumer is exposed to greater risk (large value of∆u), the provider’s

effort in promoting the prevention should have greater impact. Or similarly when the con-

sumer faces very little risk (∆u is small), the provider’s effort in recommending prevention

should not be worth much. This thinking, however does not take into consideration the

assumption of diminishing marginal returns to efforts. That is, the consumer already has

strong incentives to exert preventive efforts when faced with great risk, and will prevent

without any recommendation from the provider. Exerting more preventive effort makes

less impact on the probability of illness, and will cost more. Similarly, when the consumer

faces little risk, not much preventive effort will be exerted, in which case a recommenda-

tion from the provider makes more impact since the consumer’s effort still has relatively

significant impact on the chance of illness, and does not cause excessive disutility. Cast

in terms of insurance completeness, this result can be interpreted as consumers with more

incomplete (e.g. via higher cost sharing) insurance have strong incentives for prevention,

and therefore will exert less incremental effort when encouraged by the provider.

Now going back to the Lagrangian and constructing the FOC’s with respect totP
h and

tP
i yields

λ+ γ
[

π′(eC)

π(eC)
e′C(eP;∆u)

]
= 1, (3.14)

λ− γ
[

π′(eC)

1−π(eC)
e′C(eP;∆u)

]
= 1. (3.15)

If γ 6= 0, (3.14) and (3.15) cannot hold simultaneously, since bothbracketed terms are

positive. Thus, the optimal solution must haveγ = 0 andλ = 1. Recalling that in the

classical bilateral principal-agent theory, the agent’s risk preferences cause the distortion
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in the second-best bilateral contract, the effects of the provider’s risk preferences on the

optimal multilateral contract are now investigated.

Provider Risk Attitude

Assume now that the provider has risk averse preferences characterized by a strictly

increasing and concave utility functionv(·), the IR and IC constraints become

π(eC)v(t
P
h )+(1−π(eC))v(t

P
i −d)−cP(eP)≥ 0,

π′(eC(eP;∆u))e′C(eP;∆u)∆v= c′P(eP),

where∆v= v(tP
h )−v(tP

i −d). The FOC’s with respect totP
h andtP

i of the Lagrangian from

now become

λ+ γ
[

π′(eC)

π(eC)
e′C(eP;∆u)

]
=

1

v′(tP
h )

, (3.16)

λ− γ
[

π′(eC)

1−π(eC)
e′C(eP;∆u)

]
=

1

v′(tP
i −d)

. (3.17)

Sincev′(·) > 0, the provider’s risk attitude will not change the result that ∆tP + d > 0

(equivalently∆v> 0) in order to induce effort. When the provider’s effort is induced, by

the concavity ofv(·),

v′(tP
h )< v′(tP

i −d) ⇒ 1

v′(tP
h )

>
1

v′(tP
i −d)

.

In this case (3.16) and (3.17) must be solved with a positive value ofγ. Similarly, if the

provider is risk loving, thenγ < 0. Then returning to the optimal multilateral contract with

the consumer, the following result relates consumer incentives in the multilateral contract
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to the first best solution of full insurance and the bilateralsecond best consumer incentives.

Corollary 3.3.1 When provider effort is induced(∆tP+d > 0),

• A risk neutral provider⇒ γ = 0 ⇒ there is no distortion from the second best

bilateral incentives.

• A risk averse provider⇒ γ > 0 ⇒ there is a distortion from the second best back

towards the first best.

• A risk loving provider⇒ γ < 0 ⇒ there is a further distortion away from the first

best incentives.

The corollary shows that there is no distortion in the consumer’s incentives when the

provider is risk neutral. In general, the second best multilateral contract will differ from

the second best bilateral contract even in the case of provider risk neutrality. Since the

provider’s effort aides the insurer in inducing consumer effort, the optimal level of con-

sumer effort chosen in the multilateral contract will be higher than that in the bilateral

contract.

The result also gives that when the provider is risk averse, the insurer’s optimal contract

will shift the consumer’s incentives back towards the first best bilateral contract of full

insurance. Just as distorting incentives away from full insurance is costly to give to a

risk averse consumer, distortions back towards full insurance provide a savings. This

can be seen in Figure 3.2, in whichuh,ui represent a full insurance contract,u∗h,u
∗
i show

the classic bilateral distortion due to moral hazard, andu∗∗h ,u∗∗i show the new distortion

attainable by the multilateral contract with a risk averse provider. The figure shows that

distortions given to a risk averse consumer are costly in expectation. Multiplying (3.16)
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Figure 3.2. Comparison of Consumer Incentives

by π(ec), and adding (3.17) times(1−π(ec)) gives

λ =
π(eC)

v′(tP
h )

+
1−π(eC)

v′(tP
i −d)

> 0.

Sinceλ > 0, the provider’s participation constraint is assured to bebinding. Similarly,

multiplying (3.12) byπ(ec), and adding (3.13) times(1−π(ec)) gives

µ=
π(eC)

u′(w− tCh )
+

1−π(eC)

u′(w− tCi )
> 0.
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Similarly, µ> 0 forces the consumer’s participation constraint to be binding. Transfers for

the consumer and provider can now be solved by the system of equations: (3.3),(3.4),(3.10),(3.11)

all holding at equality. Solving leads to the following results:

tCh = w− f

(
U0+ψ(eC,eP)+

1−π(eC)

π′(eC)

∂ψ(eC,eP)

∂eC

)
(3.18)

tCi = w− f

(
U0+ψ(eC,eP)−

π(eC)

π′(eC)

∂ψ(eC,eP)

∂eC

)
(3.19)

⇒ ∆u =
1

π′(eC)

∂ψ(eC,eP)

∂eC
,

tP
h = g

(
cP(eP)+

c′P(eP)[1−π(eC)]

π′(eC)e′C(eP;∆u)

)
(3.20)

tP
i = d+g

(
cP(eP)−

c′P(eP)π(eC)

π′(eC)e′C(eP;∆u)

)
, (3.21)

whereg(·) is the provider’s inverse utility function (that isg(v(y)) = y). These transfers

could be used by an insurer to create an insurance contract for consumers, and renumera-

tion scheme for providers which gives optimal incentives for preventive efforts. Consumer

transfers given in the second best multilateral contract can be reduced from the second best

bilateral contract in two dimensions. Firstly, since the provider’s effort directly makes the

consumer better off, the insurer can extract more transfersin the contract. Secondly, since

the provider’s effort reduces the marginal disutility of effort for the consumer, the insurer

can also reduce the consumer’s incentives measured by distortions from full insurance,

which are costly to give to a risk averse consumer. The provider’s contract makes him

better off when the consumer is healthy (when income istP
h ) than when the consumer is

ill (when income istP
i −d). This marginal utility required to induce the provider’s effort

will cost the insurer beyond the expected costs of treatmentand effort, which would be
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the costs associated with the second best bilateral contract. SincetP
h +d < tP

i , this contract

with the provider imposes cost sharing by paying the provider less thand extra when the

patient is ill.

3.3.2 Substitutive Efforts

Although the types of provider efforts discussed so far would seem to interact as com-

plements with consumer efforts, other activities on the part of the provider would likely

substitute with the consumer’s effort. Examples of these efforts would include free sam-

ples of medicine and other elements of treatment not reported. These efforts are modeled

as directly impacting the consumer’s probability of illness (π(eC,eP)), rather that impact-

ing the consumer’s disutility from effort. The provider’s effort contributes to preventing

disease (π′
eP
(·) > 0) but with decreasing effectiveness (π′′

e2
P
(·) < 0). The provider’s and

consumer’s efforts are modeled as substitutes (π′′
eCeP

(·) < 0). The following analysis in-

vestigates under what conditions do the primary results still hold: that the provider must be

better off when the consumer is healthy to induce effort, andthat inducing provider effort

allows consumer incentives to be shifted back towards the first best of full insurance.

Facing risk∆u and efforteP from the provider, the consumer chooses efforteC ∈
argmax̂eC π(êC,eP)∆u−ψ(êC). This objective is again concave, and the consumer’s FOC

imposes that

π′
eC
(eC,eP)∆u= ψ′(eC). (3.22)

Based on the assumptions above, it is easily shown that the consumer again increases effort

in response to higher risk (∂eC
∂∆u ≥ 0), but now decreases effort in response to provider effort

(∂eC
∂eP

≥ 0). Heading straight to the case of incomplete information,the provider’s IC is now
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eP ∈ argmax
êP

vi +∆v·π(eC(êP;∆u), êP)−cP(êP).

Again focusing on the case when the provider’s IC constraintis concave, the FOC gives

that

∆v

(
∂π(·)
∂eC

∂eC

∂eP
+

∂π(·)
∂eP

)
= c′P(eP). (3.23)

Proposition 3.3.2 ∂
∂eC

(
π′

eC
(·)

π′
eP
(·)

)
≤ 0 ⇒ the provider must be better off when healthy than

when ill to exert any effort.

Proof in Appendix. This condition, that as the consumer’s effort increases, the con-

sumer’s effort becomes less effective in prevention relative to the provider’s effort, ensures

that increasing provider efforts lead to a higher likelihood of health on behalf of the con-

sumer.

The insurer’s incomplete information contracting problemis

max
{uh,ui ,vh,vi ,eC,eP}

π(eC,eP)[w− f (uh)−g(vh)]+(1−π(eC,eP))[w− f (ui)−g(vi)]

subject to (3.22),(3.23), and the individual rationality constraints

ui +π(eC,eP)∆u−ψ(eC) ≥ 0 (3.24)

vi +π(eC,eP)∆v−cP(eP) ≥ 0. (3.25)
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Using the same multipliers as before, differentiating the Lagrangian with respect to

vh,vi gives that

λ+
γ

π(·)

[
π′

eC

∂eC

∂eP
+π′

eP

]
=

1

v′(tP
h )

λ+
γ

1−π(·)

[
π′

eC

∂eC

∂eP
+π′

eP

]
=

1

v′(tP
i −d)

.

The condition given in Proposition 3.3.2 ensures the bracketed term is positive, and there-

fore provider risk preferences ensure the same signs onγ as were found in the case of

complementary efforts. Differentiating with respect touh,ui gives that

1

u′(w− tCh )
= µ+δ

π′(·)
π(·) + γ

(
∆v

π(·)

)[
π′′

e2
C

∂eC

∂∆u
∂eC

∂eP
+π′

eC

∂2eC

∂eP∂∆u
+π′′

eCeP

∂eC

∂∆u

]

1

u′(w− tCi )
= µ−δ

π′(·)
1−π(·) − γ

(
∆v

1−π(·)

)[
π′′

e2
C

∂eC

∂∆u
∂eC

∂eP
+π′

eC

∂2eC

∂eP∂∆u
+π′′

eCeP

∂eC

∂∆u

]
.

The final term again represents the multilateral distortiondue to the provider’s influence.

The direction of the distortion again depends upon the sign of the term ∂2eC
∂eP∂∆u.

Proposition 3.3.3 When ∂
∂eC

(
π′

eC
(·)

π′
eP
(·)

)
≤ 0 and ∂2eC

∂eP∂∆u ≤ 0, the conclusions of Corollary

3.3.1 hold for substitutive efforts.

Proof in Appendix. This proposition shows that the previousfindings are not unique

to a single type of interaction between the patient and provider. Attention is now turned to

the value of multilateral contracting. Since the primary conclusions hold for both types of

provider efforts considered, only the first case of complementary efforts is presented.
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3.3.3 Value of Multilateral Contracting

The optimal multilateral contract provides both a savings on consumer incentives and

an additional cost on provider incentives when compared with the bilateral contract. Since

the insurer can simply induce zero effort from the provider,the savings will always out-

weigh the costs in the optimal multilateral contract. Without knowing the consumer and

provider utility functions, this is impossible to evaluatehow much the insurer is able to

save via multilateral contracting. Thus to investigate, the consumer and the provider are

modeled by inverse utility functionsf (u) = u+ ru2 andg(v) = v+qv2. These functions

are not meant to provide general solutions, but rather to illustrate the possible savings

using plausible functions. These risk averse utility functions exhibit decreasing absolute

risk aversion, and higher values ofr andq are associated with higher levels of risk aver-

sion. Then for given effort levels, the expected profits for the insurer under the multilateral

contract given by (3.18)-(3.21) is

π(eC)[t
C
h − tP

h ]+ (1−π(eC))[t
C
i − tP

i ] = w−E[ũ+ rũ2]−E[ṽ+qṽ2]− π̄(eC)d

= w−
[
U0+ψ(eC,eP)+ r

(
U0+ψ(eC,eP)

)2
+ rπ(eC)π̄(eC)

(
1

π′(eC)

∂ψ(eC,eP)

∂eC

)2
]

−
[

cP(eP)+q(cP(eP))
2+qπ(eC)π̄(eC)

(
c′P(eP)

π′(eC)e′C(eP;∆u)

)2
]
− π̄(eC)d, (3.26)
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whereũ, ṽ represent the random utilities facing the consumer and provider under the terms

of the contract, and̄π(·) = 1−π(·) for notational brevity. The insurer’s optimal bilateral

contract will induce effort from the consumer by setting

uBL
h = U0+ψ(eC,0)+

1−π(eC)

π′(eC)

∂ψ(eC,0)
∂eC

uBL
i = U0+ψ(eC,0)−

π(eC)

π′(eC)

∂ψ(eC,0)
∂eC

The insurer’s expected profit from the bilateral contract will be

[
U0+ψ(eC,0)+ r

(
U0+ψ(eC,0)

)2
+ rπ(eC)π̄(eC)

(
1

π′(eC)

∂ψ(eC,0)
∂eC

)2
]

+w− π̄(eC)d. (3.27)

Let e∗C represent the optimal effort level induced in the optimal bilateral contract, and

e∗∗C , e∗∗P the optimal efforts induced in the multilateral contract. Then the insurer’s benefit

from using a multilateral contract will be (3.26) evaluatedat e∗∗C , e∗∗P minus (3.27) evalu-

ated ate∗C, eP = 0. The analytical expression for this difference is too complicated to be

of direct interest. To illustrate the savings, the remaining functions in the model are also

parameterized. Letπ(eC) =
√

eC, cP(eP) = m·e2
P, andψ(eC,eP) = eC[a+b ·eC−k

√
eP].

These forms are chosen for simplicity and to satisfy the earlier assumptions. The cost of

information under the bilateral optimal contract is compared to the cost of information

under the multilateral optimal contract.

Figure 3.3 shows the cost of information savings that are made possible by using the

multilateral contract. The axes showk andm, which represent how much the provider

influences consumer disutility, and how costly the provider’s effort is to induce. The value

represented on the vertical axis showsprofitincomplete
ML −profitincomplete

BL

profitfull
ML−profitincomplete

BL

. Whenm≈ 0, the insurer
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can save nearly all of the cost of information, since the provider’s effort can be induced

without cost. Whenk ≈ 0, the insurer can save nearly nothing compared to the bilateral

benchmark since the provider’s effort makes no difference to the consumer.

Figure 3.3. Value of Multilateral Contracting(a,b,d,q, r,w)=(0.3,0.3,5,0.05,0.10,50)
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3.3.4 Sensitivity Analysis

From Figure 3.3, there appear to be two distinct regions. Onewhere the the savings are

relatively constant inm and rise inkθ, with θ < 1, and a second where approximately the

entire cost of information can be saved by the multilateral contract. The first region would

seem to be driven by the marginal disutility of the consumer’s effort, ∂φ
∂eC

= a+ 2beC −
k
√

eP. This expression is constant inm, and ask increases, the profits attainable by the

multilateral contract increase by the reduction in∂φ
∂eC

as seen in (3.26). The second region,



34

Table 3.1
Sensitivity Analysis of Multilateral Savings

Parameter (i) Threshold Effect (Fi(·))
k > 0
q ≈ 0

a,b, r < 0

where the full cost of information can be recovered by the multilateral contract, appears to

be driven by a threshold. Further analytical investigationof this region proves challenging,

however by varying the parameters of the model, several insights are available. Figure 3.4

shows how this threshold changes as the parametera, which captures the consumer’s lin-

ear coefficient of disutility, varies. In the figure,a increases from the top left and moving

to the right. As the parameter changes, the threshold form clearly decreases. In addi-

tion to a, the parametersb, r, andq were varied to determine their effect on this threshold.

From the base settings reported in Figure 3.3, a pair of two-way sensitivity analyses were

performed with(a,b) ∈ {0.1,0.2,0.3,0.4,0.5}× {0.20,0.25,0.30,0.35,0.40,0.45,0.50}
and (q, r) ∈ {0.05,0.075,0.10,0.125,0.15}× {0.03,0.04,0.05,0.06,0.07}. The results

show that the threshold below whichm allows full savings of the cost of information,

m< F(a,b,q, r,k), is a decreasing function of the consumer’s linear and quadratic coeffi-

cients of disutility from effort (a andb) and the consumer’s risk aversion (r), an increasing

function of the provider’s influence on the consumer’s disutility ( k), and is nearly constant

in the provider’s risk aversion (q). Graphs showing the results of each trial of both two

way sensitivity analyses are located in the Appendix. Table3.1 summarizes the effects of

each parameter on the threshold which defines the second region.
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Figure 3.4. Sensitivity of Savings to Consumer’s Linear Disutility Coef-
ficient. a= {0.1,0.2,0.3,0.4,0.5}, (b,d,q, r,w)=(0.30,5,0.05,0.10,50)
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3.4 Results

This model in this section considered a health insurer contracting with a healthcare

consumer and provider whose efforts interact to stochastically produce the health outcome

experienced by the consumer. Focusing on the trade off between ex antemoral hazard

and insurance, the optimal insurance contract to induce preventive efforts was studied.

Although this analysis was done under the assumption of a private, profit motivated in-

surer, a similar analysis could be undertaken to design optimal contracts with providers

and consumers for a public insurer such as Medicare. The provider’s effort interacted with

the consumer’s effort in both complementary and substitutive fashions to capture the var-

ious activities providers may perform. The multilateral model highlights the two options

for controlling the preventive efforts of the consumer at the insurer’s disposal: modifying

the consumer’s risk over health outcomes, and inducing the provider’s effort. The results

showed conditions under which any optimal contract where the provider exerts effort, both

agents must be better off when the consumer is healthy. This finding supports recent in-

terest in devising new payment systems for provider accountability (Antos et al., 2009)

including mechanisms which focus on health outcomes ratherthan services. Compar-

ing with the second best bilateral benchmark, a risk averse provider allowed the optimal

multilateral consumer incentives to be shifted back towards the first-best contract of full

insurance.

While guaranteed to dominate the bilateral benchmark, the optimal multilateral con-

tract imposes both costs and savings when compared to the bilateral benchmark. By pa-

rameterizing functions from the general model, an example illustrated how the multilateral

contract is able to save on information costs, and sensitivity analysis showed how the sav-

ings possible vary as parameters of the model changed.
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This model makes several assumptions to maintain tractability. One particular assump-

tion called into question by the structure of the provider’sincentives is the absence of

selection against unhealthy consumers. Risk-adjusting incentives to keep heterogeneous

consumers healthy would be one extension to reduce this inefficiency. Contracts and the

contingent payments they generate are just one method of designing incentives in health-

care systems. Providing knowledge to encourage healthy behaviors would be another, and

is addressed in the next section.



38

4. DYNAMIC KNOWLEDGE-BASED INCENTIVES IN HEALTHCARE

As discussed, incentives are a major area of interest to healthcare policy makers and

administrators. The majority of the existing work studyinghealthcare systems incentives

focuses on the interaction between consumers, providers, and insurers to control inef-

ficiencies from information asymmetries and distributed autonomy. While the primary

means of giving incentives studied in the literature has been contracts and the contin-

gent payments they generate, incentives can be generally thought of as any mechanism

that affects decision making. This broader view of incentives motivates interest in other

means of modifying behavior besides payments. The incentives considered in this sec-

tion are created by providing knowledge to healthcare consumers. Certainly a lengthy

discussion could be presented about the relationship and distinctions between education,

information, knowledge, wisdom, and behavior. These specific definitions and relation-

ships are beside the point of this dissertation. The question addressed here is that since

education/information/knowledge can modify behavior butis costly to provide, it is worth

investigating under what conditions is such provision prudent. The termknowledgeis pre-

ferred to the terminformation to avoid the significant and varied loaded meanings from

various disciplines.

A general framework is presented for analyzing incentives in dynamic environments.

The scenario considered is that of a principal giving incentives to an autonomous agent

making repeated decisions which affect the agent’s state. This framework is not limited

to healthcare applications, the state of the agent could be quite general. The agent’s state

evolves stochastically according to the current state and decision, and the agent’s payoffs

are a random function of the state and decision made. Based on this general system,

a principal with preferences over the agent’s outcome wouldlike to control the agent’s

decisions. However, the agent’s autonomy prevents direct control and incentives must
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be used. This general dynamic control problem can model a variety of principal-agent-

decision-state scenarios for which incentives could be constructed. This section focuses

on the case of a policy maker interested in controlling healthcare consumers’ behavioral

decisions affecting health states.

The model developed in this section makes three contributions to the study of incen-

tives in healthcare systems. The first contribution is the study of incentives in a dynamic

setting, whereas much of the existing literature on incentives in healthcare focuses on static

environments. Dynamics settings are important in healthcare applications since health

states are long lived and chronic diseases account for more than 75% of total healthcare

expenditures (Centers For Disease Control and Prevention, 2009). The second contribu-

tion is the departure from the majority of the literature on incentives in healthcare which

uses the expected utility (EU) framework by modeling consumer behavior via a learning

rule. Departure from this classic paradigm is motivated by the demands of rationality,

information, and intelligence imposed by the EU framework,which are especially strong

in healthcare and other complex settings. Empirical studies have also cast doubt on the

EU model as a description of healthcare consumer decision making (Hibbard et al., 1997),

and have shown consumers to be better at learning valuable behaviors when payoffs or

reinforcements are repeated as in the case of chronic diseases (Cutler and Lleras-Muney,

2010), implying the use of learning rules when facing such decisions. Finally, this section

provides an analytical approach to designing knowledge-based incentives, rather than the

financial incentives typically considered in the literature. This model provides a frame-

work for describing how knowledge affects a consumer’s decision making through a state

of attractions to various behaviors. The consumer’s attraction and health state evolution

over time, and a policy maker’s provision of knowledge combine to create a Markov deci-

sion process (MDP) from the policy maker’s perspective.
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The remainder of this section is organized as follows. Subsection 4.1 provides a re-

view of the literature on modeling in medical decision making at the clinical and policy

levels, consumer behavior and learning in healthcare and other settings, and the role of

health education as an incentive. Subsection 4.2 presents amodel of dynamic behavior,

learning, and outcomes concerning a healthcare consumer, and subsection 4.3 discusses

how a policy maker could control this process.

4.1 Literature Review

Modeling health states and diagnoses as stochastic processes is a well accepted practice

in the medical decision making literature (Briggs et al., 2006). The Markovian assumption

assumes that probabilistic transitions are based on only the current state information. The

Markovian assumption in healthcare modeling has been popular since the seminal works

of Beck and Pauker (1983) and Sonnenberg and Beck (1993). When there is a decision to

be made at each epoch of the stochastic process, the decisionmaker’s problem is known as

a Markov decision process. MDP’s (Puterman, 2005) are a wellknown and applied frame-

work within operations research. This framework is used to model dynamic and stochastic

decision problems where rewards are earned based on state-action pairs, and states evolve

stochastically according to state-action pairs with the Markov property. Based on the Bell-

man Principle of Optimality, MDP’s can be solved by well known algorithms such as value

iteration and policy iteration. Applications of MDP’s in medical decision making include

Denton et al. (2009); Shechter et al. (2008). The assumptionof Markovian transitions is

at times a strong one. The Markovian assumption can always besatisfied by enlarging the

state space of the model, but at a cost of increased computational burden. Strategies for

dealing with large state spaces include decomposition (Hazen, 2011). Testing the Marko-
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vian assumption can be accomplished by using data to comparethe fit of models with

varying dependence assumptions (Welton and Ades, 2005).

Another strong assumption that the majority of the literature makes is that healthcare

consumers are EU maximizers. This assumption is often not a plausible description of real-

ity when decision makers face complex decision problems in which probabilities and pay-

offs are unclear and complicated problems themselves (e.g.healthcare decisions). In re-

sponse to this criticism, various non-EU models of decisionmaking have arisen (Machina,

2004). Among these alternatives, learning rules are particularly intuitive and describe how

choices evolve dynamically in individual decision frameworks and games. Flexible rules

can serve as paradigms for various learning protocols such as choice reinforcement models

(Roth and Erev, 1995) and belief based models (e.g. fictitiousplay (Brown, 1951)). Mod-

eling consumer behavior through a learning rule provides a more reasonable description of

healthcare consumer decision making, and also allows investigation of knowledge-based

incentives.

Health education has been recognized as an important component of modifying con-

sumer behavior. See Glanz et al. (2002) for a comprehensive theoretical treatment includ-

ing theories of behavioral change for individuals and communities, and putting theory into

practice. Of the models presented the theories of planned action and planned behavior

(Montãno and Kasprzyk, 2002) are most similar to the models used inthis section. Op-

erationalization of these theories is based in attitude measurement, or attractions, through

expectations concerning actions, very similar to learningrules. Maibach et al. (2002) dis-

cuss social marketing including mass media campaigns and its role as an incentive for

producing behavioral change. The problem of a policy maker providing knowledge could

be posed at several levels. At the individual level, this decision would be similar to the

decision to provide counseling services. Community based educational programs and in-

terventions have been considered a promising level of granularity for inducing behavioral
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change (Merzel and D’Afflitti, 2003). At the state or national level, knowledge provi-

sion is roughly equivalent to mass media campaigns, and thisis most similar to the level

of knowledge provision addressed in this section. Even beyond choosing what level to

place a knowledge provision policy, other distinctions arerequired including how to com-

municate the knowledge. Strategies include motivation, instruction, fear-based response,

and others. While important, these issues are beyond the scope of this dissertation, and

are discussed in more in the health education literature (Randolph and Viswanath, 2004;

Rimer et al., 2001). The next subsection introduces the modelused to design knowledge

provision policies.

4.2 Model

The model presented here is of a healthcare consumer who chooses a behavior each

period from a finite set,at ∈ A . Consumer behavior in each period is stochastically de-

pendent on a state of attractions to each behaviorst = (s1
t ,s

2
t , . . . ,s

|A |
t ) ∈ S =R

|A |. Based

on current attractions, the probability of choosing a givenbehavior is computed through a

stochastic choice rulef : S → ∆(A). The probability of choosing actiona is computed by

the logit rule,

p(a|st) =
eλ·sa

t

∑
k∈A

eλ·sk
t
.

In this rule λ represents the ability of the consumer to best respond to current at-

tractions. The logit rule chooses more attractive behaviors with higher probability, but

chooses less attractive behaviors with positive probability as well. If the attractions are in-

terpreted as expected utilities, this decision making model relaxes the assumption from the

EU framework that consumers always choose the optimal decision. In this case, asλ → ∞,

the logit rule approximates EU maximization, whereasλ = 0 implies uniform randomiza-
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tion between behaviors. The logit rule has shown to compare favorably to other popular

stochastic choice rules such as the power rule (Camerer and Ho, 1998). This stochastic

choice model is not meant to be normative, instead the uncertain behavior is meant to

capture heterogeneity in the population represented by a mean consumer, as well as ran-

dom variations in behavior at the individual level due to factors such as random shocks to

preferences or cognitive load.

The consumer’s behavior impacts current payoffs, future attractions, and future health

state. The consumer’s payoffs in each period are comprised of two components, a health-

based cost component, and a deterministic cost component,

π(a,ω) = h(ω)+c(a)

The health-based cost component,h, is a random variable reflecting costs from a realized

illness stateω in a given period. These costs may include direct and indirect costs as well

as costs from disutility. The illness stateω belongs to a finite set of possible statesΩ. The

probability distribution of these states in any period is governed by the consumer’s current

behavior-health state pair. For example, ifΩ = {healthy, heart attack}, a consumer who

is smoking and in a poor health state would have a higher probability of experiencing a

heart attack than a healthy non-smoker. The health-based component gives an unhealthy

consumer a worse expected payoff than a consumer in healthier circumstances. The de-

terministic component simply reflects the direct cost of choosing the behavior (e.g. the

cost of exercising). Based on the distribution of illness states conditional on the behavior-

health state pair, the consumer’s expected payoff of choosing behaviora in health statex

is computed by

Π(a,x) = E[π] = c(a)+∑
Ω

ρ(ω|a,x)h(ω).
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The consumer’s future attractions are determined by current attractions, behavior, and

payoffs, and are computed through a learning rule,L : S ×R×A → S . The probabilities

of future attractions given current attractions, health state, and behavior are given by

P(st+1|st ,xt ,at) = ∑
ω(st ,at ,st+1)

ρ(ω|xt ,at),

whereω(st ,at ,st+1) = {ω : L(st ,at ,π(at ,ω)) = st+1}. The consumer’s health state is as-

sumed to evolve according to a stochastic process with Markovian transition probabilities,

determined by health state and behavior in the previous stage,

P(xt+1|xt ,at ,xt−1,at−1, . . . ,x1,a1) = P(xt+1|xt ,at)

The consumer’s full state, consisting of attractions and health state, is then driven by

two conditionally independent Markovian processes,

P(st+1,xt+1|st ,xt) = ∑
a∈A

p(a|st) ·P(st+1,xt+1|st ,xt ,a) =

∑
a∈A

p(a|st) ·P(st+1|st ,xt ,at) ·P(xt+1|xt ,at).

The assumption of conditional independence is a simplifying assumption, but is motivated

by the sources of uncertainty driving the two components of the consumer’s state. The

uncertainty in attractions stems from the uncertainty overpayoffs through the occurrence

of random acute events. These acute events can be caused by stressful incidents and the

short-term burden of behaviors. Whereas the uncertainty in health state stems from the un-

certainty in how the consumer’s health evolves in response to behaviors and other factors.

This latter uncertainty could be diminished by obtaining better information (e.g. by genetic
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testing) about the characteristics of the consumer. The following subsection discusses how

this process can be controlled by a policy maker.

4.3 MDP Control for a Policy Maker

The previous subsection introduced a model in which a healthcare consumer’s attrac-

tions and health state evolve according to stochastic processes governed by behavior and

payoffs. A policy maker or payer with preferences over sample paths would be inter-

ested in controlling the consumer’s process. This framework has been motivated by the

experience of a single consumer, however it is unlikely thata policy maker could design

incentives at the individual level for healthcare behaviors. Rather, the group of consumers

the policy maker is concerned with will be treated as an aggregate consumer whose at-

tractions and health evolve as described. Of course if a policy maker could reliably dif-

ferentiate knowledge between different groups of consumers they could design different

knowledge strategies for each group. Whether this objectiveis to maximize social welfare,

or to minimize costs, the sample path taken greatly impacts the policy maker’s objective

value. Since the consumer’s decisions are autonomous, a keycomplication in healthcare

and other distributed systems, the policy maker cannot directly choose the consumer’s

behavior, mechanisms, regulation, or incentives must be designed and used to control con-

sumer behavior.

One means of control would be through the consumer’s payoffs. Modifying payoffs

could be accomplished in a variety of ways: setting prices for treatment of acute events,

setting insurance parameters such as coinsurance rates, ortaxing and subsidizing particular

behaviors. These financial incentives could all be designedto control the consumer’s

behavior with the policy maker’s objective in mind. The new approach introduced here

is to control behavior by adjusting parameters of the consumer’s learning rule. If the
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learning rule is a function of parameters under the policy maker’s discretion, then setting

these parameters can be another way of modifying consumer attractions and behavior.

The particular incentive under investigation here is providing knowledge to consumers.

Existing examples of providing knowledge to consumers are commercials on television

and highway billboards encouraging consumers to exercise more, eat healthier, and quit

smoking. These advertisements provide knowledge and educate consumers of the possible

consequences of various behaviors.

In order to model how knowledge affects the consumer’s attractions, the experience-

weighted attraction (EWA) learning rule will be used (Camerer and Ho, 1998). EWA has

been shown to be empirically flexible and economically valuable in a variety of settings,

and generalizes other popular learning mechanisms. In thismodel, the consumer’s attrac-

tions to each behavior,{sj
t } j∈A , are updated according to the following rule,

sj
t =

φ ·Nt−1 ·sj
t−1+[δ j +(1−δ j)1(at−1 = j)] ·π( j,ωt−1)

Nt
,

whereNt is a scalar representing the consumer’s experience at timet, governed by

Nt = ρ ·Nt−1+1, t ≥ 1.

There are three parameters in the EWA learning model:φ,ρ, andδ. The first parameter,

φ conveys how experience translates into attractions, and the second,ρ characterizes how

experience accrues over time. The remaining parameter,δ ∈ [0,1]|A |, characterizes how

well the consumer gets payoff signals about behaviors not chosen, with possibly distinct

values for every behavior. The attraction vector gets updated with the full impact of the

behavior chosen, however for behaviors not chosen how strongly the attractions are up-

dated depends onδ. These parameters are modeled as a decision variables of thepolicy
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Figure 4.1. Policy Maker’s Markov Decision Process
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maker with the interpretation that the policy maker chooseshow to provide knowledge to

the consumer regarding various behaviors.

Using this framework for how knowledge can be used to controlthe consumer’s stochas-

tic process, a policy maker’s incentive problem can be formulated as a MDP. Figure 4.1

shows graphically the process in which the consumer’s health and attraction states in the

rounded rectangle are stochastically modified and produce rewards based on the policy

maker’s decisions. The policy maker’s reward each period could be total costs of health-

care, consumer utility, or some other metric depending on the policy maker’s objective. For

generality write the reward asr(st ,xt ,δt), making explicit the cost of the policy maker’s
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decision, providing knowledgeδt . Taking an infinite horizon with discount factorγ, the

policy maker’s objective is

max
δt(xt ,st)

E

[
∞

∑
t=1

γtr(st ,xt ,δt)

]
.

If the state space of the Markov process,(S,X), is observable and finite, solution pro-

cedures for the policy maker’s MDP are well known. In general, the policy maker may not

directly observe either of these variables. However the policy maker will likely have data,

or at least a sample of data with which to estimate the both theattraction and health states.

For example, if the policy maker observes the empirical distribution of behaviors chosen

in each period, the empirical probabilities,{p(a= j)} j∈A , can be used to form an estimate

of the attractionsst . Using the logit choice rule the policy maker can solve a system of

|A |−1 linearly independent equations of the form

1
λ

ln

(
p j

pk

)
= sj −sk

to estimate the attractions. Since there are too many degrees of freedom, the attraction

corresponding to the behavior with the highest frequency could be set to 0. This normal-

ization is reasonable since the behavior payoffs are costs (direct and health-related), and

since the logit rule is indifferent to a constant shift in allof the attractions

eλ(sa
t −q)

∑k∈A eλ(sk
t −q)

=
eλsa

t e−λq

∑k∈A eλsk
t e−λq

=
e−λqeλsa

t

e−λq∑k∈A eλ(sk
t −q)

=
eλsa

t

∑k∈A eλsk
t
.

Data on health states and behaviors are available in existing data sets such as the National

Health and Nutrition Examination Survey (NHANES). In orderto meet the criteria of

finiteness for standard iterative algorithms such as value iteration, the attraction and health
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state spaces will require discretization. The following section specifies the model and

estimates parameters in order to solve for knowledge provision policies to control costs

from coronary heart disease.

As policy makers, healthcare payers, and engineers continue to search for cost saving

solutions, incentives will become an increasingly important research domain. This sec-

tion has presented a dynamic framework for designing incentives for non-EU maximizing

consumers. This framework is not limited in its usefulness to healthcare incentives, but

could be used in a variety of applications where indirect control of an agent’s state is of

interest. In particular, this framework can be used to design knowledge-based incentives,

in addition to more standard monetary incentives through contracts, taxes, and subsidies.
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5. KNOWLEDGE INCENTIVES FOR CORONARY HEART DISEASE

This section uses the Markov framework introduced in the previous section to de-

sign optimal knowledge incentives to control costs from coronary heart disease (CHD).

Constructing incentives to control CHD is desirable because of its prevalence, cost, and

preventability. After specifying the model and estimatingparameters to control behaviors

affecting coronary heart disease, iterative algorithms can be used to solve for the opti-

mal knowledge incentive policies. Solving the MDP yields optimal strategies for a policy

maker to give incentives by providing knowledge about consumer behaviors. Data from

the Atherosclerosis Risk In Communities (ARIC) study conductedby the National Heart,

Lung, and Blood Institute (NHLBI) is used to estimate parameters for the model.

This section is organized as follows. Subsection 5.1 reviews literature related to educa-

tional interventions for cardiovascular diseases. Subsection 5.2 develops the model spec-

ification of behaviors and health states pertinent for coronary heart disease. Subsection

5.3 presents the estimation of parameters, followed by a discussion of model validation

in subsection 5.4. This subsection on model validation is comprised of three components.

First, the full model is scaled down to knowledge provision for smoking behavior. This

allows solution with many more parameter settings to check the results of the model. The

validation focuses on the model results with respect the theexperience of the consumer.

The experience parameter modifying how willing consumers are to change behavior based

on new payoff information, possibly including knowledge. After validating the results at

the boundaries and matching results to the observed behavior found in the empirical lit-

erature, sensitivity analysis provides insights into how the results vary with changing cost

parameters. The parameters varied are the direct costs of smoking, the consumer’s cost of

coronary heart disease, and the cost of providing knowledge. The interest in these param-

eters is further discussed later in the section. By validating the models performance when
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restricted to smoking behaviors, the full model can be partially validated without excessive

computational burden. The results on optimal knowledge provision policies are presented

in subsection 5.5, which also discusses possible extensions of the model.

5.1 Literature Review

Coronary heart disease is an important disease for policy makers to consider because of

its prevalence, cost, and preventability through modifiable risk factors. CHD affected 17.6

million Americans in 2010, for a total direct and indirect cost of $177.1 billion (Lloyd-

Jones et al., 2010). In addition to financial costs, the costsof human life are severe as

well, with 1 of every 6 deaths in the U.S. caused by CHD in 2006 (Lloyd-Jones et al.,

2010). Despite the costs, consumers still engage in behaviors which are major risk fac-

tors for CHD. Prevalence of smoking (21%), inadequate physical activity (35%), and high

saturated fat diets (46-67%, depending on sex and ethnic group), indicate the potential

for alleviating some of the cost of CHD. Due to its importance,several studies have im-

plemented knowledge-based interventions and considered best practices for designing the

interventions, cost-effectiveness, and their effect on prevalence.

Smoking is the behavior which has received the most attention from mass-media,

counter-advertising, and other knowledge-based interventions. Controlled experiments as

well as implemented community and population level interventions have shown the ability

of smoking cessation knowledge and promotion to change behavior. Results from various

geographic regions including California (Farquhar et al., 1990), Texas (McAlister et al.,

1992), Vermont and New Hampshire (Secker-Walker et al., 2000), Florida (Bauer et al.,

2000), British Columbia (Gagne, 2007), and Finland (Puska et al., 1985) have all shown

that providing knowledge about smoking can reduce prevalence or increase the cessation

rate. The amount of behavior change and the subset of the population significantly af-
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fected varies throughout these studies. These variations can be explained by differences

in funding and penetration, secular trends and other concurrent media and programs, and

the targeting and duration of the intervention (Davis et al., 2008). Excellent reviews on

the effectiveness of mass-media and other knowledge-basedincentives for smoking can be

found in Chaloupka and Warner (2000), Davis et al. (2008), andBala et al. (2008).

In addition to smoking, diet and exercise are two other behaviors which have been ad-

dressed by community or mass-media health education campaigns. Heimendinger et al.

(2007); Toobert et al. (2005); Wendel-Vos et al. (2009) all report positive behavioral

changes in dietary consumption and physical activity as a product of health education

programs. Stern et al. (1976) also report significant reductions in saturated fat and choles-

terol consumption as a result of a two-year bilingual mass-media campaign. Other studies

report significant changes in cholesterol and blood pressure levels of consumers (Diehl,

1998; Farquhar et al., 1990; Puska et al., 1985) without explicitly tracking diet and exer-

cise behavior. Lin et al. (2010) provide an extensive reviewof the literature and conclude

that behavior counseling is associated to positive (but small) changes in diet and physical

activity.

Recommendations for how to structure educational programs to reach their full poten-

tial include the need for programs to be comprehensive (Randolph and Viswanath, 2004),

hard-hitting (World Health Organization, 2008), targetedto specific subgroups (Winkleby

et al., 1994), and community/socially oriented (Schar and Gutierrez, 2001). General dis-

cussions on improving general, cardiovascular, and smoking-specific health education pro-

grams can be found in Rimer et al. (2001), Parker and Assaf (2005) and Davis et al. (2008)

The challenge in designing incentives to control CHD costs isthat both the effec-

tiveness of interventions and the potential savings from behavioral change vary within

subgroups of any population. Ebrahim et al. (2011) review the literature on multiple risk

factor interventions and conclude that the interventions are effective for high risk groups,
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although not so for the general population. Research on the normative side of health

education has focused on the cost-effectiveness of interventions. Cost effectiveness mea-

sures for anti-smoking campaigns can vary based on the parameters chosen. Tengs et al.

(2001) use a dynamic model and vary cost, effectiveness, andrecidivism to find that the

cost per quality-adjusted life-year (QALY) of anti-tobacco education varies from $4,900

to $340,000. Ronckers et al. (2005) review and standardize many cost effectiveness stud-

ies and find that the cost per year of life saved ranges from $1,000 to $15,000 depending

on the target and structure of the intervention. Tosteson etal. (1997) study educational

approaches to reduce cholesterol levels and find that costs per QALY vary from zero (cost

saving) to $38,000 per QALY. These studies generally conclude that educational inter-

ventions should be implemented on the basis of their cost effectiveness (a typical cost

threshold per QALY is $50,000). The next subsection begins specifying the model for

designing knowledge-based incentives.

5.2 Model Specification

5.2.1 Consumer Health and Behavior

The consumer’s health state is modeled using sub-states of total cholesterol (TC), high-

density lipoprotein (HDL) cholesterol, and systolic bloodpressure (BP), three major risk

factors for CHD. While still a significant abstraction from reality, this description of a

consumer’s health state extends the detail of many existingmodels in medical decision

making which primarily model disease states Briggs et al. (2006). In order to retain a

finite state space, each of these sub-health states are modeled as categorical variables.

The categorizations used, seen in Table 5.1 are adapted fromWilson et al. (1998) and

are similar to the definitions and guidelines from the Fifth Joint National Committee on
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Hypertension and the National Cholesterol Education Program. This categorization results

in 5×4×4= 80 possible health states for the consumer.

Table 5.1
Categorization of Health States

Category BP (mm Hg) HDL (mg/dL) TC (mg/dL)
1 <130 ≥60 <160
2 130-139 45-59 160-199
3 140-159 35-44 200-239
4 ≥160 <35 240-279
5 - - ≥280

Consumer behavior is also modeled by three sub-behaviors: choosing a low saturated

fat diet, smoking, and getting a recommended level of exercise. Each sub-behavior is

modeled as a binary decision, leading to a total of 8 possiblecombined behaviors by the

consumer. The distinction of a low or high saturated fat dietis based on the percentage

of total calories consumed coming from saturated fat. UsingAmerican Heart Associ-

ation (AHA) guidelines, the recommended percentage is≤ 10%. The AHA guideline

for physical activity is getting at least 150 minutes of moderate physical activity each

week. Each of the binary decisions is defined such that 0 represents the unhealthy choice,

and 1 represents the healthy choice. Using the logit stochastic choice rule on each sub-

behavior, and by normalizing the attractionsa=0 = 0 for each unhealthy sub-behavior, the

consumer’s attractions state can be reduced to three real numbers representing the attrac-

tions tosEXR=1,sFAT=1,sSMK=1.

In order to create a finite state space, the range of each attraction is bounded to [-

1.5,1.5] and approximated within this range by a 0.3-fine grid. As previously mentioned,

the attractions are invariant to the addition of a constant,so the location of this range has no
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effect other than the interpretation of costs previously discussed. The range of attractions

may seem small, however even an observed probability ratio of 90 can be approximated.

That is, suppose the most frequently observed behavior (saybehaviori) has an empirical

probability of 0.9 and the least observed behavior (j) has an empirical probability of 0.01.

Using the logit rule with aλ value of 3, the difference in attractions would besi − sj =

ln(0.9/0.01)/3 ≈ 1.5. Therefore, neither the range nor the location of the discretization

loses much generality. Increasing the fineness of the approximation grid would increases

the ability to accurately model behavioral change on behalfof consumers, but at the cost

of increased computational burden.

In order to model consumer behavior from attractions to eachsub-behavior, one sim-

plifying assumption would be that consumers decide whetheror not to smoke, to exercise,

and to consume a low fat diet independently. By comparison, this assumption seems at

least as plausible as the assumption that consumers are making decisions about all three

sub-behaviors simultaneously. Upon investigation, the assumption of behavioral inde-

pendence failed to hold, however the behaviors of diet and smoking were found to be

independent once conditioned on exercise behavior. An additive model of dependence

and conditional independence was developed and found to fit the data much better than

the assumption of independence. The details of this investigation and modeling are re-

ported in the Appendix. The additive model implemented allows the probabilities of each

sub-behavior to be computed using only knowledge of the consumer’s attraction to each

sub-behavior without assuming independence. This is desirable in order to save on the

size of the state space for computation.
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5.2.2 Consequences of CHD

Modeling acute events related to CHD is a challenging task. By AHA definitions, CHD

consists of ICD-9 disease classifications 410.x-414.x, which is comprised of a number of

conditions including the major categories of acute myocardial infarction (AMI), angina

pectoris, and ischemic heart disease. Accurate modeling, prediction and cost estimation of

these and other more detailed acute events is beyond the scope of this dissertation. Instead

a single acute event is modeled which represents the incidence of acute CHD.

5.2.3 Policy Maker Decisions and Rewards

The general framework using the EWA learning rule with knowledge parameters char-

acterizing policy decisions allows for distinctδ values for each behavior the consumer

might take. The policy maker’s decision of whether or not to provide knowledge about

the expected payoffs from each sub-behavior, is simplified to δ = (δEXR,δFAT,δSMK) ∈
{0,1}3. The interpretation being that the policy maker will provide information about

the benefits and costs of smoking, diet, and exercise separately. Since the consumer sub-

behaviors are binary, choosing to provide knowledge conveys the expected payoffs of the

sub-behavior decision. That is, settingδSMK = 1 will update the consumer’s attraction to

smoke and to not smoke. This modeling feature could be generalized to allow for a policy

maker to decide for example how much funding to provide for a mass media campaign.

Relaxing this assumption would increase the already considerable computational burden

of the model, as well as take careful modeling of the varying effect of funding on mass

media campaigns, and is left for future research.

The policy maker’s decision determines whether or not the consumer receives payoff

knowledge about behaviors not chosen. Since healthcare consumers are likely unable
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to internalize their payoffs (including health related payoffs) for actions not chosen, one

alternative to the basic EWA setup is to set the payoff knowledge about actions not taken

equal to the expected payoff for the state-behavior pair,Π(a,x). This is problematic for

policy makers in reality and in this CHD model since exercise and diet have no short-term

impact on the risk of CHD. Therefore, the payoff knowledge thepolicy maker provides

is set to reflect costs ten years in the future given today’s health state and action chosen.

This time frame is chosen since shorter horizons may not yield significant differences in

health costs while longer horizons may lead to excessive discounting when interpreted by

consumers. One option would be to send information about thetotal expected costs of the

chosen behavior,

Γ(a,x) = Π(a,Ea,x[x
(10)]),

whereEa,x[x(10)] is the expected health state in 10 years given today’s state and repeated

behavior. However, this function provides knowledge aboutdirect costs which are rela-

tively well known to consumers, and also may not reflect favorably on healthy behaviors

(such as the cost of exercising). Furthermore, this choice of Γ provides different knowl-

edge to consumers based on their current behavior. Based on these concerns a more real-

istic modeling choice is to set

Γ(a,x) = [p(w= 1|a,Ea,xx
(10))− p(w= 1|a′,Ea′,xx

(10))]h(w),

wherea′ represents the complement ofa in whatever dimension knowledge is provided.

For example, ifa = (aEXR,aFAT,aSMK) = (1,1,0) and knowledge is provided regarding

exercise, thena′ = (0,1,0). ThisΓ function provides knowledge about health-based con-

sequences for the behavior chosen relative to the opposing behavior. This function also has

the appealing feature thatΓ(a,x) = −Γ(a′,x), so that all consumers hear the same mes-
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sage. Consumers with healthy behavior will receive positiveknowledge, while consumers

with unhealthy behavior will receive negative knowledge. Providing this payoff infor-

mation allows the policy maker to deter unhealthy behaviorsrelated to diet and exercise

despite the lack of short term consequences.

The policy maker’s cost is modeled as proportional to the number of sub-behaviors for

which knowledge is provided,

C(δ) = k(δEXR
PM +δFAT

PM +δSMK
PM ).

The constantk, reflecting the cost per consumer of providing knowledge, will vary depend-

ing on the size and distribution of the population. Since national averages have been used

as inputs for parameters, the $130 million spent on the 2010 U.S. Census campaign for a

cost of roughly $.43 per individual is used as a baseline estimate of the cost of providing

knowledge to an individual. The sensitivity of the results to this and other parameters is

investigated later. The policy maker’s objective is assumed to be minimizing the total ex-

pected costs of both CHD consequences and providing knowledge. Thus rewards in each

period are given by

r(st ,xt ,δt) = Eω[h(ω)+C(δt)] =C(δt)+ ∑
a∈|A |

∑
ω∈Ω

h(ω)p(ω|a,xt)p(a|st).

5.3 Parameter Estimation

5.3.1 Health Transition Probabilities

The state transition probabilities are an important part ofthe model. By modeling

the health state and behavior using three sub-components each, the accuracy and descrip-

tiveness of the model has improved, but also have significantly increased the number of



59

transition probabilities to estimate. The currently specified model consists of 80 health

states and 8 behaviors for a total of 51,200 possible state-state-action tuples. In order to

estimate these transition probabilities, the ARIC data which contains cohort data on indi-

viduals with detailed information about behavior and health status over time is used. The

data provides 20,604 state-state-action transitions withwhich to estimate the transition

probabilities. A flexible parametric model is used with maximum likelihood estimation

to compute the transition probabilities, without making unnecessarily strong assumptions

such as probabilistic independence of sub-transitions. Details of the parametric model and

estimation procedure can be found in the Appendix.

5.3.2 Behavioral and Health Costs

The cost of smoking is estimated by the consumption of the average smoker, a pack a

day, for a cost of $1,825 per year at $5 per pack. The cost of getting the recommended level

of exercise is not as clear, since most individuals get some exercise in their daily routine.

The additional physical activity needed for an individual currently not meeting the AHA

guidelines is estimated from the ARIC data and multiplied by the median wage rate to

estimate the incremental cost of getting enough exercise per week. This cost comes to

$1,888 per year for the average under-exercising individual who needs to increase activity

by 136.6 minutes per week at a cost of $15.95 per hour, the median U.S. wage rate (Bureau

of Labors Statistics, 2009). Accurately estimating the cost of eating a diet with less than

10% of calories coming from saturated fat is more difficult still. Diets vary greatly between

regions of the country and socioeconomic groups. Food groups such as ground beef seem

to indicate that a diet with less fat would be more expensive,since lean meat is more

expensive than fatty meat. Other foods, milk for example suggest otherwise as skim milk is

not more expensive than 2% or whole milk. Carlson et al. (2007)study whether or not it is
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feasible to maintain a healthy and nutritious diet on a budget equal to that of the maximum

food stamp allotment. Carlson and colleagues use prices paidby low-income people for

food, consider the cost and nutrients of foods as-consumed (including preparation and

cooking), and take an objective of minimizing deviations from current dietary habits to

avoid bizarre recommendations. The conclusions of their study find that is feasible for each

of 15 age-gender groups to achieve the 2005 Dietary Guidelines for Americans, including

a diet with less than 10% of calories from saturated fat, on a minimal budget. Given that

consumers can choose a nutritious low fat diet on a minimal budget, the direct cost of

choosing a diet with less than 10% of calories from saturatedfat is set to zero. The fact

that many consumers prefer fat in their diet will be capturedthrough the attractions.

The cost of this acute event is set to $10,000, approximatelythe average cost of CHD

for Americans in 2010, and a lower bound on the reported average costs of more specific

diagnoses ($14,009 for AMI, $12,977 for coronary atherosclerosis, and $10,630 for other

ischemic heart disease Lloyd-Jones et al. (2010)). From thepolicy maker’s perspective,

this simplification makes little sacrifice, since the population of consumers will have a

variety of acute CHD symptoms, and this average cost of treatment will represent the total

consequences across consumers. Also, from the consumer’s perspective, it seems plausible

that any form of acute CHD would be enough to modify behavior, considering the relative

cost of CHD to the behavioral costs and preferences. This interpretation can be seen in

the model since whether the patient experiences a AMI, coronary atherosclerosis, or some

other acute CHD diagnosis, the EWA model predicts the attraction to chosen behaviors

becoming very small.

Each period represents one year. In order to calculate the 1-year probability of CHD

from each health state-behavior pair, the prediction modelof D’Agostino et al. (2000) is

used. These authors incorporate the health factors considered in this model, and use data

from the the Framingham Heart Study (Truett et al. (1967),www.framinghamheartstudy.
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org) to fit a parametric model predicting the risk of CHD within a 1-4 year span based on

systolic blood pressure, HDL cholesterol, and total cholesterol along with several other

factors. Variables in the D’Agostino et al. model that are not captured in the state space or

behavior in this model are entered at the population averagelevel.

5.3.3 Learning Rule Parameters

Although it has been estimated for a variety of decision situations, EWA has not been

estimated within a healthcare decision context. The parameterφ is set to 1.0, which is con-

sistent with empirical estimates from other decision paradigms (Camerer and Ho, 1999).

Settingφ < 1 typically prevents attractions from growing without bound, but since the at-

tractions in the model described are renormalized each period, this issue is not a concern.

Since the consumer represents an aggregate consumer of the policy maker’s population,

with older individuals leaving the population and young individuals entering, The experi-

ence of the consumer is modeled as constant over time. Any level of experience can be

considered while maintaining the assumption of constant population experience by setting

ρ = (N−1)/N. The value of experience,N determines the weighting of new information

(payoffs and knowledge) relative to historical attractions in computing new attractions.

New information is given a weight of 1/N. The range of values of experience used in

computations reflect the literature on how healthcare consumers make decisions, which

reports that consumers ‘give priority to their personal experience’ (Moser et al., 2010),

and that many consumers will not use information in decisionmaking (Hibbard et al.,

1997). Since the experience parameter controls the behavior change of consumers, it will

be a focus of the sensitivity analysis to validate the model.

In order to choose an estimate forλ, evidence found in Camerer et al. (2002) is

used. Camerer et al. estimate EWA parameters from a pooled data set of a variety of
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games including patent race, continental divide, median action, p-beauty contest, trav-

eler’s dilemma, and pot games. Their pooled estimate ofλ is 2.95. Recall thatλ ∈
[0,∞) represents the ability or propensity of consumers to selectmore attractive actions.

For example, if a consumer has an attraction to smoking of 0 (sSMK=0 = 0), and an at-

traction to not smoking of 1 (sSMK=1 = 1), thenλ = {0,1,3.5.10} ⇒ p(SMK= 1) =

{0.5,0.731,0.950,0.993,0.999}. Two factors present in healthcare consumers that would

tend to increaseλ from 0 (uniform randomization) are the lack of tendencies toexplore and

experience in the decision environment. In light of these factors, Camerer et al.’s pooled

estimate appears reasonable.

5.4 Model Validation

In order to validate the model for prescribing knowledge provision policies, the model

is scaled down to consider only smoking behavior. This strategy is taken since the full

model is computationally expensive to run and this smaller version allows a more complete

validation. and gives some credibility to the larger model since the model is quite similar

for each sub-behavior. Figure 5.1 shows the structure of theoptimal policy as attraction

and health states and experience vary. The black cells show the attraction and health state

combinations at each experience level for which the policy maker’s cost minimizing deci-

sion is to provide knowledge about the benefits of not smoking. The highlighted window

shows the policy information conveyed at each attraction-experience combination. Recall

that the health states are ordered from most to least healthy, so the threshold policy seen

in the highlight pair, whenN = 50, andsSMK = 2, shows a policy in which it is optimal

to provide knowledge to the least healthy consumers. At the boundaries, as experience

goes to zero or becomes large, the model exhibits the expected behavior. That is, as expe-

rience decreases, consumer place increasing weight on new information through payoffs
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Figure 5.1. Optimal Policy for Smoking Knowledge Provision. High-
lighted ats= 2, Experience = 50
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and knowledge. Thus as experience goes to zero, consumers easily change their behavior

when presented with knowledge about the expected health benefits of not smoking. In

this case, providing knowledge is optimal at all attractionand health states. Analogously,

as experience grows, consumers place increasing weight on their historical attractions and

less weight on new information. As experience becomes largeenough, no behavior change

arises from information provided, and costly knowledge provision is clearly sub-optimal.

This prediction is realized seen in Figure 5.1 as experiencereaches 170.

Sensitivity to the cost of smoking, the cost of providing knowledge, and the consumer’s

cost of an acute CHD event were also tested. Figure 5.2 shows how the states which are

cost effective to provide knowledge in decreases as the costof providing knowledge in-

creases. The black region shows which states providing knowledge is the optimal deci-

sion if providing knowledge costs $5.00 per individual per year. The dark gray region

shows which additional states have cost saving knowledge provision if the cost of provid-

ing knowledge is $2.00. The light gray region shows the additional states which make up

Figure 5.1, where the cost of providing knowledge is $0.43. Sensitivity was performed

with respect to the consumer’s cost of an acute CHD event to simulate consumer’s insur-

ance from financial risk. The policy maker’s cost of an acute CHD event was left at the full

cost of $10,000, while the consumer’s cost was set varied between $10,000, $5,000, and

$2,000. The optimal policies were found to be relatively constant in the consumer’s cost

of CHD on the range of experiences where providing knowledge is interesting. Finally,

one result worth explaining is the feature that as experience rises, the first consumers to

leave the optimal policy are those who are most likely to smoke. This result seems counter

intuitive as those consumers would be the ones most in need ofknowledge. This artifact

of the optimal policy exists because of the fact that consumers who smoke experience the

direct costs of smoking, and negatively impact their attraction to smoking. The consumer’s

cost of smoking was varied to investigate the possibility that consumer’s are addicted or
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Figure 5.2. Optimal Smoking Knowledge Provision Policies by Cost of
Knowledge.k = {0.43 (Light gray),2 (Dark gray), 5 (Black)}

have internalized the cost of smoking. The results show thatas the cost of smoking de-

creases, more knowledge should be provided to these most addicted smokers. This result

agrees with the intuition that if smoking is very cheap, a policy maker cannot rely on di-

rect costs alone to deter consumers from smoking. While the model exhibits the behavior

which agrees with intuition and exhibits appropriate boundary behavior, in order to fully

validate the model, experiments would need to be designed and performed for the partic-

ular population of consumers at hand. The design of such experiments is discussed in the

following.
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5.4.1 Ideal Validation: Design of Experiments

In order for a policy maker to have full confidence in the results of the model, exper-

iments would need to be designed to estimate parameters moreaccurately. Parameters

of particular interest are those of the learning rule (φ,λ,N) which model attractions and

behavioral change in consumers, and the costs of each type ofbehavior as perceived by

consumers. Prior to designing experiments, the model presented in this section could give

a policy maker a sense of the value of information of a certainparameter. For example,

consider the optimal policies from Figure 5.1. If a policy maker were fairly certain that the

experience of the population under consideration had an experience between 60 and 100,

the value of experimentation to determine the precise experience of the population would

be of little value. This can be seen since the optimal policy governing what states should

be provided smoking knowledge is quite constant over this range of experiences. On the

other hand, a prior belief on the range of 100 to 150 could create a significant value of

experimentation.

Estimation of learning rule parameters can be accomplishedthrough maximum likeli-

hood or minimum deviation procedures Cabrales and Garcia Fontes (2000); Camerer et al.

(2002). A group of participants could be randomly assigned to both control and treatment

groups where the treatment group receives knowledge about the expected consequences

of health behaviors. This treatment could be specifically administered to treatment group

participants through electronic and paper media. By taking repeated measurements of at-

tractions to health behaviors and reported behaviors, the parameters could be estimated

for the cohort of experiment participants. Attractions to behaviors should be measured in

both absolute (e.g. through a willingness-to-pay assessment) and categorical scales (e.g.

{0,1, . . . ,10}). In order to accurately estimate these parameters, care must be taken to en-

sure that the treatment and control groups are representative of the population which is be-
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ing considered for the intervention. This can be aided by stratifying the experiment groups

for important possible confounding variables such as age, education, and income. Even

if the groups are representative, unobserved heterogeneity can lead to bias in estimation

of learning parameters Cabrales and Garcia Fontes (2000). Inlight of the heterogeneity

of healthcare consumers, this may be a concern in estimatinghealthcare learning parame-

ters. Cabrales and Garcia Fontes (2000) discuss estimating the distribution of parameters

in order to deal with this bias.

In order to support the experimental evidence, quasi-experiments should also be de-

signed. These experiments do not randomly assign participants to treatment groups, but

rather the intervention could be administered to a treatment population and a control pop-

ulation. These populations would need to be measured for prevalence of the health behav-

iors identified both before and after the treatment period inorder to observe the change

in behavior due to the educational intervention. The treatment and control populations

would likely be similar communities, closely matched on a number of factors which could

be confounding factors to the treatment effect. These factors would include distribution

of age, education, income, initial behavior prevalence, and geography. Geography is a

challenge factor to control for because of the trade offs involved with proximity. Too

great proximity would tend to produce significant climatological and cultural differences

between the populations, while too small of a proximity would be difficult to ensure that

the treatment is not having a peripheral effect on the control group. Even after controlling

for these factors, other threats to the internal validity ofsuch quasi-experiments include

differences population history and predisposition and differences in population dynamics

over the experimentation period.

A challenge in measuring the behavior prevalence is that self-reporting through surveys

or interviews would be cheapest measurement tool. In the case of reporting the level of

exercise or the percent of calories consumed from saturatedfat, the experiment participants
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may forget or simply not know what the true response should be. Additionally, all three

healthy sub-behaviors may tend to be over-reported becauseof a social desirability bias.

Smoking can be tested for through nicotine tests, however exercise and diet are more

difficult behaviors to definitively assess. More precise information about model parameters

could lead a policy maker or payer to better decisions about when to provide knowledge

to consumers. Experiments to estimate parameters which control for potential biases and

confounding factors such as those discussed here can provide decision makers with the

information needed. The next subsection discusses the results from the full model for

providing knowledge regarding exercise, diet, and smoking.

5.5 Results

The full model is solved by a parallelized value iteration algorithm. With such a large

model, the results can be challenging to interpret. The results are presented with the pa-

rameter settings established earlier. The results for smoking knowledge provision are quite

similar to the results presented earlier, with thresholds determining which consumers are

sick enough to warrant knowledge about their smoking behavior. There is some interac-

tion between the optimal policy for smoking and the attractions to other behaviors. As

consumers become attracted to exercising and low-fat diets, some health states drop out of

the optimal policy for smoking.

Very few health and attraction states yield a cost savings from providing knowledge

about exercise or low-fat diet behavior. Knowledge about diet should be provided to non-

smokers, who are attracted to high-fat diets. Within this set, knowledge is valuable to

consumers with low blood pressure and total cholesterol, but high HDL cholesterol. See

Figure 5.3, which shows a piece of the optimal policy at(sEXR,sFAT,sSMK) = (4,2,10),

where each cell entry is read as a tuple(δEXR,δFAT,δSMK), and in this table the cells in
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which providing knowledge about diets is optimal are highlighted. Examining the transi-

Figure 5.3. Optimal Diet Knowledge ats= (4,2,10)

tion probabilities between health states per diet behaviorreveals that a low saturated fat

diet is most useful in lowering HDL cholesterol states (raising HDL cholesterol), and less

so for other health sub-states. This result driven by the data makes sense because satu-

rated fat is not the only major dietary control of blood pressure (sodium) and because a

unsaturated fats can raise HDL levels. Therefore the results show that the health-attraction

combinations where providing knowledge about a low saturated fat diet are few, and in-

clude non-smokers who could improve their diets, but whose health isn’t already too poor

to help.

The results for exercise knowledge provision are similar tothose for diet. See Figure

5.4, which shows the optimal policy at(sEXR,sFAT,sSMK) = (3,5,10), and the cells where

providing knowledge about exercise is cost saving are highlighted. Again knowledge goes

to healthy non-smokers who have room to improve their healthstate. One curious result

here is that exercise knowledge is not provided at health state (BP,HDL,TC) = (1,4,1),

while it is at both(1,3,1) and (1,4,2). The flexible approach to estimating transition

probabilities makes the exact source of this gap hard to identify. The change in the policy

from (1,4,1) to (1,4,2), where providing knowledge becomes optimal could be explained
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Figure 5.4. Optimal Exercise Knowledge ats= (3,5,10)

by the increased opportunity to improve health. The change from (1,3,1) to (1,4,1) is

harder to explain. One explanation that is partially supported by the data is if consumers

in HDL state 4 are less likely to improve their HDL health. At first these seems unlikely

since consumers in HDL state 4 have very low HDL counts, and therefore have significant

room to improve. However, the fact that they are so low in HDL,makes it more likely that

family history and genetics are contributing to the low HDL count, and that exercise is less

likely to aid in this regard.

The results conclude that providing knowledge and diet behavior is rarely cost saving.

Although this result would seem to contradict the increasing occurrence of these types of

education and knowledge in media today, several factors mayexplain the difference. First,

cost-effectiveness is likely a motivation for existing health education initiatives whereas

this study has considered cost savings. A second and relatedfactor is that this study

models costs stemming from CHD only. Diet and exercise have less immediate effect

on preventing acute CHD events than smoking behavior, thus the benefits of improved

behavior are discounted. Poor diet and exercise behavior would likely lead to increased

costs and decreased quality of life due to other diseases as well (e.g. diabetes). Finally, the

model is somewhat limited by the health state categorizations and the input data. The less

structured form of the exercise and diet policies tend to suggest the results may be more
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tied to the state and behavior specifications and data. As canbe seen from the correlations

in the Appendix, the effects of healthy exercise and diet behavior on health transitions

are the hardest to identify. Likely the granularity of the state categorization and noise

in the data contribute to this complication. Whether the effect is truly noisy, or if the

techniques used here can be significantly improved on, the effect is that a policy maker

is less certain about the benefits of change consumer behavior in these dimensions. By

modeling the effects of behavior on health in more sophisticated ways, and modeling total

healthcare costs stemming from the health and attraction states, providing knowledge for

these behaviors will become a better investment for a payer.

5.5.1 Future Extensions

Even just considering CHD, this model could be extended in many ways, to incor-

porate more of the vast information available on CHD. One example would be through

differentiating knowledge between groups of the public. D’Agostino et al. (2000) provide

gender specific CHD risk models. Presumably the optimal knowledge that should be pro-

vided for women would differ from that of men. If a policy maker could reliably choose

knowledge paths to differentiate the knowledge presented to men and women, one-size fits

all policies could be improved upon. Other extensions couldinclude costs to consumers of

acute CHD events above the direct financial costs due to pain and suffering. If this cost or

disutility could be reliably estimated it could be incorporated in the total cost of an acute

CHD event. This could be an important feature to model if consumers have very generous

insurance eliminating the financial costs of acute events. Another interesting extension

would be to consider community or herd influences on behaviorin the population. This

feature could be implemented by extending the learning ruleand state space to consider
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attractions to behaviors of the individual as well as the community. While interesting this

extension would enlarge an already burdensome state space.
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6. CONCLUSIONS

While operation practices will continue to be refined over andover, real efficiency

gains in healthcare and other distributed systems must tackle the problem of controlling

strategic behavior. This dissertation provided answers and analytical techniques to ques-

tions of how incentives should be designed in healthcare systems. Two types of incen-

tives were considered: financial incentives constructed through insurance and remunera-

tion contracts, and knowledge-based incentives for behavioral change.

The first problem considered the implications of interacting preventive efforts on be-

half of consumers and providers. Optimal multilateral contracts show a distortion from the

benchmark of the bilateral contract, and showed that consumers and providers must both

be better off when a consumer is healthy as opposed to ill to exert preventive efforts. This

feature of the optimal contracts has been suggested as a feature of new payment systems

to improve system incentives (Antos et al., 2009). On the consumer side, this character-

istic is common in policies with copays and coinsurance rates. The provider’s incentives

must be designed such that his payments ensure his reservation level of utility, but also

make the desired level of effort his best choice. Achieving the balance of payments and

incentives requires a mixed remuneration contract of prospective payments, retrospective

payments, and bonuses for good health outcomes of consumers. This finding to controlex

antemoral hazard strengthens the literature which recommends mixed incentives to solve

various agency problemsex post, and extends the support for mixed provider incentives

when suchex postconcerns are negligible. To implement such a scheme, there would need

to be some association between the consumer and a specific provider with responsibility

for the particular condition under contract. Accountable care organizations and medical

home arrangements are two examples where such conditions would exist.
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The second problem investigated when should knowledge be provided to consumers to

affect health behaviors, and subsequently health states and costs. The methodology used

relaxed the strong assumption of expected utility maximization on behalf of healthcare

consumers, and considers system dynamics, an improvement on the majority of incentives

literature which uses static frameworks. The decision to provide knowledge or not was

modeled as an MDP from a policy maker or payers and solved via aparallelized value it-

eration algorithm. The policies regularly showed threshold structures in which knowledge

is only cost-saving when provided to sicker consumers. The model was validated to some

extent through sensitivity analysis and boundary behavior, and a more thorough validation

through design experiments was discussed.

Incentives can be constructed through a variety of tools andfor a range of strategic

behaviors to be controlled. Financial incentives for preventive efforts from consumers

and providers and knowledge-based incentives for health behavior from consumers were

considered here independently. Future work on incentives will likely include these mecha-

nisms as well as other policy tools, and consider these participants in addition to hospitals

and technology companies. Even more complex models could consider the interaction of

financial, knowledge-based, and other incentives to jointly optimize incentive problems.

By doing so, healthcare systems can hope to find significant cost savings through strategic

behavior of system participants.
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APPENDIX A

Properties ofeC(·) with Complementary Efforts

Claim: ∂eC(eP;∆u)
∂eP

= e′C(eP;∆u)≥ 0.

Proof: In (3.2), replaceeC by eC(eP;∆u), then (3.2) becomes

π′(eC(eP;∆u))∆u=
∂ψ
∂eC

(eC(eP;∆u),eP).

Taking derivatives with respect toeP gives

π′′(eC(eP;∆u))e′C(eP;∆u)∆u=
∂2ψ
∂e2

C

(eC(eP;∆u),eP)e
′
C(eP;∆u)+

∂2ψ
∂eC∂eP

(eC(eP;∆u),eP)

Rearranging gives

e′C(eP;∆u) =

∂2ψ
∂eC∂eP

(eC(eP;∆u),eP)[
π′′(eC(eP;∆u))∆u− ∂2ψ

∂e2
C
(eC(eP;∆u),eP)

] = −
(−)(+)− (+)

≥ 0

Claim: ∂eC(eP;∆u)
∂∆u ≥ 0.

Proof: Again (3.2) gives that

π′(eC(eP;∆u))∆u=
∂ψ
∂eC

(eC(eP;∆u),eP).

Taking derivatives with respect to∆u gives

π′′(eC(eP;∆u))
∂eC(eP;∆u)

∂∆u
∆u+π′(eC(eP;∆u)) =

∂2ψ
∂e2

C

(eC(eP;∆u),eP)
∂eC(eP;∆u)

∂∆u
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Solving for ∂eC(eP;∆u)
∂∆u yields

∂eC(eP;∆u)
∂∆u

=
π′(·)

∂2ψ(·)
∂e2

C
−π′′(·)∆u

=
+

(+) − (−)(+)
≥ 0.

Concavity of IC Constraints

The consumer’s IC constraint (3.3.1) is clearly concave since

∂2

∂e2
C

[π(êC)uh+[1−π(êC)]ui −ψ(êC,eP)] = π′′(·)∆u− ∂2ψ(·)
∂e2

C

= (−)− (+)≤ 0.

Considering the provider’s IC constraint (3.3.1),

∂2

∂e2
P

[
π(eC(êP;∆u))tP

h +[1−π(eC(êP;∆u))](tP
i −d)−cP(êP)

]

=
[
π′′(·)(e′C(·))2+π′(·)e′′C(·)

]
(∆tP+d)−c′′P(·) = [(−)(+)+(+)(?)](+)− (+),

where the unknown sign comes frome′′C(·). If this sign is negative, the provider’s IC

constraint is concave. The reason thate′C(·) ≥ 0 is that the provider’s effort is lowers

consumer disutility, and thus aids in inducing consumer effort. Since the benefits from

provider effort are assumed to be decreasing, it is expectedthate′′C(·)≤ 0. More rigorously,

it was previously found that

e′C(eP;∆u) =

∂2ψ
∂eC∂eP

(eC(eP;∆u),eP)[
π′′(eC(eP;∆u))∆u− ∂2ψ

∂e2
C
(eC(eP;∆u),eP)

]
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Denote the numerator (denominator) of this expression by †(‡), which are both negative.

Then,

e′′C(·) =
(

1

‡2

)([
∂3ψ

∂e2
C∂eP

e′C(·)+
∂3ψ

∂eC∂e2
P

]
‡−
[

π′′′(·)e′C(·)∆u− ∂3ψ
∂e2

C∂eP
− ∂3ψ

∂e3
C

e′C(·)
]

†

)

Then sincee′C(·)≥ 0 and ∂3ψ(·)
∂eC∂e2

P
≥ 0, the following technical conditions (A.1) are sufficient

for the provider’s IC constraint to be concave.

π′′′(·)≤ 0
∂3ψ(·)
∂e2

C∂eP
≥ 0

∂3ψ(·)
∂e3

C
≥ 0

(A.1)

Proof of Proposition 3.3.1

Previously it was found that

e′C(eP;∆u) =

∂2ψ
∂eC∂eP

(eC(eP;∆u),eP)[
π′′(eC(eP;∆u))∆u− ∂2ψ

∂e2
C
(eC(eP;∆u),eP)

] .

Now taking the derivative with respect to∆u, (again using the same †,‡ notation for the

numerator and denominator, which are both negative)

∂e′C(·)
∂∆u

=

(
1

‡2

)[(
∂3ψ(·)
∂e2

C∂eP

∂eC(·)
∂∆u

)
‡−
(

π′′(·)+π′′′(·)∂eC(·)
∂∆u

∆u− ∂3ψ(·)
∂e3

C

∂eC(·)
∂∆u

)
†

]
.

The term in the brackets needs to be examined. By the previous conditions (A.1), the signs

of terms within the brackets are

(+)(+)(−)− [(−)+(−)(+)− (+)(+)](−)≤ 0.
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Proof of Proposition 3.3.2

Differentiating and adding a positive term to the right handside, gives that

∂
∂eC

(π′
eC
(·)

π′
eP
(·)

)
≤ 0 ⇒

π′′
e2
C
π′

eP
−π′′

eCeP
π′

eC

(π′
eP
)2 ≤ 0 ⇒

π′′
e2
C
π′

eP
−π′′

eCeP
π′

eC

(π′
eP
)2 ≤ ψ′′

∆u·π′
eP

.

Rearranging terms gives that

π′
eP
≥ π′

eC

∆u·π′′
eCeP

∆u·π′′
e2
C
−ψ′′ .

Finally substituting in∂eC
∂eP

gives

π′
eC

∂eC

∂eP
+π′

eP
≥ 0.

Therefore, if∆v≤ 0, the provider maximizes utility by setting effort equal to0.

Proof of Proposition 3.3.3

Substituting in∂eC
∂eP

=
∆u·π′′

eCeP
ψ′′−∆u·π′′

e2
C

transforms the bracketed term in equations (3.26) and

(3.26) into [(
π′′

eCeP
·ψ′′

ψ′′−∆u·π′′
e2
C

)
∂eC

∂∆u
+π′

eC

∂2eC

∂eP∂∆u

]

Under the assumptions onπ(ec,eP), and the second stipulation of the proposition, this

term is negative. The first stipulation of the proposition ensure the sign ofγ is consistent

with Corollary 3.3.1, and the result follows from the form of equations (3.26) and (3.26).
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Sensitivity Analysis of Multilateral Savings
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Figure A.1. Sensitivity toa with b= 0.20. a= {0.1,0.2,0.3,0.4,0.5},
(b,d,q, r,w)=(0.20,5,0.05,0.10,50)
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Figure A.2. Sensitivity toa with b= 0.25. a= {0.1,0.2,0.3,0.4,0.5},
(b,d,q, r,w)=(0.25,5,0.05,0.10,50)
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Figure A.3. Sensitivity toa with b= 0.35. a= {0.1,0.2,0.3,0.4,0.5},
(b,d,q, r,w)=(0.35,5,0.05,0.10,50)
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Figure A.4. Sensitivity toa with b= 0.40. a= {0.1,0.2,0.3,0.4,0.5},
(b,d,q, r,w)=(0.40,5,0.05,0.10,50)
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Figure A.5. Sensitivity toa with b= 0.45. a= {0.1,0.2,0.3,0.4,0.5},
(b,d,q, r,w)=(0.45,5,0.05,0.10,50)
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Figure A.6. Sensitivity toa with b= 0.50. a= {0.1,0.2,0.3,0.4,0.5},
(b,d,q, r,w)=(0.50,5,0.05,0.10,50)
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Figure A.7. Sensitivity tor with q= 0.03.
r = {0.05,0.075,0.10,0.125,0.15}, (a,b,d,q,w)=(0.30,0.30,5,0.03,50)

 0
 0.2

 0.4
 0.6

 0.8
 1m  0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

k
 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1m  0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

k
 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1m  0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

k
 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1m  0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

k
 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1m  0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

k
 0

 0.2

 0.4

 0.6

 0.8

 1



95

Figure A.8. Sensitivity tor with q= 0.04.
r = {0.05,0.075,0.10,0.125,0.15}, (a,b,d,q,w)=(0.30,0.30,5,0.04,50)
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Figure A.9. Sensitivity tor with q= 0.05.
r = {0.05,0.075,0.10,0.125,0.15}, (a,b,d,q,w)=(0.30,0.30,5,0.05,50)
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Figure A.10. Sensitivity tor with q= 0.06.
r = {0.05,0.075,0.10,0.125,0.15}, (a,b,d,q,w)=(0.30,0.30,5,0.06,50)
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Figure A.11. Sensitivity tor with q= 0.07.
r = {0.05,0.075,0.10,0.125,0.15}, (a,b,d,q,w)=(0.30,0.30,5,0.07,50)
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APPENDIX B

Behavioral Dependence

The data used in this appendix is a subsample of the Atherosclerosis Risk In Communi-

ties (ARIC) data, cleaned for missing data, from a single time period, so that independence

between the observations is reasonably assumed. The data consists of 10,309 individuals

who choose to exercise (E1) or not (E0), consume a low (F1) or high (F0) fat diet, and

smoke (S0) or not (S1). Table B.1 provides a summary table of the data.

Table B.1
Summary of ARIC Behavioral Data.pr(E1) = .46, pr(F1) = .24, pr(S1) = .79

E0 E1

S0 S1 S0 S1

F0 1054 3323 F0 641 2817
F1 264 913 F1 207 1090

The first tests performed wereχ2 tests for independence. Forn×n contingency tables,

the test statistic

χ2 = ∑
i, j
(Oi j − Êi j )

2/Êi j ,

whereOi j is the observed frequency of celli j , andÊi j is the expected frequency of cell

i j based on the marginal probabilities ofi and j, has theχ2 distribution with 1 degree

of freedom. Low p-values would lead to reject the null hypothesis of independence. In-

dependence was tested for between all three pairs of behaviors at three levels each (3rd

variable = 0, 3rd variable = 1, combined across 3rd variable). These tests are performed
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in R (where the Yates’ continuity correction is automatically performed) and verified via

spreadsheet. Table B.2 details the results.

Table B.2
χ2 Tests for Independence

Test Pair 3rd Level χ2 p-value
FS 0 1.3064 0.2530
FS 1 4.1001 0.04288
FS C 7.4779 0.006246
ES 0 34.6925 3.861e-09
ES 1 16.3409 5.291e-05
ES C 53.3189 2.836e-13
EF 0 5.5629 0.01834
EF 1 43.7788 3.677e-11
EF C 51.6666 6.577e-13

The relationship between fat and smoking is the only pair forwhich the null hypothe-

sis of independence is not easily rejected. Two more tests based on the odds-ratio, the

Cochran-Mantel-Haenszel (CMH) test, and the Mantel-Haenszel (MH) test, were per-

formed to check for conditional independence. In data wherethere is more than two

variables, these tests check for conditional independence(CMH) and the strength of asso-

ciation (MH). The procedure cmh.test() in R computes the CMH test and MH stat, sum-

marized in Table B.3.

Here again, there is some evidence of conditional independence between diet and

smoking, as the null hypothesis fails to be rejected at the 0.02 significance level.
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Table B.3
CMH Tests for Independence

Test Pair CMH stat p-value MH OR pooled OR 3rd=0 OR 3rd=1 OR
FS 5.126 0.024 1.141 1.174 1.097 1.198
ES 51.133 0.000 1.422 1.434 1.394 1.523
EF 49.417 0.000 1.385 1.395 1.289 1.408

Models of Dependence for Prediction

Each sub-behavior is modeled as a 0-1 variable with 1 representing the healthy choice.

The purpose of modeling dependence is to predict probabilities of each type of combined

behavior (e.g. exercising, high-fat diet, no smoking) fromjust three attractions, one for

each sub-behavior. Using only three inputs keeps the state space manageable for solving

the MDP iteratively. The relationship between attractionsand probabilities is computed

through the logit rule, where given a set of actions,A , and attractionssa, a ∈ A , the

probability of choosing an action is given by

pr(a) =
eλ ·sa

∑
a′∈A

eλ·sa′
.

Using the logit rule to translates attractions into probabilities, there are two ways which

dependence could be incorporated: through the probabilities directly, or through with the

attractions. This concept can be seen in Figure B.1.
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Figure B.1. Dependence Pathways

Before modeling dependence, notice that assuming independence between the sub-

behaviors implies thatEiFj = Ei +Fj , that is, the interaction2© is additive. Since this

function makes the following chain of equalities true.

pr(EiFj) =
eλ·sEiFj

eλ·sE0F0 +eλ·sE0F1 +eλ·sE1F0 +eλ·sE1F1
(B.1)

=
eλ·sEi eλ·sFj

(eλ·sE0 +eλ·sE1)(eλ·sF0 +eλ·sF1)
(B.2)

= pr(Ei) · pr(Fj) (B.3)

Conditional Independence - Additive Dependence (CIAD)

The first pathway to model dependence is pathway1©. Since the tests have shown that

independence does not hold, the three marginal probabilities cannot simply be multiplied
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together to get a joint probability. However, the tests haveshown evidence that conditional

on exercise, fat and smoking are independent.

pr(EiFjSk) = pr(Ei) · pr(FjSk|Ei) = pr(Ei) · pr(Fj |Ei) · pr(Sk|Ei) (B.4)

The question then becomes how to modelpr(F |E) 6= pr(F). Note also that care must be

taken to ensure the probabilities are always non-negative,and sum to 1 when appropriate.

The first approach introduced is an additive effects model.

pr(F1|E1) = pr(F1)+αF1|E1

pr(F0|E1) = pr(F0)−αF1|E1

pr(F1|E0) = pr(F1)+αF1|E0

pr(F0|E0) = pr(F0)−αF1|E0

pr(S1|E1) = pr(S1)+αS1|E1

pr(S0|E1) = pr(S0)−αS1|E1

pr(S1|E0) = pr(S1)+αS1|E0

pr(S0|E0) = pr(S0)−αS1|E0

All the α values here are easily estimated from the data. For example,α̂F1|E1= p̂r(F1|E1)−
p̂r(F1). Performing these computations leads toα̂F1|E1= 0.0328,α̂S1|E1= 0.0318,α̂F1|E0=

−0.0281,α̂S1|E0=−0.0272. It is interesting that̂αF1|E1≈ α̂S1|E1≈−α̂F1|E0≈−α̂S1|E0≈
.03. The only concern about the meaningfulness of the probabilities would be ifpr(Ei), pr(Sj) /∈
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[.03, .97], which would lead to negative and higher than 1 probabilities. Based on these

α values, the conditional independence - additive dependence model can be used to pre-

dict occurrences of each type of behavior. Evidence for the goodness-of-fit of this model is

presented after introducing a conditional independence - multiplicative dependence model.

Conditional Independence - Multiplicative Dependence (CIMD)

Another approach for modelingpr(F |E) 6= pr(F) would be a multiplicative approach,

pr(F |E) = β · pr(F). In order to do this, extra care must be taken to ensure the meaning-

fulness of the probabilities. To tackle this problem, it canbe observed from the data and

from the additive approach that wheni 6= j, pr(Fi|E j) < pr(Fi) and similarly for smok-

ing. This would result in a value ofβ < 1. This insight proves useful since a prob-

ability multiplied by a scalar less than 1 is still in[0,1]. Then for the other behavior,

pr(Fj |E j) = 1− pr(Fi |E j). Using this model, there are 4β values to estimate
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pr(F1|E1) = 1− pr(F0|E1)

pr(F0|E1) = βF0|E1
· pr(F0)

pr(F1|E0) = βF1|E0
· pr(F1)

pr(F0|E0) = 1− (F1|E0)

pr(S1|E1) = 1− pr(S0|E1)

pr(S0|E1) = βS0|E1
· pr(S0)

pr(S1|E0) = βS1|E0
· pr(S1)

pr(S0|E0) = 1− pr(S1|E0)

Again, all theβ values are estimable from the data, resulting inβ̂F0|E1
= .96, β̂F1|E0

=

.88, β̂S0|E1
= .85, andβ̂S1|E0

= .97. This multiplicative model is guaranteed to produce

meaningful probabilities. Now both the CIAD and CIMD models are used to predict

outcomes, judging both versus the real data, with independence (IND) as a benchmark,

the results are reported in Table B.4, where the sum of squareddeviations (SSD) measures

differences from observed counts.

It appears each dependence model predicts the data much better than pure indepen-

dence. The additive approach fairs slightly better, and is appealing in that all fourα values

are the same, but has a small concern of inconsistent probabilities. The 10,309 observa-

tions composing the full data set are split to form a trainingdata set (≈ 80%) and a testing

set (≈ 20%). The training set was used to estimate theα’s andβ’s, and the testing set
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Table B.4
Comparing Conditional Independence Models

Behavior Data IND CIAD CIMD
000 1054 888 1055 1026
001 3323 3342 3342 3365
010 264 281 281 275
011 913 1055 888 901
100 641 757 623 618
101 2817 2847 2839 2842
110 207 239 230 229
111 1090 899 1050 1053
SSD - 100143 4199 5798

to compute SSD, with independence (IND) as a bench mark. The results are reported in

Table B.5.

Table B.5
Model Fitness with Training and Testing Data

Behavior Data IND CIAD CIMD
000 217 176 203 203
001 701 702 704 703
010 58 53 53 53
011 166 212 183 184
100 113 148 122 123
101 585 591 588 586
110 32 45 43 44
111 233 179 209 209
SSD - 8242 1317 1365

Having presented two models of dependence through pathway1©, attention is now

turned to modeling dependence through pathway2©.
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Attraction Interactions

In order to work in attraction space, aλ value of 2.95 is used. AttractionŝsEiFjSk can

then be calculated by reversing the logit rule with the attraction ŝE0F0S0 normalized to zero.

Since independence⇒ pure additive relationship fromsEi ,sFj ,sSk to sEiFjSk, then relaxing

this assumption by adding coefficients and cross terms to thepure additive form will relax

the assumption of independence. The regression equation

ŝEiFjSk = θEŝEi +θF ŝFj +θSŝSk +θEFŝEi ŝFj +θEŜsEi ŝSk +θFSŝFj ŝSk +θEFŜsEi ŝFj ŝSk

was used to estimate the parametersθ by minimizing the sum of squared errorsεEFS=

ŝEFS−sEFS, while constraining some of theθ’s to zero. There are eight equations of this

form, and since under the logit rule, attractions are non-unique up to a scalar, normalizing

leaves seven equations to estimateθ’s. The results are displayed in Table B.6, where

θ = (θE,θF ,θS,θEF,θES,θFS,θEFS)
′. In this table and following tables, where relevant,

significance has been denoted by∗∗∗ for the .01 level, ∗∗ for the .05 level, and∗ for

the .10 level. From the table it can be seen that the pure additive model, whereθ =

(1,1,1,0,0,0,0)′ gives the same results as the independence assumption from Table B.4.

When the model is given full flexibility (sevenθ values) the model can perfectly match the

observed attractions, as expected. The final three columns of Table B.6 show three special

cases of the regression: when only coefficients on the linearterms are allowed to be non-

zero, when only the three-way interaction coefficient is restricted to zero, and when both

the three-way interaction and two-way FS coefficients are restricted to zero.

The results show that giving flexibility on the linear terms alone actually decreases the

ability of the model to predict the observed behavior. This result seems counterintuitive

since the regression could have selectedθ = (1,1,1,0,0,0,0)′ and done better, however
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Table B.6
Comparing Attraction Regression Models

Behavior Data

θE

θF

θS

θEF

θES

θFS

θEFS

=

1
1
1
0
0
0
0

3.10
1.20
0.87
4.05
−4.62
−.18
3.14

1.73
1.11∗∗∗

0.97∗∗∗

0
0
0
0

3.18∗∗

1.21∗∗

0.86∗∗

4.66∗

−5.14∗

−.25
0

3.38∗∗

1.17∗∗∗

0.89∗∗∗

5.01∗

−5.44∗

0
0

000 1054 888 1054 994 1056 1039
001 3323 3342 3323 3601 3287 3379
010 264 281 264 275 261 268
011 913 1055 913 996 926 873
100 641 757 641 753 634 604
101 2817 2847 2817 2727 2857 2906
110 207 239 207 208 210 214
111 1090 899 1090 754 1078 1027
SSD - 100143 0 221029 3334 18165

the regression seeks to minimize squared errors from the attractions, not the probabili-

ties themselves. ForcingθEFS= 0 does not hurt the model much, increasing the sum of

squared differences by only 3% of the error of the independence model. Forcing additional

coefficients to zero hurts the fit of the behavior prediction considerably. The only reason-

able fit occurs when forcingθEFS andθFS to zero, the final column in Table B.6. While

this finding concurs with the analysis showing that diet and smoking are independent given

exercise, the dependence model does not predict the data as well as either of the previous

models.

This regression approach to predict aggregate attractionsgiven sub-behavior attrac-

tions suffers from several flaws. The first is related to the normalization required by the

logit rule to compute attractions from probabilities. The attractions are currently normal-
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Table B.7
Comparing Attraction Regression Models: Positive Attractions

Behavior Data

θE

θF

θS

θEF

θES

θFS

θEFS

=

1
1
1
0
0
0
0

1.52
.98
1.25
4.06
−5.84
−.35
3.14

1.34∗

1.06∗∗∗

1.07∗∗∗

0
0
0
0

1.44∗∗∗

.97∗∗∗

1.24∗∗∗

4.66∗∗

−5.31∗∗∗

−.28∗∗

0

1.66∗∗

.93∗∗∗

1.21∗∗∗

4.28∗

−5.64∗∗

0
0

000 1054 888 1054 861 1068 1019
001 3323 3342 3323 3545 3283 3364
010 264 281 264 254 261 267
011 913 1055 913 1045 925 882
100 641 757 641 695 633 597
101 2817 2847 2817 2861 2854 2960
110 207 239 207 205 207 205
111 1090 899 1090 843 1077 1015
SSD - 100143 0 169677 3562 31757

ized so that attractions to the unhealthy behaviors are 0, and the non-zero attraction to

healthy sub-behaviors is computed from the data. This results in ŝE0 = ŝF0 = ŝS0, forcing

much of the ‘data’ in the regression equations to zero. This combined with the fact that

the attractions to healthy sub-behaviors can be negative orpositive, and are multiplied by

each other, ruins the interpretation of the coefficients, and the generality of the regression

results. This point is to be highlighted further later.

The regressions were repeated using a different normalization scheme. The normal-

ization used was to set attractions to all the less frequently chosen actions to zero. This

normalization has the affect of causing all the attractionsto be positive. The same set of

regressions was performed, and found the results were similar and are reported in Table

B.7. Normalizing such that all the attractions are positive seems to improve the signifi-
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cance of the regression output. This evidence suggests thatthe fit of these models is not

too sensitive to the normalization chosen.

Consistency Coefficients

Building on the previous results, and seeking to improve on the clarity of the results

from the previous regression, regressions were also run of the form

ŝEiFjSk = θEŝEi +θF ŝFj +θSŝSk +θE=F1i= j +θE 6=F1i 6= j +θE=S1i=k+θE 6=F1i 6= j

to capture the increased likelihood of (un)healthy smokingand diet behaviors when exer-

cise behavior is (un)healthy. The results of this regression are reported in Table B.8, where

now θ = (θE,θF ,θS,θE=F ,θE 6=F ,θE=S,θE 6=S)
′.

SinceθE=F ,θE 6=F ,θE=S,θE 6=S are a linearly dependent set, one of the coefficients must

be zero. The coefficients make sense given the observation about how consistent sub-

behaviors are more likely while inconsistent sub-behaviors are less likely. Given that an

individual exercises (i = 1), the combined diet and smoking behaviors receive the follow-

ing attraction changes:

While it may seem strange that all of these changes are negative, since the logit rule

normalizes a monotonic function of attractions to find probabilities, the relative changes

show the impact of exercising on diet and smoking behavior. Again the attractions are

re-normalized to make all attractions positive, and the regression is run again.

Interestingly the predicted observation are exactly the same despite the new normal-

ization, again showing the results have little sensitivityto the normalization chosen. The

signs and size of the coefficients are different, although the total relative effect is very

similar, and the significance of the regression has decreased.
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Table B.8
Regression with Sub-behavior Consistency

Behavior Data

θE

θF

θS

θEF

θES

θFS

θEFS

=

1.13∗

1.03∗∗∗

1.04∗∗∗

−0.07∗

−0.12∗∗

0.06∗

0
000 1054 1020
001 3323 3367
010 264 268
011 913 883
100 641 607
101 2817 2918
110 207 214
111 1090 1032
SSD - 18938

Table B.9
Attraction Changes Given Exercise

FS Behavior ∆s
F1S1 -0.01
F1S0 -0.06
F0S1 -0.07
F0S0 -0.12

Discussion

In deciding whether to model dependence through pathway1© or 2©, there should

be some consideration of the ‘physical’ process being modeled. That is, consumers are
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Table B.10
Regression with Sub-behavior Consistency: Positive Attractions

Behavior Data

θE

θF

θS

θEF

θES

θFS

θEFS

=

1.14∗

1.03∗∗∗

1.04∗∗∗

0.02
−0.04
0.06∗

0
000 1054 1020
001 3323 3367
010 264 268
011 913 883
100 641 607
101 2817 2918
110 207 214
111 1090 1032
SSD - 18938

attracted to varying degrees to a finite set of sub-behaviors. These behaviors interact in

a dependent fashion. Does it seem more plausible that attractions to joint-behaviors are

adjusted according to the consistency of their composing sub-behaviors, or that consumers

form probabilities of each sub-behavior, and then adjust these probabilities based on the

outcome of a ‘first-move’ sub-behavior. For me, both alternatives are plausible. The first

possibility, 2©, is a sort of premeditated dependence, whereby the consumerthinks ahead

and says “Well, if I exercise, there is no point in smoking.” or “If I’m going to eat right, I

might as well exercise too.” The second type of dependence1©, is based on the reality that

each sub-behavior is not chosen simultaneously, and that based on the sequential nature

of the decisions, there is some preference for consistency with regards to the healthiness

of behaviors. That is, the consumer thinks “Now that I’ve exercised, I might as well not
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waste my efforts by eating unhealthily”. After consideringthe plausibility of each model

of dependence, and the ability to characterize the data, pathway 1© and the CIAD model

is implemented.

Estimating Transition Probabilities

The large number of transition probabilities to be estimated requires use of a parametric

model to increase the power of the data. For this purpose, a multinomial logit model

is used to estimate the transition probabilities for consumer health-health-action tuples.

Letting T denote the set of possible transitions, the model calculates the probability of a

given transitionj by

p( j|x,a;µ,β) =
eµBP

x, j+µHDL
x, j +µTC

x, j +βEXR
j aEXR+βFAT

j aFAT+βSMK
j aSMK

∑i∈T eµBP
x,i +µHDL

x,i +µTC
x,i +βEXR

i aEXR+βFAT
i aFAT+βSMK

i aSMK
. (B.5)

To reduce the number of unknown parameters to be estimated, the set of possible health

state transitions modeled is limited to those where no sub-state increases or decreases by

more than one category. The notation{↑,↓,→} is used to designate the increase, decrease,

or constant transition of a health sub-state category. Considering the size of the categories

and the length of one time period, this assumption limiting the observable transitions is

violated in only the most extreme cases. Theβ parameters capture the influence of the

consumer’s behavior on state transitions including the interaction of sub-state transitions.

Theµ parameters capture the trend of each sub-health dimension to transition up (becom-

ing less healthy), down (becoming more healthy), or stayingthe same, given the level of

the sub-health state. The model is prevented from predicting transitions outside the state

space (e.g. a HDL state decrease from current state HDL-1) bysetting theµi
0,↓ parame-

ters for i ∈ {BP,HDL,TC} equal to−M, a large negative number. The same is done for
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µTC
5,↑ andµj

4,↑ for j ∈ {BP,HDL}. This model results in a total of 114 parameters1 to be

estimated. The parameters are estimated by maximizing the log-likelihood function of the

observed transitionsZ.

µ̂, β̂ = max
µ,β

LL(µ,β),

whereLL(µ,β) = log∏z∈Z p(z;µ,β) uses (B.5). In order to optimize in such a large dimen-

sional space, simulated annealing, a heuristic statistical optimization approach is used.

Simulated annealing (see Spall (2003)) searches increasingly narrow neighborhoods of

a current solution, moving to new solutions probabilistically based on the relative fitness

of the new solution. In what follows, letθ = (µ,β). The updating step is performed by the

Metropolis-Hastings algorithm with updating stepζ ∼U [−l−.4, l−.4], the local candidate

deviation for each dimension ofθ during iterationl .

θl+1 =





θl +ζ with probabilityρ = e∆LL/Tl ∧1,

θl otherwise,
(B.6)

where∆LL = LL(θl + ζ)−LL(θl ). This wide and slowly narrowing local neighborhood

is used to avoid getting stuck in local optima near the starting solution. The schedule

Tl = [log(1+ l)]−1 is used following the recommendation of Robert and Casella (2010).

Ten different starting solutions are used to provide a robustness check for the solution to

the maximum likelihood problem.

In order to obtain each starting solution, 100,000 simple Monte Carlo draws are taken

from the parameter space, and the best of each set becomes a starting solution. Rather than

allow each of the parameters to range across the entire real line, the parametric model and

1The β parameters total #{↑,↓,→}#{BP,HDL,TC} · #{EXR,FAT,SMK} = 33 · 3 = 81, and theµ parameters
total #{↑,↓,→}· [#(BPstates)+#(HDL states)+#(TC states)]−fixedµ’s = 3· (5+4+4)−6= 33.
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knowledge of the effect of the consumer’s behaviors can provide intuition for coming up

with initial guesses for the parameters.

p(↓↓↓ |aEXR= 1, ·) = p(↓↓↓ |aEXR= 0, ·) ·eβEXR
↓↓↓ ,

therefore,βEXR
j should be positive for healthy transitions that exercisingwould encourage

and negative for unhealthy transitions. The same logic would hold for smoking and eating

a low fat diet. Further,βEXR
j = 2 would mean that ceteris paribus, exercising would create

a 7.4-fold increase in the probability of transitionj. The following guesses ofβ are used

to guide the Monte Carlo draws

β̃EXR
= β̃FAT

= β̃SMK
=

→ ↑ ↓
→ ↑ ↓ → ↑ ↓ → ↑ ↓

→ 0 −.33 .33 −.33 −.66 0 .33 0 .66

↑ −.33 −.66 0 −.66 −1 −.33 0 −.33 .33

↓ .33 0 .66 0 −.33 .33 .66 .33 1

,

where the labeling of the dimensions as∆BP,∆HDL,∆TC is indifferent. Similarly, initial

guesses of ˜µx,→ = 0, µ̃x,↑ = .1, µ̃x,↓ =−.1 for all sub-health states are based on the nature of

health to deteriorate, rather than improve over time. Based on these guesses Monte Carlo

draws for starting solutions to the simulated annealing aretaken by sampling uniformly

from the range centered at the guess, and spanning 4 multiples of the guess. For example,

βEXR
↓→↓ ∼U [−.66,1.98]. Concerning parameters for which the guess is zero, draws aretaken

fromU [−1,1]. Simulated annealing (B.6) was performed for 100,000 replications on each

of the 10 starting solutions to arrive at 10 estimates of the maximum likelihood parameters.
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In order to test how well the ten starting solutions convergeto find an global optimum,

correlations as well as average and maximum absolute deviations were computed for each

set of parameters.

Table B.11
Pearson Correlations Between Simulated Annealing Probabilities

2 3 4 5 6 7 8 9 10
1 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 0.99 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00
8 1.00 1.00
9 1.00

Table B.12
Maximum Absolute Deviations Between Simulated Annealing Probabilities

2 3 4 5 6 7 8 9 10
1 0.02 0.03 0.02 0.03 0.03 0.12 0.04 0.04 0.04
2 0.03 0.03 0.03 0.04 0.10 0.05 0.03 0.03
3 0.04 0.06 0.05 0.11 0.06 0.04 0.06
4 0.04 0.04 0.11 0.05 0.03 0.06
5 0.03 0.10 0.07 0.05 0.05
6 0.10 0.04 0.03 0.05
7 0.10 0.10 0.10
8 0.04 0.04
9 0.04
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Table B.13
Average Absolute Deviations Between Simulated Annealing Probabilities

2 3 4 5 6 7 8 9 10
1 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.01 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.01 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00
7 0.00 0.00 0.01
8 0.00 0.00
9 0.00

The probabilities produced from the simulated annealing solutions appear to agree with

one another to a high degree as evident from the high correlations and low average abso-

lute deviations. Comparing the parameters from the simulated annealing solutions, more

variation between solutions can be found. Part of this variation can be attributed to the fact

that the parameters of the multinomial logit model are non-unique in their prediction of

probabilities. This characteristic means that correlation may be a more meaningful mea-

sure of closeness than absolute deviations. The following tables report the correlations,

and maximum and absolute deviations for the sets of parameters from the multinomial

logit model.
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Table B.14
Pearson Correlations -βEXR Parameters

2 3 4 5 6 7 8 9 10
1 0.92 0.63 0.16 0.86 0.87 0.85 0.49 0.26 0.62
2 0.60 0.04 0.81 0.75 0.87 0.51 0.12 0.63
3 -0.12 0.31 0.36 0.44 0.33 0.04 0.53
4 0.31 0.17 0.25 -0.01 0.94 0.21
5 0.90 0.75 0.32 0.34 0.34
6 0.67 0.37 0.24 0.27
7 0.29 0.36 0.63
8 -0.02 0.33
9 0.22

Table B.15
Pearson Correlations -βFAT Parameters

2 3 4 5 6 7 8 9 10
1 0.84 0.68 0.81 0.71 0.20 0.31 0.48 0.04 0.49
2 0.66 0.60 0.69 0.02 0.12 0.20 -0.25 0.51
3 0.78 0.19 -0.16 -0.04 0.41 0.04 0.47
4 0.26 0.07 0.29 0.39 0.25 0.42
5 0.19 0.23 0.17 -0.32 0.29
6 0.40 0.45 0.34 -0.33
7 0.40 0.00 -0.37
8 0.24 -0.06
9 -0.18



119

Table B.16
Pearson Correlations -βSMK Parameters

2 3 4 5 6 7 8 9 10
1 0.91 0.81 0.90 0.68 0.82 0.75 0.84 0.89 0.91
2 0.76 0.92 0.46 0.79 0.85 0.94 0.71 0.74
3 0.72 0.52 0.71 0.80 0.76 0.64 0.55
4 0.39 0.78 0.82 0.86 0.68 0.78
5 0.28 0.23 0.28 0.72 0.72
6 0.72 0.88 0.82 0.72
7 0.83 0.49 0.52
8 0.69 0.67
9 0.93

Table B.17
Pearson Correlations-µBP Parameters

2 3 4 5 6 7 8 9 10
1 0.87 0.82 1.00 0.93 0.62 0.76 0.98 0.95 0.94
2 0.82 0.86 0.92 0.78 0.35 0.89 0.78 0.70
3 0.82 0.84 0.63 0.46 0.81 0.72 0.85
4 0.92 0.63 0.77 0.99 0.97 0.94
5 0.52 0.50 0.88 0.79 0.84
6 0.30 0.74 0.70 0.46
7 0.74 0.85 0.84
8 0.98 0.90
9 0.90
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Table B.18
Pearson Correlations -µHDL Parameters

2 3 4 5 6 7 8 9 10
1 0.93 0.80 0.96 0.99 0.85 0.92 0.95 0.92 0.91
2 0.72 0.87 0.97 0.89 0.76 0.87 0.96 0.86
3 0.61 0.74 0.59 0.62 0.67 0.57 0.95
4 0.95 0.77 0.95 0.92 0.93 0.79
5 0.87 0.88 0.93 0.97 0.89
6 0.78 0.94 0.81 0.67
7 0.95 0.80 0.74
8 0.85 0.77
9 0.77

Table B.19
Pearson Correlations -µTC Parameters

2 3 4 5 6 7 8 9 10
1 0.82 0.81 0.93 0.93 0.91 0.88 0.97 0.96 0.88
2 0.37 0.77 0.91 0.81 0.63 0.83 0.73 0.73
3 0.86 0.56 0.72 0.84 0.80 0.85 0.55
4 0.80 0.89 0.88 0.97 0.91 0.65
5 0.91 0.68 0.91 0.87 0.92
6 0.66 0.91 0.95 0.79
7 0.85 0.82 0.65
8 0.92 0.79
9 0.83
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Table B.20
Pearson Correlations - All Parameters

2 3 4 5 6 7 8 9 10
1 0.80 0.72 0.83 0.79 0.74 0.72 0.76 0.77 0.81
2 0.57 0.62 0.67 0.78 0.53 0.53 0.56 0.67
3 0.52 0.41 0.47 0.49 0.55 0.50 0.61
4 0.62 0.61 0.67 0.66 0.82 0.63
5 0.59 0.39 0.49 0.61 0.65
6 0.51 0.62 0.63 0.53
7 0.54 0.55 0.53
8 0.64 0.51
9 0.56
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