
AN ANALYSIS TOOL FOR FLIGHT DYNAMICS

MONTE CARLO SIMULATIONS

A Dissertation

by

CAROLINA ISABEL RESTREPO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2011

Major Subject: Aerospace Engineering

AN ANALYSIS TOOL FOR FLIGHT DYNAMICS

MONTE CARLO SIMULATIONS

A Dissertation

by

CAROLINA ISABEL RESTREPO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, John Hurtado
Committee Members, John Junkins

Raktim Bhattacharya
Ricardo Gutierrez-Osuna

Head of Department, Dimitris Lagoudas

August 2011

Major Subject: Aerospace Engineering

iii

ABSTRACT

An Analysis Tool for Flight Dynamics Monte Carlo Simulations. (August 2011)

Carolina Isabel Restrepo, B.S. Texas A&M University;

M.S. Texas A&M University

Chair of Advisory Committee: Dr. John Hurtado

Spacecraft design is inherently difficult due to the nonlinearity of the systems in-

volved, as well as the expense of testing hardware in a realistic environment. The

number and cost of flight tests can be reduced by performing extensive simulation and

analysis work to understand vehicle operating limits and identify circumstances that

lead to mission failure. A Monte Carlo simulation approach that varies a wide range

of physical parameters is typically used to generate thousands of test cases. Cur-

rently, the data analysis process for a fully integrated spacecraft is mostly performed

manually on a case-by-case basis, often requiring several analysts to write additional

scripts in order to sort through the large data sets. There is no single method that

can be used to identify these complex variable interactions in a reliable and timely

manner, as well as to a wide range of flight dynamics problems.

This dissertation investigated the feasibility of a unified, general approach to the

process of analyzing flight dynamics Monte Carlo data. The main contribution of this

work is the development of a systematic approach to finding and ranking the most

influential variables and combinations of variables for a given system failure. Specifi-

cally, a practical and interactive analysis tool that uses tractable pattern recognition

methods to automate the analysis process has been developed. The analysis tool

has two main parts: the analysis of individual influential variables and the analy-

sis of influential combinations of variables. This dissertation describes in detail the

two main algorithms used: kernel density estimation and nearest neighbors. Both

iv

are non-parametric density estimation methods that are used to analyze hundreds

of variables and combinations thereof to provide an analyst with insightful informa-

tion about the potential cause for a specific system failure. Examples of dynamical

systems analysis tasks using the tool are provided.

v

A mi mamá.

Gracias por enseñarme a no rendirme.

vi

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. John Hurtado, for helping me make

the decision to stay at Texas A&M for my Ph.D., and for offering to be my advisor.

He has been a great teacher and mentor to me. I want to thank him for helping me

work through this problem and for being willing to start from scratch all those times

when we thought we had hit dead ends. I really appreciate his willingness to work

with me, both in College Station and in Houston, especially the many times he came

to JSC and spent a full day with me working out math and discussing new possible

solutions.

I would also like to thank my committee members, Dr. John Junkins, Dr. Raktim

Bhattacharya, and Dr. Ricardo Gutierrez-Osuna, for all that I have learned from them

through their classes, suggestions, and research discussions. Dr. John Valasek has

also been a great mentor to me throughout my Ph.D. years. I always appreciate his

advice on all types of things, including controls, running, and life in general.

This research would not have been possible without the support of the Aero-

science and Flight Mechanics Division at the Johnson Space Center. I would like to

thank Steve Fitzgerald for giving me the opportunity to work on this problem and

for being so enthusiastic and optimistic about its future applicability to the way we

design spacecraft. I appreciate all the support I had from him during the past four

years, and the freedom and time that I was given to try what seemed like an infinite

number of possible solutions. I am very grateful to my office mates at the Johnson

Space Center, Jen Madsen and Kurt McCall, for letting me constantly interrupt their

work to listen to me think out loud, and contribute their many great ideas. I would

also like to thank James Garton for his hard work on the graphical user interface of

this tool, and Karen Gundy-Burlet for the time she spent with me at NASA Ames at

vii

the beginning of this project.

I am grateful to my husband, Daniel, who has been by my side ever since I started

my Ph.D. He listened to me talk about the problems with the latest ideas, and let me

talk long enough until I came up with a new idea to try next - sometimes without a

pause. All the endless days and nights of studying and coding would not have been

the same without him sitting next to me, reminding me that we did, in fact, have a

great life even though we were still in school.

I also want to thank my family, especially my grandfather Tito, who never

stopped believing in me. His encouraging words gave me the extra energy boost

I needed to get through the next hurdle. I have dedicated my dissertation to my

mother because I grew up with her telling me that if I started something, I needed to

finish it. I remembered this over and over again during the past four years, especially

when this problem seemed to have no solution.

Last but not least, my aero friends, especially those whom I have known during

the entire decade I spent at Texas A&M, have been invaluable to me. I want to thank

Dasia Reyes, Julie Parish, Lesley Weitz, and Xiaoli Bai for helping me through all

those hard times, and for making my life fun during grad school. I also want to thank

my friend, Stefanie Beaver, for taking the time to understand my research problem,

even during running, and for meticulously editing my entire dissertation.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Background . 3

B. Research Contributions . 6

C. Dissertation Organization 7

II FLIGHT DYNAMICS MONTE CARLO SIMULATIONS 8

A. Equations of Motion . 8

B. Monte Carlo Simulations 9

C. Monte Carlo Data Analysis Process 12

D. Chapter Summary . 14

III PATTERN RECOGNITION AND FLIGHT DYNAMICS 16

A. Definitions . 16

B. Pattern Recognition Overview 19

C. Pattern Recognition and Flight Dynamics 23

1. Classification of Simulation Data 24

2. Analysis of Individual Variables 24

3. Analysis of Combinations of Variables 25

D. Chapter Summary . 26

IV IDENTIFICATION OF INFLUENTIAL VARIABLES 27

A. Non-Parametric Density Estimation 27

B. Kernel Density Estimation 30

C. Variable Ranking . 34

D. Chapter Summary . 37

V IDENTIFICATION OF FAILURE REGIONS 40

A. The k Nearest Neighbors Method 40

1. The Density Estimation Problem 41

2. The Classification Problem 44

B. Failure Regions Ranking 46

C. Selection of Analysis Variables 50

D. Chapter Summary . 52

VI EXAMPLES . 54

A. Spring Pendulum . 54

ix

CHAPTER Page

1. Monte Carlo Simulation 56

2. Performance Metrics Evaluation 57

3. Influential Variables 59

4. Influential Variable Combinations 61

5. Summary . 64

B. Satellite Directional Stability 65

1. Monte Carlo Simulation 67

2. Performance Metrics Evaluation 68

3. Influential Variables 68

4. Influential Variable Combinations 71

5. Summary . 74

C. Aerodynamic Flutter . 75

1. Monte Carlo Simulation 77

2. Performance Metrics Evaluation 78

3. Influential Variables 79

4. Influential Variable Combinations 82

a. Selection of Analysis Variables 82

b. Selection of Ranked Variable Combinations 83

c. Analysis of Two-Dimensional Regions 85

d. Analysis of Trends 90

5. Summary . 91

D. Spacecraft Flight Dynamics 91

E. Chapter Summary . 100

VII GRAPHICAL USER INTERFACE 102

VIII SUMMARY . 110

REFERENCES . 112

VITA . 117

x

LIST OF TABLES

TABLE Page

I Rocket Dispersed Parameters . 13

II Spring Pendulum Monte Carlo Input Deck 57

III Spring Pendulum Ranking of Individual Variables 59

IV Spring Pendulum Ranking of Variable Combinations 62

V Satellite Monte Carlo Input Deck . 68

VI Satellite Ranking of Individual Variables 69

VII Satellite Ranking of Variable Combinations 72

VIII Satellite with Reaction Wheel Ranking of Variable Combinations . . 74

IX Aerodynamic Flutter Monte Carlo Input Deck 78

X Aerodynamic Flutter Ranking of Individual Variables 80

XI Aerodynamic Flutter Variables for the Analysis of Failure Regions . . 83

XII Aerodynamic Flutter Ranking of Variable Combinations 85

XIII Ascent Abort Individual Variables 95

XIV Ascent Abort Monte Carlo Results 99

xi

LIST OF FIGURES

FIGURE Page

1 Spacecraft Design and Analysis Cycle 2

2 Analysis Tool for Flight Dynamics Simulations 6

3 Rocket Monte Carlo Simulation . 10

4 Rocket Monte Carlo Trajectory Analysis 13

5 Non-informative Features . 18

6 Informative Feature . 18

7 The Histogram as a Non-Parametric Density Estimation Method . . 28

8 Kernel Density Estimation . 31

9 Kernel Density Estimation Gridpoints 32

10 Kernel Density Estimation Distribution Tails 33

11 Kernel Density Estimation Bandwidth 33

12 Kernel Density Estimation for Dispersed Monte Carlo Variables . . . 35

13 Kernel Density Estimation Relative Influence of Dispersed Variables . 36

14 Kernel Density Estimation - Difference Between Classes 37

15 Two-dimensional Nearest Neighbors Example 42

16 k-NN Method for Density Estimation 43

17 Effect of K on Density Estimates . 43

18 Two-dimensional Nearest Neighbors Example - 2 Classes 45

19 k-NN Method for Mapping of Failure Regions 47

20 k-NN Method for Mapping of Failure Regions - Fuzzy Boundary . . . 47

21 Distinct Failure Regions . 48

xii

FIGURE Page

22 Spring Pendulum . 55

23 Spring Pendulum Nonlinear Behavior 56

24 Spring Pendulum Monte Carlo Trajectories 58

25 Spring Pendulum Natural Frequency Relationship 58

26 Spring Pendulum Kernel Density Estimation 60

27 Spring Pendulum Fourth Ranked Variable Combination 63

28 Spring Pendulum Top Ranked Variable Combination 63

29 Spring Pendulum Low Ranked Variable Combination 64

30 Satellite . 66

31 Satellite Directional Stability Regions 66

32 Satellite Motion . 67

33 Satellite Monte Carlo Trajectories . 69

34 Satellite Kernel Density Estimation 70

35 Satellite Second Ranked Variable Combination 72

36 Satellite with Reaction Wheel Directional Stability Regions 73

37 Two Degree-of-freedom Airfoil Model 75

38 Aerodynamic Flutter . 76

39 Divergence Boundary . 77

40 Aerodynamic Flutter Monte Carlo Results 79

41 Aerodynamic Flutter Problem Kernel Density Estimation 81

42 Aerodynamic Flutter - UD vs. b . 86

43 Aerodynamic Flutter - U vs. b . 86

xiii

FIGURE Page

44 Aerodynamic Flutter - b
ωθ

vs. U . 87

45 Aerodynamic Flutter - b
ωh

vs. U . 87

46 Aerodynamic Flutter - U vs. Clα . 88

47 Aerodynamic Flutter -
Clα
UD

vs.
Clα
U

. 88

48 Aerodynamic Flutter - UD
ωh

vs. U
ωθ

. 89

49 Aerodynamic Flutter - ωh
ωθ

vs. U . 89

50 Aerodynamic Flutter - U
ωθ

vs. UD . 90

51 Orion Launch Abort System . 92

52 Orion Launch Abort Regimes . 93

53 Orion Ascent Abort Performance Relative Effects of Dispersed Variables 94

54 Orion Ascent Abort Kernel Density Estimation 1-2 96

55 Orion Ascent Abort Kernel Density Estimation 3-4 96

56 Orion Ascent Abort Kernel Density Estimation 5-6 97

57 Orion Ascent Abort Kernel Density Estimation 7-8 97

58 Orion Ascent Abort Kernel Density Estimation 9-10 98

59 Orion Ascent Abort Kernel Density Estimation 11-12 98

60 GUI Data Location . 102

61 GUI Main . 103

62 GUI Input Variable Selection . 104

63 GUI Output Variable Selection . 105

64 GUI Selection of Performance Metrics 106

65 GUI Selection of Analysis Type . 106

xiv

FIGURE Page

66 GUI Individual Variables Ranking 107

67 GUI Inclusion of Compound Variables 108

68 GUI Variable Combinations Ranking 108

1

CHAPTER I

INTRODUCTION

Spacecraft design is inherently difficult due to the nonlinearity of the systems involved

as well as the expense of testing hardware in a realistic environment. The number and

cost of flight tests can be reduced by performing extensive simulation and analysis

work to understand vehicle operating limits and identify circumstances that lead to

mission failure. A Monte Carlo simulation approach that varies a wide range of

physical parameters is typically used to generate an umbrella of test scenarios. The

results of these analyses bound the vehicle performance and eventually help certify a

spacecraft for flight. NASA’s Orion vehicle is a current example of the importance

and benefits of the Monte Carlo design approach [1].

As in any engineering problem, identifying variables that can drive the design is

crucial. These variables need to be analyzed more thoroughly to ensure safety and

reliability of the spacecraft. For a human-rated spacecraft, identifying the variables

that could cause failures is particularly important. The Monte Carlo simulation

process is perhaps the most important, and also most time consuming, part of the

design and analysis cycle (Figure 1) of any space vehicle. Engineers seek to pinpoint a

few individual influential variables that directly affect a particular system requirement

in order to address the necessary changes in the design. However, it is typically not

the individual parameters that lead to critical failures such as missing a landing

target, sub-optimal parachute deployment, or high g-forces on the crew. It is a

series of complex variable interactions that cause these anomalies due to the high

level of coupling throughout the flight of a spacecraft. Determining which variable

The journal model is IEEE Transactions on Automatic Control.

2

combinations cause system failures is essential in the final design and testing phases,

and they are extremely difficult to track down with a manual analysis of Monte Carlo

data.

Fig. 1.: Spacecraft Design and Analysis Cycle

Currently, there is no general methodology that can be used to identify individual

variables or critical variable interactions in a reliable and timely manner for a flight

dynamics problem. There have been several methods developed to identify which

variable uncertainties have a greater effect on the outcome of a simulation, but in most

cases, the algorithms are specific to a particular problem and require the analyst to

write additional code or to manipulate and re-run the Monte Carlo simulation. These

are significant obstacles that must be addressed in order to automate the data analysis

process. To overcome them, the problem is addressed here from the perspective on a

flight dynamics engineer who does not necessarily have access to the simulation but

is tasked with the analysis of a set of Monte Carlo data from a spacecraft designed by

3

someone else.

More specifically, the goal of this work is to develop a general methodology that

can be used to analyze flight dynamics data for problems with a small number of

design parameters and also for problems with a wide range of design parameters. In

other words, this methodology is applicable to the analysis of a fully dispersed, fully

integrated spacecraft Monte Carlo simulation, as well as to the piecewise analysis of

its distinct individual subsystems.

A. Background

In the past, the analysis of Monte Carlo data for problems with a relatively small

number of design variables has been addressed in a number of ways, but the analysis

of data for fully integrated spacecraft has mostly been performed manually on an

individual basis by a great number of people working simultaneously. In fact, there

are several recent publications that show how Monte Carlo data is used and analyzed

for NASA’s newest spacecraft [2, 3, 4]. There are additional references that describe

what it takes to analyze Monte Carlo data for different fully integrated vehicles [5, 6].

The lack of a general methodology for the analysis of flight dynamics Monte Carlo

data is evident.

On the other hand, aerospace problems with a smaller number of variables than

a high-fidelity spacecraft simulation have served as great test problems to develop

a number of innovative analysis methods. Perhaps the most intuitive method to

find individual influential variables is to perform a sensitivity analysis of all output

parameters with respect to all input parameters, but this typically requires access

to the model equations and the ability to write additional pieces of code. These are

obstacles for an engineer that does not own the simulation.

4

Statistical methods such as Modern Design Of Experiments (MDOE)[7] and

ANalysis Of VAriance (ANOVA)[8] have been used effectively to allocate how much

of the output variance is due to the variance of different inputs. Problems in the

aerospace field have been addressed with this method [9, 10] with the goal of under-

standing the sources of variance in experimental data. The goal of the Monte Carlo

analysis problem is not to allocate the amount of variance among the different inputs

but to understand the interaction of the variance of each design parameter that was

purposefully introduced by the analyst.

Another probability-based approach to the problem of characterizing input un-

certainties that ultimately result in a system failure is to iteratively expand or reduce

a region in the input space that contains a certain probability of failure. Reference

[11] describes an algorithm that starts with a well-defined subset of the input un-

certainty space and iteratively modifies it based on whether or not it encapsulates

dispersed points that meet a certain performance criteria. A similar approach, in the

sense that new test input vectors are generated and analyzed iteratively to narrow

down a critical input space, is presented in [12]. Even though both of these papers

demonstrate the ability to narrow down certain influential variables in their systems,

the methods require manipulation of the Monte Carlo input deck and re-running the

simulation which are steps this method seeks to avoid.

One last related approach is the use of the Markov Chain Monte Carlo algo-

rithm as in reference [13]. The authors assume that input parameters have Gaussian

distributions and use a Markov Chain to generate successive samples of inputs that

would likely generate failures in the output space. Unfortunately, making assump-

tions about the parameter input space could yield results that cannot be used in a

spacecraft flight certification task. Once again, using a non-deterministic technique

to generate new samples and re-running the simulation is not an option if the analyst

5

does not have access to the simulation.

Another approach that has been used for identifying influential variables in a

Monte Carlo data set is polynomial chaos. The method requires writing problem-

specific code because the model equations must be reformulated. This is undesirable

for the application presented here since the goal is to have it be applicable to a wide

range of problems. However, references [14, 15] use a modified non-intrusive version

of the method that does not require modifying the system equations. They treat the

simulation as a black box and perform the analysis around it. This might seem a very

practical approach, but if the analyst cannot fully understand and keep track of what

the algorithm is doing, he or she cannot trust the method, especially when it comes

to the certification of a human-rated vehicle. In fact, since one of the goals of this

work is to use tractable algorithms that a flight dynamics engineer can trust, the use

of non-deterministic algorithms is not considered further. This includes methods such

as neural networks, or any other kind of method that assumes that the simulation is

a black box.

The methods discussed above may be effective for small scale aerospace problems

but, unfortunately, cannot be generalized to complex flight dynamics problems. Cur-

rently, the only other attempt to develop a standard methodology for the analysis

of flight dynamics Monte Carlo data is the work done by K. Gundy-Burlet et. al

[16, 17] at the NASA Ames Research Center. The group has developed a method to

analyze flight dynamics data that uses a combination of pattern recognition meth-

ods to identify qualitative trends between inputs and outputs. They create success

maps of the most correlated variables. The work herein is similar in the sense that

both seek to automate the complex data analysis task that NASA flight dynamics

engineers face today through the use of pattern recognition, but the new method is

different in the sense that it aims for a more deterministic answer, a concrete ranking

6

of influential parameters and the most influential variable combinations that directly

affect a specific system failure.

B. Research Contributions

This work provides a systematic way of listing the most influential variables for each

particular failure metric, sets the stage for a qualitative analysis of the physics of

the problem, and reduces the number of variables requiring analysis from several

hundred or even thousands, to a short list of influential variables. This is valuable

because it saves time and increases the level of confidence with which the design can

be validated and certified. Time and confidence levels are important to reduce the

design cycle costs which currently involve hundreds of engineers generating terabytes

worth of Monte Carlo data and spending months analyzing it. Figure 2 shows more

concisely where the tool developed in this dissertation fits into the analysis process

of a spacecraft.

Fig. 2.: Analysis Tool for Flight Dynamics Simulations

7

C. Dissertation Organization

This dissertation is organized as follows. Chapter II contains an introduction to the

equations of motion of a spacecraft and describes current challenges of a Monte Carlo

simulation analysis process along with a discussion of the different types of param-

eter uncertainties involved. Chapter III introduces some basic concepts of pattern

recognition, describes the specific algorithms selected for the analysis of a flight dy-

namics problem, and introduces the rationale for the selection of the algorithms used

in subsequent chapters. Chapters IV and V describe the methodology to obtain a

ranked list of influential variables and a ranked list of critical variable combinations,

respectively. Chapter VI contains four examples of dynamical systems analysis tasks

of different complexity levels. Chapter VII describes the graphical user interface for

the first version of this tool, and Chapter VIII summarizes the contributions of this

dissertation.

8

CHAPTER II

FLIGHT DYNAMICS MONTE CARLO SIMULATIONS

Designing a spacecraft is an iterative process that begins with the current vehicle

design and configuration, current information about parameter uncertainties, and a

set of nominal initial conditions for a nominal trajectory. The design is simulated

and tested thousands of times through Monte Carlo simulations. The resulting set

of data yields information about the probability of success of the spacecraft and its

subsystems when operated under many different circumstances. The data is then

analyzed by flight dynamics engineers who design guidance, navigation and control

algorithms for the fully integrated vehicle. If the current design cannot perform

adequately, the analysts then recommend changes for the next iteration. This chapter

describes the equations of motion of a flight vehicle, the Monte Carlo simulation

process, and the types of design parameters that are varied along with a discussion

of some of the challenges with the analysis.

A. Equations of Motion

The motion of any rigid body in space can be fully described by a set of three trans-

lational equations for its mass center and a set of three rotational equations about its

mass center. Together, these equations form six second-order differential equations

or twelve first-order differential equations [18]. The basic equations of motion are 2.1

and 2.2.

F = mr̈c (2.1)

[Ic] ω̇ = −ω × [Ic]ω + M (2.2)

9

A spacecraft is typically made up of several bodies that are initially connected

and may later be jettisoned during flight. To simulate the flight, a separate set of

twelve equations is needed for each body in the problem. Every other aspect of the

motion, such as relative motion between the different bodies or between the bodies

and the ground, can be derived from these equations. This means that the number of

parameters that describe the mass properties, forces, and moments in the equations

is also multiplied by the number of bodies involved. For vehicles such as the Space

Shuttle or the Crew Exploration Vehicle, the number of independent parameters in a

simulation reaches the thousands.

Some of these parameters are well known to the engineers but some are very

difficult to characterize. As an example, the mass properties of a vehicle are well

known and carefully tracked during flight, so there is little doubt on the value of

these parameters at any point along the trajectory. However, parameters such as

aerodynamic coefficients are difficult to predict, and therefore, a wide range of val-

ues for each of them must be simulated. The timing of events during a flight such

as booster separation or parachute deployment also varies widely depending on the

trajectory. Additionally, a vehicle is designed to launch at any time of the year, so

unpredictable weather patterns must also be taken into account and simulated. The

following section describes how these variations are integrated into a Monte Carlo

simulation.

B. Monte Carlo Simulations

The goal of a Monte Carlo simulation is to understand all critical design sensitivities

that may prevent the design from meeting a set of performance requirements. To

illustrate this, consider as an example the trajectory of a rocket (rc from Equation

10

2.1) shown in Figure 3a. For this example, the goal is to design the rocket such

that it meets a single performance metric: to land beyond a specified distance. In

order to evaluate which design parameters affect the performance metric the most, a

Monte Carlo simulation is used. Figure 3b shows the full set of trajectories, where

some fail to satisfy the performance metric. This example is explored in more detail

throughout this chapter.

(a) Nominal Trajectory (b) Monte Carlo Trajectories

Fig. 3.: Rocket Monte Carlo Simulation

To generate a Monte Carlo set that can be used to perform a thorough analysis,

all dispersions on input parameters must be realistic. For a spacecraft problem, the

parameters that must be dispersed are the vehicle mass properties, aerodynamic coef-

ficients, guidance, navigation, and control parameters, and environment parameters.

Each component of a spacecraft has its own set of mass properties which include

mass, inertia matrix, and the location of the mass center. All of these parameters are

typically well-known or can be measured fairly accurately. Therefore, they can safely

be modeled with a normal distribution (µ, σ) where µ and σ, the mean and standard

deviation, are provided by the system experts that have designed the individual pieces

11

and have a certain level of confidence in the uncertainty model.

The aerodynamic coefficients of a spacecraft are carefully analyzed through com-

putational models and tested in wind tunnels. However, they are very difficult to

characterize, so their uncertainty model includes both aleatory and epistemic uncer-

tainties [19, 20]. These parameters cannot be predicted with as much accuracy as the

mass properties, which is why they are modeled with a uniform distribution, rather

than a normal distribution, in a Monte Carlo simulation.

Environment parameters are probably the most difficult to model. Unfortunately,

they cannot be modeled with a simple probability density function but instead re-

quire a complex atmospheric model that includes the varying effects of temperature,

pressure, and winds for a given time of year. The GRAM [21] atmospheric model is

normally used for analysis within the spacecraft community. Monte Carlo simulations

vary the day of launch to test the design with different weather patterns and ensure

its robustness with respect to launch conditions.

In addition to modeling the vehicle mass and shape and the environment, a Monte

Carlo simulation contains a model of the GN&C algorithms. GN&C algorithms are

robust against changes in the vehicle model and environment parameters, but at

the same time, they have their own parameters that are also varied. For example,

the guidance algorithm can contain trajectory dispersions as well as dispersions in

the timing of events through flight software commands. These parameters cannot

be modeled accurately through normal or uniform distributions either. The flight

software itself may have hundreds of parameters that must be simulated. These

parameters must also be tested for different possible scenarios in which there are

signal delays, software errors, and emergency conditions where the software must

trigger an abort.

In conclusion, the input file of a Monte Carlo simulation must be designed to

12

cover a wide range of circumstances that are randomly selected from the uncertainty

models described. Since some of the dispersions cannot be modeled by an analytical

probability density function, it is crucial that no assumptions are made by the analyst

with regards to the simulation input space. Specifically, it is important to avoid the

following two assumptions.

1. A bigger spread in an input variable means a bigger spread in the output space

and this is a negative effect. This is not necessarily true because some input

parameter dispersions might actually benefit the outcome of a few particular

simulation runs.

2. A bigger spread in one variable is worse than a smaller spread in another vari-

able. This also may not be true because a small spread on a very important

variable might be more critical than a large spread on a less important variable.

The importance of being faithful to the true input parameter dispersions further

justifies that methods relying on an input space modeled by a variety of analytical

probability density functions should not be used in the analysis of a Monte Carlo set

for the purpose of certifying a vehicle for flight.

C. Monte Carlo Data Analysis Process

This section describes the typical analysis process of a Monte Carlo data set through

the rocket simulation example described in the previous section. The Monte Carlo

input file contains the dispersed parameters listed in Table I

Intuitively, it makes sense that all dispersed parameters have a significant effect

on whether or not the design meets the performance metric. The challenge how-

ever, is to determine how these design parameters influence the failed simulation runs

13

Table I.: Rocket Dispersed Parameters

Vehicle Model Environment GN&C Initial Conditions

Length Wind force Engine thrust magnitude Velocity (3)

Radius Engine cut-off time Attitude (3)

Mass Chute deployment time

Center of gravity

Chute drag coefficient

individually, as well as in combination, without having to re-run another set of sim-

ulations. Without a general methodology, the first step in a manual analysis process

is to plot the rocket trajectories and differentiate the failed simulation runs from the

successful ones. Figure 4 shows the successful runs in blue, and the failed runs that

did not land at the desired target in red.

Fig. 4.: Rocket Monte Carlo Trajectory Analysis

14

Figure 4 does not provide enough information to make an assertion on the cause

of the failed runs, so the next step in the process is to plot the different input and

output parameters of the simulation and try to track down the source of the problem.

Subsequently, it may be necessary to plot combinations of two or three variables at

a time to understand their relationship visually. Since there is no way of knowing

a priori which of these variables should be plotted together, other than engineering

intuition, all possible combinations of two and three design parameters must be plot-

ted together and understood before making a decision with regards to future design

changes.

This example uses the fifteen input parameters described above and several

output parameters to fully describe the six-degree-of-freedom trajectory. The to-

tal amount of variable combinations to analyze is somewhat manageable. However,

for a flight vehicle with thousands of design parameters, this process can take several

months. Realistically, it is not possible to plot and analyze every single combination

of variables, so there is no guarantee that the analyst will be able to capture every

problematic aspect of the design.

Additionally, this kind of manual analysis could ultimately provide a ranking

of the most influential parameters within each category (i.e. most important mass

properties, aerodynamic coefficients, wind directions, etc.) but it would be difficult

to make comparisons between all types of parameters at once. The methodology

developed in this dissertation provides this capability.

D. Chapter Summary

In general, the best and perhaps the only, way of obtaining confidence with today’s

Monte Carlo analysis process is to be extremely familiar with the vehicle design and

15

have intimate knowledge of the simulation. This is one of the drawbacks of the manual

analysis of the data. The other main drawback is that normally multiple Monte

Carlo sets are required to draw any useful conclusions, and the rate at which data

is generated well exceeds the rate at which engineers can analyze and understand

it. Often, this leads to simply quoting statistics on Monte Carlo results to meet

performance requirements rather than a thorough analysis of the failed simulation

runs. While there is nothing inherently wrong with these statistics, they may mask

potential problems by the sheer number of runs.

The method developed in subsequent chapters addresses these two drawbacks.

The analysis tool still requires a good understanding of the physics of a flight dynamics

problem, but it does not require intimate knowledge of the parameter dispersions

and model equations. Flight dynamics engineers will be able to use this analysis

tool without having designed the spacecraft themselves, which will save a significant

amount of work and time.

16

CHAPTER III

PATTERN RECOGNITION AND FLIGHT DYNAMICS

Chapters I and II describe the current methods available to analyze a flight dynamics

Monte Carlo data set and also present a discussion of the obstacles that need to be

overcome in automating the analysis process. The most important obstacle is perhaps

the applicability of a single method to all kinds of problems without having to write

additional code for each analysis task. This chapter describes a few basic pattern

recognition concepts and explains their applicability to automating the analysis of

flight dynamics data.

A. Definitions

Pattern recognition can be defined in several different ways. In general, it is the

process of automatically finding common features and patterns in a data set with the

purpose of describing the data, fitting a model, or classifying data points into classes

to help understand it better. References [22, 23] provide more precise definitions.

Pattern recognition methods are great at identifying patterns, trends, and re-

lationships in large data sets that a person can’t efficiently find on his or her own.

However, the interpretation of results often requires an expert in the problem. This

process is described by reference [24] as Knowledge Discovery, which is the “non-trivial

task of determining whether the patterns extracted from the data are meaningful or

not and making decisions with regards to the interpretation and organization of the

information found through a data mining process.” It is non-trivial because it is highly

dependent on the type of data, the specific goals of the analysis task, and the ana-

lyst. This is especially true for the intended use of the analysis tool developed here:

17

General knowledge of flight dynamics and GN&C systems is needed to interpret the

results provided by the tool, but detailed knowledge about a specific spacecraft design

is not required.

Two basic concepts that are used in the field of pattern recognition are features

and patterns. A feature is any characteristic that describes an object, and a pattern

is a combination of specific features that can describe the object in a particular

way. Features are informative when they provide information that differentiates an

object from other objects, but features are not informative when the information they

provide is not helpful in discriminating one object from another. For a flight dynamics

problem, a feature is essentially a design or an output variable, and a pattern is a

combination of variables that can show something important about the data. The

rocket problem from Chapter II is used as an example to portray the differences

between informative and non-informative features and patterns.

The flight of the rocket is simulated with a 200 run Monte Carlo data set with

varying engine thrust magnitudes and varying engine shutdown times. The results are

in Figures 5-6. The success criteria for the example is reach a minimum downrange

distance, and all subsequent figures will show the successful cases as blue circles and

all failed cases as red x’s.

Figure 5a shows an example of a variable that is not very informative on its own.

The value of the variable, engine shutdown time, is on the y-axis, and there is no

separation boundary between the successful runs and the failed runs. This is a very

typical plot that must be interpreted by a flight dynamics engineer. The question of

does this variable affect the failed cases? is difficult to answer with the information

from a plot that lacks a separation boundary. Figure 5b is a little more informative. A

trend can be seen where the higher values of thrust result in more successful simulation

cases and the lower thrust values result in failures. This makes sense since the higher

18

(a) (b)

Fig. 5.: Non-informative Features

Fig. 6.: Informative Feature

19

levels of thrust propel the rocket farther and are more likely to reach the minimum

downrange distance to be considered a success. However, the separation boundary

of success and failures is not clear enough to make any conclusions about the thrust

levels. On the other hand, Figure 6 has a clear separation boundary between the

successful and failed cases. By themselves, neither the engine shutdown time nor the

engine thrust provide a useful measure for predicting success. However, combining the

two clearly delineates what is necessary to reach the minimum downrange distance for

success. In other words, this two-dimensional space allows a flight dynamics engineer

to conclude that, when these two variables are combined in a specific manner, the

system is guaranteed to fail. This is exactly the kind of pattern that helps an analyst

understand a dynamical system. For an analyst, the patterns are easy to see once the

combinations of variables that contain the patterns are found. The search for these

combinations is what the analysis tool developed here seeks to automate.

B. Pattern Recognition Overview

As described in reference [22], a pattern recognition system has a few important parts.

The author calls these parts sensing, segmentation and grouping, feature extraction,

classification, and post-processing. Only some of these apply to the analysis of Monte

Carlo data. This section explains which pieces of a typical pattern classification

problem are important to the current application.

Reference [22] refers to the measurements of features as sensing. In other words,

the input to the pattern recognition system is some kind of measurement that is used

to describe an object. If the problem was to analyze flight test data, then the mea-

surements would come from sensors. In the case of Monte Carlo data, sensing means

simply reading in values from the data set and associating them with a corresponding

20

descriptive variable name.

The second step in a pattern recognition system is segmentation and grouping.

This part of the pre-processing of the data does not apply to Monte Carlo data since

each feature is uniquely separate from the others for a given simulation run.

Feature extraction is the problem of selecting those parameters that are most

likely to differentiate an object from the rest. More specifically, it is the automated

analysis of all features and the selection of the ones that show the most separability

between classes. In the rocket example from Figure 5, the engine thrust magnitude

is a better candidate feature than the engine shutdown time if only one feature could

be selected in oder to classify a simulation run as a success or a failure. For a more

complex pattern classification problem, the feature selection phase might include the

manipulation or distortion of features in order to find the maximum separability

between classes. However, for a flight dynamics problem, it is important to keep the

features intact so that the original magnitudes and units of all variables are conserved,

and the analyst can think in terms of physical parameters.

The classification problem consists of simply assigning a class label to a data

point based on its features or patterns. For example, if we had a trusted pattern

classifier, a simulation run could be classified as successful if its features indicate that

it falls within the successful region of the data space, or it can be classified as a failure

if it falls within the failure region. Fortunately, there are clearly defined mission

performance requirements for spacecraft, so each data point is classified explicitly

based on these and not based on the features that show the most separability. This

is a very important distinction between a typical classification task by a pattern

recognition system and the classification of Monte Carlo simulation data for a space

vehicle.

Reference [22] refers to post-processing as the recommendation of actions from

21

the classifier. For example, if a classifier sorts through envelopes at a postal office

and labels each envelope with a given zip code, it might recommend to put certain

envelopes in certain delivery trucks. This does not apply to Monte Carlo data analysis.

The analysis tool will not make any recommendations to the analyst. It is the analyst

who must interpret the data and make recommendations on the design.

A few important pattern classification methods are regression analysis, data clus-

tering, and model description [25]. Regression analysis involves fitting a model to

current data, and using that model to predict the classification of future data. Data

clustering algorithms automatically group data points into clusters according to a pre-

viously specified cost function. Typically, the data is grouped based on its proximity

to other neighboring data points, where proximity can be quantified using a variety

of distance measures. Karen Gundy-Burlet et al. in reference [16] uses a clustering

technique along with other algorithms to identify failure regions in a data set. The

authors provide a valuable way of looking at trends in the data. Clustering methods

were initially explored in the development of this analysis tool, but it was determined

that a concrete boundary between failure and success regions was preferable over a

success likelihood mapping.

The model description problem consists of extracting the best set of informative

features that can describe the model. One way to describe the data is to fit a prob-

ability density function to each feature. This can be done with parametric density

estimation methods and non-parametric density estimation methods. Frequently, the

first thing an analyst does to understand an unfamiliar data set is to calculate its

mean and standard deviation. This is an example of parametric density estimation:

the assumption that the data comes from a normal distribution and that only its

parameters, mean and standard deviation, are needed to characterize it accurately.

This works well if the data is known to be gaussian, but it is wrong to assume this

22

about a data set that may or may not be gaussian. It is crucial to the work in this

dissertation that no assumptions are made about variable uncertainty distributions.

For this reason, parametric density estimation methods are not used.

On the other hand, non-parametric density estimation methods are great can-

didates for the Monte Carlo data analysis problem. These methods estimate the

probability density function directly from the available samples and make no as-

sumptions whatsoever. Moreover, unlike many other pattern recognition methods,

the non-parametric density estimation methods meet the following constraints that

have been a top priority throughout the development of this analysis tool.

1. Algorithm Constraints

(a) Algorithms are for post-processing data only and cannot rely on iteratively

running several Monte Carlo sets.

(b) Algorithms must make no assumptions about input probability density func-

tions.

(c) Algorithms must compare all types of parameters at once regardless of their

units or relative magnitudes.

(d) Algorithms must filter out variable correlations that obviously do not affect

a particular failure.

2. Usability Constraints

(a) The tool must be generic enough to address any GN&C issue that arises

for any flight vehicle design.

(b) The tool must be specific enough to capture subtleties buried in large data

sets while ignoring obvious variable correlations that are not informative

and do not affect system failures.

23

(c) The tool must not require an analyst to modify existing code or write new

pieces of problem-specific code.

(d) The tool must be flexible enough to allow a system expert to introduce

additional variables and performance metrics to the analysis.

(e) The tool results must be tractable enough that an aerospace engineer can

trust and understand without being an expert in the fields of statistics or

pattern recognition.

(f) The tool must be consistent enough to yield the same results each time it

is used on a given data set (this implies that random algorithms are not

appropriate).

As mentioned in Chapter I, the goal of this dissertation is to address the flight dy-

namics data analysis problem from the perspective of an aerospace engineer. Section

C below explains the connection between pattern recognition and a flight dynamics

problem.

C. Pattern Recognition and Flight Dynamics

There are three general steps for the analysis process of data. The first step is the

classification of each simulation run as either a successful run or a failed run according

to given performance metrics. The second step is the analysis of the original variable

space to obtain a ranked list of influential individual variables for a given performance

metric. The third step is the analysis of higher-dimensional variable spaces to obtain

a ranked list of influential combinations of variables for a given performance metric.

24

1. Classification of Simulation Data

Classifying the data into successes and failures can be done explicitly with equations

that represent a particular performance metric. Once all mission success metrics have

been checked, each simulation run is assigned to one of two classes:

• Successful class 1

• Failure class 2

After identifying failures and successes, the non-parametric density estimation meth-

ods can be used to construct a model of the successful data and a separate model of

the failure data. The estimated densities of each data class are then used to determine

the differences between the classes and to ultimately find the features responsible for

causing system failures.

2. Analysis of Individual Variables

Figures 5a and 5b show two individual variables for which the successful class and

the failure class are not clearly separable. If an analyst were given the chance to

look at these two plots and asked to select the best variable to use in a classification

task, the answer is obvious: engine thrust magnitude does a better job discriminating

between classes. However, when a Monte Carlo set has hundreds of variables, the

analyst would be faced with staring at hundreds of similar plots and selecting the

best variables visually. This is impractical so this tool seeks to automate the feature

selection process.

The method selected to perform the task of ranking the individual design vari-

ables according to class separability is a non-parametric density estimation method

1Successful cases will be colored blue in all subsequent figures.
2Failure cases will be colored red in all subsequent figures.

25

called kernel density estimation (KDE). This method constructs an estimated proba-

bility density function for each of the classes. The difference between these estimated

densities is then calculated and used to rank each variable according to how well it

can discriminate between classes. This method is described in detail in Chapter IV.

The ranking of individual variables lets the analyst see how many, and which

variables, must be analyzed in detail. When the analyst plots the data for each of

the important dimensions, or variables, useful trends can be learned. However, it is

extremely unlikely to find a single variable capable of completely separating failed

runs from successful runs for a highly coupled nonlinear problem. So it is necessary

to explore higher-dimensional variable spaces.

3. Analysis of Combinations of Variables

Figure 6 is a great example of why its necessary to explore higher-dimensional regions.

For a flight dynamics problem, there will be combinations of more than just two-

variables that will need to be explored. At the same time, exploring a combination of

too many variables might be not be insightful either. It was determined that, for the

current version of the analysis tool, regions of up to four variables will be analyzed

and ranked.

The ranking of these higher-dimensional regions is also done based on the sep-

arability of the success and failure regions. Specifically, the ranking is done based

on how much overlap there is between the two regions. To calculate the overlap,

a mapping of the variable subspace is created with another non-parametric density

estimation technique called k-nearest neighbors. This method is described in detail

in Chapter V.

26

D. Chapter Summary

It would be extremely complicated, if not impossible, to automatically find a mathe-

matical expression that describes exactly which combinations of variables and which

particular thresholds cause system failures because of the degree of coupling between

variables in a flight dynamics problem. Therefore, the most practical approach is

to use tractable pattern recognition techniques, namely non-parametric density esti-

mation methods, to highlight the differences between successful and failed simulation

cases and present them in a straightforward and intuitive way to the person analyzing

the results.

27

CHAPTER IV

IDENTIFICATION OF INFLUENTIAL VARIABLES

The best way to narrow down the variable space in search for the influential variables is

to highlight differences. To highlight differences, it is important to accurately describe

the data, which implies no assumptions about the distributions should be made. For

this reason, a non-parametric density estimation method is used to construct models

of the success and failure data sets. The differences between the two density models

provides valuable information in the analysis of a flight dynamics problem. This

chapter explains the basic theory of the kernel density estimation method, and how it

is used to identify and rank the design variables that influence a system’s performance.

A. Non-Parametric Density Estimation

The simplest form of non-parametric density estimation is a histogram normalized by

the number of samples. To obtain the estimate of the probability density function,

the random variable is partitioned into bins, and the data points that fall within each

bin are counted. The equation for a histogram is:

pi =
ni
N∆

(4.1)

where pi is a constant probability density valid across the width of bin i, ni is the

number of samples in bin i, N is the total number of samples, and ∆ is the bin width.

Bishop, in reference [23], says that there are two important lessons to learn from

the histogram. The first is that the density estimate is based on local information, so

there needs to be an established measure of locality, or distance. In the case of the

histogram, the bin width is the measure of locality, which also serves as a “smoothing”

parameter for the density estimate. The second lesson is that the smoothing parame-

28

Fig. 7.: The Histogram as a Non-Parametric Density Estimation Method

ter should not be too small or too big. Figure 7 compares three different histograms,

with different bin widths, to the true density function. The optimal binwidth value

that matches the theoretical density function is somewhere in the middle.

These two lessons can be applied to the kernel density estimation method as well.

The derivation of the kernel density estimation method below follows the procedures

outlined in both references [22] and [23].

In general, the probability P of finding x in a region R is

P =
∫
R
p(x)dx (4.2)

and the probability of finding K out of N samples within the region R is given by

29

the binomial distribution

p(K) =

 N

K

PK(1− P)N−K (4.3)

The expected value of a binomial distribution [26] is given by

E(K) = KP (4.4)

which for large N samples, can be approximated as

K ' NP (4.5)

Assuming that R is small enough that the probability function p(x) is constant

throughout the region, Equation 4.2 can be approximated as

P ' p(x)V (4.6)

where V is the n-dimensional volume of the region R. Combining Equations 4.5 and

4.6, an equation for the density estimate of the data for a given x-location within

region R is obtained:

p(x) =
K

NV
(4.7)

Since the number of samples, N , is fixed for a given data set, Equation 4.7

provides two options for the non-parametric density estimation problem: (a) fix the

volume, V , and determine the number of samples, K, and (b) fix K and determine

V from the neighboring data points. Option (a) is the basis for the kernel density

estimation method, and option (b) is the basis for the k-nearest neighbors method.

Reference [22] discusses the convergence of both of these methods to the true proba-

bility density function of a random variable.

30

B. Kernel Density Estimation

The kernel density estimation method consists of setting the volume constant and

counting the samples that fall within this volume to calculate a density estimate

using Equation 4.7. A method called Parzen Windows [27] takes this fixed volume to

be of the simplest shape: an n-dimensional cube. Duda and Hart explain the method

as follows [22].

An n-dimensional region R in the shape of a hypercube of length h, has a volume

V = hn. This region can be represented by the following kernel function.

φ(x) =

1 |x| ≤ 1

2
, j = 1,n

0 otherwise
(4.8)

The expression for the number of samples K that fall within the hypercube centered

at xi is

K =
N∑
i=1

φ
(
x− xi
h

)
(4.9)

where x is the distance from the center of the hypercube, xi. Substituting the expres-

sions for K and V into Equation 4.7, the probability at a given x-location becomes

p(x) =
1

N

N∑
i=1

1

hn
φ
(
x− xi
h

)
(4.10)

where x is the location at which the density is being estimated, and xi are the actual

data points that are being used to estimate the density. The estimate of the proba-

bility density function at each x-location is the sum over the hypercubes centered at

each data point. The hypercube kernels can be replaced by Guassian kernels for a

smoother solution by replacing the equation for K with the equation of a Gaussian

distribution as follows:

p(x) =
1

N

N∑
i=1

1

(2πh2)1/2
e
||x−xi||

2

2h2 (4.11)

31

Now the density estimate can be calculated by adding the contributions of the Gaus-

sian distributions at each of the data points and normalizing the total by the number

of samples N . Figure 8 illustrates the Gaussian kernels centered at each data point,

and the total of their contribution to form the estimated density function. The vol-

ume of each kernel approaches 1
N

and the volume under the estimated density curve

approaches 1.

Fig. 8.: Kernel Density Estimation

Equation 4.11 provides the estimate of the density at a specific x-location based

on the contributions of the data points xi. The method calculates the density estimate

for a fixed number of x-locations or grid points. Figure 9 shows estimated densities

calculated from 10 data points (xi, i = 1...10) at 100 x-locations (top figure) and

at 20 x-locations (bottom figure). Figure 10 shows estimated densities at 100 x-

locations that go well beyond the minimum and maximum data points (top figure),

and at 100 x-locations distributed evenly between the minimum and maximum data

32

Fig. 9.: Kernel Density Estimation Gridpoints

points (bottom figure). A true probability density function has an area of one, and

an estimated density function approaches that number. In Figure 10, it is clear that

the top figure, which includes more of the tails, is closer to the true density function

than the bottom plot.

In addition to the selection of grid points, it is important to select an appropriate

value for h, just as it is important to select an appropriate bin width for a histogram.

The parameter h is called the bandwidth, and it is introduced in the density estimate

equation as the standard deviation of the Gaussian kernels. Figure 11 shows the

density estimates for a given data set for different bandwidth values.

Finding the best possible bandwidth is critical for a pattern recognition problem

in which the estimated density function is used to make decisions. Typically, for a

classification problem, part of the available data set is used as a training set, and part

is used as a validation set. If little data is available, a more accurate estimate of the

33

Fig. 10.: Kernel Density Estimation Distribution Tails

(a) small bandwidth (b) medium bandwidth (c) large bandwidth

Fig. 11.: Kernel Density Estimation Bandwidth

34

density can be obtained using the cross-validation technique [23, 28]. However, using

cross-validation for bandwidth selection is computationally expensive, especially in

the case of the analysis tool since a bandwidth value is needed for each variable

analyzed.

To address this problem, it was decided to use the bandwidth calculated by

Silverman [29]. His method consists of assuming a standard Gaussian distribution

and comparing the estimated density using Gaussian kernels of different bandwidths.

The optimal bandwidth is the value that minimizes the integral square error between

the assumed density and the estimated density. The equation is given by:

hoptimal = 1.06σN−1/5 (4.12)

where σ is the standard deviation of the data. It is true that this value is only

optimal if the underlying distribution is Gaussian. The current version of the analysis

tool uses this value, even though it is not optimal, because the computational cost

of cross-validation is not worthwhile. It is important to clarify that this does not

imply that the KDE method will treat each dispersed variable in the problem as a

Gaussian variable, since avoiding such assumptions is one of the main objectives of

this research. This equation is used solely to calculate a bandwidth value, and based

on several examples, this equation works well.

C. Variable Ranking

KDE is useful in understanding flight dynamics data when, for a given Monte Carlo

variable, two separate density estimates are calculated: one for the successful sim-

ulation runs and one for the failed runs. Figure 12 illustrates this with a variable

from the rocket example used in previous chapters. Figure 12a is a scatter plot of a

35

dispersed Monte Carlo input variable: engine thrust. Figure 12b is the density esti-

mate of all simulation runs. This shows that the engine thrust was dispersed using a

normal distribution about its nominal value. Figure 12c is the same scatter plot from

Figure 12a with each data point labeled as a success or a failure. Figure 12d shows

a density estimate for each of the classes. Each estimate is calculated using only the

data points in the corresponding class.

(a) Engine Thrust (b) Engine Thrust KDE

(c) Classified Engine Thrust (d) Classified Engine Thrust KDE

Fig. 12.: Kernel Density Estimation for Dispersed Monte Carlo Variables

The two densities are calculated through Equations 4.13 and 4.14 at the same

36

xj, where j = 1....M , and M is the number of gridpoints selected.

psuccess(xj) =
1

Nsuccess

Nsuccess∑
i=1

1

(2πh2
success)

1/2
e
||xj−xi||

2

2h2
success (4.13)

pfailure(xj) =
1

Nfailure

Nfailure∑
i=1

1

(2πh2
failure)

1/2
e

||xj−xi||
2

2h2
failure (4.14)

Then the two values can be subtracted from one another, and the difference, J , is

used as the measure of relative influence of each variable. The area under each of

these curves is one1, so there is no need to normalize the data. Additionally, the

results are unbiased with respect to the number of successful runs or failed runs. The

cost function that is used to rank the variables is given by

J =
M∑
j=1

|psuccess(xj)− pfailure(xj)| ∗D (4.15)

where D = distance between gridpoints. Figure 13 is a bar graph showing the relative

influence of each dispersed input variable on the rocket’s performance metric.

Fig. 13.: Kernel Density Estimation Relative Influence of Dispersed Variables

The bar graph is also useful for the analyst to determine how many of the vari-

1The density estimate adds up to one when the tail ends of the distributions is
taken into account. For simplicity, the density is calculated within a finite range of
grid points, so the last bit of area under the curve is not considered.

37

ables are worth analyzing in detail. The list of ranked variables that the tool presents

to the analyst is based on the value of J for each variables. In this example, the top

ranked variable is the third, the engine thrust magnitude, and the bottom ranked

is the fourth, rocket center of gravity location. Figure 14 shows that the variables

whose success and failure curves have different shapes allow an analyst to visualize

certain trends that influence the system failures. Once an approximate ranking of the

important variables is created, an analyst can make recommendations on potential

changes for the next design cycle.

(a) Influential Variable (b) Non-Influential Variable

Fig. 14.: Kernel Density Estimation - Difference Between Classes

D. Chapter Summary

The analysis tool uses the kernel density estimation method as described in this chap-

ter to ultimately calculate a single parameter that can be used to rank all dispersed

variables in a Monte Carlo simulation according to their relative influence on a given

performance metric. The parameter used for the ranking is J , from equation 4.15,

which is essentially the net difference between the estimated density functions for

38

the successful and failed simulation data points calculated at each grid point. In the

literature, there are other methods to compare non-parametric probability density

estimates with the goal of selecting features that are most helpful in associating a

given data point to a class. Three of these measures may be useful and could be

investigated in future versions of the analysis tool. One such method is the mutual

information criterion, which measures the amount of information one can deduce from

one feature given another one. There are several applications in pattern recognition

that use this measure as a way of selecting informative features. References [30, 31]

are two examples. A second method used to compare probability density functions is

the Mann-Whitney-Wilcoxon test [32], which measures the skewness of the two data

sets. Finally, the Siegel-Tukey test measures the tendency of a given data set to move

towards one side or another of its mean. In other words, it is used to measure the

relative spread of two groups of data [33].

However, unlike the methods discussed above, the approach selected in this dis-

sertation provides a visual representation of the difference between the estimated

probability density functions of the successful data and failed data. The ease of

graphical representation is a valuable feature of the analysis tool. In fact, this ap-

proach meets all the algorithm and usability constraints that were specified in Chapter

III. The general benefits of this approach are listed below.

• It is a simple, tractable algorithm that any aerospace engineer can understand

and use.

• For a given data set, the results are always the same.

• The only inputs to the algorithm are a matrix with the Monte Carlo data orga-

nized by simulation run number and variable names, and an explicit measure of

success that can be applied to the data. The algorithm does not require writing

39

additional code for an analysis task.

• The data analyzed is never manipulated, so the original physical meaning of

each variable is conserved.

• All types of variables can be analyzed at once. There is no need to categorize

the variables prior to the analysis tasks.

• There are no assumptions made about the distribution of the input or output

variables analyzed.

• The results are easy to visualize.

• The method saves time because it clearly shows which variables need to be

analyzed in detail, and which do not.

40

CHAPTER V

IDENTIFICATION OF FAILURE REGIONS

A failure region is defined here as a region in the design parameter space that, when

mapped to the output space through the simulation, leads to a system failure. As

mentioned previously, even though it is important to identify the individual param-

eters that significantly influence system failures, these seldom cause problems by

themselves. Their combinations and interactions are typically the design drivers.

Some failures are caused by two correlated variables. If correlation coefficients

were calculated for all variables included in the analysis, some failure regions could be

identified. However, not all regions result from a mathematical correlation between

variables. In fact, most variables that cause failures are related in such nonlinear

ways that looking for specific types of relationships is not enough. The potential of

a wide variety of shapes of failure regions implies that a local nonlinear mapping is

necessary.

This chapter explains how the k-Nearest Neighbors (k-NN) algorithm is used

to create maps of the nonlinear failure regions in the input parameter space of a

Monte Carlo simulation and how the analysis tool ranks the regions. A discussion

on the practical aspects, drawbacks, and necessary tuning parameters for the use of

this method is presented, as well as a list of improvements to future versions of the

analysis tool.

A. The k Nearest Neighbors Method

The k-nearest neighbors method can be used for both density estimation and classifi-

cation problems. As derived in Section 1 of Chapter IV, the equation for the density

41

estimate of a random variable is given by

P =
K

NV
(5.1)

where K is the number of data points that fall within a volume V , and N is the total

number of samples. The following sections explain the difference between using the

nearest neighbors method for density estimation and classification.

1. The Density Estimation Problem

For the kernel density estimation problem, the size of the volume V is selected ahead

of time through the selection of the bandwidth h, and K is subsequently calculated

accordingly. For the nearest neighbors method, K is fixed, and V is subsequently

calculated as a volume that contains K samples.

In the formulation for an n-dimensional data set, the volume, V , is considered

a hypersphere of radius r, where r is the distance between the point at which the

density is being estimated, xj, and the Kth farthest data point xi, i = 1...K. For a

two-dimensional data set, the density estimate at a given grid point, xj, is given by:

P (xj) =
K

Nπr2
. (5.2)

Figure 15 shows an example of how the volume is calculated for a problem in two

dimensions and K = 5. In this example, K = 5 and N = 15, and the estimated

density at the selected grid point is P (xj) = 5
15πr2

.

To determine which of the xi data points are the closest to a given grid point

xj, it is necessary to calculate the the distance between xj and each data point

xi, i = 1...N . The Euclidean distance, d(xj, xi) =
√∑2

k=1(xj(k)− xi(k))2 is used

here. All the distances are then sorted, and the top K data points are taken into

account for the density estimate calculation. Sorting is the biggest computational

42

Fig. 15.: Two-dimensional Nearest Neighbors Example

cost of the k-NN algorithm.

The number of neighbors in the k-NN method is analogous to the bin width

of a histogram and the bandwidth, h, for the kernel density estimation method. K

is essentially the smoothing parameter of the density estimate. Figures 16, and 17

show a two dimensional example of how the number of neighbors affects the density

estimate for a given random variable. From Figure 17, it is clear that the best number

of neighbors is somewhere in the middle. Figure 17b is the closest estimate to the

theoretical probability density function from Figure 16b, while the estimates with

higher or lower number of neighbors are farther from the truth.

The method is also biased with respect to the difference in magnitude of the

two dimensions [25]. If one dimension is much smaller than the other, the nearest

neighbors will tend to be chosen in that direction. To address this problem, the

Euclidean distance between the gridpoint xj and a given data point xi is scaled using

43

(a) Sample Data (N = 1000) (b) Theoretical Density Function

Fig. 16.: k-NN Method for Density Estimation

(a) K = 10 (b) K = 100 (c) K = 300

Fig. 17.: Effect of K on Density Estimates

44

weights as follows:

d(xj, xi) =

√√√√ 2∑
k=1

(W (k) · (xj(k)− xi(k)))2 (5.3)

where W (k) = 1
max(x(k))−min(x(k))

for the kth dimension. The scaling is only used for

the classification of grid points, so it does not manipulate the data itself.

The density estimate using the k-NN method does not have a very high accuracy.

In fact, the resulting estimate is not a true probability density function because it

does not add up to one, and its tails are open ended [23, 29]. However, the analysis

tool uses the method to assign a class to each of the gridpoints used in the mapping

of a two-dimensional region, and it does not need a highly accurate density estimate

for this. The following is an explanation of how the nearest neighbors method is used

for classification.

2. The Classification Problem

The nearest neighbors method can be used for classification of new examples based on

previous examples that have been already classified. For example, if a two-dimensional

space contains data points from two different classes, a new data point xj in this space,

can be classified as belonging to one of two classes based on its closest neighbors.

Figure 18 shows the grid point xj to be classified, and the data points xi of the two

different classes. In order to assign either the success or failure class label to point

xj, a density estimate is calculated for each class at xj using equation 5.2. Bayes’

theorem is then used to decide which class label should be assigned based on the

posterior probabilities of class membership [23], according to the following steps:

1. Calculate the estimated density function at xj.

p(xj) =
K

NV
(5.4)

45

Fig. 18.: Two-dimensional Nearest Neighbors Example - 2 Classes

2. Calculate the conditional probability of xj belonging to each class.

p(xj|success) =
Ksuccess

NsuccessV
(5.5)

p(xj|failure) =
Kfailure

NfailureV
(5.6)

3. Calculate the class prior probabilities.

p(success) =
Nsuccess

N
(5.7)

p(failure) =
Nfailure

N
(5.8)

4. Calculate the class posterior probabilities using Bayes’ theorem.

p(success|xj) =
p(xj|success)p(success)

p(xj)
=
Ksuccess

K
(5.9)

p(failure|xj) =
p(xj|failure)p(failure)

p(xj)
=
Kfailure

K
(5.10)

46

5. Compare the posterior probabilities and assign the gridpoint xj to the class

with the largest posterior probability.

if
Ksuccess

K
>

Kfailure

K
=⇒ xj is a success (5.11)

if
Ksuccess

K
<

Kfailure

K
=⇒ xj is a failure (5.12)

For the data in Figure 18, there are three success in the neighborhood of xj and

two failures. The posterior probabilities at xj are:

p(success|xj) =
3

5
(5.13)

p(failure|xj) =
2

5
(5.14)

Since the probability of xj belonging to the success class is greater than the probability

of belonging to the failure class, the grid point is classified as a success.

Steps 1-5 above are used to map two-dimensional variable subspaces for a given

flight dynamics problem with the goal of automatically identifying distinct boundaries

between success and failure regions. Section B explains how the analysis tool uses

this process to rank the variable combinations to provide the user with insightful

information.

B. Failure Regions Ranking

To map a given two-dimensional region, several gridpoints are distributed over the

space and classified using the nearest neighbors method. Figure 19 is an example

of such a map for two variables from the rocket problem. Figure 19a shows that, in

reality, the boundary between the classes is not as clear as the one that was mapped

in 19b. To distinguish between spaces with truly distinct boundaries and spaces with

fuzzy boundaries, the gridpoints with a near even mix of neighbors are classified as a

47

third, or hybrid, class and colored purple. Figure 20 is the new map of the region.

(a) Scatter (b) k-NN

Fig. 19.: k-NN Method for Mapping of Failure Regions

(a) Scatter (b) k-NN

Fig. 20.: k-NN Method for Mapping of Failure Regions - Fuzzy Boundary

The goal of the analysis tool is to identify the regions with distinct boundaries, so

the amount of hybrid grid points allows the analysis tool to rank the regions according

to the separability between classes. For example, the variable subspace from Figure

20 shows distinct failure and success regions, where as the subspace in Figure 21

48

does not have a clear separation between successful and failed simulation cases. The

main difference between the variable subspaces is that the first one teaches the user

something about the system failure, and the second region does not. The first region

tells the analyst that, in order to meet the performance metric, i.e. reach the minimum

downrange distance, it is necessary to provide high engine thrust for a long period

of time. The second region tells the user that there are no particular configurations

of mass and center of gravity location that will allow the current design to meet

the performance metric without addressing problems with other design variables. In

short, both regions say something about the current design, but only those regions

with clear separability of successful and failed runs help an analyst understand the

potential cause of a specified failure.

(a) Scatter (b) k-NN

Fig. 21.: Distinct Failure Regions

However, if the cost function used for the ranking of the regions is based exclu-

sively on the size of the hybrid separation boundary, a few important regions may

not be captured. The tool uses a more complex cost function that is based on the

hybrid regions, as well as on the similarity of the success and failure regions to the

49

true amount of successes and failures in the data. The cost function for each region

is calculated using the following equation:

J = Wh · (1−Gh) +Ws · (1− |Gs −Xs|) +Wf · (1− |Gf −Xf |) (5.15)

where

Gh = % of hybrid grid points

Gs = % of success grid points

Gf = % of failure grid points

Xs = % of success data points

Xf = % of failure data points

and the weights, W , emphasize the importance of each piece. The weights, along

with the number of neighbors and the number of grid points, are considered tuning

parameters for the analysis tool. Equation 5.15 is the cost function selected for the

first version of the analysis tool. In the future, variations of this equation will be

investigated but the five parameters involved in the cost function do provide enough

information to obtain the ranking of variable combinations. References [29, 22] sug-

gest K =
√
N as a good starting point to select an appropriate number of neighbors.

However, for the current application, the number of data points in each of the classes

must be taken into consideration when selecting the number of neighbors. For exam-

ple, if a data set contains only 5 failed simulation runs, and the number of neighbors

is set to 20, none of the grid points will be labeled as failures, and the mappings of

all variable subspaces will be classified as successful 100% of the time. In cases where

there are small number of data points in one of the classes, the number of neighbors

50

should be set low enough to capture them. Future work will include running several

trades studies to determine if the tool itself can suggest an appropriate number of

neighbors to the user based on the data set in question. The default weights for

the cost function are set equal to each other. However, if one of the classes has a

very small number of data points, emphasizing the weight on that class as well as

the hybrid region weight is recommended. A more detailed discussion of the weight

selection is provided in the examples chapter. Lastly, the current version of the tool

uses a 30× 30 grid to create a map of a two-dimensional region. Future work should

also include trade studies to determine how to best adapt the grid to the data set

being analyzed. This work could include normalization of the data to select a more

appropriate number of grid points and their location. For now, the number of neigh-

bors, the grid point number and location, and the cost function weights, are left as

important tuning parameters for the analyst.

C. Selection of Analysis Variables

The nearest neighbors mapping described in the previous sections is computationally

expensive. Therefore, it is a good idea to think about which design variables should be

included in the analysis of failure regions. Unfortunately, combining the top ranked

individual variables into different ratios, is not enough to guarantee that all potentially

critical variable interactions can be found. To do this, all variables, except those

specific ones that are known to be unimportant with certainty, should be included in

the analysis.

Computing and analyzing an exhaustive list of two, three, and four-variable

combinations for a system with thousands of parameters is still too time consuming

for an analyst. In order to alleviate this process, the original variables can be combined

51

into pairs, and subsequently, combined once again in the form of a two-dimensional

region that is automatically searched for data separability and ranked accordingly

through the use of the k-NN algorithm. After some experimentation with a few

example problems, including flight dynamics data from the Orion vehicle, it was

concluded that it is a reasonable assumption to consider only higher dimensional

regions of up to four variables. Regions that contain more that four variables proved

to be difficult to interpret.

Once the user has selected the list of variables to form the different subspaces,

the tool gives the user two options: (a) analyze all two-dimensional combinations of

variables on the list, or (b) create additional variables in the form of a difference or

a ratio, and subsequently analyze all two-dimensional combinations of the original

variables and newly created variables.

Option (a) simply analyzes all possible combinations of the form var(i) vs.

var(j), for i = 1...N and j = i + 1....N , so each two-dimensional combination is

analyzed and ranked only once. The number of regions analyzed for n variables is

given by:

of regions =

(
n!

2!(n− 2)!

)
(5.16)

Option (b) creates two different types of compound variables of the form var(i)−

var(j), for i = 1...N and j = i + 1....N , and of the form var(i)
var(j)

, for i = 1...N and

j = i + 1....N . The number of new compound variables for n original variables is

given by:

of compound variables = 2 ·
(

n!

2!(n− 2)!

)
(5.17)

Each of these new variables is then added to the original list, and subsequently com-

bined in the same way as in option (a) with equation 5.16. This time, the value of

n is much larger: nnew = noriginal + 2 ·
(

noriginal!

2!(noriginal−2)!

)
. For example, if option (b) is

52

chosen for six original variables, a total of 630 combinations are analyzed and ranked.

Some of the new compound variables do not make physical sense, so future versions

of the tool should track the units and eliminate from the list those combinations that

are not realistic. Additionally, there may be some compound variables that subtract

a very small number from a very large one. For this application, this issue is not au-

tomatically addressed because of the importance preserving the original units of the

data. However, analysts can easily normalize the data themselves and run it through

the analysis tool in the same way that they would run the original data set.

D. Chapter Summary

The analysis tool uses the nearest neighbors algorithm described in this chapter to

create maps of regions in a Monte Carlo input parameter space that lead to failed

simulation runs. The tool analyzes and ranks hundreds of regions automatically. An

analyst can pay careful attention to the ones that show a distinct separation between

successful and failed simulation runs, and learn something new about the system.

This approach, like the kernel density estimation method described in Chapter

IV, meets all the usability constraints and requirements that were set for the devel-

opment of this tool. In general, the work presented herein represents a new method

for the analysis of any Monte Carlo simulation with the following benefits.

• The method and its tuning parameters are tractable.

• The results are consistent for a given data set.

• The variables are not manipulated during the analysis, so they conserve their

original meaning.

• The tool is flexible enough that an expert user can introduce additional com-

53

pound variables to the analysis, which are then treated in the same way as the

original variables.

• The method can map regions of any shape and it is based on local information.

• No assumptions about the input variables are made.

• The results are easy to visualize.

• The method saves a significant amount of time through automation.

54

CHAPTER VI

EXAMPLES

This chapter contains four examples of varying complexity. The first two examples,

the spring pendulum example in Section A and the satellite example in Section B,

demonstrate the ability of the analysis tool to capture the nonlinear behavior of

a system and find the regions in the design parameter space that lead to failures.

The aerodynamic flutter problem in Section C is an example of a nonlinear system

that has the different types of parameter dispersions of a flight dynamics problem.

This example shows that the tool is capable of finding combinations of variables

of different types. The spacecraft example in Section D is an analysis task for a

fully integrated spacecraft: NASA’s Orion vehicle. The first three examples are

simulated in MATLAB [34], and the spacecraft example uses data from NASA’s

Crew Exploration Vehicle (CEV) simulation, ANTARES [35].

A. Spring Pendulum

The motion of the spring pendulum in Figure 22 is a classic problem that has been

analyzed analytically [36]. It is a great example of how the behavior of a dynamical

system can depend on nonlinear variable interactions but is not directly dependent

on any one variable alone.

The equations of motion of the system are:

ẍ+
k

m
x− (l + x)θ̇2 − g cos θ = 0 (6.1)

θ̈ +
g sin θ − 2ẋθ̇

l + x
= 0 (6.2)

where m is the mass of the pendulum, k is the spring constant, l is the length of the

55

Fig. 22.: Spring Pendulum

pendulum, and x and θ are the stretch and swing degrees-of-freedom respectively.

Figure 23 shows the state trajectories for the spring pendulum with two different

sets of parameter values. In both cases, the motion is initiated by pulling down on

the pendulum 10cm. However, the motions are very distinct: in Figure 23a, the

pendulum moves up and down but it does not swing much, and in Figure 23b, the

pendulum’s kinetic energy oscillates between the up and down motion and the swing

motion.

The analytical solution to the linearized equations shows that the behavior of

the pendulum is directly dependent on the ratio of the two natural frequencies of

the system. In particular, it has been demonstrated that when the spring natural

frequency, ωθ =
√

k
m

, is approximately two times the swing natural frequency, ωx =√
g
l

, a momentum exchange occurs between the two degrees of freedom of the system

[36]. In other words, if the mass properties of the system are interacting in this

particular manner, the pendulum behaves in a unique way that cannot be predicted

by analyzing any single variable individually. This example shows that the method

56

(a) No induced swinging (b) Induced swinging

Fig. 23.: Spring Pendulum Nonlinear Behavior

developed in this dissertation is capable of finding this solution from the analysis of

a single Monte Carlo data set.

1. Monte Carlo Simulation

The spring pendulum is simulated through a one thousand run Monte Carlo with six

dispersed variables. Two of the dispersed variables are the initial conditions x(0) and

θ(0). The next three are the pendulum mass properties, mass, length, and spring

constant, and the last one is the gravity constant which was dispersed to add a little

more complexity to this example. Table II represents the nominal and dispersed

values for each parameter in the simulation. The dispersions are written as N(µ, σ)

for normal distributions or U(nominal, bound).

In general, state variables can be recorded in two different ways. One is to record

at a specific time instance along the trajectory, for example at t = 0s. The other

way is to record their minimum, maximum, or average value during a specific phase.

In this example, the position of the pendulum is recorded by logging the minimum

57

and maximum values during t = [0, 30]s. The values recorded at the different time

stamps are then used to evaluate the performance metrics of the system.

Table II.: Spring Pendulum Monte Carlo Input Deck

Variable Dispersion Units

x(0) N(0.1, 0.01) m

θ(0) N(0.5, 0.01) deg

m N(1, 0.1) kg

k N(30, 0.25) N/m

g N(9.8, 0.1) m/s2

l N(1, 0.1) m

2. Performance Metrics Evaluation

The performance metric states that if the pendulum swings out of control, regardless

of how much the spring stretches, a particular simulation run is considered a failed

case. The Monte Carlo trajectories of the pendulum are depicted in Figure 24 where

the successful cases are blue and the failures are red. The metric used in this example

is defined as:

if max(θ) > 10 degrees→ failure (6.3)

The top plot shows that there are cases with large spring oscillations but their swing

motion remains small. All failed cases have a swing amplitude that grows above the

ten-degree metric regardless of how large or small the corresponding spring oscillations

are. The analytical solution states that when the ratio

√
k/m√
g/l
' 2, or k/m

g/l
' 4, there

is a momentum exchange between the two degrees of freedom. Figure 25 shows two

different plots of the relationship between these four influential variables.

58

Fig. 24.: Spring Pendulum Monte Carlo Trajectories

(a) k/m
g/l

(b) k
m
vs. g

l

Fig. 25.: Spring Pendulum Natural Frequency Relationship

59

3. Influential Variables

To determine how each of the six dispersed variables influences the solution on an

individual basis, the kernel density estimation method described in Chapter IV is

applied. The ranking for the six dispersed variables is listed in Table III.

Table III.: Spring Pendulum Ranking of Individual Variables

Rank Variable

1 k

2 g

3 θ(0)

4 length

5 x(0)

6 mass

Figure 26 shows the KDE curves, where the trends for each variable between

the failure and successful runs can be observed. The variables in Figure 26 are

ranked according to how much the success and failure curves differ. This method is

a significant improvement when compared to current methods of obtaining a ranking

for the effects of individual variables. Currently, to obtain such a ranking, analysts

run several different Monte Carlo sets and change the input parameters by holding

constant one at a time and evaluate whether or not the number of total failures is

reduced. This is a very time consuming process, aside from the fact that it requires

running a simulation several times and changing the input variables, which are two

obstacles that must be overcome by the analysis tool.

60

(a) spring constant k (b) gravity

(c) θ(0) (d) length

(e) x(0) (f) mass

Fig. 26.: Spring Pendulum Kernel Density Estimation

61

4. Influential Variable Combinations

The individual variable ranking from Table III, even though it is very insightful,

does not completely explain the cause for the behavior of the failed simulation runs.

Figure 26a shows that certain values for the spring constant tend to result in successful

simulation runs and others tend to result in failures. However, there is a significantly

large range of k values that could result in either a success or a failure, so looking at k

alone does not explain the real cause of a failure. Since the individual variables aren’t

the sole cause of a failure, it is important to check if there are any combinations of

them that should be avoided.

The k-NN method described in chapter V ranks the variable combinations ac-

cording to how different, or how separable, the failed runs are from the successful

runs. For the six dispersed variables in this example, there were 630 combinations

analyzed and ranked. Table IV lists the top ten combinations, and one of the bottom

ranked combinations as an example of regions that are not as informative. Out of

the 630 variable combinations ranked, the variable subspace k
g
vs. m

l
is ranked fourth.

This is the region that agrees with the analytical solution. The fact that it is ranked

fourth and not first is not a problem, since this answer is still to be found in the top

1% of variable subspaces analyzed. Figure 27 shows a scatter plot of the data as well

as the k-NN mapping of the region that is used in the ranking.

Even though this region does not represent exactly the ratio from [36], it is a

region that shows the analyst a special relationship between these four variables. The

two-dimensional region clearly shows that the answer to the failed simulation runs

lies within a subspace encapsulated by these four variables. The exact mathematical

expression does not matter, as long as the combination of these particular variables

is automatically brought to the analyst’s attention.

62

Table IV.: Spring Pendulum Ranking of Variable Combinations

Rank Variable Combination

1 θ(0)
k

vs. x(0)
k

2 m
k

vs. x(0)
k

3 k
l

vs. x(0)
k

4 k
g

vs. m
l

5 k
l

vs. θ(0)
k

6 k
g

vs. l

7 k
g

vs. θ(0)
l

8 m
k

vs. θ(0)
k

9 k
l

vs. m
k

10 m
k

vs. x(0)
l

...
...

614 m
g

vs. l

63

The rest of the variables on the list are also informative relationships that tell

the user different things about the problem. For example, the first combination

shows two different variables scaled by the spring constant. Figure 28 shows that the

spring constant is the dominant effect, which was already known from the individual

variable analysis. However, the tool ranks the combinations based on the three-part

cost function described in Chapter V, so this combination is also captured.

(a) Scatter plot (b) k-NN map

Fig. 27.: Spring Pendulum Fourth Ranked Variable Combination

(a) Scatter plot (b) k-NN map

Fig. 28.: Spring Pendulum Top Ranked Variable Combination

64

As a counter example, take the last combination on Table IV, m
g

vs. l, shown in

Figure 29. A large percentage of the area is purple, which implies that this variable

subspace does not discriminate between success and failure regions as well as other

subspaces. The ranking also highlights the fact that k is part of all top ranked

combinations, but it is missing from the last combination. This is a confirmation of

what had already been concluded with the individual variable analysis. The ranking of

(a) Scatter plot (b) k-NN map

Fig. 29.: Spring Pendulum Low Ranked Variable Combination

the 630 variables takes approximately thirty minutes in Matlab on a typical desktop.

If an analyst decided to feed only the mass properties to the k-NN algorithm, knowing

that the initial conditions have little influence, then the number of combinations is

reduced to 120, and the computation time is reduced to less than ten minutes.

5. Summary

This example shows that an analysis of a single Monte Carlo data set with both the

kernel density estimation and the k-nearest neighbors algorithm can automatically

find the nonlinear region in the design parameter space that contains the answer to

a specific system failure. In the case of the spring pendulum, it was shown that this

65

analysis agrees with the analytical solution from reference [36].

B. Satellite Directional Stability

This example re-creates Hughes’ results for the directional stability analysis of a

satellite in reference [37]. The satellite is modeled as a cube with a reaction wheel,

that spins about one of its axes. Figure 30 shows the satellite, and the nonlinear

equations are the following:

K1ω̇1 = (I2 −K3)ω2ω3 + hω3 (6.4)

I2ω̇2 = (K3 −K1)ω1ω3 − u (6.5)

K3ω̇3 = (K1 − I2)ω1ω2 − hω1 (6.6)

h = u (6.7)

where ω1, ω2, ω3 are the angular velocities, I1, I2, I3, and Jt are the inertias of the

satellite and tangential inertia of the wheel respectively, h is the constant angular

momentum of the wheel, u is the wheel torque, and K1 = I1 + Jt, K3 = I3 + Jt. The

form of these equations is taken from reference [38]. Hughes performs the analysis

with a set of linearized equations of motion to investigate the stability of the system

when it is in pure-spin. The results show that to achieve directional stability, the

inertia that corresponds to the axis of pure spin, must not be the intermediate inertia.

Hughes’ example assumes that the axis of pure-spin is b̂2, and demonstrates that the

regions in which I2 is the intermediate inertia lead to an unstable motion. Specifically,

he shows that when plotting the inertia ratios k1 = I2−I3
I1

and k3 = I2−I1
I3

, as in Figure

31, there are two distinct stable regions and two unstable regions. The shape of these

regions changes with h. Here, we consider the case where both u and h are zero.

The motion of the satellite is considered directionally stable if small perturbations

66

Fig. 30.: Satellite

Fig. 31.: Satellite Directional Stability Regions

67

in angular velocities allow the satellite to remain in pure-spin. For this example,

pure-spin is defined as a motion in which ω2 is dominant, and ω1 and ω3 are relatively

small, as shown in Figure 32.

(a) Pure-spin (b) Tumbling

Fig. 32.: Satellite Motion

1. Monte Carlo Simulation

Typically, the mass properties of a dynamical system are dispersed using normal

distributions, as shown in Table V. These numbers guarantee that every case will

be a real physical body keeping k1 and k3 within the (-1,1) range while, at the same

time, yield enough runs in each of the quadrants in Figure 31. A Monte Carlo set of

500 runs is used in this example.

68

Table V.: Satellite Monte Carlo Input Deck

Variable Dispersion Units

mass N(1, 0.02) kg

width N(1,0.3) m

height N(1,0.3) m

depth N(1,0.3) m

ω1(0) N(0.1, 0.01) rad/s

ω2(0) N(1, 0.01) rad/s

ω3(0) N(0.1, 0.01) rad/s

h 0 Nm

2. Performance Metrics Evaluation

The performance metric is defined as follows:

if max(ω1) > 20% of max(ω2)→ failure (6.8)

if max(ω3) > 20% of max(ω2)→ failure (6.9)

3. Influential Variables

To determine how the mass properties and initial conditions influence the solution

on an individual basis, the kernel density estimation method is used. The ranked

variables are listed in Table VI. Figure 34 shows the KDE curves, where the trends

for each variable between the failure and successful runs can be observed.

69

Fig. 33.: Satellite Monte Carlo Trajectories

Table VI.: Satellite Ranking of Individual Variables

Rank Variable

1 I2

2 I1

3 ω1(0)

4 I3

5 ω2(0)

6 ω3(0)

70

(a) I2 (b) I1

(c) ω1(0) (d) I3

(e) ω2(0) (f) ω3(0)

Fig. 34.: Satellite Kernel Density Estimation

71

None of the plots in Figure 34 are particularly informative. The second inertia

is ranked the highest, but the curves show that this variable alone does not cause

instability.

4. Influential Variable Combinations

The success metric ensures that ω2 is the dominant angular velocity, so the satellite

goes unstable when the value I2 is between I1 and I3. Therefore, the subspace of

variables in which all successful cases are completely separable from failed cases must

involve a region encapsulated by I1, I2, and I3, and cannot be explained solely by

looking at I2. In this section, the k-NN algorithm is used to explore the higher-

dimensional regions.

Even though the actual dispersed variables are mass, height, width, and depth,

the regions analysis is performed with I1, I2, and I3, in addition to the three ini-

tial angular velocities. For these six variables, there are 630 regions analyzed. The

ranking of these regions is presented in Table VII. For this example, the solution

that agrees with Hughes’ stability analysis is the second variable listed in Table VII.

This variable subspace is shown in Figure 35. The “true answer” is I2−I1
I3

vs. I2−I3
I1

,

but as explained in chapter V, the important feature that must be captured by the

algorithm is the separability of the regions and not their exact shape. Dividing the

axes of this region by the inertia values, and negating the x-axis, are unnecessary for

an engineer to understand that the cause for failures is the relationship between the

three inertia values. In fact, the top nine variable subspaces listed contain the three

inertia values. Therefore, it becomes clear that this variable subspace influences the

satellite’s stability.

The example above analyzes the directional stability of a satellite without a

reaction wheel spinning (h = 0). Here the same problem is analyzed for the case

72

Table VII.: Satellite Ranking of Variable Combinations

Rank Variable Combination

1 I1 − I3 vs. I1 − I2

2 I2 − I3 vs. I1 − I2

3 I2 − I3 vs. I1 − I3

4 I1
I2

vs. I2 − I3

5 ω1(0)
I2

vs. I1 − I3

6 ω2(0)
I2

vs. I1 − I3

7 ω3(0)
I2

vs. I1 − I3

8 I1
I3

vs. I1
I2

9 I1
I3

vs. I1 − I2

10 I1
I2

vs. I2
...

...

(a) Scatter plot (b) k-NN map

Fig. 35.: Satellite Second Ranked Variable Combination

73

with a wheel spinning at a constant velocity (h = −0.01). The analytical result

from Hughes’ analysis is shown in Figure 36a [37], and the Monte Carlo results for

the Matlab simulation are shown in Figure 36b. The input deck for this example

(a) Analytical solution (b) Monte Carlo results

Fig. 36.: Satellite with Reaction Wheel Directional Stability Regions

contains the dispersed wheel speed in addition to the six dispersed variables from the

case above. The seven dispersed variables yield 1176 two-dimensional regions and

the ranked results are shown in Table VIII. The table shows the top 12 regions (top

1%) out of which six regions, numbers 1, 5, 6, 7, 8, and 12, contain the three inertia

values and show two success areas and two failure areas. From the results, it can be

seen that the wheel speed changes the shape of the nonlinear failure regions, but it

does not necessarily blur the boundaries between the regions. Given these rankings,

an analyst may consider ignoring the initial angular velocities and focus solely on the

inertias and wheel speed variable combinations to reduce the computational cost of

analyzing over a thousand regions. However, this is something that is left up to the

user.

74

Table VIII.: Satellite with Reaction Wheel Ranking of Variable Combinations

Rank Variable Combination

1 I1
I2

vs. I1 − I3

2 ω1(0)
I2

vs. I1 − I2

3 ω2(0)
I2

vs. I1 − I2

4 ω3(0)
I2

vs. I1 − I2

5 ω2(0)
I2

vs. I1 − I3

6 I1
I2

vs. I2 − I3

7 ω1(0)
I2

vs. I1 − I3

8 ω3(0)
I2

vs. I1 − I3

9 ω1(0)
I3

vs. I2 − I3

10 ω2(0)
I3

vs. I2 − I3

11 ω3(0)
I3

vs. I2 − I3

12 I2 − I3 vs. I1 − I3
...

...

5. Summary

This example emphasizes the importance of using a local technique, or a non-parametric

density estimation method, that can be applied to regions of varying shapes. There

is little chance that someone would assume that the underlying distributions for the

failure and success regions are similar to two bimodal distributions without know-

ing the answer ahead of time. Additionally, a correlation analysis between variables

would not be able to capture a checker-board shaped region either. It is also clear

from Figure 35, that the only way to find the separation between these regions is to

look at both of these variables together. The projection of the regions onto either

75

axis would effectively hide the solution.

C. Aerodynamic Flutter

This example is considerably more complex than the previous two. The goal is to

demonstrate the use of the analysis tool with a more realistic flight dynamics problem.

Aerodynamic flutter equations of motion include aerodynamic variables, environment

variables, and mass properties where the different types of variables interact nonlin-

early to cause instability. This example follows the steps that would be taken by a

flight dynamics engineer trying to gain an understanding of the physics of the system

based on a single Monte Carlo data set.

The example is based on Hodge’s aeroelastic analysis of a typical wing section

[39]. The two degree-of-freedom system is shown in Figure 37. The equations of mo-

Fig. 37.: Two Degree-of-freedom Airfoil Model

tion for this example (6.10) are derived in Chapter 4 of reference [39] from Lagrange’s

equations and thin airfoil theory. Nominal parameter values were obtained from the

wind tunnel model described in references [40, 41]. mb2 mb2xθ

mb2xθ IP

 ḧ

b

θ̈

+

 mb2ω2
h Clαρ∞b

2U2

0 IPω
2
θ −

(
1
2

+ a
)
Clαρ∞b

2U2

 h

b

θ

 =

 0

0

(6.10)

76

Reference [39] analyzes the stability of this two degree-of-freedom system by

looking at the behavior of the two dynamic modes of the system. An eigenvalue

analysis yields two complex conjugate modes. As the freestream velocity is increased,

the frequencies of these two modes come together and at this point, the modes are

so coupled that the system loses damping and starts to oscillate, or flutter. If the

freestream velocity is increased even further, then the system does not oscillate, but

the motion diverges at once. These two freestream velocity values are called the flutter

speed, UF , and the divergence speed, UD. The analysis of the two complex modes

shows that the divergence speed is related to the mass properties and configuration

of the system as in Equation 6.11.

UD =

√
Ipm

mb2ρ∞πb2(1 + 2a)
(6.11)

When the freestream speed normalized by the mid-chord and pitch natural frequency

surpasses UD, the motion diverges. Figure 38 shows the difference between a divergent

and a non-divergent case. In the latter, the freestream velocity is high enough that

the air increases the oscillations acting as negative damping and the motion diverges.

(a) No divergence (b) Divergence

Fig. 38.: Aerodynamic Flutter

77

The relationship between the divergence speed and the freestream velocity is

the explanation for the failure cases. This implies that the variable subspace that

contains the separation between the successful cases from failure cases, involves all

the variables that make up the UD equation, in addition to U∞, b, and ωθ. The failure

regions are shown in Figure 39.

Fig. 39.: Divergence Boundary

Currently, the analysis tool does not automatically calculate ratios as compli-

cated as the equation for UD, so this example takes UD as a variable itself. In fact,

the tool is flexible enough for an expert analyst to introduce new compound variables

that are known to be important for a specific problem. The following two sections

outline what the analysis process is like for an aerospace system.

1. Monte Carlo Simulation

For this example, a 500 run Monte Carlo is used. A total of 9 variables are dispersed:

initial conditions, mass, the two spring constants, the shape of the airfoil, the lift

curve slope, and the freestream conditions.

78

Table IX.: Aerodynamic Flutter Monte Carlo Input Deck

Variable Dispersion Units

airfoil mass, m N(13.75, 0.2) kg

inertia about pivot point, Ip N(0.152, 0.2) kg −m2

airfoil mid-chord, b N(0.1905, 0.2) m

spring constant, kh N(2844, 0.2) N/m

rotational spring constant, kθ N(25.55, 0.2) N/rad

lift curve slope Clα N(2π, 0.01) −

freestream velocity, U∞ N(8, 0.2) m/s

freestream density, ρ∞ N(1.2, 0.001) kg/m3

airfoil initial position, h
b
(0) N(0.01,0.01) −

2. Performance Metrics Evaluation

The performance metric used to capture the divergent simulation runs is defined as:

if max

(
h

b

)
> 0.1 → failure (6.12)

For this example, approximately 35% of the cases diverge. Figure 40 shows the

relationship between the divergence velocity, UD, and the normalized freestream, U
bωθ

.

79

Fig. 40.: Aerodynamic Flutter Monte Carlo Results

3. Influential Variables

The ranked individual variables are listed in Table X, and the density estimates of the

first few are in Figure 41. Even though the top five variables are related to divergence,

none of them can individually explain the cause for divergence.

80

Table X.: Aerodynamic Flutter Ranking of Individual Variables

Rank Variable

1 U∞

2 b

3 UD

4 kθ

5 ωθ

6 ωh

7 mass

8 Clα

9 Ip

10 ρ∞

11 h
b
(0)

81

(a) U∞ (b) b

(c) UD (d) kθ

(e) ωθ (f) ωh

Fig. 41.: Aerodynamic Flutter Problem Kernel Density Estimation

82

4. Influential Variable Combinations

Given that none of the variables is solely responsible for causing divergence, variable

combinations must be analyzed. In the analysis of failure regions, it is important

to keep in mind that the tool is an aid in the analysis process but it does not take

the aerospace engineer out of the loop. The aerodynamic flutter problem is not as

straightforward to analyze as the spring pendulum or the satellite problems. Flutter

is a realistic flight dynamics problem with complex nonlinearities, so the analyst must

be able to interpret the ranking of the regions using basic knowledge of the system.

With this in mind, the following steps are taken for the analysis of this problem.

a. Selection of Analysis Variables

In a dynamical system, the natural frequencies are important variables. On the other

hand, since the equation for the natural frequency of the system is ω =
√

k
m

, there

is no need to form combinations that include all three variables. It is a reasonable

assumption to include only the natural frequency in the analysis of failure regions, and

leave out the mass and spring constant, since their effects are most likely manifested

through the natural frequency of the system. In other words, analyzing the differences

of ω for the successful and failure classes would most likely yield the same kind of

information as analyzing the differences between k, and m. This applies to the current

example: the natural frequencies are included in the analysis, but the mass, inertia,

and spring constants are left out.

Additionally, a flight dynamics engineer should know that the density affects the

system primarily through the dynamic pressure q̄ = 1
2
ρ∞U

2
∞. If U∞ has a significant

effect on the failures, but ρ∞ does not, it is safe to assume that the effect of the

dynamic pressure will be dominated by the velocity, so including ρ∞ in the regions

83

analysis may not be necessary. In addition, knowing that U∞ is the dominant effect

on q̄, any useful trend for U∞ will most likely be the same for q̄, so analyzing both is

considered redundant for this example.

Lastly, from the individual variable analysis above, it can be seen that the initial

condition h
b
(0) had little effect on the system. In reality, a design should be very

robust to any initial conditions, but it may be worth including them in the analysis

to study any possibly insightful trends. Here, the initial position of the linear spring

proved to be unimportant, so for simplicity, it is not included in the analysis of variable

combinations. The six variables that remain from Table X are listed in Table XI. The

analysis tool analyzes 210 combinations of these six variables and their ratios.

Table XI.: Aerodynamic Flutter Variables for the Analysis of Failure Regions

Variable

U∞

b

UD

ωθ

ωh

Clα

b. Selection of Ranked Variable Combinations

Once a ranked list of variable combinations is obtained, it is important to study the

list while keeping in mind that some regions may not make complete sense and some

regions may be redundant. The ranked list is an aid to the analyst since it is based

on a generic cost function. It is not meant to be an absolute explanation for a given

system failure.

84

All variables involved should appear at least once amongst the regions selected

for detailed analysis. For example, if one of the variables does not appear in the top

10% of the regions ranked, it is still worthwhile to look at its first instance on the

list, even if it is lower than expected. On the other hand, it is not necessary to select

redundant regions. For example, if a variable C is nearly constant, and the ranking

contains the regions A vs. B and A
C
vs. B

C
, one of these is redundant, and it is only

necessary to select one for further analysis. Lastly, the analyst should also select

all combinations that they may think are important regardless of their place in the

ranking.

For this example, the regions selected from the complete ranked list are presented

in Table XII. The first two combinations were selected because the two velocities and

mid-chord seem to be important from the individual variables analysis. The next two

were selected in order to understand the relationship between the natural frequencies

and the velocities. Combinations 13 and 15 were selected to see the effect of the lift

coefficient and the relationship between the two velocities. The final combinations

were thought to be informative since they contain both velocities and both natural

frequencies. The combinations that were not added to this list were either redundant

or simply not as insightful as the ones included in Table XII.

85

Table XII.: Aerodynamic Flutter Ranking of Variable Combinations

Rank Variable Combination

3 UD vs. b

4 U vs. b

10 b
ωθ

vs. U

11 b
ωh

vs. U

13 U vs. Clα

15
Clα
UD

vs.
Clα
U

18 UD
ωh

vs. U
ωθ

20 ωh
ωθ

vs. U

26 U
ωθ

vs. UD

c. Analysis of Two-Dimensional Regions

As mentioned previously, none of these combinations will match exactly the stability

regions from Figure 39, but several of these regions do provide enough information to

understand which variables play a role in divergence. Figures 42-50 show the k-NN

results and the corresponding data scatter plots, along with a short explanation of

the insight they provide.

From Figures 42-50, it is clear that a relationship between U and UD, and between

each of these velocities and b exists. The involvement of the natural frequencies,

ωh and ωθ, is not as clear, but a flight dynamics engineer knows that the natural

frequencies of a system deserve attention. Further analysis is necessary for each of

the regions that show a possible trend.

86

(a) k-NN (b) Scatter

Fig. 42.: Aerodynamic Flutter - UD vs. b

(a) k-NN (b) Scatter

Fig. 43.: Aerodynamic Flutter - U vs. b

87

(a) k-NN (b) Scatter

Fig. 44.: Aerodynamic Flutter - b
ωθ

vs. U

(a) k-NN (b) Scatter

Fig. 45.: Aerodynamic Flutter - b
ωh

vs. U

88

(a) k-NN (b) Scatter

Fig. 46.: Aerodynamic Flutter - U vs. Clα

(a) k-NN (b) Scatter

Fig. 47.: Aerodynamic Flutter -
Clα
UD

vs.
Clα
U

89

(a) k-NN (b) Scatter

Fig. 48.: Aerodynamic Flutter - UD
ωh

vs. U
ωθ

(a) k-NN (b) Scatter

Fig. 49.: Aerodynamic Flutter - ωh
ωθ

vs. U

90

(a) k-NN (b) Scatter

Fig. 50.: Aerodynamic Flutter - U
ωθ

vs. UD

d. Analysis of Trends

Analyzing the regions that exhibit trends is the most important part of the analysis,

and unfortunately, it cannot be automated. Once the analysis tool has helped to

eliminate hundreds of regions that do not exhibit trends, it is necessary for the analyst

to perform a detailed inspection of the regions that do exhibit trends.

All of the regions above say something important about the problem. For ex-

ample, the linear relationship between the freestream velocity and the airfoil chord

length (Figure 43) would be insightful for someone trying to set up a wind tunnel

experiment with restrictions on the airspeed and the size of the test section. The plot

shows that, for a given airfoil model size, there is a maximum freestream velocity that

can be sustained before the model starts to flutter. The region U vs. Clα (Figure 46)

tells the analyst that the lift curve slope has little to no effect on divergence. The

region ωh
ωθ

vs. U (Figure 49) tells the user that the ratio of the two natural frequencies

is not important. The region UD vs.
U
ωθ

(Figure 50) is perhaps the closest combination

to the region from Figure 39. In general, each region that is identified as having a

separation boundary between successful cases and failure cases will be informative in

91

some way to the analyst.

It is relevant to point out that, even though this kind of detailed analysis of

specific variable combinations must be performed manually, the search for the regions

that contain trends is automated. This is a major improvement in efficiency over

today’s manual analysis process where both the detailed analysis of the regions and

the search of interesting regions must be done manually.

5. Summary

The divergence problem of a wing section is a good example of how this tool can aid

in the analysis of the nonlinear system dynamics. This example walks through the

necessary steps of an analysis task, and highlights the difficulty of finding the cause for

a specific type of problematic behavior of a dynamical system. Overall, this example

illustrates the importance of analyzing both individual variables and combinations of

variables and the relationship between both parts of the analysis when trying to draw

conclusions.

D. Spacecraft Flight Dynamics

This example demonstrates the use of the tool for the analysis of a fully integrated

spacecraft. Monte Carlo simulation data from NASA’s Orion vehicle is used here to

show the tool’s ability to pinpoint how many, and which design parameters out of the

hundreds that are dispersed, should be analyzed in detail.

The Orion vehicle is required to provide full abort coverage throughout the ascent

phase of flight [3, 42]. This abort requirement has been a major design driver for the

launch abort system, the rocket, and the vehicle itself. As shown in Figure 51 [42], the

launch abort system (LAS) has three sets of motors up stream of the vehicle, labeled

92

Fig. 51.: Orion Launch Abort System

Command Module in this figure. At the current stage in the design, it is well known

that the motor plumes are major drivers in the GN&C algorithm design. NASA flight

dynamics engineers have characterized the impact of certain aerodynamic variables

on the performance of the vehicle along the abort trajectories. This example focuses

specifically on how well the vehicle performs the reorientation maneuver near apogee

of an abort trajectory shown in Figure 52, also from [42].

Given a Monte Carlo data set of 2000 runs, but no access to the simulation

model equations and no opportunity to modify the simulation input parameters, all

variables that have an impact on a successful reorientation maneuver during an abort

trajectory must be identified.

The kernel density estimation method is used to find the individual variables

that affect the reorientation maneuver. Figure 53 is a bar chart that displays the

relative difference between the estimated density curves of the failed and successful

simulation runs. The cases that fail to perform a controlled reorientation maneuver

are labeled as failures. It is clear that, out of the 409 variables dispersed for an ascent

93

Fig. 52.: Orion Launch Abort Regimes

94

abort trajectory run, only 6 variables are significant in comparison to the rest.

Fig. 53.: Orion Ascent Abort Performance Relative Effects of Dispersed Variables

The dispersed variables include aerodynamics, mass properties such as mass and

inertias of the vehicle and motors, environment properties such as air density and

wind magnitude and direction, and dispersed abort initiation conditions. The top

variables that correspond to the highest bars in Figure 53 are precisely the aerody-

namic variables that are known to affect tumbling during reorientation. The next

highest ranked variables are the LAS inertias followed by the positions of the jettison

motor nozzles. Table XIII lists these variables in the correct order. The analysis was

done with a single Monte Carlo set. Due to ITAR restrictions on the data, the de-

sign variables used in this example are referred to by number only. The aerodynamic

database used for simulation of the Orion vehicle is being developed by the CEV

Aerosciences Project Team and is documented in reference [43].

95

Table XIII.: Ascent Abort Individual Variables

Rank Variable No. Type

1 90 aero

2 89 aero

3 92 aero

4 98 aero

5 97 aero

6 100 aero

7 146 drogue chute parameter 1

8 81 aero

9 350 random seed 1

10 124 aero

11 28 nozzle location

12 344 random seed 1

13-21 44-52 9 components of inertia matrix

...
...

...

1 Variable does not come into play until after the re-

orientation maneuver. Therefore, it does not affect

the tumbling failure metric.

The estimated density curves for the top few variables ranked are shown in

Figures 54-59. Figures 54a through 56b have significantly different curves than the

subsequent figures. This highlights the fact that it is crucial to investigate, and maybe

consider a design change to address the first six variables and not spend much time

investigating the rest.

96

(a) Variable 90 (b) Variable 89

Fig. 54.: Orion Ascent Abort Kernel Density Estimation 1-2

(a) Variable 92 (b) Variable 98

Fig. 55.: Orion Ascent Abort Kernel Density Estimation 3-4

97

(a) Variable 97 (b) Variable 100

Fig. 56.: Orion Ascent Abort Kernel Density Estimation 5-6

(a) Variable 146 (b) Variable 81

Fig. 57.: Orion Ascent Abort Kernel Density Estimation 7-8

98

(a) Variable 350 (b) Variable 124

Fig. 58.: Orion Ascent Abort Kernel Density Estimation 9-10

(a) Variable 28 (b) Variable 344

Fig. 59.: Orion Ascent Abort Kernel Density Estimation 11-12

99

Currently, the most reliable way to find the variables that directly affect the

performance is to run several Monte Carlo sets while holding constant each one of

the variables suspected to be causing problems, and comparing the results to the

Monte Carlo set with full dispersions to see if the number of failed runs decreases.

This manual performance assessment was executed for this example for the purpose

of validating the results from the analysis tool. Table XIV shows the results for the

top six variables that were identified as influential using the KDE method, which

proves that these variables do in fact alter the number of failure cases significantly

when they were held constant in a Monte Carlo simulation.

Table XIV.: Ascent Abort Monte Carlo Results

Fixed Variable # failures % failures

0 variables dispersed 0 0

variable 97 237 11.85

variable 92 238 11.9

variable 89 264 13.2

variable 100 301 15

variable 98 344 17.2

variable 90 367 18.35

409 variables dispersed 391 19.55

The first column of the table shows the name of the variable that was held

constant. The second and third columns contain the number of tumbling cases and

percentage of tumbling cases, respectively. When comparing the ranking in Table XIII

to the ranking in Table XIV, it is important to keep in mind that some dispersions

may actually improve the results so a “true” raking may not always be explicit.

100

However, the algorithm can still identify the handful of critical variables out of the

hundreds of variables dispersed through the analysis of a single Monte Carlo set and

do so without manipulating the simulation. This is a very significant improvement

over a manual analysis. The analysis tool saves the analyst the time it takes to plan

and run additional Monte Carlo sets, and it saves significant time sorting through

large data sets.

An analysis of the failure regions for the ascent abort simulations is not presented

here because of the computational cost. The current version of the tool is a serial code

in Matlab but subsequent versions are currently being programmed in parallel, which

will make the regions analysis possible for a large data set such as the one from this

example. However, previous examples demonstrate the ability of the tool to identify

important regions. The same success is expected for complex flight dynamics analysis

tasks such as the Orion problem in this example.

E. Chapter Summary

This chapter shows examples of the results obtained with the analysis tool developed

in this dissertation. The first three examples show that the ranked lists of individual

variables and combinations of variables are consistent with their analytical solutions.

The last example shows results for a much more complex flight dynamics data analysis

problem and is validated with the results of several separate Monte Carlo data sets.

In addition to the results shown in the previous sections, the simple examples

were simulated using different Monte Carlo sets to test the robustness of the variable

rankings against the number of simulation runs in a given set and also against the

number of runs in each class. After analyzing these data sets, it can be concluded

that the rankings using the default cost function weights do not change much with the

101

number of runs in a set unless the number is too low. For these particular examples,

the rankings start to change when the number of runs is set below one hundred.

However, this should not be a problem for an analyst because, in order to draw

conclusions from a given data set, one must be sure that the data set is statistically

significant. In other words, this tool should be used to analyze data sets that rich

enough to draw conclusions from.

The rankings do start to change when there are too few simulation runs in either

the successful class or the failure class in a given data set. To address this issue, the

cost function weights must be adjusted to de-emphasize the class of data that contains

the largest number of runs. By emphasizing the hybrid region and the class of data

with the smallest percentage of simulation runs, the rankings guarantee that both the

successful and failure classes will be present in the top ranked regions. As discussed

in Chapter V, the first version of the tool does not adjust the cost function weights

automatically, but several trade studies should be performed in future versions to

automate the selection of the weights based on the specific data set being analyzed.

102

CHAPTER VII

GRAPHICAL USER INTERFACE

This chapter describes the first version of the MATLAB graphical user interface (GUI)

for the tool. The satellite stability analysis example from Chapter VI is used here to

explain the different features of the GUI.

The GUI requires that the simulation data is saved in three different matrices.

The first matrix contains the Monte Carlo input deck data. The second matrix

contains the results of the Monte Carlo Simulations. The trajectory data should

be logged only at specific points in time along the trajectory. For example, in the

satellite problem, the states were recorded at four different time stamps: at t = 0,

and at each of the times when each angular velocity hits its maximum value. In the

analysis, these numbers are considered four different parameters, even though it is

the same state variable. The third matrix contains the failure information for each

performance metric and for each simulation run.

To initialize the program, the GUI asks the user for the location of the data as

shown in Figure 60.

Fig. 60.: GUI Data Location

The GUI loads the data and starts the main window, which has has six buttons as

103

shown in Figure 61. The first two buttons, Choose monte in and Choose data monte,

allow the user to select the variables for the analysis. The Choose failure metrics

button allows the user to select which failure metrics should be included. The fourth

button simply saves the analysis results in a .mat file. The Analyze and Start Over

buttons start the analysis code for the selected data, and reset the GUI for a new

analysis task.

Fig. 61.: GUI Main

The Choose monte in button brings up a new window shown in Figure 62. This

window reads in the data from the Monte Carlo input deck and lists all input variables

that were dispersed for the simulation. The user can then click the variables from the

list box on the left.

For the satellite example, six input deck variables are chosen for the analysis. The

window also contains a search box for those problems that have hundreds of variables.

It also contains an Add Aerodynamic Variables button, which allows the user to add

all aerodynamic variables at once. This additional feature may not be useful if the

104

Fig. 62.: GUI Input Variable Selection

aerodynamic data is not specifically labeled as such. However, it was added to this

version of the GUI because of the importance of aerodynamic parameters is this type

of analysis.

The next button, Choose data monte, brings up the window shown in Figure 63.

This allows the user to select output variables that were recorded at the different

time stamps. This is useful when an analyst suspects certain parameter at a specific

point along a trajectory may be causing problems. As mentioned above, the satellite

angular velocities were recorded at four different time stamps. The user has the option

of selecting all variables logged at a given time stamp, or to select a single variable

logged at every time stamp, as shown in Figure 63.

Once all variables for the analysis are selected, both inputs and outputs, the

program compiles them into a single large matrix where each row represents a simu-

lation run and each column represents an analysis variable. Whether these columns

105

Fig. 63.: GUI Output Variable Selection

are input variables or output variables, they are treated equally by the tool.

The next step is the selection of performance metrics. Typically a design has

several performance metrics that must be met. By clicking on the Choose failure

metrics button, the analyst has the choice of selecting one or more metrics. If the

user selects more than one metric, a given simulation run is considered a failure if

it fails at least one of the metrics selected. Figure 64 shows the two list boxes: the

left one provides the user with the available metrics, and the right one contains the

metrics selected for the analysis task.

The main GUI then shows the user the selections made for the variables and

the metrics. In this example, the six variables and single performance metric for the

satellite are shown (Figure 65), and the analyst can now choose to analyze the vari-

ables individually with the kernel density estimation method, or their combinations

with the nearest neighbors method.

106

Fig. 64.: GUI Selection of Performance Metrics

Fig. 65.: GUI Selection of Analysis Type

107

When the user clicks on the Analyze button after selecting the individual vari-

ables option, the GUI lists the percentages of successful and failed simulation runs as

well as the ranked list of variables, which the user can choose from to create plots.

This is shown in Figure 66. The KDE plot button co-plots the density estimates for

the successful and failure class only for the variables selected from the ranked list on

the left.

Fig. 66.: GUI Individual Variables Ranking

To analyze the failure regions, the Start Over button can be used, and the user

can once again select the desired variables. For this example, the same six variables

are kept. When the regions option is chosen, the GUI asks the analyst if the new

compound variables described in Chapter V of this dissertation should be added to

the analysis. Figure 67 shows the query box.

For the satellite problem, this option was selected in order to capture the differ-

ences and ratios of the inertias. The results of the regions analysis are then listed

on the main GUI as show in Figure 68. The analyst has now the option of clicking

108

Fig. 67.: GUI Inclusion of Compound Variables

on the regions on the left list box to move them to the center list box, and plot the

corresponding scatter plots or nearest neighbors maps.

Fig. 68.: GUI Variable Combinations Ranking

109

The current version of the GUI demonstrates the flexibility of the tool, but

it needs improvement. Some features that are planned for future versions are the

following:

• Have the GUI suggest a set of default tuning parameters, but give the user

the option to change them. This includes the bandwidth for the kernel density

estimation method, the number of neighbors for the nearest neighbors method,

the number of grid points for both methods, and the cost function weights for

the analysis of failure regions.

• The option to select a given combination of variables and re-arrange it to visu-

alize it in different ways.

• The option to investigate how a failure boundary changes for different sets of

performance metrics.

• The option for the analyst to construct more complex compound variables from

the GUI.

110

CHAPTER VIII

SUMMARY

This dissertation investigates the feasibility of automating the analysis of Monte Carlo

simulation data in order to make the design process of a flight vehicle more efficient.

The main contribution of this dissertation is a unified, general methodology for the

analysis of flight dynamics Monte Carlo simulation data in the form of an interactive

analysis tool with the following features:

• The tool can be used to analyze any flight dynamics Monte Carlo data set

because there are no underlying assumptions on the data required.

• The tool is general enough that it does not require an analyst to write additional

pieces of code for a given analysis task that may be difficult to test, validate,

or share with others.

• All types of variables can be analyzed at once. There is no need to categorize

the variables prior to the analysis.

• The tool uses straightforward, tractable algorithms that any engineer can un-

derstand and use without being an expert in the fields of statistics or pattern

recognition.

• The data is never manipulated, so the original physical meaning of each variable

is preserved.

• For a given data set, the results are always the same.

• The results are easy to visualize.

111

The tool automates the process of identifying problems with a design that are

otherwise very difficult to find due to the highly nonlinear nature of the systems and

the large number of variables involved. The analysis tool can provide significant time

savings because it is readily applicable to a wide range of Monte Carlo data sets. The

only pre-processing work is the formatting of the data into the required matrices.

Future versions of the tool will include a more interactive way of selecting the

tuning parameters, along with suggestions for default tuning parameter values from

the program itself. For now, an analyst may need to run an analysis more than once

in order to understand the effects of the tuning parameters. However, running a few

analyses with this tool is much more feasible, efficient, and insightful than having to

run additional Monte Carlo simulation sets.

It is important to point out that the tool developed here is not meant to replace

the engineer, but to aid in the analysis. Therefore, there are certain problems that the

tool will not be able to solve. For instance, one of the inputs to the tool is a matrix

containing performance metrics information. The tool is not capable of finding a

problem on its own; the user must define explicitly what a failed simulation run is.

However the method developed in this dissertation is appropriate for a large class

of aerospace problems. The tool allows an analyst to achieve two important goals:

• identify all variables that are causing problems and determine if a design change

is necessary; and

• gain an understanding of all problematic variable interactions to learn if, and

how, it is possible to avoid them.

This has the potential to speed up analysis tasks and streamline how a team of ana-

lysts works together by enabling individuals to share their findings faster, collaborate,

and iterate on a design more efficiently.

112

REFERENCES

[1] “Crew Exploration Vehicle system requirements document,” NASA CEV Docu-

ment: CxP-72000, January 2007.

[2] M. C. Jackson and T. Straube, “Orion flight performance design trades,” in

AIAA Guidance, Navigation and Control Conference and Exhibit, no. 2010-8443,

Houston, TX, August 2010.

[3] J. Davidson, J. Madsen, R. Proud, D. Merrit, D. Raney et al., “Crew Exploration

Vehicle ascent abort overview,” in AIAA Guidance, Navigation and Control Con-

ference and Exhibit, no. 2007-6590, Hilton Head, SC, August 2007.

[4] D. Sparks and D. Raney, “Crew Exploration Vehicle launch abort controller

performance analysis,” in AIAA Guidance, Navigation and Control Conference

and Exhibit, no. 2007-6595, Hilton Head, SC, August 2007.

[5] P. S. Williams, “A Monte Carlo dispersion analysis of the X-33 simulation soft-

ware,” in AIAA Atmospheric Flight Mechanics Conference, no. 2001-4067, Mon-

treal, Canada, August 2001.

[6] E. Bumann, C. Bahm, B. Strovers, R. Beck, and M. Richard, “The X-43A six de-

gree of freedom monte carlo analysis,” in 46th AIAA Aerospace Sciences Meeting

and Exhibit, no. 2008-203, Reno, NE, January 2008.

[7] V. N. Nair, “Taguchi’s parameter design: A panel discussion,” Technometrics,

vol. 34, no. 2, pp. 127–161, May 1992.

[8] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for

Engineers, 3rd ed. New York: John Wiley & Sons Inc., 2002.

113

[9] R. DeLoach, “Analysis of variance in the modern design of experiments,” in 48th

AIAA Aerospace Sciences Meeting, Orlando, FL, January 2010.

[10] S. Jeong, K. Chiba, and S. Obayashi, “Data mining for aerodynamic design

space,” Journal of Aerospace Computing, Information, and Communication,

vol. 2, pp. 452–469, November 2005.

[11] G. Morani, F. Corraro, and A. Vitale, “New algorithm for probabilistic robust-

ness analysis in parameter space,” Journal of Aerospace Computing, Information,

and Communication, vol. 6, pp. 291–306, April 2009.

[12] T. Motoda and Y. Miyazawa, “Identification of influential uncertainties in Monte

Carlo analysis,” Journal of Spacecraft and Rockets, vol. 39, no. 4, pp. 615–623,

July-August 2002.

[13] D. P. Thunnissen, S. K. Au, and E. R. Swenka, “Uncertainty quantification in

conceptual design via an advanced Monte Carlo method,” Journal of Aerospace

Computing, Information, and Communication, vol. 4, July 2007.

[14] S. Hosder and R. W. Walters, “Non-intrusive polynomial chaos methods for

uncertainty quantification in fluid dynamics,” in 48th AIAA Aerospace Sciences

Meeting, no. 2010-129, Orlando, FL, January 2010.

[15] M. Balch, S. Hosder, and R. W. Walters, “Modeling and propagation of physical

parameter uncertainty in a Mars atmosphere model,” in 46th AIAA Aerospace

Sciences Meeting and Exhibit, no. 2008-450, Reno, NE, January 2008.

[16] K. Gundy-Burlet, J. Shumann, T. Menzies, and T. Barrett, “Parametric analysis

of antares re-entry guidance algorithms using advanced test generation and data

114

analysis,” in 9th International Symposium on Artificial Intelligence, Robotics and

Automation in Space, Los Angeles, CA, February 2008.

[17] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry

et al., “Combining unit-level symbolic execution and system-level concrete execu-

tion for testing nasa software,” in Association for Computing Machinery ISSTA,

Seattle, WA, July 2008, pp. 15–26.

[18] H. Shaub and J. L. Junkins, Analytical Mechanincs of Space Systems. Reston,

VA: AIAA Education Series, 2003.

[19] V. Kreinovich, J. Beck, C. Ferregut, A. Sanchez, G. R. Keller et al., “Monte-

carlo-type techniques for processing interval uncertainty, and their potential en-

gineering applications,” Reliable Computing, vol. 13, pp. 25–69, 2007.

[20] J. Guo and X. Du, “Sensitivity analysis with mixture of epistemic and aleatory

uncertainties,” AIAA Journal, vol. 45, no. 9, pp. 2337–2349, September 2007.

[21] C. G. Justus and D. L. Johnson, “The NASA/MSFC Global Reference Atmo-

spheric Model 1999 version (GRAM-99),” Technical Report, May 1999.

[22] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New

York: John Wiley & Sons Inc., 2001.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer,

2007.

[24] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Advances

in Knowledge Discovery and Data Mining. Menlo Park, CA: The AAAI Press,

1996.

115

[25] R. Gutierrez-Osuna, “Special topics in pattern recognition,” Class Notes, Texas

A&M University, 2008.

[26] J. J. Higgins and S. Keller-McNulty, Concepts in Probability and Stochastic Mod-

eling. Belmont, CA: Duxbury Press, 1995.

[27] E. Parzen, “On estimation of a probability density function and mode,” The

Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, August 1962.

[28] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation

and model selection,” in International Joint Conference on Artificial Intelligence,

Montreal, Canada, 1995, pp. 1137–1143.

[29] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Ed-

munds, Suffolk: Chapman and Hall, 1986.

[30] R. Battiti, “Using mutual information for selecting features in supervised neural

net learning,” IEEE Transactions on Neural Networks, vol. 5, no. 4, pp. 537–550,

July 1994.

[31] N. Kwak and C.-H. Choi, “Input feature selection by mutual information based

on parezen window,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 24, no. 12, pp. 1667–1671, December 2005.

[32] H. B. Mann and D. R. Whitney, “On a test of whether one of two random vari-

ables is stochastically larger than the other,” Annals of Mathematical Statistics,

vol. 18, no. 1, pp. 50–60, March 1974.

[33] S. Siegel and J. W. Tukey, “A non-parametric sum of ranks proceduer for relative

spread in unpaired samples,” Journal of the American Statistical Association,

vol. 55, no. 291, pp. 429–445, September 1960.

116

[34] The Mathworks, “MATLAB,” 2010b.

[35] Engineering Directorate NASA Johnson Space Center, “ANTARES Simulation,”

2007.

[36] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. New York: John Wiley

& Sons Inc., 1979.

[37] P. C. Hughes, Spacecraft Attitude Dynamics. New York: Wiley & Sons Inc.,

1986.

[38] J. E. Hurtado, Elements of Spacecraft Control. Raleigh, NC: Lulu, 2009.

[39] D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroe-

lasticity. New York: Cambridge Aerospace Series, 2002.

[40] Z. Prime, B. Cazzolato, C. Doolan, and T. Strganac, “Linear-parameter-varying

control of an improved three-degree-of-freedom aeroelastic model,” Journal of

Guidance, Control, and Dynamics, vol. 33, no. 2, March-April 2010.

[41] G. Platanitis and T. W. Strganac, “Control of a wing section with structural

nonlinearities using leading and trailing edge control surfaces,” in AIAA Struc-

tures, Structural Dynamics, and Materials Conference, no. 2002-1718, Denver,

CO, April 2002.

[42] R. Proud, J. Bendle, M. Tedesco, and J. Hart, “Orion guidance and control

ascent abort algorithm design and performance results,” NASA Johnson Space

Center, Houston, TX, NASA Technical Report JSC-17694, January 2009.

[43] C. Aerodynamics Team, “Orion Aerodynamic Databook,” Technical Report,

2007.

117

VITA

Carolina Isabel Restrepo was born in Texas and raised in Colombia and Bolivia.

She began her undergraduate studies at Texas A&M University in January 2001

and received her Bachelor of Science degree in aerospace engineering on December

2005, and Master of Science degree on August of 2007 under the supervision of Dr.

John Valasek. This dissertation is the culmination of her doctoral research under

the supervision of Dr. John Hurtado, and was submitted in partial fulfillment of the

requirements for a Doctor of Philosophy degree in Aerospace Engineering.

Carolina was awarded the National Science Foundation Graduate Research Fel-

lowship, the Zonta International Amelia Earhart Fellowship, and the Texas Space

Grant Consortium Fellowship. Carolina worked at the NASA Johnson Space Center

as a co-operative education student during her undergraduate and graduate years.

She is currently a full-time member of the Aeroscience and Flight Mechanics Division

at the Johnson Space Center.

Contact Address: Dr. John E. Hurtado; 3141 TAMU; College Station, TX

77843-3141

