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ABSTRACT

Parametric Estimation of Harmonically Related Sinusoids. (May 2010)

Richa Dixit, B. Tech., Institute of Technology, Banaras Hindu University, India

Chair of Advisory Committee: Dr. Tie Liu

Mud-pulse telemetry is a method used for measurement-while-drilling (MWD)

in the oil industry. The telemetry signals are corrupted by spurious mud pump noise

consisting of a large number of harmonically related sinusoids. In order to denoise

the signal, the noise parameters have to be tracked accurately in real time. There

are well established parametric estimation techniques for determining various param-

eters of independent sinusoids. The iterative methods based on the linear prediction

properties of the sinusoids provide a computationally efficient way of solving the non

linear optimization problem presented by these methods. However, owing to the large

number of these sinusoids, incorporating the harmonic relationship in the problem be-

comes important.

This thesis is aimed at solving the problem of estimating parameters of harmoni-

cally related sinusoids. We examine the efficacy of IQML algorithm in estimating the

parameters of the telemetry signal for varying SNRs and data lengths. The IQML al-

gorithm proves quite robust and successfully tracks both stationary and slowly varying

frequency signals. Later, we propose an algorithm for fundamental frequency esti-

mation which relies on the initial harmonic frequency estimate. The results of tests

performed on synthetic data that imitates real field data are presented. The analysis

of the simulation results shows that the proposed method manages to remove noise

causing sinusoids in the telemetry signal to a great extent. The low computational

complexity of the algorithm also makes for an easy implementation on field where

computational power is limited.
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CHAPTER I

INTRODUCTION

A. Motivation and Background

The problem of estimating parameters of multiple sinusoids buried in noise has been

of great interest to the signal processing community for many years. The specific ap-

plications include time series analysis and system identification and antennae array

processing. However, little attention has been paid to the special case of harmonic

sinusoids. The harmonic frequency estimation has important applications in speech

signal processing, automotive control systems as well as instrumentation and mea-

surement. This thesis was motivated by a practical problem of noise cancelation while

performing measurements, where parameter estimation of harmonically related sinu-

soids was required. A greater part of this section is devoted to describing the problem

background with emphasis on the practical challenges which dictate the selection of

an estimation procedure.

1. Mud Pump Noise Cancelation

Mud-pulse telemetry is a method used for measurement-while-drilling (MWD) in

the oil industry. MWD systems provide drilling operators great control over the

construction of a well by providing information about conditions at the bottom of

a wellbore in real time as the wellbore is being drilled. The information includes

directional drilling variables such as inclination and direction (azimuth) of the drill

bit, and geographical formation data such as natural gamma radiation levels and

electrical resistivity of the rock formation. MWD systems measure parameters(such

The journal model is IEEE Transactions on Automatic Control.
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as the previously mentioned examples) and transmit the acquired data to the earth’s

surface from within the wellbore. Fig. 1 shows a typical mud-pulse telemetry system.

Fig. 1. A typical mud-pulse telemetry system

One of the methods used to send MWD data to the surface is by means of pressure

waves in the drilling fluid(”Drilling mud”) that is pumped through the drill string by

pumps on the surface. The downhole electronics, control a valve that is in the stream

of mud. A modulated pressure wave is generated by controlling the interruption of the

valve with the drilling mud, thus causing the pressure in the drill string to change in

a manner related to the downhole measurement data. The pressure waves generated

by the valve travel through the drilling mud to the surface, where they are measured

by one or more pressure sensors. The outputs of the pressure sensors can be digitized

in analog-to-digital converters and processed by a signal processing module, which

recovers the information data from the pressure variations and then sends the data to



3

a computer. The transmitted information is then assessed by the drilling operator.

Other methods for communicating MWD data to the surface exist, such as acous-

tic wave propagation through the drill string, electromagnetic radiation through the

ground formation, and electrical transmission through an insulated cable. However,

in terms of the overall cost and effectiveness, mud-pulse telemetry remains the most

commercially viable method as of today.

Mud-pulse telemetry is confined within a very low frequency band(below 50 Hz,

depending on the characteristics of the drilling mud being used and the drilling depth),

due to the attenuation mechanism of the drilling mud. At such low frequencies, the

pressure wave that carries information from the transmitter to the pressure sensors is

subjected to severe noise corruptions. On most occasions, the higher power pressure

wave from the surface mud pumps contributes the most significant amounts of noise.

The mud pump noise is mainly the result of reciprocating motion of mud pump

pistons and hence is harmonic in nature. The pressure waves from the surface mud

pumps travel in the opposite direction from the main information carrying wave, and

the pressure sensors detect pressure variations representative of the sum of signal and

noise waves. In case that the harmonic components of the noise are present within

the frequency range used for transmission of the telemetry wave, severe distortions

are introduced to the received signal making correct detection of the transmitted data

extremely difficult.

In the past, this problem was circumvented by transmitting only over a small

portion of the entire spectrum available, so that no more than a couple of mud

pump harmonics are present within the telemetry band. Such a passive approach

reduces interfering effects of the mud pump noise at the expense of under utilizing

the bandwidth. As a result, the data rate of communication is severely limited, and

the drilling operator must be selective about what data are transmitted. This lack
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of information makes its difficult to optimize the drilling wells. Telemetry is a major

limiting factor for the application of the MWD technology.

2. Objective and Outline

The goal of this thesis is to develop a robust and efficient algorithm which can es-

timate the parameters of multiple mud pump harmonics. The knowledge of noise

harmonic parameters can then be suitably used to remove them from the received

pressure waves, thus making the entire spectrum available for data communication.

At the potential rates that are supported by the use of the entire spectrum, the extra

information available to drilling operator not only can reduce the total drilling cost

of a typical well by a substantial amount, but can also turn many currently marginal

gas reservoir into commercial targets.

The rest of this thesis is organized as follows. In the next section the estimation

problem is mathematically formulated and a brief overview of the popular methods

to solve such problem is presented. In Chapter II, an iterative parameter estimation

algorithm is introduced which is not only computationally efficient, but also apt in

incorporating the prior knowledge of the unknown parameters. The linear prediction

properties of sinusoids are used here to give an accurate estimate of pump noise fre-

quencies. In Chapter III, the goal is to exploit harmonic relationship of sinusoids to

improve estimation procedure. Here a novel method for the detection of the funda-

mental frequencies of the noisy sinusoids is presented, which builds on the harmonic

estimate obtained previously. The knowledge of fundamental frequencies drastically

reduces the size of the set of unknown parameters, thereby making it possible to elim-

inate a large number of noise causing signals. The details of both the estimation and

detection methods, the algorithm, and the software implementation are given in the

respective sections along with the simulation results obtained on the set of synthetic
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data.

B. Parameter Estimation

1. Problem Statement

Mathematically, the received pressure wave at the jth pressure sensor can be written

as:

yj[m] =
∑L−1

l=0 hl,jx[m− l] +
∑K/2−1

k=0 Ak,j cos(ωkm+ φk,j) + wj[m], m = 0, . . . ,M − 1,

j = 0, . . . , J − 1

(1.1)

where,
∑L−1

l=0 hl,jx[m−l] represents the information signal,
∑K/2−1

k=0 Ak,j cos(ωkm+

φl,k) represents the mud pump noise which is the sum of K/2 real sinusoids with fre-

quencies ωk, amplitudes Ak,j and phases φl,k and wj[m] represents the noise from the

other sources. The exact structure of the information carrying wave is not important

in this problem formulation.

In complex notation the pump noise can be rewritten as:

zj [m] =
K−1∑

k=0

sk,jλ
m
k (1.2)

where, the mud pump noise zj [m] is a sum of K complex exponentials with complex

frequencies λk and complex amplitudes sk,j.

Here,

λ∗
K−k = λk = exp{jωk} (1.3)

and

s∗K−k,j = sk,j (1.4)

whereK is an even number. The frequency parameters {ωk} form a union of harmonic

sets, each corresponding to the harmonic components originated from one pump. The
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stroke rate of each pump may drift over time due to the mechanical instability. The

key issue for effective mud pump noise cancelation is to design an estimation algorithm

which can faithfully track the frequency parameters.

The set of unknown parameters here consists of the amplitude, phase and fre-

quency of the sinusoids i.e. θ = {Ak,j, φk,j, ωk}. As the number of sinusoids grow,

this set becomes larger. Most of the estimation techniques hinge on first finding a

correct estimate of frequency. The other linear parameters are then determined by

using separable regression techniques described in section 2. There are numerous

frequency estimation schemes, but they can be broadly put into two categories: non-

parametric and parametric techniques. The non-parametric estimators , including the

periodogram and correlogram methods, are based directly on the Fourier transform.

Although no assumptions are made about the observed data sequence, the resolution,

or ability to resolve closely spaced frequencies using non-parameteric approach is fun-

damentally limited by the length of the data available. Alternatively, the parametric

approach assumes a signal model with known functional form and gives better reso-

lution. The maximum likelihood, non-linear least squares, Prony’s method, iterative

filtering and subspace methods like MUSIC are examples of parametric estimation. A

detailed comparative analysis of the two types of frequency estimators can be found

in [1]. The mud pump frequency estimation involves resolving closely spaced fre-

quencies for a wide range of SNR, so in this thesis the focus will be on parametric

estimation, particularly the methods that utilize the linear prediction property of

sinusoidal signals.

In order to find a reliable parametric estimator for a given class of problems the

simplest and the most straight forward technique is to look for optimal estimators.

They comprise of a class of unbiased estimators exhibiting minimum variance, the so-

called MVU estimator. There are well established methods based on determination
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of the sufficient statistics and the Cramer Rao Lower Bound (CRLB) on the variance

of such estimators. In cases where such estimators do not exist the popular approach

is to find practical estimators. The maximum likelihood estimator(MLE), defined as

the value of θ that maximizes the likelihood function, gives an asymptotically optimal

solution. The MLE has a Gaussian PDF and turns out to be unbiased while achieving

CRLB for large data records. For certain signal in noise problems the MLE achieves

CRLB at high SNRs. However, finding an exact MLE becomes tedious in cases,

as in current problem, where a large set of parameters are to be determined with

an unknown underlying noise structure. The numerical approaches like grid search

(Newton Raphson method) or iterative maximization (EM algorithm) simplify the

problem, when a closed form expression cannot be found, but they do not guarantee

convergence to the MLE.

Another approach is to use an estimator such as least square estimator(LSE)

which does not have any optimality properties but still gives good performance in

many cases. The LSE chooses θ to minimize the least square error criterion while

making no probabilistic assumptions on the data. It is usually applied in situations

where a precise statistical characterization of the data is unknown or where an optimal

estimator cannot be found or may be too complicated to apply in practice.

2. Nonlinear Least Squares

A signal model that is non linear in the unknown parameter θ is said to generate a

non linear least squares problem. Let x(θ) is the signal model for observation y [2].

The LS procedure estimates model parameters θ by minimizing:

J = (y − x(θ))T(y− x(θ)) (1.5)
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If (y−x(θ)) ∼ N (0, σ2I), the LSE is also the MLE. When x(θ) is N-dimensional non

linear function of θ the minimization of J becomes difficult. The first step to solving

this problem is to reduce its complexity. Two most common ways of doing that are:

1. Transformation of parameters 2. Separability of parameters

In the first case a one-to one transformation of θ is made, that produces a linear

signal model in the new space. If an invertible function g can be found such that if

α = g(θ), then

x(θ(α)) = x(g−1(α)) = Hα (1.6)

The signal model then becomes linear in α and its linear LSE is given by pseudo-

inverse:

α̂ = (HTH)−1HTy (1.7)

In second case the signal model is non linear but it is linear in some of the

parameters. Generally, a separable signal model has the form:

x = H(α)β (1.8)

where,

θ =




α

β


 (1.9)

and H(α) is a matrix dependent on α. This model is linear in β but non-linear in α.

As a result, the LS error may be minimized with respect to βand thus reduced to a

function of α only. Since,

J(α, β) = (y −H(α)β)T(y −H(α)β) (1.10)

the β that minimizes J for a given α is:

β̂ = (H(α)TH(α))−1H(α)Ty (1.11)
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and the resulting LS error is:

J(α, β̂) = xT[I−H(α)(H(α)TH(α))−1H(α)T]x (1.12)

The problem now reduces to maximization of:

xTH(α)(H(α)TH(α))−1H(α)Tx (1.13)

over α.

Minimizing 1.13 could still be a difficult non-linear optimization problem which

is known to be plagued by local minima in the error surface. So instead of solving this

non-linear problem, many methods were developed to solve the deterministic linear

prediction problem, which is related to, but not the same as, the true least-squares

optimization. The following section introduces the basic concept of linear prediction

which is rigourously used in Chapter II to develop a solution based on the Iterative

Quadratic Maximum Likelihood (IQML)estimation approach.

3. Linear Prediction

Resolving closely spaced sinusoids in the presence of noise can be challenging partic-

ularly when number of data is small and the SNR is low. Various methods based on

the linear prediction approach have been developed to solve this problem including

Prony’s method, autoregressive (AR) and autoregressive moving average modeling

(ARMA), Pisarenko method and principle eigenvector (PE) approach.

The basic idea behind linear prediction (originally introduced by Prony) is that,

instead of determining the unknown frequencies directly, the coefficients of a predic-

tion polynomial are estimated, the roots of which are the exponentials with those
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frequencies. Consider the exponential function:

y[m] =
K−1∑

k=0

ske
jωkm, m = 0, . . . ,M − 1 (1.14)

where, sk and ωk are the complex amplitude and frequency of the k-th sinusoid,

respectively. There are 2K unknowns so it will need atleast 2K independent obser-

vation samples to determine these values. Here M ≥ 2K. Viewing 1.14 as a linear

system in sk’s, a Vandermonde matrix can be observed. The coefficients sk’s can be

separated from the exponentials eωk ’s by the introduction of auxiliary polynomial:

b(z) = (z − ejω0)(z − ejω1) . . . (z − ejω(k−1)) =
K∑

k=0

bkz
K−k (1.15)

If the coefficients of b are known then ejωk ’s are found by computing its roots. In

order to find bk’s, a Hankel system of equation is developed as follows. b(ejωk) = 0

for all values of k, so:
K−1∑

k=0

skb(e
jωk) = 0 (1.16)

Simplifying above equation and collecting terms in bk’s:

K−1∑

k=0

sk
K∑

i=0

bie
jωkK−i =

K∑

i=0

bi
K−1∑

k=0

ske
jωkK−i

=
K∑

i=0

biy[K − i] = 0

K∑

i=1

biy[K − i] = −b0y[K] (1.17)

The following sets of equation can similarly be defined:

K−1∑

k=0

ske
jωkpb(ejωk) = 0, p = 1, . . . ,M −K − 1 (1.18)

A set of linear equations is obtained by simplifying 1.18 to the form expressed in 1.17.
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Upon combining, the problem can be written as:




y[0] y[1] · · · y[K − 1]

y[1] y[2] · · · y[K]

...
...

...

y[M −K − 1] y[M −K] · · · y[M − 2]







bK

bK−1

...

b1

,




=




y[K]

y[K + 1]

...

y[M − 1]

,




(1.19)

or

Ab = y (1.20)

where A is linear prediction (LP) matrix, b is LP vector and y is observation vector.

The order of LP vector is generally greater than K as the number of signals are over

estimated in such procedures.

Unfortunately, Prony’s method is well known to perform poorly when the sig-

nal is embedded in noise; Kahn et al (1992) show that it is actually inconsistent.

On the other hand the Pisarenko method based on same LP property, though consis-

tent proves inefficient for estimating sinusoidal signals and inconsistent for estimating

damped sinusoids or exponential signals.

A modified Prony algorithm, extended to the least squares context, was pro-

posed by Osborne (1975). It was generalized in Smyth (1985) and Osborne and

Smyth (1991) [3] to estimate any function which satisfies a difference equation with

coefficients linear and homogeneous in the parameters. Osborne and Smyth (1991)

considered in detail the special case of rational function fitting, and proved that the

algorithm is asymptotically stable in that case.

The next chapter describes in detail the Iterative Quadratic Maximum Likelihood

(IQML) estimation procedure which is an iterative method based on LP property of

sinusoids, for solving the NLS problem.
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CHAPTER II

ITERATIVE QUADRATIC MAXIMUM LIKELIHOOD ESTIMATION

In this chapter the focus is develop an algorithm to reliably estimate the frequency

parameters without directly exploiting the harmonic relationship among different si-

nusoidal components originated from the same pump. Treating different harmonic

components from the same pump as sinusoids with independent frequencies is, a sub-

optimal strategy. However, algorithms based on this suboptimal strategy are much

less demanding in terms of computational complexity and, will perform reasonably

well in many engineering situations. A separate method which attempts to further

improve the estimation performance by exploiting the harmonic relationship among

different sinusoidal components originated from the same pump is described in Chap-

ter III.

The method for estimating the pump noise frequencies is based on the maximum-

likelihood estimation framework. Once reliable estimates of the frequency parameters

are obtained, properly designed notch filters can be deployed to cancel the pump noise

without overly damaging the telemetry signal.

A. The Deterministic Maximum Likelihood Problem

Iterative methods for solving the least squares, or maximum likelihood, spectral pa-

rameter estimation problem have been developed by Kumaresan et al. [4], and Bresler

and Macovski [5]. These methods are collectively known as iterative quadratic max-

imum likelihood(IQML). The application of the IQML method for noise cancelation

only requires the estimation of the time domain signal, which is a superposition of

exponentially signals in noise. The model for the IQML method is the same as that
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for the NLS method described in the last chapter and is restated below:

yj[m] =
K−1∑

k=0

sk,jλ
m
k + nj [m], m = 0, . . . ,M − 1, j = 0, . . . , J − 1 (2.1)

where, nj [m] represents the sum of the information-carrying wave and the noise

from the other sources.

Let λ = (λ0, . . . , λK−1)
t and sj = (s0,j , . . . , sK−1,j)

t be the collections of the

complex frequency and amplitude parameters, respectively. The least-square estimate

is given by:

min
λ,sj

J−1∑

j=0

M−1∑

m=0

[
yj[m]−

K−1∑

k=0

sk,jλ
m
k

]2
. (2.2)

Using the vector-matrix notation to compactly describe the model:

yj = (yj[0], . . . , yj[M − 1])t (2.3)

Here each vector yj of length M given by a sum of K < M exponential signal vectors

corrupted by additive noise. Also, define a M ×K Vandermonde matrix A(λ):

A(λ) =




1 1 · · · 1

λ0 λ1 · · · λK−1

...
...

...

λM−1
0 λM−1

1 · · · λM−1
K−1

,




, (2.4)

The least-square estimation problem 2.2 can be written as

min
λ,sj

J−1∑

j=0

‖yj −A(λ)sj‖
2 . (2.5)

For any given λ, the least-square estimate of sj can be found using the separability

argument given in Chapter II:

ŝj = A†(λ)yj = [A∗(λ)A(λ)]−1A∗(λ)yj (2.6)
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where A†(λ) is the pseudoinverse of A(λ) Thus, the problem of finding the least-

square estimate of λ reduces to

λ̂ = argmin
λ

J−1∑

j=0

‖yj −A†(λ)yj‖
2 = argmin

λ
Tr(P⊥

A(λ)R̂y) (2.7)

where P⊥
A(λ) is the projection matrix onto the null space of A(λ), given by:

P⊥
A(λ) = I−A(λ)[A∗(λ)A(λ)]−1A∗(λ) (2.8)

and R̂y is the measurement sample correlation given by:

R̂y =
J−1∑

j=0

yjy
∗
j (2.9)

Consider the linear prediction polynomial:

b(z) =
K∑

k=0

bkz
K−k = b0

K−1∏

k=0

(z − λk). (2.10)

where the collection of the polynomial coefficients b = (b0, . . . , bK)
t is a nonzero

vector. Through some simple manipulations, it can be shown that the projection

matrix

P⊥
A(λ) = B(B∗B)−1B∗ (2.11)

where

B =




b∗K
... b∗K

b∗0
...

b∗0 b∗K
...

b∗0




. (2.12)

Thus the least-square estimate of the linear prediction polynomial coefficients can be
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written as

b̂ = argmin
b0=1

Tr
[
B(B∗B)−1B∗R̂y

]
. (2.13)

Once an estimate b̂ of the linear prediction polynomial coefficients is obtained, the

complex frequency parameters λ can be obtained by finding the roots of the estimated

linear prediction polynomial

b̂(z) =
K∑

k=0

b̂kz
K−k. (2.14)

B. The Algorithm

The least square estimation problem 2.13 is a very complex nonlinear optimization

problem. In order to make it amenable for numerical solution, define:

Yj =




yj[k] yj[k − 1] · · · yj[0]

yj[k + 1] yj[k] · · · yj[1]

...
...

...

yj[M ] yj[M − 1] · · · yj[M − k]




. (2.15)

Rewriting 2.13 as

b̂ = argmin
b0=1



b∗



J−1∑

j=0

Y∗
j (B

∗B)−1Yj


b



 . (2.16)

This form of the least-square estimation problem can be solved using the follow-

ing iterative algorithm for estimating the complex frequency parameters λ. It only

requires the solution of a quadratic minimization problem at each step and converges

in a small number of steps (normally less than 5).

a) Initialization: n = 0 and b(0) = b0;
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b) Calculate

B(n) =




b
(n)
K

∗

... b
(n)
K

∗

b
(n)
0

∗ ...

b
(n)
0

∗
b
(n)
K

∗

...

b
(n)
0

∗




and

C(n)
y =

J−1∑

j=0

Y∗
j (B

(n)∗B(n))
−1
Yj;

c) Solve

b(n+1) = argmin
b0=1

{b∗C(n)
y b}; (2.17)

d) Check convergence: If ‖b(n+1) − b(n)‖ ≤ ε, go to Step e); otherwise, go back to

Step b);

e) λ̂ is given by the roots of

b̂(z) =
K∑

i=0

b
(n)
i zK−i (2.18)

Amplitudes and phases can be obtained by substituting the frequencies obtained

above into 2.6.Without directly exploiting the harmonic relationship among different

sinusoidal components originated from the same mud pump, the most computation-

ally intensive procedure in each iteration is to solve a quadratic optimization problem

in Step c).

1. Implementation of Constraints in Real Sinusoids

The described algorithm was implemented using Matlab (standard package). To find

the inverse and eigenvectors of the matrices, the Matlab built-in function inv and
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eig, were used respectively. The initialization was chosen as

b0 = argmin
b0=1



b∗



J−1∑

j=0

Y∗
jYj


b



 , (2.19)

which is known as the Prony estimate in the literature. The vector b must be con-

strained to avoid the trivial all-zero solution. In the quadratic minimization problem

2.19, it is usually difficult to decide between imposing linear (b0 = 1) or quadratic

(‖b‖ = 1, ‖.‖ where denotes the Euclidean norm) constraint. While the former con-

straint leads to an analytical solution, the latter requires a numerical solution for

which good iterative computer algorithms exist today. The conditions for appropri-

ate implementation of these constraints are discussed in [6]. In our experiments we

use the linear non-triviality constraint b0 = 1. The symmetric condition in 1.3 implies

the symmetric condition for the linear prediction polynomial coefficients:

bK−k = bk. (2.20)

With this symmetry, the size of the quadratic optimization in each iteration step is

effectively reduced by a half. Specifically, by letting

b = Pb̃ (2.21)
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where b̃ = (b0, b1, . . . , bK/2)
t and

P =




1 0

1 0

. . .
...

1 0

0 0 · · · 0 1

1 0

...

1 0

1 0




, (2.22)

the quadratic optimization problem in Step c) can be equivalently written as

b̃(n+1) = arg min
‖b̃‖=1

{b̃∗C̃(n)
y b̃} (2.23)

where C̃(n)
y = P∗C(n)

y P. In this case, it is well known that the solution is given by the

eigenvector corresponding to the minimum eigenvalue of C̃(n)
y . The computational

complexity of IQML is analyzed in [7]. The expensive matrix inversion operations

here has been made simpler resulting in the reduction of the computational complexity

of IQML.

2. Simulation Results and Discussion

The iterative aspect of IQML raises concerns about its convergence and consistency.

These issues are addressed in detail in [8]. Our experiments show that IQML con-

verges in a small number of steps (usually less than 10). The initial experiments on

IQML in [5] showed that the MSE at SNRs higher than 3dB coincided with the

CRLB. Below this threshold, the MSE increased rapidly due to algorithm converging
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to a local rather than a global minimum of the ML criterion. The theoretical asymp-

totic performance results for a large M obtained for IQML in [9] show that the MSE

is different from CRLB and the difference between the two increase with M since the

IQML estimates are almost always biased. Several results are presented in [10] which

show that IQML is much more robust than TLS and LP methods over a broad range

of conditions. However, due to the greater computational complexity of the IQML

method [9], it can prove slower than the other techniques.

The IQML formulation also has the advantage that its frequency resolution does

not depend on the absence of spectral smoothness but rather on the detection per-

formance of the algorithm estimating the correct number of signals present. If the

number of signals present are estimated correctly using any of the techniques outlined

in [11], [12] or [13] then estimation accuracy is the only issue. Both detection and

estimation accuracy will depend on the SNR and the specific method employed.

In the current problem, due to the presence of a large number of sinusoids it

becomes difficult to directly estimate all of them. In fact the algorithm fails to

converge in certain cases when K ≥ 6. Thus, the algorithm is applied to only those

out-of-band pressure waves that give the best estimation performance. The estimation

result can then be mapped to rest of the bands through the harmonic relationship

among different sinusoidal components originated from the same pump. This method

has the advantage of estimating the frequencies of the harmonic components without

suffering from the interference from the telemetry signal, but the mapping to the

signal band might be a serious issue when the stroke rates of the mud pumps drift

significantly over the time.

The simulations were performed on both the synthetic as well as real engineering

data. Each frequency estimate is based on a data block of length 2 seconds and re-

initialized across different data blocks. The results show that as long as the harmonic
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components are relatively strong when compared with the background noise, the pro-

posed algorithm can faithfully track their frequencies. The algorithm also manages

to resolve closely spaced frequencies (within a separation of ±0.005). The results pre-

sented here are obtained from synthetic data sets. The experiments were performed

on two separate sets of synthetic data. The first set consists of the signals corrupted

with noise from stationary pumps. The frequency of such pumps remains constant

over a substantial period of time. The second set comprises of signal corrupted by

chirp pump noise. The frequency of these pumps drifts with varying rates over the

period of time. These simulations mimic those scenarios where pumps are switched

on or off or when their rpms change abruptly. Table I gives the number of sinusoids

estimated using IQML in each case, the frequency band over which simulations were

performed and the strongest frequencies estimated in case of stationary pumps.

Table I. Summary of simulation parameters and results

Signal Set K Frequency Band (Hz) Strongest Frequency (Hz)

One Stationary Pump 3 0 - 25 6, 12, 18

Two Stationary Pumps 2 17 - 20 18, 18.9

One Chirp Pump 3 0 - 25 Time varying

Two Chirp Pumps 2 5 - 7 Time varying

Fig. 2 to 5 give the spectral content and the IQML estimates of the stationary

pumps. The chirp pump results are given in Fig. 6 to 9.
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Fig. 2. Time frequency spectrum with one stationary pump
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Fig. 3. Estimated frequencies with one stationary pump
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Fig. 4. Time frequency spectrum with two stationary pumps
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Fig. 5. Estimated frequencies with two stationary pumps
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Fig. 6. Time frequency spectrum with one chirp pump
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Fig. 7. Estimated frequencies with one chirp pump
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Fig. 8. Time frequency spectrum with two chirp pumps
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Fig. 9. Estimated frequencies with two chirp pumps
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CHAPTER III

HARMONIC SET ESTIMATION

The mud pump noise is composed of several harmonics of one or more fundamental

frequencies. If the harmonic relationship of the sinusoids can be worked into the

problem the parameter estimates can be significantly improved as compared to the

case where they are treated as independent sinusoids. The harmonic set estimation

finds application in the field of musical sound analysis [14], voice recognition, power

systems [15], time series analysis [16] etc. In most of the previous works the emphasis

is on using the harmonic structure to improve the initial estimates obtained by solving

standard least squares problem. In [17], complex harmonics are considered and

accurate frequency estimation is achieved via weighted least squares(WLS) where

the weighting matrix is given by the Markov estimate. An initial estimate of all

harmonic parameters is required to construct the Markov estimate which is obtained

from applying MUSIC approach described in [18]. The algorithm described in [19]

extends the similar idea to real harmonic sinusoidal frequencies.

A less intensive approach is to first determine the fundamental frequency of the

harmonic sinusoidal signals present and then obtain the amplitudes and phase of all

the harmonics of this fundamental by solving the least squares problem. The problem

of fundamental frequency estimation is the same as that of pitch estimation in sound

signals. It is one of the classic speech processing problems that is still a hot topic. A

number of techniques have been proposed for pitch estimation, mostly aiming at the

measurement of periodicity in the time or frequency domain. The telemetry signal is

usually less complex than a voice or music signal and thus the extensive techniques

used of pitch estimation will unnecessarily increase the complexity of computation.

A more computationally efficient method proposed in [14] estimates fundamental
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frequency based on the estimate of a small set of partials obtained using short time

fourier transform (STFT) as opposed to [17], [19] where an initial estimate of the

sinusoids or the fundamental frequency was required. In this chapter we first at-

tempt to exploit the harmonic relationship to rewrite the optimization step in IQML

approach. Solving this optimization problem directly produces an estimate for fun-

damental frequency but it involves complicated computations. A simpler method on

the lines of [14] for fundamental frequency estimation is then proposed which re-

quires preprocessing on the data to exploit the inherent diversity in the system. The

results obtained after testing the proposed algorithm on the synthetic set of data are

discussed and its performance is evaluated.

A. Direct Fundamental Frequency Estimation

The harmonic relationship can be worked into the original problem such that the

optimization step is reduced to a single dimensional minimization. The optimization

in case of real sinusoids is given as

b̃(n+1) = arg min
‖b̃‖=1

{b̃∗C̃(n)
y b̃} (3.1)

For simplicity, assume that there is only one active pump in the system so the

frequency parameters are given by ωk = kω0, k = 1, . . . , K. Also, assume that

the number of harmonics of the fundamental frequency present in the signal can be

accurately estimated. The fundamental frequency ω0 is related to the linear prediction

polynomial coefficients b via the equation

b(z) =
K∑

k=0

bkz
K−k = b0

K
2∑

k=1

(z2 − 2 cos(kω0)z + 1). (3.2)

On further simplification cos(kω0) can be expressed in terms of cos(ω0) by using
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Tchebychev polynomials of the first kind

cos(kω0) = Tk(cos(ω0)) (3.3)

where,

Tk(x) =
k

2

⌊k/2⌋∑

r=0

(−1)r

k − r
Ck−r

r (2x)k−2r (3.4)

Equivalently, b̃ can be written as

b̃ = C




1

cosω0

...

cosR ω0




(3.5)

for R = K2+2K
8

and some fixed (K
2
+1)× (R+1) matrix C. For example, with K = 4

we have

C =




1 0 0 0

2 −2 −4 0

2 −4 0 8



. (3.6)

With this relationship, the quadratic optimization problem in 3.1 can be written as

̂cosω0
(n+1) = arg min

cosω0





(
1 cosω0 · · · cosR ω0

)
C∗C̃

(n)

y C




1

cosω0

...

cosR ω0








(3.7)

= arg min
cosω0

Tr




C∗C̃
(n)

y C




1 cosω0 · · · cosR ω0

cosω0 cos2 ω0 · · · cosR+1 ω0

...
...

...

cosR ω0 cosR+1 ω0 · · · cos2R ω0







(3.8)
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which can be solved by setting the derivative

∂

∂ cosω0
Tr




C∗C̃
(n)

y C




1 cosω0 · · · cosR ω0

cosω0 cos2 ω0 · · · cosR+1 ω0

...
...

...

cosR ω0 cosR+1 ω0 · · · cos2R ω0







= 0. (3.9)

Note that this derivative with respect to cosω0 is a polynomial of cosω0 and hence

amenable for numerical solution. Once an estimate of cosω0 is obtained, an estimate

of b̃ can be obtained via 3.5, and the iteration can continue to the next round.

Such an approach will be more computationally efficient as no searching procedure

is involved. However, as the number of the fundamental frequencies and harmonics

present increase the complexity of the computations increases. [19] follows a similar

approach but the fundamental frequency estimation is based on WLS technique.

B. Proposed Method

The main steps of the proposed method are shown in Fig. 10.

PREPROCESSING
Peak detection &
Bandpass filtering

HARMONIC
ESTIMATION
using IQML

DOMINANT ω
0

ESTIMATION

REMOVE
DETECTED
ω

0
 HARMONICS

Telemetry
Signal

Fig. 10. Flowchart of the proposed method
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1. Preprocessing

The presence of multiple harmonics of the same fundamental provides selection di-

versity in the system which can be exploited during the estimation of fundamental

frequency. In order to harness this diversity, preprocessing of the spectrum before

the actual f0 analysis is required. It is an important factor in the performance of the

system as it provides robustness in additive noise and ensures that signal with varying

spectral shapes can be handled. The goal is to reliably estimate only the strongest

harmonics of a particular fundamental frequency and then run the proposed algorithm

on these estimates.

The preprocessing module generates the frequency spectrum of each signal frame

(comprising of 2 seconds of data sampled at 120Hz) using the Fast Fourier Transform

(FFT) method. Under reasonable assumptions, each harmonic in the input signal pro-

duces a local maximum in the magnitude spectrum. Several heuristics were proposed

to discriminate local maxima induced by harmonics from those induced by noise. For

the operational SNR values, an iterative peak detector can be used to determine all

the major peaks above a certain threshold. Once the strongest harmonics are located

in the spectrum an aptly designed bandpass filter can be used to isolate them. The

iterative NLS estimation scheme described in chapter II can then be applied to the

filtered signal. The strongest harmonic frequency f is estimated from the given data.

2. Dominant Fundamental Frequency Estimation

The goal here is to estimate the dominant fundamental frequency ω0 in signal using

hypothesis testing procedure to estimate harmonic number k first. The harmonic

estimated by the IQML procedure is given by ω̂. Since the fundamental frequency

is closely related to the speed (in rpm) of the mud-pump, ω0 can b e assumed to be
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restricted to the range [ω0,min, ω0,max]. Then, the k-th hypothesis is given as:

ω̂ = kω0, k ∈

{⌈
ω̂

ω0,max

⌉
,

⌈
ω̂

ω0,max

⌉
+ 1, . . . ,

⌊
ω̂

ω0,min

⌋}
(3.10)

Under the k-th hypothesis, the fundamental frequency is given by:

ω0,k =
ω̂

k
(3.11)

The next step is to determine a testing criterion. The mud pump noise under

the k-th hypothesis is reconstructed as:

zk[m] =
Lk∑

l=1

Âl,k cos(lω0,km+ φ̂l,k) (3.12)

where, Lk is the total number of harmonics of ω0,k, for a certain sampling rate. By

Nyquist theorem it is given by:

Lk =

⌊
π

ω0,k

⌋
(3.13)

In the absence of a certain fundamental frequency, the zk[m] will just consist of

the background noise components. The energy per harmonic of the fundamental

frequency ω0,k can be defined as:

Dk =
‖zk‖2

Lk
. (3.14)

The average harmonic energy Dk is similar to the continuous time domain transform

defined in [20] for the instantaneous frequency estimation. It can be used as a metric

to test different hypotheses. More precisely, the correct estimate of k can be obtained

by:

k̂ = argmax
k

Dk (3.15)

Then, the fundamental frequency is given by ω̂0 = ω̂/k̂

The accuracy of fundamental frequency estimate depends on the accuracy of the
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”first” estimate i.e. the harmonic estimate and also, on the apriori knowledge of the

range of fundamental frequency.

The algorithm can be summarized as follows:

a) Initialization: k =
⌈

ω̂
ω0,max

⌉
.

b) Calculate zk[m] =
∑Lk

l=1 Âl,k cos(lω0,km+ φ̂l,k) and Dk =
‖zk‖

2

Lk
.

c) If k <
⌊

ω̂
ω0,min

⌋
, then k = k + 1 and repeat step b.

d) Finally, k̂ = argmaxk Dk and fundamental frequency ω̂0 = ω̂/k̂.

The exact value of the estimated ω0 is based on the frequency estimate of a single

strongest harmonic. However, the ω0 estimate can be improved by considering the

frequency estimates of all the harmonics in harmonic series of the winner candidate

during peak detection in the preprocessing stage. The ω0 refinement can be thought

of as a weighted average of the local ω0 estimates, where the local estimate for the kth

harmonic is ω/k̂. The weights are assigned according to the SNR and the stability of

the absolute frequency and are obtained during the preprocessing of the data.

In the presence of more than one fundamental frequency the process can be

repeated. Multiple-ω0 estimation accuracy can be improved by an iterative estimation

and cancelation scheme where each detected harmonics series is canceled from the

signal before estimating the next ω0. The basic cancelation mechanism described

here is similar to that presented in [21] for a mixture of sound signals.

3. Simulation Results

The simulations were performed both on synthetic sets as well as real field data

provided. Presented here are the results of simulations run on synthetic data from

stationary pump 1 and 2. The stationary pump 1 operates at 120RPM giving a
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fundamental frequency of 2Hz. The strongest harmonics are the multiples of three

i.e 3rd, 9th, 15th and so on. Based on this observation, the fundamental frequency

is assumed to lie in the range [ω0

2
, 3ω0

2
]. So, for the stationary pump 1 the analog

frequency F0 ∈ [1, 3]Hz. The frequency spectrum of this pump is shown in Fig. 11.

It also shows the distribution of the energy per harmonic of the fundamental frequency

ω0,k, given by Dk against the hypothesis k. The correct estimate of harmonic number

k̂ is the one for which Dk is maximum. In this case 9th harmonic was estimated giving

a fundamental frequency of 2.001 Hz. The experiments ar repeated for different filter

parameters and range of fundamental frequency. Similar, simulations were run on

stationary pump 2. It contained two different fundamental frequencies corresponding

to two mud pumps running at 120RPM and 126RPM. The fundamental frequencies

were picked up to be 2.001Hz and 2.1025HZ, in two successive runs of the detection

algorithm. The results are presented in Fig. 12 and Fig. 13. These results conform

with the available knowledge of fundamental frequency and hence prove the accuracy

of detection routine.

The experiments are repeated on real engineering data. The range of fundamental

frequencies for each signal set is selected based on the information on pump stroke

rates. The precision of proposed method has the same order of magnitude as that of

the sinusoid estimator employed.The method is also robust against weak or absent

fundamentals as well as incomplete series e.g. only multiples of 3, harmonics present.

One major drawback of this technique is that it is highly sensitive to the range

of fundamental frequency provided, especially in the signals where a regular pattern

of harmonics are absent. For example, in stationary pump 2 if the range fundamental

frequency is increased to [ω0

2
, 2ω0] i.e. F0 ∈ [1, 4]Hz. Then Dk can achieve a false

maximum for F0 = 3Hz and still cover all the major harmonics.
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Fig. 12. Energy per harmonic with two pumps
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CHAPTER IV

CONCLUSION

The problem of wideband noise cancelation over MWD mud-pulse telemetry chan-

nels was solved to a great extent by the use of aforementioned techniques. The

principal difficulty of overlapping spectral components due to use of multiple mud

pumps was overcome using state-of-the art IQML based estimation algorithm. For

appropriately selected band limited signals it provides enough resolution to pick up

these overlapping components separately. In addition to this, apriori knowledge of

number noise causing sources i.e.mud pumps and their stroke rate is utilized to estab-

lish the harmonic relationship between estimated frequencies and their corresponding

fundamental frequency. An attempt is made to build the harmonic constraint into

the original IQML optimization routine, but later a more straightforward hypothesis

testing procedure is developed to estimate the fundamental frequencies. The knowl-

edge of fundamental frequency is used to build the entire harmonic set and once the

remaining parameters of noisy sinusoids are estimated they can be fed as input to a

specifically designed noise canceler .

Thus far, the described procedures have been successfully tested over the syn-

thetic as well as the real field data and the results are encouraging. As mentioned in

Chapter III, there are some harmonic patterns which can produce ambiguous results

in the hypothesis testing procedure, but they can be avoided by carefully selecting

the fundamental frequency ranges.
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