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ABSTRACT 

 

Improvements and Applications of the Methodology for Potential Energy Savings 

Estimation from Retro-commissioning/Retrofit Measures. (May 2010) 

Jingjing Liu, B.A., Tsinghua University; 

M.S., Tsinghua University 

Chair of Advisory Committee: Dr. David E. Claridge 

 

This thesis has improved Baltazar’s methodology for potential energy savings 

estimation from retro-commissioning/retrofits measures. Important improvements and 

discussions are made on optimization parameters, limits on optimization parameter 

values, minimum airflow setting for VAV systems, space load calculation, simulation of 

buildings with more than one type of system, AHU shutdown simulation, and air-side 

simulation models. A prototype computer tool called the Potential Energy Savings 

Estimation (PESE) Toolkit is developed to implement the improved methodology and 

used for testing.  

The implemented methodology is tested in two retro-commissioned on-campus 

buildings with hourly measured consumption data. In the Sanders Corps of Cadets 

Center, the optimized profiles of parameter settings in single parameter optimizations 

can be explained with engineering principles. It reveals that the improved methodology 

is implemented correctly in the tool. The case study on the Coke Building shows that the 

improved methodology can be used in buildings with more than one system type. 
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The methodology is then used to estimate annual potential energy cost savings 

for 14 office buildings in Austin, TX with very limited information and utility bills. The 

methodology has predicted an average total potential savings of 36% for SDVAV 

systems with electric terminal reheat, 22% for SDVAV systems with hot water reheat, 

and 25% for DDVAV systems. The estimations are compared with savings predicted in 

the Continuous Commissioning® assessment report. The results show it may be helpful 

to study the correlation by using generalized factors of assessment predicted energy cost 

savings to estimated potential energy cost savings. The factors identified in this 

application are 0.68, 0.66, and 0.61 for each type of system. It is noted that one should 

be cautious in quoting these factors in future projects.  

In the future, it would be valuable to study the correlation between measured 

savings and estimated potential savings in a large number of buildings with retro-

commissioning measures implemented. Additionally, further testing and modifications 

on the PESE Toolkit are necessary to make it a reliable software tool. 
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1. INTRODUCTION 

 

1.1 Background and Problem Statement 

The importance of improving energy efficiency and reducing operating cost of 

buildings first gained nationwide attention during the oil embargo of 1973 (Claridge, 

1998). Commercial buildings use a significant fraction of all energy use, accounting for 

18.4% of the total energy use in the United States (EIA, 2007), and this fraction is 

increasing. Building owners/operators are showing more interest in saving energy as a 

result of increasing energy prices. A significant volume of literature suggests that retro-

commissioning typically reduces annual energy consumption by 5% to 20%, with higher 

values (up to 30%) in some buildings (TIAX LLC., 2005). The Energy Systems 

Laboratory personnel at Texas A&M University have retro-commissioned, or improved 

operating efficiency in more than 300 buildings during the last 20 years; the average 

measured utility savings are about 20%, with simple paybacks typically occurring in less 

than two years (Energy Systems Laboratory, 2009). 

On-site maintenance personnel play an important role in daily building 

mechanical system operation and trouble-shooting. However, in order to optimize the 

energy efficiency in a building as much as possible, the owner/operator usually needs to 

resort to companies or specialists that have expertise in existing building/facility energy 

savings for a retro-commissioning or energy retrofit project. At the beginning of such a 

project, some form of screening is often applied to determine whether there is sufficient 

____________ 
This thesis follows the style of ASHRAE Transactions. 
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potential for savings to justify a retro-commissioning assessment or an energy audit (also 

referred to as an energy assessment). If screening results are positive, the assessment is 

performed and the potential for energy savings in the building is evaluated before the 

owner/operator decides that further work is likely to produce significant energy savings 

meeting the owner’s economic criteria. A popular technique that is used to screen for 

savings potential in a building is to compare its energy use per square foot of gross area 

to a group of buildings of similar type in the same climate. This technique is also known 

as conventional energy benchmarking. Although this technique is very easy to use when 

a satisfactory database is available and gives some idea about the relative efficiency of 

the building, buildings are not always as similar as they appear. The buildings used for 

comparison are not necessarily energy efficient in general, and it gives no indication of 

energy conservation measures (ECMs) that merit consideration in the next step. Some of 

the improved energy benchmarking methods found in recent studies (Mills et al., 2008; 

Mathew and Mills, 2008; Yalcintas, 2006 and Cipriano et al., 2009) show potential in 

suggesting ECMs, but the other limitations still apply. There are also various energy 

simulation tools available to energy engineers. They can be used to predict savings from 

implementation of certain ECMs by changing inputs and comparing results. However, 

they are not designed to project the potential of savings in a building without detailed 

information about the building and the built-in system plus they are usually complicated 

to use. Consequently, it would be desirable to have a methodology which is capable of 

predicting the opportunities for savings independent from the energy performance of 

other buildings. And yet, this methodology should be easy enough to use in the early 
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phase of retro-commissioning assessments or energy audits to help decide if a 

comprehensive assessment should be carried out to identify commissioning measures 

and/or ECMs for further analysis.  

Baltazar (2006) proposed such a methodology for estimating the potential energy 

savings in commercial buildings. At its core is the procedure for obtaining the minimum 

energy use cost required to maintain indoor thermal comfort. Baltazar used a model 

based on the modified bin method (Knebel, 1983) to represent the built-in HVAC system 

and used a numerical procedure for energy cost minimization. The total energy cost 

includes the electrical cost for lighting, equipment, and fans, as well as cooling and 

heating cost. All components of energy use are optimized except for electrical cost for 

lighting and equipment use. Sequential exhaustive search in the designated range of 

values for all the independent parameters commonly controlled for a specific type of 

HVAC system was employed to carry out the optimization. The potential savings in each 

bin of outside air dry-bulb temperature is determined as the difference between the 

actual energy cost and the minimum energy cost. The savings in each bin is then 

accumulated to yield the total potential energy cost savings during the period being 

evaluated (preferably a whole year). This methodology was applied to several buildings 

that have been retrofitted and/or retro-commissioned in Texas. The measured savings in 

the Zachry Engineering Center at Texas A&M University was about 85% of the 

estimated potential savings, which was considered a close agreement. 

This methodology is promising, yet in order to make it a useful tool in retro-

commissioning assessments or energy audits, further testing and improvement of the 
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methodology is required. In addition, development of a computer tool will make the 

testing much easier. Although Baltazar’s implementation in Microsoft® Excel VBA 

codes fulfilled the scope of the methodology tested in his thesis, it is not designed as a 

tool to be readily used by others. Therefore, re-development of a computer tool with 

user-friendly interface including more simulation and optimization options is essential 

for testing of the methodology.  

1.2 Objectives 

The objectives of this study are to improve Baltazar’s methodology for potential 

energy savings estimation and to test the predictions of the improved methodology by 

comparison with savings predicted in retro-commissioning assessment reports. This 

study will fulfill these objectives in three steps:  

(1) A prototype computer tool called the Potential Energy Savings Estimation 

(PESE) Toolkit is developed to implement the improved methodology for potential 

energy savings estimation in early retro-commissioning assessments or energy audits. 

This tool is designed for the purpose of testing of the methodology.  

(2) A preliminary test of the methodology implemented is conducted in two 

retro-commissioned buildings with hourly measured consumption data and retro-

commissioning implementation information. The optimized profiles of parameter 

settings versus bin temperature are analyzed in single parameter optimizations in the first 

building. 

(3) The methodology is then used to estimate potential savings for 14 office 

buildings with very limited information and utility bills.  It is expected that this 
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methodology will predict an upper limit to the potential savings that can be achieved.  

The use of a generalized factor or factors to improve the correlation between potential 

savings identified in retro-commissioning assessment reports and those identified by this 

methodology is investigated. 
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2. LITERATURE REVIEW 

 

2.1 Energy Audit 

Today, as energy prices increase, saving money on energy bills through a  

commissioning and/or retrofit project is more attractive to commercial building owners. 

The typical process of a Continuous Commissioning® (CC®) project and an energy 

retrofit project as described by Liu et al. (2002) and Wendes (1994) are depicted 

individually in Figure 2.1. Both processes use an energy audit (or similarly a CC® 

assessment) as one of the first tasks to be performed as the basis of the following steps. 

In an energy audit, modifications that will reduce the energy cost of operating a building 

are identified and developed, and the results are presented appropriately for an 

owner/operator to decide if any, some, or all of the recommended modifications should 

be implemented. The modifications recommended by an energy audit generally involve 

equipment replacement or upgrades. According to the ASHRAE Technical Committee 

7.6 Systems Energy Utilization (ASHRAE, 2004), an energy audit process should follow 

the six steps illustrated in Figure 2.2. In addition, depending on the purpose for which 

the results may be used, different levels of energy analysis can be performed on a given 

building, as shown in Figure 2.3. Each succeeding level of analysis builds upon the 

previous level, although there are no sharp boundaries between these levels. 
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Identify buildings or facilities

Perform CC
®
 assessment

Phase I: Project Development

Develop CC® plan and form the project team

Develop performance baselines

Conduct system measurements and develop 
proposed CC® measures

Implement CC® measures accepted by owner

Document comfort improvements and energy 
savings

Keep the commissioning continuous

Phase II: Implementation and Verification

Continuous Commissioning® Process

 
 

Figure 2.1 Diagram of commercial building retrofit/retro-commissioning processes 
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Collect and analyze historical energy use

Study the building and its operational 
characteristics

Identify potential modifications that will 
reduce the energy use and/or cost

Perform an engineering and economic 
analysis of potential modifications

Prepare a rank-ordered list of appropriate 
modifications

Prepare a report to document the analysis 
process and results

 
Figure 2.2 Diagram of commercial building energy audit steps 

 
 
 

 
Figure 2.3 Level of effort in commercial building energy audit 
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In an energy audit, ECMs for different building systems can be recommended 

including, but not limited to the building envelope (insulation and air leakage issues), 

electrical system (lighting and office equipment), cooling and heating plant (chiller and 

boiler efficiency), HVAC system and the domestic water system. However, this study 

only discusses energy savings within the HVAC system. Various energy analysis 

methods/tools are available to the engineers for estimating energy savings incurred from 

ECMs applied to the HVAC system. These methods/tools vary widely in complexity and 

accuracy. In order to select an appropriate method/tool, one should consider the purpose 

and required level of effort in the current analysis. The following section, 2.2-2.4 will 

discuss the features and applications of each method by category: energy benchmarking, 

forward modeling and inverse modeling.  

In general, energy benchmarking methods are conventionally used as the major 

tool for analyzing the building’s historical energy use in preliminary level analysis, 

whereas recent studies show that they also have potential in identifying ECMs. Forward 

modeling methods are widely used in engineering and economic analysis of potential 

modifications, and the variety of options can fit the need from level I to level III analysis. 

The inverse modeling methods are most valuable in the determination of savings 

achieved after modifications are implemented;sometimes they can also be used with 

forward modeling to determine uncertain system parameters. 

2.2 Energy Benchmarking 

At the beginning of an energy audit process, historical energy use data is 

collected and analyzed. Energy benchmarking (comparing a building’s normalized 
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energy consumption to that of other buildings) is widely used in the preliminary level of 

energy analysis as a first measurement of energy efficiency to determine whether a 

building is a good candidate for a retro-commissioning and/or retrofit process. Relative 

energy use is commonly expressed in terms of an energy use index (EUI) and a cost use 

index (CUI), in which building gross floor area is used as the normalizing factor. 

Comparing a building’s energy use index with that of comparable buildings in the same 

region is a good way to check its relative efficiency. While local energy consumption 

data may be available from local utility companies or energy offices, the DOE/EIA 

Commercial Buildings Energy Consumption Survey (CBECS) is a public source of 

benchmarking data for U.S. buildings with the most recent survey completed in 2003. 

Most energy consulting companies and other organizations responsible for 

energy-efficiency of buildings use the mean or median value of the EUI for the kind of 

building being investigated as a benchmark (Federspiel, 2002), which is considered 

conventional benchmarking. Current studies of improved energy benchmarking methods 

utilize three different approaches: the distributional model-based approach, the 

regression-based approach and the artificial neural network (ANN)-based approach. 

2.2.1 Distributional Model-based Approach 

The Cal-Arch model is a simplistic web-based distributional benchmarking tool 

developed by Lawrence Berkeley National Laboratory (LBNL), which is based on the 

data from California’s 1992 Commercial End-Use Survey (CEUS). Building location, 

building type, floor area and energy use are required input. The EUIs for a subset of 

buildings in the Cal-Arch database are plotted as a histogram with the evaluated 
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building’s EUI noted with an arrow, and the percent of buildings in the database that 

have lower EUIs is reported. The data displayed are actual EUIs and are not adjusted for 

weather or any other factors. The user can compare his/her building’s EUI to that of 

similar buildings in the same climate zone or statewide (Matson and Piette, 2005). 

Recognizing that conventional energy benchmarking can inspire action but 

provides no practical guidance, recent research at LBNL developed a new action-

oriented benchmarking system based on the latest 2006 CEUS survey with a web-based 

interface called EnergyIQ. It is considered as a major advancement beyond Cal-Arch in 

that it is aimed to fill the need for a benchmarking tool that enables users to identify 

potential energy-efficiency options and prioritize areas for more detailed analysis and 

full-scale assessments (Mills et al., 2008). Action-oriented benchmarking extends 

traditional whole-building energy benchmarking in three ways: end-use benchmarking, 

features benchmarking and correlating features with end-use energy intensities, which 

can help assess the approximate savings potential from specific actions (Mathew and 

Mills, 2008). However, the effectiveness and widespread application of action-oriented 

benchmarking is contingent on the availability of reliable end-use data for buildings. 

Currently, end-use metering is still relatively rare, and no other states have databases like 

CEUS. 

2.2.2 Regression-based Approach 

While conventional benchmarking attempts to normalize energy use relative to a 

primary determinant - building floor area - it ignores many other factors. Sharp (1996) 

used the 1992 CBECS database to develop distributions of electric EUIs in office 
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buildings for the nine U.S. census divisions, and concluded that both census division 

average and median EUIs are not reliable indicators for more localized EUIs. 

Consequently, he proposed a benchmarking method which identifies significant 

determinants with stepwise linear regression modeling. Beyond floor area, the number of 

workers, personal computers, owner-occupancy, operating hours, and the presence of an 

economizer or chiller are also found to be dominant variables. The resulting performance 

models can predict EUIs that are much better benchmarks than simple census division 

statistics. Sharp’s method has been modified slightly and used as the basis of the Energy 

Star® benchmark, which is a web-based national tool based on building characteristic 

and energy use data from the CBECS survey. Rather than using census location as a 

proxy for weather, the Energy Star® benchmark explicitly compensates for weather. The 

Energy Star® benchmark is the 25th percentile of the EUI distribution, because this rating 

system is based on the assumption that 25% of the national building stock can achieve an 

Energy Star® rating of 75 or higher – these buildings are eligible for an Energy Star® 

label if the building also meets the indoor environment criteria. 

2.2.3 ANN-based Approach 

Yalcintas (2006) and Cipriano et al. (2009) presented a promising application of 

ANN techniques in building energy benchmarking. The foremost feature of their ANN 

method is that the benchmarking algorithm will renew itself if new building data is 

entered in the database. In the study developed by Yalcintas (2006), the ANN model 

specifically focuses on predicting a weighted EUI by taking into consideration various 

building variables, such as plug load density, lighting type and hours of operation, air 
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conditioning equipment type and efficiency, etc. Data collected from laboratory, office 

and classroom-type buildings and mixed use buildings in Hawaii are used to present this 

technique and make successful predictions. Additionally, the use of the ANN benchmark 

model for predicting potential energy savings from retrofit projects was evaluated for the 

first time. In the study of Cipriano et al. (2009), a prediction model is developed for 

calculating the relationship between climate-adjusted EUIs and the significant 

characteristic factors of a building. An application to schools in Catalonia (Spain) is 

presented to validate the methodology and potential energy savings from retrofit projects 

are evaluated. The method shows promising features in order to be an easy-to-use tool 

for first identifying a building with higher energy consumption when compared with 

similar buildings, secondly identifying the most important parameters that can cause this 

high energy consumption and finally modeling energy performance and predicting 

energy savings by retrofit measures. 

2.2.4 Benchmarking Summary 

Within its current capabilities, an energy benchmarking method does not provide 

detailed results about the building’s energy usage characteristics when compared with an 

energy simulation method or an ECM feasibility analysis, but is the least expensive 

method, and it serves as preliminary energy information and a support aid decision 

system. Significant advances in energy benchmarking have been achieved in recent 

studies; new tools and methods are extending the function of energy benchmarking from 

giving only a rough idea of building energy efficiency to helping identify potential 

energy-efficiency options. The distributional model-based approach and ANN-based 
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approach have both proven to have potential in this direction. The former demands a 

much more sophisticated database than is generally available; the latter seems to have 

better application potential. However, there are two limitations inherent with energy 

benchmarking methods. The first is that they require a database which includes a 

statistically significant number of buildings that are comparable to the building being 

evaluated. Although similar climate and the use of the building are minimal 

requirements for comparison, other factors such as floor area, occupancy, construction, 

and HVAC system type are also significant factors. The second is that the comparable 

buildings are not necessarily energy efficient, which can lead to under-estimation of 

energy savings potential. In a final analysis, a building’s energy efficiency and energy-

saving potential does not depend on the performance of other buildings, but on the 

characteristics of the built-in system and operation strategy which only can be 

represented by system modeling methods. 

2.3 Forward Modeling Methods 

There are two broad but distinct approaches to modeling: forward modeling and 

inverse modeling. Forward modeling of building energy use begins with a physical 

description of the building system or component of interest. The peak and average 

energy use of such a building can then be predicted or simulated by the forward 

simulation model. The main advantage of this approach is that the system need not be 

physically built to predict its behavior. Thus, this approach is ideal in the preliminary 

design and analysis stage. Since it is based on sound engineering principles, it has gained 

widespread acceptance by the design and professional community. (ASHRAE, 2005) 
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2.3.1 Steady-state Methods 

Steady-state energy analysis methods using the forward modeling approach are 

usually easy to perform by hand or using spreadsheet programs. Two types of steady-

state forward methods can be distinguished: degree-day methods and bin methods. 

The variable-base degree-day method has replaced the traditional degree-day 

method in general. Annual degree-days are computed at the balance point temperature of 

the particular building to predict heating and cooling energy uses. It is the simplest 

method for energy analysis and provides generally good predictions for buildings 

dominated by transmission loads with constant HVAC equipment efficiency. Where 

efficiency or conditions of use vary with outdoor temperature, consumption can be 

calculated for different values of the outdoor temperature and multiplied by the 

corresponding number of hours in the temperature interval (bin) centered on that 

temperature. This approach is known as the bin method.  

ASHRAE Technical Committee 4.7 developed the modified bin method (Knebel 

1983) to fill the need for a simple yet comprehensive method which can be used to 

calculate energy use in commercial buildings. The modified bin method recognizes that 

the building and zone loads consist of time dependent loads and temperature dependent 

loads. In expressing building loads as a function of outdoor temperature, two major 

simplifying assumptions are made. One is that all exterior loads can be expressed as a 

linear function of outdoor temperature; the other is that on a daily basis, two calculation 

periods representing occupied and unoccupied hours are sufficient. In buildings 

dominated by internal loads or in low mass structures the method provides reasonable 
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results. And the accuracy associated with this method should meet the requirement of 

most Level I and some Level II savings and cost analyses. The simplicity of this method 

also gives opportunity for an easy link with optimization algorithms in applications of 

potential energy savings estimation. 

2.3.2 Dynamic Methods 

Computer simulation programs such as DOE-2, Trace, and EnergyPlus using 

dynamic methods can calculate energy consumption in complex buildings with hourly or 

sub-hourly time steps. An important characteristic of these simulation programs is their 

capability to account for the effects of thermal inertia so they can be used in buildings 

with significant thermal mass, thermostat setbacks, or predictive control strategies. 

These programs require a high-level of expertise and are generally suitable to simulate 

large buildings with complex HVAC systems and involved control strategies that are 

difficult to model by simplified energy analysis tools. To adequately estimate energy 

savings from ECMs, the models have to be calibrated to measured energy use (Krarti, 

2000). Since these programs are relatively complex and computationally intensive, it is 

difficult to link them with outside optimization tools. However, they are widely used in 

Level II analyses where savings from a particular ECM or a list of ECM(s) need to be 

determined. The following are some examples of application as such. 

Yu and Chow (2007) selected a typical commercial building in Hong Kong, for 

detailed HVAC system energy use analysis. An energy signature was developed with 

three years of monthly energy consumption data and compared with simulation results 

using TRACE 600. Then a total of 20 ECMs were investigated with simulation for 
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possible use in local commercial buildings. They showed that three measures can yield 

significant savings (up to 17%).  

Yang et al. (2006) evaluated the major factors affecting the electricity use of 

HVAC systems with simulation using EnergyPlus. A model building was developed to 

represent the typical construction characteristics of commercial buildings in Hong Kong. 

It was concluded that up to 36.2% of electricity use can be saved from improving COP 

of chillers, setting appropriate spacing cooling temperature, lowering lighting intensity, 

running fans at their design operating point, etc. 

2.4 Inverse Modeling Methods 

Inverse modeling, also known as “data-driven modeling”, relies on energy use 

data of existing buildings to identify a set of building system parameters. Inverse 

modeling often allows identification of system models that are not only simpler to use 

but also are more accurate predictors of future system performance than forward 

methods, although they are less flexible in evaluating energy consumption of different 

design and operational alternatives (ASHRAE, 2005). Based on the reviews of Rabl 

(1988), MacDonald and Wasserman (1989), and Claridge (1998), inverse modeling 

methods may be categorized as empirical or “black-box” approach, calibrated simulation 

approach and gray-box approach. 

2.4.1 Empirical Approach 

With this approach, a simple or multivariate regression model is identified 

between measured energy use and the various influential parameters (e.g., climatic 

variables, building occupancy). Single-variate, multivariate, change point, Fourier series, 
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and artificial neural network (ANN) models fall under this category. A purely statistical 

approach for model identification is usually adequate for baseline model development in 

energy conservation Measurement and Verification (M&V) projects (ASHRAE, 2005). 

2.4.2 Calibrated Simulation Approach 

The calibrated simulation approach can make more reliable predictions, but it is 

usually labor-intensive and requires expertise in both simulation and practical building 

operation, which prevent it from being more widely used. Katipamula and Claridge 

(1993) and Liu and Claridge (1998a, 1998b) suggested the simplified systems models 

with only two zones, which allow calibration to be done much faster as there are fewer 

parameters to vary. They illustrated that this method based on ASHRAE Simplified 

Energy Analysis Procedure (Knebel 1983) is not only applicable for baseline model 

development for M&V purposes when the pre-retrofit consumption is not metered, but 

also for identifying potential operational problems and for estimating potential savings 

from optimized operating parameters, such as optimizing cold and hot deck reset 

schedules. 

2.4.3 Gray-box Approach 

The gray-box approach is a hybrid approach between forward modeling and 

inverse modeling methods. It first formulates a physical model to represent the 

configuration of the system, and then identifies important parameters by statistical 

analysis (Rabl and Rialhe, 1992). Thus, it requires expertise in both physical modeling 

and statistical analysis. This approach has limited applicability to whole-building energy 

use although it has great potential in fault detection and diagnosis (FDD). 
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2.5 Summary 

There are three types of tools (energy benchmarking, forward modeling methods 

and inverse modeling methods) available for energy use analysis in an energy retrofit or 

retro-commissioning project. They vary widely in ease of use and accuracy, which 

makes them fitting for different purposes and levels of analyses. Forward modeling 

methods have been widely accepted and used by the professional community for 

identification of potential ECMs and corresponding energy savings estimation in an 

energy audit. Recent academic research on improved energy benchmarking methods also 

shows some potential for ECM identification. However, as discussed earlier, there are 

limitations inherent with energy benchmarking methods. Among the forward modeling 

methods, the dynamic simulation tools can be used in different levels of analyses. 

However, they are generally time-consuming to perform and require expertise in use to 

get reliable results. The modified bin method is competitive in both Level I and Level II 

analyses to identify low-cost/no-cost ECMs and provide savings and cost analysis. In 

some cases, it can also be used with the calibrated simulation approach in determining 

the values of certain system parameters. 

The modified bin method is simple in calculation and yet accurate enough in 

general for early phase energy savings analysis, plus it gives opportunity for easy link 

with optimization routines in programming. Consequently, it is adopted in the 

implemented methodology in this thesis, which is aimed to estimate potential energy 

savings with only limited information of the building and the built-in HVAC system. 

The steps and level of effort in which this methodology is intended to help are 
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highlighted in Figure 2.2 and Figure 2.3. It is expected to help engineers mainly in the 

Level I analysis in evaluating low-cost/no-cost measures such as resetting room 

temperatures set points, cold deck and hot deck leaving air temperatures, and outdoor air 

intake. In some cases, capital cost may be required in order to implement the identified 

measure(s), for instance, installing an economizer. As project develops, more accurate 

input information may be available, and this methodology could also assist in some 

Level II analysis as such. When a satisfactory database is not available for performing an 

energy benchmarking, this methodology can also fill in the preliminary level of analysis 

to determine if further analyses are likely to predict significant savings. This can be 

especially valuable in projects where energy audits will be applied to many buildings, 

and pre-screening to identify the buildings with the most potential is necessary. 
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3. METHODOLOGY 

 

3.1 Baltazar’s Methodology 

This study adopted the methodology of potential energy savings estimation 

proposed by Baltazar (2006), which evaluates theoretical potential savings based on 

thermodynamic considerations. The methodology is based on the modified bin method 

and can be briefly summarized as follows. 

The potential energy savings in each outside air temperature bin can be obtained 

as the difference between the actual energy cost during a particular period (preferably a 

whole year) and the minimum energy cost needed to maintain comfortable indoor 

conditions using the existing HVAC systems in the building under the same weather 

conditions (Equation 3.1). Here the minimized energy cost is comprised of electricity 

cost, cooling cost and heating cost. The electricity cost consists of two parts: (1) lighting 

and equipment consumption which is estimated from measured data and remains 

constant, and (2) fan power consumption which is simulated. (Equation 3.2) 

MINIMIZEDACTUAL CostEnergy CostEnergy   SavingsEnergy  Potential −=   (3.1) 

CostHHW CostCHW )Cost ELECost (ELECostEnergy FANPLTEQ +++=   (3.2) 

Bin temperature, mean coincident humidity ratio and measured energy 

consumption are required to determine the potential savings in each bin. They can be 

prepared from hourly measured consumption data as well as hourly outside air dry-bulb 

temperature data and any one of the three humidity parameters - wet bulb temperature, 

dew point temperature or relative humidity. The humidity ratio during each hour is first 
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calculated from the dry-bulb temperature and the chosen humidity parameter.  Then all 

the hourly data are sorted into bins based on the dry-bulb temperature.  The mean 

coincident humidity ratio for each bin is computed as the mean humidity ratio for the 

hours in each bin and energy consumption data for hours in each bin is summed to give 

the consumption for each bin. 

The essence of this methodology is the procedure for determining the minimum 

energy use cost, which has two major components as Figure 3.1 demonstrates: the 

combined model which thermodynamically represents the performance of the built-in 

HVAC system and the numerical procedure for energy cost minimization. The combined 

model takes weather conditions into account through a load calculation procedure and it 

becomes part of the input for the air-side system simulation. Both the load calculation 

and system simulation follows the ASHRAE Simplified Energy Analysis Procedure. The 

numerical procedure generates and seeks the parameter values which will produce 

minimum total energy use cost while meeting the indoor thermal comfort requirements.  

Sequential exhaustive search is employed as the optimization method and 

manages through representative equivalent ambient conditions obtained by “bin sorting”. 

Figure 3.2 illustrates the procedure of implementation of the methodology in 

determining the minimum energy cost for each bin. The total potential energy cost 

savings during the period evaluated are then the sum of savings found in each bin. 
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Figure 3.1 Block diagram of the methodology for potential energy savings determination 

(Baltazar, 2006) 

 
 
 

 
Figure 3.2 Flowchart of the methodology for evaluating potential energy savings in a 

building through binned ambient conditions. The total potential savings will be the sum of the 
individual products of the energy savings in each bin multiplied by its frequency. (Baltazar, 

2006) 
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3.2 Improvements on Methodology 

The following improvements on Baltazar’s methodology have been incorporated 

in the PESE Toolkit. 

3.2.1 Optimization Parameters 

In Baltazar’s implementation of the methodology, four parameters are selected 

for optimization: cold deck and hot deck (for dual duct systems) leaving air temperature 

set points; minimum supply airflow per square foot of floor area (for VAV systems); and 

the fraction of outside airflow in total design airflow. In this study, the volumetric 

outside airflow is optimized instead of optimizing outside air fraction because 

volumetric control is required in order to implement the optimization result; the 

minimum supply airflow is not optimized since the optimized value is always equal to 

the designated lower limit. In addition to the above changes, room temperature set points 

in the exterior and interior zones are included as additional optimization parameters, 

since space loads are dependent on these two parameters (refer to section 3.2.3).  

In summary, five parameters are selected for optimization in this study: exterior 

and interior zone room temperature set points, cold deck and hot deck leaving air 

temperature set points, and outside air flow rate. In addition, in the implemented 

methodology in PESE Toolkit, options are provided to users for which of the five 

parameters will be activated. This is helpful in evaluating savings based on the existing 

control capability. For example, Baltazar concluded that his methodology seemed to 

over-estimate savings at lower outside air temperatures in buildings which do not have 

an economizer. In such a case, provided the option whether to optimize the outside air 
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intake, one can choose either to estimate potential savings based on the current system 

setting, or to find out the extra savings achievable by installation of an economizer. 

3.2.2 Limits on Optimization Parameter Values 

In order to make the optimization result useful, it is important to set appropriate 

lower and upper limits on the values of optimization parameters. These limits should be 

determined based on the special requirements in each particular application. However, 

the considerations used to determine the limits in the case studies included in this thesis 

are given here for reference. 

Room temperature set points: ASHRAE’s general design criteria for commercial 

and public buildings can be adopted when there is no specific requirement for room 

temperature and relative humidity control. For example, 70-78°F and up to 60% RH are 

acceptable for offices (ASHRAE, 2007a) during occupied periods. According to the 

retro-commissioning practices at Texas A&M University, 65-85°F and up to 70% RH 

are commonly used for reset values during unoccupied periods. 

Cold deck and hot deck leaving air temperature set points: Limits on these set 

points usually vary from project to project. Taking the practice of Texas A&M 

University as an example again, the reset range is usually 55-70°F for cold deck and 70-

110°F for hot deck temperatures. 

Outside air flow rate: Minimum outside air supply in breathing zone by 

ANSI/ASHRAE Standard 62.1-2007 (ASHRAE, 2007b) can be adopted as a lower limit. 

For example, 5 cfm/person and 0.06 cfm/ft2 are generally required in design for offices; 
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however, this requirement can be as low as 7 cfm/person when a CO2 sensor is available 

to maintain a CO2 level of 1000ppm. 

3.2.3 Minimum Airflow Setting 

Exterior and interior zone minimum airflows are not parameters to be optimized 

by the methodology employed in this study. However, resetting minimum airflow is an 

important ECM in VAV systems and usually has significant influence on the energy use.  

In retro-commissioning practice, the minimum airflow should be checked and 

reset if necessary for each individual VAV terminal box. This requires knowledge of the 

loads in each space as well as design information and terminal box details. Since this 

methodology is developed to assist in the early stage of a retro-commissioning or energy 

audit process, the above information is usually not available and not much effort can be 

expended to determine minimum airflow. Therefore, the following suggested procedure 

is intended to give an example how reasonable minimum airflows can be set with 

minimal effort while complying with related codes. 

According to Taylor and Stein (2004), ANSI/ASHRAE Standard 62.1-2007 for 

ventilation and ANSI/ASHRAE Standard 90.1-2007 for energy (ASHRAE, 2007c), the 

minimum airflow during the occupied period can be reset to the largest of the following: 

(1) the airflow required to meet the design heating load at a supply air temperature that is 

not too warm (e.g. 85°F); (2) 30% of design airflow or 0.3 cfm/ft2 if the design airflow is 

oversized; or (3) the minimum breathing zone outside air required by ANSI/ASHRAE 

Standard 62.1-2007. The minimum airflow during the unoccupied period can be reset to 

zero in most cases according to the practice at Texas A&M University. 
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3.2.4 Space Load Calculation 

In Baltazar’s implementation, space cooling and heating load are calculated 

based on fixed occupied period room temperature set points (e.g. 75°F). This can lead to 

inaccurate optimization results when the room temperatures are optimized using 

unoccupied resets and seasonal resets, because the conduction load makes up a 

significant fraction in the total space load and is proportional to the difference between 

the room temperature and the outside air temperature. Take office buildings for example. 

Room temperature can have a relatively wide acceptable range: 70-78°F during occupied 

periods and 65-85°F during unoccupied periods. Therefore, in this study, a space load 

calculation procedure is developed based on the Simplified Energy Analysis Procedure 

and linked with the optimization procedure, so that the space load will be re-calculated 

dynamically as room temperature set points change in the optimization process. 

3.2.5 Simulation of Buildings with Multiple Types of Systems 

Many buildings have more than one type of system. Therefore, the methodology 

should be made applicable to a large part of these buildings to be useful. In this study, 

two input parameters are introduced to account for this problem - the fractions of 

exterior and interior zone areas served by each type of system. They are applied to 

calculated whole-building exterior and interior zone space loads. Here, it is assumed that 

the space load is proportional to floor area. This assumption works fine with buildings 

having each type of system serving an entire floor or several floors, or buildings having 

two different types of systems serving the exterior zone and interior zone respectively. 
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3.2.6 AHU Shut-down Simulation 

Shutting down the AHU(s) during unoccupied periods is a common and effective 

ECM. When the AHU is turned on before the building is occupied again, it has to bring 

the room temperature to set point in a short period. Observations of the measured 

consumption data in the Coke Building show that the cooling or heating energy 

consumption during the start-up period is usually significant. In addition, during the 

shut-down period, there is usually still a lower and upper limit on the room temperature 

to bring the AHU back to work. Therefore, the cooling and heating energy use during the 

unoccupied period needs to be estimated in a reasonable manner. This energy use can be 

estimated to be approximately equal to the sum of the largest two components of the 

space load: the internal heat gain and the conduction load. 

During the AHU shut-down period, the room temperature changes under the 

influence of internal heat gain and conduction through the building envelope. As a result, 

the conduction load can be significantly different from that when the room temperature 

is kept at the occupied period set point. This challenges one of the major limitations of 

the modified bin method, which is based on time averaging techniques and does not take 

the thermal capacitance of the space into account.  

However, based on the measured data in an office building on the Texas A&M 

University campus, where AHU shutdown has been implemented, it is found that the 

average room temperature during the unoccupied period has an approximate linear 

relationship with the average outside air temperature. This finding is used to estimate the 

average conduction load during the unoccupied period and is described in Appendix A. 
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It is noted that the relationship can vary from building to building depending on the 

building’s size, construction, internal heat gain, etc. Nevertheless, the obtained 

relationship is made default in the implemented methodology in PESE Toolkit, which 

can be modified based on engineering considerations to make a best estimation. 

3.2.7 Air-side Simulation Models 

The air-side simulation models employed in Baltazar’s methodology largely 

came from the SEAP, which was developed by ASHRAE TC4.7 and described in 

Knebel (1983). These models are inherited in this thesis. However, several significant 

modifications have been made in order to correctly represent the performance of the 

systems in optimization, because the SEAP models are developed to represent typical 

operating conditions.  

For example, in dual duct systems, such a condition can occur in summer that the 

hot deck leaving air temperature is set back to as low as 70°F, while outside air is 90°F 

and room temperature is set at 75°F. The hot deck entering temperature (76.5°F 

assuming outside air fraction is 10%) is higher than the leaving air temperature set point. 

Using the SEAP models in such a case will lead to a mistake that the leaving air 

temperature equals the set point and thus hot deck has virtually cooled the air down from 

76.5°F to 70°F; but in reality the leaving air temperature equals the entering temperature.  

The SEAP models for SDVAV system only account for cooling mode. Therefore, 

model equations are added for heating mode with a limit (120°F) added for terminal box 

maximum supply temperature. With the modified model, minimum airflow during 

unoccupied period can be set to zero. 
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Additionally, since the value ranges of certain optimization parameters can 

overlap sometimes and lead to meaningless result, error handling equations are added in 

the modified models. For example, room temperature set points cannot be lower than 

cold deck leaving air temperature or higher than hot deck leaving air temperature, 

outside airflow cannot be larger than total airflow, total airflow cannot be larger than 

total design airflow, etc. The modified models for each type of system can be found in 

the following functions in Appendix G: f_CVTR, f_DDCV, f_SDVAV, and f_DDVAV. 
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4. PESE (Potential Energy Saving Estimation) TOOLKIT 

 

4.1 Overview 

The PESE Toolkit is a prototype computer tool designed for estimating potential 

energy use cost savings (including electricity cost, cooling cost and heating cost) 

theoretically achievable by optimizing certain control parameters in the HVAC system 

of a given commercial building. It is developed based on Baltazar’s methodology with 

several major improvements explained in section 3.2. The tool is expected to help 

engineers mainly in the Level I analysis in a retro-commissioning assessment or an 

energy audit to identify no-cost/low-cost ECMs with corresponding savings estimated. 

For this purpose, only limited information about the building and its HVAC system is 

required to use the tool. It is developed with Visual Basic for Application (VBA) 

programming language, and the interface for input and output is based on Microsoft® 

Excel 2003 spreadsheets. The following is a list of important features included in the 

prototype version of the PESE Toolkit: 

• Input interface to specify building and system parameters and 

optimization constraints.  

• No separate calculation of space cooling and heating load is required. The 

user only needs to input information regarding building location and dimensions, 

internal heat gain, weather and thermal properties of the envelope in order to 

perform the load calculation procedure.  
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• A maximum of five optimization parameters are provided (refer to 

section 3.2.1). The user can decide which ones to activate for optimization 

depending on the system configuration (e.g. pneumatic control or DDC control, 

availability of a flow sensor for outside air intake). With none of the optimization 

parameters activated, a simulation without optimization will be executed, which 

can be used for the purpose of calibration to measured consumption data or 

checking the impact on energy use of changing certain parameters. This feature 

of simulation is not required in performing potential energy savings estimation. 

• Air-side simulation models of four common HVAC systems are provided: 

Single Duct Constant Volume (SDCV) system, Dual Duct Constant Volume 

(DDCV) system, Single Duct Variable Air Volume (SDVAV) system, and Dual 

Duct Variable Air Volume (SDVAV) system. 

• Common HVAC system configuration and control options are provided, 

such as preheat and reheat type (electric or using hot water), and control method 

of minimum outside air intake.  

• Comprehensive output for each bin is provided to the user including 

energy costs and savings, energy consumption, space loads, system loads and 

parameters. Most of them are also illustrated in plots versus bin temperature for 

easy analysis.  

4.2 Input 

There is a worksheet named “Input” in PESE, where the user can type in all the 

necessary information about the building, the HVAC system and optimization options. 
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Required building information is categorized as general (location, orientation, 

dimensions, exterior and interior zone areas, etc.), internal heat gain (occupancy, lighting 

and equipment electricity use), weather (parameters for solar heat gain calculation) and 

envelope (window area fractions, U-values, SC-values, colors). Required HVAC system 

information comprises system type, preheat and reheat type, whether AHUs are shut 

down during unoccupied periods, fractions of exterior and interior zone area served by 

the system being evaluated, zone temperature set points, design supply air flows, cold 

deck and hot deck reset schedules, fan powers, and outside air control settings. For VAV 

systems, additional input for the VAV mechanism and minimum supply air flows are 

also necessary. Required optimization options are the parameters chosen to be activated 

for optimization, the range of values and grid division of these parameters during 

occupied and unoccupied period, energy prices and indoor relative humidity restraints 

for occupied period. It should be noted that for the parameters activated for optimization, 

the input of the current setting in the system information section is not required. 

PESE also requires input of weather data and measured energy consumption data 

(electricity, chilled water and hot water) for each bin during occupied and unoccupied 

period respectively. The worksheet named “BinData” is for this part of the input. Since 

the required weather data including dry-bulb temperature and humidity ratio in the form 

of bins can rarely be found prepared, a “bin sorting” process is usually necessary. 

Appendix D gives an example of a bin sorting procedure. Examples of input interface 

can be found in the case studies in Section 5. 
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4.3 Output 

The “BinData” worksheet holds not only the input but also the output for each 

bin during occupied and unoccupied periods. The output comprises several sections: 

energy costs (current and optimized), potential energy cost savings (in dollars and 

percentage), optimized energy consumption, space loads (including components), 

HVAC system loads (cooling, heating and fan power) and system parameters 

(temperatures, air flow rates and fractions, humidity ratios, etc.).  

For easy interpretation and analysis of the results, PESE provides plots of most 

of the above results versus bin temperature. There are five chart sheets in PESE named 

“Savings”, “OCP_Cons&Load”, “OCP_SysPar”, “UNOCP_Cons&Load” and 

“UNOCP_SysPar” representing the following categories of output: (1) energy cost and 

saving during occupied and unoccupied period; (2) consumption values, system and 

space loads during occupied period; (3) system parameters during occupied period; (4) 

consumption values, system and space loads during unoccupied period and (5) system 

parameters during unoccupied period. Detailed output parameters and examples of 

output chart sheets are provided in Appendix E. 

4.4 Models and Program Structure 

The load calculation procedure is described in Appendix B, and air-side 

simulation models can be found in Appendix G along with nomenclature explained in 

Appendix C. In addition, the program structure and flow charts are found in Appendix F, 

and the VBA codes implemented in the tool are enclosed in Appendix G. 
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5. CASE STUDIES 

 

Preliminary testing of the improved methodology implemented in the PESE 

Toolkit is conducted in case studies of two buildings on the Texas A&M University 

campus, which have been retro-commissioned in the recent two years. The case of 

Sanders Corps of Cadets Center is studied to understand the optimization resulting from 

single parameter optimization; while the Coke Building is selected to show an example 

of how this methodology can be applied to buildings where the built-in HVAC system 

has more than one AHU type.  

5.1 Sam Houston Sanders Corps of Cadets Center  

The Sanders Corps of Cadets Center is a single story building located on the 

main campus of Texas A&M University with a total area of 19,363 square feet. The 

building consists of a large display hall, offices, a small library and conference room. It 

is generally open between 8:00 AM and 5:00 PM Monday through Friday except on 

holidays. The HVAC system is a single duct variable air volume (SDVAV) system with 

terminal reheat VAV boxes. There is only one air handling unit (AHU) to serve the 

whole building. Commissioning measures were implemented in this building by 

11/2/2007.  
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BUILDING INFORMATION SYSTEM INFORMATION

System Type SDVAV

Name Sanders Corps of Cadets Center Reheat Type Hot Water

City College Station Preheat Type Hot Water

Latitude 30 ° Has Economizer FALSE

Orientation (Wall# 1) NE AHU shut off FALSE

Length 180 ft Fraction of Ae 100.0%

Width 110 ft Fraction of Ai 100.0%

Height 15 ft Zone T set point during occupied hours

Above ground floors 1 Te_ocp 72 °F

Has Basement FALSE Ti_ocp 72 °F

Basement conditioned FALSE Zone T reset point during unoccupied hours

Atot 19,800 ft
2

Te_unocp 72 °F

Ae 7,800 ft
2

Ti_unocp 72 °F

Ai 12,000 ft
2

VTD 27,545 cfm

Ve cfm

Ocpe 20 pep Vi cfm

Ocpi 20 pep TCL (setpoint 1) 64 °F @ TOA1= 25 °F

AveOcpFactor (Ocp) 1.00 TCL (setpoint 2) 57 °F @ TOA2= 65 °F

AveOcpFactor (Unocp) 0.10 THL (setpoint 1) °F @ TOA1= °F

LTEQ (Ocp) 54 kW THL (setpoint 2) °F @ TOA2= °F

LTEQ (Unocp) 25 kW PSF-rated 30 hp ηSF 1

PRF-rated 0 hp ηRF 1

FPS_July 0.72 OA controlled by VOAmin VOAmax 4,500 cfm

FPS_January 0.48 XOA,min_ocp XOA,min_unocp

Tpc 107 °F VOA,min_ocp 700 cfm VOA,min_unocp 500 cfm

Tph 27 °F

To,des 86 °F VAV mechanism Variable Speed Drive

Ve,min_ocp 7,200 cfm Ve,min_unocp 6,370 cfm

U-wall 0.09 Btu/(h·ft
2
·°F) Vi,min_ocp 11,080 cfm Vi,min_unocp 9,800 cfm

U-window 1.00 Btu/(h·ft
2
·°F)

U-roof 0.05 Btu/(h·ft
2
·°F)

U-ground 0.05 Btu/(h·ft
2
·°F) OPTIMIZATION OPTIONS

Awin/Awall 1 25.0% Variables Select Ocp:range&grid Unocp:range&grid

Awin/Awall 2 15.0% Te FALSE (°F) 70 − 78 9 65 − 85 11

Awin/Awall 3 25.0% Ti FALSE (°F) 68 − 72 5 65 − 85 11

Awin/Awall 4 15.0% TCL FALSE (°F) 55 − 70 16 55 − 70 16

Askylights 0 ft
2

THL FALSE (°F) 80 − 115 16 80 − 115 16

SC 1 0.45 VOA FALSE (cfm) 600 − 4,500 11 0 − 4,500 12

SC 2 0.15

SC 3 0.20 ELE Price 0.092 $/kWh

SC 4 0.25 CHW Price 9.602 $/MMBtu

SC skylights 0.00 HHW Price 13.099 $/MMBtu

Wall color Medium colored RHz1 10 %

Roof color Dark colored RHz2 60 %
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Figure 5.1 Building information, system information and optimization options input in the 
calibrated simulation for Sanders Corps of Cadets Center 

 
 
 

In the following sections, the energy use under current condition is first 

simulated without optimization and calibrated to measured energy use. Next, energy 

savings are estimated using single parameter optimizations, i.e. optimizing one 
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applicable parameter at a time, for easy understanding of the optimized profile of 

parameters and energy uses. Finally, potential energy savings are estimated by 

performing multiple parameter optimization, i.e. optimizing all the applicable parameters 

together. It is noted that single parameter optimization and the calibration process are not 

necessary in regular potential savings estimations, because usually all the uncertain 

parameters that are significant to energy use are to be optimized or re-designated.  

5.1.1 Simulation without Optimization 

The basic information about the building required in the simulation with the 

PESE Toolkit is collected by on-site investigation, and information about the HVAC 

system is provided with some parameters remaining uncertain. The following single 

parameter optimization requires the value of these parameters determined, which leads 

to a brief calibration process with the method of calibrated signatures developed by Wei 

et al. (1998). The calibrated input used in the simulation is given in Figure 5.1. One year 

of hourly weather and measured consumption data during 12/1/2007-1/31/2008 (post-

CC®) are sorted into 5°F bins with occupied and unoccupied period distinguished, as 

shown in Figure 5.2. No parameter is selected for optimization at this point.  

The adequacy of calibration is evaluated with three statistical parameters: Root 

Mean Square Error (RMSE), Mean Bias Error (MBE) and Coefficient of Variation of the 

RMSE (CV-RMSE). By adjusting the exterior and interior zone minimum air flow rates, 

cold deck leaving air temperature reset schedule and minimum outside air flow rates, the 

statistical parameters are reduced to acceptable level (as shown in Table 5.1): during 

occupied period, the CV-RMSE is around 10% for electricity and chilled water and 45% 
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for hot water; the MBE is less than 2 kW for electricity, 25 kBtu/hr for chilled water and 

-63 kBtu/hr for hot water; the values for the unoccupied period are much smaller. The 

simulated annual energy use and costs after calibration are given in Table 5.2 as the 

baseline for optimization.  
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humidity
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consumption

(°F) - (%) (hr) (kWh) (kBtu) (kBtu)

TOA wOA RHOA HOURS ELE_Meas CHW_Meas HHW_Meas

27 0.001948 65.2 2 89 241 410

32 0.002618 69.5 5 255 912 1,246

37 0.003551 77.1 33 1,998 6,122 7,843

42 0.004116 73.4 56 3,651 11,484 12,516
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Figure 5.2 Bin data input in the calibrated simulation for Sanders Corps of Cadets Center 
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Table 5.1 Statistical parameters representing simulation errors before (top) and after 
(bottom) calibration for Sanders Corps of Cadets Center 

 
ELE CHW HHW

RMSE OCP 7.2 (kW) 55.8 (kBtu/hr) 65.5 (kBtu/hr)

UNOCP 6.1 (kW) 68.9 (kBtu/hr) 66.5 (kBtu/hr)

MBE OCP 2.9 (kW) 39.9 (kBtu/hr) -54.9 (kBtu/hr)

UNOCP 4.8 (kW) 50.4 (kBtu/hr) 50.6 (kBtu/hr)

CV-RMSE OCP 11.0 % 17.8 % 42.9 %

UNOCP 18.2 % 25.2 % 44.7 %  
 

ELE CHW HHW

RMSE OCP 6.7 (kW) 32.1 (kBtu/hr) 69.5 (kBtu/hr)

UNOCP 4.0 (kW) 27.8 (kBtu/hr) 31.0 (kBtu/hr)

MBE OCP 1.8 (kW) 25.2 (kBtu/hr) -62.6 (kBtu/hr)

UNOCP 1.5 (kW) 0.4 (kBtu/hr) 14.9 (kBtu/hr)

CV-RMSE OCP 10.3 % 10.2 % 45.5 %

UNOCP 11.9 % 10.2 % 20.8 %  
 
 
 

Table 5.2 Baseline annual energy use and costs for Sanders Corps of Cadets Center 

 

ELE CHW HHW ELE CHW HHW TOTAL

(kWh) (MMBtu) (MMBtu) ($) ($) ($) ($)

Occupied 186,789 1,018 204 17,185 9,775 2,671 29,630

Unoccupied 204,418 1,696 969 18,806 16,289 12,686 47,782

Total 391,208 2,714 1,172 35,991 26,064 15,357 77,412  
 
 
 
 

5.1.2 Reset Minimum Airflow 

Following the procedure described in section 3.2.2, it is determined that the 

exterior and interior zone minimum airflow during the occupied period in Sanders 

Building is reset from 7,200 cfm and 11,080 cfm to 3,820 cfm and 3,600 cfm  

respectively, and the minimum airflow during the unoccupied period is reset from 6,370 

cfm and 9,800 cfm to zeros. These reset values are used in the following single and 
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multiple parameter optimizations. Figure 5.3 compares the cooling, heating and fan 

power energy use before and after resetting the minimum airflow. The result shows that 

the savings that can be achieved from this resetting alone are very significant: 20% and 

54% in total during occupied and unoccupied periods respectively as shown in Table 5.3. 
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Figure 5.3 Cooling, heating and fan power consumption before and after resetting 

minimum airflow during occupied (left) and unoccupied (right) periods as a function of bin 
temperature for the Sanders Corps of Cadets Center 

 
 
 
 

5.1.3 Single Parameter Optimization 

Four out of the five available optimization parameters in PESE are applicable to 

this building. To better understand the effect on the energy use from each category of 

these parameters independently, they are grouped as follows to be activated for 

optimizations: exterior and interior zone temperature set points (Te and Ti), cold deck 

leaving air temperature (TCL), and outside airflow (VOA). The lower and upper limiting 

values of each parameter as well as the number of grid division used in the optimization 

are given in Table 5.4. Savings achieved from each single parameter optimization and 

multiple parameter optimization are tabulated in Table 5.3 in comparison with resetting 
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the minimum airflows; the same quantities are compared graphically in Figure 5.4. The 

profiles of optimized parameter settings as functions of ambient temperature during 

occupied and unoccupied periods are given in Figure 5.5. The optimized cooling, heating 

and fan power energy use in comparison with only resetting the minimum airflow is 

illustrated in Figure 5.6.  

 
 
 
Table 5.3 Annual savings from resetting the minimum airflow, single parameter 
optimization and multiple parameter optimization for the Sanders Corps of Cadets Center 

 

ELE CHW HHW TOTAL

($) (%) ($) (%) ($) (%) ($) (%)

Only Reset Minimum Flow 1,166 7 2,199 22 2,432 91 5,796 20

Te, Ti 1,782 10 2,909 30 2,536 95 7,228 24

TCL 1,494 9 2,334 24 2,516 94 6,344 21

VOA 1,166 7 2,795 29 2,431 91 6,392 22

Multiple Parameter Optimization 1,964 11 3,525 36 2,565 96 8,054 27

Only Reset Minimum Flow 3,990 21 9,962 61 11,651 92 25,603 54

Te, Ti 4,932 26 13,502 83 12,235 96 30,669 64

TCL 4,169 22 10,030 62 11,729 92 25,928 54

VOA 3,990 21 10,943 67 11,634 92 26,567 56

Multiple Parameter Optimization 4,875 26 14,381 88 12,306 97 31,562 66

Occupied

Unoccupied

Single Parameter 

Optimization

Single Parameter 

Optimization

 
 
 
 
Table 5.4 Optimization parameter setting limits for the Sanders Corps of Cadets Center 
 

Opt. Parameter Unit Lower Limit Upper Limit Grid Division Notes 

Te °F 70 78 9 ASHRAE design criteria for Office 

Ti °F 68 72 5 
ASHRAE design criteria for 
Museums and Galleries 

TCL °F 55 70 16 Commonly used on TAMU campus 
Occupied 

VOA cfm 600 4,500 11 
Lower limit: Standard 62.1-2007 
Upper limit: OA duct limit 

Te °F 65 85 11 

Ti °F 65 85 11 

TCL °F 55 70 16 

Commonly used on TAMU campus 

Unoccupied 

VOA cfm 0 4,500 12 
Lower limit: Commonly used on 
TAMU campus 
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Figure 5.4 Comparison of annual savings from resetting the minimum airflow, single 
parameter optimizations and multiple parameter optimization for the Sanders Corps of Cadets 

Center 
 
 
 
 

The results reveal that there are not significant extra savings (1%-4%) from each 

single parameter optimization during the occupied period in addition to that achieved 

from only resetting the minimum airflows. This also holds true for the unoccupied 

period except that an extra 10% of total savings is possible by optimizing the zone 

temperatures. This meets expectation because post-CC® data is used in the simulation, 

and these optimization parameters are among the typical CC® measures on campus. For 

both periods, greatest total savings come from optimizing the zone temperatures (24% 

for occupied and 64% for unoccupied). The savings from optimizing cold deck leaving 

air temperature (21% and 54%) and outside airflow (22% and 56%) are equivalent.  
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Figure 5.5 Optimized parameter settings from single parameter optimizations during 
occupied (left) and unoccupied (right) periods as a function of bin temperature for the Sanders 

Corps of Cadets Center 
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Figure 5.6 Cooling, heating and fan power consumption before (only resetting minimum 
airflows) and after single parameter optimizations during occupied (left) and unoccupied (right) 

periods as a function of bin temperature for the Sanders Corps of Cadets Center 



45 

5.1.3.1 Zone Temperature Set Points Optimization 

There are two main ways in which the exterior and interior zone temperature set 

point could affect the total energy cost: (1) Minimizing indoor and outdoor temperature 

difference can significantly reduce space heating and sensible cooling loads. Figure 5.7 

shows the comparison of space sensible heating and cooling load before and after 

optimizing zone temperature set points. (2) When supply airflow is higher than 

minimum value in cooling mode, a higher return air temperature requires smaller supply 

airflow and saves fan power on one hand; it increases cooling coil sensible load on the 

other hand. The former is more dominant in the range selected for optimization since the 

electricity price is nearly three times of the chilled water price for the same amount of 

energy. 

The optimized exterior zone temperature set point stays at the lower limit (70°F), 

which reduces space heating load, when outside air temperature is lower than 57°F and 

52°F during occupied and unoccupied periods respectively. It gradually rises to the 

upper limit (78°F) at the 82°F bin and the 72°F bin respectively. The increased exterior 

zone temperature at higher ambient temperatures has reduced space cooling load 

significantly.  

The optimized interior zone temperature set point stays at its upper limit (72°F) 

constantly during the occupied period; it increases from 67°F at the 32°F bin to its upper 

limit (85°F) at the 57°F bin during the unoccupied period, and the space cooling load is 

significantly reduced. During both periods, the interior zone supply airflow is always 

higher than the minimum value. Consequently, a higher temperature set point is 
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preferred to save fan power, except for a few low temperature bins during the 

unoccupied period where the cooling load is light. The effect of reducing cooling coil 

sensible load from a lower return air temperature more than offsets the slightly increased 

fan power. 
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Figure 5.7 Exterior and interior zone sensible space loads before and after optimizing zone 
temperature set points during occupied (left) and unoccupied (right) periods as a function of bin 

temperature for the Sanders Corps of Cadets Center 
 
 
 
 

5.1.3.2 Cold Deck Leaving Air Temperature Optimization 

The optimized cold deck leaving air temperature (TCL) decreases with increasing 

bin temperature in general during both occupied and unoccupied periods. There are three 

major principles driving this optimization result in both the exterior and interior zones: 

(1) In cooling mode at minimum airflow, reheating and sensible cooling energy could be 

saved if TCL is set higher; (2) In cooling mode when airflow exceeds the minimum, fan 

power could be saved if TCL is set lower; (3) In heating mode, reheating energy could be 

saved if TCL is set higher. 
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The optimized TCL reset profile during the occupied period gradually decreases 

from 64°F to the lower limit (55°F) at 67°F. At 62°F and lower, the exterior zone airflow 

stays at its minimum which favors a higher TCL, while the interior zone airflow exceeds 

minimum which favors a lower TCL. The optimized profile is the result of a balance 

between these two factors, and as the outside temperature goes lower the second factor 

becomes more dominant. At 67°F and higher, both exterior and interior zone airflows 

exceed their minimums, which lead to the optimized TCL staying at its lower limit (55°F). 

The optimized TCL reset profile during the unoccupied period is also decreasing 

from lower to higher temperature bins in general. At 27°F, both the exterior and interior 

zones are in heating mode; thus the optimized TCL goes to its upper limit (70°F). As the 

ambient temperature increases to 57°F, the exterior zone is still in heating while the 

interior zone is in cooling and its airflow exceeds the minimum flow. The optimized 

profile is the result of a balance between the two factors. At 62°F and higher, both zones 

are in the cooling mode which brings TCL to its lower limit (55°F). 

5.1.3.3 Outside Airflow Optimization 

The optimization result shows that as the ambient temperature increases, the 

outside airflow drops to its lower limit at 72°F and 67°F during occupied and 

unoccupied periods respectively, where latent loads appear. It drops one bin earlier 

during the unoccupied period since the mean coincidental outside air relative humidity is 

higher than during the occupied period. At lower temperature bins, making use of 

outside air for free cooling can significantly reduce mixed air temperature and save 

cooling coil sensible load. However, as outside air temperature gets lower, preheating 
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energy will be required when taking full outside air. As a result, during the occupied 

period, the optimized outside airflow reaches upper limit (4,500 cfm) from 47°F-67°F 

and decreases at lower temperatures to 2,160 cfm (at bin 27°F); during the unoccupied 

period, it gradually increases from 400 cfm (at 27°F) to 3,300 cfm (at 62°F) without ever 

reaching the upper limit, because the total airflow is much smaller than during the 

occupied period. 

5.1.4 Multiple Parameter Optimization 

A full fledged optimization with all of the above four parameters activated is 

performed with the same setting limits stated in Table 5.4. The potential savings 

obtainable from this multiple parameter optimization is listed in Table 5.3 and illustrated 

in Figure 5.4 in comparison with only resetting minimum airflow and the single 

parameter optimizations. An extra 7% and 12% total savings during occupied and 

unoccupied periods respectively are possible in addition to the savings achieved from 

resetting minimum airflow. For all of the energy use categories, the savings from 

multiple parameter optimization (ELE: 11% and 26%, CHW: 36% and 88%, HHW: 96% 

and 97%) are just slightly higher than the largest savings from single parameter 

optimizations, which in this case is by optimizing the zone temperatures. Figure 5.8 

gives the profiles of optimized parameter settings during both the occupied and 

unoccupied periods. Figure 5.9 shows the optimized cooling, heating and fan power 

energy use compared with only resetting minimum airflow.  
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Figure 5.8 Optimized parameter settings from multiple parameter optimizations during 
occupied (top) and unoccupied (bottom) periods as a function of bin temperature for the Sanders 

Corps of Cadets Center  
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Figure 5.9 Cooling, heating and fan power consumption before (only resetting minimum 
airflows) and after multiple parameter optimizations during occupied (left) and unoccupied 

(right) periods as a function of bin temperature for the Sanders Corps of Cadets Center  
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5.2 Coke Building  

The Coke Building is located on the main campus of Texas A&M University 

with a total area of 24,446 square feet. It has three stories (including a half-underground 

basement) consisting of offices and conference rooms. The building is generally 

occupied weekdays from 8:00 AM to 5:00 PM. The HVAC system consists of one 

multizone unit (AHU1) serving the basement, one single duct VAV unit (AHU2) serving 

the first floor, two single duct VAV rooftop units (RTU1 and RTU 2) serving the second 

floor and one outside air pre-treat unit (OAHU) serving AHU1 and AHU 2. Electric 

strips are used as heaters in the terminal boxes associated with the SDVAV systems. 

Retro-commissioning measures have been implemented in this building since 7/15/2008. 

Since retro-commissioning, the HVAC system is turned off during the unoccupied 

period at 10:00 PM and turned on again around 6:00 AM the next morning. 

5.2.1 Building Simulation 

The simulation of the Coke Building is selected as an example of how to 

implement this methodology in buildings where more than one type of system is in place. 

In this case, simulation and optimization is required for each individual system. 

Therefore, the simulation for the Coke Building is divided into two parts: simulation of 

the multizone system and of the SDVAV system combining AHU2 and the two RTUs. 

In the implemented methodology, the space load is first calculated for the whole 

building and then divided according to the service area of each system. Calibration is 

only performed on the occupied period since the system is shut off at night and on 

weekends. The calibrated inputs used in both simulations are given in Figure 5.10.  
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BUILDING INFORMATION SYSTEM INFORMATION

System Type DDCV

Name Coke Reheat Type Hot Water

City College Station Preheat Type Hot Water

Latitude 30 ° Has Economizer FALSE
Orientation (Wall# 1) NE AHU shut off TRUE

Length 120 ft Fraction of Ae 33.3%

Width 67 ft Fraction of Ai 33.3%

Height 27 ft Zone T set point during occupied hours

Above ground floors 2 Te_ocp 75 °F

Has Basement TRUE Ti_ocp 75 °F

Basement conditioned TRUE Zone T reset point during unoccupied hours

Atot 24,120 ft
2

Te_unocp °F

Ae 11,736 ft
2

Ti_unocp °F

Ai 12,384 ft
2

VTD 7,350   cfm

Ve 3,575   cfm

Ocpe 40 pep Vi 3,775   cfm

Ocpi 30 pep TCL (setpoint 1) 70 °F @ TOA1= 30 °F

AveOcpFactor (Ocp) 1.00 TCL (setpoint 2) 55 °F @ TOA2= 80 °F

AveOcpFactor (Unocp) 0.00 THL (setpoint 1) 85 °F @ TOA1= 30 °F

LTEQ (Ocp) 32 kW THL (setpoint 2) 70 °F @ TOA2= 80 °F

LTEQ (Unocp) 25 kW PSF-rated 10 hp

PRF-rated 0 hp

FPS_July 0.72 OA controlled by VOAmin VOAmax 880 cfm

FPS_January 0.48 XOA,min_ocp XOA,min_unocp

Tpc 107 °F VOA,min_ocp 600 cfm VOA,min_unocp 0 cfm

Tph 27 °F

To,des 86 °F VAV mechanism Variable Speed Drive

Ve,min_ocp cfm Ve,min_unocp cfm

U-wall 0.09 Btu/(h·ft
2
·°F) Vi,min_ocp cfm Vi,min_unocp cfm

U-window 1.00 Btu/(h·ft
2
·°F)

U-roof 0.05 Btu/(h·ft
2
·°F)

U-ground 0.05 Btu/(h·ft
2
·°F) OPTIMIZATION OPTIONS

Awin/Awall 1 14.5% Variables Select Ocp:range&grid Unocp:range&grid

Awin/Awall 2 10.5% Te FALSE (°F) 70 − 78 9 65 − 85 11

Awin/Awall 3 27.0% Ti FALSE (°F) 70 − 78 9 65 − 85 11

Awin/Awall 4 13.0% TCL FALSE (°F) 55 − 70 16 55 − 70 16

Askylights 0 ft
2

THL FALSE (°F) 70 − 110 21 70 − 110 21

SC 1 0.65 VOA FALSE (cfm) 600 − 880 4 0 − 880 10

SC 2 0.70

SC 3 0.45 ELE Price 0.092 $/kWh

SC 4 0.70 CHW Price 9.602 $/MMBtu

SC skylights 0.00 HHW Price 13.099 $/MMBtu

Wall color Medium colored RHz1 10 %

Roof color Dark colored RHz2 60 %

Envelope

General

Internal Heat Gain

VAV systems

Weather
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Figure 5.10 Building information, system information (first: multizone, second: SDVAV) 
and optimization options input in the calibrated simulation for the Coke Building  



52 

SYSTEM INFORMATION

System Type SDVAV

Reheat Type Electric

Preheat Type Electric

Has Economizer FALSE

AHU shut off TRUE

Fraction of Ae 66.7%

Fraction of Ai 66.7%

Zone T set point during occupied hours

Te_ocp 73 °F

Ti_ocp 73 °F

Zone T reset point during unoccupied hours

Te_unocp °F

Ti_unocp °F

VTD 20,615 cfm

Ve 10,030 cfm

Vi 10,585 cfm

TCL (setpoint 1) 60 °F @ TOA1= 40 °F

TCL (setpoint 2) 55 °F @ TOA2= 80 °F

THL (setpoint 1) °F @ TOA1= °F

THL (setpoint 2) °F @ TOA2= °F

PSF-rated 30 hp

PRF-rated 0 hp

OA controlled by VOAmin VOAmax 3,180 cfm

XOA,min_ocp XOA,min_unocp

VOA,min_ocp 2,500 cfm VOA,min_unocp 0 cfm

VAV mechanism Variable Speed Drive

Ve,min_ocp 3,600 cfm Ve,min_unocp cfm

Vi,min_ocp 3,600 cfm Vi,min_unocp cfm

VAV systems

50

60

70

80

90

100

110

10 30 50 70 90 110

TOA (°F)

T
C

L
/T

H
L

 (
°F

)

TCL

THL

 
 

Figure 5.10 Continued 
 
 
 
 

Additionally, a new method based on energy balance and the regression 

relationship between measured room temperature and outside temperature is used for the 

simulation of the unoccupied period. This method is developed as an approximation of 

the space load in the building and therefore does not allow for optimization of system 

parameters. It is incorporated in the PESE toolkit and explained in Appendix A. One 

year of hourly weather and measured consumption data from 7/16/2008-7/15/2009 (post-

CC®) is used for bin sorting, as shown in Figure 5.11.  
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Several factors have contributed to the substantial amount of energy consumption 

during unoccupied period, as shown in Figure 5.11. (1) The significant hours included in 

unoccupied period in a year; (2) the consumption during start-up is included; (3) when 

room temperature reaches limiting setting (65°F and 85°F), the AHUs are turned back on; 

(4) during the last several months in the selected year, one of the AHUs was not shut off. 

 
 

Outside air 

temperature

Outside air 

humidity ratio

Zone relative 

humidity

Hours of 

occurrence

Measured ELE 

consumption

Measured CHW 

consumption

Measured HHW 

consumption

(°F) - (%) (hr) (kWh) (kBtu) (kBtu)

TOA wOA RHOA HOURS ELE_Meas CHW_Meas HHW_Meas

27 0.001246 41.8 1 84 41 28

32 0.002703 71.7 42 3,202 1,665 1,083

37 0.003146 68.3 65 4,824 3,744 1,981

42 0.003816 68.1 63 4,744 4,834 1,614

47 0.003599 53.1 83 5,330 5,531 1,344

52 0.004202 51.4 113 6,757 8,949 1,398

57 0.004694 47.8 157 8,588 14,287 1,487

62 0.006098 51.8 217 11,307 25,646 1,309

67 0.008071 57.4 313 15,329 45,095 1,167

72 0.009421 56.4 393 19,546 73,070 1,137

77 0.011322 57.2 434 21,694 113,882 689

82 0.013307 56.8 420 21,091 143,483 250

87 0.013848 50.3 373 19,112 145,362 89

92 0.014184 44.0 270 14,003 120,542 45

97 0.013191 35.2 192 10,015 90,958 28

102 0.011606 26.7 74 4,123 35,419 15

107 0.012752 25.2 1 56 600 0

Outside air 

temperature

Outside air 

humidity ratio

Zone relative 

humidity

Hours of 

occurrence

Measured ELE 

consumption

Measured CHW 

consumption

Measured HHW 

consumption

(°F) - (%) (hr) (kWh) (kBtu) (kBtu)

TOA wOA RHOA HOURS ELE_Meas CHW_Meas HHW_Meas

27 0.002405 80.5 10 331 192 156

32 0.002694 71.5 110 3,391 2,130 1,245

37 0.002923 63.5 166 4,844 3,775 1,588

42 0.003406 60.8 262 7,320 6,242 1,524

47 0.004065 60.0 320 8,506 7,134 1,298

52 0.005160 63.0 350 9,184 10,017 857

57 0.006641 67.4 442 11,581 15,624 1,091

62 0.008425 71.4 560 14,297 22,448 839

67 0.010646 75.5 695 18,652 40,410 1,374

72 0.012719 75.7 710 19,523 55,586 836

77 0.014977 75.2 887 24,399 86,472 423

82 0.015146 64.5 523 14,499 53,039 93

87 0.014308 52.0 243 6,937 28,190 32

92 0.013931 43.3 148 4,325 21,026 27

97 0.012868 34.3 81 2,324 11,940 11

102 0.011502 26.4 42 1,274 7,278 9
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Figure 5.11 Bin data input in the calibrated simulation for the Coke Building 
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By adjusting discharge air temperature reset schedules in both systems among a 

few other system parameters, the CV-RMSE for electricity, chilled water and hot water 

is reduced to 8.9%, 13.9% and 38% respectively, and the corresponding MBEs are -2.1 

kW, 10.9 kBtu/hr and -1.7 kBtu/hr as shown in Table 5.5. The simulated annual 

consumption of each system during occupied and unoccupied periods is listed in Table 

5.6 as the baseline for optimization. 

 
 
 
Table 5.5 Statistical parameters representing simulation errors before (top) and after 
(bottom) calibration for the Coke Building during occupied period 

 
ELE CHW HHW

RMSE 8.5 (kW) 49.2 (kBtu/hr) 6.1 (kBtu/hr)

MBE 0.4 (kW) 23.7 (kBtu/hr) 1.4 (kBtu/hr)

CV-RMSE 14.4 % 21.5 % 63.1 %  
 

ELE CHW HHW

RMSE 5.3 (kW) 31.7 (kBtu/hr) 3.7 (kBtu/hr)

MBE -2.1 (kW) 10.9 (kBtu/hr) -1.7 (kBtu/hr)

CV-RMSE 8.9 % 13.9 % 38.0 %  
 
 
 

Table 5.6 Baseline annual energy use and costs for the Coke Building 

 

ELE CHW HHW ELE CHW HHW TOTAL

(kWh) (MMBtu) (MMBtu) ($) ($) ($) ($)

Multizone 58,161 286 7 5,351 2,744 90 8,185

SDVAV 111,898 631 0 10,295 6,055 0 16,350

Total 170,059 916 7 15,645 8,799 90 24,535

Multizone 49,117 122 15 4,519 1,174 192 5,885

SDVAV 106,788 263 0 9,825 2,528 0 12,353

Total 155,905 386 15 14,343 3,702 192 18,237

Total 325,964 1,302 22 29,989 12,502 282 42,772

Occupied

Unoccupied

 



55 

5.2.2 Reset Minimum Airflow 

Following the procedure described in section 3.2.2, it is determined that the 

exterior and interior zone minimum airflows within the SDVAV system during the 

occupied period in the Coke Building is reset from 3,600 cfm to 2,730 cfm and 2,480 

cfm respectively. These reset values will be used in the following optimizations. 

Simulation results reveal that 14% of total energy use during the occupied period can be 

saved from this measure alone, as shown in Table 5.7. Figure 5.12 also gives the 

comparison of cooling, heating and fan power energy use bin profiles before and after 

the reset. 
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Figure 5.12 Cooling, heating and fan power consumption before and after resetting 

minimum airflow during the occupied period as a function of bin temperature for the Coke 
Building 

 
 
 

5.2.3 Multiple Parameter Optimization 

Multiple parameter optimization is performed on each system with the setting 

limits listed in Table 5.8. The savings obtained are given in Table 5.7 and compared with 

savings from only resetting the minimum airflow in the SDVAV system as shown in 
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Figure 5.13. It is observed that for the SDVAV system, there is 10% additional potential 

beyond the savings by resetting the minimum airflow (14%); however, for the multizone 

system, the room for potential savings is very limited (2%). Among the total savings 

predicted, an equivalent amount of money (around $3,200) is saved in electricity and 

chilled water use, and hot water use is all saved although the absolute amount is minimal. 

The profiles of optimized system parameter settings versus bin temperature are shown in 

Figure 5.14, and the profiles of optimized cooling, heating and fan power energy use 

compared with baseline energy use are given in Figure 5.15. 

 
 
Table 5.7 Annual savings during occupied period from multiple parameter optimization 
compared with only resetting minimum airflow with the SDVAV system for the Coke Building 
 

ELE CHW HHW TOTAL

($) (%) ($) (%) ($) (%) ($) (%)

Only Reset Minimum Flow 2,472 16 889 10 0 0 3,360 14

Multizone 0 0 431 5 89 99 521 2

SDVAV 3,219 21 2,789 32 0 0 6,009 24

Total 3,219 21 3,221 37 89 99 6,529 27

Multiple 

Parameter 

Optimization

 
 
 
 
Table 5.8 Optimization parameter setting limits for the Coke Building 
 

Opt. Parameter Unit Lower Limit Upper Limit Grid Division Notes 

Te °F 70 78 9 

Ti °F 70 78 9 
ASHRAE design criteria for Office 

TCL °F 55 70 16 
Multizone 

THL °F 70 110 41 
Commonly used on TAMU campus 

Te °F 70 78 9 

Ti °F 70 78 9 

TCL °F 55 70 16 

Commonly used on TAMU campus 

SDVAV 

VOA cfm 1,200 3,180 6 
Lower limit: Standard 62.1-2007 
Upper limit: OA duct limit 
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Figure 5.13 Comparison of annual savings during occupied period from multiple parameter 
optimization and only resetting minimum airflow with the SDVAV system for the Coke 

Building 
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Figure 5.14 Optimized parameter settings for the SDVAV (left) and multizone (right) system 
as a function of bin temperature from multiple parameter optimization for the Coke Building 
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Figure 5.15 Cooling, heating and fan power consumption before (only resetting minimum 
airflows) and after multiple parameter optimizations during occupied period for the SDVAV 

(left) and multizone (right) system as a function of bin temperature for the Coke Building 
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6. APPLICATION IN TFC PROJECT 

 

The methodology discribed in previous sections is expected to predict a 

theoretical upper limit to the potential energy savings in a building.  However, in order 

to make the methodology useful in real projects, it is desirable to determine the fraction 

of the estimated potential savings that may be achievable in practice. In this section, the 

methodology is used to estimate potential savings in a real project for 14 state-owned 

office buildings with VAV systems. The results are compared with savings predicted in 

CC® assessment reports for these buildings, and the use of generalized factors to 

improve the correlation between potential savings identified by this methodology and 

those identified in retro-commissioning assessments is investigated. 

6.1 Project Introduction 

The Energy Systems Laboratory at Texas A&M University was contracted by the 

Texas Facilities Commission (TFC) to conduct Continuous Commissioning® 

assessments on the HVAC systems of a group of buildings managed by the TFC in 

Austin, Texas. 14 of these buildings are selected for the testing in this section. The two 

criteria used in the selection are: (1) the building is mainly used as offices; and (2) the 

type of HVAC system that serves most parts of the building is either single duct VAV or 

dual duct VAV systems.  
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Table 6.1 General information of selected TFC managed buildings 
 

Building Name Abbr. Year Floor 
Gross 
Area 

System Type 
ELE 
Bill 

NG 
Bill 

John H. Winters Building JHW 1984 7+1 502,500 
SDVAV with electric 
terminal reheats 

√ N/A 

William P. Clements Building WPC 1986 15+1 473,215 
SDVAV with electric 
terminal reheat 

√ N/A 

Robert D. Moreton Building RDM 1989 7 122,636 
SDVAV with electric 
terminal reheat 

√ N/A 

Lorenzo De Zavala Archives 
& Library 

ARC 1959 4+1 111,244 SDVAV E. E. 

Tom C. Clark Building TCC 1960 8+2 102,299 Mainly SDVAV E. E. 

William B. Travis Building WBT 1983 12+1 466,440 SDVAV C.E. E. 

Lyndon B. Johnson Building LBJ 1985 12+1 299,512 DDVAV C.E. √ 

Price Daniel, Sr. Building PDB 1991 9+1 135,926 Mainly DDVAV C.E. E. 

Robert E. Johnson Building REJ 2000 5+1 307,091 Mainly DDVAV √ √ 

Sam Houston Building SHB 1959 10+2 170,967 Mainly DDVAV E. E. 

Thomas J. Rusk Building TJR 1976 6   99,971 DDVAV C.E. √ 

John H. Reagan Building JHR 1961 5+1 161,787 Mainly DDVAV E. E. 

Supreme Court Building SCB 1961 4+2   69,253 Mainly DDVAV E. E. 

Stephen F. Austin Building SFA 1973 11+2 418,103 DDVAV E. E. 

√ — consumption is metered and original bills are used to determine annual consumption  
E.— consumption is estimated 
C.E. — electricity consumption used to generate chilled water is estimated, while electricity for 
lighting and plug loads is metered  

 
 
 

The basic information about the 14 buildings is listed in Table 6.1. The utility 

bills of electricity and natural gas are also provided for potential energy savings 

estimation. These buildings were built between 1959 and 2000 with gross areas between 

70,000 to 500,000 ft2. Six of these buildings are equipped with SDVAV systems, while 
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the other eight buildings have DDVAV system as the main HVAC system type. Among 

the six buildings which have SDVAV systems, three of them use electricity for terminal 

reheat instead of hot water. Therefore, the buildings are grouped into three categories: 

three buildings with SDVAV systems with electric reheat, three with SDVAV systems 

with hot water reheat, and eight with DDVAV systems. 

6.2 Potential Energy Savings Estimation 

Unlike the two buildings selected for case studies in the previous section, hourly 

consumption of electricity, chilled water and hot water is not metered in the TFC 

managed buildings. Some of these buildings have on-site chillers and boilers, so that 

monthly electricity and natural gas bills for the year 2008 are available. The other 

buildings are provided chilled water and hot water from a central plant. Electricity for 

non-cooling/heating use is either purchased from a utility company or provided by the 

central plant as well. Since the amount of electricity, chilled water and hot water 

distributed to each building is not metered, electricity and natural gas bills are estimated 

for these buildings. The estimation of utility bills is based on the available consumption 

of similar buildings supplied by the same plant and the total consumption of the plant. It 

is assumed that energy consumption is proportional to building gross area. Table 6.1 

gives a summary of the availability of utility bills.  

Considering the situation stated above, energy consumption data will not be 

available in sorted bins for potential savings estimation per bin. Nevertheless, the 

methodology is still able to estimate annual potential savings in these buildings. The 

annual potential energy savings are determined as the difference between the measured 



62 

or estimated annual consumption and the minimized annual consumption obtained with 

the methodology.  

The current annual usage of electricity, natural gas and the total per square foot 

of gross area is given in Table 6.2. The average annual usage is 31.57 kWh/ft2/yr for 

electricity, 25.74 kBtu/ ft2/yr for natural gas, and 127.93 kBtu/ft2/yr for the total (EUI). 

Before optimization, a simulation representing the current settings is conducted on each 

building with assumptions made on system operation parameters as in Table 6.3. The 

simulation parameters are adjusted so that the simulated annual consumption matches 

the annual total of utility bills. Then an optimization is performed with AHU shutdown, 

minimum airflow reset, and all applicable optimization parameters activated — room 

temperatures, cold deck and hot deck (only in DDVAV system) reset schedules and 

outside air intake. The optimized operation conditions are also listed in Table 6.3. 

Energy prices of $0.0753/kWh for electricity and $8.466/MMBtu for natural gas are 

used, which are the same as in the CC® assessment report. 1 kW/Ton is used as chiller 

plant overall efficiency, and 0.8 is used as boiler efficiency. 

Table 6.2 gives the estimated potential energy and cost savings for electricity, 

natural gas and the total. It shows that the SDVAV systems with electric terminal reheat 

have the greatest potential for savings, with an average of 36%. The total potential 

energy savings for the SDVAV systems with hot water reheat (22% on average) and 

DDVAV systems (25% on average) are nearly as large. The potential savings on 

electricity use and natural gas use are 16% and 95% on average for SDVAV systems 

with hot water reheat, and 18% and 97% for DDVAV systems. 
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Table 6.2 Estimated potential electricity (a), natural gas (b) and total (c) savings in TFC 
managed buildings, and comparison with savings predicted in CC® assessment report 
 

Annual 

Consumption

Annual 

Usage

Potential 

Percent 

Savings

Potential 

Energy Cost 

Savings

Cost Savings 

Predicted in  

Assessment 

Ratio of Cost 

Savings in 

Assessment to 

Potential Cost 

Savings

(kWh) (kWh/ft
2
/yr)

JHW SDVAV E.R. 17,326,925    35.90            38% 501,057$      267,062$      0.53

WPC SDVAV E.R. 14,119,500    29.84            36% 379,123$      336,462$      0.89

RDM SDVAV E.R. 3,560,000      28.94            33% 88,144$        54,573$        0.62

ARC SDVAV 3,513,528      31.58            14% 36,166$        17,934$        0.50

TCC SDVAV 3,199,426      31.58            15% 35,144$        19,019$        0.54

WBT SDVAV 12,778,819    27.40            21% 202,163$      158,689$      0.78

LBJ DDVAV 10,552,877    35.23            17% 138,415$      118,870$      0.86

PDB DDVAV 5,280,394      38.85            14% 56,915$        24,818$        0.44

REJ DDVAV 8,382,000      27.29            27% 172,329$      89,694$        0.52

SHB DDVAV 5,399,818      31.58            19% 75,815$        44,134$        0.58

TJR DDVAV 2,920,094      29.21            13% 29,007$        22,554$        0.78

JHR DDVAV 5,109,877      31.58            17% 66,917$        29,280$        0.44

SCB DDVAV 2,187,285      31.58            20% 33,078$        22,257$        0.67

SFA DDVAV 13,118,505    31.38            18% 181,522$      113,871$      0.63

Electricity

 
(a) 

Annual 

Consumption

Annual 

Usage

Potential 

Percent 

Savings

Potential 

Energy Cost 

Savings

Cost Savings 

Predicted in  

Assessment 

Ratio of Cost 

Savings in 

Assessment to 

Potential Cost 

Savings

(MMBtu) (kBtu/ft
2
/yr)

JHW SDVAV E.R. -                -               -         -               -                -                   

WPC SDVAV E.R. -                -               -         -               -                -                   

RDM SDVAV E.R. -                -               -         -               -                -                   

ARC SDVAV 2,391             21.49            100% 20,241$        11,937$        0.59

TCC SDVAV 3,007             29.68            100% 25,394$        17,194$        0.68

WBT SDVAV 7,012             15.03            84% 49,854$        57,577$        1.15

LBJ DDVAV 12,684           42.35            100% 107,372$      49,687$        0.46

PDB DDVAV 2,921             21.49            100% 24,731$        17,846$        0.72

REJ DDVAV 11,063           36.02            99% 92,387$        41,873$        0.45

SHB DDVAV 3,674             21.49            100% 31,094$        31,781$        1.02

TJR DDVAV 2,934             29.34            87% 21,587$        6,129$          0.28

JHR DDVAV 3,477             21.49            100% 29,437$        18,557$        0.63

SCB DDVAV 2,056             29.68            100% 17,371$        13,029$        0.75

SFA DDVAV 6,286             15.03            95% 50,330$        46,698$        0.93

Natural Gas

 
 (b)  
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Table 6.2 Continued 
 

Annual 

Energy Cost

Annual 

Usage

Potential 

Percent 

Savings

Potential 

Energy Cost 

Savings

Cost Savings 

Predicted in  

Assessment 

Ratio of Cost 

Savings in 

Assessment to 

Potential Cost 

Savings
(kBtu/ft

2
/yr)

JHW SDVAV E.R. 1,304,717      122.51          38% 501,057$      267,062$      0.53

WPC SDVAV E.R. 1,063,198      101.81          36% 379,123$      336,462$      0.89

RDM SDVAV E.R. 268,068         98.74            33% 88,144$        54,573$        0.62

ARC SDVAV 284,809         129.26          20% 56,407$        29,871$        0.53

TCC SDVAV 266,373         137.45          23% 60,538$        36,214$        0.60

WBT SDVAV 1,021,612      108.51          25% 252,016$      216,267$      0.86

LBJ DDVAV 902,013         162.57          27% 245,787$      168,557$      0.69

PDB DDVAV 422,345         154.04          19% 81,646$        42,664$        0.52

REJ DDVAV 724,822         129.15          37% 264,716$      131,567$      0.50

SHB DDVAV 437,714         129.26          24% 106,909$      75,916$        0.71

TJR DDVAV 244,718         129.01          21% 50,594$        28,683$        0.57

JHR DDVAV 414,211         129.26          23% 96,354$        47,837$        0.50

SCB DDVAV 182,106         137.45          28% 50,449$        35,287$        0.70

SFA DDVAV 1,041,038      122.09          22% 231,853$      160,570$      0.69

Total

 
(c) 

 
 
 
 
Table 6.3 Comparison of current and optimized operation in TFC managed buildings 
 

 
Current Operation with 
Assumption 

Optimized Operation 

AHU operation Run 24/7 
AHU shutdown 10:00PM-
5:00AM 

Minimum supply airflow 
40%-70% of total design 
airflow 

0.3 cfm/ft2 

Room temperature set point Fixed set point, 72-75°F Optimized with PESE 

Cold deck leaving air 
temperature set point 

Fixed set point, 53-55°F Optimized with PESE 

Hot deck leaving air 
temperature set point 

Fixed set point, 85-95°F Optimized with PESE 

Outside air intake 
10-15% of total design 
airflow 

Optimized with PESE 
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6.3 Comparison with CC® Assessment 

As a test of the methodology described in this thesis, the estimated potential 

energy cost savings in TFC managed buildings are compared with savings predicted in 

the CC® assessment report prepared by the Energy Systems Laboratory. For each of 

these buildings, the ratio between the predicted savings in the assessment report and the 

potential savings is determined. Then, a generalized factor for each type of system is 

obtained as an indicator of the fraction of the estimated potential energy cost savings that 

may be achieved in retro-commissioning assessments for office buildings with VAV 

systems in the future. 

Figure 6.1 also illustrates comparisons of electricity, natural gas, and the total 

savings. It shows that the estimated potential savings is larger than the total savings 

predicted in the assessment report in each of the buildings. The amount of savings 

predicted in the assessment report is given in Table 6.2 with the ratio to estimated 

potential savings provided. The average ratios in each group of buildings are used as the 

generalized factors for each type of system, as shown in Table 6.4. The range of ratios in 

each group is also provided. The generalized factors of total energy savings are 0.68 for 

SDVAV systems with electric reheat, 0.66 for SDVAV systems with hot water reheat, 

and 0.61 for DDVAV systems. The generalized factors for electricity and natural gas are 

0.61 and 0.81 for SDVAV systems with hot water reheat, and 0.61 and 0.66 for DDVAV 

systems. Larger variations are observed on the ratios for natural gas than those for 

electricity, because savings on electricity weight more in the optimization considering 

that its price (22.069/MMBtu) is much more expensive for the same amount of energy. 
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It should be noted that the savings predicted in the assessment report are largely 

based on simulations and include savings from improvement on water-side of the system 

as well as common retrofit savings, such as installing VFDs on chilled water and hot 

water pumps, DDC upgrade, etc. This explains the large values of ratios in building 

WPC and WBT, where significant retrofit measures are reported in the CC® assessment. 

Therefore, the ratios obtained above are expected to be smaller if only savings on the air-

side are compared. Nevertheless, the predicted savings from AHU shutdown and 

improvements on the air-side dominate the total savings in the assessment report for 

most buildings.  
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(a) 

 
Figure 6.1 Comparison of estimated potential electricity (a), natural gas (b), and total (c) 
cost savings with savings predicted in the CC® assessment report in TFC managed buildings 
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Figure 6.1 Continued 
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Table 6.4 Averages and ranges of ratios of savings predicted in the CC® assessment report 
to estimated potential energy savings in TFC managed buildings 
 

System Type Electricity Natural Gas Total 

 Average Range Average Range Average Range 

SDVAV with electric reheat 0.68 0.53-0.89   0.68 0.53-0.89 

SDVAV with hot water reheat 0.61 0.50-0.78 0.81 0.59-1.15 0.66 0.53-0.86 

DDVAV 0.61 0.44-0.86 0.66 0.28-1.02 0.61 0.50-0.71 
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions of Work 

In this thesis, the methodology for potential energy savings estimation from 

retro-commissioning/retrofit measures proposed by Baltazar is improved in several 

important aspects and is implemented in a prototype computer tool for testing. The 

implemented methodology is tested in two retro-commissioned buildings. In the Sanders 

Corps of Cadets Center, the optimized profiles of parameter settings versus bin 

temperature are analyzed in single parameter optimizations. These profiles can be 

explained with engineering principles, which reveals that the improved methodology is 

implemented correctly. The case study on the Coke Building shows that the improved 

methodology can be used in buildings with more than one system type. Then the 

methodology is used to estimate annual potential energy savings in 14 TFC managed 

office buildings with VAV systems. The estimations of the improved methodology are 

compared with savings predicted in the CC® assessment report. The results show it may 

be helpful to study the correlation by using generalized factors of assessment predicted 

energy cost savings to estimated potential energy cost savings. The generalized factors 

identified in this application are 0.68 for SDVAV systems with electric reheat, 0.66 for 

SDVAV systems with hot water reheat, and 0.61 for DDVAV systems. It should be 

noted that one should be cautious in quoting these factors in future projects, since they 

are based on study of a limited number of buildings, specific energy prices, and various 

assumptions due to inadequate information.  
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7.2 Future Work 

The generalized factors of energy cost savings in the assessment report to 

estimated potential energy cost savings are provided for VAV systems in this study. It 

would be useful to investigate the factors for other HVAC system types, such as single 

duct and dual duct constant volume systems. Additionally, it would be valuable to study 

on the correlations between measured savings and estimated potential savings in a larger 

number of buildings with retro-commissioning measures implemented. The PESE 

Toolkit is developed for the purpose of testing the methodology in this thesis. Further 

testing and modifications on the tool are necessary to make it a reliable software tool to 

be used among retro-commissioning engineers inside the Energy Systems Laboratory or 

to be made available to the public. 
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APPENDIX A 

THE METHOD FOR AHU SHUTDOWN SIMULATION 

 

AHU shutdown during the unoccupied period is one of the most common and 

effective energy saving measure used in retro-commissioning. However, the modified 

bin method has limited capability to accurately deal with highly time dependent 

problems and should be used with considerable judgment when the primary analysis 

deals with thermal capacitance dominated problems (Knebel, 1983). Obviously, the 

AHU shutdown is a problem of this kind, since the room temperature will gradually 

approach outside air temperature during the shutdown period. As a result, using the set 

point temperature during occupied period in calculation of conduction load during 

shutdown periods can lead to significant error. 

It is proposed in this study to use the energy balance method for an approximate 

calculation of heating and cooling energy use during the AHU shutdown and start-up 

period. It is suggested to distinguish the “occupied” and “unoccupied” periods used in 

the bin sorting procedure by the AHU shutdown schedule with start-up included in the 

unoccupied period, because the heating or cooling load accumulated during the 

shutdown period will be removed mainly during the start-up period. By applying the 

energy balance method to the shutdown period, the heating or cooling energy use should 

approximately equal the total of lighting and equipment electricity use and conduction 

load.  
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The use of a linear regression relationship between the room temperature and the 

outside air temperature in the conduction load calculation during the unoccupied period 

with AHU shutdown is investigated. Based on the hourly measured data of room 

temperatures in the Coke Building on the TAMU campus with an AHU shutdown 

schedule implemented, it is found that the average room temperature during the 

unoccupied period follows an approximately linear regression relationship with the 

average outside air temperature during the same period, as shown in Figure A.1. The 

data during weekday nights and weekends & holidays are separated in the top figure, 

which shows that the slope in the regression relationship of weekends& holidays is about 

2.4 times of the slope of weekday nights. Nevertheless, a linear regression relationship is 

determined for all unoccupied periods, shown in the bottom figure. 

The necessity of using two separate regression relationships in computing 

conduction load during the unoccupied period is investigated. The result shows that the 

difference in the total heating and cooling load between using separate models for 

weekday nights and weekends & holidays and using one model for all is only about 10% 

or less for most bins and 1% for the annual total. Additionally, the difference between 

the annual total of heating and cooling loads computed with one model and the annual 

total of measured heating hot water consumption subtracted by chilled water 

consumption is only 2%. Therefore, it is decided that using one regression model for all 

unoccupied periods is sufficient. The model shown in the bottom figure is incorporated 

in the PESE Toolkit for AHU shutdown simulation. 



76 

y = 0.3141x + 53.887
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Figure A.1 Linear regression relationship between average room temperature and average 

outside air temperature during AHU shutdown period with weekday nights and weekends 
separated (top) or combined (bottom) 
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APPENDIX B 

LOAD CALCULATION MODELS 

 

The modified bin method is adopted for load calculation in PESE, which 

establishes the load as a linear function of outdoor dry-bulb temperature. Two 

calculation periods representing occupied and unoccupied hours are distinguished. The 

following equations show how each load component is linearized to the outdoor 

temperature. 

 

Component 1: Conduction load 

)(, groundgroundroofroofAewindowwindowwallwalletot AUAUXAUAUUA +++=  

 

groundgroundAiskylightsroofAiroofskylightsskylightsitot AUXAAXUAUUA +−+= )(,  

)(, eOAetote TTUAQT −=   

 

)(, iOAitoti TTUAQT −=  

Component 2: Solar heat gain through windows 

)24/( JultotwindowJulJul FPSCLFSCAMSHGFQSOL ××××=∑  

 

)24/( JantotwindowJanJan FPSCLFSCAMSHGFQSOL ××××=∑  

 
For the exterior zone, sum the four orientations; for the interior zone, only the skylights. 
FPS: fraction of possible sunshine (given in Table 3-1 in Knebel (1983)). 
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phpc

JanJul

TT

QSOLQSOL
QSOLM

−

−
=_  

Tpc – peak summer bin temperature; Tph – peak winter bin temperature. 

)(_, phOAeeJane TTQSOLMQSOLQSOL −+=   

 

)(_, phOAiiJani TTQSOLMQSOLQSOL −+=  

Component 3: Transmission load solar component 

)85()78( , −+−+×= desozoneLMcorr TTKCLTDsCLTDs  

 
Tzone: use Te for exterior zone, Ti for interior zone 
To,des: average outside temperature on design day 
Kwall: dark colored-1, medium colored-0.83, light colored-0.65 
Kroof: dark colored-1, light colored-0.5 

)( JulcorrwallwallJul FPSCLTDsAUQTS ×××=∑  

 

)( JancorrwallwallJan FPSCLTDsAUQTS ×××=∑  

 
For exterior zone, sum the four orientations plus part of the roof; For interior zone, only the 
other part of the roof. 

phpc

JanJul

TT

QTSQTS
QTSM

−

−
=_  

)(_, phOAeeJane TTQTSMQTSQTS −+=   

 

)(_, phOAiiJani TTQTSMQTSQTS −+=  

 
Transmission load solar component is only counted in the total load when TOA > Tzone. 

Component 4: Internal heat gain (sensible and latent) from occupants 

dInThePerioncyFullOccupa

EachHour

HoursOCP

hrOCP

×

×

=

∑ 1

AOF iodCertainPer  
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AOFOCPQsOCP ee ××= 245  

 

AOFOCPQlOCP ee ××= 155  

 

AOFOCPQsOCP ii ××= 245  

 

AOFOCPQlOCP ii ××= 155  

 
AOF (Average Occupancy Factor): use AOFocp for occupied period and AOFunocp for unoccupied 
period 

Component 4: Internal heat gain from lighting and equipments 

LTEQXQLTEQ Aee ××= 3412  

 

LTEQXQLTEQ Aii ××= 3412  

 
LTEQ (kW): use LTEQocp for occupied period and LTEQunocp for unoccupied period 

 

The MSHGF, CLFtot and CLTDsLM values required in the solar heat gain and 

transmission load solar component calculation can be derived from 1989 ASHRAE 

Handbook of Fundamentals, which will be described in the following paragraphs. Note 

table names without section number refer to tables from Chapter 26 in 1989 

Fundamentals.  

Table 34 gives Maximum Solar Heat Gain Factors (MSHGF) according to 

latitude, month and directions. The MSHGF values for the months of July and January 

are picked out for the latitudes of interest and listed in Table B.1. 

Table 36 and Table 39 give the CLF at 24 hours of solar time on each orientation 

for glass without or with interior shading respectively. By summing up CLF over 24 

hours in each table (for Table 36 take values for medium construction), one can get 
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CLFtot on each orientation in each situation. As Table B.2 revealed, on each orientation 

the CLFtot values in both situations are very close. Hence, for the sake of simplification 

the values for glass with interior shading are used in PESE considering it is the case in 

most buildings. 

 
 
Table B.1 Maximum Solar Heat Gain Factor for sunlit glass (Btu/h·ft2) 
 

N NNE NE ENE E ESE SE SSE

24° 45 116 176 210 213 185 129 65

32° 40 111 167 204 215 194 150 96

40° 38 102 163 198 216 203 170 129

48° 37 96 156 196 214 209 187 158

24° 27 27 41 128 190 240 253 241

32° 24 24 29 105 175 229 249 250

40° 20 20 20 74 154 205 241 252

48° 15 15 15 53 118 175 216 239

S SSW SW WSW W WNW NW NNW HOR

24° 46 65 129 185 213 210 176 116 278

32° 72 96 150 194 215 204 167 111 273

40° 109 129 170 203 216 198 163 102 262

48° 146 158 187 209 214 196 156 96 244

24° 227 241 253 240 190 128 41 27 214

32° 246 250 249 229 175 105 29 24 176

40° 254 252 241 205 154 74 20 20 133

48° 245 239 216 175 118 53 15 15 85

Jul

Jan

Jul

Jan

 
 
 
 

Table B.2 Comparison of CLFtot for glass with and without interior shading 
 

N NNE NE ENE E ESE SE SSE

Without Interior Shading 11.58 5.77 5.15 5.31 5.49 5.85 6.21 6.44

With Interior Shading 11.58 5.74 5.13 5.34 5.50 5.86 6.23 6.45

Absolute Difference 0.00 0.03 0.02 -0.03 -0.01 -0.01 -0.02 -0.01

Difference in Percentage (%) 0.0 0.5 0.4 -0.6 -0.2 -0.2 -0.3 -0.2  
S SSW SW WSW W WNW NW NNW HOR

6.41 6.43 6.24 5.84 5.46 5.36 5.14 5.76 8.23

6.44 6.48 6.20 5.83 5.47 5.33 5.15 5.77 8.21

-0.03 -0.05 0.04 0.01 -0.01 0.03 -0.01 -0.01 0.02

-0.5 -0.8 0.6 0.2 -0.2 0.6 -0.2 -0.2 0.2  
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Table 29 provides CLTDs at 24 hours of solar time for flat roofs with 13 

different constructions when suspended ceiling is present or not. One can get CLTD 24-

hour Average (CLTDs) for each construction type by averaging up CLTD over 24 hours 

in the table. Table B.3 shows that average values of CLTDs for different constructions 

are the same whether there is suspended ceiling or not, and CLTDs for all the 

constructions are close except for No.5, which is rare among the size of buildings this 

methodology deals with. Therefore, the average value is used in PESE regardless of roof 

construction. 

 
 
 
Table B.3 Comparison of CLTDs for flat roofs with and without suspended ceiling 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 Avg.

Without Suspended Ceiling 30 30 29 29 23 29 30 29 29 28 29 29 29 29

Difference from average (%) 2 2 2 1 -19 2 2 2 2 -2 1 2 2

With Suspended Ceiling 30 30 29 29 23 29 30 29 29 28 29 29 29 29

Difference from average (%) 2 2 2 1 -19 2 2 2 2 -2 1 2 2  
 
 
 

Table B.4 Comparison of CLTDs for sunlit walls with different construction groups 
 

N NE E SE S SW W NW

Group A Walls 12 18 22 21 17 21 22 18

Group B Walls 12 17 22 21 17 20 22 17

Group C Walls 12 18 22 21 17 21 22 18

Group D Walls 12 18 22 21 17 21 22 18

Group E Walls 12 18 22 21 17 21 22 18

Group F Walls 12 18 23 21 17 21 22 18

Group G Walls 12 18 22 21 17 21 22 18

Average 12 18 22 21 17 21 22 18

Max Difference (%) -2 -3 -3 -3 -3 -3 -3 -3  
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Table B.5 CLTD correction for latitude and month applied to walls and roofs 
 

N NNE NE ENE E ESE SE SSE

24° 1 2 2 0 0 -3 -3 -5

32° 1 1 1 0 0 -1 -1 -3

40° 0 0 0 0 0 0 0 0

48° 0 -1 0 0 1 1 3 3

24° -4 -6 -8 -9 -6 -3 9 3

32° -5 -7 -9 -11 -8 -15 -4 2

40° -5 -7 -10 -12 -9 -6 1 8

48° -6 -8 -11 -13 -11 -8 -1 5

S SSW SW WSW W WNW NW NNW HOR

24° -6 -5 -3 -3 0 0 2 2 1

32° -3 -3 -1 -1 0 0 1 1 1

40° 1 0 0 0 0 0 0 0 1

48° 4 3 3 1 1 0 0 -1 0

24° 13 3 9 -3 -6 -9 -8 -6 -11

32° 9 2 -4 -15 -8 -11 -9 -7 12

40° 11 8 1 -6 -9 -12 -10 -7 -19

48° 8 5 -1 -8 -11 -13 -11 -8 -24

Jan

Jul

Jan

Jul

 
 
 
 

Table 31 gives CLTD at 24 hours of solar time for sunlit walls on each 

orientation with 7 different construction type groups. Similarly with the case of roofs, 

one can get CLTDs on each orientation for each group. Table B.4 indicated that all 

groups of walls come very close on each orientation despite their construction difference. 

Thus, the average values are adopted in PESE. 

Table 32 provides CLTD correction for latitude and month (LM) applied to walls 

and roofs. The CLTD correction values for the months of July and January are picked 

out for the latitudes of interest and listed in Table B.5. Since CLTD LM correction is 

available in 16 directions, CLTDs for sunlit walls are also expanded to 16 directions by 

average interpolation between the 8 existing directions in Table B.4. The expanded 

CLTDs including horizontal are provided in Table B.6. Latitude and month corrected 
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CLTDs (CLTDsLM) can be obtained simply by adding the correction values in Table B.5 

to them. The results are given in Table B.7. 

 
 
 
Table B.6 CLTDs with expanded directions for sunlit walls and roofs 

N NNE NE ENE E ESE SE SSE

12 15 18 20 22 21.5 21 19

S SSW SW WSW W WNW NW NNW HOR

17 19 21 21.5 22 20 18 15 29  
 
 
 

Table B.7 CLTDsLM used in PESE Toolkit for sunlit walls and roofs 

N NNE NE ENE E ESE SE SSE

24° 13 17 20 20 22 18.5 18 14

32° 13 16 19 20 22 20.5 20 16

40° 12 15 18 20 22 21.5 21 19

48° 12 14 18 20 23 22.5 24 22

24° 8 9 10 11 16 18.5 30 22

32° 7 8 9 9 14 6.5 17 21

40° 7 8 8 8 13 15.5 22 27

48° 6 7 7 7 11 13.5 20 24

S SSW SW WSW W WNW NW NNW HOR

24° 11 14 18 18.5 22 20 20 17 30

32° 14 16 20 20.5 22 20 19 16 30

40° 18 19 21 21.5 22 20 18 15 30

48° 21 22 24 22.5 23 20 18 14 29

24° 30 22 30 18.5 16 11 10 9 18

32° 26 21 17 6.5 14 9 9 8 41

40° 28 27 22 15.5 13 8 8 8 10

48° 25 24 20 13.5 11 7 7 7 5

Jul

Jan

Jul

Jan
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APPENDIX C 

NOMENCLATURE OF AIR-SIDE MODELS 

 

The air-side simulation models are inherited from Baltazar’s (2006) dissertation 

with modifications explained in section 3.2.7. The implemented models for each type of 

system can be found in Appendix G. The notations used in the models are generally used 

within the Energy Systems Laboratory, which are listed as follows. 

 
 
 

Symbols Variable Unit 

P Rated fan power hp 

PLR Part load ratio Dimensionless 

q Load Btu/hr 

dT Temperature rise °F 

T Temperature °F 

V Air volume flow rate ft3/min 

w Humidity ratio lbw/lba 

X Air volume ratio Dimensionless 

Subscripts Variable Combination
s 

C Cold deck air  V& , X 

CE Cooling coil entering air  T, w 

CL Cooling coil leaving air  T, w 

Cl Cooling coil latent load q 

Cs Cooling coil sensible load q 

CT Cooling coil total load q 

e Exterior zone air  T, V
&

, X 

e,min Minimum supply air for exterior zone in VAV systems  V&  

eC Exterior zone cold air  V& , X 

eH Exterior zone hot air  V& , X 
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el Exterior zone latent load q 

eRH Exterior zone reheat coil load q 

eS Exterior zone supply air  T, w 

es Exterior zone sensible load q 

FT Total fan power q 

H Hot deck air V& , X 

HE Heating coil entering air  T, w 

HL Heating coil leaving air  T, w 

HT Heating coil total load q 

i Interior zone air  T, V
&

, X 

i,min Minimum supply air for interior zone in VAV systems  V&  

iC Interior zone cold air  V& , X 

iH Interior zone hot air  V& , X 

il Interior zone latent load q 

iRH Interior zone reheat coil load q 

iS Interior zone supply air  T, w 

is Interior zone sensible load q 

MA Mixed air  T, w 

OA Outside air  T, V
&

, w, X 

OA,max Maximum outside air  V& , X 

OA,min Minimum required outside air  V& , X 

PH Preheat coil load or leaving air  q, T, w 

R Return air  T, w 

Rw Return air (“wet coil” condition) w 

Rd Return air (“dry coil” condition) w 

RF Return fan ∆T, P 

RF-rated Rated return fan power P 

SF Supply fan ∆T, P 

SF-rated Rated supply fan power P 

T Total air  V&  

TD Total designed air  V&  
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APPENDIX D 

BIN SORTING 

 

PESE requires input weather data (dry bulb temperatures and humidity ratios) 

and measured energy consumptions data sorted into bins and the number of hours in 

each bin. Generally, one year of measured hourly data is most desirable for the purpose 

of potential energy savings estimation. In order to obtain humidity ratios, any one of the 

three humidity parameters - wet bulb temperature, dew point temperature and relative 

humidity - is required besides dry bulb temperature. Additionally, since the ASHRAE 

SEAP suggests two calculation periods representing occupied and unoccupied hours on a 

daily basis, a Boolean parameter indicating whether the building is occupied during each 

hour is needed as well. In PESE the temperature difference between bins can be any 

value although 5°F and 3°F are common.  

Figure D.1 gives an example of the bin sorting procedure developed by the 

author. With one year of hourly data as well as occupied hours on weekdays and 

weekends provided, the humidity ratios will be calculated for each hour, and then will be 

sorted into 5°F bins together with dry bulb temperature and measured consumption 

values. There is a drop list on the title line for one to choose from the three humidity 

parameters. The output follows the format of bin data input in PESE (shown in Figure 

5.2). The structure of the bin sorting procedure is illustrated in the flow chart as shown 

in Figure D.2. 
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YEAR MONTH DAY HOUR IFOCP TOA ELE CHW HHW Tdp wOA

(°F) (kWh) (MBtu) (MBtu) (°F)

2008 7 16 0 FALSE 79 23.40 95.00 0.00 72 0.016903 INPUT OCCUPIED HOURS: 

2008 7 16 1 FALSE 79 23.22 58.00 0.00 72 0.016903 (0 TO 23: 12:00AM IS 0, 11:00PM IS 23)

2008 7 16 2 FALSE 79 22.61 81.00 0.00 72 0.016903 WEEKDAYS 7 TO 20

2008 7 16 3 FALSE 79 22.19 62.00 0.00 72 0.016903 WEEKENDS TO

2008 7 16 4 FALSE 77 22.80 62.00 0.00 72 0.016903

2008 7 16 5 FALSE 77 23.16 60.00 0.00 72 0.016903

2008 7 16 6 FALSE 77 25.54 58.00 0.00 72 0.016903
2008 7 16 7 TRUE 78 35.97 156.00 1.00 73 0.017500

2008 7 16 8 TRUE 83 35.18 395.00 0.00 74 0.018116

2008 7 16 9 TRUE 83 44.69 377.00 0.00 73 0.017500

2008 7 16 10 TRUE 86 46.80 368.00 0.00 71 0.016325
2008 7 16 11 TRUE 89 49.91 435.00 0.00 71 0.016325
2008 7 16 12 TRUE 90 48.74 441.00 0.00 70 0.015765 Please round up TOA to integer or 0.1°F

2008 7 16 13 TRUE 93 49.55 466.00 0.00 69 0.015222

2008 7 16 14 TRUE 96 50.92 460.00 1.00 68 0.014696
2008 7 16 15 TRUE 96 53.90 482.00 0.00 67 0.014186

2008 7 16 16 TRUE 90 54.20 520.00 0.00 67 0.014186

2008 7 16 17 TRUE 94 50.65 505.00 0.00 69 0.015222

2008 7 16 18 TRUE 95 38.54 439.00 0.00 66 0.013693
2008 7 16 19 TRUE 90 34.99 434.00 0.00 69 0.015222

2008 7 16 20 TRUE 87 34.03 401.00 0.00 67 0.014186

2008 7 16 21 FALSE 83 31.72 407.00 0.00 68 0.014696

2008 7 16 22 FALSE 82 31.09 234.00 0.00 69 0.015222
2008 7 16 23 FALSE 79 24.15 181.00 0.00 69 0.015222

2008 7 17 0 FALSE 79 24.18 102.00 0.00 70 0.015765

2008 7 17 1 FALSE 77 24.13 72.00 0.00 70 0.015765
2008 7 17 2 FALSE 76 23.68 90.00 0.00 70 0.015765

2008 7 17 3 FALSE 75 23.83 71.00 0.00 71 0.016325

2008 7 17 4 FALSE 74 23.37 69.00 0.00 71 0.016325

2008 7 17 5 FALSE 73 23.52 71.00 0.00 71 0.016325
2008 7 17 6 FALSE 73 24.12 69.00 0.00 71 0.016325

2008 7 17 7 TRUE 76 36.54 66.00 0.00 73 0.017500

2008 7 17 8 TRUE 79 37.83 425.00 0.00 74 0.018116

2008 7 17 9 TRUE 82 48.43 358.00 0.00 72 0.016903
2008 7 17 10 TRUE 85 50.80 398.00 0.00 70 0.015765

2008 7 17 11 TRUE 89 51.84 477.00 1.00 67 0.014186

2008 7 17 12 TRUE 92 49.93 456.00 0.00 63 0.012303

2008 7 17 13 TRUE 95 47.73 479.00 0.00 61 0.011449
2008 7 17 14 TRUE 95 48.96 454.00 0.00 60 0.011042

2008 7 17 15 TRUE 97 47.45 437.00 0.00 59 0.010648

2008 7 17 16 TRUE 97 48.46 444.00 0.00 60 0.011042

2008 7 17 17 TRUE 97 47.13 436.00 0.00 57 0.009898
2008 7 17 18 TRUE 96 36.95 424.00 0.00 55 0.009195

2008 7 17 19 TRUE 94 35.19 384.00 0.00 57 0.009898

2008 7 17 20 TRUE 90 34.92 374.00 0.00 60 0.011042

2008 7 17 21 FALSE 86 32.39 301.00 0.00 70 0.015765
2008 7 17 22 FALSE 84 31.69 203.00 0.00 70 0.015765

2008 7 17 23 FALSE 82 24.58 185.00 0.00 70 0.015765

INSTRUCTION: Columns with highlighted 

title are required inputs for bin sorting. 

The rest columns help to identify 

occupied / unoccupied hours. Humidity 

data could be Wet bulb, Dew point, or 

Relative humidity (choose from the title of 

column 13).

 
 

Figure D.1 Input of the bin sorting toolkit 
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BinSorting

Start

Read input values from 
Sheet “INPUT-hourly” and 
store in Array “AllData”

Parameter used for outside air 
humidity input?

Call Public Function 
w_Tdp

Tdp

Call Public Function 
w_Twb 

Call Public Function 
w_RH

Twb RH

Add calculated humidity ratio values to Array 
“AllData”

Separate Array “AllData” into Array 
“OCPData” and Array “UNOCPData”

“OCPData” is categorized into 22 predefined 
bins by outside air temperature; total hours, 

ELE, CHW and HHW consumptions, average 
humidity ratio are calculated for each bin

Output bin sorting results on 
Sheet “OUTPUT-bin”

(Call Public Function RH_w)

Clear the arrays which stored bin sorting 
results for occupied data

Repeat the same process sorting occupied data 
for “UNOCPData”

Output bin sorting results on 
Sheet “OUTPUT-bin”

(Call Public Function RH_w)

End 

Public Function 
w_Twb

This function calculates 
humidity ratio with wet bulb 
temperature.

-Input from function:
Dry bulb temperature; wet 
bulb temperature; ambient 
pressure.

Sub BINSORT

Public Function 
w_Tdp

This function calculates 
humidity ratio with dew 
point temperature.

-Input from function:
Dry bulb temperature; dew 
point temperature; ambient 
pressure.

Public Function 
w_RH

This function calculates 
humidity ratio with relative 
humidity.

-Input from function:
Dry bulb temperature; 
relative humidity; ambient 
pressure.

Public Function 
RH_w

This function calculates 
relative humidity with 
humidity ratio.

-Input from function:
Dry bulb temperature; 
humidity ratio; ambient 
pressure.

 
Figure D.2 Flow chart of the bin sorting toolkit 
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APPENDIX E 

OUTPUT IN PESE TOOLKIT 

 

The PESE Toolkit provides a comprehensive output of results by bin in the Sheet 

“BinData”. These results are categorized into six major sections: current and optimized 

energy costs, potential energy cost savings, optimized energy consumption, space loads, 

system loads, and system parameters. The parameters included in each section are listed 

in Table E.1. Additionally, most of these output parameters are illustrated in the five 

chart sheets in the PESE Toolkit. Each chart sheet contains four plots, each of which 

represents certain categorized parameters. The criteria used to categorize the parameters 

in each plot are given in Table E.2. Figure E.1 shows the chart sheet No.1 – 3. Chart 

sheet No.4 and 5 are omitted since they are same in design with chart sheet No.2 and 3. 
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Table E.1 Output parameters in Sheet “BinData” in PESE Toolkit 
 

Section  Output parameter Symbol  Unit 

Current ELE cost ELECost_Cur 

Current CHW cost CHWCost_Cur 

Current HHW cost HHWCost_Cur 

Current bin energy 
cost 

Current total cost TotCost_Cur 

Optimized ELE cost ELECost_Opt 

Optimized CHW cost CHWCost_ Opt 

Optimized HHW cost HHWCost_ Opt 

Optimized bin 
energy cost 

Optimized total cost TotCost_ Opt 

$ 

ELE dollar savings ELE_$Sav $ 

ELE percentage savings ELE_%Sav % 

CHW dollar savings CHW_$Sav $ 

CHW percentage savings CHW_%Sav % 

HHW dollar savings HHW_$Sav $ 

HHW percentage savings HHW_%Sav % 

Total dollar savings Tot_$Sav $ 

Potential energy 
cost savings 

Total percentage savings Tot_%Sav % 

Optimized ELE-LTEQ consumption LTEQ_Opt 

Optimized ELE-FANP consumption FANP_Opt 

Optimized ELE consumption ELE_Opt 

kWh 

Optimized CHW consumption CHW_Opt 

Optimized bin 
energy 
consumptions 

Optimized HHW consumption HHW_Opt 
kBtu 

Optimized exterior zone temperature Te_Opt 

Optimized interior zone temperature Ti_Opt 

Optimized cold deck temperature TCL_Opt 

Optimized hot deck temperature THL_Opt 

°F 

Optimized exterior zone minimum air flow Vemin_Opt cfm 

Optimized interior zone minimum air flow Vimin_Opt cfm 

Optimized minimum outside air flow ratio XOAmin_Opt - 

Optimized system 
parameter settings 

Optimized minimum outside air flow VOAmin_Opt cfm 
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Exterior zone sensible load qes 

Interior zone sensible load qis 

Exterior zone latent load qel 
Loads  

Interior zone latent load qil 

Btu/hr 

Transmission load conduction  QTe 

Solar heat gain through glass QSOLe 

Transmission load solar component QTSe 

Interior load - occupants QsOCPe 

Exterior zone 
sensible load 
components 

Interior load - Lighting and equipment QLTEQe 

Btu/hr 

Transmission load conduction  QTi 

Solar heat gain through glass QSOLi 

Transmission load solar component QTSi 

Interior load - occupants QsOCPi 

Interior zone 
sensible load 
components 

Interior load - Lighting and equipment QLTEQi 

Btu/hr 

Cooling coil sensible load qCs 

Cooling coil latent load qCl 

Total cooling load qCT 

Preheat coil load qPH 

Heating coil load (dual duct) qH 

Exterior zone reheat load (single duct) qeRH 

Interior zone reheat load (single duct) qiRH 

Total heating load qHT 

Simulated system 
loads 

Total fan power qFT 

Btu/hr 

Temperature rise across supply fan dTSF 

Temperature rise across return fan dTRF 

Exterior zone supply temperature TeS 

Interior zone supply temperature TiS 

Return air temperature TR 

Mixed air temperature TMA 

Preheat coil leaving temperature TPH 

Simulated 
temperature 
parameters 

Cooling/heating coil entering temperature TCE 

°F 
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Exterior zone cold air flow (dual duct) VeC 

Interior zone cold air flow (dual duct) ViC 

Exterior zone hot air flow (dual duct) VeH 

Interior zone hot air flow (dual duct) ViH 

Cold deck air flow (dual duct) VC 

Hot deck air flow (dual duct) VH 

Exterior zone supply air flow Ve 

Interior zone supply air flow Vi 

Outside air flow VOA 

Return air flow VR 

Simulated air flow 
rate parameters 

Total air flow VT 

cfm 

Exterior zone cold air flow ratio (dual duct) XeC 

Interior zone cold air flow ratio (dual duct) XiC 

Exterior zone hot air flow ratio (dual duct) XeH 

Interior zone hot air flow ratio (dual duct) XiH 

Cold deck air flow ratio (dual duct) XC 

Hot deck air flow ratio (dual duct) XH 

Exterior zone supply air flow ratio Xe 

Interior zone supply air flow ratio Xi 

Outside air flow ratio XOA 

Simulated air flow 
fraction parameters 

Return air flow ratio XR 

- 

Partial load ratio (VAV) PLR - 

Supply fan power PSF 

Return fan power PRF 
hp 

Return air humidity ratio wR 

Mixed air humidity ratio wMA 

Cooling coil leaving air humidity ratio wCL 

lbw/lbda 

Whether cooling coil is wet WetCoil - 

Simulated fan 
power & humidity 
parameters 

Zone relative humidity RH % 
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Table E.2 Component charts in each chart sheet in PESE Toolkit 
 

Chart Sheet Plot* Unit 

(a) energy cost during occupied 

(b) energy cost during unoccupied 

(c) savings during occupied 
(1) energy cost and saving 

(d) savings during unoccupied 

Thousand $ 

(a) measured and optimized energy use MMBtu; MWh 

(b) system consumption loads and bin hours MMBtu/hr; hours 

(c) exterior zone loads MMBtu/hr 

(2) consumptions and loads 
during occupied period 

(d) interior zone loads MMBtu/hr 

(a) temperatures °F 

(b) air flow rates  Thousand cfm 

(c) humidity ratios and relative humidity Lbw/lbda 

(3) system parameters 
during occupied period 

(d) air flow ratios % 

(a) measured and optimized energy use MMBtu; MWh 

(b) system consumption loads and bin hours MMBtu/hr; hours 

(c) exterior zone loads MMBtu/hr 

(4) consumptions and loads 
during unoccupied period 

(d) interior zone loads MMBtu/hr 

(a) temperatures °F 

(b) air flow rates  Thousand cfm 

(c) humidity ratios and relative humidity Lbw/lbda 

(5) system parameters 
during unoccupied period 

(d) air flow ratios % 

*In each chart sheet, (a), (b), (c), (d) refer to the upper left, upper right, lower left and lower right plot. 
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(a) Chart sheet No.1 
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(b) Chart sheet No.2 

 
Figure E.1 Chart sheets in PESE Toolkit 
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(c) Chart sheet No.3 

 
Figure E.1 Continued 
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APPENDIX F 

FLOW CHARTS OF PESE TOOLKIT 

 

There are 6 modules in the PESE program as listed in Table F.1. The structure of 

the program is illustrated with Figure F.1 at the module level and each module is further 

explored with individual flow charts (Figure F.2 to Figure F.7). 

 
 
 
Table F.1 Main function of modules in PESE Toolkit 
 

Module Name Main Function 

Main 
Organizes the whole program: reads input from spreadsheet, executes optimization 
bin by bin for occupied and unoccupied periods, outputs results and plots. 

Optimization 
Performs exhaustive search for the combination of parameter settings which yields 
the minimum energy cost for a particular bin through air-side system simulation. 

LoadCal Calculates space loads with weather data for a particular bin. 

SystemSim Performs air-side system simulation given the system type and space loads. 

OtherFun 
Includes auxiliary functions for calculations of outside air flow, fan power and 
psychrometric parameters. 

PlotNFormat Includes subroutines which format data output on spreadsheet and generate plots. 
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Figure F.1 Flow chart of modules in PESE Toolkit 
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Figure F.2 Flow chart of module “Main” 



99 

 

Optimization

Start

EnergyCost=1E+20

Which system type?

Call Public Function 
f_CVTR

Call Public Function 
f_DDCV

Call Public Function 
f_SDVAV

Call Public Function 
f_DDVAV

DDVAVCVTR DDCV SDVAV

Calculate EnergyCost_bck

Exceeded system capacity?

NO

Meet zone RH requirement?

YES

EnergyCost_bck < EnergyCost?

EnergyCost = EnergyCost_bck

YES

Is nN=1?

For A values of A_
For B values of B_

EnergyCost_Ntemp = EnergyCost

YES Is Abs(EnergyCost_Ntemp -
EnergyCost) < 0.01?

NO

NO

Narrow range for variables A_ to E_

Output system simulation 
result in Sheet “BinData”

Output optimization 
results

For nN from 1 to N

YES

NO

NO

YES

-Input from function:
Value range and number of division of the five 
optimization variables; energy prices; bin number; 
system type; occupied or unoccupied; zone relative 
humidity range; rated fan power; outside air control 
method; reheat and preheat type; variable speed 
mechanism; design airflows; minimum airflows; 
minimum outside air fraction and maximum airflow; 
fraction of served exterior and interior zone area; bin 
outside air temperature, humidity ratio and hours.
-Input from public variables:
Load from lighting and equipment calculated in 
LoadCal module.

Call Public Function f_Load

For C values of C_
For D values of D_
For E values of E_

 
Figure F.3 Flow chart of module “Optimization” 
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LoadCal

Start

Calculate conduction load
(for exterior and interior zones)

MSHGF (latitude, 
season, orientation)

Calculate solar heat gain
(for exterior and interior zones)

CLTDS (latitude, 
season, orientation)

Calculate transmission load solar component
(for exterior and interior zones)

Calculate internal heat gain (occupants, LTEQ)
(for exterior and interior zones)

Output load 
calculation results

-Input from function:
Outside air temperature; occupied or 
unoccupied; AHU shutdown; exterior and 
interior zone temperatures.
-Input from public variables:
The whole section of building information 
on Sheet “Input”.

  
 

Figure F.4 Flow chart of module “LoadCal” 
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Figure F.5 Flow chart of module “SystemSim” 
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Figure F.6 Flow chart of module “OtherFun” 
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Figure F.7 Flow chart of module “PlotNFormat” 
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APPENDIX G 

CODES IN PESE TOOLKIT 

 

The VBA codes used in the PESE Toolkit are given in this appendix. It is helpful 

to refer the flow charts of the tool in Appendix C in reading the codes. In order to save 

space, only those closely related to algorithms and calculations are displayed. Codes are 

omitted for the module of PlotNFormat, and also inside the other modules, subroutines, 

and functions regarding definition of variables, reading input from spreadsheet, writing 

output to spreadsheet, formatting, etc.  

 
 
Sub Main() 
 
     
    'convert VAV method and OA control method to number as system simulation input 
    If VAVM = "Variable Speed Drive" Then VAVM_n = 1 
    If VAVM = "Inlet Vanes Control" Then VAVM_n = 2 
    If VAVM = "Outlet Dampers" Then VAVM_n = 3 
    If OACtrl = "XOAmin" Then OACtrl_n = 1 
    If OACtrl = "VOAmin" Then OACtrl_n = 2 
    If YN_VOA = True Then HasEcmz = False 
     
    Call FillTitles(SysType) 
     
    'settings of optimization variables during occupied period 
    N = 3 
    A = n_Te_ocp 
    b_A1 = b_Te1_ocp 
    b_A2 = b_Te2_ocp 
    B = n_Ti_ocp 
    b_B1 = b_Ti1_ocp 
    b_B2 = b_Ti2_ocp 
    C = n_TCL_ocp 
    b_C1 = b_TCL2_ocp 'higher TCL is prefered 
    b_C2 = b_TCL1_ocp 
    D = n_THL_ocp 
    b_D1 = b_THL1_ocp 
    b_D2 = b_THL2_ocp 
    E = n_VOA_ocp 
    b_E1 = b_VOA1_ocp 
    b_E2 = b_VOA2_ocp 
     
    'MAIN SUB BIN BY BIN 
    For i = 0 To 21 
        'OCCUPIED BINS 
        If ThisWorkbook.Worksheets("BinData").Cells(i + 5, 2) = "" Then 
            ThisWorkbook.Worksheets("BinData").Cells(i + 5, 2).EntireRow.Hidden = True 
        Else 
            'Read TOA, wOA and hours from bin input 
            TOAbin_ocp = ThisWorkbook.Worksheets("BinData").Cells(i + 5, 2) 
            wOAbin_ocp = ThisWorkbook.Worksheets("BinData").Cells(i + 5, 3) 
            Hrsbin_ocp = ThisWorkbook.Worksheets("BinData").Cells(i + 5, 5) 
             
            'Cold and hot deck leaving temperatures 
            If TOAbin_ocp <= TOA_TCL1 Then TCL_fTOA = TCL_1 
            If TOAbin_ocp >= TOA_TCL2 Then TCL_fTOA = TCL_2 
            If TOAbin_ocp > TOA_TCL1 And TOAbin_ocp < TOA_TCL2 Then _ 
                TCL_fTOA = TCL_1 + (TCL_1 - TCL_2) / (TOA_TCL1 - TOA_TCL2) * (TOAbin_ocp - TOA_TCL1) 
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            If TOAbin_ocp <= TOA_THL1 Then THL_fTOA = THL_1 
            If TOAbin_ocp >= TOA_THL2 Then THL_fTOA = THL_2 
            If TOAbin_ocp > TOA_THL1 And TOAbin_ocp < TOA_THL2 Then _ 
                THL_fTOA = THL_1 + (THL_1 - THL_2) / (TOA_THL1 - TOA_THL2) * (TOAbin_ocp - TOA_THL1) 
             
            'for variables which are not selected for optimization 
            If YN_Te = False Then 
                A = 2 
                b_A1 = Te_ocp 
                b_A2 = Te_ocp 
            End If 
             
            If YN_Ti = False Then 
                B = 2 
                b_B1 = Ti_ocp 
                b_B2 = Ti_ocp 
            End If 
             
            If YN_TCL = False Then 
                C = 2 
                b_C1 = TCL_fTOA 
                b_C2 = TCL_fTOA 
            End If 
             
            If YN_THL = False Then 
                D = 2 
                b_D1 = THL_fTOA 
                b_D2 = THL_fTOA 
            End If 
             
            If YN_VOA = False Then 
                E = 2 
                b_E1 = VOAmin_ocp 
                b_E2 = VOAmin_ocp 
            End If 
 
            'calculate optimized energy cost and store in array 
            Array_Optimization_ocp = f_Optimization(N, _ 
                                    A, b_A1, b_A2, B, b_B1, b_B2, C, b_C1, b_C2, _ 
                                    D, b_D1, b_D2, E, b_E1, b_E2, _ 
                                    Price_ELE, Price_CHW, Price_HHW, i, SysType, True, _ 
                                    RHz1, RHz2, PSF_rated, PRF_rated, _ 
                                    OACtrl_n, HasEcmz, ReheatType, PreheatType, Ve, Vi, _ 
                                    VAVM_n, VTD, Vemin_ocp, Vimin_ocp, XOAmin_ocp, VOAmax, FracAe, _ 
                                    FracAi, TOAbin_ocp, , wOAbin_ocp, , Hrsbin_ocp) 
        End If 
    Next i 
 
    'settings of optimization variables during unoccupied period 
    N = 3 
    A = n_Te_unocp 
    b_A1 = b_Te1_unocp 
    b_A2 = b_Te2_unocp 
    B = n_Ti_unocp 
    b_B1 = b_Ti1_unocp 
    b_B2 = b_Ti2_unocp 
    C = n_TCL_unocp 
    b_C1 = b_TCL2_unocp 
    b_C2 = b_TCL1_unocp 
    D = n_THL_unocp 
    b_D1 = b_THL1_unocp 
    b_D2 = b_THL2_unocp 
    E = n_VOA_unocp 
    b_E1 = b_VOA1_unocp 
    b_E2 = b_VOA2_unocp 
     
 
    For i = 0 To 21 
        'UNOCCUPIED BINS 
        If ThisWorkbook.Worksheets("BinData").Cells(i + 37, 2) = "" Then 
            ThisWorkbook.Worksheets("BinData").Cells(i + 37, 2).EntireRow.Hidden = True 
        Else 
            TOAbin_unocp = ThisWorkbook.Worksheets("BinData").Cells(i + 37, 2) 
            wOAbin_unocp = ThisWorkbook.Worksheets("BinData").Cells(i + 37, 3) 
            Hrsbin_unocp = ThisWorkbook.Worksheets("BinData").Cells(i + 37, 5) 
             
            If TOAbin_unocp <= TOA_TCL1 Then TCL_fTOA = TCL_1 
            If TOAbin_unocp >= TOA_TCL2 Then TCL_fTOA = TCL_2 
            If TOAbin_unocp > TOA_TCL1 And TOAbin_unocp < TOA_TCL2 Then _ 
                TCL_fTOA = TCL_1 + (TCL_1 - TCL_2) / (TOA_TCL1 - TOA_TCL2) * (TOAbin_unocp - TOA_TCL1) 
             
            If TOAbin_unocp <= TOA_THL1 Then THL_fTOA = THL_1 
            If TOAbin_unocp >= TOA_THL2 Then THL_fTOA = THL_2 
            If TOAbin_unocp > TOA_THL1 And TOAbin_unocp < TOA_THL2 Then _ 
                THL_fTOA = THL_1 + (THL_1 - THL_2) / (TOA_THL1 - TOA_THL2) * (TOAbin_unocp - TOA_THL1) 
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            If YN_Te = False Then 
                A = 2 
                b_A1 = Te_unocp 
                b_A2 = Te_unocp 
            End If 
             
            If YN_Ti = False Then 
                B = 2 
                b_B1 = Ti_unocp 
                b_B2 = Ti_unocp 
            End If 
             
            If YN_TCL = False Then 
                C = 2 
                b_C1 = TCL_fTOA 
                b_C2 = TCL_fTOA 
            End If 
             
            If YN_THL = False Then 
                D = 2 
                b_D1 = THL_fTOA 
                b_D2 = THL_fTOA 
            End If 
             
            If YN_VOA = False Then 
                E = 2 
                b_E1 = VOAmin_unocp 
                b_E2 = VOAmin_unocp 
            End If 
             
            If AHUoff = True Then 
                Array_load_startup = f_Load(TOAbin_unocp, False, True, Te_ocp, Ti_ocp) 
                'cooling coil load at design condition. This is also used as heating coil load 
                'because design heating capacity is usually no larger than cooling. 
                Qcoil_des = 1.08 * VTD * (Te_ocp - TCL_2) 
                'how long the start up takes depends on time needed to remove exterior zone load 
                Hrs_startup = Abs(Array_load_startup(0) * FracAe) * Hrsbin_unocp / Qcoil_des 
                With ThisWorkbook.Worksheets("BinData") 
                    If Array_load_startup(0) < 0 Then  'heating required in exterior zone 
                        'output start-up fan power, cooling and heating load 
                        Startup_FANP = 0.7457 * (PSF_rated + PRF_rated) * Hrs_startup 
                        If Array_load_startup(1) < 0 Then 
                            Startup_CHW = 0 
                            Startup_HHW = Abs(Array_load_startup(0) * FracAe + Array_load_startup(1) _ 
                            * FracAi) * Hrsbin_unocp / 1000 
                        Else 
                            Startup_CHW = Array_load_startup(1) * FracAi * Hrsbin_unocp / 1000 
                            Startup_HHW = Abs(Array_load_startup(0) * FracAe) * Hrsbin_unocp / 1000 
                        End If 
                    Else 'cooling required in exterior zone 
                        Startup_FANP = 0.7457 * (PSF_rated + PRF_rated) * Hrs_startup 
                        Startup_CHW = (Array_load_startup(0) * FracAe + Array_load_startup(1) _ 
                        * FracAi) * Hrsbin_unocp / 1000 
                        Startup_HHW = 0 
                    End If 
                    If ReheatType = "Electric" Then 
                        .Cells(i + 37, 25) = LTEQ_unocp * (Ae * FracAe + Ai * FracAi) / (Ae + Ai) * _ 
                        Hrsbin_unocp 
                        .Cells(i + 37, 26) = Startup_FANP 
                        .Cells(i + 37, 27) = .Cells(i + 37, 25)+ .Cells(i + 37, 26)+ Startup_HHW/3.412 
                        .Cells(i + 37, 28) = Startup_CHW 
                        .Cells(i + 37, 29) = 0 
                    Else 
                        .Cells(i + 37, 25) = LTEQ_unocp * (Ae * FracAe + Ai * FracAi) / (Ae + Ai) _ 
                        * Hrsbin_unocp 
                        .Cells(i + 37, 26) = Startup_FANP 
                        .Cells(i + 37, 27) = .Cells(i + 37, 25) + .Cells(i + 37, 26) 
                        .Cells(i + 37, 28) = Startup_CHW 
                        .Cells(i + 37, 29) = Startup_HHW 
                    End If 
                End With 
            Else 
                Array_Optimization_unocp = f_Optimization(N, _ 
                                        A, b_A1, b_A2, B, b_B1, b_B2, C, b_C1, b_C2, _ 
                                        D, b_D1, b_D2, E, b_E1, b_E2, _ 
                                        Price_ELE, Price_CHW, Price_HHW, i, SysType, False, _ 
                                        0, 70, PSF_rated, PRF_rated, _ 
                                        OACtrl_n, HasEcmz, ReheatType, PreheatType, Ve, Vi, _ 
                                        VAVM_n, VTD, Vemin_unocp, Vimin_unocp, XOAmin_unocp, VOAmax, _ 
                                        FracAe, FracAi,, TOAbin_unocp, , wOAbin_unocp, , Hrsbin_unocp) 
            End If 
        End If 
    Next i 
 
    Call Plot(SysType, AHUoff) 
     
End Sub 
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Public Function f_Optimization(ByVal N As Integer, _ 
    ByVal A As Integer, ByVal b_A1 As Double, ByVal b_A2 As Double, _ 
    ByVal B As Integer, ByVal b_B1 As Double, ByVal b_B2 As Double, _ 
    ByVal C As Integer, ByVal b_C1 As Double, ByVal b_C2 As Double, _ 
    ByVal D As Integer, ByVal b_D1 As Double, ByVal b_D2 As Double, _ 
    ByVal E As Integer, ByVal b_E1 As Double, ByVal b_E2 As Double, _ 
    ByVal Price_ELE As Double, ByVal Price_CHW As Double, ByVal Price_HHW As Double, _ 
    ByVal BinNum As Integer, ByVal SysType As String, ByVal IFOCP As Boolean, _ 
    ByVal RHz1 As Double, ByVal RHz2 As Double, _ 
    ByVal PSF_rated As Double, ByVal PRF_rated As Double, _ 
    ByVal OACtrl_n As Integer, ByVal HasEcmz As Boolean, _ 
    ByVal ReheatType As String, ByVal PreheatType As String, _ 
    ByVal Ve As Double, ByVal Vi As Double, _ 
    ByVal VAVM_n As Integer, ByVal VTD As Double, _ 
    ByVal Vemin As Double, ByVal Vimin As Double, ByVal XOAmin As Double, ByVal VOAmax, _ 
    ByVal FracAe As Double, ByVal FracAi As Double, _ 
    Optional ByVal TOAbin_ocp As Double, Optional ByVal TOAbin_unocp As Double, _ 
    Optional ByVal wOAbin_ocp As Double, Optional ByVal wOAbin_unocp As Double, _ 
    Optional ByVal Hrsbin_ocp As Double, Optional ByVal Hrsbin_unocp As Double) 
    'A-E are how to divide within the boundary of each variable 
     
    EnergyCost = 1E+20 
    Flag = False 
     
    'Generate mesh for to be optimized variables 
    For nN = 1 To N 
        For nA = 1 To A 
            A_ = b_A1 + (b_A2 - b_A1) / (A - 1) * (nA - 1) 
            For nB = 1 To B 
                B_ = b_B1 + (b_B2 - b_B1) / (B - 1) * (nB - 1) 
                 
                If IFOCP = True Then 
                    'calculate load and store in an array 
                    Array_Load_ocp = f_Load(TOAbin_ocp, True, False, A_, B_) 
                    'apply factor to load components according to the area served by the system  
                    Loadqes_ocp = Array_Load_ocp(0) * FracAe 
                    Loadqis_ocp = Array_Load_ocp(1) * FracAi 
                    Loadqel_ocp = Array_Load_ocp(2) * FracAe 
                    Loadqil_ocp = Array_Load_ocp(3) * FracAi 
                Else 
                    Array_Load_unocp = f_Load(TOAbin_unocp, False, False, A_, B_) 
                    Loadqes_unocp = Array_Load_unocp(0) * FracAe 
                    Loadqis_unocp = Array_Load_unocp(1) * FracAi 
                    Loadqel_unocp = Array_Load_unocp(2) * FracAe 
                    Loadqil_unocp = Array_Load_unocp(3) * FracAi 
                End If 
                 
                For nC = 1 To C 
                    C_ = b_C1 + (b_C2 - b_C1) / (C - 1) * (nC - 1) 
                    For nD = 1 To D 
                        D_ = b_D1 + (b_D2 - b_D1) / (D - 1) * (nD - 1) 
                        For nE = 1 To E 
                            E_ = b_E1 + (b_E2 - b_E1) / (E - 1) * (nE - 1) 
                            If IFOCP = True Then 
                                Select Case SysType 
                                    Case "CVTR" 
                                        Array_System_ocp = f_CVTR(Loadqes_ocp, Loadqis_ocp, _ 
                                        Loadqel_ocp, Loadqil_ocp, _ 
                                                            A_, B_, C_, Ve, Vi, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_ocp, _ 
                                                            wOAbin_ocp, HasEcmz) 
                                        LTEQ_Opt = (FracAe * QLTEQe_ocp + FracAi * QLTEQi_ocp) * _ 
                                        Hrsbin_ocp / 3412 'calculate in main 
                                        FANP_Opt = Array_System_ocp(7) * Hrsbin_ocp / 3412 
                                        ELE_Opt = LTEQ_Opt + FANP_Opt 
                                        CHW_Opt = Array_System_ocp(2) * Hrsbin_ocp / 1000 
                                        HHW_Opt = Array_System_ocp(6) * Hrsbin_ocp / 1000 
                                        RHstore = Array_System_ocp(28) 
                                        YN_ExCap = Array_System_ocp(29) 
                                         
                                    Case "DDCV" 
                                        Array_System_ocp = f_DDCV(Loadqes_ocp, Loadqis_ocp, _ 
                                        Loadqel_ocp, Loadqil_ocp, _ 
                                                            A_, B_, C_, D_, Ve, Vi, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_ocp, _ 
                                                            wOAbin_ocp, HasEcmz) 
                                        LTEQ_Opt = (FracAe * QLTEQe_ocp + FracAi * QLTEQi_ocp) * _ 
                                        Hrsbin_ocp / 3412 
                                        FANP_Opt = Array_System_ocp(6) * Hrsbin_ocp / 3412 
                                        ELE_Opt = LTEQ_Opt + FANP_Opt 
                                        CHW_Opt = Array_System_ocp(2) * Hrsbin_ocp / 1000 
                                        HHW_Opt = Array_System_ocp(5) * Hrsbin_ocp / 1000 
                                        RHstore = Array_System_ocp(40) 
                                        YN_ExCap = Array_System_ocp(41) 
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                                    Case "SDVAV" 
                                        Array_System_ocp = f_SDVAV(Loadqes_ocp, Loadqis_ocp, _ 
                                        Loadqel_ocp, Loadqil_ocp, _ 
                                                            A_, B_, C_, VTD, Vemin, Vimin, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_ocp, _ 
                                                            wOAbin_ocp, HasEcmz, VAVM_n) 
                                        LTEQ_Opt = (FracAe * QLTEQe_ocp + FracAi * QLTEQi_ocp) * _ 
                                        Hrsbin_ocp / 3412 
                                        FANP_Opt = Array_System_ocp(7) * Hrsbin_ocp / 3412 
                                        If ReheatType = "Electric" And PreheatType = "Electric" Then 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt + (Array_System_ocp(3) + _ 
                                            Array_System_ocp(4) + Array_System_ocp(5)) * Hrsbin_ocp _ 
                                            / 3412 
                                            HHW_Opt = 0 
                                        ElseIf ReheatType = "Electric" And PreheatType = "Hot Water" _ 
                                        Then 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt + (Array_System_ocp(4) + _ 
                                            Array_System_ocp(5)) * Hrsbin_ocp / 3412 
                                            HHW_Opt = Array_System_ocp(3) * Hrsbin_ocp / 1000 
                                        ElseIf ReheatType = "Hot Water" And PreheatType = "Electric" _ 
                                        Then 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt + Array_System_ocp(3) * _ 
                                            Hrsbin_ocp / 3412 
                                            HHW_Opt = (Array_System_ocp(4) + Array_System_ocp(5)) * _ 
                                            Hrsbin_ocp / 1000 
                                        Else 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt 
                                            HHW_Opt = Array_System_ocp(6) * Hrsbin_ocp / 1000 
                                        End If 
                                        CHW_Opt = Array_System_ocp(2) * Hrsbin_ocp / 1000 
                                        RHstore = Array_System_ocp(35) 
                                        YN_ExCap = Array_System_ocp(36) 
                                         
                                    Case "DDVAV" 
                                        Array_System_ocp = f_DDVAV(Loadqes_ocp, Loadqis_ocp, _ 
                                        Loadqel_ocp, Loadqil_ocp, _ 
                                                            A_, B_, C_, D_, VTD, Vemin, Vimin, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_ocp, _ 
                                                            wOAbin_ocp, HasEcmz, VAVM_n) 
                                        LTEQ_Opt = (FracAe * QLTEQe_ocp + FracAi * QLTEQi_ocp) * _ 
                                        Hrsbin_ocp / 3412 
                                        FANP_Opt = Array_System_ocp(6) * Hrsbin_ocp / 3412 
                                        ELE_Opt = LTEQ_Opt + FANP_Opt 
                                        CHW_Opt = Array_System_ocp(2) * Hrsbin_ocp / 1000 
                                        HHW_Opt = Array_System_ocp(5) * Hrsbin_ocp / 1000 
                                        RHstore = Array_System_ocp(47) 
                                        YN_ExCap = Array_System_ocp(48) 
                                End Select 
                            Else 
                                Select Case SysType 
                                    Case "CVTR" 
                                        Array_System_unocp = f_CVTR(Loadqes_unocp, Loadqis_unocp, _ 
                                        Loadqel_unocp, Loadqil_unocp, _ 
                                                            A_, B_, C_, Ve, Vi, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_unocp, _ 
                                                            wOAbin_unocp, HasEcmz) 
                                        LTEQ_Opt = (FracAe * QLTEQe_unocp + FracAi * QLTEQi_unocp) * _ 
                                        Hrsbin_unocp / 3412 
                                        FANP_Opt = Array_System_unocp(7) * Hrsbin_unocp / 3412 
                                        ELE_Opt = LTEQ_Opt + FANP_Opt 
                                        CHW_Opt = Array_System_unocp(2) * Hrsbin_unocp / 1000 
                                        HHW_Opt = Array_System_unocp(6) * Hrsbin_unocp / 1000 
                                        RHstore = Array_System_unocp(28) 
                                        YN_ExCap = Array_System_unocp(29) 
                                         
                                    Case "DDCV" 
                                        Array_System_unocp = f_DDCV(Loadqes_unocp, Loadqis_unocp, _ 
                                        Loadqel_unocp, Loadqil_unocp, _ 
                                                            A_, B_, C_, D_, Ve, Vi, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_unocp, _ 
                                                            wOAbin_unocp, HasEcmz) 
                                        LTEQ_Opt = (FracAe * QLTEQe_unocp + FracAi * QLTEQi_unocp) * _ 
                                        Hrsbin_unocp / 3412 
                                        FANP_Opt = Array_System_unocp(6) * Hrsbin_unocp / 3412 
                                        ELE_Opt = LTEQ_Opt + FANP_Opt 
                                        CHW_Opt = Array_System_unocp(2) * Hrsbin_unocp / 1000 
                                        HHW_Opt = Array_System_unocp(5) * Hrsbin_unocp / 1000 
                                        RHstore = Array_System_unocp(40) 
                                        YN_ExCap = Array_System_unocp(41) 
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                                    Case "SDVAV" 
                                        Array_System_unocp = f_SDVAV(Loadqes_unocp, Loadqis_unocp, _ 
                                        Loadqel_unocp, Loadqil_unocp, _ 
                                                            A_, B_, C_, VTD, Vemin, Vimin, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_unocp, _ 
                                                            wOAbin_unocp, HasEcmz, VAVM_n) 
                                        LTEQ_Opt = (FracAe * QLTEQe_unocp + FracAi * QLTEQi_unocp) * _ 
                                        Hrsbin_unocp / 3412 
                                        FANP_Opt = Array_System_unocp(7) * Hrsbin_unocp / 3412 
                                        If ReheatType = "Electric" And PreheatType = "Electric" Then 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt + (Array_System_unocp(3) + _ 
                                            Array_System_unocp(4) + Array_System_unocp(5)) * _ 
                                            Hrsbin_unocp / 3412 
                                            HHW_Opt = 0 
                                        ElseIf ReheatType = "Electric" And PreheatType = "Hot Water" _ 
                                        Then 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt + (Array_System_unocp(4) + _ 
                                            Array_System_unocp(5)) * Hrsbin_unocp / 3412 
                                            HHW_Opt = Array_System_unocp(3) * Hrsbin_unocp / 1000 
                                        ElseIf ReheatType = "Hot Water" And PreheatType = "Electric" _ 
                                        Then 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt + Array_System_unocp(3) * _ 
                                            Hrsbin_unocp / 3412 
                                            HHW_Opt = (Array_System_unocp(4)+ Array_System_unocp(5)) _ 
                                            * Hrsbin_unocp / 1000 
                                        Else 
                                            ELE_Opt = LTEQ_Opt + FANP_Opt 
                                            HHW_Opt = Array_System_unocp(6) * Hrsbin_unocp / 1000 
                                        End If 
                                        CHW_Opt = Array_System_unocp(2) * Hrsbin_unocp / 1000 
                                        RHstore = Array_System_unocp(35) 
                                        YN_ExCap = Array_System_unocp(36) 
                                         
                                    Case "DDVAV" 
                                        Array_System_unocp = f_DDVAV(Loadqes_unocp, Loadqis_unocp, _ 
                                        Loadqel_unocp, Loadqil_unocp, _ 
                                                            A_, B_, C_, D_, VTD, Vemin, Vimin, _ 
                                                            PSF_rated, PRF_rated, OACtrl_n, _ 
                                                            XOAmin, E_, VOAmax, TOAbin_unocp, _ 
                                                            wOAbin_unocp, HasEcmz, VAVM_n) 
                                        LTEQ_Opt = (FracAe * QLTEQe_unocp + FracAi * QLTEQi_unocp) * _ 
                                        Hrsbin_unocp / 3412 
                                        FANP_Opt = Array_System_unocp(6) * Hrsbin_unocp / 3412 
                                        ELE_Opt = LTEQ_Opt + FANP_Opt 
                                        CHW_Opt = Array_System_unocp(2) * Hrsbin_unocp / 1000 
                                        HHW_Opt = Array_System_unocp(5) * Hrsbin_unocp / 1000 
                                        RHstore = Array_System_unocp(47) 
                                        YN_ExCap = Array_System_unocp(48) 
                                End Select 
                            End If 
                            'Energy cost calculated at nN, nA, nB, nC, nD, nE 
                            EnergyCost_bck = Price_ELE * ELE_Opt + Price_CHW * CHW_Opt / 1000 + _ 
                            Price_HHW * HHW_Opt / 1000 
                            'If newly calculated total energy cost is less while complying with 
                            comfort requirement, previously stored value "EnergyCost" will be replaced 
                            If YN_ExCap = False And RHstore >= RHz1 And RHstore <= RHz2 And _ 
                            EnergyCost_bck < EnergyCost Then 
                                Flag = True 
                                EnergyCost = EnergyCost_bck 
                                O_LTEQ_Opt = LTEQ_Opt: O_FANP_Opt = FANP_Opt: O_ELE_Opt = ELE_Opt 
                                O_CHW_Opt = CHW_Opt: O_HHW_Opt = HHW_Opt 
                                Array_Load_ocp_str = Array_Load_ocp: Array_Load_unocp_str = _ 
                                Array_Load_unocp 
                                Array_System_ocp_str = Array_System_ocp: Array_System_unocp_str = _ 
                                Array_System_unocp 
                            End If 
                        Next nE 
                    Next nD 
                Next nC 
            Next nB 
        Next nA 
        'Check if further narrow down searching is necessary 
        If nN = 1 Then 
            EnergyCost_Ntemp = EnergyCost 
        Else 
            If Abs(EnergyCost_Ntemp - EnergyCost) < 0.01 Then 
                Exit For 
            Else 
                EnergyCost_Ntemp = EnergyCost 
            End If 
        End If 
        dA = b_A2 - b_A1 
        dB = b_B2 - b_B1 
        dC = b_C2 - b_C1 
        dD = b_D2 - b_D1 
        dE = b_E2 - b_E1 
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        If A_ - 0.25 * dA >= b_A1 Then b_A1 = A_ - 0.25 * dA 
        If A_ + 0.25 * dA <= b_A2 Then b_A2 = A_ + 0.25 * dA 
        If B_ - 0.25 * dB >= b_B1 Then b_B1 = B_ - 0.25 * dB 
        If B_ + 0.25 * dB <= b_B2 Then b_B2 = B_ + 0.25 * dB 
        If C_ - 0.25 * dC <= b_C1 Then b_C1 = C_ - 0.25 * dC 'b_C1>b_C2 
        If C_ + 0.25 * dC >= b_C2 Then b_C2 = C_ + 0.25 * dC 'b_C1>b_C2 
        If D_ - 0.25 * dD >= b_D1 Then b_D1 = D_ - 0.25 * dD 
        If D_ + 0.25 * dD <= b_D2 Then b_D2 = D_ + 0.25 * dD 
        If E_ - 0.25 * dE >= b_E1 Then b_E1 = E_ - 0.25 * dE 
        If E_ + 0.25 * dE <= b_E2 Then b_E2 = E_ + 0.25 * dE 
    Next nN 
     
    If Flag = True Then 
        With ThisWorkbook.Worksheets("BinData") 
            If IFOCP = True Then 
                'output loads and components of sensible load 
                .Cells(BinNum + 5, 30) = Array_Load_ocp_str(0) * FracAe 
                .Cells(BinNum + 5, 31) = Array_Load_ocp_str(1) * FracAi 
                .Cells(BinNum + 5, 32) = Array_Load_ocp_str(2) * FracAe 
                .Cells(BinNum + 5, 33) = Array_Load_ocp_str(3) * FracAi 
                .Cells(BinNum + 5, 34) = Array_Load_ocp_str(4) * FracAe 
                .Cells(BinNum + 5, 35) = Array_Load_ocp_str(5) * FracAe 
                .Cells(BinNum + 5, 36) = Array_Load_ocp_str(6) * FracAe 
                .Cells(BinNum + 5, 37) = Array_Load_ocp_str(7) * FracAe 
                .Cells(BinNum + 5, 38) = Array_Load_ocp_str(8) * FracAe 
                .Cells(BinNum + 5, 39) = Array_Load_ocp_str(9) * FracAi 
                .Cells(BinNum + 5, 40) = Array_Load_ocp_str(10) * FracAi 
                .Cells(BinNum + 5, 41) = Array_Load_ocp_str(11) * FracAi 
                .Cells(BinNum + 5, 42) = Array_Load_ocp_str(12) * FracAi 
                .Cells(BinNum + 5, 43) = Array_Load_ocp_str(13) * FracAi 
                'output system simulation result 
                Select Case SysType 
                    Case "CVTR" 
                        For j = 0 To 28 
                            .Cells(BinNum + 5, j + 44) = Array_System_ocp_str(j) 
                        Next j 
                    Case "DDCV" 
                        For j = 0 To 40 
                            .Cells(BinNum + 5, j + 44) = Array_System_ocp_str(j) 
                        Next j 
                    Case "SDVAV" 
                        For j = 0 To 35 
                            .Cells(BinNum + 5, j + 44) = Array_System_ocp_str(j) 
                        Next j 
                    Case "DDVAV" 
                        For j = 0 To 47 
                            .Cells(BinNum + 5, j + 44) = Array_System_ocp_str(j) 
                        Next j 
                End Select 
            Else 
                .Cells(BinNum + 37, 30) = Array_Load_unocp_str(0) * FracAe 
                .Cells(BinNum + 37, 31) = Array_Load_unocp_str(1) * FracAi 
                .Cells(BinNum + 37, 32) = Array_Load_unocp_str(2) * FracAe 
                .Cells(BinNum + 37, 33) = Array_Load_unocp_str(3) * FracAi 
                .Cells(BinNum + 37, 34) = Array_Load_unocp_str(4) * FracAe 
                .Cells(BinNum + 37, 35) = Array_Load_unocp_str(5) * FracAe 
                .Cells(BinNum + 37, 36) = Array_Load_unocp_str(6) * FracAe 
                .Cells(BinNum + 37, 37) = Array_Load_unocp_str(7) * FracAe 
                .Cells(BinNum + 37, 38) = Array_Load_unocp_str(8) * FracAe 
                .Cells(BinNum + 37, 39) = Array_Load_unocp_str(9) * FracAi 
                .Cells(BinNum + 37, 40) = Array_Load_unocp_str(10) * FracAi 
                .Cells(BinNum + 37, 41) = Array_Load_unocp_str(11) * FracAi 
                .Cells(BinNum + 37, 42) = Array_Load_unocp_str(12) * FracAi 
                .Cells(BinNum + 37, 43) = Array_Load_unocp_str(13) * FracAi 
                Select Case SysType 
                    Case "CVTR" 
                        For j = 0 To 28 
                            .Cells(BinNum + 37, j + 44) = Array_System_unocp_str(j) 
                        Next j 
                    Case "DDCV" 
                        For j = 0 To 40 
                            .Cells(BinNum + 37, j + 44) = Array_System_unocp_str(j) 
                        Next j 
                    Case "SDVAV" 
                        For j = 0 To 35 
                            .Cells(BinNum + 37, j + 44) = Array_System_unocp_str(j) 
                        Next j 
                    Case "DDVAV" 
                        For j = 0 To 47 
                            .Cells(BinNum + 37, j + 44) = Array_System_unocp_str(j) 
                        Next j 
                End Select 
            End If 
        End With 
    End If 
    f_Optimization = Array(EnergyCost, O_LTEQ_Opt, O_FANP_Opt, O_ELE_Opt, O_CHW_Opt, O_HHW_Opt) 
End Function 
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Public Function f_Load(ByVal TOA As Double, ByVal IFOCP As Boolean, ByVal AHUoff As Boolean, _ 
    ByVal Te As Double, ByVal Ti As Double) 
     
    'Transmission load conduction 
    Awindow1 = Xwindow1 * Height * Length 
    Awindow2 = Xwindow2 * Height * Width 
    Awindow3 = Xwindow3 * Height * Length 
    Awindow4 = Xwindow4 * Height * Width 
    Awindow_tot = Awindow1 + Awindow2 + Awindow3 + Awindow4 
     
    Awall1 = Height * Length - Awindow1 
    Awall2 = Height * Width - Awindow2 
    Awall3 = Height * Length - Awindow3 
    Awall4 = Height * Width - Awindow4 
    Awall_tot = Awall1 + Awall2 + Awall3 + Awall4 
     
    Aroof = Length * Width 
    Aground = Length * Width 
     
    XAe = Ae / (Ae + Ai) 
    XAi = 1 - XAe 
         
    UAtote = Uwall * Awall_tot + Uwindow * Awindow_tot + XAe * (Uroof * Aroof + Uground * Aground) 
    UAtoti = Uwindow * Awindow5 + Uroof * (XAi * Aroof - Awindow5) + XAi * Uground * Aground 
     
    If IFOCP = False And AHUoff = True Then 
        Te = Te - 13 + 0.192 * TOA 'linear regression relationship from measured room temp  
        Ti = Ti - 13 + 0.192 * TOA 
    End If 
    QTe = UAtote * (TOA - Te) 
    QTi = UAtoti * (TOA - Ti) 
     
     
    'Building orientation identification 
    Select Case Ort 
        Case "N" 
            Ort1 = 0 
        Case "NNE" 
            Ort1 = 1 
        Case "NE" 
            Ort1 = 2 
        Case "ENE" 
            Ort1 = 3 
        Case "E" 
            Ort1 = 4 
        Case "ESE" 
            Ort1 = 5 
        Case "SE" 
            Ort1 = 6 
        Case "SSE" 
            Ort1 = 7 
    End Select 
     
    Ort2 = Ort1 + 4 
    Ort3 = Ort2 + 4 
     
    If Ort1 <= 3 Then 
        Ort4 = Ort3 + 4 
    Else 
        Ort4 = Ort3 + 4 - 16 
    End If 
     
    'maximum solar heat gain factors (ASHRAE Fundamentals 89, Table 34) 
    MSHGF_24_Jan = Array(27, 27, 41, 128, 190, 240, 253, 241, 227, 241, 253, 240, 190, 128, 41, 27,214) 
    MSHGF_24_Jul = Array(45, 116, 176, 210, 213, 185, 129, 65, 46, 65, 129, 185, 213, 210,176, 116,278) 
    MSHGF_32_Jan = Array(24, 24, 29, 105, 175, 229, 249, 250, 246, 250, 249, 229, 175, 105, 29, 24,176) 
    MSHGF_32_Jul = Array(40, 111, 167, 204, 215, 194, 150, 96, 72, 96, 150, 194, 215, 204,167, 111,273) 
    MSHGF_40_Jan = Array(20, 20, 20, 74, 154, 205, 241, 252, 254, 252, 241, 205, 154, 74, 20, 20, 133) 
    MSHGF_40_Jul = Array(38, 102, 163, 198, 216, 203, 170, 129, 109, 129, 170, 203,216,198,163,102,262) 
    MSHGF_48_Jan = Array(15, 15, 15, 53, 118, 175, 216, 239, 245, 239, 216, 175, 118, 53, 15, 15, 85) 
    MSHGF_48_Jul = Array(37, 96, 156, 196, 214, 209, 187, 158, 146, 158, 187, 209, 214, 196,156,96,244) 
     
    '24 hour average CLTD for walls and roofs + LM correction (ASHRAE Fundamentals 89, Table 29,31,32) 
    'CLTDcorr=(CLTD+LM)+(78-Tr)+(To-85) Tr is indoor design T, To is average outdoor T on design day. 
    CLTDS_24_Jul = Array(13, 17, 20, 20, 22, 18.5, 18, 14, 11, 14, 18, 18.5, 22, 20, 20, 17, 30) 
    CLTDS_32_Jul = Array(13, 16, 19, 20, 22, 20.5, 20, 16, 14, 16, 20, 20.5, 22, 20, 19, 16, 30) 
    CLTDS_40_Jul = Array(12, 15, 18, 20, 22, 21.5, 21, 19, 18, 19, 21, 21.5, 22, 20, 18, 15, 30) 
    CLTDS_48_Jul = Array(12, 14, 18, 20, 23, 22.5, 24, 22, 21, 22, 24, 22.5, 23, 20, 18, 14, 29) 
    CLTDS_24_Jan = Array(8, 9, 10, 11, 16, 18.5, 30, 22, 30, 22, 30, 18.5, 16, 11, 10, 9, 18) 
    CLTDS_32_Jan = Array(7, 8, 9, 9, 14, 6.5, 17, 21, 26, 21, 17, 6.5, 14, 9, 9, 8, 41) 
    CLTDS_40_Jan = Array(7, 8, 8, 8, 13, 15.5, 22, 27, 28, 27, 22, 15.5, 13, 8, 8, 8, 10) 
    CLTDS_48_Jan = Array(6, 7, 7, 7, 11, 13.5, 20, 24, 25, 24, 20, 13.5, 11, 7, 7, 7, 5) 
     
    'CLFtot for glass with interior shading (ASHRAE Fundamentals 89, Table 39) 
    CLFtot_glass = Array(11.58, 5.74, 5.13, 5.34, 5.5, 5.86, 6.23, 6.45, 6.44, 6.48, 6.2, 5.83, _ 
    5.47, 5.33, 5.15, 5.77, 8.21) 
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    'MSHGF (interpolate between two closest latitudes) 
    If Lat >= 24 And Lat <= 32 Then 
        MSHGF1_Jul = MSHGF_24_Jul(Ort1) + (MSHGF_32_Jul(Ort1) - MSHGF_24_Jul(Ort1)) * (Lat - 24) / 8 
        MSHGF1_Jan = MSHGF_24_Jan(Ort1) + (MSHGF_32_Jan(Ort1) - MSHGF_24_Jan(Ort1)) * (Lat - 24) / 8 
        MSHGF2_Jul = MSHGF_24_Jul(Ort2) + (MSHGF_32_Jul(Ort2) - MSHGF_24_Jul(Ort2)) * (Lat - 24) / 8 
        MSHGF2_Jan = MSHGF_24_Jan(Ort2) + (MSHGF_32_Jan(Ort2) - MSHGF_24_Jan(Ort2)) * (Lat - 24) / 8 
        MSHGF3_Jul = MSHGF_24_Jul(Ort3) + (MSHGF_32_Jul(Ort3) - MSHGF_24_Jul(Ort3)) * (Lat - 24) / 8 
        MSHGF3_Jan = MSHGF_24_Jan(Ort3) + (MSHGF_32_Jan(Ort3) - MSHGF_24_Jan(Ort3)) * (Lat - 24) / 8 
        MSHGF4_Jul = MSHGF_24_Jul(Ort4) + (MSHGF_32_Jul(Ort4) - MSHGF_24_Jul(Ort4)) * (Lat - 24) / 8 
        MSHGF4_Jan = MSHGF_24_Jan(Ort4) + (MSHGF_32_Jan(Ort4) - MSHGF_24_Jan(Ort4)) * (Lat - 24) / 8 
        MSHGF5_Jul = MSHGF_24_Jul(16) + (MSHGF_32_Jul(16) - MSHGF_24_Jul(16)) * (Lat - 24) / 8 
        MSHGF5_Jan = MSHGF_24_Jan(16) + (MSHGF_32_Jan(16) - MSHGF_24_Jan(16)) * (Lat - 24) / 8 
    End If 
     
    If Lat > 32 And Lat <= 40 Then 
        MSHGF1_Jul = MSHGF_32_Jul(Ort1) + (MSHGF_40_Jul(Ort1) - MSHGF_32_Jul(Ort1)) * (Lat - 32) / 8 
        MSHGF1_Jan = MSHGF_32_Jan(Ort1) + (MSHGF_40_Jan(Ort1) - MSHGF_32_Jan(Ort1)) * (Lat - 32) / 8 
        MSHGF2_Jul = MSHGF_32_Jul(Ort2) + (MSHGF_40_Jul(Ort2) - MSHGF_32_Jul(Ort2)) * (Lat - 32) / 8 
        MSHGF2_Jan = MSHGF_32_Jan(Ort2) + (MSHGF_40_Jan(Ort2) - MSHGF_32_Jan(Ort2)) * (Lat - 32) / 8 
        MSHGF3_Jul = MSHGF_32_Jul(Ort3) + (MSHGF_40_Jul(Ort3) - MSHGF_32_Jul(Ort3)) * (Lat - 32) / 8 
        MSHGF3_Jan = MSHGF_32_Jan(Ort3) + (MSHGF_40_Jan(Ort3) - MSHGF_32_Jan(Ort3)) * (Lat - 32) / 8 
        MSHGF4_Jul = MSHGF_32_Jul(Ort4) + (MSHGF_40_Jul(Ort4) - MSHGF_32_Jul(Ort4)) * (Lat - 32) / 8 
        MSHGF4_Jan = MSHGF_32_Jan(Ort4) + (MSHGF_40_Jan(Ort4) - MSHGF_32_Jan(Ort4)) * (Lat - 32) / 8 
        MSHGF5_Jul = MSHGF_32_Jul(16) + (MSHGF_40_Jul(16) - MSHGF_32_Jul(16)) * (Lat - 32) / 8 
        MSHGF5_Jan = MSHGF_32_Jan(16) + (MSHGF_40_Jan(16) - MSHGF_32_Jan(16)) * (Lat - 32) / 8 
    End If 
     
    If Lat > 40 And Lat <= 48 Then 
        MSHGF1_Jul = MSHGF_40_Jul(Ort1) + (MSHGF_48_Jul(Ort1) - MSHGF_40_Jul(Ort1)) * (Lat - 40) / 8 
        MSHGF1_Jan = MSHGF_40_Jan(Ort1) + (MSHGF_48_Jan(Ort1) - MSHGF_40_Jan(Ort1)) * (Lat - 40) / 8 
        MSHGF2_Jul = MSHGF_40_Jul(Ort2) + (MSHGF_48_Jul(Ort2) - MSHGF_40_Jul(Ort2)) * (Lat - 40) / 8 
        MSHGF2_Jan = MSHGF_40_Jan(Ort2) + (MSHGF_48_Jan(Ort2) - MSHGF_40_Jan(Ort2)) * (Lat - 40) / 8 
        MSHGF3_Jul = MSHGF_40_Jul(Ort3) + (MSHGF_48_Jul(Ort3) - MSHGF_40_Jul(Ort3)) * (Lat - 40) / 8 
        MSHGF3_Jan = MSHGF_40_Jan(Ort3) + (MSHGF_48_Jan(Ort3) - MSHGF_40_Jan(Ort3)) * (Lat - 40) / 8 
        MSHGF4_Jul = MSHGF_40_Jul(Ort4) + (MSHGF_48_Jul(Ort4) - MSHGF_40_Jul(Ort4)) * (Lat - 40) / 8 
        MSHGF4_Jan = MSHGF_40_Jan(Ort4) + (MSHGF_48_Jan(Ort4) - MSHGF_40_Jan(Ort4)) * (Lat - 40) / 8 
        MSHGF5_Jul = MSHGF_40_Jul(16) + (MSHGF_48_Jul(16) - MSHGF_40_Jul(16)) * (Lat - 40) / 8 
        MSHGF5_Jan = MSHGF_40_Jan(16) + (MSHGF_48_Jan(16) - MSHGF_40_Jan(16)) * (Lat - 40) / 8 
    End If 
         
    QSOL1_Jul = MSHGF1_Jul * Awindow1 * SC1 * CLFtot_glass(Ort1) * FPS_Jul / 24 
    QSOL2_Jul = MSHGF2_Jul * Awindow2 * SC2 * CLFtot_glass(Ort2) * FPS_Jul / 24 
    QSOL3_Jul = MSHGF3_Jul * Awindow3 * SC3 * CLFtot_glass(Ort3) * FPS_Jul / 24 
    QSOL4_Jul = MSHGF4_Jul * Awindow4 * SC4 * CLFtot_glass(Ort4) * FPS_Jul / 24 
    QSOL5_Jul = MSHGF5_Jul * Awindow5 * SC5 * CLFtot_glass(16) * FPS_Jul / 24   'add to interior zone 
    QSOL_Jul = QSOL1_Jul + QSOL2_Jul + QSOL3_Jul + QSOL4_Jul                    'add to exterior zone 
     
    QSOL1_Jan = MSHGF1_Jan * Awindow1 * SC1 * CLFtot_glass(Ort1) * FPS_Jan / 24 
    QSOL2_Jan = MSHGF2_Jan * Awindow2 * SC2 * CLFtot_glass(Ort2) * FPS_Jan / 24 
    QSOL3_Jan = MSHGF3_Jan * Awindow3 * SC3 * CLFtot_glass(Ort3) * FPS_Jan / 24 
    QSOL4_Jan = MSHGF4_Jan * Awindow4 * SC4 * CLFtot_glass(Ort4) * FPS_Jan / 24 
    QSOL5_Jan = MSHGF5_Jan * Awindow5 * SC5 * CLFtot_glass(16) * FPS_Jan / 24   'add to interior zone 
    QSOL_Jan = QSOL1_Jan + QSOL2_Jan + QSOL3_Jan + QSOL4_Jan                    'add to exterior zone 
     
    M_QSOLe = (QSOL_Jul - QSOL_Jan) / (Tpkc - Tpkh) 
    M_QSOLi = (QSOL5_Jul - QSOL5_Jan) / (Tpkc - Tpkh) 
     
    QSOLe = QSOL_Jan + M_QSOLe * (TOA - Tpkh) 
    QSOLi = QSOL5_Jan + M_QSOLi * (TOA - Tpkh) 
     
     
    'CLTDS (interpolate between two closest latitudes) 
    If Lat >= 24 And Lat <= 32 Then 
        CLTDS1_Jul = CLTDS_24_Jul(Ort1) + (CLTDS_32_Jul(Ort1) - CLTDS_24_Jul(Ort1)) * (Lat - 24) / 8 
        CLTDS1_Jan = CLTDS_24_Jan(Ort1) + (CLTDS_32_Jan(Ort1) - CLTDS_24_Jan(Ort1)) * (Lat - 24) / 8 
        CLTDS2_Jul = CLTDS_24_Jul(Ort2) + (CLTDS_32_Jul(Ort2) - CLTDS_24_Jul(Ort2)) * (Lat - 24) / 8 
        CLTDS2_Jan = CLTDS_24_Jan(Ort2) + (CLTDS_32_Jan(Ort2) - CLTDS_24_Jan(Ort2)) * (Lat - 24) / 8 
        CLTDS3_Jul = CLTDS_24_Jul(Ort3) + (CLTDS_32_Jul(Ort3) - CLTDS_24_Jul(Ort3)) * (Lat - 24) / 8 
        CLTDS3_Jan = CLTDS_24_Jan(Ort3) + (CLTDS_32_Jan(Ort3) - CLTDS_24_Jan(Ort3)) * (Lat - 24) / 8 
        CLTDS4_Jul = CLTDS_24_Jul(Ort4) + (CLTDS_32_Jul(Ort4) - CLTDS_24_Jul(Ort4)) * (Lat - 24) / 8 
        CLTDS4_Jan = CLTDS_24_Jan(Ort4) + (CLTDS_32_Jan(Ort4) - CLTDS_24_Jan(Ort4)) * (Lat - 24) / 8 
        CLTDS5_Jul = CLTDS_24_Jul(16) + (CLTDS_32_Jul(16) - CLTDS_24_Jul(16)) * (Lat - 24) / 8 
        CLTDS5_Jan = CLTDS_24_Jan(16) + (CLTDS_32_Jan(16) - CLTDS_24_Jan(16)) * (Lat - 24) / 8 
    End If 
         
    If Lat > 32 And Lat <= 40 Then 
        CLTDS1_Jul = CLTDS_32_Jul(Ort1) + (CLTDS_40_Jul(Ort1) - CLTDS_32_Jul(Ort1)) * (Lat - 32) / 8 
        CLTDS1_Jan = CLTDS_32_Jan(Ort1) + (CLTDS_40_Jan(Ort1) - CLTDS_32_Jan(Ort1)) * (Lat - 32) / 8 
        CLTDS2_Jul = CLTDS_32_Jul(Ort2) + (CLTDS_40_Jul(Ort2) - CLTDS_32_Jul(Ort2)) * (Lat - 32) / 8 
        CLTDS2_Jan = CLTDS_32_Jan(Ort2) + (CLTDS_40_Jan(Ort2) - CLTDS_32_Jan(Ort2)) * (Lat - 32) / 8 
        CLTDS3_Jul = CLTDS_32_Jul(Ort3) + (CLTDS_40_Jul(Ort3) - CLTDS_32_Jul(Ort3)) * (Lat - 32) / 8 
        CLTDS3_Jan = CLTDS_32_Jan(Ort3) + (CLTDS_40_Jan(Ort3) - CLTDS_32_Jan(Ort3)) * (Lat - 32) / 8 
        CLTDS4_Jul = CLTDS_32_Jul(Ort4) + (CLTDS_40_Jul(Ort4) - CLTDS_32_Jul(Ort4)) * (Lat - 32) / 8 
        CLTDS4_Jan = CLTDS_32_Jan(Ort4) + (CLTDS_40_Jan(Ort4) - CLTDS_32_Jan(Ort4)) * (Lat - 32) / 8 
        CLTDS5_Jul = CLTDS_32_Jul(16) + (CLTDS_40_Jul(16) - CLTDS_32_Jul(16)) * (Lat - 32) / 8 
        CLTDS5_Jan = CLTDS_32_Jan(16) + (CLTDS_40_Jan(16) - CLTDS_32_Jan(16)) * (Lat - 32) / 8 
    End If 
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    If Lat > 40 And Lat <= 48 Then 
        CLTDS1_Jul = CLTDS_40_Jul(Ort1) + (CLTDS_48_Jul(Ort1) - CLTDS_40_Jul(Ort1)) * (Lat - 40) / 8 
        CLTDS1_Jan = CLTDS_40_Jan(Ort1) + (CLTDS_48_Jan(Ort1) - CLTDS_40_Jan(Ort1)) * (Lat - 40) / 8 
        CLTDS2_Jul = CLTDS_40_Jul(Ort2) + (CLTDS_48_Jul(Ort2) - CLTDS_40_Jul(Ort2)) * (Lat - 40) / 8 
        CLTDS2_Jan = CLTDS_40_Jan(Ort2) + (CLTDS_48_Jan(Ort2) - CLTDS_40_Jan(Ort2)) * (Lat - 40) / 8 
        CLTDS3_Jul = CLTDS_40_Jul(Ort3) + (CLTDS_48_Jul(Ort3) - CLTDS_40_Jul(Ort3)) * (Lat - 40) / 8 
        CLTDS3_Jan = CLTDS_40_Jan(Ort3) + (CLTDS_48_Jan(Ort3) - CLTDS_40_Jan(Ort3)) * (Lat - 40) / 8 
        CLTDS4_Jul = CLTDS_40_Jul(Ort4) + (CLTDS_48_Jul(Ort4) - CLTDS_40_Jul(Ort4)) * (Lat - 40) / 8 
        CLTDS4_Jan = CLTDS_40_Jan(Ort4) + (CLTDS_48_Jan(Ort4) - CLTDS_40_Jan(Ort4)) * (Lat - 40) / 8 
        CLTDS5_Jul = CLTDS_40_Jul(16) + (CLTDS_48_Jul(16) - CLTDS_40_Jul(16)) * (Lat - 40) / 8 
        CLTDS5_Jan = CLTDS_40_Jan(16) + (CLTDS_48_Jan(16) - CLTDS_40_Jan(16)) * (Lat - 40) / 8 
    End If 
         
    If COLORwall = "Dark colored" Then Kwall = 1 
    If COLORwall = "Medium colored" Then Kwall = 0.83 
    If COLORwall = "Light colored" Then Kwall = 0.65 
    If COLORroof = "Dark colored" Then Kroof = 1 
    If COLORroof = "Light colored" Then Kroof = 0.5 
     
    CLTDScorr1_Jul = CLTDS1_Jul * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr2_Jul = CLTDS2_Jul * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr3_Jul = CLTDS3_Jul * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr4_Jul = CLTDS4_Jul * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr5_Jul = CLTDS5_Jul * Kroof + (78 - Te) + (Todes - 85) 
    CLTDScorr5_Jul_i = CLTDS5_Jul * Kroof + (78 - Ti) + (Todes - 85) 
     
    CLTDScorr1_Jan = CLTDS1_Jan * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr2_Jan = CLTDS2_Jan * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr3_Jan = CLTDS3_Jan * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr4_Jan = CLTDS4_Jan * Kwall + (78 - Te) + (Todes - 85) 
    CLTDScorr5_Jan = CLTDS5_Jan * Kroof + (78 - Te) + (Todes - 85) 
    CLTDScorr5_Jan_i = CLTDS5_Jan * Kroof + (78 - Ti) + (Todes - 85) 
     
    QTS1_Jul = Awall1 * Uwall * CLTDScorr1_Jul * FPS_Jul 
    QTS2_Jul = Awall2 * Uwall * CLTDScorr2_Jul * FPS_Jul 
    QTS3_Jul = Awall3 * Uwall * CLTDScorr3_Jul * FPS_Jul 
    QTS4_Jul = Awall4 * Uwall * CLTDScorr4_Jul * FPS_Jul 
    QTS5e_Jul = Aroof * XAe * Uroof * CLTDScorr5_Jul * FPS_Jul 
    QTS5i_Jul = (Aroof * XAi - Awindow5) * Uroof * CLTDScorr5_Jul_i * FPS_Jul   'add to interior zone 
    QTS_Jul = QTS1_Jul + QTS2_Jul + QTS3_Jul + QTS4_Jul + QTS5e_Jul             'add to exterior zone 
     
    QTS1_Jan = Awall1 * Uwall * CLTDScorr1_Jan * FPS_Jan 
    QTS2_Jan = Awall2 * Uwall * CLTDScorr2_Jan * FPS_Jan 
    QTS3_Jan = Awall3 * Uwall * CLTDScorr3_Jan * FPS_Jan 
    QTS4_Jan = Awall4 * Uwall * CLTDScorr4_Jan * FPS_Jan 
    QTS5e_Jan = Aroof * XAe * Uroof * CLTDScorr5_Jan * FPS_Jan 
    QTS5i_Jan = (Aroof * XAi - Awindow5) * Uroof * CLTDScorr5_Jan_i * FPS_Jan   'add to interior zone 
    QTS_Jan = QTS1_Jan + QTS2_Jan + QTS3_Jan + QTS4_Jan + QTS5e_Jan             'add to exterior zone 
     
    M_QTSe = (QTS_Jul - QTS_Jan) / (Tpkc - Tpkh) 
    M_QTSi = (QTS5i_Jul - QTS5i_Jan) / (Tpkc - Tpkh) 
     
    If TOA > Te Then 
        QTSe = QTS_Jan + M_QTSe * (TOA - Tpkh) 
    Else 
        QTSe = 0 
    End If 
     
    If TOA > Ti Then 
        QTSi = QTS5i_Jan + M_QTSi * (TOA - Tpkh) 
    Else 
        QTSi = 0 
    End If 
    'Note: transmission load solar component is counted only when Tambient > Troom 
     
    'Internal heat gain from occupants 
    QsOCPe_ocp = 245 * OCPe * AOF_ocp 
    QsOCPi_ocp = 245 * OCPi * AOF_ocp 
    QsOCPe_unocp = 245 * OCPe * AOF_unocp 
    QsOCPi_unocp = 245 * OCPi * AOF_unocp 
     
    QlOCPe_ocp = 155 * OCPe * AOF_ocp 
    QlOCPi_ocp = 155 * OCPi * AOF_ocp 
    QlOCPe_unocp = 155 * OCPe * AOF_unocp 
    QlOCPi_unocp = 155 * OCPi * AOF_unocp 
     
    QLTEQe_ocp = 3412 * XAe * LTEQ_ocp 
    QLTEQi_ocp = 3412 * XAi * LTEQ_ocp 
    QLTEQe_unocp = 3412 * XAe * LTEQ_unocp 
    QLTEQi_unocp = 3412 * XAi * LTEQ_unocp 
     
    If IFOCP = True Then 
        qes = QTe + QSOLe + QTSe + QsOCPe_ocp + QLTEQe_ocp 
        qis = QTi + QSOLi + QTSi + QsOCPi_ocp + QLTEQi_ocp 
        qel = QlOCPe_ocp 
        qil = QlOCPi_ocp 
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        f_Load = Array(qes, qis, qel, qil, _ 
                QTe, QSOLe, QTSe, QsOCPe_ocp, QLTEQe_ocp, _ 
                QTi, QSOLi, QTSi, QsOCPi_ocp, QLTEQi_ocp) 
    Else 
        qes = QTe + QsOCPe_unocp + QLTEQe_unocp 
        qis = QTi + QsOCPi_unocp + QLTEQi_unocp 
        qel = QlOCPe_unocp 
        qil = QlOCPi_unocp 
        f_Load = Array(qes, qis, qel, qil, _ 
                QTe, 0, 0, QsOCPe_unocp, QLTEQe_unocp, _ 
                QTi, 0, 0, QsOCPi_unocp, QLTEQi_unocp) 
    End If         
End Function 
 
 
Public Function f_CVTR(ByVal qes As Double, ByVal qis As Double, _ 
    ByVal qel As Double, ByVal qil As Double, _ 
    ByVal Te As Double, ByVal Ti As Double, ByVal TCL As Double, _ 
    ByVal Ve As Double, ByVal Vi As Double, _ 
    ByVal PSF As Double, ByVal PRF As Double, _ 
    ByVal OACtrl As Integer, ByVal XOAmin As Double, ByVal VOAmin As Double, ByVal VOAmax As Double, _ 
    ByVal TOA As Double, ByVal wOA As Double, ByVal ECM As Boolean) 
     
    'supply air temperatures and flow rates 
    TeS = Te - qes / (1.08 * Ve) 
    TiS = Ti - qis / (1.08 * Vi) 
     
    'reheat coil consumption 
    qeRH = 1.08 * Ve * (TeS - TCL) 
    qiRH = 1.08 * Vi * (TiS - TCL) 
     
    'flow rates and fractions 
    VT = Ve + Vi 
    Xe = Ve / VT:   Xi = Vi / VT 
     
    'return air temperature 
    TR = Xe * Te + Xi * Ti                                '* 
     
    'outside air 
    If OACtrl = 1 Then                                    '* 
        If VOAmax > VT Then VOAmax = VT 
        XOA = XOA_ECM(ECM, TOA, XOAmin, TCL, TR, VOAmax / VT)       '* 
        VOA = XOA * VT                                    '* 
    End If                                                '* 
    If OACtrl = 2 Then                                    '* 
        VOA = VOA_ECM(ECM, TOA, VOAmin, TCL, TR, VT, VOAmax)     '* 
        XOA = VOA / VT                                    '* 
    End If                                                '* 
    XR = 1 - XOA                                          '* 
    VR = XR * VT                                          '* 
     
    'system cooling capacity varification 
    If TeS < TCL Or TiS < TCL Or VOA > VT Then 
        ExCap = True 
    Else 
        ExCap = False 
    End If 
     
    'fan power and temperature rise 
    dTSF = 0.7457 * 3412 * PSF / (1.08 * VT)              '* 
    dTRF = 0.7457 * 3412 * PRF / (1.08 * VT)              '* 
     
    'preheat load 
    TMA = XOA * TOA + XR * (TR + dTRF)                    '* 
    If TMA < TCL - dTSF Then                              '* 
        TPH = TCL - dTSF                                  '* 
        qPH = 1.08 * VT * (TPH - TMA)                     '* 
    Else                                                  '* 
        TPH = TMA                                         '* 
        qPH = 0                                           '* 
    End If                                                '* 
    TCE = TPH + dTSF                                      '* 
     
    'humidity ratios for latent load calculation 
    wCL = w_RH(TCL, 0.9, 14.696)                          '* 
    wRw = wCL + (qel + qil) / (4840 * VT) 
    wRd = wOA + (qel + qil) / (4840 * XOA * VT) 
    wMA = XOA * wOA + XR * wRw 
     
    If wMA < wCL Then                                     '* 
        WetCoil = False                                   '* 
        wR = wRd                                          '* 
    Else                                                  '* 
        WetCoil = True                                    '* 
        wR = wRw                                          '* 
    End If                                                '* 



115 

     
    wMA = XOA * wOA + XR * wR                             '* 
    wPH = wMA                                             '* 
    wCE = wPH                                             '* 
     
    RH = wR / w_sat((Te + Ti) / 2, 14.696) * 100          '* 
     
    'consumptions 
    qCs = 1.08 * VT * (TCE - TCL) 
     
    If WetCoil = False Then 
        qCl = 0 
    Else 
        qCl = 4840 * VT * (wCE - wCL) 
    End If 
     
    qCT = qCs + qCl                                       '* 
    qHT = qPH + qeRH + qiRH 
    qFT = 0.7457 * 3412 * (PSF + PRF)                     '* 
     
    f_CVTR = Array(qCs, qCl, qCT, qPH, qeRH, qiRH, qHT, qFT, _ 
            dTSF, dTRF, TeS, TiS, TR, TMA, TPH, TCE, Te, Ti, TCL, _ 
            VOA, VR, VT, _ 
            XOA, XR, _ 
            wR, wMA, wCL, WetCoil, RH, ExCap) 
End Function 
 
 
Public Function f_DDCV(ByVal qes As Double, ByVal qis As Double, _ 
    ByVal qel As Double, ByVal qil As Double, _ 
    ByVal Te As Double, ByVal Ti As Double, _ 
    ByVal TCL As Double, ByVal THLset As Double, _ 
    ByVal Ve As Double, ByVal Vi As Double, _ 
    ByVal PSF As Double, ByVal PRF As Double, _ 
    ByVal OACtrl As Integer, ByVal XOAmin As Double, ByVal VOAmin As Double, ByVal VOAmax As Double, _ 
    ByVal TOA As Double, ByVal wOA As Double, ByVal ECM As Boolean) 
     
    VT = Ve + Vi 
    Xe = Ve / VT:   Xi = Vi / VT 
     
    'return air temperature 
    TR = Xe * Te + Xi * Ti                                '* 
     
    'outside air 
    If OACtrl = 1 Then                                    '* 
        If VOAmax > VT Then VOAmax = VT 
        XOA = XOA_ECM(ECM, TOA, XOAmin, TCL, TR, VOAmax / VT)       '* 
        VOA = XOA * VT                                    '* 
    End If                                                '* 
    If OACtrl = 2 Then                                    '* 
        VOA = VOA_ECM(ECM, TOA, VOAmin, TCL, TR, VT, VOAmax)     '* 
        XOA = VOA / VT                                    '* 
    End If                                                '* 
    XR = 1 - XOA                                          '* 
    VR = XR * VT                                          '* 
     
    'fan power and temperature rise 
    dTSF = 0.7457 * 3412 * PSF / (1.08 * VT)              '* 
    dTRF = 0.7457 * 3412 * PRF / (1.08 * VT)              '* 
     
    'preheat load 
    TMA = XOA * TOA + XR * (TR + dTRF)                    '* 
    If TMA < TCL - dTSF Then                              '* 
        TPH = TCL - dTSF                                  '* 
        qPH = 1.08 * VT * (TPH - TMA)                     '* 
    Else                                                  '* 
        TPH = TMA                                         '* 
        qPH = 0                                           '* 
    End If                                                '* 
     
    TCE = TPH + dTSF                                      '* 
    THE = TCE 
     
    If THE > THLset Then 
        THLact = THE 
    Else 
        THLact = THLset 
    End If 
     
    'supply air temperatures and flow rates 
    TeS = Te - qes / (1.08 * Ve) 
    TiS = Ti - qis / (1.08 * Vi) 
 
    'system cooling and heating capacity varification 
    If TeS < TCL Or TiS < TCL Or TeS > THLset Or TiS > THLset _ 
        Or VOA > VT Then 
        ExCap = True 
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    Else 
        ExCap = False 
    End If 
     
    VeC = Ve * (THLact - TeS) / (THLact - TCL) 
    VeH = Ve - VeC 
    ViC = Vi * (THLact - TiS) / (THLact - TCL) 
    ViH = Vi - ViC 
     
    'flow rates and fractions 
    VC = VeC + ViC: VH = VeH + ViH 
    If VC > 0 Then 
        XeC = VeC / VC 
        XiC = ViC / VC 
    Else 
        XeC = 0 
        XiC = 0 
    End If 
    If VH > 0 Then 
        XeH = VeH / VH 
        XiH = ViH / VH 
    Else 
        XeH = 0 
        XiH = 0 
    End If 
    XC = VC / VT:   XH = VH / VT 
     
    'humidity ratios for latent load calculation 
    wCL = w_RH(TCL, 0.9, 14.696)                          '* 
    wRw = (XC * wCL + XH * XOA * wOA + (qel + qil) / (4840 * VT)) / (1 - XH * XR) 
    wRd = wOA + (qel + qil) / (4840 * XOA * VT) 
    wMA = XOA * wOA + XR * wRw                            '* 
     
    If wMA < wCL Then                                     '* 
        WetCoil = False                                   '* 
        wR = wRd                                          '* 
    Else                                                  '* 
        WetCoil = True                                    '* 
        wR = wRw                                          '* 
    End If                                                '* 
     
    wMA = XOA * wOA + XR * wR                             '* 
    wPH = wMA                                             '* 
    wCE = wPH                                             '* 
     
    RH = wR / w_sat((Te + Ti) / 2, 14.696) * 100          '* 
     
    'consumptions 
    qCs = 1.08 * VC * (TCE - TCL) 
     
    If WetCoil = False Then 
        qCl = 0 
    Else 
        qCl = 4840 * VC * (wCE - wCL) 
    End If 
     
    qCT = qCs + qCl                                       '* 
    qH = 1.08 * VH * (THLact - THE) 
    qHT = qPH + qH 
    qFT = 0.7457 * 3412 * (PSF + PRF)                     '* 
     
    f_DDCV = Array(qCs, qCl, qCT, qPH, qH, qHT, qFT, _ 
            dTSF, dTRF, TeS, TiS, TR, TMA, TPH, TCE, Te, Ti, TCL, THLset, _ 
            VeC, ViC, VeH, ViH, VC, VH, VOA, VR, VT, _ 
            XeC, XiC, XeH, XiH, XC, XH, XOA, XR, _ 
            wR, wMA, wCL, WetCoil, RH, ExCap) 
End Function 
 
 
Public Function f_SDVAV(ByVal qes As Double, ByVal qis As Double, _ 
    ByVal qel As Double, ByVal qil As Double, _ 
    ByVal Te As Double, ByVal Ti As Double, ByVal TCL As Double, _ 
    ByVal VTD As Double, ByVal Vemin As Double, ByVal Vimin As Double, _ 
    ByVal PSF_rated As Double, ByVal PRF_rated As Double, _ 
    ByVal OACtrl As Integer, ByVal XOAmin As Double, ByVal VOAmin As Double, ByVal VOAmax As Double, _ 
    ByVal TOA As Double, ByVal wOA As Double, _ 
    ByVal ECM As Boolean, ByVal VSM As Integer) 
     
    'supply air temperatures and flow rates 
    If qes <= 0 Then 
        TeS = Te - qes / (1.08 * Vemin) 
        Ve = Vemin 
        If TeS > 120 Then 
            TeS = 120 
            Ve = qes / (1.08 * (Te - TeS)) 
        End If 
    Else 
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        If Te <= TCL Then 
            ExCap = True 
        Else 
            If qes / (1.08 * (Te - TCL)) < Vemin Then 
                TeS = Te - qes / (1.08 * Vemin) 
                Ve = Vemin 
            Else 
                TeS = TCL 
                Ve = qes / (1.08 * (Te - TeS)) 
            End If 
        End If 
    End If 
     
    If qis <= 0 Then 
        TiS = Ti - qis / (1.08 * Vimin) 
        Vi = Vimin 
        If TiS > 120 Then 
            TiS = 120 
            Vi = qis / (1.08 * (Ti - TiS)) 
        End If 
    Else 
        If Ti <= TCL Then 
            ExCap = True 
        Else 
            If qis / (1.08 * (Ti - TCL)) < Vimin Then 
                TiS = Ti - qis / (1.08 * Vimin) 
                Vi = Vimin 
            Else 
                TiS = TCL 
                Vi = qis / (1.08 * (Ti - TiS)) 
            End If 
        End If 
    End If 
     
    'reheat coil consumption 
    qeRH = 1.08 * Ve * (TeS - TCL) 
    qiRH = 1.08 * Vi * (TiS - TCL) 
     
    'flow rates and fractions 
    VT = Ve + Vi 
    If VT = 0 Then VT = 0.01 
    Xe = Ve / VT:   Xi = Vi / VT 
     
    'return air temperature 
    TR = Xe * Te + Xi * Ti                                '* 
     
    'outside air 
    If OACtrl = 1 Then                                    '* 
        If VOAmax > VT Then VOAmax = VT 
        XOA = XOA_ECM(ECM, TOA, XOAmin, TCL, TR, VOAmax / VT)       '* 
        VOA = XOA * VT                                    '* 
    End If                                                '* 
    If OACtrl = 2 Then                                    '* 
        VOA = VOA_ECM(ECM, TOA, VOAmin, TCL, TR, VT, VOAmax)     '* 
        XOA = VOA / VT                                    '* 
    End If                                                '* 
    XR = 1 - XOA                                          '* 
    VR = XR * VT                                          '* 
     
    'system cooling capacity varification 
    If TeS < TCL Or TiS < TCL Or VT > VTD Or VOA > VT Then 
        ExCap = True 
    Else 
        ExCap = False 
    End If 
     
    'fan power and temperature rise 
    PLR = VT / VTD 
    PSF = FANP(PSF_rated, PLR, VSM) 
    PRF = FANP(PRF_rated, PLR, VSM) 
    dTSF = 0.7457 * 3412 * PSF / (1.08 * VT)              '* 
    dTRF = 0.7457 * 3412 * PRF / (1.08 * VT)              '* 
     
    'preheat load 
    TMA = XOA * TOA + XR * (TR + dTRF)                    '* 
    If TMA < TCL - dTSF Then                              '* 
        TPH = TCL - dTSF                                  '* 
        qPH = 1.08 * VT * (TPH - TMA)                     '* 
    Else                                                  '* 
        TPH = TMA                                         '* 
        qPH = 0                                           '* 
    End If                                                '* 
 
    TCE = TPH + dTSF                                      '* 
     
    'humidity ratios for latent load calculation 
    wCL = w_RH(TCL, 0.9, 14.696)                          '* 
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    wRw = wCL + (qel + qil) / (4840 * VT) 
    wRd = wOA + (qel + qil) / (4840 * XOA * VT) 
    wMA = XOA * wOA + XR * wRw 
     
    If wMA < wCL Then                                     '* 
        WetCoil = False                                   '* 
        wR = wRd                                          '* 
    Else                                                  '* 
        WetCoil = True                                    '* 
        wR = wRw                                          '* 
    End If                                                '* 
     
    wMA = XOA * wOA + XR * wR                             '* 
    wPH = wMA                                             '* 
    wCE = wPH                                             '* 
     
    RH = wR / w_sat((Te + Ti) / 2, 14.696) * 100          '* 
     
    'consumptions 
    qCs = 1.08 * VT * (TCE - TCL) 
     
    If WetCoil = False Then 
        qCl = 0 
    Else 
        qCl = 4840 * VT * (wCE - wCL) 
    End If 
     
    qCT = qCs + qCl                                       '* 
    qHT = qPH + qeRH + qiRH 
    qFT = 0.7457 * 3412 * (PSF + PRF)                     '* 
 
    f_SDVAV = Array(qCs, qCl, qCT, qPH, qeRH, qiRH, qHT, qFT, _ 
            dTSF, dTRF, TeS, TiS, TR, TMA, TPH, TCE, Te, Ti, TCL, _ 
            Ve, Vi, VOA, VR, VT, _ 
            Xe, Xi, XOA, XR, _ 
            PLR, PSF, PRF, wR, wMA, wCL, WetCoil, RH, ExCap) 
End Function 
 
 
 
Public Function f_DDVAV(ByVal qes As Double, ByVal qis As Double, _ 
    ByVal qel As Double, ByVal qil As Double, _ 
    ByVal Te As Double, ByVal Ti As Double, _ 
    ByVal TCL As Double, ByVal THLset As Double, _ 
    ByVal VTD As Double, ByVal Vemin As Double, ByVal Vimin As Double, _ 
    ByVal PSF_rated As Double, ByVal PRF_rated As Double, _ 
    ByVal OACtrl As Integer, ByVal XOAmin As Double, ByVal VOAmin As Double, ByVal VOAmax As Double, _ 
    ByVal TOA As Double, ByVal wOA As Double, _ 
    ByVal ECM As Boolean, ByVal VSM As Integer) 
     
    'supply air temperatures and flow rates 
    If qis > 0 Then 
        TiS = TCL 
        ViC = qis / (1.08 * (Ti - TiS)) 
        ViH = 0 
    Else 
        TiS = THLset 
        ViH = qis / (1.08 * (Ti - TiS)) 
        ViC = 0 
    End If 
     
    If qes > 0 Then 
        TeS = TCL 
        VeC = qes / (1.08 * (Te - TeS)) 
        VeH = 0 
    Else 
        TeS = THLset 
        VeH = qes / (1.08 * (Te - TeS)) 
        VeC = 0 
    End If 
     
    'THLact and flow rates 
    If VeC + VeH < Vemin Then 'Ve=Vemin 
        If ViC + ViH < Vimin Then 'Vi=Vimin 
            VT = Vemin + Vimin 
            Xe = Vemin / VT: Xi = Vimin / VT 
        Else 'Vi>Vimin 
            If qis >= 0 Then 
                VT = Vemin + ViC 
                Xe = Vemin / VT: Xi = ViC / VT 
            Else 
                VT = Vemin + ViH 
                Xe = Vemin / VT: Xi = ViH / VT 
            End If 
        End If 
        TR = Xe * Te + Xi * Ti 
        If OACtrl = 1 Then Stop 
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        If OACtrl = 2 Then 
            VOA = VOAmin 
            XOA = VOA / VT 
        End If 
        XR = 1 - XOA 
        VR = XR * VT 
        dTSF = 2 'assumed 
        dTRF = 0 'assumed 
        TMA = XOA * TOA + XR * (TR + dTRF) 
        If TMA < TCL - dTSF Then 
            TPH = TCL - dTSF 
        Else 
            TPH = TMA 
        End If 
        TCE = TPH + dTSF 
        THE = TCE 
        If THE > THLset Then 
            THLact = THE 
        Else 
            THLact = THLset 
        End If 
        TeS = Te - qes / (1.08 * Vemin) 
        VeC = Vemin * (THLact - TeS) / (THLact - TCL) 
        VeH = Vemin - VeC 
    End If 
     
    If ViC + ViH < Vimin Then 'Vi=Vimin 
        If THLact = 0 Then 'Ve>Vemin 
            If qes >= 0 Then 
                VT = Vimin + VeC 
                Xe = VeC / VT: Xi = Vimin / VT 
            Else 
                VT = Vimin + VeH 
                Xe = VeH / VT: Xi = Vimin / VT 
            End If 
            TR = Xe * Te + Xi * Ti 
            If OACtrl = 1 Then Stop 
            If OACtrl = 2 Then 
                VOA = VOAmin 
                XOA = VOA / VT 
            End If 
            XR = 1 - XOA 
            VR = XR * VT 
            dTSF = 2 'assumed 
            dTRF = 0 'assumed 
            TMA = XOA * TOA + XR * (TR + dTRF) 
            If TMA < TCL - dTSF Then 
                TPH = TCL - dTSF 
            Else 
                TPH = TMA 
            End If 
            TCE = TPH + dTSF 
            THE = TCE 
            If THE > THLset Then 
                THLact = THE 
            Else 
                THLact = THLset 
            End If 
        End If 
        TiS = Ti - qis / (1.08 * Vimin) 
        ViC = Vimin * (THLact - TiS) / (THLact - TCL) 
        ViH = Vimin - ViC 
    End If 
     
    'flow rates and fractions 
    Ve = VeC + VeH: Vi = ViC + ViH 
    VT = Ve + Vi 
    If VT = 0 Then VT = 0.01 
    Xe = Ve / VT: Xi = Vi / VT 
    VC = VeC + ViC: VH = VeH + ViH 
    If VC > 0 Then 
        XeC = VeC / VC 
        XiC = ViC / VC 
    Else 
        XeC = 0 
        XiC = 0 
    End If 
    If VH > 0 Then 
        XeH = VeH / VH 
        XiH = ViH / VH 
    Else 
        XeH = 0 
        XiH = 0 
    End If 
    XC = VC / VT: XH = VH / VT 
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    'return air temperature 
    TR = Xe * Te + Xi * Ti                                '* 
    If OACtrl = 1 Then                                    '* 
        If VOAmax > VT Then VOAmax = VT 
        XOA = XOA_ECM(ECM, TOA, XOAmin, TCL, TR, VOAmax / VT)       '* 
        VOA = XOA * VT                                    '* 
    End If                                                '* 
    If OACtrl = 2 Then                                    '* 
        VOA = VOA_ECM(ECM, TOA, VOAmin, TCL, TR, VT, VOAmax)     '* 
        XOA = VOA / VT                                    '* 
    End If                                                '* 
    XR = 1 - XOA                                          '* 
    VR = XR * VT                                          '* 
 
    'system cooling and heating capacity varification 
    If TeS < TCL Or TiS < TCL Or TeS > THLset Or TiS > THLset _ 
        Or VT > VTD Or VOA > VT Then 
        ExCap = True 
    Else 
        ExCap = False 
    End If 
     
    'fan power and temperature rise 
    PLR = VT / VTD 
    PSF = FANP(PSF_rated, PLR, VSM) 
    PRF = FANP(PRF_rated, PLR, VSM) 
    dTSF = 0.7457 * 3412 * PSF / (1.08 * VT)              '* 
    dTRF = 0.7457 * 3412 * PRF / (1.08 * VT)              '* 
 
    'preheat load 
    TMA = XOA * TOA + XR * (TR + dTRF)                    '* 
    If TMA < TCL - dTSF Then                              '* 
        TPH = TCL - dTSF                                  '* 
        qPH = 1.08 * VT * (TPH - TMA)                     '* 
    Else                                                  '* 
        TPH = TMA                                         '* 
        qPH = 0                                           '* 
    End If                                                '* 
 
    TCE = TPH + dTSF                                      '* 
    THE = TCE 
 
    If THE > THLset Then 
        THLact = THE 
    Else 
        THLact = THLset 
    End If 
     
    'humidity ratios for latent load calculation 
    wCL = w_RH(TCL, 0.9, 14.696)                          '* 
    wRw = (XC * wCL + XH * XOA * wOA + (qel + qil) / (4840 * VT)) / (1 - XH * XR) 
    wRd = wOA + (qel + qil) / (4840 * XOA * VT) 
    wMA = XOA * wOA + XR * wRw                            '* 
     
    If wMA < wCL Then                                     '* 
        WetCoil = False                                   '* 
        wR = wRd                                          '* 
    Else                                                  '* 
        WetCoil = True                                    '* 
        wR = wRw                                          '* 
    End If                                                '* 
     
    wMA = XOA * wOA + XR * wR                             '* 
    wPH = wMA                                             '* 
    wCE = wPH                                             '* 
    RH = wR / w_sat((Te + Ti) / 2, 14.696) * 100          '* 
     
    'consumptions 
    qCs = 1.08 * VC * (TCE - TCL) 
     
    If WetCoil = False Then 
        qCl = 0 
    Else 
        qCl = 4840 * VC * (wCE - wCL) 
    End If 
     
    qCT = qCs + qCl                                       '* 
    qH = 1.08 * VH * (THLact - THE) 
    qHT = qPH + qH 
    qFT = 0.7457 * 3412 * (PSF + PRF)                     '* 
     
    f_DDVAV = Array(qCs, qCl, qCT, qPH, qH, qHT, qFT, _ 
            dTSF, dTRF, TeS, TiS, TR, TMA, TPH, TCE, Te, Ti, TCL, THLset, _ 
            VeC, ViC, VeH, ViH, VC, VH, Ve, Vi, VOA, VR, VT, _ 
            XeC, XiC, XeH, XiH, XC, XH, Xe, Xi, XOA, XR, _ 
            PLR, PSF, PRF, wR, wMA, wCL, WetCoil, RH, ExCap) 
End Function 
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Public Function FANP(ByVal Pfan_rated As Double, ByVal PLR As Double, ByVal VSM As Integer) As Double  
    If VSM = 1 Then FANP = Pfan_rated * (0.00153 + 0.0052 * PLR + 1.1086 * PLR ^ 2 - 0.1164 * PLR ^ 3)  
    If VSM = 2 Then FANP = Pfan_rated * (0.351 + 0.308 * PLR - 0.541 * PLR ^ 2 + 0.872 * PLR ^ 3)  
    If VSM = 3 Then FANP = Pfan_rated * (0.371 + 0.973 * PLR - 0.342 * PLR ^ 2)  
End Function 
 
 
Public Function XOA_ECM(ByVal ECM As Boolean, ByVal TOA As Double, ByVal XOAmin As Double, _ 
    ByVal TCL As Double, ByVal TR As Double, ByVal XOAmax As Double) As Double  
    If ECM = False Then 
        XOA_ECM = XOAmin 
    Else 
        If TOA > 65 Then 
            XOA_ECM = XOAmin 
        Else 
            If TOA >= TCL Then 
                XOA_ECM = XOAmax 
            Else 
                XOA_ECM = Application.WorksheetFunction.Max(XOAmin, _ 
                    Application.WorksheetFunction.Min(XOAmax, (TCL - TR) / (TOA - TR))) 'TOA<TCL 
            End If 
        End If 
    End If 
End Function 
 
 
Public Function VOA_ECM(ByVal ECM As Boolean, ByVal TOA As Double, ByVal VOAmin As Double, _ 
    ByVal TCL As Double, ByVal TR As Double, ByVal VT As Double, ByVal VOAmax As Double) As Double  
    If ECM = False Then 
        VOA_ECM = VOAmin 
    Else 
        If TOA > 65 Then 
            VOA_ECM = VOAmin 
        Else 
            If TOA >= TCL Then 
                VOA_ECM = Application.WorksheetFunction.Min(VOAmax, VT) 
            Else 'TOA<TCL 
                VOA_ECM = Application.WorksheetFunction.Max(VOAmin, _ 
                    Application.WorksheetFunction.Min(VOAmax, (TCL - TR) / (TOA - TR) * VT)) 
            End If 
        End If 
    End If 
End Function 
 
Public Function w_sat(ByVal TOA As Double, ByVal Pt As Double) As Double 
    Dim C(20) As Double, pw As Double, T As Double 
    C(1) = -10214.165: C(8) = -10440.39: 
    C(2) = -4.8932428: C(9) = -11.29465: 
    C(3) = -0.0053765794: C(10) = -0.027022355: 
    C(4) = 0.00000019202377: C(11) = 0.00001289036: 
    C(5) = 3.5575832E-10: C(12) = -0.000000002478068: 
    C(6) = -9.0344688E-14: C(13) = 6.5459673 
    C(7) = 4.1635019 
    T = TOA + 459.67 
    If TOA < 32 Then 
        pw = C(1) / T + C(2) + C(3) * T + C(4) * T ^ 2 + C(5) * T ^ 3 _ 
        + C(6) * T ^ 4 + C(7) * Log(T) 
    Else 
        pw = C(8) / T + C(9) + C(10) * T + C(11) * T ^ 2 + C(12) * T ^ 3 _ 
        + C(13) * Log(T) 
    End If 
    pw = Exp(pw) 
    w_sat = 0.62198 * pw / (Pt - pw) 
End Function 
 
Public Function w_RH(ByVal TOA As Double, ByVal RH As Double, ByVal Pt As Double) As Double 
    Dim C(20), pw, T, Pwh, wsat As Double 
    C(1) = -10214.165: C(8) = -10440.39: 
    C(2) = -4.8932428: C(9) = -11.29465: 
    C(3) = -0.0053765794: C(10) = -0.027022355: 
    C(4) = 0.00000019202377: C(11) = 0.00001289036: 
    C(5) = 3.5575832E-10: C(12) = -0.000000002478068: 
    C(6) = -9.0344688E-14: C(13) = 6.5459673 
    C(7) = 4.1635019 
    T = TOA + 459.67 
    If TOA < 32 Then 
        pw = C(1) / T + C(2) + C(3) * T + C(4) * T ^ 2 + C(5) * T ^ 3 _ 
        + C(6) * T ^ 4 + C(7) * Log(T) 
    Else 
        pw = C(8) / T + C(9) + C(10) * T + C(11) * T ^ 2 + C(12) * T ^ 3 _ 
        + C(13) * Log(T) 
    End If 
    pw = Exp(pw) 
    Pwh = RH * pw 
    wsat = 0.62198 * pw / (Pt - pw) 
    w_RH = 0.62198 * Pwh / (Pt - Pwh) 
End Function 
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