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ABSTRACT 

 

This thesis examines the special case in which a newly developed dynamic measurement 

system must be characterized when an accepted standard qualification procedure does 

not yet exist. In order to characterize this type of system, both physical experimentation 

and computational simulation methods will be used to build trust in this measurement 

system.  This process of establishing credibility will be presented in the form of a 

proposed methodology. 

 

This proposed methodology will utilize verification and validation methods that apply 

within the simulation community as the foundation for this multi-faceted approach. The 

methodology will establish the relationships between four key elements:  physical 

experimentation, conceptual modeling, computational simulations, and data processing. 

The combination of these activities will provide a comprehensive characterization study 

of the system.  

 

In order to illustrate the methodology, a case study was performed on a dynamic force 

measurement system owned by Sandia National Laboratories. This system was designed 

to measure the force required to pull a specimen to failure in tension at a user-input 

velocity. The results of the case study found that there was a significant measurement 

error occurring as the pull event involved large break loads and high velocities. 100 pull 

events were recorded using an experimental test assembly. The highest load conditions 
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discovered a force measurement error of over 100%. Using computational simulations, 

this measurement error was reduced to less than 10%. These simulations were designed 

to account for the inertial effects that skew the piezoelectric load cells. This thesis 

displays the raw data and the corrected data for five different pull settings. The 

simulations designed using the methodology significantly reduced the error in all five 

pull settings.  

 

In addition to the force analysis, the simulations provide insight into the complete 

system performance. This includes the analysis of the maximum system velocity as well 

as the analysis of several proposed design changes. The findings suggest that the 

dynamic measurement system has a maximum velocity of 28 fps, and that this maximum 

velocity is unaffected by the track length or the mass of the moving carriage.  
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NOMENCLATURE 

 

Variable Description 

      Spring constant for force sensor 1 

      Spring constant for force sensor 2 

    Spring constant for wire rope lanyard 

    Mass attached to force sensor 1 

    Mass attached to force sensor 2 

ia(t)  Armature current of motor (state variable) 

Vin(t)  Input voltage of motor 

F(t)  Pull force applied to system 

τm(t)  Output torque of motor 

La  Motor armature inductance 

Ra  Motor armature resistance 

Jm  Rotational inertia of motor 

Jz  Rotational inertia of HPLA 

θm(t)  Motor shaft angle 

θg(t)  HPLA gear angle 

N  Gear reduction ratio 

rz  Effective radius of HPLA 

KP  PID control proportional constant 

KI  PID control integrator constant 
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KD  PID control derivative constant 

KT  Motor torque constant 

Ke  Motor voltage constant 

M  Maximum velocity input by user 

bM  Viscous damping coefficient for motor 

bg  Viscous damping for HPLA 
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1. INTRODUCTION  

 

1.1 Problem Background 

In the realm of engineering, there is no universal qualification procedure for mechanical 

measurement equipment. To qualify a measurement device is to provide sufficient 

confidence that the system will consistently perform within a specified accuracy range. 

This is often performed through a standardized testing procedure designed to either pass 

or fail the measurement device. In some cases, no standard procedure exists. In these 

cases, the measurement device must undergo a characterization study in which the 

device is explored and the standard testing procedures are developed from this 

characterization study. 

 

An example would be a system that records dynamic load data, such as the impact force 

exerted by a jackhammer.  Most load cells are calibrated statically, but this system 

would be taking dynamic measurements. The static load tolerance provided in the load 

cell’s specification sheet could not possibly be regarded as the dynamic tolerance of the 

measurement system. The measurement system would need to go through a series of 

tests to understand and characterize the measurement system. Static load cells contained 

within static load measurement systems are often tested and calibrated using free 

weights. This is not the same for the dynamic loading event. Load cells are susceptible to 

vibration and other inertial effects that may also skew the data [1]. As a result, a system 
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of this nature would require additional testing to characterize the expected error 

associated with the measurement. 

 

This thesis focuses on the process of characterizing a complicated dynamic measurement 

system when there is no standard for qualifying the machine. Before a measurement 

system can be implemented, it must undergo the appropriate testing to understand and 

characterize the system. From this study, the qualification and calibration procedures can 

then be established.  A comprehensive characterization study of this type of system will 

be the focus of this thesis. 

 

 1.1.1 Motivating Problem Background 

The motivating problem and demonstration to be performed in this thesis consists of a 

measurement system developed for use at Sandia National Laboratories.  The system 

was designed to perform force measurements at different velocities in order to qualify 

components under dynamic loading conditions.  The system is currently in the testing 

phase and has yet to be approved for implementation. In order to preserve proprietary 

information, the exact application of the force tester will not be mentioned in this thesis.   
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Figure 1. Dynamic Load Testing Configuration 

 

The dynamic force tester, as illustrated in Figure 1, presents the opportunity for an 

interesting characterization study. The system is designed such that the component is 

attached to a rigid structure, and is pulled to failure by a steel cable. This steel cable that 

pulls the component is also attached to a moving sled, or carriage that accelerates to a 

specified velocity at which the pull event occurs. The piezoelectric load cell that 

measures the failure force of the component is located on the carriage. This location of 

the force sensor was selected due to the constraints placed on the design. As a result, it 

becomes difficult to place confidence in the repeatability and accuracy of this particular 

measurement. 

 

The force sensor was selected as a piezoelectric load cell due to the high frequency 

sensing range, which makes it ideal for dynamic loading events. This also results in the 

detection of high frequency vibration that may affect the measurement. Because of the 

displacement between the test specimen and the force sensor, significant discrepancies 
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may occur between the force of interest and the load registered by the transducer due to 

inertial effects such as vibration. 

 

The machine does have both position and force accuracy requirements. The test system 

uses a high performance encoder, which will not be assessed and will be assumed to be 

correct with zero error for the purpose of this study. Historically, dynamic force 

measurement systems of similar application have been qualified and calibrated using 

breakable copper coupons. The coupons were designed to break at a desired load and 

velocity. The failure load tolerances on these coupons were determined experimentally.  

 

Before this dynamic force tester can be implemented, the performance of the system 

must be studied. The behavior of the force sensor under these dynamic loading 

conditions must be explained as well as the performance capabilities of the system. The 

maximum velocity of the system and effects of additional mass must be studied to 

understand the power constraints on the system. In order to do this, a comprehensive 

characterization study must be implemented to build confidence in the measurement 

system. This study presents challenges due to the complexity of characterizing the 

dynamic force measurement. This problem is the motivation for the work presented in 

this thesis. 
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1.2 Proposed Solution and Methodology 

The measurement system will be assessed using a combination of simulations and 

physical experimentation in the form of a proposed methodology. This methodology will 

be developed as a universal solution to characterizing mechanical measurement systems 

that do not have standard qualification procedures. This approach will utilize the key 

definitions and processes developed within the simulation community as the foundation 

for the methodology.  

 

The ultimate goal of the methodology will be to develop confidence in the system. This 

confidence in the system’s performance is called as system credibility [2]. In order to 

properly execute the simulations contained in the proposed methodology, the verification 

and validation processes developed by Sargent [3, 4], will be modified and extended as 

the foundation for this proposed multi-faceted approach. The distinction between 

verification and validation are as follows: Verification is the act of determining that a 

simulation computer program performs as intended, while validation is the act of 

determining whether the underlying mathematical model provides a sufficient 

representation of the system [5]. Both verification and validation of the simulation are 

implemented in the proposed methodology. 

 

The four main components of the proposed methodology are the physical test system, 

the conceptual model, computational simulations, and the system data/results. 

Verification and validation occurs as these components are compared to each other. The 



 

6 

 

system data/results portion describes the accumulation of simulation data and raw 

experimental data. The combination of this data and post-processing of the data can 

allow for inferences about the system to be made and provides a means of understanding 

physical errors occurring within the system. The conceptual model describes the 

physics-based models describing the physical test system, which is the physical test of 

the measurement system. Finally, the computerized model is the computer 

implementation of the conceptual models.  This methodology is described in further 

detail in Chapter 3. The combination of these activities and the verification and 

validation steps that occur between them will drive the characterization study of the 

measurement system and ultimately establish credibility in the measurement system.  

 

The specific system assessed in the case study of this thesis will be simulated using 

MATLAB software. The experimentation be performed using an experimental test 

assembly designed specifically for the analysis of the force measurement. The 

experimental test assembly was designed as a means of measuring the force at the 

location of the test specimen to provide validation data for this proposed methodology. 

 

This analysis is performed on the dynamic force tester in Chapter 4.  The study discovers 

that there is actually a significant difference between the two force sensor readings well 

outside of the accuracy requirements. However, using physics-based models that 

describe the system, this force difference can be accounted for mathematically. The 

models, simulation, and experiment will provide a detailed assessment of the 
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measurement system in an effort to increase the credibility of the system and eventually 

successfully determine that the machine is acceptable for its intended use. 

 

1.3 Relevant Background Literature  

There are multiple key contributors within the modeling and simulation community that 

will be referenced to establish the framework contained in the modeling and simulation 

verification and validation portion of this thesis. Although there is no standard 

methodology or set of definitions for verification and validation, the simulation 

community has established a set of definitions and methods that will be applied to this 

thesis [6-11]. The modeling process illustrated in Chapter 2 was the foundation for the 

methodology presented in this thesis. This work includes recommended strategies for 

validation as well as multiple processes and paradigms that work towards a universal 

approach towards modeling and simulation.  

 

Obtaining and applying real world data is another subject heavily utilized in this paper. 

Both Kleijnen [8] and Robinson [12]  provide similar fundamental approaches to 

gathering and processing real world data. Also, both of these works present cases 

establishing the difficulty of obtaining real world data and the idea that accurate real data 

does not actually exist.  Additionally, the comparison between simulation data and real 

world experimental data is hugely important to the application of the methodology 

presented in this thesis. There are many statistical techniques that can be used for 

validation as opposed to subjective methods [13-15]. 
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Prediction is also a key element to this thesis. Oberkampf et al. [16] provides a key 

distinction between validation and prediction. Confidence is obtained in predictions as a 

result of the physical understanding of the model and system. This work focuses on 

verification and validation in computation engineering and physics. Provided in this 

work is the Phenomena Identification and Ranking Table (PIRT), which is essentially a 

systematic method of prioritizing the adequacy and importance of the physical 

phenomena, the conceptual model, code verification, experimental adequacy, and 

validation adequacy. 

 

The selection of sensors and the analysis of transducers under dynamic conditions is also 

relevant to the work presented in this thesis.  Shieh et al [1] provided a methodology and 

much analysis for selecting the appropriate sensors. This work discusses the different 

types of force sensors, strain gauges, and accelerometers and how to select the 

appropriate sensor an application. There are also a few case studies that assess the 

measurement and experimentation of dynamic systems [17-26]. These studies range 

from the measurement of forces within robots to the estimation of an impact force 

induced by a piston slap.   

 

1.4 Contributions 

The primary contribution of this thesis is the methodology presented in Chapter 3.   

The methodology essentially combines methods used within the simulation community 

to provide a comprehensive analysis of the dynamic force system.  The analysis will 
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include characterizing the measurement system experimentally while simultaneously 

generating models and simulations to establish a desired level of credibility. 

 

Although the motivation for the work was a unique measurement system, the process 

could be translated to other measurement study applications. The methodology will be 

presented as a process that will be utilized to develop measurement system credibility. 

The process implements the verification and validation of simulation models with the 

actual physical testing as a proposed methodology.  

 

1.5 Thesis Contents 

The remaining content of this thesis will first provide a more detailed technical 

background in Chapter 2. This will focus on the fundamental components of verification, 

validation, prediction, and validation experimentation. The definitions developed within 

the modeling and simulation community can be found in this section as well as historical 

processes that outline verification and validation of simulations. The various types of 

validation techniques are listed along with a detailed section detailing data prediction. 

 

Chapter 3 presents the methodology proposed for solving complicated dynamic 

measurement characterization studies. This chapter details the use of historical 

verification and validation techniques coupled with the use of experimental procedures.  

Chapter 4 presents the case study that was the motivation for this research. This chapter 

details the experiment design that was implemented to provide the database of validation 
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data as well as the historical validation techniques associated with measurement systems 

of this style. Next, the chapter discusses two separate simulations. The first iteration 

simulation provides a model that will be used to predict maximum system performance 

limits. The second model iteration only assesses the force measurement capabilities of 

the system. Finally, this chapter summarizes the conclusions that can be made from the 

experimental data and the simulations. 

 

Chapter 5 presents the final discussion of the work performed in this thesis, including the 

methodology and case study. 

 

 



 

11 

 

2. TECHNICAL BACKGROUND 

 

This chapter provides the background to the techniques and tools used in the 

methodology developed in this thesis. Proper modeling and simulation methodology will 

be presented followed by validation experiment techniques. Additionally, a technical 

description of the dynamic measurement system will further describe the complexity of 

this problem. 

 

2.1 Verification and Validation of Simulations 

The simulation of the physical measurement system is an essential component of the 

multi-faceted approach for characterizing the dynamic measurement system.  

Understanding the basic concepts associated with verification and validation will be 

essential to the implementation of the methodology presented in this thesis. 

 

A model with even slight flaws could produce invalid results that go unnoticed [8].  

Model confidence is often obtained through a series of tests intended to validate the 

model [6, 27]. The complexity of these tests and the confidence required to establish 

model validity depends on the model application. The cost of model validation is 

typically a function of model confidence.  Model validation is usually especially costly 

when a high level of confidence is required [3, 28].  
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2.1.1 Verification and Validation Processes and Definitions 

Many processes exist that provide recommended verification and validation of a 

simulation. Figure 2 presents a verification and validation process for modeling and 

simulation. This modeling process will be used as the foundation for modeling and 

simulation verification and validation in this thesis. In the case of the dynamic force 

tester, the mathematical models will be simulated in addition to collecting real 

experimental data for validation. The power, velocity, and expected force measurement 

will all eventually be assessed in the analysis. Due to the accuracy requirements of the 

machine, and the interest of this study to develop the credibility of the system, a physical 

understanding of the force measurement capability will further provide insight into the 

operational capability of the machine.  

 

Figure 2. Simple Model Paradigm [4] 
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The ultimate goal of this paradigm, as developed by Sargent [3, 4, 9], is to ensure data 

validity, or provide the necessary confidence that the data associated with the models, 

simulations, and experiments are sufficient for the intended use of the simulations. As 

illustrated in Figure 2, the problem entity represents the object or system to be modeled. 

The conceptual model provides a mathematical representation of this problem entity and 

the computerized model implements the conceptual model as a computational 

simulation. Between each of these three blocks on the figure are recommended 

verification and validation steps designed to build trust in a model and its predictions. 

The conceptual model is validated through determining that the theories are correct and 

the model is a correct representation of the problem for the intended purpose and 

application of the model as it relates to the problem entity being modeled. This is termed 

conceptual model validation. Once the conceptual model has been validated and the 

model has been implemented in a simulation, the computerized version of the model 

must be checked to assure that the conceptual model is correctly implemented. This is 

performed through computerized model verification. Finally, the computerized model is 

validated through experimentation with the problem entity through operational 

validation. The combination of these activities was intended to provide a comprehensive 

data validation process. 

 

2.1.2 Validation Techniques  

Data validation provides a means of assessing the accuracy of the simulation by 

comparing simulation data to real system data under identical driving input conditions. 
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There are numerous accepted validation techniques. The selection of a validation 

technique depends on how observable the system is and the quantity of data that can be 

collected [29]. The following validation techniques provide both objective and 

subjective means for determining if a given model or simulation is valid. Both Balci [29] 

and Sargent [3] provide much of the background and depth in the following techniques. 

 

Animation and Graphical Comparisons provide a visual means of subjectively 

validating the simulation. Graphical representations of the output can be compared with 

the real data to determine behavioral trends.  

 

Event validation is performed by observing events occurring within the system. An 

example would be a queuing model within a department store, and the events would be 

the customers that enter and leave the store. The number of customers that enter and 

leave the store could be validated with the real system. 

 

Extreme Condition Tests are operated to test the system at the extreme operational 

boundaries of the system. For instance, it may be known what the maximum allowable 

power output of the system is electrically, and the mechanical output should match the 

maximum available power.  

 

Face validity is a subjective means of validation that requires persons or entities 

knowledgeable in the system to justify the model. The persons involved must have the 
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capability of providing estimates and utilizing personal intuition to validate the model. 

This method can be especially useful as an initial means for validation.  

 

Historical Data Validation utilizes data taken from the real system in previous tests or 

during operation in order to test the model. In addition to testing the simulation, this data 

can be used to construct the model and drive the simulation model. 

 

Historical Methods and Multistage Validation refer to a set of three methods that are 

largely philosophical. Historical Methods refers to each of the methods individually 

while Multistage Validation combines the methods into a process. The three historic 

methods are rationalism, empiricism, and positive economics.  

 

Internal Validation assesses the internal consistency of the simulation by holding the 

inputs and parameters constant and performing multiple runs with the simulation. The 

intent of this technique is to provide enough data to characterize the internal consistency 

using stochastic methods. 

 

Predictive Validation requires that the simulation produce data that has not yet been 

generated by the system. This data is then compared to the real system to determine if 

the correlation between the two.  
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Sensitivity Analysis is the act of varying parameters and inputs in order to analyze the 

behavior of the output. Sensitivity analysis is an excellent method for determining 

effective design changes and determining the effect that each parameter or input has on 

the simulation results.  

 

2.2 Gathering Real System Data through Validation Experimentation 

The design of experiments in mechanical systems is essential for providing the necessary 

validation data. Providing exact data from the real world is not theoretically possible, as 

this requires the use of a measurement device and there will always be a measurement 

error. However, depending on the application, and the effort involved with obtaining this 

data, the validation data can be very accurate. 

 

2.2.1 Validation Experimentation 

A validation experiment is the performed to provide real data to be used to validate the 

computational simulation. Aeschliman et al. [30] provided a list of guidelines for 

experimental validation that were originally developed for hypersonic fluid flow. The 

following list provides an expanded generalized version beyond fluid flow intended for 

use with all simulations of physics-based models: 

1. The validation experiment should be designed by all parties involved with both 

the testing and the computational simulation.  

2. All physics of interest, boundary conditions, initial conditions, and geometry 

information should be factored into the experiment design. 
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3. The experiment should emphasize the interaction between the simulation and 

actual system. 

4. Although the simulation and experiment should be developed together, the data 

taken independently. 

5. The experimental measurements should be ranked in terms of computational 

complexity. 

6. The experiment should be designed to estimate errors. 

These guidelines are appropriate for any physics-based experimental design for which a 

computational simulation is to be validated. A validation experiment must provide data 

appropriate for the application. Any unexpected error could invalidate the models and 

the simulations; therefore it becomes essential to properly design the validation 

experiment.  

 

2.2.2 Selection of Instrumentation 

Typical mechanical systems require sensors, or a device that provides data quantifying 

the measurement of a system variable, such as force, position, or acceleration. The 

sensor operates by converting a stimulus, or electrical, pneumatic, hydraulic, or optical 

input into a measured signal [1]. The selection of sensors is essential to providing both 

the required accuracy of the system, as well as the appropriate amount of data. Sensor 

specifications, such as sampling frequency range, measurement tolerance, and sensitivity 

to factors such as temperature and other environmental variables are utilized to select the 

appropriate sensor.  
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Many dynamic systems, similar to the particular system discussed in this thesis, can be 

characterized with position, force, and accelerometer data. The selection of the 

appropriate accelerometers, force sensors, and encoders are very important to the both 

the design of the system and the validation experiment. In order to select the appropriate 

instrumentation, the specifications for the sensors must be selected by estimating the 

expected system performance. For example, a human weight scale requires static loading 

measurement and would be best suited with a strain gauge load cell that does not have a 

high frequency range, but can have a loading range between 0 and 500 lbf. Additionally, 

strain gauge load cells tend to have low drift properties, which is ideal for static 

measurement. Alternatively, a dynamic measurement such as an impact hammer would 

require a piezoelectric force sensor that has a high frequency range. Appendix D 

displays multiple figures extracted from the work of Shieh et al. [1] and it is 

recommended that this work be viewed prior to the selection of any mechanical sensor 

as it provides a systematic approach to sensor selection. 
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3. PROPOSED METHODOLOGY 

 

3.1 Motivation and Application for Methodology 

This methodology was developed to establish the credibility of a complicated dynamic 

measurement system through both the use of experimentation and computational 

simulation. Specifically, the dynamic force tester presented as the case study was the 

motivation for the activities presented in this methodology. This methodology was 

designed and intended for any experimental or prototype dynamic mechanical system 

that demands both accuracy and repeatability of the measurement system, and lacks a 

formal qualification procedure. The methodology is designed for systems in which the 

major physical components can be modeled and simulated.   

 

3.2 Description of Process 

The proposed methodology provides a multi-faceted approach to establishing 

measurement credibility. The basic definitions of the terms in the methodology come 

from the simulation validation and verification literature, some of which was explained 

in Chapter 2. This multi-staged approach is developed to be an iterative process, in 

which experiments, models, and simulations should be revised and changed until the 

desired level of confidence is achieved. This desired credibility should be determined by 

the stakeholders and for this methodology to be applicable, should require a detailed 

analysis of the physical phenomena occurring within the system. 
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The methodology provides a multi-faceted approach to establishing machine credibility 

through the use of models and experimental measurement validation. Figure 3 illustrates 

the proposed methodology through which credibility of a dynamic measurement system 

should be achieved. As can be seen in the figure, the measurement system credibility is 

the ultimate goal from each activity listed. This suggested approach provides an 

excellent foundation for which verification and validation activities can be planned and 

executed for each step of the process.  

 

 

Figure 3. Proposed Methodology for Establishing System Credibility 

 

Much of the verification and validation steps for the modeling and simulation represent 

ideals and relationships developed from previous simulation paradigms [4].  The lower 

portion of Figure 3 presents the relationships presented earlier relating to verification 
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and validation. The steps are listed in Table 1 as they apply to a mechanical 

measurement system: 

Table 1. Steps for Establishing Measurement System Credibility 

 

# Step 

1 Perform Physical Experimentation 

2 Measurement System Operational Data Collection 

3 Analysis and Modeling 

4 Conceptual Model Validation 

5 Computer Programming and Implementation 

6 Computerized Model Verification 

7 Simulation Operational Validation 

8 Simulation Operational Prediction 

9 System Data/Results Processing 

 

This methodology is intended to be an iterative process, and as a result the steps listed in 

Table 1 may be repeated as the models and simulations are revised. These are the 

fundamental steps to the methodology and will be explained in further detail as follows: 

 

1. The first step, perform physical experimentation, applies to the measurement 

system being studies. This activity consists of generating validation data for the 

computational simulations. In the case of the dynamic force tester, a complete 

test configuration had to be designed and implemented appropriately to collect 

the data from the system.  The measurement system must be carefully designed 

to provide the desired level of accuracy [31, 32]. This validation data will be 

utilized to validate the simulation and eventually understand the physical 
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behavior of the system. If time and resources allow, a proper design of 

experiments (DOE) should be performed in order to properly obtain the data. 

 

2. Measurement operational data collection activity describes the physical 

collection of data from the current measurement system, including an assessment 

of the current raw performance, without any corrective or calibration terms.  This 

data will be further assessed in the data processing step. The quantity of data 

required is case dependent. 

 

3. Analysis and modeling of the measurement system describes the activity of 

modeling the mechanical system. Typical mechanical measurement systems can 

be modeled using electro-mechanical physics-based differential equations. This 

requires an understanding of dynamics modeling. Dynamics modeling analysis 

literature for electrical, mechanical, hydraulic, and pneumatic systems provide 

standard procedures for developing the governing equations of motion [33-35]. 

These concepts must be understood in order to properly model the system. 

Additionally, the system must be an observable white box model.  The system 

dynamics must observable enough to be modeled. 

 

4. Conceptual Model Validation consists of checking the conceptual models to be a 

correct representation of the system. This is typically a subjective decision. The 

constant values, such as initial values, mass values, and coefficients must be 
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confirmed in this step.  Equally important is determining that the equations 

properly represent the system. This includes assessment of the assumptions made 

within the system, such as the decision to model a particular system as a 1-

dimensional model instead of a 2-dimensional model.  

 

5. Computer programming and implementation of the conceptual models is the next 

step. Although many languages exist. MATLAB will be the preferred 

programming language of choice for this thesis as it provides many high level 

functions and graphical capabilities. The selection of the software should be 

based on both the programmer’s personal preferences and the need for additional 

tools that are specific to a particular programming software package.  

 

6. Computerized model verification is the activity of ensuring that the generated 

conceptual models are properly implemented in the programming language [36]. 

In addition to specifically verifying that the equations match the conceptual 

models, the implementation of the ordinary differential equations requires the 

selection of the appropriate solver. In MATLAB specifically, there are multiple 

ordinary differential equation solvers that vary based on the numerical methods 

that are used to solve the problem and the type of problem that the solver is 

intended for. To clarify, stiff differential equations, non-stiff differential 

equations, and moderately stiff differential equations all have solvers contained 

within MATLAB. Ashino et al [37] provides a more complete analysis of these 
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methods. Based on the software package, the use of pre-developed functions can 

improve the simplicity of the computational simulation, but also must be 

understood prior to implementation. 

 

7. Simulation operational validation requires the analysis of the outputs to confirm 

that the simulation does perform within the applicable domain at the intended 

level of accuracy. This includes comparison of the simulation with the actual 

validation data generated from the measurement system. There are many 

methods for performing this and can be seen in chapter 2. The exact method to be 

used is case-dependent. It is likely that multiple validation strategies will be used.  

 

8. Simulation operational prediction describes the process of generating data from 

the simulation that can be processed with the actual data from the measurement 

system. This includes generating test data to be used for understanding the 

measurement system, and determining the performance limits of the system. This 

includes predicting errors due to dynamic behavior and determining the 

operational limits of the equipment. In the case of the dynamic force tester, the 

velocity is limited due to several factors that must be predicted by the simulation. 

 

9. System Data/Results Processing portion of the figure describes the accumulation 

of simulation data and raw experimental data from the measurement validation 

step. This step requires the combination of the data collected from the machine 
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and the data generated from the simulation in an effort to understand the dynamic 

behavior associated with the machine. The dynamic simulation of the equipment 

combined with the actual data will allow for a comprehensive understanding of 

the actual phenomena occurring within the system.  

The level of credibility to be achieved is determined by the users of the measurement 

system. Multiple iterations of the process may be required before sufficient data can 

illustrate the functionality of the machine. As the machine becomes more complicated, 

typically more testing and instrumentation is required. For example, an instrument that 

tests an automobile radiator by observing the temperature within the engine 

compartment would require testing in multiple climates. The radiator is responsible for 

maintaining an acceptable temperature threshold of the engine regardless of the external 

environments. Although one temperature sensor may be sufficient, an entire network of 

temperature sensors would provide a better understanding of the temperature distribution 

surrounding the engine block. Depending on the complexity of the heat transfer models, 

more testing and instrumentation may be required to validate the models. The 

automobile manufacturer must decide at some point what level of confidence is 

appropriate in the expected radiator performance.  

 

The proposed methodology takes the ideals developed for modeling and simulation and 

provides a means of exploring an unknown system without having a standard method for 

qualifying the system. These steps are intended to be the base structure of the process.  
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Additionally, these steps can be repeated, as needed to perform the characterization 

study. The following chapter will utilize these methods to assess the dynamic force 

tester. 
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4. DEMONSTRATION OF METHODS 

 

The dynamic force measurement system will be assessed as a demonstration of the 

methodology detailed in Chapter 3. The deliverables of this study extend beyond 

exploring the dynamics and accuracy of the force measurement.  Because the system is 

in the design phase, possible system redesigns have been considered to improve the 

velocity capabilities of the system. Proposed redesigns include increasing the track 

length and optimizing the mass of the carriage that moves across the surface of the 

machine. This thesis will examine the performance effects of minimizing the mass of the 

carriage as well as increasing the track length. As a result, the deliverables of this study 

can be summarized as follows: 

1. Determine if increasing the track length will improve the maximum system 

velocity. 

2. Determine if minimizing the mass of the carriage will improve the maximum 

system velocity. 

3. Define the current dynamic force measurement capabilities. 

 

This characterization will implement multiple simulations along with the use of physical 

experimentation to provide the sufficient analysis to accomplish these tasks. The 

methodology will be followed as the system validation data is collected and the 

simulations are generated. Figure 4 illustrates how the methodology will be utilized to 

characterize this system.  
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Figure 4. Implementation of Methodology on Force Test System 

 

As illustrated in Figure 4, two simulations will be developed in this study of the dynamic 

force measurement system. The first simulation will model the entire system from the 

motor to the pull specimen. This simulation will focus on the power limitations of the 

system. The second simulation will focus specifically on the dynamic force 

measurement and explore how the effect of the inertial loading on the moving force 

sensor. These two simulations will both be performed with MATLAB.  

 

4.1 Physical Experimentation of Force Tester  

This section will develop both step 1 and step 2 of the methodology developed in 

Chapter 3. The physical experiment will be performed by designing a test configuration 

that will be used to provide the validation data for the simulations. Although a proper 

design of experiments was not performed, the results from this series of tests will 

provide a sufficient demonstration of the methodology. 
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Previous dynamic force measurement systems have been qualified using test specimens 

designed specifically to break at a desired load and velocity. Rather than using these 

coupons, this study will utilize a force sensor to measure the force exerted at the point of 

the test specimen. These coupons will not be used to qualify this machine. Instead, these 

coupons will be implemented as load selectors only. That is, the coupons will be used in 

the system to determine the load range at which the failure will occur.  This physical test 

setup, coupled with computational analysis, will provide the comprehensive analysis of 

the system. 

 

4.1.1 Primary System Components  

The complete drive system can be separated into five major components: The rotary 

servo motor, the gear box, the high performance linear actuator, the carriage, and the 

lanyard. The system will be modeled as an electro-mechanical system. The interface 

between each component of the complete system can be simplified as illustrated in 

Figure 5: 

 

 

Figure 5. Simplified System Description 
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Figure 6. Parker HPLA180, Parker MPP Motor, and Aluminum Carriage 

 

The gear box currently has a 3:1 speed reduction gear ratio and this interfaces with the 

high performance linear actuator (HPLA). Figure 6 displays the HPLA that converts the 

motor torque into a linear force that is used to drive the carriage for the pull event. The 

experimental test configurations will interface with the lanyard as illustrated previously 

in Figure 5. 

 

4.1.2 Experimental Instrumentation 

As noted earlier, selecting the proper sensors is essential to meeting measurement 

requirements. Due to the high velocity impact loading event that is taking place, a large 

quantity of data must be taken to record the dynamic event. Also, because the event 
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occurs rather quickly, the signal drift is not a concern [1]. The following table lists the 

selected instrumentation and the individual specifications. 

 

Table 2. Experimental Instrumentation Specifications 

Name Manufacturer Model Specifications 

Force sensors PCB 

Piezoelectronics 

208C04 Sensitivity: 5mV/lb                      

Low Freq Response:  0.0003 Hz 

Upper Freq Limit:  36000 Hz 

Compression Limit:  1k lbf 

Tri-axial 

Accelerometer 

PCB 

Piezoelectronics 

356A36 Mounting:  Adhesive                                

Freq Range:  1 to 4000 Hz 

Signal 

Conditioner 

PCB 

Piezoelectronics 

482C16 Channels:  4                                     

Gains:  x0.1 to x200                       

Freq Range:  0.05 to 100,000 Hz 

DAQ National 

Instruments 

PXI-6251 Multi-function high speed DAQ 

Linear Encoder Renishaw   40 µm grading with high 

resolution feedback 

 

From Table 2, it can be seen that the sampling frequency range capabilities were selected 

to be very high. The instrumentation will be adjusted to sample 50,000 data points per 

second. This will ensure that any effect due to vibration is detected by the sensor. In 

addition to the stationary force sensor, a triaxial accelerometer will be placed at the 

moving force sensor location to quantify the vibration that may occur at this location 

within the system. 
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Figure 7. Experimental Test Configuration Setup 

 

Figure 7 displays the physical locations of the instrumentation on the measurement 

system. The rigid frame and force sensor mount assembly on the left hand side of the 

figure illustrate the test configuration that was designed for this study.  The force sensor 

on the left hand side will represent the “true” load of interest as experienced by the test 

specimen as it is pulled to failure. The summary of the instrumentation for gathering 

physical data can be seen in Table 3. 

 

Table 3. Description of Instrumentation within System 

Name Description 

Stationary Force sensor "True" force at location of test specimen 

Moving Force sensor Force taken from permanent force sensor location 

Breakable Copper Coupon Specimen designed to break at certain load and velocity 

Tri-axial Accelerometer Vibration occurring at location of moving force sensor 

Linear Encoder Position of Carriage 
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Figure 8 and 9 display the actual test setup during a pull test. The transducers as well as 

the copper pull specimen can be seen in the images.  

 

 

Figure 8. Picture of Experimental Setup 

 

 

Figure 9.  Picture of Each Force Sensor Assembly 
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4.1.3 Experimental Testing Procedure 

The experimental testing procedure as specified in this section represents step 1 of the 

proposed methodology. The testing procedure consisted of five categories of tests. Each 

category consists of a given velocity and force (selected by the copper coupon)  at which 

the test will take place. The velocity is achieved by programming the system to attain 

this velocity at the location of the pull event, or when the lanyard goes taught. The force 

is achieved by utilizing the historic breakable copper coupons. These copper coupons 

were specifically designed to break at a particular force and velocity.  The five tests that 

will be performed with the system can be seen Table 4: 

 

Table 4. Experimental Data 

Set # Load (lbf) Sample Size Velocity (fps) Acceleration (g’s) 

1 200 20 3 0 

2 400 20 11 0 

3 600 20 16 0 

4 400 20 7.8 -1.24 

5 600 20 7.8 -1.24 

 

These tests were selected because they are historic tests performed on dynamic force 

measurement systems. The first three sets will be performed at constant velocity, with 

negligible acceleration. The final two sets will expose the system to significant 

acceleration at the point of impact.   The total number of tests performed was 100. These 

tests will be used to generate the validation data for the simulations. Each test will record 

data from the moving piezoelectric force sensor, the stationary piezoelectric force 

sensor, the triaxial accelerometer, and the position encoder. As a result, each test will 
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generate five columns each containing 100,000 data points taken over two seconds. The 

force difference will be quantified as the percent difference associated with the moving 

force sensor. The stationary force sensor will be regarded as true force data. Again, the 

force difference will be defined as follows for these tests: 

         |
                 

           
|      (1) 

 

4.1.4 Measurement System Operational Data Collection  

The generation of raw data from the measurement system represents step 2 of the 

proposed methodology. 100 sets of data were taken in an effort to characterize the 

system. The results of the lower velocity tests displayed a very low force difference 

between the stationary force sensor and the moving force sensor. This was not true for 

the higher velocity pulls. The higher velocity sets of data returned significant differences 

in the force sensor data. The velocity data, however, was very consistent. The maximum 

velocity experienced during each run contained very little variance. Figures 8-12 display 

the relationship between the moving force sensor data and the stationary force sensor 

data.  Each of the five figures only displays data from one test out of each set of 20. 
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Figure 10.  Set #1 Test #5 (200 lbf 3fps) 

 

 

Figure 11. Set #2 Test #24 (400 lbf 11fps) 
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Figure 12. Set #3 Test #44 (600 lbf 16 fps) 

 

 

 

Figure 13. Set #4 Test #64 (400 lbf 7.8 fps) 
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Figure 14. Set #5 Test #84 (600 lbf 7.8 fps) 

 

As can be seen in Figures 10-14, there is a significant difference between the moving 

force sensor measurement and the stationary force sensor measurement, especially 

during the more violent events (higher velocity and load). This implies that there is some 

inertial effect occurring between the stationary force sensor and the moving force sensor.   

 

In addition to the data from the two force sensors, the position data from the encoder and 

the acceleration data located the moving force sensor were recorded for each test. 

Figures 15-16 display the data taken from the encoder and the data taken from the 

accelerometer for one of the tests taken in the fifth set of data.  
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Figure 15. Accelerometer Data from Test #82 

 

 

Figure 16. Encoder Data from Test #82 

 

The results of the five sets of data have established that significant amplification of the 

moving force sensor is occurring in the system. This is either a result of electrical 

amplification, or a result of some inertial effect. The following sections will model this 

system and attempt to explore and define the force difference term. The results from 

these tests will be used as validation data for the computational simulations. 
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4.2 Complete System Model and Simulation 

The first of the two simulations will present a complete system analysis. This simulation 

will be performed to explore the power limits of the system, specifically the velocity 

limits of the system. This portion of the analysis represents steps 3-8 of the methodology 

presented in Chapter 3.  

 

4.2.1 Conceptual Model of Complete System 

This section details step 3 of the methodology. The first conceptual model will consist of 

physics-based mathematical differential equations to describe the system. The system 

will be modeled as an electro-mechanical system that operates off of standard 460 VAC.   

The dynamic force tester can described as a dynamic system with seven primary states. 

The system can essentially be modeled with an electrical circuit describing the brushless 

servo motor. In order to model the system, there are several key assumptions. The motor 

will be analyzed as a DC motor because the motor specification sheet provides the 

necessary DC analysis constants. In addition, the high performance linear actuator 

(HPLA) provides equations in the specification for the moment of inertia. These 

equations can be seen in the appendix. Finally, the gear box will be assumed to have 

negligible losses and the lanyard and both force sensors will be modeled as springs with 

a constant that will allow the pull force to be modeled as a function of distance. Figure 

17 illustrates the simplification of the system. 
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Figure 17. Simplified System 

 

The motor circuit will be directly modeled as a DC motor circuit given the values listed 

in the product manual. The simple DC circuit is illustrated in Figure 18. The equations 

can be derived as follows: 

 

Figure 18. DC Circuit Describing Motor 

 

The system can be analyzed by simply using Kirchhoff’s Voltage Law. The following 

equation will be used to describe the motor circuit. 
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The HPLA is slightly more complicated.  The product specification guide combines both 

the load being pulled by the HPLA with the belt inertia into one inertia value.  Using the 

provided equations, it is possible to obtain an approximation of the inertia of the belt 

including the mass of the carriage. This exact calculation can be seen in the Appendix. 

The next step is to define the free body diagrams to obtain the equations of motion for 

the mechanical system. Two free body diagrams will represent both the motor shaft 

interfacing with the HPLA and can be reduced to the following models illustrated in 

Figure 19: 

 

Figure 19. Simplified Drive System Representation 

 

 

Therefore, using these equations, it is possible to obtain an accurate approximation of the 

inertia of the belt including the mass of the carriage.  The dynamics model can be 

reduced to two simple free body diagrams displayed in Figure 20.  
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Figure 20. Summary of Forces Associated with Motor and HPLA Drive System 
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        (9) 

 

The carriage system will initially be modeled as simply one resistive force in the form of 

a spring that represents the lanyard. As a result, there is a direct relationship that can be 

made between the angle of the motor and the position of the carriage as displayed in 

Figure 21.  

 

 

Figure 21. Carriage System Model 

 

The relationship between the position of the carriage and the angle of the HPLA can be 

defined in the following equation: 
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The final set of governing differential equations can be seen as follows: 
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As provided by the spec sheet for the motor, the torque can be directly related to the 

current as follows: 

       ( ) (12) 

 

Finally the governing differential equations for this problem become: 
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4.2.2 Conceptual Model Validation 

The activity of validating the conceptual model is listed as step 4 in the methodology. As 

described in the methodology, the conceptual models must be validated after each model 

is generated. This includes proving that the assumptions are valid and that each model is 

an appropriate representation of the system for the model’s intended application. The 

intention of the first iteration of the conceptual models is to capture the system’s velocity 

capabilities. This includes understanding the system velocity and power constraints. This 

validation occurs by comparing the governing equations with the actual system. The 

conceptual model was validated by confirming the value of each constant used in the 
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differential equations and confirming that the usage of a one dimensional model would 

suffice to assess the system performance.  

 

4.2.3 Computational Simulation for Complete System Model 

The development of the simulations is step 5 of the methodology described in Chapter 3. 

These models will be implemented using MATLAB. Specifically, the differential 

equations will be implemented using one of MATLAB’s ordinary differential equation 

(ODE) solvers. The simulation utilizes a PID controller to track a user-input velocity 

profile similar to the actual system. Three discrete operational conditions dictate the pull 

force load as follows: 

 

   ( )  {

           
 (          )           

    ( )          

 (16) 

 

This simulation allowed the position, velocity, current, and force to be observed. The 

force was simply a linear function of distance for this simulation. The list of inputs and 

outputs can be seen in Table 5. 

 

Table 5. List of Program Inputs and Outputs 

Inputs Outputs 

Desired Velocity Profile Position of Carriage 

Maximum Acceleration Velocity of Carriage  

Break Force Load Current (Amps) 

Lanyard Length Force Registered by Force 

sensor 
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The exact logic implemented in the program implemented if-then statements to provide 

the three discrete conditions to simulate the system. Figure 22 displays the logic 

implemented into the MATLAB script.  

 

Figure 22. Computational Simulation Logic 
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The simulation was performed over a combination of velocity and load scenarios to 

examine the system. The constants for the equations developed for the simulation can be 

seen in Table 6: 

 

Table 6. Constant Values Used in Simulation 

Variable Description Value Units 

Ra Motor Armature Resistance 0.28 Ohms 

Jm Rotational inertia of motor 2.60E-03 kg×m/s
2
 

Mc Mass of Carriage 47 Kg 

Jz Rotational inertia of HPLA 0.2335 kg×m/s
2
 

N Gear Ratio 3 - 

rz Effective radius of HPLA 6.68E-02 m 

KT Motor Torque Constant 1.591 N×m/Arms 

Ke Motor Voltage Constant 0.9185 Vrms/(rad/s) 

bM Viscous damping coefficient for motor 10* N/s 

bg Viscous damping for HPLA 10* N/s 

ia(max) Maximum current circuit can experience 66.46 Amprms 

Vin(max) Maximum voltage applied to circuit 325.2 Vrms 

*denotes that the value was obtained through calibration 
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4.2.4 Computational Simulation Verification 

In order to perform step 6 of the methodology, the computational simulation must be 

verified as a proper implementation of the developed physics-based mathematical 

models. This step included the selection of the correct MATLAB solver to assess the 

ordinary differential equations. Additionally, the equations were confirmed to be 

properly implemented in the simulation.  

 

4.2.5 Computational Simulation Operational Validation 

The validation of the computational simulation performs step 7 of the methodology. The 

velocity model and simulation do not have set accuracy requirements. This portion of the 

analysis was performed to answer a few key questions about the system. As a result, face 

validation, or allowing persons knowledgeable of the system to subjectively decide if the 

simulation is valid for its intended use. The designer of the dynamic force system 

provided this validation based on the operational output of the simulation. Figure 23-22 

display operational capabilities of the simulation. The simulation follows the input 

velocity profile very similar to the real system and the simulation also reacts to the force 

impact very similar to the real system.  
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Figure 23. Simulation Velocity Profile (3ft/s 200lbf) 

 

 

 

Figure 24. Simulation Velocity Profile (7.8 ft/s 400 lbf) 
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4.2.6 Computational Simulation Operational Prediction 

Predicting the system performance limits is step 8 in the methodology. Because the 

simulation was validated to be appropriate for simulating the velocity of the machine, 

there are questions about the machine that can be answered using the computational 

simulation as follows: 

1. What is the maximum system achievable velocity? 

2. Will a reduced carriage mass improve system velocity capabilities? 

3. Does increasing the track length improve system velocity? 

These questions will be answered by generating performance data with this complete 

system simulation. The simulation provided very clear answers to the questions about 

the system. 

 

In order to determine the maximum velocity, the simulation was given a velocity profile 

with a maximum velocity of 30 fps. Additionally, the break force was set to zero and the 

track length parameter was extended to explore the benefits of lengthening the track.  

This will answer the first two questions because the system will attempt to achieve 

30fps, which was beyond the initial design requirement of the machine. The results can 

be seen in the following figures. 
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Figure 25. Maximum Velocity Capability 

 

Figure 26. System Current During Pull Event  
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Figure 27. Required Power to Increase Velocity 

 

Figure 25 illustrates the behavior of the simulation as it attempts to achieve 30 fps. It can 

clearly be seen that the maximum velocity capability on the machine is the 28 fps. 

Additionally, even with an extended track length, the maximum velocity overshoots to 

28 fps and dampens out at 25 fps. It achieves this velocity before 2.5 feet, which is about 

half the track length. Therefore, it clearly has a sufficient track length to achieve 

maximum velocity. Figure 26 displays the current during the pull. It illustrates that the 

system hits the current limit of 66 amps as specified as a constant.  

 

Figure 25 illustrates the required power to increase the velocity. The current system 

requires around 21 kW to achieve the maximum velocity. Increasing the power to 25 kW 

would allow the system to achieve 30 fps. 
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The next analysis will calculate the effect that the mass has on the system. This 

simulation was performed under the same conditions. No load and extended track length. 

However, the mass of the carriage will be varied from 1kg to 61 kg over 5 different test 

runs.  

 

Figure 28. Effect of Carriage Mass on System Performance 
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From the plot above, it can be seen that the mass does slightly change the maximum 
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1. The maximum achievable system velocity is 25 fps. The system can hit as high 

as 28 fps due to the momentum carried by the system from the acceleration. 

However, the system levels off at 25 fps. 

2. Increasing the length of the track will not improve the performance of the 

system. The current track length is sufficient for achieving maximum velocity. 

3. The mass of the carriage does not affect the velocity capabilities of the system. 

As can be seen in the figures, the mass only affects the no-load overshoot 

velocity.  

 

This complete system provided a comprehensive system model. The ability to probe the 

simulation and easily adjust inputs and parameters made the simulation valuable for this 

analysis. The conclusions answered multiple questions about the possible redesign of the 

system. 

 

4.3 Force Measurement Model and Simulation 

This second simulation will repeat steps 3-8 to address the force measurement capability. 

From the experimental results, it is clear that the measurement system produces raw data 

outside the force accuracy requirements of the components being tested. Historical data 

validation will be used to both construct the model and drive the simulation. Two 

conceptual models will be developed and will therefore illustrate the suggested iterative 

approach of the methodology. The conceptual model was revised in order to reduce the 

force difference. 
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4.3.1 Conceptual Models of Carriage System 

The development of another conceptual model will repeat step 3 for this second 

simulation. From the experimental results, the force data registered by the moving force 

sensor is clearly being amplified by some dynamic event. In order to identify this event, 

a separate model and simulation will take place. The model will be revised to take 

position data from the carriage and output the force at the point of the load specimen. 

Additionally, a 1-D model will be generated describing two force sensors and the 

lanyard. 

 

Figure 29. Carriage System Model 

 

The differential equations associated with positions    and    can be seen as follows: 
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(       )
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Because accelerometer data for  ̈  can be obtained from the experimental data, it is 

possible to use this as an input.  However;  ̈  is not observable with the current 

experimental configuration directly from an accelerometer. 

 

The acceleration of    can be accounted for using the force data at that location. In 

order to do this, the relationship between force and position can be utilized to generate 

an equation for the acceleration at   .  

 
  ( )  

           ( )

    
   ( ) (22) 
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Using Equation 17, it can easily be checked what the actual impact is of this term from 

the experimental data. By doing so, it can be concluded that this term is negligible due to 

the low mass and low acceleration. The force becomes very small as a result and can be 

taken out of the stationary force relationship. The maximum observed acceleration from 

the experimental data using this force relationship was 3.53 g’s.  This translates to a 

maximum force of less than 10 lbf due to the acceleration of   .  This result suggests 

that the     ̈  term could contribute 1.25% of the moving force cell difference. As a 

result, this term can be ignored due to this small contribution. The results are displayed 

in Table 7. 

 

Table 7. Contributions of Each Term 

Set 

# 

Velocity 

(fps) 

Avg 

Stationary 

Load (lbf) 

a1 max 

(g's) 

a2 

max 

(g's) 

m1a1   (lbf)                      

(m1=.106 

slugs) 

m2a2  (lbf)                  

(m2=.106 

slugs) 

1 3 212.1 0.617 27.9 1.56 70.6 

2 11 584.08 1.98 114 5.02 290 

3 15 688.82 2.7 330 6.85 839 

4 7.8 588.92 2.29 199 5.81 504 

5 7.8 792.87 3.53 225 8.95 572 

  
*Note:  Carriage Experienced Acceleration of -1.24g’s when pull 

occurred.   

 

From this model, the input will be the position data (  ), and the output will be the force 

associated with    , representing the force sensor at the location of the pull specimen. 

This will be validated using the experimental data.  

            ( )       ( )     ̈ ( ) (24) 
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Using this one-dimensional physics-based model of the system, this revised model will 

determine the dynamic effects occurring during the impact event that may affect the 

measurement. 

 

4.3.2 Conceptual Validation of Models 

Conceptual model validation will be performed again, revisiting step 4 of the 

methodology. This model is very simple therefore validation that this 1-D model 

appropriately models the system is a simple task. 

 

4.3.3 Computational Simulation for Carriage System Models 

The simulation of the conceptual model, or step 5 in the methodology, will be performed 

using the historic data to drive the simulation. Once again, the simulation will be 

performed in MATLAB. The general structure of this simulation can simply be reduced 

to the following: 

 

 

Figure 30. Simulated 1-D Stationary Force Simulation 
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 This simple 1-dimensional simulation provides a means of accounting for the impact 

vibration that the carriage is exposed to during the pull. The moving force data and 

accelerometer data illustrated in Figure 30 represent actual data collected from the 

experimental testing. The simulated stationary force data output represents the corrected 

moving force data.  This simulation will be implemented in MATLAB and will simply 

take the accelerometer data and moving force data to determine if the inertial effects can 

be simplified into a 1-dimensional system.  

 

4.3.4 Computational Simulation Verification 

In order to perform the methodology, step 6 requires the verification of the 

computational simulation. This simulation processes the historical moving force data by 

subtracting the inertial effects as described in Equation 23.  Therefore, the simulation 

can be validated by ensuring that the simulation performs the correct mathematical 

operations with the data. 

 

4.3.5 Computational Simulation Operational Validation and Prediction 

Validation of the simulation as specified in step 7 of the methodology will be performed 

again. The validation will be performed by comparing the historic stationary force sensor 

data against the simulated force sensor data.  
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Table 8. Simulation Validation Results 

Sample 

Size 

Load 

(lbf) 

Velocity 

(fps) 

Avg Simulated 

Stationary 

Load (lbf) 

Avg 

Stationary 

Load (lbf) 

Avg Force 

difference 

(%) 

Std 

Dev 

(%) 

20 200 3 215.28 212.1 1.50% 1.30% 

20 400 11 658.85 584.08 12.80% 6.32% 

20 600 15 726.02 688.82 5.40% 4.06% 

20 400* 7.8 654.29 588.92 11.10% 7.31% 

20 600* 7.8 1047.78 792.87 32% 11.23% 

 *Note:  Carriage Experienced Acceleration of -1.24g’s when pull 

occurred.   

 

Table 8. Simulation Validation Results displays the results of the validation study.  The 

average simulated stationary load describes the simulation output average over all 20 

pulls per category. The error describes the error associated with this simulation output. 

As can be seen from the results, the maximum average error that occurred during 

constant velocity was 12.8%.  

 

Although this model significantly reduces the error, additional modeling must be 

performed in order to further understand what is producing the error and how to correct 

for it. This simple 1-dimensional model is not sufficient for the application. 

 

 4.3.6 Conceptual Models of Carriage System using Filtering Methods 

The proposed methodology is intended to be an iterative process. Step 3 will be 

performed again in an attempt to model the force during the pull event because the 1-D 

physics-based model of the force sensor was not sufficient. Because the force sensor is a 
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piezoelectric force sensor between to metal plates, it is highly susceptible to the effects 

of vibration [38]. A low pass filter will be implemented to reduce the effects of vibration 

on the moving force sensor. The low pass filter will essentially be implemented by 

taking the moving average of the moving force sensor data. The equation for the moving 

average can be seen as follows: 

 

  ̅  
                       

 
 (25) 

 

This is a common means of implementing a low pass filter, where   is the moving 

average population size.  

 

4.3.7 Conceptual Validation of Filtering Model  

This ultimate goal of this model is to provide a low pass filter to remove the high 

frequency vibration data from the moving force sensor results. The conceptual 

validation, or step 4 in the methodology, can easily be performed in this case because the 

model is simply a moving average of the moving force sensor data.  

 

4.3.8 Computational Simulation using Filters 

This final computational simulation or step 5, of the data took a moving average of the 

moving force data using the built in MATLAB function. The population size that was 

taken was 140 points, or the equivalent of 2.9 ms. 
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Figure 31. Simple Moving Average Filter 

 

The input moving force data represents the raw force sensor data from the dynamic force 

tester. The simulated stationary force data on the output represents the moving force data 

after the moving average has been taken to reduce the high frequency vibrations. 

 

4.3.9 Filter Computational Simulation Verification 

Verification of the simulation as specified in step 6 of the methodology requires 

justification that the moving average has been correctly implemented. The use of the 

MATLAB function makes this verification simple. The function does correctly 

implement the moving average equation as listed in Equation 19. 
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4.3.10 Filter Computational Simulation Operational Validation and Prediction 

This computational implementation of the model simply requires taking the moving 

average of the moving force sensor data. Table 9 displays that the force difference was 

significantly reduced. Again, this model will be validated using historical validation data 

from which to drive and assess the simulation. 

 

Table 9. Moving Average Filtering Results 

Sample 

Size 

Load 

(lbf) 

Velocity 

(fps) 

Avg Simulated 

Stationary 

Load (lbf) 

Avg Stationary 

Load Reading 

(lbf) 

Avg 

Force 

Diff (%) 

Std Dev 

% 

20 200 3 217.54 212.0954 2.50% 1.30% 

20 400 11 451.2848 584.0846 5.29% 6.32% 

20 600 15 711.2655 688.8237 3.81% 4.06% 

20 400* 7.8 719.6 588.9165 22.20% 7.31% 

20 600* 7.8 616.4 792.8722 16.31% 11.23% 

*Note:  Carriage Experienced Acceleration of -40 ft/s^2 when pull occurred.   

 

From the results listed in Table 9, it can be seen that the error has been significantly 

reduced. This implies that the moving average does cancel out the high frequency 

signals due to vibration during the impact event. Therefore, this filtering technique can 

be used to provide an accurate representation of the force that is actually being 

experienced at the location of the specimen. 

 

4.4 System Data/Results Processing 

The final step in the methodology, step 9, consists of the collection of all results and data 

taken during the simulation and physical experimentation to draw conclusions on the 
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credibility of the system, which is the ultimate goal of this methodology. From this 

characterization study, the following conclusions can be made about the system: 

 

The maximum velocity is not affected by the track length or the mass of the carriage. 

The acceleration capabilities of the carriage allow the system to achieve top speed within 

2.5 feet, which is less than half of the useable track length.  This top speed is limited by 

the viscous damping and friction within the system. Because it can reach the top speed in 

2.5 feet, increasing the length of the track would provide no significant advantage.  

 

The moving force sensor is significantly affected by the inertial effects of the system and 

registers force data much higher than the force value of interest, especially when the 

impact event is more violent. The two models that addressed these inertial effects 

significantly reduced this force error. Utilizing a moving average with the moving load 

data could be implemented into this force measurement system to automatically remove 

these high frequency events. A mechanical implementation of vibration control 

including the selection of a more vibration-resistive force sensor would greatly reduce 

the error as well [39]. These inertial effects must be addressed before the machine can 

guarantee any sort of accuracy with the dynamic force measurement. 
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6. CONCLUSION 

 

Characterizing a dynamic mechanical measurement system presents many challenges, 

mostly due to inertial effects such as vibration. The transducers implemented in these 

systems are often calibrated under static conditions, therefore the advertised accuracy of 

the transducers are not representative of the system as a whole. This type of system must 

be characterized to determine the performance of the system. A system of this nature can 

typically be tested experimentally, but this does not always explain the physical 

phenomena that may be causing the discrepancy between the measurements. The use of 

models and simulations provides an understanding of the physics of the measurement 

system. However; a simulation can only be trusted once it has been validated. In order to 

validate a simulation, real system data must be provided. The methodology presented in 

this thesis combines modeling and simulation with experimentation for the specific 

purpose of analyzing a dynamic force system.  

 

The foundation for the methodology is derived from the simulation community to 

develop the proposed methodology for addressing measurement systems. The 

verification and validation process developed by Sargent [4] was utilized to generate a 

comprehensive process with the sole purpose of developing measurement system 

credibility. The case study displayed the use of this methodology as a means of 

characterizing a dynamic force measurement system. After the methodology had been 

implemented on the system, the performance limits were identified. Because 
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piezoelectric force sensors are very sensitive to vibration, the study found that more 

violent tests resulted in a larger error. This measurement error was then assessed using 

both physics-based models and a moving average to provide a physics-based explanation 

of what was causing the error.   

 

The primary complications with the methodology are both cost and the ease of system 

modeling. Cost can be defined in terms of both time and money. This methodology 

requires the development of simulations as well as experimental data. This results in the 

need for a facility, personnel, and the appropriate instrumentation. The case study 

assessed in this thesis was performed over the course of six months. This includes the 

design and construction of the experimental configurations.  A high interest in the 

characterization of a system must be expressed for this methodology to be a 

consideration.  

 

Although this methodology was developed for use with a very unique problem, the 

methodology could be expanded to characterize any dynamic system requiring a difficult 

measurement. Additionally, this methodology could be implemented to confirm that 

historical measurement qualification procedures are appropriate with current 

measurement systems.  The knowledge of the governing physics behind these dynamic 

systems would allow engineers to discover flaws in these qualification systems and 

provide a new set of standards if needed. 

 



 

68 

 

The key benefit to this methodology is the comprehensive approach of using both 

experimentation and simulation techniques to explore a system. Further investigation is 

warranted to study how to identify the circumstances for which this methodology would 

be appropriate for use.  A tradeoff study analyzing the benefits of using this 

methodology versus the cost would accomplish this.  
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APPENDIX A 

POSITION, VELOCITY, AND ACCELERATION DATA FROM ENCODER 

The position, velocity, and acceleration data had very little variance within each of the 

five categories of pulls. The following figures display the acceleration, velocity, and 

position graphs representing each set of data. 

3 ft/s 200 lbf coupon data 

 

 

11 ft/s 400 lbf coupon data 

 

 

 

 

 

 

0 0.2 0.4 0.6 0.8 1

-25

-20

-15

-10

-5

0

5

10

15

20

25

Time (s)

A
cc

el
er

at
io

n
 (

ft
/s

2 )

0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

2

2.5

3

Time (s)

V
el

oc
it

y
 (

ft
/s

)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

P
os

it
io

n
 (

ft
)

0 0.2 0.4 0.6 0.8
-100

-80

-60

-40

-20

0

20

40

60

80

Time (s)

A
cc

el
er

at
io

n
 (

ft
/s

2 )

0 0.2 0.4 0.6 0.8
-2

0

2

4

6

8

10

12

Time (s)

V
el

oc
it

y
 (

ft
/s

)

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

P
os

it
io

n
 (

ft
)



 

75 

 

15 ft/s 600 lbf coupon data 
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APPENDIX B 

FORCE DATA FROM ALL EXPERIMENTAL TESTS 

(excluding test 21, 40, 46, 65) 
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APPENDIX C 

DEVELOPMENT OF HPLA INERTIAL VALUES 

The product specification guide for the Parker HPLA180 combines the load being pulled 

by the HPLA with the belt inertia into one inertia value.  The variables needed for this 

inertia calculation are provided in the specifications as follows: 

 Carriage Length (Lcarriage) 

 Total length of track (LProfile) 

 Toothed belt length (LROH)=  (        )                  

 Effective radius of toothed pulley (RA) 

 Stroke of Pull Motion (stroke) 

 Length of toothed belt (LR)=  (      )       

 Mass of toothed belt per meter (mR1M) 

 Mass of toothed belt (mR)=         

 Mass of Carriage (mNL) 

 Additional mass moment of inertia caused by belt mass (JR)=     

    

 Additional mass moment of inertia caused by payload mass (JNL)=

         

 Additional mass moment of inertia (JZ)=         

 

 




