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ABSTRACT

A surface reconstruction and image enhancement non-linear finite element tech-

nique based on minimization of L1 norm of the total variation of the gradient is

introduced. Since minimization in the L1 norm is computationally expensive, we

seek to improve the performance of this algorithm in two fronts: first, local L1-

minimization, which allows parallel implementation; second, application of the Aug-

mented Lagrangian method to solve the minimization problem. We show that local

solution of the minimization problem is feasible. Furthermore, the Augmented La-

grangian method can successfully be used to solve the L1 minimization problem.

This result is expected to be useful for improving algorithms computing digital ele-

vation maps for natural and urban terrain, fitting surfaces to point-cloud data, and

image super-resolution.
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1. INTRODUCTION

1.1 Motivation

In geometric modeling and image reconstruction, one needs to extract a detailed

and accurate surface model from a set of measurements. Namely, given a set of

measured data point in Rd where d = 1,2, one seeks to construct a piecewise smooth

approximation u, that satisfies constraints or fits given data and is suitable in a

certain sense. Intuitively, a suitable approximation appears pleasing to eye and

preserves the shape of the surface. For example, one may want to reconstruct a

convex body if the underlying data comes from a convex object, a flat surface if the

data is locally flat, or preserve a particular structure of the level sets.

This type of problem is sometimes solved by minimizing an L2 norm of the Hessian

or the total variation of the gradient for an approximating spline [1]. It turns out

that minimizing the total variation of the gradient of a smooth function amounts

to minimizing the L1-norm of its second derivatives. The key observation is that

contrary to L2 based methods, using L1-norm in the minimization process produces

oscillation free reconstructions [2]. This especially proves to be valuable when one

deals with noisy data, or with sharp features in a man-made image. Further, for

natural images L1 offers a much sparser representation of the surface, and thus more

suitable for compressing the data.

In this work, rather than using splines, we minimize the total variation of the

gradient of a function constructed on a continuous finite element space satisfying

interpolatory constraints following the approach in [4]. Next section introduces this

approach in detail and discusses its up and down sides.
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1.2 The Model Problem

Consider an open domain Ω in R2. We assume each surface u resides in X which

is defined to be the subspace of W 1,1(Ω) composed of functions whose gradients have

bounded variations:

X ∶= {u ∈W 1,1(Ω) ∣ ∇u ∈ [BV (Ω)]2}. (1.1)

Measurements are given in form of a family of functionals d ∶= {di ∶ i = 1 . . . Ih} that

evaluate u ∈X. Two examples of d are the following: Q-measurements which evaluate

u point-wise such that di(u) = u(xi) for some set of points xi, and S-measurements

which averages u such that di(u) = 1
∣Ti∣ ∫Ti

u(x) for some sub-domain Ti. We are given

data ϖ ∶= {ϖi ∶ i = 1 . . . Ih}, obtained from the surface at hand. We seek to find a

u ∈X such that di(u) are equal to ϖi.

1.2.1 The L1 Minimization Problem

To solve above problem, we require the total variation of ∇u is minimum for u ∈X.

Note that functions in X are not necessarily smooth, and the total variation of ∇u

provides an extension to X and the L1-norm of the Hessian for smooth functions.

It is not clear how to find such a u in general, so we find an approximation. Let

Th be a mesh on Ω composed of open quadrilaterals (or cells). The set of vertices of

Th is denoted by Vh, and the set of interior edges of Th is denoted by Fh. We define

a discretization space Xh, a subspace of X, composed of continuous functions that

are piecewise cubic on the mesh Th:

Xh = {u ∈ C0(Ω) ∶ u∣T ∈ Q3 ∀T ∈ Th}, (1.2)

2



Rather than minimizing the semi-norm ∣∇uh∣BV for uh ∈ Xh, we can minimize an

equivalent semi-norm:

J(uh) = ∑
T ∈Th
∫
T
(∣∂xxuh∣ + 2∣∂xyuh∣ + ∣∂yyuh∣) + α ∑

F ∈Fh

∫
F
∣⟦∂nuh⟧F ∣ , uh ∈Xh, (1.3)

where α > 0 is parameter that controls the importance of achieving a good approxi-

mation across the edges, and ⟦∂n.⟧ is defined to be the jump operator on a face, i.e

for face F between two neighboring cells T and T ′:

⟦∂nu⟧F = (∇u∣T ) ⋅ n − (∇u∣T ′) ⋅ n. (1.4)

Note that the smaller the above functional is, the better a given surface is approxi-

mated.

We are going to consider two cases to handle the measurements:

1. Interpolation. In this case we require to strictly satisfy the constraints imposed

by measurements. We define the solution space Yh to be the subspace Yh ⊂Xh

consisted of the functions that satisfy the measurements exactly

Yh = {uh ∈Xh ∶ di(uh) =ϖi, ∀i = 1 . . . Ih} . (1.5)

We seek to find uh ∈ Yh approximating u such that the following functional is

minimum:

J(uh) = ∑
T ∈Th
∫
T
(∣∂xxuh∣ + 2∣∂xyuh∣ + ∣∂yyuh∣) + α ∑

F ∈Fh

∫
F
∣⟦∂nuh⟧F ∣ , uh ∈ Yh,

(1.6)

2. Relaxation. We may relax the requirement to satisfy the constraints. In this

3



case we use the whole Xh as the solution space (Yh = Xh) and minimize the

following functional:

J(uh) = ∑
T ∈Th
∫
T
(∣∂xxuh∣ + 2∣∂xyuh∣ + ∣∂yyuh∣) + α ∑

F ∈Fh

∫
F
∣⟦∂nuh⟧F ∣

+β
Ih

∑
i

∣di(uh) −ϖi∣, uh ∈ Yh, (1.7)

where β controls how strictly the interpolation conditions are enforced. In this

thesis, β = ∞ means strict interpolation. We define ∆ = 1/Ih∑Ih
i ∣di(uh) −ϖi∣

to be the average constraints satisfaction error.

In any case, one can express the problem as

uh = argminv∈Yh
J(v). (1.8)

1.3 Global L1 Minimization Algorithm

We evaluate 4.10 and 1.7 functionals by replacing the terms of integrals with

quadratures. The approximate functionals will read

Jh(uh) = ∑
T ∈Th L∈{∂xx,2∂xy,∂yy}

∑
(p,ω)∈I(T,L)

ω∣L(uh)(p)∣

+α ∑
F ∈Fh

∑
(p,ω)∈I(F,⟦∂n⟧)

ω∣⟦∂nuh⟧F (p)∣ (1.9)
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for the interpolation case, and

Jh(uh) = ∑
T ∈Th L∈{∂xx,2∂xy,∂yy}

∑
(p,ω)∈I(T,L)

ω∣L(uh)(p)∣

+α ∑
F ∈Fh

∑
(p,ω)∈I(F,⟦∂n⟧)

ω∣⟦∂nuh⟧F (p)∣

+β
Ih

∑
i

∣di(uh) −ϖi∣ (1.10)

for the relaxation case. Here L is one of the linear operators {∂xx,2∂xy, ∂yy} or ⟦∂n⟧.

I(.,L) denotes the indices for the set of quadrature points used for a given cell or

face, and is composed of pairs (p,ω) of points p ∈ R2 and weights ω > 0.

To solve problem numerically, one first needs a matrix formulation of minimiza-

tion problem. Let {ϕi}ni=1 be a basis for Xh and let {(pi, ωi)}mi=1 be an enumeration of

all the quadrature points (and weights) used in the discretization of the functionals

in each case, and let {Li}mi=1 be the collection of linear operators corresponding to

the quadrature rules. Define I(Th) to be indices for the set of all quadratures with

Li ∈ {∂xx,2∂xy, ∂yy} and I(Fh) be the set of all quadrature points with Li = ⟦∂n⟧.

Again we consider two cases:

1. Interpolation. Define:

Âij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ωiLi(ϕj)(pi) i ∈ I(Th)

αωiLi(ϕj)(pi) i ∈ I(Fh),
j = 1, . . . , n. (1.11)

Then the functional Jh can be re-written as:

Jh(uh) = ∣Âx∣1 where x ∈ Rn ∶ uh =
n

∑
j=1

xjϕj, (1.12)

5



We define

Bij = di(ϕj), i = 1 . . . Ih, j = 1 . . . n (1.13)

Then the measurements may be expressed as Ih linear constraints in the form

Bx =ϖ (1.14)

where B is a Ih × n matrix. The minimization is carried out in Yh, hence the mini-

mization becomes

x = argminy∈Rn ∣Ây∣1, subject to By =ϖ (1.15)

To ensure the constraints are always satisfied, we do the following. Let i = 1 . . . Ih.

For each i we can always find a nodal basis (with repetition not allowed) with index

k such that Bik ≠ 0. Denote the mapping that associates the ith measurement with

index k with a, so k = a(i). For all i = 1 . . . Ih we rewrite 1.14 as 1:

xa(i) =
1

Bi a(i)
(ϖ −

n

∑
j=1, j≠a(i)

Bijxj) (1.16)

The set K, defined as K = {k ∣k = a(i), i = 1 . . . Ih}, represents the set of all con-

strained nodal basis that their corresponding value is not directly given by the mini-

mization procedure. Rather, the values of bases indexed by K are computed by 1.16

after the corresponding value of all other nodal bases are determined. This is done

by making the corresponding column to each k ∈K zero in the linear system Âx. We

1We may also need to resolve chains of constraints. For example, one might have x13 = x3/2+x7/2
while x7 = x2/2 + x4/2. Then, the resolution will be x13 = x3/2 + x2/4 + x4/4.

6



form a modified linear system given by matrix A and right hand side b for j = 1 . . . n:

Aj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Âj +∑Ih
i=1

Bij

Bi a(i)
Âa(i) j ∉K

0 j ∈K
j = 1 . . . n (1.17)

b = −
Ih

∑
i=1

ϖ

Bi a(i)
Aa(i) (1.18)

where Âj and Aj denote the jth columns of Â and A respectively. The minimization

problem finally reads:

x = argminy∈Rn ∣Ay − b∣1 (1.19)

Once x is computed2 xk values for k ∈K are discarded, and recomputed by 1.16. In

the very special case of point Q-measurements, matrix B has exactly one 1 in each

row. Thus to update Aj for j ∉K in 1.17, one only needs to make the corresponding

columns in Â zero and form the right hand side b.

2. Relaxation. Define

Aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωiLi(ϕj)(pi), i ∈ I(Th),

αωiLi(ϕj)(pi), i ∈ I(F i
h),

βdi−m(ϕj), i =m + 1, . . . ,m + Ih,

j = 1, . . . , n. (1.20)

and

bi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, i = 0, . . . ,m,

βϖi−m, i =m + 1, . . . ,m + Ih.
(1.21)

2Note that all the minimization methods used in this thesis involve solution of equations of the
form ATAw = z and ATDAw = z. It is easy to see that the elements on the main diagonal of ATA
and ATDA corresponding to k ∈ K are zero. To prevent numerical breakdown one has to reset all
these diagonal elements from zero to one. This ensures the value computed for wk for k ∈ K will
be zero rather than undetermined.
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Then the functional Jh can be re-written as:

Jh(uh) = ∣Ax − b∣1 where x ∈ Rn ∶ uh =
n

∑
j=1

xjϕj, (1.22)

The minimization problem reads:

x = argminy∈Rn ∣Ay − b∣1 (1.23)

In both cases, A is a m × n matrix and m > n. Thus Ay − b for y ∈ Rn is an

over-determined system with no solution. The minimization problem 1.23 does not

have a unique minimizer in general either.

In [4] the above algorithm convergence was established and an Interior Point

method was used to solve the associated linear programming problem 1.23. It was

shown there that the L1-minimization algorithm produces very sharp results, compa-

rable or better than anything else available in the literature. However, one key obser-

vation is that minimization in L1 norm is computationally expensive, and any serious

attempt to use this method should come up with a way to make the minimization

algorithm fast and capable of solving very large problems. We are going to consider

two possible approaches to address this concern: first, local L1-minimization, which

allows parallel implementation; second, use of a different method to solve the mini-

mization problem, namely, the Augmented Lagrangian method. Next three sections

discuss these directions.
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2. L1 MINIMIZATION METHODS

This chapter discusses some of the available methods to solve the discrete mini-

mization problem 1.23.

2.1 Interior Point Method

One way to solve eq. 1.23 is to minimize ∥v∥L1 such that the constraint Au−b−v =

0 is satisfied for a v ∈ Rn. Interior Point method utilizes this idea by applying Newton

method to the resulting linear programming constraints [3]. The step size and direc-

tion of move in this algorithm are chosen so that constraints are satisfies at each itera-

tion. The Interior Point method reads [4]:

1: input: A, b, x, λ; µ, ϵ;

2: r = b −Ax;

3: a = (∣r∣1 − rtλ)/m; yi = ∣ri∣ + a, i = 1, . . . ,m;

4: while (∣r∣1 > (1 + ϵ) rtλ) do

5: t−1 = (yt1 − rtλ)/(2mµ);

6: s1 = y + r; s2 = y − r;

7: d1 = (1 − λ)/(2s1); d2 = (1 + λ)/(2s2);

8: d = 4d1d2/(d1 + d2);

9: v = t−1(s−12 − s−11 ) + (d2 − d1)/(d1 + d2)[1 − t−1(s−11 + s−12 )];

10: w = Atv;

11: ∆x = (Atdiag(d)A)−1w ;

12: v = A∆x;

13: ∆y = [−1 + t−1(s−11 + s−12 ) + (d1 − d2)v]/(d1 + d2);

14: ∆λ = −λ + t−1(s−12 − s−11 ) − (d1 + d2)v + (d1 − d2)∆y;

15: σ =max{τ ∈ (0,2] ∶ −1 ≤ λ + τ∆λ ≤ 1,

9



y + τ∆y ≥ r − τv, y + τ∆y ≥ −r + τv}

16: σ =min{1, 0.99σ};

17: x = x + σ∆x; y = y + σ∆y; r = r − σv; λ = λ + σ∆λ;

18: end while

19: output: x, λ;

2.2 Augmented Lagrangian Method

This method solves the unconstrained problem by introducing a term that mimics

Lagrange multipliers [5]. To derive this method we rewrite the minimization problem

min
u
∥Au − b∥L1 by introducing auxiliary variable v ∶= Au − b. It reads

∥v∥L1 , subject to Au − b − v = 0 (2.1)

Now we consider the Lagrangian

L(u, v, λ) ∶= ∥v∥1 +
µ

2
∥Au − b − v∥22 − ⟨λ, Au − b − v⟩ (2.2)

where λ is a Lagrange multiplier vector, and µ is a parameter chosen suitably. The

dual functional is obtained by minimizing over u and v for fixed λ.

g(λ) = argmin
u,v

L(u, v, λ) =min
u,v
{∥v∥1 +

µ

2
∥Au − b − v∥22 − ⟨λ, Au − b − v⟩} (2.3)

which upon completing the square gives:

g(λ) = argmin
u,v

L(u, v, λ) =min
u,v
{∥v∥1 +

µ

2
∥Au − b − v − λ/µ∥22 −

1

2µ
∥λ∥22} (2.4)

The minimization is performed in two steps:
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1. un+1 = argmin
u

L(u, vn, λn) while vn is kept fixed.

2. vn+1 = argmin
v

L(un+1, v, λn) while un+1 is kept fixed.

Step 1 will be:

un+1 = argmin
u

{µ
2
∥Au − b − vn − λn/µ∥22 −

1

2µ
∥λn∥22} (2.5)

Thus, to find un+1, we just solve the least square problem:

un+1 = (ATA)−1AT (b + vn + λn

µ
) (2.6)

Step 2 reads:

vn+1 = argmin
v

{∥v∥L1 + µ

2
∥Aun+1 − b − v − λn/µ∥2 − 1

2µ
∥λn∥2} (2.7)

Notice that the problem is separable in each coordinate. The minimizer is

vn+1 = S1/µ(Aun+1 − b − λn/µ) (2.8)

where

Sδ(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, ∣u∣ < δ

u − sign(u)δ otherwise

(2.9)

is a shrinkage operator. Finally, for a given u and v, performing gradient descent

method on the dual yields the update on λ:

λn+1 = λn − γµ(Aun+1 − b − vn+1) (2.10)

The iterative scheme to solve the problem can be summarized as follows:
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1: input: A, b, u, µ, λ, γ, ϵ

2: while ∥un+1 − un∥ > ϵ do

3: keep vn fixed, un+1 = (ATA)−1(b + vn + λn

µ )

4: keep un+1 fixed, vn+1 = S1/µ(Aun+1 − b − λn

µ )

5: λn+1 = λn − γµ(Aun+1 − b − vn+1)

6: end while

7: output: u;

Note that contrary to the Interior Point method, the Augmented Lagrangian

method does not offer a stopping criterion based on the error (see line 4 of algorithm

19 and line 2 of algorithm 7).

2.3 Sub-gradient Method

This method is a generalization of the Steepest Descent method in convex op-

timization to non-differentiable convex functions. When the objective functional

is differentiable, the Sub-gradient method uses the same search direction as the

method of Steepest Descent for unconstrained problems. But when the objec-

tive functional is not differentiable, unlike the steepest Decent method the Sub-

gradient method can provide a solution. This method is specially suitable for con-

vex minimization problems with very large number of dimensions, because it re-

quires little storage. For non-differentiable convex f(u) = ∣Au − b∣1, This method

reads:

1: input: A, b, u

2: while ∥un+1 − un∥ > ϵ do

3: gn = AT sign(Aun − b)

4: tn+1 = δ
nγ

5: or

12



6: tn+1 = f(un)−f∗
∣∣gn∣∣22

7: un+1 = un − tn+1gn

8: end while

9: output: u;

where g is in fact sub-gradient of f . Note that similar to the Augmented Lagrangian

method, this method does not provide a stopping criterion based on error.

It is also worth mentioning that the Interior Point method has a proof of poly-

nomial time complexity when linear systems are solved exactly [6]. Although the

Augmented Lagrangian method convergence has been established [7], in general one

cannot truly predict the number of steps this method needs to converge. However,

the lower iteration cost of the Augmented Lagrangian method compared to the In-

terior point method makes it much easier to use in practice.

2.4 Practical Considerations

Note the Interior Point method requires computation of inverse of ATDA (line 11

of 19) where D becomes ill-conditioned over time. To achieve a better performance,

we avoid doing an exact solve, and use the Conjugate Gradient method to compute

this inverse. We might also treat ATDA term in two different ways. One is to

carry out the matrix-matrix products each time and explicitly form a new matrix

B ∶= ATDA and pass B to linear solver, or refrain from doing the multiplication and

only use the matrix-vector product. Recall that implementation of the Conjugate

Gradient method only require the matrix-vector product and not the whole system

matrix. Nevertheless, in former setting, since we have access to matrix B entirely,

we might use more complicated preconditioners based on B structure. In the latter

setting, our choice of preconditioners is limited to whatever can be constructed with

mere knowledge of A and D. In practice, the former setting proves to be more
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efficient.

For an efficient implementation of the Augmented Lagrangian method, one does

not need to use the Conjugate Gradient method to find an approximate solution;

rather, one can form B ∶= AtA once, and compute its LU decomposition B = LU .

Then step 3 of the Augmented Lagrangian algorithm becomes two direct efficient

solves of order O(n2).

Unlike the Interior Point and the Augmented Lagrangian methods, the Sub-

gradient method does not involve any solution of linear system of equations, and it

only requires matrix-vector multiplications. However, since this method requires a

very large number of iterations to converge in our particular application (order of

105 or more) we were not able to effectively use it.
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3. GLOBAL L1-MINIMIZATION RESULTS

3.1 Correctness

In this section we present some basic tests that reproduce the results from [4] and

expand them for the Augmented Lagrangian method.

3.1.1 Surface Reconstruction

This test case demonstrates reconstruction of a piecewise smooth surface based

on point-wise data. Each point-wise value is associated with a Q-measurement of

the surface at hand. The data is obtained from point values of the following function

u(x, y) = f(max{∣x − 1/2∣, ∣y − 1/2∣}), (x, y) ∈ Ω ∶= [0,1]2, (3.1)

where

f(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5/3 r ∈ [0,1/8]

1 r ∈ (1/8,5/16]

16(1/2 − r)/3 r ∈ (5/16,1/2].

(3.2)

Note that u(x, y) is discontinuous at Γ1 = {r = 1/8} and its gradient has jumps across

Γ2 = {r = 5/16} and Γ3 = ({x = y} ∪ {x + y = 1}) ∩ {5/16 ≤ r ≤ 1/2}. The graph of

u looks like an Aztec pyramid (see Figure 3.1). Our goal is to reconstruct a non-

oscillatory approximation of u from point-wise values on a uniform Cartesian mesh

composed of 1/h × 1/h square cells.

Figure 3.1 shows a reconstruction for 1/h = 16. Contrary to the L2 least square

reconstruction the result is smooth yet non-oscillatory.
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Figure 3.1: L1 (left) and L2 surface reconstruction (right) on a 16 × 16 mesh with
Q-measurements, α = 3, and β =∞.

3.1.2 Super-resolution

In these series of test the global L1 minimization algorithm is applied to images.

The goal is to enhance the resolution of an under-resolved or aliased gray-scale im-

ages. Each pixel value in the given image is associated by an S-measurement, and

the resulting constraints are chosen to be exactly satisfied.

Figure 3.2 shows results for the standard Lenna test image. We have down-

sampled the 512×512 gray-scale original image to a 128×128 image by averaging 4×4

pixel blocks, and then the down-sampled image is reconstructed with the proposed

L1 minimization algorithm using the Interior Point and the Augmented Lagrangian

methods on a uniform 128 × 128 mesh. Figure 3.3 shows how the global L1 mini-

mization algorithm performs on another test image. We are going to refer to this

image as the peppers test image. The parameters for the Interior Point method are

ϵ = 0.01, and µ = 10, and the parameters for the Augmented Lagrangian method are

γ = 1, and µ = 10. In each case the resulted images are compared to the standard

bi-cubic reconstruction.
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Figure 3.2: The Lenna test image. Original image (top left); down-sampled image
(top right); standard bi-cubic reconstruction (middle left); global L1-reconstruction
using the Interior Point method (middle right); global L1-reconstruction using
10 steps of the Augmented Lagrangian method (bottom left); and global L1-
reconstruction using the Augmented Lagrangian method reached to the same func-
tional the Interior Point method does (bottom right).
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Figure 3.3: The peppers test image. Original image (top left and top right); stan-
dard bi-cubic reconstruction (middle left); global L1-reconstruction using the Inte-
rior Point method (middle right); global L1 reconstruction using 10 steps of the
Augmented Lagrangian method (bottom left); global L1-reconstruction using Aug-
mented Lagrangian method reached to the same functional the Interior Point method
does (bottom right).

As expected, the average constraints satisfaction error ∆(uh
∗) (where uh

∗ is global

minimizer) was zero for all the tests with interpolatory measurements.
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3.2 Performance Analysis

Tables 3.1 and 3.2 the performance of the Interior Point and the Augmented

Lagrangian methods are compared for the pyramid tests. As usual, the Interior

Point method’s parameters are ϵ = 0.01, and µ = 10, and the Augmented Lagrangian

method’s parameters are γ = 1, and µ = 10. The initial solution in each method

is chosen to be zero. Since the Augmented Lagrangian method does not provide a

specific stopping criterion, the Augmented Lagrangian algorithm in each test case

is iterated until the resulting functional matches to the Interior Point method. We

observe that for this test case, the time Complexity for the Interior Point and Aug-

mented Lagrangian methods are ∼ O(n) and ∼ O(n1.3) respectively.

1/h CPU Time J(uh) IP steps CG steps

16 14.77 80.1941 16 7317

32 45.88 108.9296 15 6070

64 138.08 164.8261 16 6837

128 536.08 275.8485 17 7744

256 2481.13 497.3505 18 8662

Table 3.1: The Interior Point method performance for the pyramid test with Q-
measurements, α = 3, and β = 5
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1/h CPU Time J(uh) AL steps

16 3.02 80.1507 111

32 6.89 108.8750 100

64 25.78 164.7916 103

128 160.74 275.8037 127

Table 3.2: The Augmented Lagrangian method performance for the pyramid test
with Q-measurements, α = 3, and β = 5

Another key observation is that depending on the accuracy required, the Aug-

mented Lagrangian can ben faster. Table 3.3 compares performance of the two

methods for the Lenna test image and different accuracy requirements controlled by

tolerance ϵ defined in 19.

tolerance ϵ 0.5 0.2 0.1 0.01 0.001

Interior Point Method 57.18 136.12 207.46 734.32 3604.47

Augmented Lagrangian Method 60.74 75.04 92.94 278.77 1372.61

Table 3.3: Time required to reach the same functional controlled by ϵ for the Interior
Point and the Augmented Lagrangian methods. Times are in seconds.

Figure 3.4 shows the functional J(uh) reached by the two L1 minimization method

for comparable CPU times in seconds for both the Lenna and the peppers test images.

The very first step of the Augmented Lagrangian takes a relatively long time. This

is due to the LU decomposition performed at the very beginning of this algorithm.
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However, after the first step the Augmented Lagrangian method quickly catches on.

After certain step the Augmented Lagrangian method is more accurate than the

Interior Point method run for a similar time in both test cases. Note that here the

Interior Point method reduces the L1 norm at a relatively slow linear rate. On the

other hand Augmented Lagrangian method reduces L1 norm at an initial relatively

fast rate but they slow down at fine tuning.
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Figure 3.4: J(uh) versus elapsed CPU time for the Lenna (top) and the peppers
(bottom) test images. Red squares and blue triangles represent the Interior point
and the Augmented Lagrangian steps respectively. Consecutive squares and triangles
represent achieved functional in each step of the Interior Point and the Augmented
Lagrangian methods. Since the functional at the very first step of the Interior Point
method is still large the plot is started from the second step for the Interior Point
method in each case. Note that the very first step of the Augmented Lagrangian
method is at 60 seconds mark because this method spends the first 60 seconds com-
puting the LU decomposition.
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4. LOCAL L1-MINIMIZATION AND PARALLELIZATION

In the first chapter we suggested that performing L1 minimization in parallel

is pivotal to any effective use of our reconstruction method. There are two basic

ideas to achieve this goal: First, one can solve the exact global problem in paral-

lel. That is to store the system matrix in parallel, to perform parallel matrix-vector

multiplication and dot product, and to utilize parallel solvers. This option is easy

to implement, and many modern libraries are available (deal.II and Trilinos are two

examples). However, this approach proves to need extensive communication and is

not easy to make scalable. A second idea is to reduce the functional 1.3 by consec-

utive local minimizations rather than by one global minimization. This approach

is partly motivated by the very nature of the functional 1.3 (see figure 4.1). There

are two specific ways to do a local minimization: 1) Decrease the functional by local

steps. This leads to a domain decomposition strategy. That is, instead of computing

the minimizer over the whole domain at once, we divide the domain of interest into

sub-domains and compute local L1 minimizers in each sub-domain. This local L1

minimizing technique is used in a Jacobi or Gauss-Seidel iterative scheme to reach the

global minimizer. This option requires less communication than the first approach,

is suitable to implement on GPUs, and is easier to make scalable. 2) Perform an ap-

proximate L1 minimization in the sense that the functional is only decreased locally

in each step. This means the overall functional might not necessarily decrease in

each step, but certain local functionals defined on local sub-domains do. This option

requires even less communication, and expected to be the most scalable.
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Figure 4.1: The functional 4.10 localization for the initial Q3 interpolation of the
Lenna test image prior to any minimization. Warmer colors represent a larger value.
Notice the localized nature of the functional.

Note that it is not at all clear that the global minimization problem introduced

in previous section is equivalent to these domain specific local minimizations. How-

ever, we conjecture that for certain classes of surfaces u (possibly piecewise linear),

the global and local minimization problems are equivalent. A formal statement of

this conjecture is as follows. Consider the L1 minimization problem defined in first

chapter. We seek a u ∈ X that reconstructs a surface based on a set of measure-

ments. Consider the continuous approximation space Xh
c where the original global

minimization problem was defined on

Xh
c = {u ∈ C0(Ω) ∶ u∣T ∈ Q3 ∀T ∈ Th} (4.1)

The solution space was defined

Yh
c ⊂Xh

c = {u ∈Xh
c ∶ di(u) =ϖi ∀i} (4.2)
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for the interpolation, and Yh
c = Xh

c for the relaxation case. Let P1 ∶ X → Xh be a

set valued mapping from u to the set of all minimizers of the global minimization

problem. Define the discontinuous space Xh
d as

Xh
d = {u ∈W 1,1(Ω) ∶ u∣T ∈ Q3 ∀T ∈ Th} (4.3)

Also define discontinuous solution space as

Yh
d ⊂Xh

d = {u ∈Xh
d ∶ di(u) =ϖi ∀i} (4.4)

for the interpolation, and Yh
d = Xh

d for the relaxation case. Now consider a new

minimization problem in the discontinuous solution space Yh.

uh
d = argminv∈Yh

d J(v) (4.5)

where J is the familiar functional defined in the first chapter. Let P2 ∶ X → Xh be

a set valued mapping from u to the set of all minimizers of this new minimization

problem. Here, the minimization in discontinuous solution space represents any local

minimization that might produce a solution uh
d with discontinuities between local

domains. We conjecture that for a suitable u there exists an operator O ∶Xh
d →Xh

c,

such that

∣∣u −OP2u∣∣L1 ≤ C ∣∣u −P1u∣∣L1 (4.6)

where C > 0 is a constant, and the operator O ∶ Xh
d → Xh

c produces a continuous

solution from discontinuous one by suitable averaging, etc (see diagram below).
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X
P1Ð→ Xh

c

↓ P2

Xh
d OÐ→ Xh

c

Finally, notice that it is not clear if certain stopping criterion in a local mini-

mization algorithm is actually equivalent to the same stopping criterion for global

problem. Since in practice one can hardly distinguish between consecutive iterations

of the local minimization algorithm, we define convergence for the local algorithm as

Jh(uh) − Jh(u∗h)
Jh(u∗h)

< 0.01 (4.7)

where u∗h is a global minimizer.

4.1 Domain Decomposition

For sake of simplicity first assume the domain Ω is partitioned into two sub-

domains Ω1 and Ω2 (which consist of multiple cells), and a closed interface I is

separating them (See figure 4.2).
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Figure 4.2: Decomposition into two domains and resulting sub-problems.

Let T i
h be meshes on Ωi composed of open quadrilaterals (or cells) for i = 1,2. The

set of interior edges of Ωi are denoted by F i
h. Let {ϕj}n̂j=1 be a basis for Xh. Let {ϕ1

j}

and {ϕ2
j} be respectively the basis elements in {ϕi} that are compactly supported in

Ω1 and Ω2, and {ϕI
j} the elements that have a support in both Ω1 and Ω2. Then any

uh ∈Xh can be expressed as

uh =
n̂

∑
j=1

xjϕj =∑x1
jϕ

1
j +∑x2

jϕ
2
j +∑xI

jϕ
I
j = uh

1 + uh
2 + uh

I . (4.8)

where uh
1 ∶= ∑x1

jϕ
1
j , uh

2 ∶= ∑x2
jϕ

2
j , and uh

I ∶= ∑xI
jϕ

I
j . In other words, we decomposed

uh into a part that is not zero only on Ω1, one that is not zero only in Ω2, and a part
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on the interface of the domains (4.2). Then the functional (4.10) can be written as

J(uh) = J1(u1
h + uI) + J2(u2

h + uI) + ∫
I
∣⟦∂n(u1

h + u2
h + uI

h)⟧∣ , (4.9)

where

Ji(ui
h + uI) = ∑

T ∈T i
h

∫
T
(∣∂xx(ui

h + uI
h)∣ + 2∣∂xy(ui

h + uI
h)∣ + ∣∂yy(ui

h + uI
h)∣)

+ α ∑
F ∈Fi

h

∫
F
∣⟦∂n(ui

h + uI
h)⟧∣ , i = 1,2

Rather than minimizing the functional (1.3) globally, we try to find the best u1
h

and u2
h in their respective domains as follows

1: Initialize uh

2: while desired error reached do

3: Form u1
h, u

2
h, and uI

h from uh

4: Fix u2
h,

compute u1
h
∗+uI

h

∗ = argminu1
h
,uI

h
J1(u1

h+uI)+J2(u2
h+uI)+∫I ∣⟦∂n(u1

h + u2
h + uI

h)⟧∣

5: uh = u1
h
∗ + u2

h + uI
h

∗

6: Form u1
h, u

2
h, and uI

h from uh

7: Fix u1
h,

compute u2
h
∗∗+uI

h

∗∗ = argminu2
h
,uI

h
J1(u1

h+uI)+J2(u2
h+uI)+∫I ∣⟦∂n(u1

h + u2
h + uI

h)⟧∣

8: uh = u1
h + u2

h
∗∗ + uI

h

∗∗

9: end while

One may use the global algorithm developed in last section to perform step 4 and

7 in parallel. First consider step 4. Let K be the two cells layer in Ω2 adjacent to

the interface of two sub-domains Ω1 and Ω2 (See figure 4.2). Since we assume u2
h is

28



fixed in step 4, (u2
h + uI) which is computed on Ω2, is fixed everywhere other than

K, the two cell layer adjacent to the interface of two sub-domains. Thus there is no

need to consider the whole Ω2 to compute J2(u2
h + uI) in step 4, and it suffices to

only perform the minimization on the interface I as well as in K. There are going to

be two set of measurement functionals involved in step 4. 1) A set of measurements

inside Ω1, and on I capturing the given data. 2) A set of Q-measurements imposing

the uh nodal values strictly on the ghost layer intended to make sure what minimized

is the functional J . This set of measurements require the value of any node which is

on the two cell layer K and not on I, to be set by a Q-measurement from u2
h (which

is fixed during step 4). One can apply the global minimization algorithm to Ω1 along

with the ghost layer with these two set of measurements to find the minimizers u1
h
∗

and uI
h

∗
.

A similar argument applies to step 7 and computation of J1(u1
h +uI). Step 7 can

be done by considering a two cells ghost layer, introducing two set of measurements,

and applying the global minimization algorithm.

Note that in above example the sub-domains are visited by a Gauss-Seidel sweep

to ensure the functional at each step is strictly smaller than the step before. In

practice a red-black Gauss-Seidel or a Jacobi sweep may be used at the expense of loss

of this property. Further, in case of interpolatory S-measurements, when the solution

for a local minimization is used to update the global solution uh, the end result is

inevitably not going to satisfy the measurement constraints. Indeed, whenever a cell

is updated such that it strictly satisfy an S-measurement the neighboring untouched

cells are going to be altered and lose their interpolatory properties. Hence, unlike the

global L1 minimization, the interpolatory S-measurement are not going to be strictly

satisfied by the end of each iteration of a local minimization. However, all the local

minimization algorithms introduced in this thesis are able to decrease the average
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constraints satisfaction error ∆ introduced in the first chapter in each iteration. The

choice of the initial solution does not matter either. The initial uh in our method

was the Q3 interpolation of the surface defined by given data. Since this particular

choice does not satisfy S-measurements one might think that using an initial solution

which is corrected to strictly satisfy the S-measurements might help. However, the

domain decomposition algorithm was able to quickly decrease the rather large initial

constraint satisfaction error of the initial Q3 interpolation to a small value.

Generalization of above algorithm to p domains is straightforward. One again

needs to consider a two cell layer around each domain, and mark the points inside

the layer that are not on the interface as measurement points. The measured value

for these point should be communicated from neighboring domains.

The local minimization algorithms can be implemented in parallel. In a parallel

setting the local sub-problems are solved concurrently on different processors, and

the final result is communicated between the processors afterwards. To measure the

performance of a parallel code the speed-up is defined to be Sp = T /Tp where T is the

best solution time the sequential code can achieve, and Tp is the time the parallel

code with p processors requires to solve the problem.

4.1.1 Possible Unwanted Oscillations

The above construction is not always guaranteed to converge to the correct min-

imizer when interpolatory Q-measurements are used. To illustrate this point con-

sider the following example on a one dimensional uniform mesh Th on [0,1]. Let

Xh = {u ∈ C0(Ω) ∶ u∣T ∈ Q3 ∀T ∈ Th}. Define

J(uh) = ∑
T ∈Th
∫
T
∣∂xxuh∣ + α

3

∑
i=1
∣⟦∂nuh⟧(xi)∣ , uh ∈Xh, (4.10)
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where xi = i/4, i = 0 . . .4. Find function uh ∈ Xh such that J(uh) is minimized and

uh(xi) = f(xi) where f(x) ∶= 1 for x > 1/2 and f(x) ∶= 0 for x ≤ 1/2 (figure 4.3). Let

{ϕj}j=0..12 be the nodal basis for the Q3 finite space. Then uh can be expressed as

uh = ∑13
j=1 ajϕj. We apply the domain decomposition algorithm to this problem by

considering Q-measurements at each node and decomposing Ω = [0,1] into 2 equal

sub-domains Ω1 and Ω2, and setting the interface at I = 1/2. Consider step 4 of the

domain decomposition algorithm where we perform the minimization at Ω1 while we

keep Ω2 fixed. It is easy to see that for the minimizer u1
h
∗ = ∑5

j=1 a
∗
jϕj, the nodal

value a∗5 might be non-zero because the minimization algorithm is forced to make

u(x2) = 0, and consequently depending on α value it might choose to make the jump

term small rather than the second derivative term.

Figure 4.3: Application of the domain decomposition algorithm to one dimensional
reconstruction on a mesh comprised of four cells and two sub-domains. This figure
illustrates the minimization on Ω1 while the solution is kept fixed in Ω2. Solid points
represent fixed nodal values, while hollow points represent the nodal values to be
determined by the minimization algorithm. Degrees of freedoms are indexed from 0
to 12.

This simple example clearly shows how overshoots and undershoots can happen

when interpolatory Q-measurements are used. These oscillations are an inherent

property of above algorithm, and will not be removed by doing additional iterations.

Rather, these oscillations are going to be communicated to neighboring sub-domains

in the next iteration of the domain decomposition algorithm and make the algorithm
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eventually unstable. However, a key observation is that these oscillations only occur

when boundary of two domains meet a discontinuity, and they are located at the

cell adjacent to the boundary. Thus instead of considering a layer of two cell wide

K, it is reasonable to allow a larger K comprised of two parts, K1 a layer of one

cells in Ω2 right next to I, and K2 an outer layer of two cells (see figure 4.4). In K2

every nodal value is fixed similar to the original domain decomposition algorithm,

but in K1 the degree of freedoms are not fixed and they are allowed to be determined

by local minimization algorithm. Since oscillations will potentially happen in K1, at

each iteration we simply discard the computed solution in K1 and replace it by values

from Ω2. Hence, the continuity condition is kept intact while unwanted oscillations

are avoided.

Figure 4.4: Application of the domain decomposition algorithm with four sub-
domains. Figure illustrates the minimization on Ω1 while the solution is kept fixed in
the other domains. Note the extended overlaps K1, and K2, as well as the interface
I. A diagram shows where the jump might happens.

One might relax the continuity condition by prescribing a penalty βghost for inter-

polation on the ghost layer. This might also help to avoid unwanted oscillations at
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boundary of two domains. When S-measurements are used this unwanted oscillation

are not an issue. Our tests show that an optimal configuration for interpolatory

S-measurements is I and K2 to be 1 and 2 cells wide respectively, and K1 is omitted.

4.2 Approximate Local L1 Minimization

For sake of simplicity first consider a domain composed of only two sub-domains

(which consist of very few or even only one cell). A closed interface I is separating

the two sub-domains. There is also a layer of ghost cells enclosing the original domain

which its values are copied from the exterior cells on the original domain. Denote the

two sub-domains by Ω1 and Ω2. (See figure 4.5). Let {ϕj}n̂j=1 be a basis for Xh. Let

I(Ωi) the indices for basis functions with non-zero support on Ωi, and Iadj(Ωi) be the

indices for basis functions with non-zero support on adjacent cells to Ωi excluding

those in I(Ωi) for i = 1,2. Then any uh ∈Xh can be decomposed into two parts:

uh =∑
j

xjϕj = ∑
j∈I(Ωi)

xjϕj + ∑
j∈Iadj(Ωi)

xjϕj =∶ wi +wi
adj (4.11)
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Figure 4.5: Approximate local L1 minimization with two domains and resulting sub-
problems.

Let T i
h be the set of meshes on Ωi composed of open quadrilaterals (or cells) for

i = 1,2. The set of all edges of Ωi (including exterior ones) is denoted by F̃ i
h. We

Define a new approximate functional Ki for each domain Ωi as

Ki(uh) = ∑
T ∈T i

h

∫
T
(∣∂xxuh∣ + 2∣∂xyuh∣ + ∣∂yyuh∣)+α ∑

F ∈F̃i
h

∫
F
∣⟦∂nuh⟧F ∣ , uh ∈Xh, (4.12)

Now instead of minimizing the functional (1.3) globally, we seek to minimize each

Ki individually as follows

1: Initialize uh = ∑j xjϕj

2: while desired error reached do

3: Form vih ∶= ∑j y
i
jϕj, by setting

yii = xj for j ∈ I(Ωi) ∪ Iadj(Ωi)

yij = 0 otherwise.
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4: Decompose vih as vih = wi +wi
adj

5: For i = 1,2, fix wi
adj,

compute vih
∗ = ∑j y

i
j
∗
ϕj = wi∗ +wi

adj = argminwi Ki(wi +wi
adj)

6: Form u∗h ∶= ∑j x
∗
jϕj by setting

x∗j = yij
∗
for j ∈ I(Ωi)/Iint for i = 1,2

x∗j = 1
2(y1j

∗ + y2j
∗) for j ∈ Iint

x∗j = xj otherwise.

7: end while

To perform step 5 in parallel one can use the global algorithm developed in last

section for i = 1,2. Similar to the Domain Decomposition algorithm there are going

to be two set of measurement functionals involved. 1) A set of measurements inside

Ωi and on I capturing the given data. 2) A set of Q-measurements imposing the uh

nodal values on the ghost layer. The latter set of measurements require values of all

nodes on the ghost layer to be set from wi
adj. One can apply the global minimization

algorithm to Ω1 along with the ghost layer with these two set of measurements to

find the minimizers vih
∗
and update the minimizer u∗h accordingly.

Since Ωi’s are small, and the Augmented Lagrangian method offers much better

performance for smaller domains, a fixed number of the Augmented Lagrangian

iterations can be used to solve the associated L1 minimization problem at the expense

of loss of some accuracy. Improvements in accuracy of resulting reconstruction can

be deferred to further iterations of above algorithm to a great extent. However, there

is a lower bound for the number of steps that can be used, and if one uses less, the

approximate local algorithm will not produce an acceptable result.

Note that in above example the sub-domains are visited by a Jacobi sweep. This

method does not guarantee that J is decreased at each step and it only decreases

the approximate local K functionals. Moreover, although this algorithm is not going
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to strictly satisfy the interpolatory S-measurements by end of each iteration, similar

to the domain decomposing algorithm, it is capable of decreasing the constraints

satisfaction error ∆.

Again, generalization of above algorithm to p domains (and p processors) is

straightforward. One needs to consider a layer around each domain, and mark the

points inside the layer that are not on the interface as measurement points.

Also notice that if the ghost layer is more than one cell wide, this algorithm is

effectively a variation of the domain decomposition algorithm with small domains.

One can relax the interpolatory constraints at the ghost layer by prescribing a

penalty βghost for interpolation. This might help the approximate local algorithm to

achieve lower functionals. However, our numerical tests show this approach increases

the constraints satisfaction error ∆ significantly and slows down the algorithm. Fur-

thermore, use of the different sweep (for example Gauss Seidel) can lead to end

results with better functional and constraints satisfaction error.
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5. LOCAL L1 MINIMIZATION RESULTS

In this chapter we are going to consider the Lenna and the peppers test images,

and the pyramid test introduced in chapter 3. For the Lenna test image, we again

down-sample the 512 × 512 gray-scale original image to a 128 × 128 image by aver-

aging 4× 4 pixel blocks. The down-sampled image is reconstructed with the domain

decomposition 4.1 and the approximate local 4.2 algorithms introduced in previous

chapter on a uniform 128 × 128 mesh. For the peppers test image, the local recon-

struction algorithms are used to enhance the resolution of a low resolution 128×128

image to a 512×512 one.

Two different methods are available to solve the local problems. The Interior

point and the Augmented Lagrangian methods are both used and their performance

is compared to the global algorithm. For the reference the global L1 minimization

algorithm was able to achieve J(u∗h) = 4848.47 in 2207.1 seconds for the Lenna test

image, and J(u∗h) = 1581.13 in 1219.7 seconds for the pepper test image with ϵ = 0.01,

and µ = 10. The domain decomposition algorithm should reach a functional as low

as (1+0.01)J(u∗h) to meet the convergence criterion 4.7. It must effectively decrease

the constraints satisfaction error too.

5.1 The Domain Decomposition Algorithm

5.1.1 Correctness

In these series of tests the given 128 × 128 image is decomposed into 64 sub-

domains of size 16 × 16 and each domain is solved in parallel in a Jacobi scheme.

Similar to chapter 3 data is given as interpolatory S-measurements. I is two cells

wide, K1 is zero cells wide, andK2 is two cells wide. For the Lenna test, five different

experiments are conducted: 1) an Interior Point solver with ϵ = 0.01, and µ = 10; 2)
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an Interior Point solver with ϵ = 0.05, and µ = 10; 3) an Augment Lagrangian solvers

with γ = 1, and µ = 10 run for 10; 4) an Augment Lagrangian solvers with γ = 1, and

µ = 10 run for 100 steps; 5) an Augment Lagrangian solvers with γ = 1, and µ = 10

run for 500 steps. For the peppers test, the experiments 1 and 4 are reported.

Table 5.1 shows for the Lenna test the functional, the average constraints sat-

isfaction error, and the accumulative time required by the parallel code after each

iteration when the Interior Point solvers are used. These results show that the domain

decomposition algorithm converges in sense of inequality 4.7 in the third iteration

for local solves with ϵ = 0.01, and in the fourth iteration for local solves with ϵ = 0.05.

Hence, the speed-up for 64 processors is S64 = 2207.1
43.67 = 50.5 and S64 = 2207.1

19.86 = 111.1

in the two cases respectively. In both cases, the domain decomposition algorithm

is also able to reduce the constraints satisfaction error from roughly 7.4 × 10−3 for

the initial Q3 interpolation to approximately 10−5. These results reveal that one

gains impressive speed-ups by fast but less accurate solution of local sub-problems in

the domain decomposition algorithm. The lost accuracy can be compensated with

a few more iterations. This also reconfirms that the same stopping criterion is not

equivalent for local and global minimizations.

Note that these speed-up figures are conservative, as we obtain them by perform-

ing at least one more Jacobi iteration than one typically needs in practice (see figure

5.1).
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The Interior Point method with ϵ = 0.01

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n 1 5936.26 0.000176 11.05

2 4928.40 0.000021 26.87

3 4871.51 0.000009 43.67

The Interior Point method with ϵ = 0.05

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n

1 5997.77 0.000180 3.67

2 4953.41 0.000021 10.14

3 4890.23 0.000008 14.64

4 4878.04 0.000004 19.86

Table 5.1: Results of the domain decomposition algorithm for the Lenna test image
using the Interior Point method. Boxes indicate converge in sense of 4.7.

Table 5.2 shows a similar result for the Augmented Lagrangian solvers. These

results reveal that the domain decomposition algorithm does not converge in sense

of 4.7 when the local Augmented Lagrangian solvers are not run for enough num-

ber of steps. Nonetheless, the results from even very few steps of local Augmented

Lagrangian solutions might be pleasing enough to eye for most super-resolution ap-

plications (figure 5.1).
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10 steps of the Augment Lagrangian method

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n

2 5105.16 0.000022 6.75

3 5060.54 0.000011 8.57

10 5044.15 0.000008 17.95

16 5042.31 0.000008 27.13

100 steps of the Augment Lagrangian method

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n

2 4975.05 0.000024 10.65

3 4932.73 0.000012 14.15

10 4907.77 0.000004 38.31

16 4906.15 0.000004 58.42

500 steps of the Augment Lagrangian method

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n

2 4963.35 0.000024 20.48

8 4898.4989 0.000006 73.13

9 4895.6053 0.000005 80.08

10 4886.43 0.000005 91.21

Table 5.2: Results of the domain decomposition algorithm for the Lenna test image
using the Augment Lagrangian method.
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Figure 5.1: The Lenna test image. Down-sampled image (top left); global L1-
reconstruction using the Interior Point method with ϵ = 0.01 (top right); third Jacobi
iteration of the domain decomposition algorithm using the Interior Point method
with ϵ = 0.01 (middle left); third Jacobi iteration of the domain decomposition al-
gorithm using the Interior Point method with ϵ = 0.05 (middle right); third Jacobi
iteration of the domain decomposition algorithm using the Augmented Lagrangian
method run for 10 steps (bottom left); third Jacobi iteration of the domain decompo-
sition algorithm using the Augmented Lagrangian method run for 100 steps (bottom
right).

Table 5.3 shows the functional and the accumulative time required by the parallel
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code after each iteration for two set of experiments for the peppers test. These results

reveal that while the domain decomposition algorithm always converges when the

Interior Point method is used for local minimization, it might fail to converge when

the Augmented Lagrangian method is used. In fact, our tests show that the number of

steps the Augmented Lagrangian method is run in each sub-domain hardly matters.

The domain decomposition algorithm fails to converge for this test even if the local

Augmented Lagrangian solvers are run for 2000 steps. Yet again, the final image

is hardly distinguishable from the result of the global minimization algorithm (See

figure 5.2). The failure to converge in this case can be attributed to the imbalance

between the accuracy of local Augmented Lagrangian solutions. The Augmented

Lagrangian method does not provide a real stopping criterion based on the error,

and running it for a fixed number of steps at each local domain might leads to vastly

different degrees of accuracies in each domain. This possibly hinders the domain

decomposition algorithm overall convergence. For this very reason we are going to

conduct the performance analysis of the domain decomposition algorithm only using

the Interior Point method.

The speed-up in this test is impressive too. The domain decomposition algorithm

converges in sense of inequality 4.7 in the third iteration for local Interior Point solves

with ϵ = 0.01, and in the fourth iteration for local solves with ϵ = 0.05. Thus the

speed-ups for 64 processors are S64 = 1219.7
31.16 = 39.1 and S64 = 1219.7

19.27 = 63.3 in the two

cases respectively. In both cases, the domain decomposition algorithm is also able

to reduce the constraints satisfaction error from roughly 3.8 × 10−3 for the initial Q3

interpolation to approximately 10−6.

42



The Interior Point method with ϵ = 0.01

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n 1 2175.73 0.000091 7.70

2 1615.28 0.000009 18.62

3 1590.49 0.000003 31.16

The Interior Point method with ϵ = 0.05

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n

1 2199.76 0.000093 3.34

2 1625.83 0.000009 8.62

3 1597.05 0.000003 13.91

4 1592.02 0.000001 19.27

100 steps of the Augment Lagrangian method

J(uh) ∆(uh) Wall Time (s)

It
er
at
io
n

2 1671.17 0.000011 9.94

3 1754.43 0.000008 12.92

10 1732.65 0.000004 31.55

16 1731.82 0.000004 48.51

Table 5.3: The domain decomposition algorithm for the peppers test
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Figure 5.2: The peppers test. Original image (top left); global L1 reconstruction
using the Interior Point method with ϵ = 0.01 (top right); third Jacobi iteration of
the domain decomposition algorithm using the Interior Point method with ϵ = 0.05
(bottom left); third Jacobi iteration of the domain decomposition algorithm using
the Augmented Lagrangian method run for 100 steps (bottom right).

5.1.2 Parallel Code Performance Analysis

5.1.2.1 Experimental Setup

The parallel code was run on Brazos, a computing cluster at Texas A&M Univer-

sity. The computing power of Brazos comes from 172 computing nodes, each with

two quad core Intel Xeon (Harpertown) or AMD Opteron (Shanghai) processors run-

ning at 2.5GHz with 16 to 32GB per node. Total peak performance is about 13.8

TFlops. There are a total of 300 nodes, 2400 cores, over 8TB of memory and a peak

performances of 24 TFlop. The compute nodes and servers of Brazos are connected

internally via a Hewlett Packard switch, with Gigabit Ethernet connections to each

compute node and 10GbE connections to the login node and the data file-server.
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There are some nodes connected via faster DDR infiniband too. Our test runs are

limited to applications with p < 8 × 32 = 256.

5.1.2.2 Scaling

To investigate the weak and strong scaling of the domain decomposition algorithm

we consider the pyramid test introduced in the first chapter. The test is performed

for mesh sizes h = 1/64,1/96,1/128,1/256 and number of processors p = 64,144,256.

Q-measurements are used, with α = 3 β = 5, and βghost = 4. The Interior Point method

with ϵ = 0.01, and µ = 10 is used to solve each local sub-domain. The speed-up is

computed by comparing the run times with that of the global L1 minimization using

an interior point solver with identical parameters. This means the speed-up figures

is very conservative, because one can always improve the speed-up by performing

less accurate local minimizations and deferring better accuracy to more iterations.

Table 5.4 shows speed-ups for different mesh sizes and number of processors. The

parallel code is able to achieve the strong and the weak scalings for the pyramid

surface reconstruction test.

Mesh Size 1/h

64 96 128 240

p

64 45.8 52.3 60.6 25.9

144 57.9 79.1

256 63.2 131.2

Table 5.4: Speed-up for different mesh sizes and number of processors.

The domain decomposition algorithm also scales strongly in case of the Lenna
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test image (table 5.5).

p Speed-up

16 14

64 48

256 150

Table 5.5: Speed-up for the Lenna test image for different number of processors.

5.2 The Approximate Local Algorithm

In these series of tests the approximate local algorithm 4.2 is applied to a 128 ×

128 image in several different settings. For the Lenna test image, five different

experiments are conducted: 1) 1× 1 local domain with a one cell interpolatory ghost

layer; 2) 1 × 1 local domain with a one cell relaxed ghost layer with βghost = 4; 3)

1 × 1 local domain with a 2 cells interpolatory ghost layer; 4) 2 × 2 local with a one

cell interpolatory ghost layer. For brevity, only experiment 1 is conducted for the

peppers test image.

Each case is solved using two different methods: an Interior Point solver with

ϵ = 0.01, and µ = 10, and an Augment Lagrangian solver with γ = 1, and µ = 10 run

for 25 iterations. The Gauss-Seidel red-black sweep is used in all cases. The criterion

for convergence is the same as the one used for the domain decomposition algorithm.

Table 5.6 shows the functional and the average constraints satisfaction error after

each iteration for the Lenna test image for different configurations with a 1× 1 local

domain. Table 5.7 shows the same result when a larger 2 × 2 local domain is used.

Figure 5.3 features some of the final images produced in experiments.
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1 × 1 local domain with a one cell interpolatory ghost layer

The Interior Point method The Augmented Lagrangian method

J(uh) ∆(uh) J(uh) ∆(uh)

It
er
at
io
n

2 7864.57 0.001317 7980.37 0.002425

4 5462.98 0.000219 5609.17 0.000144

10 5104.90 0.000124 5273.51 0.000035

20 5018.80 0.000110 5226.21 0.000024

1 × 1 local domain with a one cell relaxed ghost layer

The Interior Point method The Augmented Lagrangian method

J(uh) ∆(uh) J(uh) ∆(uh)

It
er
at
io
n 2 6143.16 0.004159 6431.09 0.003810

10 4918.50 0.001075 4989.04 0.001556

11 4877.85 0.001056 4971.47 0.001548

1 × 1 local domain with a two cells interpolatory ghost layer

The Interior Point method The Augmented Lagrangian method

J(uh) ∆(uh) J(uh) ∆(uh)

It
er
at
io
n

2 8023.88 0.001409 8120.94 0.001408

4 5542.19 0.000335 5709.70 0.000373

10 5178.71 0.000241 5320.12 0.000251

20 5097.93 0.000231 5282.34 0.000244

Table 5.6: Results of the approximate local algorithm for the Lenna test image when
1 × 1 local domains are used.
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2 × 2 local domain with a one cell interpolatory ghost layer

The Interior Point method The Augmented Lagrangian method

J(uh) ∆(uh) J(uh) ∆(uh)

It
er
at
io
n

2 11082.13 0.001263 11201.99 0.001256

4 6509.28 0.000304 6664.91 0.000319

10 5293.61 0.000081 5484.58 0.000104

20 5108.69 0.000045 5325.78 0.000063

2 × 2 local domain with a one cell relaxed ghost layer

The Interior Point method The Augmented Lagrangian method

J(uh) ∆(uh) J(uh) ∆(uh)

It
er
at
io
n 2 7020.32 0.004415 7192.79 0.004274

4 5422.19 0.002258 5564.18 0.002186

10 4990.29 0.000808 5123.67 0.000999

20 4897.80 0.000650 5075.55 0.000917

Table 5.7: Results of the approximate local algorithm for the Lenna test image when
2 × 2 local domains are used.
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Figure 5.3: The Lenna test image. Down-sampled image (top left); global L1-
reconstruction using the Interior Point method with ϵ = 0.01 (top right); fourth
iteration of the approximate local algorithm for a 1 × 1 local domain with a one
cell interpolatory ghost layer using an Augmented Lagrangian solver (middle left);
tenth iteration of the approximate local algorithm for a 1 × 1 local domain with a
one cell interpolatory ghost layer using an Augmented Lagrangian solver (middle
right); tenth iteration of the approximate local algorithm for a 1 × 1 local domain
with a one cell relaxed ghost layer using an Interior Point solver (bottom left); tenth
iteration of the approximate local algorithm for a 1× 1 local domain with a two cells
interpolatory ghost layer using an Interior Point solver (bottom right).
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Table 5.8 shows the functional and the average constraints satisfaction error after

each iteration for a 1× 1 local domains with an interpolatory one cell ghost layer for

the peppers test image. Figure 5.4 features the final images produced in conducted

tests.

The Interior Point method The Augmented Lagrangian method

J(uh) ∆(uh) J(uh) ∆(uh)

It
er
at
io
n

2 3399.18 0.000703 3473.61 0.000713

4 1844.88 0.000052 1930.72 0.000062

10 1673.93 0.000008 1811.96 0.000011

20 1645.38 0.000003 1810.76 0.000009

Table 5.8: Results of the approximate local algorithm for the peppers test image.
Here a 1 × 1 local domain with an interpolatory 1 cell ghost layer is used.
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Figure 5.4: The peppers test image. Original image (top left); global L1 reconstruc-
tion using the Interior Point method with ϵ = 0.01 (top right); fourth iteration of the
approximate local algorithm for a 1 × 1 local domain with a one cell interpolatory
ghost layer using an Augmented Lagrangian solver (bottom left); tenth iteration of
the approximate local algorithm for a 1×1 local domain with a one cell interpolatory
ghost layer using an Augmented Lagrangian solver (bottom right).

These results reveal that the approximate local algorithm 4.2 (with smaller do-

mains) is inherently not as accurate as the global algorithm. Not only is the ap-

proximate local algorithm not capable of finding a minimizer with a functional value

as small as the global algorithm, but also it cannot converge in sense of inequality

4.7. However, for most images the resulting reconstruction is indistinguishable from

the global one in the ’eye norm’, and is visually pleasing even after only a few iter-

ations. Furthermore, relaxing the ghost layer constraints might lead to a too large

average constraints satisfaction error, and might be unfavorable. Finally, our tests

show that the Augmented Lagrangian Method can successfully be used to solve the

local minimization problems at the expense of hardly recognizable loss of accuracy.
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5.3 The Aliasing Effect

We hypothesize that the inability of the approximate local algorithm to converge

is due to “the aliasing effect”. That is since the high frequency ingredients in the

test images are of comparable length to the local domain size, the algorithm is not

able to perform an effective reconstruction. To investigate this hypothesis, we con-

sider a 256 × 256 gray-scale aliased image, and down-sample it to a 64 × 64 image

by averaging 4 × 4 pixel blocks (see 5.5). The down-sampled image is reconstructed

using all the algorithms proposed in this thesis and the final results are compared.

Since in this section we are only interested in discerning how ultimately an algo-

rithm can handle an aliased image, we use a more accurate setting for each test. The

global L1 minimization is performed using an Interior Point solver with ϵ = 0.01, and

µ = 10. The domain decomposition and the approximate local algorithms use an

Interior Point local solver with ϵ = 0.01, and µ = 10. For the domain decomposition

algorithm I and K2 are chosen to be 1 and 2 cells wide respectively, K1 is omitted,

and the original domain is decomposed into sixty four 8 × 8 sub-domains. The end

result is reported after 4 and 20 iterations for the domain decomposition algorithm,

and after 10 iteration for the approximate local algorithm. To see if the inability of

the approximate local algorithm to converge is related to comparable sizes of image

features and local domains the algorithm is run with different local domains sizes.

Table 5.9 shows the functional and the average constraint satisfaction error after

each iteration in all different cases. While the domain decomposition algorithm is

able to ultimately reach a functional comparable to the global L1 minimization the

approximate local algorithm fails to converge in all different cases. Figure 5.5 com-

pares the end result in some of the select cases. This result clearly shows that 1)

the global minimization, the domain decomposition algorithm, and the approximate
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local algorithm are all clear improvements compared to the standard bi-cubic recon-

struction; 2) the domain decomposition algorithm end result is identical to the global

minimization (at least when larger sub-domains are used, and the algorithm is run

for enough number of iterations); 3) the approximate local algorithm is not able to

offer an improvement comparable to the global minimization (specially when smaller

local domains are used). Nonetheless, the fact that improvement of the end result is

possible by enlarging the local domains indicate that the inability of this method to

converge can be attributed to too small local domains.

Algorithm Local Domain Ghost Layer J(uh) ∆(uh)

Global L1 Minimization - - 4352.55 0.0

Domain Decomposition 8 × 8 3 cells 4390.81 0.000013

Approximate Local 1 × 1 1 cell (β =∞) 4799.21 0.000832

Approximate Local 1 × 1 1 cell (β = 4.0) 4662.53 0.002770

Approximate Local 2 × 2 1 cell (β =∞) 4898.16 0.000281

Approximate Local 4 × 4 1 cell (β =∞) 4670.38 0.000227

Approximate Local 1 × 1 2 cells (β =∞) 4886.98 0.000030

Approximate Local 2 × 2 2 cells (β =∞) 5155.76 0.000637

Approximate Local 4 × 4 2 cells (β =∞) 4798.62 0.000399

Table 5.9: Achieved functional and constraints satisfaction error of various algorithms
for the aliased test image.
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Figure 5.5: The aliased test image. The original image (top left); Down-
sampled image (top center); standard bi-cubic reconstruction (top right); global
L1-reconstruction using the Interior Point method (middle left); fourth iteration of
the domain decomposition algorithm (middle center); twentieth iteration of the do-
main decomposition algorithm (middle right); tenth iteration of the approximate
local algorithm with a 1 × 1 local domain with an interpolatory one cell ghost layer
(bottom left); tenth iteration of the approximate local algorithm with a 1 × 1 local
domain with a relaxed one cell ghost layer (bottom center); tenth iteration of the
approximate local algorithm with a 4×4 local domain with an interpolatory one cell
ghost layer (bottom right).
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6. CONCLUSION

In this thesis we sought to improve the performance of the global L1 minimization

algorithm in two fronts: First, local L1-minimization; second, application of the Aug-

mented Lagrangian method. We were able to show that 1) local solutions are faster

on aggregate than solving the global problem; 2) the Augmented Lagrangian method

can successfully be used to solve the local minimization problem; 3) only a few (in

many cases just two or three) Jacobi or Gauss-Seidel iterations are enough to be close

to the global L1 minimizer for practical purposes; 4) while the domain decomposition

algorithm (with larger domains) has a comparable accuracy to the global algorithm,

the approximate local algorithm (with smaller domains) is inherently not as accurate

as the global algorithm.
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