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ABSTRACT 

 

Previous work on modal analysis of mooring lines has been performed from 

different theoretical formulations. Most studies have focused on mooring lines of a 

single homogeneous material, and the effect of added mass and damping produced by 

the water has not been examined deeply. 

The variational formulation approach, employed in this research to perform a 

modal analysis, has been useful to study the behavior of several realistic mooring lines. 

The cases presented are composed from segments of materials with different mechanical 

characteristics, more similar to those in current offshore projects. In the newly proposed 

formulation, damping produced by transverse motion of the mooring line through the 

surrounding water has been added to the modal analysis. 

The modal analysis formulation applied in this work has been verified with 

calculations from commercial software and the results are sufficiently accurate to 

understand the global behavior of the dynamics of mooring lines with the damping 

produced by the sea water.  

Inclusion of linearized drag damping in the modal analysis showed that the 

modal periods of the mooring systems studied depend on the amplitude of the transverse 

motion of the mooring line. When more amplitude in the motion is expected more 

damping is obtained. 

Two realistic designs of mooring lines were compared: one made up with a main 

insert of steel rope, called “Steel System”, and one composed by a main insert of 
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polyester, named “Polyester System”. Comparing the natural periods of both systems, 

the Steel System appears to be safer because its fundamental natural period is more 

distant from the wave excitation periods produced by storms. The same happens 

considering the wave excitation periods produced by prevailing seas. In this case the 

natural periods of the Polyester System are nearer to the wave excitation periods causing 

fatigue loads. 

The transverse mode shapes for lateral motions of the mooring lines are observed 

to be continuous and smooth across material transitions, such as transitions between 

chain and wire rope and transitions between chain and polyester rope. This behavior is 

not always observed in the tangential mode shapes for the Polyester System where 

significant differences in dynamic tension seem to be present in the specific cases 

studied. 
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1. INTRODUCTION 

 

A mooring line is a cable that anchors an offshore facility, from where it lies 

floating in the sea water level, to a specified point in the seabed, ending usually in an 

anchor. A floating marine platform installed in deep water, for instance, is held by 

several mooring lines in a specific array allowing the operation and safety of the 

platform.  A typical stationkeeping system or mooring system is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

The use of mooring lines in the offshore industry is a consequence of the depth 

where the offshore facilities need to be installed. The use of fixed platforms in large 

depths is not economically feasible. Then, the concept of holding an offshore platform in 

place by mooring it with cables to the seabed immediately produces the problem of 

Figure 1 Schematic top view of a spread mooring stationkeeping system. 
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eternal motion of the platform, and its components. Here, the study of mooring line 

dynamics becomes essential. 

Studying a mooring line as a structural component is challenging because, unlike 

most of the structural components of an offshore facility, it is easily deformed, even 

from its own weight it gets an evident deformation. This deformation is highly non-

linear, and the resistance against deformation produced by external loads depends in 

great part on these loads themselves. The behavior of cables is so unique that it was 

attractive for Navier in the 1820s, when he studied suspension bridges, and led him to 

conclude that “The success is more assured when the challenge is bigger and looks 

bolder” (Timoshenko (1953)). 

The magnitude of the depth in which deepwater platforms must hold station 

demands lightness and high resistance in materials incorporated in mooring lines. These 

lines are basically made up of steel and synthetic materials, and even combinations of 

both in one mooring line. Steel is present in the form of wire rope and chain. Wire ropes 

are composed of strands or multistrands, see Figure 2. Steel chains are made up of links 

with stud or studless links, see Figure 3. According to API (2005), studless links have 

been more accepted by industry in recent years, because they are lighter than stud 

chains. 
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Following the classification of API (2005), there are three kinds of mooring 

systems:  

1. All Wire Rope System 

2. All Chain System 

3. Combination System 

Figure 2 Schematic section of a spiral strand rope (left), and schematic section of a multistrand rope (right). 

Figure 3 Schematic drawings of steel links. 
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The All Wire Rope System refers to a mooring line completely manufactured in wire 

rope made up of strands of steel. The second system refers to mooring lines made up of 

links of steel, and the third refers to a mooring line made with the combination of chain, 

and wire rope or fiber rope, see Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

According to API (2005), fiber rope may be made up of  

 Polyester (polyethylene terephthalate) 

 Aramid (aromatic polyamide) 

 HMPE (high modulus polyethylene) 

 Nylon (polyamide) 

Among those synthetic materials, polyester is the more commonly used. It has 

advantages like lightness and high extensibility, and although it does not have the 

Figure 4 Combination system of chain, fiber rope and chain. 
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modulus of elasticity of steel, the range of its modulus of elasticity is suitable for the 

strength requirements, even in deep water depths. Moreover, unlike steel wire ropes 

these ropes are almost neutrally buoyant. 

On the other hand, mooring lines made of steel have the main advantage of 

strength, as a result of high values of modulus of elasticity. Besides, in the form of chain, 

weight results in an advantage when catenary action is needed to anchor a floating 

system. Finally, the resistance to abrasion becomes ideal to deal with the friction 

produced with the seafloor in the lowest point of a catenary configuration. 

Combination of both, steel and polyester, in mooring lines is a common practice. 

In these cases an insert, a middle part in the entire mooring line, is made of polyester, 

and the lower and upper ends are made of steel chain. In this way the advantages of both 

materials are applied. 

In this work, one homogeneous system and two combination systems will be 

studied: 

1. “Steel rope” 

2. “Steel System” 

3. “Polyester System” 

The first one is made up entirely of a rope of steel, as referred to by its name; the second 

one has segments of chain, wire rope, and chain; and the third case has segments of 

chain, polyester rope, and chain.  
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1.1 Motivation and objectives 

 

The study of dynamics of a mooring line is interesting because it cannot be 

addressed as a one degree of freedom system. Its mass distribution is continuous, thus it 

is necessary to represent it as a multi-degree of freedom system. On the other hand its 

ratio of cross-sectional area over length is very small. Its stronger stiffness is the axial 

stiffness, and basically it is in tension, with little resistance to relatively large 

displacements transverse to its longitudinal axis. Even if the tension load is large, the sag 

produced in the line is noticeable in most cases. 

The previously mentioned geometrical characteristics of such cable systems have 

led to the study of its dynamics from different approaches. The fundamental theory 

related to the cable dynamics considers the cable as a continuous system, which is not 

necessarily suitable for modeling mooring lines with segments of very different 

mechanical characteristics, as in the case of steel wire rope and fiber rope.  

Unlike cables in air, like those employed in suspension bridges, mooring lines 

are surrounded by water that provides buoyancy, added mass and damping to the motion 

of the line. The damping provided by the water and the effect of multi-segment lines 

with different materials have not been considered in many cases where the dynamics of 

mooring lines has been studied. 

The inclusion of damping on the dynamics of the mooring line, considering the 

behavior of different materials in one mooring line, has led to the realization of this 

work. An equivalent linear viscous damping formulation produced by the relative 
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velocity drag of the water was added to the equation of motion for free vibrations of a 

mooring line in order to compare results with un-damped dynamic solutions. 

Some realistic examples will be investigated in the model to obtain conclusions 

regarding the existence of different materials with different mechanical characteristics in 

one mooring line with the aim of studying their behavior. 

 

1.2 Outline of thesis 

 

The present work is divided into six sections. The present one describes the 

fundamental aspects, terminology and definitions of the mooring lines and their 

components. In this section motivations and objectives of the work are included as well. 

The second section of this thesis is dedicated to reviewing the more important 

literature related with the dynamic analysis of mooring lines and cables.  

Section number three of this work is devoted to showing how the static analysis, 

basic for the modal analysis in the mooring line, was performed. Some important 

derivations and definitions are made in order to emphasize the importance of specific 

variables and phenomena in the static and dynamic behavior of a mooring line. The way 

the method of analysis adopted was numerically implemented is described in this section 

as well. 

The fourth section of this thesis describes the methodology for dynamic analysis 

of the mooring line. Important points of the formulation followed are shown in this part, 

and the computation algorithm is explained. 
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The fifth section is dedicated to analyzing realistic examples of three different 

mooring line systems and discussing the results. A mooring line, completely made up of 

steel rope, is the first example. The second example is a mooring line of steel with two 

segments of chain at its upper and lower ends, and a middle segment of rope. The last 

example is one with its end segments of steel chain, but with an insert of polyester as the 

middle segment. The comparison between them is made in the same conditions, the 

same surrounding environment, the same configuration in seawater, and the same top 

tension. The results of the parametric variations between cases are examined in their 

different modes to better understand the response of any mooring system. 

Conclusions are placed in section six of this work. The assessment of the results 

is done from the perspective of the design of mooring lines. Further research is proposed 

based on the unresolved questions, like the effect of the bending stiffness in the basic 

formulation. 
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2. LITERATURE SURVEY 

 

It is common to find fundamental theory related to vibration of cables in two 

main branches: first in the motion of horizontal cables, and second in inclined cables. 

Irvine (1978) follows this classification to develop the governing equations of the 

motion of horizontal cables, and then proposed the transformation of the approach to 

inclined cables by rotating the cable and its main global axis. With this purpose non-

dimensional values are employed in geometrical variables. In both cases the elongation 

of the cables is considered, and the governing equations consider a homogenous material 

regarding its modulus of elasticity and cross-sectional area. 

Triantafyllou and Bliek (1983) found that the lower part of a marine cable 

behaves as a chain with low frequencies, and the upper part behaves as a wire with 

higher frequencies, thereby producing hybrid modes with very close natural frequencies. 

Unlike horizontal cables, no crossover in modes is found in inclined cables. Besides, 

they established a relation between sag and elasticity, and sag and curvature in the cable. 

When sag decreases, elasticity becomes a more important variable, and when sag is large 

the curvature in the cable is more important. 

Grinfogel (1984) developed asymptotic analytical expressions to find natural 

frequencies, modal shapes and dynamic tension in cables in which the ratio of weight to 

tension force is small. These equations are based on the linearized exact governing 

equations proposed by Triantafyllou and Bliek (1983), but through perturbation 

equations to get simple results. Here, the inclination is just one additional geometrical 
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variable that allows studying horizontal and inclined cables regardless of the slope of the 

cable. 

The importance of the material elasticity of the cable in the dynamics of cables is 

shown by Burgess and Triantafyllou (1988). The distinction between transverse modes 

and elastic modes were defined because of the elasticity of the cable. Asymptotic 

solutions were developed for both horizontal and inclined cables. 

Chucheepsakul and Srinil (2002) developed an approach to study free vibrations 

in marine cables based on the work-energy functional due to the strain generated by 

external forces such as top tension and hydrostatic forces. This methodology allows 

modeling the static configuration of the cable by the Galerkin finite element formulation, 

and then obtaining, by solving the eigenvalue problem, the modal shapes and natural 

frequencies. 

Not many experimental works have been devoted to the vibration of cables. One 

of these works was performed by Rega et al. (2008). These authors reproduced 

experimentally key factors of the theory of dynamics of cables, such as frequency 

avoidance phenomenon, and associated hybrid modes. The inclination in the cable as an 

important factor in the avoidance, and the effects of the sag in the cable are highlighted.  

An analytical solution based on the coupling of the linear differential equations 

that describe the motion in the plane of an inclined cable was developed by Zhou et al. 

(2011). By variable substitution the equation that describes the vertical motion is 

transformed to a Bessel equation, and the natural frequencies and modes in plane are 
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found by using non-dimensional parameters that represent ratios of geometrical to 

mechanical characteristics of the cable.  
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3. STATIC ANALYSIS 

 

3.1 Methodology 

 

In the statics of a mooring line, there are two principal variables important to 

know. One is the geometrical configuration resulting from the loads applied. The second 

one is how the internal loads are distributed along its length, mainly the axial force. Both 

variables mentioned are clearly related; a larger value of tension generates a straighter 

shape in the cable (i.e. one with less sag). This relation even produces a classification in 

the mooring lines as taut mooring line, when the geometrical configuration tends to be 

closer to a straight line, versus catenary mooring line, when the shape is similar to the 

configuration of a catenary. 

The way to find the geometrical configuration resulting from the loads applied in 

most civil structures is by knowing the stiffness matrix of the structure, and dividing it 

by the static load vector that contains all the forces applied over the structure. In this way 

displacements are found and consequently internal forces. The stiffness matrix takes into 

account the rigidity produced by the elasticity of the material and the geometry of the 

components of the structure.  

Chucheepsakul et al. (2003) developed a way to formulate a stiffness matrix of a 

mooring line, and a procedure to take into account the elasticity of the material of the 

cable, all this, to find the configuration of the cable in a similar way that is performed in 
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most civil structures. In this research this procedure was followed to form the stiffness 

matrix and define the final configuration of the mooring line. 

The main advantages found in this method are: 

 The possibility to model different sections in one mooring line. 

A mooring line comprised of different sections of materials needs to be 

represented taking into account these different properties. The method 

followed allows splitting the mooring line in several finite elements, each 

one with its own characteristics such as cross-sectional area and axial 

stiffness. 

 The versatility to define movement in a tridimensional space. 

In the dynamic analysis it will be necessary to define motions in the plane 

of the mooring line, and out of the plane. Following this method, it is 

possible to define these configurations as a result of introducing specific 

degrees of freedom and shape functions. 

 

3.2 Definition of structural parameters 

 

In the procedure to be described it is important to define some concepts, shown 

in the next sections. 
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3.2.1 The catenary 

For cables with high axial stiffness, the catenary equation can be used to find the 

configuration and forces without consideration of the elasticity of the material. 

Nevertheless, Irvine (1992) developed a formulation that considers the elasticity of the 

material and its cross-sectional area to account for the effect of the elongation in the 

cable. In both cases, the tension can be understood as the resultant of two components, 

one vertical, and other horizontal, see Figure 5. 

 

 

 

 

 

 

 

 

 

 

From the previous Figure 5 we can notice that by balancing forces: 

Consequently  

 

It can be seen that the horizontal component of the tension in the cable is constant. 

 ∑              (1)  

 ∑            (2)  

       (3)  

Figure 5 Components of tension force in the cable. 



 

 

15 

 

From the derivation of the equation of the catenary made by Zill et al. (2012) we 

can follow the next formulation and conclude with another interesting key point. First, 

the lower end of the cable is placed such that its tangent is horizontal, as indicated in 

Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 6 it can be seen that  

From equation (3) 

           (4)  

           (5)  

           (6)  

Figure 6 Cable with tension in specific points. 
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By balance of forces in the vertical direction 

The total weight   is  

where   is the weight per unit length, and   is the arc length of the cable. Then equation 

(7) becomes 

The arc length can be determined by 

If equation (9) is divided by equation (6) then, 

Consequently, 

If the derivative  
  

  
  is performed, from equation (10) 

But, if we differentiate again (12) with respect to x 
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Replacing (13) in (14)  

Equation (15) is the governing differential equation of the catenary. 

Making the next change of variable, and replacing (16) in (15), equation (17) is 

obtained. The   symbol means derivative with respect to x in this derivation. 

Separating variables in equation (17) 

Integrating (18): 

Applying the boundary conditions, it is given that y’(0) = 0, in other words: 

Then  

Now, equation (20) becomes: 
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From (24) 

Replacing (16) in (25), and integrating it, 

Integrating (26) 

Applying boundary conditions, in equation (28) 

Now, equation (29) becomes: 

Recalling equation (3), and what it means: that the horizontal force is constant, if we call 

the horizontal tension as   , then, 
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It can be seen from the previous expressions that, for cables with no uplift force 

at the bottom attachment point, if no elongation in the cable is considered, the static 

configuration of the cable is due to the ratio of the horizontal force to the self-weight, 

and no material characteristic is involved.  

 

3.2.2 Energy functional 

The energy functional represents the amount of energy, or work, developed by 

the tension force in the cable, with no consideration of drag forces. In this case, 

following Chucheepsakul et al. (2003), it is represented by the next expression: 

where T is the tension in the cable defined by: 

In these equations   is the weight per unit of length of the cable,    is the top 

tension,   is the strain,   is the elevation coordinate, and    is the elevation of the point 

where the top tension is applied. The symbol    is the derivative of   with respect to the 

z axis, and   denotes the derivative of   with respect to  . 

The stiffness is defined by Chucheepsakul et al. (2003) by twice differentiating 

the total energy Π with respect to the general coordinates, as indicated in equation (37). 

 

   ∫  √           
 

 

 (35)  

      ∫
 

   
   

  

 

 (36)  

   
   

      
 (37)  
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The load vector, on the other hand, can be found by differentiating the total 

energy Π with respect to the general coordinates, equation (38). 

 

3.2.3 Independent variable 

In the calculus of variations the independent variable does not participate in the 

process of variation (Lanczos, 1986). In this case, the independent variable is the vertical 

coordinate (z), consequently the variation of energy will be related with the displacement 

of coordinates in the horizontal plane; it means the variables x and y or their 

combination, see Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

   
  

   
 (38)  

Figure 7 Independent and dependent variables in the calculus 

of variations for this study. 
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3.2.4 Discretization 

Taking z as the independent variable, the cable will be discretized in several 

segments with equal value of height, in other words, the mooring line will be divided in 

several slices, see Figure 8. These values of height, and the associated vertical 

coordinates of the discretized elements, will never change throughout the whole 

procedure. Consequently it can be seen that the degrees of freedom of each coordinate in 

space will be those related to the coordinates x and y. 

 

 

 

 

 

 

 

 

 

 

 

3.2.5 Shape functions 

The shape functions are possible configurations that can define a deformed form 

of any structure. It is a consequence of the possible movements allowed in the structure 

by the degrees of freedom set. In this case of study, in the static solution, it is important 

to notice that the cable will always lie in a vertical plane, with no coordinates or points 

out of the plane mentioned, see Figure 9. 

Figure 8 Discretization of mooring line in slices. 
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The Hermitian interpolation, which allows the generation of the deformed shape 

in one plane, will be used in this static part of the study, and the shape functions can be 

represented as follows. 

 

 

  

       (
  

  
)   (

  

  
) (39)  

       (
  

 
)  

  

  
 (40)  

      (
  

  
)   (

  

  
) (41)  

     (
  

 
)  

  

  
 (42)  

Figure 9 Different views of the plane where the mooring line and its deformations are contained. 
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3.3 Numerical implementation 

 

The numerical implementation of the previous concepts in order to determine the 

displacements and forces of the mooring line, and consequently the final configuration 

after the application of tension in the cable, is presented below. 

 

3.3.1 Definition of the system of reference 

The method followed, proposed by Chucheepsakul et al. (2003), starts by setting 

a straight line that joins the extreme points. One point “touches” the seabed and is 

considered as the origin of the Cartesian system. The second extremity is the point where 

the top tension is applied, simulating the location where a floating system is connected to 

the line, see Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 Definition of the origin of coordinates and the top tension location point. 
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3.3.2 Initial configuration 

The initial configuration of the mooring line defines a stiffness matrix and a load 

vector produced by the initial straight geometry. 

The equations (37) and (38) need to be expressed in matrix form, following 

Chucheepsakul et al. (2003), and without drag forces: 

The matrix [ ] represents the shape functions in a matrix array, indicated as follows: 

The form of each shape function was defined in equations (39), (40), (41), and (42). 

The matrix [  ] represents the derivative of the shape functions with respect to z. 

This is because the independent variable in this case is the vertical coordinate z. No 

changes in the vertical coordinates of each node will be developed because the slices in 

which the mooring line was discretized are constant. The vertical height of each slice is 

always “h = constant”. 

The stiffness matrix and load vector of each element are merged by overlapping 

their common ends, see Figure 11. 
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3.3.3 Iterative process 

The initial straight line configuration is used to determine a set of associated 

horizontal displacements, which are added to the initial configuration of the cable 

producing a new configuration. The new configuration defines a new stiffness matrix 

and a new load vector, where it is possible to determine a new set of displacements and 

continue to iterate until a final configuration is found which satisfies the continuity and 

force equilibrium conditions. 

In the iteration described, a process to include the elongation due to the elasticity 

of the cable is included. This process defines a value of strain that increases at each step 

of the iterative process by the Newton-Raphson method. The formulation is expressed as 

follows 

Following Chucheepsakul et al. (2003), the function       and its derivative are: 

         
     

      
 (46)  

Figure 11 Generation of nodes by splitting the mooring line. 



 

 

26 

 

where n is the number of the iteration, and in the forward difference formula a value of 

         is proposed by Chucheepsakul et al. (2003). 

The final configuration is found when the horizontal forces of each cable 

segment are approximately equal. One value of convergence is needed to be defined for 

numerical purposes. Since the horizontal force must be the same in any point of the 

cable, a maximum difference of horizontal force between the finite elements of the cable 

must be set. In the examples shown, a value of convergence of 0.01N was usual. Several 

iterations are carried out until this precision is reached. 

Each step of the iterative process will generate a series of deformed lines where 

the first was a straight line, and the last one defines the final configuration of the cable 

taking into account all the considerations previously explained, see Figure 12. In this 

figure the initial configuration is indicated as a black dotted straight line, the successive 

intermediate configurations as blue straight lines, and the final configuration in black 

with cross points. In this last configuration, the cross points indicate the nodal points in 

which the whole line was discretized. 
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   (47)  

         
             

 
 (48)  



 

 

27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Flowchart 

The essentials of the process previously explained can be summarized in Figure 

13. It is important to note that the geometrical and mechanical characteristics determined 

by this process will be required for the dynamic solution.  

  

Figure 12 Iterative process to find the final deformation of a cable resulting from the application of 

top tension. 
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3.3.5 Comparison of results 

The results produced by the model followed were compared with one example 

developed by DuBuque (2011) that was based on the elastic catenary of Irvine (1992). 

This formulation takes into account the elasticity of the material, and defines the 

Figure 13 Diagram that summarizes the iterative process to define the final configuration and forces of 

the cable. 
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geometry in the plane for a cable subjected to a horizontal and vertical force at the top 

end of the cable (see Figure 14). 

 

 

 

 

 

 

 

 

 

The original formulation of Irvine (1992) is 

In the above equations H and V are the horizontal and vertical components, 

respectively, of the tension applied at the upper end of the cable, W is the total weight of 

the cable, L0 is the unstrained length, E is the modulus of elasticity, A0 is the cross-

sectional area of the cable, and s is the arc length at any specific point from the origin.  

From equations (49) and (50) it is important to observe the effect of the axial 

stiffness (EA0) on the deformed configuration of the cable, in contrast to the case of the 

inelastic catenary. 
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Figure 14 Image of a cable to describe Irvine’s model. 
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Based on this formulation DuBuque (2011) produced an example with the values 

shown in Table 1. 

 

Table 1 Data for validation example. 

Horizontal top force H = 50 N 

Vertical top force V = 75 N 

Total weight W = 70 kg 

Cross sectional area A0 = 7.85x10
-5

 m
2
 

Modulus of elasticity E = 10x10
8
 Pa 

Unstrained length L0 = 10 m 

 

 

With these values, the static line configuration calculated using the method 

followed in this work was compared with that calculated by DuBuque. Figure 15 reveals 

a good agreement between the two models. 
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3.3.6 Configuration of a polyester system 

With the aim to analyze the deformed configuration of a Polyester System, a 

mooring line containing steel chain in the upper and lower part, and an insert of 

polyester in the middle of its entire length, is presented. The characteristic values of the 

system described are shown in Table 2. 

  

Figure 15 Comparison with DuBuque method. 
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Table 2 Characteristics of a Polyester System 

Static Configuration in Seawater 

  
Water depth 1500 m 

Anchor radius 2400 m 

Top tension 1000 kN 

 
Top Chain Properties 

  
Length 104.5 

Stiffness (EA)  4.41 x 10
5
kN 

Submerged weight/length 913.213 N/m 

Number of elements modeled 5 

 
Polyester Rope Properties 

  
Length 1907.3 

Stiffness (EA)  2.74 x 10
5
kN 

Submerged weight/length 71.613 N/m 

Number of elements modeled 82 

 
Bottom Chain Properties 

  
Length 904.7 

Stiffness (EA)  4.41 x 10
5
kN 

Submerged weight/length 913.213 N/m 

Number of elements modeled 13 

 

 
It is interesting to observe the resultant configuration because the axial stiffness 

and weight of each material are very different. The elongation for steel is smaller than 

the elongation for the polyester under the same load, consequently the deformation in the 
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polyester produces almost a straight line as its converged configuration. On the other 

hand, the lower part of steel chain produces a catenary configuration, see Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16 Deformed configuration of a Polyester System. 
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4. MODAL ANALYSIS 

 

4.1 Shape functions in three dimensional space 

 

From the static analysis, and following Chucheepsakul and Srinil (2002), the 

final (converged) deformed configuration and the axial tension in each finite element 

will be used for the modal analysis.  

In the static analysis the deformed configuration of the cable lies in one plane, 

consequently the shape functions required were related to the degrees of freedom in only 

one plane.  

In modal analysis motion of the cable in three dimensions is expected. This is 

one of the reasons why the shape functions are now related to the motions in the three 

dimensions of a Cartesian (X,Y,Z) coordinate system. In matrix form they can be 

represented as: 

In equation (51) each value of any shape function in the [ ] matrix is referred to 

equations (39) through (42). 

On the other hand, natural coordinates were employed to define the motions of 

the cable in the development of the modal analysis of a marine cable. An explanation of 

this system of coordinates is shown in Figure 17. 

  

 [ ]  [
     
    

   

   
    
     

     
    

   

   
    
     

] (51)  
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Figure 17 Natural coordinates. 

 

In Figure 17 the (p) coordinate refers to tangential displacements, (q) refers to 

displacements perpendicular to tangential but in the plane of the mooring line, and (r) 

refers to coordinates perpendicular to the plane of the (p) and (q) coordinates. 

A transformation matrix between the natural coordinates and the Cartesian 

coordinates was provided by Chucheepsakul and Srinil (2002). 

 

4.2 Equation of motion without damping included 

 

The equation of motion presented by Chucheepsakul and Srinil (2002) involves 

mass and stiffness. Following this procedure a modal analysis can be performed in the 

cable. 

 [ ]{ ̈}  [ ]{ }  { } (52)  
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The matrix [ ] represents the mass, and [ ] represents the stiffness. The vector { } 

refers to a nodal displacement vector and the vector { ̈} refers to an acceleration vector.  

The values of mass and stiffness are calculated as indicated in equation (53) and 

(54). 

As in the static solution, the above quantities are computed for each finite element, and 

then merged for the entire mooring line. The matrix [ ] is a transformation matrix 

between the natural coordinates and Cartesian coordinates; this matrix is provided in 

appendix A. 

The matrix [ ] represents the shape functions for the dynamic analysis, shown in 

equation (51). [  ] is the matrix with the derivatives of the shape functions with respect 

to the axis Z. 

The matrix [ ] is the mass matrix, equation (55). 

where  ̃ is calculated as in equation (56). 

In the previous equation   is the density of water,   is the effective cross-sectional area 

of the mooring line and    is an added mass coefficient assumed equal to: 

 [ ]  ∫ [ ] [ ] 
 

 

[ ̅][ ][ ]   (53)  

 [ ]  ∫ [ ] [  ] 
 

 

[ ̅][  ][ ]   (54)  

 [ ]  [
 ̃   
  ̃  
   ̃

] (55)  

  ̃   ̅        
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where    is a mass coefficient assumed equal to 2. 

 

From equation (56) the mass per unit length of the cable  ̅ is: 

where   
  is: 

and    is the static strain in the cable obtained from the static analysis,   is the 

acceleration of gravity, and   is the weight per unit length of cable. 

The [ ̅] matrix is a matrix form of the stiffness, expressed in equation (60). 

where 

In equations (61) and (62)   is the Poisson ratio,    is the deformed cross-

sectional area,    is the total depth of water, and    is the elevation coordinate for each 

node point of the cable in the static configuration.  
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The above expressions include the Poisson ratio in order to account for the 

tension produced by the hydrostatic pressure. However, in this work it will not to be 

taken into account, considering that the reduction in cable diameter is negligible. 

Moreover, the results of the dynamic analysis considering the value of tension    are not 

consistent. It was proven in the modal analysis that by neglecting this value the results 

are more accurate. 

With equation (52) the eigenvalue problem shown in equation (63) is solved to 

find the frequencies and eigenvectors without damping. 

The eigenvectors resulting from this equation are in natural coordinates (p), (q) and (r) 

due to the transformation performed in the definition of the stiffness matrix shown in 

equations (53) and (54). 

 

4.2.1 Comparison of results with Orcaflex 

The modal analysis was performed following the formulation proposed above, 

and programed in Matlab. For validation purposes a test case was investigated and the 

results were compared with the same analysis performed with Orcaflex. Orcaflex is 

commercially available software for the dynamic analysis of offshore marine systems. 

The data for the validation example performed are provided in Table 3. 

  

  [ ]    [ ] { }  { } (63)  
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Table 3 Characteristics of mooring line for validation case with Orcaflex. 

Water depth 285.788 m 

Anchor radius 165.000 m 

Top tension 73.20 kN 

Un-strained length 330.085 m 

Stiffness (EA)  1.2854x 10
5 

kN 

Submerged weight/length 53.56 N/m 

 

 

Table 4 compares the values of the first four natural frequencies obtained from 

the Matlab code developed in this work and from Orcaflex.  Orcaflex did not compute 

results for the tangential modes. Interestingly, whereas the Matlab code calculated 

identical frequencies for the tangential, in-plane and out-of-plane components of each 

mode (as it should be), Orcaflex indicated similar but not equal frequencies for the in-

plane and out-of-plane components.   
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Table 4 Comparison of natural frequencies for Orcaflex validation case. 

Mode Natural Frequency (rad/s) % Difference 
Matlab Orcaflex 

1 tangential 1.045 -- -- 

 in-plane 1.045 1.971 88.6% 

 out-of-plane 1.045 1.039 -0.6% 

2 tangential 2.089 -- -- 
 in-plane 2.089 2.130 2.0% 

 out-of-plane 2.089 2.077 -0.6% 

3 tangential 3.134 -- -- 
 in-plane 3.134 3.197 2.0% 

 out-of-plane 3.134 3.109 -0.8% 

4 tangential 4.179 -- -- 
 in-plane 4.179 4.134 -1.1% 

 out-of-plane 4.179 4.134 -1.1% 

 

 

Apart from the first in-plane mode where the difference in natural frequencies is 

substantial, the natural frequencies produced by the two analysis procedures are in good 

agreement. 

The modal shapes from the numerical procedure developed in this work and the 

Orcaflex analysis were compared graphically and show good agreement. Figure 18 

shows the modal shapes for the first 4 modes in the plane. In black is plotted the modal 

shape generated by Orcaflex, and in red by the procedure followed in this study. In blue 

is the line of the deformed configuration from the static analysis. 
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Figure 18 Comparison between the first four modal shapes in the plane generated by Orcaflex and the 

procedure followed in this study. 

 

Figure 19 shows the modal shapes for the first 4 modes out of the plane. In black 

is plotted the modal shape generated by Orcaflex, and in red by the procedure followed. 

  

Mode 1 Mode 2 

Mode 3 Mode 4 
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Figure 19 Comparison between the first four modal shapes out of plane generated by Orcaflex and the 

procedure followed. 

  

Mode 1 Mode 2 

Mode 3 Mode 4 
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4.3 Equation of motion with damping included 

 

The addition of damping in the equation of motion is idealized from the Morison 

equation relative velocity drag term (64) 

Here   is the density of water,    is the drag coefficient,   is the cross-sectional area of 

a slender element, and    ̇ represents the local relative velocity between the fluid and 

the structure in the direction normal to the axis of the slender member. 

The Morison equation defines hydrodynamic inertia and drag forces in slender 

elements, such as a mooring line. The drag force is seen to be nonlinear, however, for 

the modal analysis we wish to model the drag damping as linear viscous; consequently a 

statistical linearization of the Morison drag force is required. The procedure is presented 

as follows. 

Recognizing that in our case the mooring line is moving with harmonic motion in 

calm water (  = 0), the term representing the relative velocity is replaced as proposed in 

the next equations. 

Here    ̇ is the standard deviation of the body velocity from the modal analysis 

not including damping in the equation of motion. Since each mode represents sinusoidal 

   
 

 
        ̇ |   ̇| (64)  

     ̇ |   ̇|      ̇ (65)  

     √
 

 
  ̇ (66)  
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motion with frequency  , the standard deviation of velocity at a particular node point 

where the amplitude of motion is D is calculated according to 

The value     is calculated for each node along the length of the mooring line for 

each value of natural frequency    defined by a modal analysis with no damping 

performed through the equation (63). The magnitude of the amplitude   is taken from 

the natural coordinates (q) and (r) obtained from the modal shapes of the analysis 

without damping included, see Figure 20. 
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 (67)  

Figure 20 Modal coordinates from the modal shape. 
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The values of the natural modal coordinates (q) and (r) are normalized with 

respect to the maximum value of the sag of the cable determined from the static analysis. 

Equation (68) and (69) show the normalization for the natural coordinates (q) and (r). 

where δ is a specified fraction between 0 and 1. In the modal analysis assumed values of 

δ equal to 0, 0.001, 0.01, 0.1, 0.5 and 1.0 were investigated.  

These normalized values become the amplitudes in the equation (67), and with 

them, values of     are obtained for each modal coordinate of the cable for each value of 

frequency in the modal analysis. The damping matrix [ ] is formed with each row 

representing the frequencies and the columns represent the degrees of freedom. 

Following Rao (2007) the equation of motion (63) including the damping term is 

written as the following characteristic equation: 

By using the followed expression 

and rewriting equation (70) we have: 

Defining a displacement vector  

              (
 

   (      )
) (68)  

              (
 

   (      )
) (69)  

   [ ]{ }   [ ]{ }  [ ]{ }  { } (70)  

      (71)  

   { }    [ ]  [ ]{ }  [ ]  [ ]{ } (72)  
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we can rewrite equation (72) as 

Complex frequencies and eigenvalues result by solving this new eigenvalue 

problem. The results are available in a double size matrix where they are expressed 

twice, and the frequencies are expressed as imaginary numbers. 

In order to validate this methodology, one example was performed considering 

the [ ] matrix as a zero matrix. The results were compared with a corresponding 

example with the standard no damping formulation. The mooring line particulars for the 

example tested are shown in Table 5. 

 

 

Table 5 Particulars of the mooring line tested with zero damping. 

Static Configuration in Seawater 

  
Water depth 2000 m 

Anchor radius 1925.19 m 

Top tension 2946 kN 

Seawater density 1025 kg/m
3
 

 
Wire Rope Properties 

  
Un-strained length 2794 m 

Stiffness (EA)  1.1606 x 10
6 

kN 

Mass/length 69.9 kg/m 

Submerged weight/length 540.4 N/m 

 

  {
 
  

}  [

  

 
[ ]

[ ]
 

[ ]

[ ]
] {

 
  

} (74)  
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A graphic that shows the static deformed configuration for this example under 

the previous characteristics is shown in Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the example with the damping matrix as a zero matrix, and the 

results with the same data under the procedure without damping, are shown in Table 6. 

 

Table 6 Results of the mooring line tested with zero damping. 

Example tested 
1st 

frequency 
(rad/sec) 

2nd 
frequency 
(rad/sec) 

3rd 
frequency 
(rad/sec) 

4th 
frequency 
(rad/sec) 

     Example tested in procedure without 

damping 
0.2058 0.4110 0.6163 0.8217 

Example tested in procedure with 

damping (damping = 0) 
0.2058 0.4110 0.6163 0.8217 

Figure 21 Static deformed configuration for the example tested without damping. 
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The modal shapes for the first four modes in plane are shown in Figure 22. 

 

Procedure without damping Procedure with damping=0 

 

 

  

  

  

 

Figure 22 Modal shapes comparing the first four modes in plane. 
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The modal shapes for the first four modes out of plane are shown in Figure 23. 

 

Procedure without damping Procedure with damping=0 
 

 

 

 

 

 

  

 

Figure 23 Modal shapes comparing the first four modes out of plane. 
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The values of the frequencies produced in the two methods explained previously 

are in precise agreement, and the global behavior of the in-plane modal shapes generated 

by both procedures has a good agreement over all. The out-of-plane mode shapes for the 

second and third modes show noticeable differences which cannot be explained, whereas 

the shapes for the first and fourth modes are in good agreement. 
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5. ANALYSIS OF DIFFERENT MOORING SYSTEMS 

 

5.1 Description of the systems assessed 

 

With the method of modal analysis presented previously, three mooring systems 

were examined. The names and characteristic of each one are described below. 

 

5.1.1 Steel Rope System 

The steel rope system is made up entirely of steel rope. The geometric and 

mechanical characteristics of this system are tabulated in Table 7. A drawing showing 

the deformed configuration of this system as if it were submerged in water can be seen 

in Figure 24. 
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Table 7 Characteristics of the Steel Rope System. 

Static Configuration in Seawater 

  
Water depth 2000 m 

Anchor radius 1925.19 m 

Top tension 2946 kN 

Seawater density 1025 kg/m
3
 

 
Wire Rope Properties 

  
Un-strained length 2794 m 

Stiffness (EA)  1.1606 x 10
6 

kN 

Mass/length 69.9 kg/m 

Submerged weight/length 540.4 N/m 

  



 

 

53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. 

 

5.1.2 Steel System 

The steel system is a mooring line with three segments, two of them of steel 

chain, and one in the middle, of steel rope. The characteristic values of this mooring line 

are shown in Table 8. 

 

  

Figure 24 Deformed configuration of the Steel Rope System. 
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Table 8 Characteristics of the Steel System. 

Static Configuration in Seawater 

  
Water depth 2000 m 

Anchor radius 2330 m 

Top tension 2946 kN 

 
Top Chain Properties 

  
Un-strained length 76.2 m 

Stiffness (EA)  1.2687 x 10
6 

kN 

Submerged weight/length 2611 N/m 

 
Steel Rope Properties 

  
Un-strained length 2804.2 m 

Stiffness (EA)  1.1606 x 10
6 

kN 

Submerged weight/length 540.4 N/m 

 
Bottom Chain Properties 

  
Un-strained length 243.8 m 

Stiffness (EA)  1.2687 x 10
6 

kN 

Submerged weight/length 2611 N/m 
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Figure 25 shows the deformed shape of the Steel System in proportional 

dimensions of depth and anchor radius. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. 

 

5.1.3 Polyester System 

The polyester system is a mooring line composed by three segments, two of steel 

chain and one insert of polyester. The particulars for this system are provided in Table 9.  

  

Figure 25 Deformed configuration of the Steel System. 
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Table 9 Characteristics of the Polyester System. 

Static Configuration in Seawater 

  
Water depth 2000 m 

Anchor radius 1527m 

Top tension 2946 kN 

 
Top Chain Properties 

  
Un-strained length 76.2 m 

Stiffness (EA)  1.2687 x 10
6 

kN 

Submerged weight/length 2611 N/m 

 
Polyester Rope Properties 

  
Unstrained length 2174.4 m 

Stiffness (EA)  2.4554 x 10
5 

kN 

Submerged weight/length 122.7 N/m 

 
Bottom Chain Properties 

  
Unstrained length 243.8 m 

Stiffness (EA)  1.2687 x 10
6 

kN 

Submerged weight/length 2611 N/m 
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The plot of the static submerged configuration of the polyester system is shown 

in Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Results of modal analysis 

 

Four cases with different surrounding environment where analyzed for each of 

the three mooring systems. A description of each one is presented next.  

Figure 26 Deformed configuration of the Polyester System. 
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1) Air  

In this case the cable is modeled considering its weight as if it were in air. 

In other words, no buoyancy or added mass is considered. Although this 

is not a realistic case for mooring lines, the example is investigated with 

the aim of comparing with the submerged cases. 

2) Water, only submerged weight  

In this case, the buoyancy of the cable produced by water is considered. 

Only the mass of the mooring line is considered. The added mass and 

damping associated with motion of the line through the water is not 

considered. No currents will be considered. 

3) Water, submerged weight, and added mass  

Here, the buoyancy due to water is considered, and the added mass 

generated by the surrounding water to the cable is taken into account. The 

added mass was computed as the density of sea water (1025 kg/m
3
) times 

the volume of the cable. 

4) Water, submerged weight, added mass, and damping  

In this last case, the submerged weight, and added mass were considered. 

Moreover, the drag damping produced by the water was incorporated in 

the analysis. 

The modeling details for each case are presented in Table 10. 
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Table 10 Details of segments modeled in each system. 

Steel System 

Case 

Number of elements Length (m) 

Lower 
segment  

Middle 
segment 

Upper 
segment  

Lower 
segment  

Middle 
segment 

Upper 
segment  

       
1) Air 7 186 7 257.8 2794.8 71.9 

2) Weight 
submerged 

7 186 7 258.9 2793.4 72.1 

3) Weight 
submerged, 
added mass 

7 186 7 258.9 2793.4 72.1 

4) Weight 
submerged, 
added mass, 
damping 

7 186 7 258.9 2793.4 72.1 

       
Polyester System 

Case 

Number of elements Length (m) 

Lower 
segment  

Middle 
segment 

Upper 
segment  

Lower 
segment  

Middle 
segment 

Upper 
segment  

       
1) Air 16 177 7 236.5 2176.7 81.0 

2) Weight 
submerged 

18 175 7 248.1 2162.6 84.0 

3) Weight 
submerged, 
added mass 

18 175 7 248.4 2162.4 83.9 

4) Weight 
submerged, 
added mass, 
damping 

18 175 7 248.4 2162.4 83.9 
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5.2.1 Behavior of the Steel Rope System 

The first eight periods of free vibration for this system are shown in Table 11 for 

the first three cases which do not involve damping. 

 

Table 11 First eight natural periods for Steel Rope System. 

Case 
First eight periods (s) 

1 2 3 4 5 6 7 8 

         
1) Air 27.5 13.8 9.2 6.9 5.5 4.6 3.9 3.4 

2) Weight 
submerged 

27.1 13.6 9.0 6.8 5.4 4.5 3.9 3.4 

3) Weight 
submerged, 
added mass 

30.5 15.3 10.2 7.6 6.1 5.1 4.4 3.8 

 

 

As the magnitude of the linearized drag damping is dependent on the amplitude 

of vibration, modal analysis was performed for various assumed amplitude levels, 

expressed as a fraction of the static sag in the cable. Table 12 provides the damped 

natural periods and implied damping ratios    for the Steel Rope System.  
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Table 12 First four damped natural periods for different normalized motion amplitudes in Steel Rope 

System. 

Case 
First four periods (s) and damping ratio   (%) 

1   2   3   4   

         
1 Sag 40.3 65.4 20.5 66.6 15.0 73.3 11.8 76.5 

0.5 Sag 35.4 50.8 17.7 50.3 10.7 30.2 8.7 48.7 

0.1 Sag 31.5 25.0 15.6 19.5 10.4 19.5 7.7 16.1 

0.01 Sag 30.6 8.1 15.3 0.0 10.2 0.0 7.6 0.0 

0.001 Sag 30.5 0.0 15.3 0.0 10.2 0.0 7.6 0.0 
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The first two modal shapes for this system in air are shown in Figure 27. 

 

 

 

  

 
 

 

Figure 27 First two modal shapes for the Steel Rope System in air.  
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The 3
rd

 and 4
th 

modal shapes for this system in air are shown in Figure 28.  

 

 

 

  

  

 

Figure 28 Third and fourth modal shapes for the Steel Rope System in air.  
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First two modal shapes for this system in the 2
nd

 case are shown in Figure 29.  

 

 

 

  

  

 

Figure 29 First two modal shapes for the Steel Rope System with submerged weight.  
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3
rd

 and 4
th

 modal shapes for this system in the 2
nd

 case are shown in Figure 30.  

 

 

 

  

  

 

Figure 30 Third and fourth modal shapes for the Steel Rope System with submerged weight.  
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The first two modal shapes for the 3
rd

 case are shown in Figure 31.  

 

 

 

  

  

 

Figure 31 First two modal shapes for the Steel Rope System in water with added mass.  
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3rd and 4th modal shapes for this system in the 3
rd

 case are shown in Figure 32. 

 

 

 

  

  

 

Figure 32 Third and fourth modal shapes for the Steel Rope System in water with added mass.  
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The first two modal shapes for the 4
th 

case are shown in Figure 33.  

 

 

 

  

 

Figure 33 First two modal shapes for the Steel Rope System considering submerged weight, added mass, 

and damping. 

 

The above shapes correspond to the 0.1 sag level of damping and are scaled.  
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3rd and 4th modal shapes for this system in the 4th case are shown in Figure 34.  

 

 

 

  

 

Figure 34 Third and fourth modal shapes for the Steel Rope System, considering submerged weight, added 

mass, and damping. 

 

For this last surrounding case the tangential mode was not performed because no 

tangential components where included in the damping matrix. The above shapes 

correspond to the 0.1 sag level of damping, and are scaled 

In plane  T=10.4 s In plane  T=7.7 s 

Out of plane  T=10.4 s Out of plane  T=7.7 s 
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In all the surrounding cases, except for the damping case, the in-plane modes 

were very uniform in the distribution of their shape along the length of cable. 

For the out-of-plane modal shapes there is not uniformity in the modal shapes for 

all the cases, especially for the second and third mode, where the modal shapes had more 

amplitude in the lowest part of the cable. This behavior was observed even in the case 

where the cable is in air. 

For the tangential modes, different from the first mode, the modal shapes are not 

always regular in their shape along the length of the cable. In some cases there is not a 

correspondence between the number of the modal shape and the number of times the 

shape crosses the longitudinal axis of the cable (i.e the number of zero displacement 

node points in the modal shape). 

In all the cases the first mode showed always uniformity in its modal shape 

regardless of the surrounding environment of the mooring line.  

 

5.2.2 Damped natural periods for the Steel Rope System 

The first four natural periods for the Steel Rope System in water without 

damping and with damping produced by several values of sag as the normalization 

parameter of modal shapes are presented in Figure 35. There the increment of damping 

due to the increment of the value for the normalization of the modal shape can be seen. 

In all cases the fundamental period was over 20 seconds, approximately the 

corresponding maximum period of waves produced by a storm (Tedesco et al. 1999). 
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The effect of modeling damping impacted significantly the natural periods of the 

mooring line if a large value of normalization of the modal shape is adopted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 35 First four damped natural periods for the Steel Rope System. 
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5.2.3 Behavior of the Steel System 

The first eight periods of free vibration for this system are shown in Table 13 for 

the first three cases which do not involve damping.  

 

Table 13 First eight natural periods for Steel System. 

Case 
First eight periods (s) 

1 2 3 4 5 6 7 8 

         
1) Air 32.1 16.7 11.8 9.0 7.1 5.8 4.9 4.4 

2) Weight 
submerged 

31.7 16.6 11.8 9.0 7.1 5.8 4.9 4.3 

3) Weight 
submerged, 
added mass 

35.6 18.5 13.1 10.0 7.9 6.5 5.5 4.8 

 

Modal shapes normalized with respect to different values of sag of the cable, in 

the static condition, produced the natural periods and the damping ratio ( ) shown in 

Table 14 for the Steel System.  

 

Table 14 First four damped natural periods for different normalized motion amplitudes in Steel System. 

Case 
First four periods (s) and damping ratio   (%) 

1   2   3   4   

         
1 Sag 39.5 43.3 31.5 80.9 28.0 88.4 23.1 90.1 

0.5 Sag 36.3 19.5 22.2 55.3 17.7 67.2 13.5 67.2 

0.1 Sag 35.7 7.5 18.7 14.6 13.3 17.3 10.2 19.7 

0.01 Sag 35.6 0.0 18.5 0.0 13.1 0.0 10.0 0.0 

0.001 Sag 35.6 0.0 18.5 0.0 13.1 0.0 10.0 0.0 
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First two modal shapes for this system in air are shown in Figure 36. 

 

 

 

  

  

 

Figure 36 First two modal shapes for the Steel System in air.  
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3
rd

 and 4
th

 modal shapes for this system in air are shown in Figure 37. 

 

 

 

  

 

 

 

Figure 37 Third and fourth modal shapes for the Steel System in air.  
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First two modal shapes for this system in the 2
nd

 case are shown in Figure 38. 

 

 

 

  

  

 

Figure 38 First two modal shapes for the Steel System with submerged weight.  
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3
rd

 and 4
th

 modal shapes for this system in the 2
nd

 case are shown in Figure 39. 

 

 

 

  

  

 

Figure 39 Third and fourth modal shapes for the Steel System with submerged weight.  
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The first two modal shapes for the 3
rd

 case are shown in Figure 40. 

 

 

 

  

  

 

Figure 40 First two modal shapes for the Steel System in water with added mass.  
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3rd and 4th modal shapes for this system in the 3
rd

 case are shown in Figure 41. 

 

 

 

  

  

 

Figure 41 Third and fourth modal shapes for the Steel System in water with added mass.  

In plane  T=13.1 s In plane  T=10.0 s 

Out of plane  T=13.1 s 
Out of plane  T=10.0 s 

Tangential  T=10.0 s Tangential  T=13.1 

s 

Tension 

Compression 



 

 

79 

 

The first two modal shapes for the 4
th 

case are shown in Figure 42.  

 

 

 

  

 

Figure 42 First two modal shapes for the Steel System considering submerged weight, added mass, and 

damping. 

 

The above shapes correspond to the 0.1 sag level of damping and are scaled 
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3rd and 4th modal shapes for this system in the 4th case are shown in Figure 43. 

 

 

 

  

 

Figure 43 Third and fourth modal shapes for the Steel System, considering submerged weight, added 

mass, and damping. 

 

The above shapes correspond to the 0.1 sag level of damping and are scaled. 

Similarly as in the Steel Rope System, for this Steel System, the last surrounding 

case referring to the tangential mode was not developed because no tangential 

components where included in the damping matrix.  
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Out of plane  T=13.3 s Out of plane  T=10.2 s 
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Regarding the behavior of the Steel System, in all the surrounding cases, except 

for the damping case, the in-plane modes were very uniform in the distribution of their 

shape along the length of cable. This behavior was found in the Steel Rope System as 

well. 

For the out-of-plane modal shapes there is uniformity in the modal shapes for the 

first and second modes in all the cases, except for those with damping. The modal shapes 

had more amplitude in the lowest part of the cable, except for the 3
rd

 case, where the 

submerged weight, added mass and no damping were included, where the higher 

amplitude was found in the upper part of the cable.  

For the tangential modal shapes there is a regularity in each mode, regarding the 

distribution of the shape along the length of the cable, except for the second case, where 

the mooring line is modeled with just submerged weight, but no added mass or damping. 

There is in these tangential modal shapes a correspondence between them and the modal 

shapes of the in-plane and out-of-plane components for all the cases except for the last 

case mentioned. 

In all the cases the first mode showed always uniformity in its modal shape 

regardless of the surrounding environment of the mooring line, similarly as the previous 

Steel Rope System assessed. 
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There is not a noticeable change in the modal shapes for the in-plane, and out-of-

plane components at the point where the chain and steel rope are joined. However a 

sharp change in slope was found in the tangential mode shapes at the point where the 

bottom chain is joined to the rope. 

 

5.2.4 Damped natural periods for the Steel System 

Different values of damped natural periods were found in the Steel System by 

following the formulation proposed in chapter four. These natural periods depend on the 

amount of sag used in the normalization to form the damping matrix. The periods for the 

same modes for the case where the mooring line is modeled with submerged weight, 

added mas, and damping are shown in Figure 44. 

The increment of damping due to the increment of the value of sag for the 

normalization of the modal shape can be seen. As in the Steel Rope System the 

fundamental period is observed to be longer than 20 seconds. 
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5.2.5 Behavior of the Polyester System 

The first eight natural periods obtained for the Polyester System in each 

environment are presented in Table 15 for the first three cases which do not involve 

damping.  

 

  

Figure 44 First four damped natural periods for the Steel System. 
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Table 15 First eight natural periods for Polyester System. 

Case 
First eight periods (s) 

1 2 3 4 5 6 7 8 

         
1) Air 19.9 11.0 7.9 5.7 4.5 3.7 3.3 3.0 

2) Weight 
submerged 

12.8 8.5 5.0 3.7 3.4 2.9 2.3 2.1 

3) Weight 
submerged, 
added mass 

22.3 12.3 8.8 6.4 5.0 4.2 3.7 3.3 

 

 

The natural periods and the damping ratio ( ) produced by modal shapes, 

normalized with respect to different values of sag of the cable, are shown in Table 16 for 

the Polyester System.  

 

 

Table 16 First four damped natural periods for different values of normalized motion amplitude in 

Polyester System. 

Case 
First four periods (s) and damping ratio   (%) 

1   2   3   4   

         
1 Sag 22.4 9.4 12.3 0.0 9.3 32.3 7.8 57.2 

0.5 Sag 22.3 0.0 12.3 0.0 9.0 21.0 7.2 45.8 

0.1 Sag 22.3 0.0 12.3 0.0 8.8 0.0 6.5 17.5 

0.01 Sag 22.3 0.0 12.3 0.0 8.8 0.0 6.4 0.0 

0.001 Sag 22.3 0.0 12.3 0.0 8.8 0.0 6.4 0.0 
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The first two modal shapes for this system in air are shown in Figure 45.  

 

 

 

  

 

 

 

Figure 45 First two modal shapes for the Polyester System in air.  
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The 3
rd

 and 4
th

 modal shapes for this system in air are shown in Figure 46. 

 

 

 

  

  

 

Figure 46 Third and fourth modal shapes for the Polyester System in air.  
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First two modal shapes for this system in the 2
nd

 case are shown in Figure 47. 

 

 

 

  

  

 

Figure 47 First two modal shapes for the Polyester System with submerged weight. 
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3
rd

 and 4
th

 modal shapes for this system in the 2
nd

 case are shown in Figure 48. 

 

 

 

  

  

 

Figure 48 Third and fourth modal shapes for the Polyester System with submerged weight.  
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The first two modal shapes for the 3
rd

 case are shown in Figure 49.  

 

 

 

  

  

 

Figure 49 First two modal shapes for the Polyester System in water with added mass. 
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3
rd

 and 4
th

 modal shapes for this system, in the 3
rd

 case, are shown in Figure 50.  

 

 

 

  

  

 

Figure 50 Third and fourth modal shapes for the Polyester System in water with added mass.  
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The first two modal shapes for the 4
th 

case are shown in Figure 51.  

 

 

 

  

 

Figure 51 First two modal shapes for the Polyester System considering submerged weight, added mass, 

and damping. 
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3
rd

 and 4
th

 modal shapes for this system, in the 4
th

 case, are shown in Figure 52.  

 

 

 

  

 

Figure 52 Third and fourth modal shapes for the Polyester System, considering submerged weight, added 

mass, and damping. 

 

In this system too, the last surrounding case referring to the tangential mode was 

not developed because no tangential components where included in the damping matrix. 

Finally, in the behavior of the Polyester System, the uniformity for the in-plane 

modes in the distribution of their shape along the length of cable was not found.  
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Regarding the out-of-plane modal shapes for this system there was not 

uniformity found, as in some patterns in the Steel System. 

For the tangential modal shapes, there is regularity in each mode, related with the 

number of crossing times of the longitudinal axis. A better correspondence than in the 

previous systems between the tangential modal shapes and those associated with the out-

of-plane component was found. 

In all the cases the first mode showed uniformity in the first modal shape, except 

for the out-of-plane cases with no damping included, where the amplitude is slightly 

bigger in the lower part of the cable. 

There is little change in the modal shapes for the in-plane and out-of-plane 

shapes at the point where the chain and polyester rope are joined. However, a distinct 

change in slope is evident in the tangential mode shapes at the point where the lower 

chain is joined to the polyester rope. 

The relatively small magnitude in the sag is noticeable in the modal shapes 

compared to the modal shapes of the Steel System and the Steel Rope System. 

 

5.2.6 Damped natural periods for the Polyester System 

The first four natural periods for the Polyester System in water with and without 

damping are shown in Figure 53, considering different values of sag normalization to 

define the damping level. 
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There is not a contrast between the natural periods including damping and 

without damping for this example. In all the cases the fundamental period was near to 20 

seconds. The natural periods for the higher modes are far from the first natural period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.7 Comparison of systems 

The fundamental natural period for the four systems is tabulated in Table 17. 

Here, the different surroundings for each system can be analyzed, except for the case 

where damping is included.  

Figure 53 First four damped natural periods for the Polyester System. 
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Table 17 Fundamental natural periods for each system. 

System Surroundings considered 

Top 

tension 

(kN) 

Fundamental 

period (s) 

    
Steel 

rope 

system 

Air 3661 27.5 

Water, only submerged weight 2946 27.1 

Water, submerged weight, and added mass 2946 30.5 

    

Steel 

system 

Air 3647 32.1 

Water, only submerged weight 2946 31.7 

Water, submerged weight, and added mass 2946 35.6 

    

Polyester 

system 

Air 3954 19.9 

Water, only submerged weight  2946 12.8 

Water, submerged weight, and added mass  2946 22.3 

 

 

The fundamental period for each system is shown in Figure 54. In this plot the 

tendency of each system can be seen for the different surrounding cases, except with 

damping. 

In all the systems the lowest period was for the case with only the submerged 

weight, followed by the case in air, the case with submerged weight and added mass, and 

finally the case with damping. 

The Steel System offered larger periods than the other two systems for each 

surrounding case. 
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A comparison with different values of natural periods, and damping ratios for the 

three systems are shown in Table 18. These values of periods and damping ratios were 

obtained based on modal shapes normalized by the values of amplitude referred in the 

table.  

 

  

Figure 54 Fundamental periods of free vibration for the three systems for three surrounding 

environments. 
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Table 18 Fundamental damped natural periods and damping ratios for the three systems. 

Amplitude 
Natural Period (s) 

Steel Rope System Steel System Polyester System 

    
1 Sag 40.3 39.5 22.4 

0.5 Sag 35.4 36.3 22.3 

0.1 Sag 31.5 35.7 22.3 

0.01 Sag 30.6 35.6 22.3 

0.001 Sag 30.5 35.6 22.3 

    

Amplitude 
Damping Ratio   (%) 

Steel Rope System Steel System Polyester System 

    
1 Sag 65.4 43.3 9.4 

0.5 Sag 50.8 19.5 0.0 

0.1 Sag 25.0 7.5 0.0 

0.01 Sag 8.1 0.0 0.0 

0.001 Sag 0.0 0.0 0.0 
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6. SUMMARY AND CONCLUSIONS 

 

The aim of this project was to study the dynamics of specific kinds of mooring 

lines, focusing on the impact of damping in the modal analysis. The mooring lines 

proposed to study comprised up to three segments of different materials. These examples 

were realistic examples of the mooring lines employed in current offshore facilities. The 

presence of different materials in one mooring line, as in the case of two of the examples 

proposed, was another important factor to investigate in the modal analysis performed. 

The model adopted to perform the modal analysis was based on a variational 

formulation presented by Chucheepsakul and Srinil (2002). The work-energy produced 

by the external and internal forces in a submerged cable can be analyzed to define the 

structural stiffness of the mooring line, and consequently its static configuration is found 

under specific characteristics. 

From this point, the modal analysis can be executed adding a damping matrix in 

the problem. This damping matrix was assembled based on a statistical linearization of 

the nonlinear drag force with the associated displacement of each point of the mooring 

line in water, produced during its motion relative to the initial static deformed 

configuration. 

Besides the case where the damping is included, other cases of study were added 

in order to contrast different scenarios where the cables could vibrate. These cases where 

the cable could vibrate were called surrounding environments. The four cases studied 

were:  
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1) Air. The cable included its weight without buoyancy. 

2) Water, only submerged weight. The buoyancy is included in the weight of 

the cable. 

3) Water, submerged weight, and added mass. Buoyancy and added mass 

included. 

4) Water, submerged weight, added mass, and damping. Buoyancy, added 

mass, and drag damping considered, for different values of motion 

amplitude relative to the static sag in the cable. 

The natural periods of each above termed case were the lowest in the instance 

number two. In this case the net weight and the effective mass are the lowest. Since there 

is no added mass, and no damping, this example is related to one as if the mooring line 

were in air. 

The first case, entitled Air, where the cable does not have reduction in its weight 

because of the buoyancy, and has no added mass or damping, has the second lowest 

natural period for each one of the systems. 

The cases 1 and 2 have the lowest natural periods for each system. This is a part 

of the verification of the model used. Obtaining lower periods in an air environment 

makes sense, expecting that the cables will vibrate with higher frequencies than the same 

cables submerged in water. 

Three mooring systems were analyzed. One mooring system was of steel rope, 

called “Steel Rope System”. The other two of them were realistic designs of deepwater 

mooring lines: one was called “Steel System” made up with a main insert of steel rope, 
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and two end segments of chain, and the named “Polyester System” composed by two 

extreme segments of chain and a main middle segment of polyester.  

As expected, the natural periods for each of the three systems increase when drag 

damping is included. It was observed that there is a correspondence between the value of 

the amplitude of the motion of the cable and the damping obtained. The larger the 

amplitude considered in the modal shape, the larger value of damping obtained. From 

this point it can be concluded that the better understanding of damping in the vibration of 

mooring lines, and its participation as an important factor in the entire analysis of 

mooring lines, may improve their design and the safety of offshore facilities where they 

are installed. 

When no damping was included in the modal analysis the in-plane and out-of-

plane modal shapes showed a smooth transition between the steel chain and the steel 

rope or polyester rope. In contrast, the tangential modal shapes for those cases showed 

noticeable changes in slope at the connection between the bottom chain and the rope, 

indicative of large gradients in axial displacement related to dynamic tension and 

compression forces. 

When damping was included, the tangential mode shape was not investigated, 

because only the lateral motion of the cable was considered to be damped by the water.  

From the three mooring systems studied, the Steel Rope System is an exercise 

nearer to an idealization than to a real situation because at the ends of the mooring line it 

needs to have short lengths of abrasion resistant material in order to be connected to the 
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anchor and the floating system, nevertheless the example was useful to understand the 

behavior between the other two mooring systems. 

The primary focus was on contrasting the Steel System and the Polyester System. 

For example, it can be said that the Steel System always showed higher values of natural 

periods of vibration than the Polyester System for the same cases of study. From the 

point of view of being farther from the periods of excitation of waves in a common 

storm, it can be stated that the named Steel System is safer than the Polyester System. 

The Polyester System always showed, for all the cases assessed, the lowest 

values of natural periods. Apart from its first natural period, the rest of the natural 

periods were the nearest to the periods of excitation produced by waves in prevailing 

seas. This could lead to more problems of fatigue in these mooring systems than in the 

Steel System. 

The methodology followed was acceptable for adaptation in the representation of 

different kinds of materials in one mooring line; however, it was not practical enough to 

represent the exact values of length of the different segments of the line because the 

initial length of the mooring line is not an explicit input parameter. 

Furthermore, the discretization into equal height slices produced finite elements 

that in the lowest part of any mooring line were longer than in the upper part, especially 

in cases where the tension is relatively low and there is a large sag in the static deformed 

configuration. 

The addition of the lateral amplitudes of displacement to formulate a damping 

matrix appears to be a very useful way to reproduce damping in mooring lines produced 
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by water. Furthermore, the addition of the damping effect on the tangential modal shapes 

is desirable in order to better understand modal behavior near the transition between 

materials in the specific case where damping is considered. 

Further study to improve the application of this method can be important to 

obtain more accurate results on this phenomenon. Moreover, the generation of damping 

including the effects of tangential modes can be important to consider in future studies. 

The main internal force present in mooring lines is the axial force. All the 

analyses developed in this work were performed considering it; however, the inclusion 

of bending stiffness as an additional factor in the modal analysis of mooring lines is 

desirable for future works. 
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APPENDIX A 
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In the above transformation matrix the subscrips j and j+1 refers to the initial and 

end node of each finite element. From that matrix each term is developed below. 
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