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ABSTRACT 

 

Bacterial contamination due to excessive levels of bacteria is a confounding 

problem and remediation of impaired watersheds relies on the detection of fecal 

indicator bacteria and then assessing the source of said bacteria.  Bacterial source 

tracking (BST) is an approach for assessing potential sources of this contamination.  The 

purpose of this study was to utilize both cultivation-independent and -dependent 

methods to improve the ability to track sources of fecal contamination.  First, E. coli 

community composition was assessed across three standard water quality assessments 

including USEPA Methods 1603 and 1604, and Colilert®, to determine their impact on 

BST library-based performance.  Results indicate that the three assessed methods of 

enumeration and isolation may select for different populations of E. coli and 

standardized methods may be warranted if library-dependent BST is part of a research 

plan.  Next, BST techniques were used to enumerate and characterize E. coli 

communities across various dairy manure management techniques used in the Leon 

River watershed in central Texas to determine effectiveness of BST efforts in tracking 

contamination from dairy manure.  Results of this study indicated that manure and 

effluent management strategies which employed means to remove solids from the 

manure tended to decrease the levels of E. coli in the effluent.  Some E. coli genotypes 

were found across the managerial treatments even though there were no clear seasonal 

trends or site groupings among the dataset.  The vast majority of the isolates classified 

using the Texas E. coli BST library were correctly classified back to their major source 
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class, thus increasing confidence in the methods currently being utilized to track dairy 

fecal contributions in this Central Texas watershed.  Finally, deer bacterial fecal 

communities from south and central Texas were analyzed using 454-pyrosequencing to 

assess the potential for the development of a deer-specific BST marker.  Microbial 

communities did not cluster by site or year suggesting that deer fecal communities in 

these Texas regions are stable over time and could be amenable to marker development.   
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CHAPTER I  

GENERAL INTRODUCTION  

 

Problem and Introduction to Bacterial Source Tracking  

The Clean Water Act of 1972 created a platform by which states could regulate 

the discharge of pollution into US waterways.  Following its enactment, many of the 

point sources of pollution, including industrial sites and municipalities, were identified 

and subsequent modifications to their waste management have greatly reduced their 

environmental impact.  Also in accordance with the Clean Water Act, states were 

mandated to develop community driven watershed protection plans (WPP) or regulatory-

based total maximum daily loads (TMDL), ultimately implementing plans to reduce 

remaining impairments.  In a 2010 water quality assessment, the Texas Commission on 

Environmental Quality (TCEQ) listed 621 water bodies in Texas that did not meet state 

standards.  These water bodies were listed on the 303(d) list as impaired watersheds, and 

bacterial contamination accounted for 51% of those listings (TCEQ, 2010).  Remediation 

and management of bacterially-impaired waters relies on the detection of fecal 

contamination. Bacterial source tracking (BST) is an approach to determining potential 

sources of this fecal contamination.   

BST is based on the premise that gut communities of various warm blooded hosts 

are preferentially selected through various factors including diet, pH, and nutrients, and 

can be host specific (Casarez et al., 2007b; USEPA, 2005b).  This specificity can then be 

exploited through phenotypic and genetics assays to trace fecal contamination back to its 
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source.  Technical approaches to BST are broad and no one approach is universally 

accepted (USEPA, 2005b).  BST approaches can broadly be split into two categories, 

library (cultivation) dependent and independent methods.  Library dependent methods 

rely on the creation of reference libraries from known sources used to identify water 

isolates.  Many library-dependent BST studies are based on fecal indicators, like E. coli 

and enterococci, due to their regulatory significance and standardized culturing 

techniques (Casarez et al., 2007b; Field and Samadpour, 2007; USEPA, 2005b).  

Concerns with library dependent BST include temporal and geographical stability of the 

library, size and scope of the known-source library, and statistical power of 

identifications, in addition to time and cost of creating the library (Field and Samadpour, 

2007; Stoeckel and Harwood, 2007).  Library independent methods generally rely on 

molecular markers specific to a target of interest.  Library-independent characterizations 

hold the promise for cost effective and rapid estimation of recent contamination without 

the need for representative indicator library construction, but specificity issues across 

source classes and a lack of validated marker sets continues to limit its wholesale 

acceptance in the field.  Novel library-independent techniques targeting groups of 

organisms other than fecal indicators, including Bacteroidales, show promise as a way to 

circumvent many of the culture based techniques, but water quality standards continue to 

be based on fecal indicators.  Thus, BST techniques targeting fecal indicators continue to 

be a viable and useful resource.     
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Motivation and Objectives  

Even though the science of BST has made great strides over the past decade, 

many researchers and stakeholders remain skeptical about their usage, especially from a 

regulatory standpoint.  Critical areas of need are ultimately tied to method performance.  

Library dependent BST methods have several significant factors of consideration that 

include size of the library, proportionality and representatives of library members, 

library performance measures, and as well as geographical and temporal stability (Field 

and Samadpour, 2007; Stoeckel and Harwood, 2007; USEPA, 2005b).  But even before 

library construction and performance is considered, methods of enumeration and 

isolation should also be considered.  There are numerous EPA approved methods to 

enumerate fecal indicators as well as methods used in clinical settings, but there is a lack 

of consensus about which method is most appropriate for BST library creation (USEPA, 

2005b).  Much effort has been made to understanding false positive and negative rates as 

well as the organisms causing them (Chao et al., 2004; Sercu et al., 2011).  Additionally, 

studies have highlighted the ability or inability to compare data across enumeration 

techniques (Francy and Darner, 2000; Hamilton et al., 2005).  But very little 

investigation has occurred into what impacts these different media have on the microbial 

ecology of the bacterial populations isolated and what impacts that may ultimately have 

on library performance. Once libraries are established, including the dynamic Texas     

E. coli BST library, considerable questions still remain about their geographical and 

temporal stability (Casarez et al., 2007b).  Substantial time and expense are needed to 

develop a BST known source library and expand it over time, so the goal is to be able to 
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utilize that library over several years and possibly across a broad geographic region.  

Confounding results across several studies suggest individual libraries should be 

examined for performance over time and include as much metadata as possible to 

attempt to account for shifts in bacterial populations (Casarez et al., 2007b; Gordon, 

2001; Hansen et al., 2009; Hartel et al., 2002).   

Library independent BST methods also suffer from similar method performance 

challenges.  A suite of source-specific BST molecular markers used to quantify relative 

proportions of fecal contamination in water could be the panacea of water quality 

management efforts, and even though considerable progress has been made toward this 

end, methods to meet these needs are not yet available.  Markers have been developed 

for many of the major source classes, but considerable concerns exist over specificity of 

the markers (Shanks et al., 2010).  From a practical standpoint, stakeholders need the 

ability to discriminate between three main categories of fecal contamination, humans, 

domesticated animals, and various forms of wildlife.  Currently, there are no accepted 

methods to distinguish between ruminant animals (Bernhard and Field, 2000).  

Separation of fecal contamination among ruminants, specifically between cattle and 

deer, is especially important as TMDL projects and best management practices are 

developed to alleviate bacterial impairments have traditionally been directed toward 

livestock management.  As molecular means of characterization become available and 

are validated, it will be imperative to combine new tools with current source tracking 

resources, including library-dependent E.coli based methods, to improve our ability to 
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both track and prevent fecal contamination in an effort to tailor management practices 

and remediation schemes to ensure a healthy water supply.    

The goal of these studies was to expand BST approaches and attempt to 

ultimately improve our ability to track sources of fecal contamination.  The research 

objectives were as follows:   

(1) Evaluate differences in E. coli community composition across three standard 

water quality assessments to ultimately determine their impact on BST 

library performance (Chapter III).  

(2) Assess the impact of dairy manure management on abundance and diversity 

of E. coli using BST techniques (Chapter IV). 

(3) Analyze deer fecal microbial communities using 454 pyrosequencing to 

evaluate their suitability for development of a deer specific BST marker 

(Chapter V).  
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CHAPTER II  

EVOLUTION OF BACTERIAL SOURCE TRACKING IN TEXAS  

 

Bacterial source tracking (BST), generally defined for this report as methods 

designed to identify sources of fecal contamination in environmental waters, in Texas 

dates back to the early-2000s with both coastal and mainland projects.  Many of these 

projects have been funded through the TCEQ and the Texas State Soil and Water 

Conservation Board (TSSWCB) using Clean Water Act §319(h) funds and employed 

BST in the TMDL process to complement monitoring and modeling activities.  These 

projects initially spanned a wide range of methods, but ultimately have led to a more 

standardized set of procedures utilized across the state today including both library-

dependent methods used to develop the Texas E. coli BST library, as well as, library-

independent methods utilizing Bacteroidales-PCR based approaches.  

 

Copano Bay  

An early BST study in Texas was conducted in the Copano Bay watershed north 

of Corpus Christi.  The watershed was very complex in that it had both tidal and non-

tidal segments included on the 303(d) list for elevated bacterial levels as well as not 

meeting water quality for oyster harvesting.  The Texas General Land Office funded a 

study by Dr. Joanna Mott at Texas A&M Corpus Christi (TAMU-CC) to use BST 

applications to identify sources of fecal contamination in the watershed.  Library-

dependent antibiotic resistance analysis (ARA) was used as well as pulse-field gel 
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electrophoresis (PFGE) which served to confirm the ARA results (Mott and Smith, 

2011, USEPA, 2005).  Even though fecal coliforms served as the current water quality 

standard for oyster waters, the more specific E. coli was used as the indicator of choice 

for this project.  Water samples were processed using EPA Method 1103.1 onto mTEC 

media.  The isolates were confirmed for culture purity onto Rainbow® agar plates and 

confirmed as E. coli using the MicroLog
TM

 Microbial Identification System (Biolog, 

1999).  Known-source samples were collected using fresh fecal samples or swabs from 

freshly killed animals.  Known-source E. coli isolates were collected and confirmed with 

the same procedures as the water isolates.  ARA analysis was performed using a 

standard Kirby-Bauer disk diffusion method with a panel of 20 antibiotics.  Zones of 

inhibition were scored using BIOMIC® software and discriminant analysis was used to 

differentiate the various source results and calculate the average rates of classification 

(ARCC).  A portion of the known-source isolates were then analyzed by PFGE as a 

secondary confirmation of the source classifications.  The isolates’ DNA extracts were 

digested with restriction enzyme, NotI, separated using a CHEF-DRI III Gel 

Electrophoresis Unit (Bio-Rad, Hercules, CA) and processed using the Quantity One 

program (Bio-Rad, Hercules, CA).   

The ARA library was constructed and analyzed using discriminatory analysis to 

classify resistance data from 1,058 total isolates into several different source category 

groupings.  This study divided the source classifications into two-way (human and non-

human), four-way (human, cattle, horse, and wildlife) and six-way classifications 

(human, cattle, horse, duck, gull, and other wildlife).  Ducks and gulls were included as 
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separate categories based on recommendations from a sanitary survey of the potential 

sources in the area.  The ARCC of cross-validated isolates were highest in the two-way 

split at 71%, 62% with the four-way split, and 56% in the six-way split. In the six-way 

split, the largest misclassifications occurred when cattle and horses were identified as 

sewage.  The six-way split was ultimately used to classify the isolates in the study.  In 

total, 2,811 isolates from across the study were fingerprinted from 14 stations across 8 

sampling events including normal flow and storm flow events.  Some stations had 

considerably more isolates per site due to a lack of E. coli during sampling events at 

several of the locations.  But overall, using a six-way split, 22% of the isolates were 

characterized as being from human contributions, 35% from horses, 21% from ducks, 

20% from cattle, and 1% from gulls and wildlife.  As possibly expected, there were 

considerable differences in source category allocations across the 14 sample locations.  

The PFGE analysis was meant as a confirmation of source categorization and 1,077 

isolates were also fingerprinted and source identifications characterized based on cluster 

analysis of the PFGE banding patterns.  Overall, 63% of the human isolates, 27% of the 

cattle isolates, 18% of the horse isolates, and 9% of the duck isolates were classified to 

the same source category using PFGE and ARA.  The results showed some promise as 

the human source category showed greater congruence between the two methods, but 

many questions remained as to the size and scope of the source library needed to more 

accurately distinguish between source contributors and even whether these methods 

would ultimately be able to do so.  Further, some of the fecal samples from horses and 

ducks were collected in a different time period than the water sample collection possibly 
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introducing confounding, temporal differences in the known-source fecal communities 

used in the study (Mott, 2005).    

 

Oyster Creek  

 BST was conducted on the Upper Oyster Creek in the Brazos River Basin, 

located southwest of Houston, in 2004. The watershed includes several incorporated 

municipalities including Fulshear, Sugar Land, Stafford, and Missouri City.  Significant 

hydrologic modification occurs at several locations in the watershed where water is 

relocated for irrigation, industrial, and public drinking supplies outside the watershed.  

The project was funded by the TCEQ through a contract with the Texas Institute for 

Applied Environmental Research (TIAER) and BST was conducted by the Institute for 

Environmental Health (IEH) in Seattle, Washington.  A TMDL has been completed and 

the watershed is currently in the implementation phase overseen by the Houston-

Galveston Area Council.  The project utilized library-dependent BST using ribotyping of 

E. coli.  Strains of E. coli from both water and known-source samples were digested with 

two restriction enzymes, EcoRI and PvuII, resolved by agarose gel electrophoresis, and 

subsequently processed using southern hybridization to create specific restriction 

fragment length polymorphism patterns or ribotypes.  The ribotypes were scored using 

an alpha-numeric pattern where bands within 3 mm of each other enumerated (1, 2 or 3) 

and scored as a group and any band or group of bands greater than 3mm distance from 

another was scored as a separate entry in the code.  Banding patterns that scored exactly 

the same code but were visually shifted were considered the same ribotype.  Isolates 
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with the same EcoRI and PvuII ribotypes were considered to be members of the same 

ribogroup.  Only isolates with two identical ribotypes were grouped together, and only 

isolates with an exact match were classified into a particular source category.  Quality 

control was tested through a blind study of 60 isolates (20 isolates in triplicate) where 

the precision was 100%, all 60 of the isolates yielded the same ribotype when repeated, 

and 100% accurate identification occurred down to source species.   

 A sanitary survey characterized potential sources of contamination in the 

watershed and guided source selection of the 501 known-source E. coli isolates used to 

build the watershed-specific ribotype library.  These isolates were included in a larger 

library established by IEH from samples collected around the US which was used to 

identify water isolates back to their source.  Specific details of makeup of the entire 

library were not included in the technical report.  Ribotypes that were not source-specific 

were characterized as ‘transient’ but were included in the library, therefore, water 

isolates that were considered unidentified may have been so labeled because there were 

no ribotypes in the library or they were not host-specific.  The authors of this report 

classified the known sources into six major source categories (humans/sewage, 

livestock, mammalian wildlife, avian wildlife, pets, and unknown) but results were also 

presented down to a single source.  The water analysis included 6 core monitoring 

stations and 12 different events, including runoff events, with over 120 isolates 

ribotyped from each core station for a total of 1,136 isolates.  Overall and when analyzed 

by site, there was no significant difference in the source characterizations between the 

runoff and non-runoff events.  Specific site source characterizations were similar to the 
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overall results, and when they did differ, specific site characterizations explained the 

results, e.g., livestock contributions were slightly higher in the more rural portions of the 

watershed. Wildlife was the largest source contributor in the dataset representing 43% of 

the isolates, with 23% of the total from avian wildlife and 20% from mammalian 

wildlife.  Livestock were the next largest contributor at 19% followed by humans at 14% 

and pets at 9% with 15% of the isolates unidentified (Hauck, 2006).   

  

Trinity River  

An urban BST project was sponsored by TCEQ in the Trinity River Basin in 

Dallas in 2005. The TMDL project is currently close to the implementation plan phase, 

but BST was conducted in the early stages of the TMDL to supplement modeling 

activities and was directed by the Institute for Environmental Health.  The BST methods 

and library construction were similar to those used in the Oyster Creek project as 

described previously.  Quality control was tested through a blind study of 30 isolates 

where the precision was 100%, all 30 of the isolates yielded the same ribotype when 

repeated, and 100% accurate identification occurred down to source species.   

A sanitary survey guided investigators to collect fecal samples, isolate E. coli and 

build a known-source ribotype library from 522 watershed specific isolates.  Similar to 

the Trinity River project, isolates were included in a larger library established by IEH 

from samples collected around the US which was used to identify water isolates back to 

their source.  Specific details of makeup of the entire library were not included in the 

technical report.  Overall, 550 water samples were collected from 10 different stations 
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with approximately two isolates from each water sample ribotyped for a total of 1,135 

isolates.  Overall, no one source category was characterized across the watershed as 

being a dominant contributor due to the diversity of and variability in sources of E. coli 

detected at each station.  The only consistencies seen in the data set were in dominant 

sources seen in each major source category.  Non-waterfowl species dominated the avian 

wildlife, bovine and horses in livestock, rodents in mammalian wildlife, and dogs in pets 

(Texas Institute for Applied Environmental Research, 2006).    

 

Assessment of Bacterial Sources Impacting Lake Waco and Belton Lake 

The Lake Waco and Belton Lake study was a significant collaboration of the 

Texas Farm Bureau, TSSWCB, City of Waco, and Brazos River Authority with EP 

AREC, TAMU, TAMU-CC, and Parsons Water and Infrastructure, Inc. to assess 

potential sources of fecal contamination in the watersheds after concerns were raised 

over possible contamination from agricultural activities in the area.  This study was also 

designed to evaluate several promising BST methods and identify the most appropriate 

methods for future work in Texas.   

Method Evaluation 

Four library-dependent methods were evaluated including Kirby-Bauer antibiotic 

resistance analysis (KB-ARA), enterobacterial repetitive intergenic consensus sequence 

PCR (ERIC-PCR), PFGE, and automated ribotyping (RP) (Casarez et al., 2007b; 

USEPA, 2005b).  These methods were chosen due to their previous use in other BST 

studies, their range of capacity to discriminate between bacterial strains, as well as cost 
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and labor considerations.  KB-ARA and PFGE had been used in previous BST 

applications and were established techniques used at TAMU-CC and TAMU, 

respectively (Lu et al., 2004).  ERIC-PCR, a type of rep-PCR, was chosen as an 

additional method of screening based on its discriminatory capabilities and relatively 

inexpensive cost.  The PCR amplification of adjacent ERIC elements which are variable 

among bacterial strains yields a number of different sized fragments that are resolved on 

an agarose gel creating a banding pattern or fingerprint used to differentiate different 

strains of E. coli.  Manual ribotyping, as used by IEH in previous TX BST studies, was 

simplified and standardized by automating the process using the DuPont Qualicon 

RiboPrinter Microbial Characterization system (RiboPrinting; RP).  The initial 

investment was high and consumable costs for RP are the highest of any of the four 

methods, but automation and reproducibility of the data was advantageous.  Further, the 

construction of this library was meant to stand as the foundation for a potential statewide 

BST library to be used in future studies and for expansion of these techniques around the 

state.   

Library Design and Performance 

Several pivotal technical approaches were implemented in this study.  E. coli was 

chosen as the target for library construction due to its direct link to fecal contamination 

and regulatory standards, as well as the availability of standardized culturing techniques 

designed especially for environmental water samples.  Water and known-source fecal 

samples were processed using EPA Method 1603 on modified mTEC media.  This 

medium is designed for its simplicity and specificity to enumerate E. coli using a 
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chromogen, 5-bromo-6-chloro-3-indolyl-β-D-glucuronide to detect β-D-glucuronidase.  

All isolates were also streaked for culture purity onto NA-MUG media to confirm 

glucuronidase activity.  The use of the automated DuPont system for RP enabled the use 

of standardized reagents with a robotic workstation to increase the reproducibility of 

results and thus comparability with work performed at other labs using the same 

methods.  Also, ribotyping completed in previous studies conducted by IEH used two 

restriction enzymes, EcoRI and PvuII.  However, there was not a consensus regarding 

the best enzymes to use for BST with various projects across the US using a variety of 

different methods.  Based upon available information regarding specificity, cost, and 

detection sensitivity, it was decided to use a single restriction enzyme, HindIII, for RP of 

isolates for the Texas E. coli BST Library.   

Library structure was a significant consideration when the project was designed.  

Depending on the assay, the size of the library could have a significant impact on the 

ability to identify sources of contamination especially if identical strains from the same 

source were included in the analysis, so the investigators looked to maximize the number 

of unique strains of E. coli that would be included in the analysis.  Another significant 

hurdle in BST research was how to analyze the fingerprint data, so BioNumerics 

software (Applied Maths, Austin, TX) was chosen due to its ability to process multiple 

fingerprint techniques as well as the ability to create composite datasets to identify 

methods or combinations of methods that would yield the most positive outcomes.  For 

both ERIC-PCR and RP fingerprints, curve-based Pearson-product similarity 

coefficients were used to compare the banding patterns, which use both the position and 
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the intensity of the bands to make comparisons.  Finally, the unweighted pair group 

method with arithmetic means (UPGMA) was used to construct dendrograms to depict 

relationships between the isolates.  Quality control strains were used in all four methods 

to measure the reproducibility of the methods and to determine the minimum similarity 

values needed to categorize the patterns as different types.   

 A sanitary survey helped identify major source classes of potential fecal 

contamination in the area and 1,094 fecal samples total were processed of which 813 

were positive for E. coli.  A group of 100 isolates from South TX wildlife sources 

collected from a previous study by Mott at TAMU-CC was also included.  In order to 

build a more diverse library, three isolates from each sample were fingerprinted using 

ERIC-PCR and any isolates that were greater than 80% similar were considered identical 

or ‘clonal’.  The similarity cutoff value was based on reproducibility of a quality control 

strain over time.  Based on that similarity cutoff, one to three isolates were chosen to be 

included in the library.  Isolates whose best match was less than 80% similar were 

considered unidentified and included in the library.  Also, if the best match was to a 

single isolate, it was also selected to make sure that clusters of isolates had a minimum 

of two members.  At least one isolate from each sample was included in the analysis 

even if the ERIC-PCR type was already present in the library to include common and 

abundant strains from different samples in the library, but not clonal isolates from 

individual samples.  After ERIC-PCR screening, 883 isolates from 745 different sources 

were ultimately analyzed by all four BST methods and used to construct the known-

source library.   
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Results 

In total, 11 different water monitoring stations were sampled over a 10 month 

period during which many of the samples did not have detectable levels of E. coli.  At 

the beginning of the project it was noted that the geometric means at several of the 

locations tested were well below the geometric mean criterion for recreational water 

quality.  Ultimately, 650 water samples were collected, 412 samples were positive for E. 

coli, between 1 and 5 isolates were isolated and archived per sample and 555 total water 

isolates were analyzed using all four BST methods.  

Quality control was tested using a blind analysis of 30 test isolates (10 

triplicates).  All four of the methods were able to identify the replicate isolates (100% 

precision).  Method accuracy ranged from 70-90% accuracy in identifying each isolate 

back to a single library isolate and correct source class.  KB-ARA, which was analyzed 

using both a best match and discriminant analysis approach, was less successful using 

discriminant analysis with 40% precision (identification of the replicates) and 50% for 

method and source identification.  When combined, the four method composite data set 

identified all of the replicates and identified all of the strains and their sources correctly 

for 100% precision and accuracy.  Jackknife analysis was used to evaluate RCC for the 

library using a best match approach.  Isolates whose best match was below the minimum 

similarity cutoff for each method were considered unidentified.  The minimum similarity 

cutoffs values were 85% for ERIC-PCR, RP, and KB-ARA, 70% for PFGE, and 70% for 

the composite dataset (all 4 methods combined).  These cutoffs were based on 

replication of a quality control strain over time in each of the methods.  The 70% cutoff 
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was used in the combined dataset to allow for variation in the individual methods and to 

strike a balance between increasing RCC and the proportion of isolates left unidentified.  

The composite dataset equally weighed the four methods and gave an average of the 

similarities of all of the methods.  Isolates were identified back to a single isolate, but 

were classified back only to one of seven major source classes which included domestic 

sewage, pets, cattle, other livestock avian, other livestock non-avian, wildlife avian, and 

wildlife non-avian.  PFGE had the highest RCC (95%) but also left the highest 

percentage of isolates unidentified across all of the methods.  So, even though the ability 

to classify isolates back to a source category was high, a very large percentage of 

isolates using only this method could not be identified using a library of this size.   

The composite dataset (Table 1) using all four methods had RCC’s ranging from 

22% in the other livestock avian category up to 83% in the domestic sewage.  This 

dataset also was able to identify a larger percentage of the isolates (81%) than any single 

method.  A cross-validation study was conducted to identify specific source classes that 

might be implicated in cross-identifications.  Overall, the largest percentage of the 

identified isolates from each source category was to the correct source and was 3 to 7 

times greater than would be identified by random chance. 
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Table 1.  Jackknife analysis rates of correct classification (%) for individual and four 

method composite BST methods and the 883 isolate library (Reprinted with permission 

from Casarez et al., 2007b). 
 

 

 

 

Using the composite dataset for source identifications, there was a wide variety 

of source contributors at each watershed site with no single source category being the 

dominant contributor.  However, wildlife, cattle, and domestic sewage were generally 

the major sources of contamination.  At the Lake Waco and North Bosque sites, wildlife 

(23% wild birds and 17% non-avian wildlife) were characterized as the source for 

estimated 40% of the isolates followed by 29% from livestock, 17% from human 

sewage, and 3% from pets.  Source category could not be identified for 11% of the 

isolates from these locations.  The combined Belton Lake and Leon River isolates 

indicated that 49% of the isolates originated from wildlife, 28% from birds and 21% 

from non-avian wildlife, followed by 32% from livestock, 11% from human sewage, and 

3% from pets.  Source category could not be identified for 5% of the isolates from these 

sites.  Previous speculation in the watershed had implicated cattle and other livestock 
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sources to be the major contributors of E. coli in the watershed, but at each of the 11 

stations at either lake, cattle were attributed to less than or equal to 25% at any one 

station.  Of particular note in the study, a site with high sewage contributions (27%) was 

detected in Lake Waco at a site near the dam which is close to a drinking water treatment 

intake.   

The results of this study highlighted the discriminatory capabilities of the four 

methods with KB-ARA being the least discriminatory, followed by ribotyping and 

ERIC-PCR and finally PFGE having the highest discriminatory power (Figure 1).  A 

sanitary survey of the watershed should help determine the level of discriminatory 

capability needed in a BST method in a particular watershed.  The scope of this project 

allowed for a comparison of the various methods and how well they corresponded.  This 

was especially important as it most likely would not be feasible in either cost or time to 

use all four methods used in this study.  Congruence measurements showed that ERIC-

PCR and RP were the two individual methods most similar (91%) to the composite 

dataset.  This project was instrumental in providing a foundation for future BST work in 

TX.  The results were reported to the Texas Farm Bureau and the TSSWCB and resulted 

in two peer-reviewed publications (Casarez et al., 2007a; Casarez et al., 2007b; Dean, 

2006). 
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Figure 1.  Congruence of individual BST methods and composite datasets (Labels 

include ERIC, ERIC-PCR, RP-RiboPrinting, ARA-KB-ARA, ERIC-RP-ARA-PFGE-

four method composite dataset) (Reprinted with permission from Casarez et al., 2007b). 
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Upper and Lower San Antonio River, Salado Creek, Peach Creek, and Leon River  

Concurrent to the Lake Waco and Belton Lake study, BST efforts conducted by 

EP AREC and sponsored by the TCEQ, were also underway in the San Antonio River, 

Salado Creek, Peach Creek, and Leon River watersheds.  These watersheds were 

ultimately broken into four separate projects all of which are in various stages of TMDL 

or WPP development.  Based on results from the TSSWCB Lake Waco and Belton Lake 

study, ERIC-PCR and RP were used as BST methods to assess sources of fecal 

contamination in the watersheds.  Like in the previous study, a large library of known-

source samples was collected following a sanitary survey in the area which for this 

project also included zoo animals in addition to the potential sources in the previously 

described seven-way source classification.  The zoo isolates were only used in the source 

identifications of the water isolates in the watershed in which the zoo animals were 

identified as potential sources.  Samples were collected and processed using the same 

standardized techniques as described from the Lake Waco study.  Further, the library 

was built using the same initial ERIC-PCR screening technique to limit including clonal 

isolates from the same sample, in an effort to build a diverse library.    

In total, 797 known-source samples were positive for E. coli, 2,152 isolates were 

screened using ERIC-PCR and excluding the 100 zoo isolates, a total of 847 known-

source samples were analyzed with ERIC-RP and included in the ‘TCEQ library’.  In an 

effort to increase the diversity of E. coli used for source identifications and to assess the 

geographical stability of the library, these isolates were combined with 980 isolates from 

the concurrent TSSWCB Lake Waco project and used to identify water isolates from the 
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watershed.  The individual TCEQ library, as well as the combined TCEQ+TSSWCB 

library was used to identify source classifications from water isolates obtained from the 

watershed.  The same best match approach was used with an 80% similarity cutoff to 

classify sources into eight categories including domestic sewage, pets, cattle, other 

livestock avian, other livestock non-avian, avian wildlife, non-avian wildlife, and zoo 

animals.  Jackknife analysis was used again to evaluate library fitness.  The RCC at the 

seven or eight way split for this study were lower than with the 4 method composite 

dataset from the TSSWCB study, but were still 2 to 5 times higher than random.  The 

combined TCEQ-TSSWCB library had the least number of unidentified isolates and 

greatly increased the RCC for non-avian wildlife.  The RCC ranged from 9% in the zoo 

isolates up to 66% in the domestic sewage.  The zoo isolates had very low RCC as they 

tended to match more closely to wildlife and domestic sewage.  Further, there was some 

cross-identification of cattle and non-avian livestock and the power to separate 

domesticated animals into three separate classes was considered a limitation of the 

constructed library.   

The watershed analyzed was geographically very large, so the results were 

shown for each individual sampling site with the number of isolates at each site ranging 

from less than 100 to over 300.  In total, 1,008 water isolates were ERIC-RP 

fingerprinted and identified.  Wildlife was characterized as being a significant source 

contributor to the watershed as a whole with 39% of the total isolates identified as either 

avian or non-avian wildlife.  Animal agriculture including cattle and poultry operations 

had been suspected of being major contributors in the watershed, and even though cattle 
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and other livestock were identified in the watershed, they were not the leading source 

found.  From a human health perspective, it was problematic that domestic sewage was 

found to be the source of 15% of the total isolates, ranging from 11% up to 18% at some 

locations (Di Giovanni et al., 2006). 

 

Bacterial Total Maximum Daily Load Task Force Report 

 In 2006, the TCEQ and TSSWCB tasked a group of water research professionals 

along with expert advisors with evaluating current trends in TMDL developments 

around the US, including modeling as well as BST approaches, and to recommend 

appropriate cost and time-effective approaches to developing TMDLs in Texas and 

suggesting the potential research objectives needed to reduce ambiguity in bacterial 

assessment across the state.  The BST portion of the report was coordinated by Drs. 

George Di Giovanni EP AREC and Joanna Mott TAMU-CC.  The report described 

methods being used for BST efforts in the state including KB-ARA, ERIC-PCR, 

ribotyping, PFGE, and carbon substrate utilization (CSU).  The report highlighted the 

results from the Lake Waco and Belton Lake study described previously.  Several key 

data interpretation and expectations were given in the report.  First, identification of 

fecal pollution sources down to the level of individual species is desired, but not 

scientifically justified with current BST methods.  Rather, the RCC values are much 

more acceptable when categorizing the potential fecal contaminants into three-way split 

categories including human, domesticated livestock, and non-domestic animals.  Further, 

significant numbers of water isolates would need to be characterized from each 
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particular sampling station over a sustained period of time in order to identify specific 

sources of pollution at individual sites, and for that reason, library-dependent BST 

project results have been previously reported on a watershed basis due to these cost and 

time constraints.  Library-dependent results were semi-quantitative at best and did not 

readily fit into quantitative modeling TMDL approaches.  Lastly, sampling site selection 

was impressed as a significant consideration factor as BST results only identify potential 

sources of contamination and not their entry pathway.  The report stressed that no one 

method should be relied upon solely for any BST effort and that the choice of methods 

should be made based on a combination of needed discrimination in the watershed and 

cost and expertise constraints.   

Newly developed library-independent BST methods targeting source-specific 

Bacteroidales molecular markers were recommended as an alternative to more time 

consuming library-dependent analyses, with several caveats.  These methods have the 

potential to be an effective and rapid estimation of recent contamination events without 

the need for library construction, but specificity issues across source classes, a lack of 

validated marker sets, and a lack of direct link to regulatory water quality standards are 

problematic.  The TCEQ and TSSWCB projects discussed previously had built a strong 

foundation for library-dependent work in the state of Texas and the task force 

recommended expanding upon that foundation in several ways: (1) expand the current 

TCEQ-TSSWCB known-source libraries with additional watersheds from around the 

state, (2) refine the library to increase BST accuracy, (3) expand BST infrastructure, 

including personnel and equipment, to increase BST capabilities, and (4) continue to 
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utilize and refine BST SOPs used across the state to maximize potential BST 

applications.  Research and development needs were also included in the task force 

report and included: 1) further refinement of reasonable expectations for BST results, 2) 

investigating the expansion of library-independent methods and their most appropriate 

incorporation with TMDL activities, 3) investigating the geographic and temporal 

stability of a statewide BST library, and 4) further refinement of appropriate sampling 

schemes to yield the most statistically sound BST results.  

 Finally, the task force recommended a three-tiered approach to bacterial TMDL 

development.  BST would be used in the early stages of TMDL development using 

mainly library-independent methods in addition to limited library-dependent applications 

if initial models were not sufficient in characterizing the watershed and identifying 

attainable bacterial load reductions in a Tier 2 analysis.  For Bacteroidales gene screens, 

50 to 100 samples would be tested using a presence/absence approach for human, 

ruminant, horse, and swine sources.  Additionally, if funds were available, 50 to 100 

water isolates would be characterized using the statewide library to asses sources of 

contamination with additional known-source samples collected from the watershed if 

less than 80% of the water isolates could not be identified.  In a Tier 3 analysis, 

generally used for I-Plans or particularly controversial watersheds where a very detailed 

characterization of sources of fecal contamination is warranted, 100-200 water isolates 

from approximately 40 separate sampling locations will be characterized using the 

statewide library that has been supplemented with isolates from at least 100 various 

known-source fecal samples from the watershed.  This task report was published in 2007 
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by the Texas Water Resource Institute (TWRI) and served as a guidepost for future 

TSSWCB and TCEQ TMDL activities (Jones, 2007).  

 

Increased Analytical Infrastructure and Development of a Statewide BST Library 

This project was funded by the TSSWCB in 2008 to increase the statewide 

capabilities to conduct BST research and refine, validate, and expand the statewide BST 

library.  The project was led by Dr. Di Giovanni and his team at Texas AgriLife 

Research El Paso, but was aimed at expanding BST personnel and expertise to Texas 

A&M College Station with Dr. Gentry.  Using methods refined in the previous 

TSSWCB and TCEQ BST projects, known-source ERIC-RP fingerprints from six BST 

studies were combined into the Texas E. coli BST Library.  The six studies, previously 

discussed in this report, include (1) Lake Waco and Belton Lake, (2) Upper and Lower 

San Antonio River, Salado Creek, and Peach Creek, (3) Lake Granbury sponsored by 

Brazos River Authority, (4) Buck Creek, (5) Upper Oyster Creek, and (6) Trinity River.    

Except for the Oyster Creek and Trinity River isolates, all of the known-source 

samples were collected and processed using the same procedures.  These SOPs were 

implemented with the Lake Waco/Belton Lake as well as San Antonio River studies.  In 

short, sanitary surveys and collaboration with stakeholders helped guide the collection of 

as many unique known source samples as possible.  Fresh fecal samples including 

WWTP raw influent were collected and processed on mTEC media generally following 

EPA Method 1603 which was also used to process the water samples.  Isolates were 

streaked for culture purity and to confirm glucuronidase activity on NA-MUG and stored 
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in glycerol stocks at -80°C for long-term applications.  The isolates from the previous 

TCEQ projects at Oyster Creek and Trinity Creek were originally isolated using clinical 

media which did not screen for glucuronidase activity and were considered less likely to 

produce library matches to the isolates obtained using the regulatory media.  These 

isolates were secondarily screened for glucuronidase activity on NA-MUG media and 

only positive cultures were used in library construction.    

Known-source isolates were screened via ERIC-PCR and isolates were chosen to 

build each local library as described above from the Lake Waco/Belton Lake study.  

ERIC-PCR was used to screen isolates from individual samples to identify clonal or 

identical isolates using an 80% similarity cutoff, but at least one isolate from each 

individual sample was included in the library even if the ERIC-PCR type was already 

represented from another sample.  This approach sought to increase diversity of the 

library while including abundant or common strains from various animals.  Isolates 

chosen for local library construction were then RP fingerprinted and composite datasets 

were created using BioNumerics.  The first version of the dynamic statewide library 

combined isolates from the TCEQ and TSSWCB projects and consisted of 1,793 isolates 

from 1,505 fecal samples.  For identification purposes, the known-source samples were 

divided into seven management related groups including domestic sewage, pets, cattle, 

other avian livestock, other non-avian livestock, avian wildlife, and non-avian wildlife.  

The library was made up of 26% human isolates, 10% pets, 15% cattle, 6% avian 

livestock, 11% non-avian livestock, 15% avian wildlife, and 17% non-avian wildlife.  

Separating the domesticated animals into separate categories (cattle, pets, avian and non-
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avian livestock) as seen in the TCEQ study greatly decreased the accuracy of source 

classifications, so a less specific three-way split was proposed to include humans, 

domesticated animals, and wildlife which increased the accuracy of source 

characterizations while maintaining general management delineations needed to develop 

best management practices for remediation.    

As first mentioned in the TCEQ study, it was expected that some E. coli isolates 

were not source specific.  Using a jackknife approach, isolates were removed if their 

ERIC-RP composite best match at 80% similarity cutoff were not to their specific seven-

way source category.  Isolates with a best match of less than 80% were considered 

unidentified but were left in the library as they were unique, diversified the library, and 

could be helpful in identifying water isolates.  This self-validated library included 996 

isolates from 884 different known-source samples.  Self-validation greatly increased the 

RCC which averaged 86% for the seven-way split.  Cross-identifications were greatest 

within similar source categories like cattle and other livestock, further solidifying the 

future use of a less specific three-way split.  Individual watershed local libraries were 

used as challenge isolates against the self-validated library to see how well they could 

identify those isolates, and they performed roughly equally.  The results highlighted the 

need to self-validate the source specificity of any isolates ultimately being included in 

the library as  large portions of the challenge isolates from Lake Granbury, Oyster Creek 

and Trinity River were cosmopolitan isolates and thus incorrectly identified in a 

Jackknife analysis to their correct seven-way split source.  Ultimately, a statewide self-

validated library was compiled using all of the aforementioned known-source isolates 
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and named the Texas E. coli BST Library.  The library is dynamic in nature as each new 

iteration and addition of validated isolates changes the overall makeup of the library as 

well as the RCC for the various source categories.  Average RCC for ver. 8-10 for a 

three-way split was 86% (Table 2). 

 

 

Table 2.  Texas E. coli BST Library (ver. 8-10) composition and rates of correct 

classification (RCCs). 

 

Source 

Class 

 

Number of 

Isolates 

 

Number 

of 

Samples 

Library 

Composition and 

Expected 

Random Rate of 

Correct 

Classification 

Calculated Rate of 

Correct 

Classification 

(RCC) 

Left 

Unidentified 

(unique 

patterns) 

Human 374 327 29% 89% 19% 

Livestock 

and Pets 
462 424 35% 83% 20% 

Wildlife 473 434 36% 86% 18% 

Overall 1309 1185 RARCC
*
 = 33% ARCC = 86% 19% 

*
RARCC, expected random average rate of correct classification 

 

 

The creation of the library and further refinement yielded important results and 

raised important concerns and needs moving forward with the development and 

enhancement of a statewide library.  Even though the ARCC were similar with the 

composite library versus the local libraries, use of the larger data set yielded less 

unidentified isolates and the composite dataset could identify isolates from discrete 

watersheds.  The results suggested that local watershed isolates were needed to 
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supplement the larger statewide library to aid in representing any geographic variability 

seen in the watershed.  Using a large, diverse statewide library but including small local 

watershed additions serves as a significant cost savings for conducting library-dependent 

BST studies rather than having to build a large database for each watershed.  Another 

concern has been managing the potential number of isolates that may need to be 

screened to ultimately gain 7-way split source specific isolates, especially for sources 

that seem to be dominated by cosmopolitan isolates, such as coyotes.  Ongoing library 

refinement challenges identified in this report include the identification and use of 

cosmopolitan isolates for library construction, temporal and geographical effects on the 

fitness of the library over time while expanding the library with diverse sources of 

contamination from watersheds around the state (Di Giovanni et al., 2010).   

 

Other BST Projects in Texas   

 Principal BST projects leading to the development to statewide projects have 

been heavily highlighted in this report, but other researchers and source tracking 

methods have also been utilized across the state.  In the Rio Grande River valley, PFGE 

was used to compare E. coli from source irrigation water and sediments.  The results 

showed that there was significant diversity among the 50 fingerprinted isolates and 

persistent strains could be seen, but laboratory studies of PFGE patterns over time in 

these surviving persistent strains exhibited a range of genetic relatedness from >95% to 

<83%.  It was concluded that the extreme resolving power of PFGE may prove 

prohibitive for BST efforts as an extremely large library would be needed to identify 



 

 31  

 

source isolates (Lu et al., 2004).  Moussa and Massengale (2008) utilized a combination 

of carbon substrate utilization profiles and ARA to build a 600 member BST library to 

identify sources of contamination in the South Bosque River.  The authors reported RCC 

upwards of 85% for up to a six-way source classification split.  Graves et al. (2009) used 

carbon substrate utilization patterns with the BIOLOG system to characterize 

Enterococcus strains in both fresh and dry cattle, horse and sheep manure.  The authors 

reported some shift in population in dry versus fresh manure, but overall the relative 

proportion of the two dominant strains of Enterococcus was similar among all three 

animal groups in dry and fresh manure.   

Wagner (2011) evaluated the ability of the AllBac (general bacteria)/BoBac 

(ruminant-specific) marker sets to accurately assess the percentage of bovine-associated 

fecal loading, as well as their correlation to regulatory fecal indicator bacteria, in small 

watersheds used for grazing livestock.  Neither AllBac nor BoBac concentrations were 

correlated with grazing management or annual stocking rate, but were significantly 

correlated with percentage of runoff events occurring during either stocked or de-stocked 

sites indicating utility of this marker to detect recent fecal contamination events.  An 

additional significant finding from this study was that the correlation between AllBac 

and BoBac gene copy numbers and fecal indicators was greatest in the watershed where 

fecal samples had been collected to produce the standard curves for analysis thus 

suggesting potential geographical variability in the creation of these standards.  
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Current and Ongoing BST Projects in Texas   

Several WPPs sponsored by TSSWCB from across the state have incorporated 

BST, along with modeling efforts, in order to identify sources of bacterial contamination 

in watersheds.  Generally, the BST involved in most of the projects was and continues to 

be conducted based on the recommendations from the Bacterial Task Force and include 

both library-dependent and -independent methods.  The majority of watershed specific 

projects include screening for presence/absence of the source specific Bacteroidales 

markers for humans, ruminant, horses, and swine in approximately 250 water samples.  

In addition, approximately 100 E. coli isolates from sampling sites across the watershed 

are characterized using the Texas E. coli BST library which for most projects also 

included the addition of known-source isolates from the local watershed.  Results are 

presented to stakeholders during stakeholder meetings during the watershed planning 

phases as well as and technical reports submitted the TSSWCB.  The Bacteroidales 

analysis results have been reported as a percentage of positive hits in bar graph format 

from the overall watershed as well as individual sampling sites to identify possible ‘hot 

spots’ of contamination in the watershed that require more in-depth examination.  

Generally, fewer water isolates are identified per sampling site and these results are 

presented in total across the watershed.  

A majority of the studies also include the addition of known-source samples from 

the local watershed and a breakdown of total processed samples, number of isolates 

fingerprinted using ERIC-PCR, isolates ultimately ERIC-RP fingerprinted, and finally 

the number of isolates which are self-validated and added to the Texas E. coli BST 
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Library.  Generally, at the conclusion of a project or projects, the library is updated to a 

new version with the inclusion of the local isolates.  New library metrics, including rates 

of correct classification, are calculated and included in the results (as seen in Table 2).  

To date, results have only been reported to stakeholders at the three-way classification 

level as confidence in the separation of isolates into these categories is greater than for 

the more stringent six-way source classification.  A critical goal of the expansion of the 

Texas E. coli BST Library continues to be adding known-source samples from 

underrepresented or low-confidence groups of animals, including pets and poultry, in 

order to improve the ability to delineate these sources of contamination.  The following 

is brief overview of relevant findings from three recent BST projects.  

Buck Creek WPP (http://buckcreek.tamu.edu/) 

 Buck Creek is a small creek located Panhandle of Texas in the Red River Basin.  

A total of 31 known source isolates from 28 samples were added to the expanding state 

library (ver. 08-09, 1172 isolates from 1044 samples).  In total, 79 water samples were 

analyzed using Bacteroidales PCR and 426 isolates were fingerprinted using ERIC-RP 

and major source class identifies using the Texas E. coli BST library.  Overall, the 

majority of bacteria present at Buck Creek were derived from wildlife sources (including 

feral hogs) (Figure 2).  A hot spot of potential human contamination was also identified 

using this approach and was investigated by stakeholders.  The Buck Creek watershed 

has recently been highlighted by the USEPA as a success story since the stream was 

removed from the 303(d) list in 2010 due in large part to extensive efforts of the local 

http://buckcreek.tamu.edu/
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stakeholders to input best management practices to reduce non-point pollution in the 

watershed.  

 

 

 

Figure 2.  BST results from Buck Creek station 20368.  Identification of water isolates 

(pie chart) using a three-way split for source classification and Bacteroidales PCR maker 

occurrence (bar chart). 

 

 

Little Brazos River BST (http://lbr.tamu.edu/)  

 The Little Brazos River tributaries studied are located in the Little Brazos River 

Basin in Robertson County Texas.  The hog marker (71% of positive hits) was the most 

commonly detected marker across the entire study of 259 samples followed by the 

ruminant marker (39% of positive hits) (Figure 3).  Using a three-way split,  from a total 

of 69 water isolates classified using the Texas E. coli BST library (ver. 12-09, 1196 

http://lbr.tamu.edu/
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isolates from 1068 samples), 59% were classified as originating from wildlife with 

smaller proportions originating from domestic animal (19%) and human sources (6%).  

 

 

 

Figure 3.  BST results from Little Brazos River.  Identification of water isolates (pie 

chart) from all creek sites using a three-way split for source identifications (n=69) and 

Bacteroidales PCR marker occurrence (n=259) for human, ruminant, hog, and horse 

markers.   

 

 

Big Cypress Creek Modeling and BST (http://bcc.tamu.edu/) 

Big Cypress Creek and its tributaries are located in the Cypress Creek Basin in 

northeastern Texas and encompasses approximately 445 square miles in Camp, Morris, 

Titus and Upshur Counties.  A total of 28 self-validated isolates from wastewater 

treatment facilities (6), beef cattle (1), poultry litter (7), deer (4), ducks (7) and raccoons 

(3) were added to the Texas E. coli BST Library (ver. 10-11+BigCypSV; 1335 isolates 

http://bcc.tamu.edu/
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from 1201 samples).  Ruminant (40% of positive hits) and hog (41% of positive hits) 

markers were most commonly detected across all samples 244 samples (Figure 4).  A 

total of 101 E. coli isolates were classified into main source categories using ERIC-RP 

and the Texas E. coli BST library.  Using a three-way split, the majority of isolated E. 

coli were classified as originating from wildlife (42%) or livestock and pets (29%) while 

isolates originating humans only constituted 12% of the isolates  (Figure 4).  

 

 

 

Figure 4.  BST results from Big Cypress.  Identification of water isolates (pie chart) from 

all creek sites using a three way-split for source identifications (n=101) and 

Bacteroidales PCR marker occurrence (n=244) for human, ruminant, hog, and horse 

markers. 

 

 

Other projects underway which are following the same general approach for BST 

include Attoyac Bayou (http://attoyac.tamu.edu), Leon and Lampasas (http://leon-

http://attoyac.tamu.edu/
http://leon-lampasasbst.tamu.edu/
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lampasasbst.tamu.edu/, http://www.lampasasriver.org/) and Leona River 

(http://www.leonariver.org/).    

Conclusions  

  Texas has been a leader in the use of BST as part of a toolbox approach to the 

development of TMDLs and WPPs.  To date, BST results have been met with mixed 

review from stakeholders and governmental agencies often with cause.  Unlike modeling 

efforts, current methodologies tend to be more qualitative than quantitative as BST can 

identify relative sources of fecal contamination but the ability to resolve a watershed, 

much less a particular sampling site,  down to quantitative percentages of fecal 

contamination are not scientifically available.  Many researchers abandoned library-

dependent BST when library-independent markers began being developed in hopes of 

short-cutting the need for extensive library development and considerable concerns over 

library performance.  But molecular marker-based approaches have come under great 

scrutiny due to a lack of sensitivity and specificity.  The approach taken with BST in 

Texas is to use BST tools as a means of providing lines of evidence toward 

understanding fecal contamination in a watershed.  As the Texas E. coli BST Library is 

expanded and library-independent methods are improved it will be important to keep a 

strong pulse on new and emerging technologies to shape future BST efforts.   

 The continued development of BST approaches and including recent known-

source isolate additions from the Attoyac, Little Brazos River, Big Cypress, Leon, Leon 

and Lampasas, and Leona watersheds to the Texas E. coli BST Library, from two 

different laboratories, has the potential to begin to answer long-standing questions about 

http://leon-lampasasbst.tamu.edu/
http://www.lampasasriver.org/
http://www.leonariver.org/
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method performance.  The following chapters will begin to address some of these 

questions:   

o Even though stringent quality control measures are in place, are there 

biases toward fingerprints generated from one laboratory or the other?   

o Can other commonly utilized enumeration methods apart from EPA 

Method 1603 on modified mTEC be utilized to isolate E. coli for library-

dependent BST analysis? (Chapter II)  

o Can we now better assess a more accurate number of potential individual 

sources as well as number of samples per sources needed to be 

characterized in a local watershed?  Or for that matter, any source in 

order to gain power to discriminate that source in the library?   

o How can cosmopolitan isolates, isolates whose best match is not to their 

specific source class, be utilized in library building?  And can we better 

predict sources that might need additional samples processed to reach a 

substantial number of self-validated isolates?  

o Is there a geographical bias in source class identification, not just to 

watershed, but in general? For instance, do beef cattle tend to cluster 

more with cattle not just from their watershed, but region in Texas?   And 

can we incorporate ‘metadata’ already at our disposal from the source 

collections to help answer these questions.  

o Are there temporal trends in known-source isolates?  Should we be 

concerned about the time of year the samples are collected? (Chapter III)  
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o Did adding substantial numbers of additional sources and categories to 

the library increase our ability to discriminate sources or might we have 

met our theoretical maximum RCC? 

o Can more in-depth bacterial community characterization aid in finding 

potential targets for new library-independent source tracking methods? 

(Chapter IV) 
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CHAPTER III  

IMPLICATIONS OF E. COLI ISOLATION METHOD ON LIBRARY-DEPENDENT 

BACERIAL SOURCE TRACKING  

 

Introduction 

Water quality standards in the US are largely based on fecal indicator organisms 

including total coliforms, fecal coliforms, Enterococci, and more specifically E. coli 

(USEPA, 2003a).  The USEPA has approved multiple methods for detecting and 

enumerating these indicators including membrane filtration methods and multiple tube 

fermentation methods, as well as defined substrate technologies (Olstadt et al., 2007).  

USEPA Method 1603 (USEPA, 2005a) and USEPA Method 1604 (USEPA, 2004) are 

chromogenic, membrane filtration methods while Colilert® (IDEXX, Westbrook, ME) is 

a defined substrate technology in a most-probable-number (MPN) format.  All three 

methods rely on end-point screening for enzymes specific to the groups of interest.  

USEPA Method 1604 utilizes MI media and can simultaneously detect and enumerate 

both total coliforms and E. coli.  The medium utilizes two enzyme substrates, the 

fluorogen 4-methylumelliferyl-β-D-galactopyranoside (MUGal), and chromogen 

indoxyl-β-D-glucuronide (IBDG), to detect the enzyme β-galactosidase produced by 

coliforms and β-glucuronidase produced by E. coli.  USEPA Method 1603 is used to 

detect and enumerate E. coli only and utilizes a modified mTEC (mTEC) medium 

containing the chromogen, 5-bromo-6-chloro-3-indolyl-β-D-glucuronide, to also detect 

β-D-glucuronidase.  Colilert® on the other hand, is a most-probable-number technique 
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which utilizes a defined substrate medium and the chromogen ortho-nitrophenyl-β-D-

galactopyranoside (ONPG) to detect β-galactosidase from total coliforms as well as the 

fluorogen 4-methylumbelliferyl-β-D-glucoronide (MUG) to detect β-glucuronidase from 

E. coli.  These methods have been shown by some to be consistent for enumeration 

across the various platforms but their impact on E. coli community composition has yet 

to be fully evaluated (Buckalew et al., 2006; Hamilton et al., 2005).   

Many water quality monitoring professionals utilize the Colilert® method due to 

its relatively low cost and ease of use for enumerations versus membrane filtration 

methods.  Further, a majority of monitoring labs have only undertaken the training and 

cost to become certified in one primary method of enumeration of fecal indicator 

organisms, and transitioning to other methods is both time consuming and expensive.  

The Texas E. coli BST library is constructed largely from E. coli isolates processed 

using USEPA Method 1603 (Casarez et al., 2007b).  E. coli was chosen at the target 

organism for the library due to its link to regulatory standards as well as standardized 

methods of enumeration.  As BST efforts are expanded, this study was developed to 

evaluate additional water quality assessments, including Colilert® and USEPA Method 

1604, and their ability to select similar E. coli communities to those isolated using 

USEPA Method 1603.  The objective of this study was to evaluate differences in E. coli 

community composition across three standard water quality assessments including 

USEPA Method 1603, USEPA Method 1604, and Colilert® to ultimately determine 

their impact on BST library performance.  It was hypothesized that even though all of 

the methods ultimately detect E. coli by the expression of the β-glucuronidase enzyme, 
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both MI and Colilert® are less selective media than mTEC due to the co-enumeration of 

both total coliforms as well as E. coli and will ultimately select for different 

communities.  The specific growth platforms, i.e. membrane filtration versus defined 

substrate MPN, chromogens, and incubation temperatures vary across the three methods 

further solidifying the hypothesis that even though the enumeration data from previous 

studies have been shown to be comparable, the communities are likely different.   

 

Materials and Methods  

Site Description and Sample Collection  

Six watersheds from south, central, and eastern Texas were sampled in this study 

to represent the diverse geography and land uses of the state.  Big Iron Ore Creek 

(TCEQ Station ID 20844) in the Attoyac Bayou is located near Nacogdoches, TX, and is 

primarily a rural, agricultural watershed in the Piney Woods of East Texas.  Burton 

Creek (TCEQ Station ID 11783) is part of the Navasota River watershed in College 

Station, TX and is an intermittent stream that is perennial due to wastewater treatment 

plant output.  Campbells Creek (TCEQ Station ID 16395) is in the Little Brazos River 

watershed and is primarily a rural, agricultural watershed.  Moody Creek is located on 

the Welder Wildlife Refuge near Sinton, TX and is a wildlife management and 

conservation refuge and cattle operation.  Plum Creek (TCEQ Station ID 12640) is 

located on the southern end of the Plum Creek Watershed in the Guadalupe River Basin 

near Luling, TX, and is primarily a rural, rangeland and forested area.  White Oak Bayou 
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(TCEQ Station ID 11387) is located in central Harris County, north of downtown 

Houston and is a channelized urban stream.    

Samples were collected in the fall of 2011 and spring of 2012.  Stream water was 

collected into sterile Whirl-Pak® bags and transported on ice back to the laboratory for 

processing within 3 hours of sample collection.  Each sample was split into three 

aliquots for E. coli enumeration and isolation.   

Sample Processing 

 Samples were processed using three standard methods, USEPA Method 1603 

(modified mTEC), USEPA Method 1604(MI) and Colilert® per method and 

manufacturer’s instructions.  Modified mTEC (BD, Franklin Lakes, NJ) and MI (BD,) 

media were prepared per label instructions.  Colilert® reagents were added to 

appropriate water dilutions and then sealed into Quanti-Tray®/ 2000 containers 

(IDEXX, Westbrook, ME).  Samples on mTEC were incubated first at 35°C for two 

hours followed by 22 hours at 44.5°C.  Both MI and Colilert® samples were incubated 

for 24 hours at 35°C.  Positive and negative controls were incorporated with all three 

methods and included E. coli ATCC #11775 BioBalls (BTF, Sydney, Australia) and E. 

faecalis ATCC #19433 BioBalls (BTF).  Each sample, media combination was 

processed in triplicate.  

Enumerations and Isolations 

After 24 hours of incubation, samples were enumerated and isolations initiated. 

Red-magenta colonies were considered typical E. coli on mTEC media while blue 

colonies were typical on the MI media.  Enumeration results were recorded as 
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CFU/100mls.  The Colilert Quanti-Tray®/ 2000 were exposed to long-wave UV light 

and yellow, fluorescent wells were scored positive.  The number of positive wells and 

the sample dilution were used with the MPN generator program provided by the 

manufacturer and recorded as MPN/100mls.  Media from five positive wells were 

aseptically removed from the tray, combined, diluted and filter plated following USEPA 

Method 1603 onto mTEC media for E. coli isolation.   

 Each sample was processed in triplicate and 5 isolates per replicate, for a total of 

15 isolates per sample, were transferred onto EC-MUG (EMD, Gibbstown, NJ) media as 

a secondary screen for β-glucuronidase enzyme activity.  Additionally, all of the isolates 

were also confirmed as E. coli following confirmation procedures in USEPA Method 

1603 which included being oxidase negative, citrate negative, positive for gas production 

in EC broth, and being indole positive.  A large portion of the isolates required 

secondary streaking onto EC-MUG media to confirm culture purity, but were all 

ultimately confirmed to be positive following the secondary confirmations.  Isolates 

were preserved for long-term storage in tryptic soy broth with 20% glycerol and stored 

at -80°C.  Additionally, cell suspensions of each isolate were made using a 1µL loop of 

cells into 100µL of sterile molecular grade water for downstream fingerprinting 

applications.  

Fingerprinting  

 E. coli isolates were fingerprinted using the enterobacterial repetitive intergenic 

consensus polymerase chain reaction (ERIC-PCR) (Versalovic et al., 1991).  PCR 

conditions were previously described by Casarez  et al. (2007a).  Each 50µL reaction 
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contained 1X PCR Buffer with 1.5 mM Mg (final) (ABI, Foster City, CA), 200 µM each 

of dNTP (GE Healthcare Biosciences, Piscataway, NJ), 600nM ERIC Primers 1R and 2 

(Invitrogen, Carlsbad, CA), 1.5 µg/µl bovine serum albumin, 2.5 units AmpliTaq Gold 

(ABI, Foster City, CA), and 5µL of cell suspension (described above).  Thermocycling 

was conducted in an Eppendorf Mastercycler (Hamburg, Germany) under the following 

conditions:  initial denaturation at 95°C for 10 min, followed by 35 cycles of 

denaturation at 94°C for 30 s, annealing at 52°C for 1 min, and extension at 72°C for 5 

min with a final extension at 72°C for 10 min.  Amplification products were stored at -

20°C until analyzed by agarose gel electrophoresis.  PCR products were loaded onto a 

20x25 cm 2% agarose gel prepared with 1X TBE buffer and a 30 tooth, 1mm thick comb 

(IBI Scientific, Peosta, IA).  Electrophoresis occurred in a cold storage room (~8°C) for 

1 hour at 100V followed by 4 hours at 200V with buffer recirculation beginning after the 

first hour.  Each gel included a marker ladder (Roche DNA Marker XIV) lane on the 

outside wells, as well as after every sixth sample.  Additionally, a no-template control 

and a quality control E. coli strain (ATCC 51739) were included in every gel to ensure 

method reproducibility throughout the study.  Gels were stained for 20 minutes in 1X 

TBE buffer containing 0.5 µg/mL of ethidium bromide.  Gel images were captured using 

an UltraLum Omega 10gD Molecular Imaging system (UltraLum, Carlsbad, CA).    

E. coli isolates were also fingerprinted using the automated DuPont Qualicon 

RiboPrinter (RP) system (DuPont Qualicon, Wilmington, DE).  RP was performed 

according to manufacturer’s instructions using HindIII restriction endonuclease (NEB, 

Ipscich, MA) with digestion performed at 37°C for 20 minutes.  The RP software 
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normalizes the banding patterns using 4 marker lanes in each 8 isolate batch as well as 

reducing noise.  The same quality control E. coli strain (ATCC 51739) used for ERIC-

PCR was also included in every fourth batch.  Results were converted to text files and 

exported for downstream processing.   

Fingerprint Processing 

 BioNumerics software (Applied Maths, Austin, TX) was used to analyze the 

ERIC-PCR and RP fingerprints.  ERIC-PCR fingerprint patterns were imported as 

tagged image file format (tiff) photos and evaluated using curve-based Pearson’s 

product-moment correlation coefficients.  RP files were imported and processed using a 

script provided by DuPont® and Applied Maths to score and weight the RP patterns.  A 

composite dataset was used with equal weight given to both fingerprint types to analyze 

the communities.  Dendrograms were constructed using the unweighted pair group 

method with arithmetic mean values (UPGMA) using an 80% similarity cutoff.  The 

cutoff value was based on reproducibility of the fingerprint patterns, both ERIC-PCR 

and RP, of the quality control E. coli strain.  Any pattern type or group whose composite 

similarity was equal to or greater than 80% was considered the same genotype (Casarez 

et al., 2007b).  Once dendrograms and pattern similarities were determined, 

BioNumerics was also used to calculate community diversity indices.   

Source Class Identifications Using the Texas E. coli BST Library  

To identify sources of the E. coli, the fingerprints were queried against thee 

Texas E. coli BST Library (ver. 3-12; consisting of fingerprint patterns from 1,459 E. 

coli isolates from 1,285 different human and animal samples).  The ERIC-RP composite 
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patterns were compared to the library using a best match approach and an 80% similarity 

cutoff (Casarez et al., 2007b).  If a water isolate was not at least 80% similar to a library 

isolate, it was considered to be unidentified.  Although fingerprint profiles are 

considered a match to a single entry, identification is to the host source class, and not to 

the individual animal represented by the best match.  Water isolates were identified to 

domestic animals (including livestock and pets), domestic sewage and wildlife (three-

way split) (Casarez et al., 2007b).   

Statistical Analysis  

Sigma Plot (Version 11.0) was used to analyze the enumeration data obtained 

from the six locations across three media types.  ANOVA was used to test for 

differences between the E. coli count data from each media type by location. P-values 

<0.05 were considered to be significant.  

 

Results  

Media Type and E.coli Concentration  

E. coli concentrations obtained from each of the six sites using all three media 

types are summarized in Table 3.  Big Iron Ore Creek showed similar concentrations 

from the two membrane filtration methods but higher values with the Colilert®.  While 

at Burton Creek, the MI concentrations were significantly higher than the mTEC and 

Colilert.  Campbells Creek followed the Big Iron Ore Creek trend with significantly 

higher values with the Colilert method.  But Moody Creek actually showed significantly 

lower concentrations with the Colilert method.  Plum Creek was the only site that 
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showed a lack of significant difference between the media types, but high standard error 

with this data contributed to this lack of difference. White Oak Bayou was the only site 

which showed the MI concentrations to be significantly lower than the mTEC and 

Colilert values.  The three different methods showed no clear trend in enumeration 

values across the six sites.   

 

 

Table 3.  Summary of the mean E. coli concentrations at each site using USEPA Method 

1603 (mTEC), USEPA Method 1604 (MI) and Colilert® (CFU or MPN/100mls +/- SE). 
 

 mTEC MI Colilert® 

Big Iron Ore 

Creek 
2.7E02 ± 2.3E01

a
 3.7E02 ± 5.8E00

a 
 6.3E02 ± 5.9E01

b
  

Burton Creek 2.9E03 ± 1.5E02
a
 3.9E3 ± 1.2E02

b
 2.8E03 ± 1.3E02

a
 

Campbells Creek 9.9E03 ± 7.5E02
a
 9.5E03 ± 7.5E02

a
 1.4E04 ± 7.3E02

b
 

Moody Creek 2.2E02 ± 8.1E00
a
 2.4E02 ± 1.1E01

a
 1.5E02 ± 2.3E01

b
 

Plum Creek 5.5E02 ± 1.2E01
a
 5.7E02 ± 8.8E00

a
 7.8E02 ± 2.9E02

a
 

White Oak Bayou 7.6E02 ± 5.4E01
a
 1.1E03 ± 4.2E01

b
 8.2E02 ± 3.1E01

a
 

Different letters indicate significant differences between media type at each site, p 

<0.05. 

 

 

E. coli ERIC-RP Diversity 

Community diversity index values, Simpson’s and Shannon-Weiner, are 

summarized in Table 4.  Communities from the mTEC and MI media were overall more 

diverse than the Colilert® communities.  Moody Creek exhibited the lowest diversity of 

any of the sites followed by Plum Creek and White Oak Bayou.  Moody Creek had the 
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lowest E. coli counts and the least diverse communities.  A large portion of the 

genotypes, especially in mTEC and MI, contained only unique isolates.  

 

 

Table 4.  E. coli diversity estimates (ERIC-RP 80% similarity cutoff). 

 

 

Similarity analysis was conducted by broadly examining the communities each 

medium tended to select across locations.  There were 70 unique genotypes among the 

270 total isolates and 12 of which were seen in all three media types totaling 65% of the 

isolates (Figure 5).  The mTEC detected the greatest number of unique genotypes, 20, 

but this only represented 9% of the total isolates.  Of the 70 total unique genotypes, 38 or 

54% were singletons with only one isolate represented (data not shown).   

 

 

 mTEC MI Colilert® 
 

Simpson’s 
Shannon-

Weiner 
Simpson’s 

Shannon-

Weiner 
Simpson’s 

Shannon-

Weiner 

Big Iron Ore Creek 93.33 2.18 91.43 1.99 75.25 1.27 

Burton Creek 93.33 2.25 97.14 2.43 88.57 1.84 

Campbells Creek 99.33 2.12 96.19 2.40 89.52 1.93 

Moody Creek 13.33 0.25 36.19 0.63 13.33 0.25 

Plum Creek 79.05 1.71 91.43 2.12 71.43 1.41 

White Oak Bayou 90.48 2.03 80.00 1.62 84.76 1.90 
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Figure 5.  Overall E. coli community overlap across all three media types.  Data 

represents the percentage of isolates with unique genotypes detected in each medium and 

when those isolates occurred in multiple media types.  Data in parenthesis represents the 

number of unique genotypes (g) in each combination while the values in brackets 

[i]represent the number of isolates in each category.   

 

 

The fingerprint data was also analyzed by specific site with each site having 45 

isolates total, 15 in each media type (Table 5).  Genotypes seen in all three media ranged 

from only 16% at Big Iron Ore Creek to 87% at Moody Creek.  Plum Creek and White 

Oak Bayou had high numbers of unique genotypes, but a small number of those 

genotypes made up over 50% of their communities.  Big Iron Ore Creek, Burton Creek, 

and Campbells Creek had greater numbers of unique genotypes in the media themselves 
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and very few in common across all three media types.  Moody Creek was the least 

diverse and appeared to select for a very simple E. coli community in all three of the 

media types with only 5 different unique genotypes, one of which represented 87% of 

the 45 isolates.  Further, that same genotype was seen at all six sites and accounted for 

36% of the overall isolates driving the large percentage of genotypes seen to overlap 

across all media Figure 5.  

Source Identifications Using the Texas E. coli BST Library 

All 270 isolates were queried against the Texas E. coli BST library and identified 

to their closest match in a three-way split including humans, domesticated animals, and 

wildlife.  The identifications were analyzed first broadly by media type alone (Figure 6).  

The mTEC isolates were identified as originating from wildlife in 54% of the isolates, 

28% as domesticated animals, 3% as humans, and 14% were unidentified.  Similarly, the 

MI isolates were identified as originating from wildlife in 64% of the isolates, 21% as 

domesticated animals, 3% as human and 11% were unidentified.  And the Colilert 

isolates were identified as originating from wildlife in 41% of the isolates, 40% as 

domesticated animals, 7% as human, and 12% were unidentified.  In all three media, 

wildlife and domesticated animals were classified as the main sources of the 

contamination.  The percentage of unidentified isolates was similar for all three media.  
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Table 5.  Overlap in ERIC-RP genotypes of E. coli across media. 

 
Big Iron Ore 

Creek 

Burton  

Creek 

Campbells 

 Creek 

Moody  

Creek 

Plum  

Creek 

White Oak  

Bayou 

Media 
Patterns 

(n=16) 

% Total 

Isolates 

(n=45) 

Patterns 

(n=22) 

% Total 

Isolates 

(n=45) 

Patterns 

(n=20) 

% Total 

Isolates 

(n=45) 

Patterns 

(n=5) 

% Total 

Isolates 

(n=45) 

Patterns 

(n=19) 

% Total 

Isolates 

(n=45) 

Patterns 

(n=19) 

% Total 

Isolates 

(n=45) 

mTEC 6 17% 7 18% 3 7% 1 2% 5 11% 5 13% 

MI 4 16% 6 15% 7 16% 1 2% 8 20% 3 7% 

Colilert® 1 11% 1 2% 3 9% 1 2% 4 13% 5 13% 

mTEC + 

MI 
2 16% 2 9% 1 4% 1 7% 0 0% 1 5% 

mTEC + 

Colilert® 
1 13% 1 7% 3 24% 0 0% 0 0% 0 0% 

MI + 

Colilert® 
1 11% 3 20% 1 13% 0 0% 0 0% 2 9% 

mTEC + 

MI + 

Colilert® 

1 16% 2 29% 2 27% 1 87% 2 56% 3 53% 
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Figure 6.  Identification of E. coli water isolates sorted by media type using a 3-way split 

for source classification (H=human, DOM=domesticated animals, WILD=wildlife, 

UNID=unidentified). 

 

 

The source class identification results were also analyzed by site and are included 

in Figures 7 through 9.  The results from the specific sites were much less consistent 

than when viewed broadly.  Identifications at Big Cypress Creek had a high percentage 

of unidentified isolates in all three media types.  There was a considerable shift to 

wildlife sources with the MI media but the Colilert® identifications were similar to the 

mTEC (Figure 7).  At Burton Creek, Colilert® selected for a greater percentage of 

domesticated animal sources versus the mTEC or MI media.  Isolates characterized as 

being from human sources were highest for the Colilert® isolates, but were still less than 

10% of the total (Figure 7).  Campbells Creek isolates from mTEC and MI were in 
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general agreement with wildlife and domesticated animals being the primary sources, 

but Colilert® showed a shift toward domesticated animals from mTEC (Figure 8).  

Classifications at Moody Creek were not very consistent across media types as all of the 

isolated from the MI media classified as originating from wildlife (Figure 8).  All three 

media types were in greater agreement at Plum Creek than any other site, but MI 

conflicted with the mTEC and Colilert® with wildlife rather than domesticated animals 

being the main contributor (Figure 9).  White Oak Bayou isolates maintained the same 

ranking of dominant source contributors with wildlife leading with all media, but the 

relative percentage of those was different (Figure 9).  When comparing the classification 

results back to the mTEC communities, there was no consistent trend in identifying 

contributing source class.  The human identifications were the least variable, but also 

accounted for a much smaller portion of the overall isolates then either wildlife or 

domesticated animals (Figure 10).  

 

Discussion  

Monitoring fecal indicator bacteria is a necessary requirement for assessing water 

quality.  Understanding what effects various methods have on not only the enumeration 

values, but also the community makeup as a whole is important for downstream 

applications especially BST.  This study looked to evaluate whether two popular water 

quality methods, USEPA Method 1604 (MI) and Colilert®, could be incorporated with 

procedures currently used to construct the Texas E. coli BST library, USEPA 
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Figure 7.  Identification of water isolates at Big Iron Ore Creek (A) and Burton Creek 

(B) using a 3-way split for source classification (H=human, DOM=domesticated 

animals, WILD=wildlife, UNID=unidentified). 

 

 

 

Figure 8.  Identification of water isolates at Campbells Creek (A) and Moody Creek (B) 

using a 3-way split for source classification (H=human, DOM=domesticated animals, 

WILD=wildlife, UNID=unidentified). 
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Figure 9.  Identification of water isolates at Plum Creek and White Oak Bayou using a 3-

way split for source classification (H=human, D=domesticated animals, W=wildlife, 

U=unidentified). 
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Figure 10.  Percentage difference of E. coli source classifications from MI and Colilert® 

compared to mTEC across all sites. Error bars represent standard error of three replicate 

samples using a 3-way split for source classification (HUM=human, 

DOM=domesticated animals, WILD=wildlife, UNID=unidentified). 

 

 

Method 1603 (mTEC).  The ability to utilize multiple enumeration techniques for 

downstream BST applications would greatly simplify water quality monitoring projects 

by eliminating the need for either duplicate sample processing or switching to the 

method that was used to construct the Texas E. coli BST Library (EPA Method 1603). 

Much of the previous research with community characterization and E. coli 

enumeration  media involved identifying organisms which may cause false positive E. 

coli reactions due to a lack of specificity in the β-glucuronidase enzyme which also have 

been found in organisms such as Salmonella, Shigella, and Yersinia sp. (Pisciotta et al., 

2002; Rompre et al., 2002).  Culture-independent analysis of false-positive E. coli 
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Colilert® wells have shown that Colilert tends to select for a large number of non-target 

taxa, including Vibrio spp. (Sercu et al., 2011).  Despite state and government 

acceptance as well as evidence that some water quality assessment methods yield 

statistically comparable data, the enumeration values for this data set were not consistent 

across media type or site (Buckalew et al., 2006; Fricker et al., 1997; Kodaka et al., 

2008).  Many of the previously published studies did not directly compare the three 

media types evaluated in this study and caution should be taken to extrapolate those 

conclusions across other media without confirmation, especially EPA Method 1604 

(MI), which is a newer method and none of the reported studies found in a literature 

search included this medium in their analysis (Olstadt et al., 2007).  Even though this 

was a one-time sampling event at six locations, this data suggests that these methods do 

not yield consistent enumeration results.   

Growth of non-target taxa on the MI medium made even enumerating the 

organisms difficult and isolating the E. coli in pure culture problematic.  Also, pin-point 

blue-fluorescent colonies were seen on the MI media, as noted by a previous study, but 

were confirmed as E. coli through the EPA Method 1603 confirmation protocol (Brenner 

et al., 1993).  Even though the strains were ultimately all confirmed as E. coli, the need 

for extra streaking and isolations certainly increased the time and labor involved in 

isolating these organisms.  The Colilert® method is touted as being a one-stop method 

with no need for secondary confirmation steps, but unlike the membrane filtration 

method, the product is in an MPN (liquid) format and requires an additional step to get 

the positive wells filtered on a solid medium in order to get physical colonies isolated.  
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So, the use of this method with library-dependent BST, albeit, easier for basic 

enumerations, will ultimately mean an additional labor step for downstream processing.  

Community analysis was conducted using the same similarity cutoff of 80% that 

was used to build the Texas E. coli BST library since ultimately the results were queried 

against the library to identify the major source class of the isolates (Casarez et al., 

2007b). This cutoff is the lower boundary for an isolate to be considered a match in the 

library and served as a complement to the library identifications.  The diversity indices 

were in general agreement at all of the sites with the mTEC and MI communities being 

the most diverse and the Colilert® community being the least diverse.  It was interesting 

to note that the Moody Creek site which had the lowest average E. coli counts and also 

had the least diverse communities, but the other sites showed comparable diversity 

values regardless of E. coli count.   

 The main objective of this study was to evaluate whether the additional methods, 

MI and Colilert, selected for E. coli communities similar to those isolated on mTEC 

which was used to build the Texas E. coli BST Library.  A similarity analysis was 

conducted on the data first as a whole with all 270 isolates regardless of site (Figure 5).  

This interpretation of the data seemed very positive from a community overlap 

perspective, as 65% of the isolates were seen in all three media types.  But a closer 

examination by site showed a single genotype accounted for 31% of the total isolates.  

The Moody Creek site was the least diverse and 87% of the isolates from that site fell 

into this genotype.  Even though one genotype accounted for a large number of the 
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overall isolates, the total diversity of the community was highlighted by the number of 

singleton genotypes (54% of total) in the dataset (data not shown).      

The community overlap, genotypes occurring in multiple media types, across the 

sites was extremely variable.  The overall overlap in the communities ranged from only 

16% at Moody Creek up to the 87% at Moody Creek.  Plum Creek and White Oak 

Bayou maintained a high number of overall genotypes, but a few of those accounted for 

a majority of the overlapping genotypes, where at Burton, Big Iron Ore, and Campbells 

Creeks less than 30% of the isolates were seen in all three media types.  Further, no other 

combination, much less a complete overlap of the three media accounted for greater than 

56% of the total isolates at any site other than Moody Creek further suggesting the 

selection of different E. coli communities by the three media.  Both the enumeration and 

community analysis results at Moody Creek could be explained by the nature of its 

location.  The site is located on a wildlife refuge and cattle operation with little to no 

human input and would theoretically be the least complex of sampling sites studied 

which was indicated in the lower E. coli counts and more simple communities at this 

location.    

Reasons for the general lack of community similarity could be explained by 

several factors.  MI and Colilert® methods are designed to enumerate both total 

coliforms and the more specific E. coli and are incubated at 35°C where mTEC media is 

designed to only enumerate thermotolerant E. coli and is incubated at 44.5°C.  The 

increased temperature aids in adding selection pressure against non-specific taxa 

including other members of the total coliform group.  Both the media and temperature 
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are more specific and thus likely would select for different E. coli populations.  Further, 

even though all three of the media ultimately screen for the same enzyme to detect E. 

coli, they all three utilize different enzyme substrates and chromogens adding an 

additional layer of potential differentiation.  

Colilert® utilizes a completely different growth platform in the MPN format 

rather than a membrane filtration.  The liquid culture versus solid medium offers a 

completely different growth habitat and would logically select for different populations.  

Additionally, the Colilert® communities underwent a secondary selection on mTEC 

media in order to get them isolated in pure culture which may have contributed to the 

lack of diversity seen in those communities.  TRFLP analysis of positive Colilert® wells 

by Sercu et al. (2011) suggests that Colilert may select for large populations of non-

target taxa like Vibrio and Clostridiales.  Even though E. coli may be present in the well, 

and therefore it scores positive for the purposes of enumeration, these E. coli are 

potentially competing against the non-target organisms which could certainly explain the 

lack of diversity.   

The source identifications of the dataset followed a similar pattern to the 

community analysis in that when the dataset was viewed as a whole, the results seemed 

to indicate that the E. coli from all three media were identified to similar source 

categories with wildlife and domesticated animals being the dominant contributors.  But, 

when each of the sites was evaluated individually no common trend could be seen across 

the various sites.  There was tremendous variation across locations as to a particular 

selection toward one source classification or another.  The communities selected for at 
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each site across the different media types appear to have no specific site tendencies.  

Since the Texas E. coli BST Library is constructed largely from isolates processed using 

EPA Method 1603 on mTEC media there was some concern that the number of 

unidentified isolates would be greater in both the MI and Colilert® isolates, but that was 

not the case as the percentage of unidentified isolates was essentially the same overall.  

The highest percentage of unidentified isolates from any media type came from the Big 

Iron Ore Creek samples (67% on mTEC).  At the time of library screening, this 

particular area of Texas was not well represented in the statewide library.  All of the 

other sites had lower numbers of unidentified isolates (0-13%) and, with the exception of 

White Oak Bayou, either had watershed specific isolates included in the library or were 

geographically near represented watersheds thus indicating the benefit of including local 

known-source samples in the Texas E. coli BST library.     

 

Conclusions 

The results of this study indicate that the three evaluated E. coli enumeration 

methods may select for different populations of E. coli.  Even though the Moody Creek 

site seemed to contain the least complex E. coli community across all three media types, 

the other sites were characterized as having diverse, but different populations of E. coli.  

The goal of any BST project is to accurately assess the main contributors of fecal 

contamination and their relative abundance so stakeholders can implement best 

management practices to improve water quality conditions.  However, the results of this 

study indicate that using different methods to isolate E. coli may not provide consistent 
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results.  Even though the three media assessed in this study ultimately are designed to 

the same organisms, total confirms and E. coli, the differences in the media composition 

and incubation temperature should give researchers pause in using them interchangeably 

when community characterization is a goal.  This study suggests that a standardized 

method of enumeration and isolation may be warranted if stakeholders anticipate the 

possibility of using library-dependent BST.   
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CHAPTER IV  

IMPACT OF MANURE MANAGEMENT ON E. COLI ABUNDANCE AND 

DIVERSITY IN DAIRY MANURE AND LAGOON WATER 

 

Introduction and Rationale  

Non-point source agricultural runoff has been implicated as a potential source of 

fecal contamination across many watersheds in the United States (Meals and Braun, 

2006; USEPA, 2003b).  Concentrated animal feeding operations like dairies produce 

copious amounts of animal manure on a daily basis (McGarvey et al., 2004).  Cattle 

manure has been associated with pathogenic organisms including E. coli O157:H7, 

Salmonella spp., Campylobacter spp., and Cryptosporidium spp. (Bicudo and Goyal, 

2003; Hill, 2003).  Management of these materials can be very advantageous to the 

producer as a source of nutrients and organic matter for crop and hay production, but 

requires cautious utilization to limit over-applying nutrients and minimize both nutrient 

and bacterial movement in runoff to nearby waterways (Cook et al., 2011; Koelsch et al., 

2006).  

 Dairy operations are unique among many livestock production groups in that 

manure and cleanup is often required more than once per day and thus requires 

significant time and resource allocation (Fulhage, 1997).  Dairy operators select manure 

management strategies based on factors such as location, size, type and use of cropland, 

the number of animals on the farm, and type of animal housing (Huber, 2003). Manure 

management systems are generally classified as solid, slurry, or dilute.  Solids are 
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handled mechanically while slurry and dilute waste waters are handled using pumps and 

pipelines (Graves, 1994; Huber, 2003).  Solids separation is a commonly used treatment 

process that makes handling of the manure easier using irrigation equipment, allows for 

recycling of water, especially with dairies utilizing a flushing method to clean manure 

from barn alleyways.  Further, the separation of the bedding material can potentially be 

re-used or composted and land applied (Graves, 1994).  The separation of solids from 

the manure stream also serve as a means to reduce the organic matter and nutrient 

content of the manure, prolong the life of downstream storage structures, and minimize 

odors (Huber, 2003).  Most dairies are designed to ultimately collect and transfer manure 

to a lagoon system, potentially aerobic but most often anaerobic, or storage pond as a 

liquid or slurry.  Lagoons are designed for biological treatment to reduce nitrogen levels 

in the wastewater but leave high levels of phosphorus and other nutrients in the sludge 

(Fulhage, 2001).   

 Even though nutrient management is a significant goal in managing the dairy 

manure, bacteria and pathogen levels are also of concern for both the health of the dairy 

herd and dairy personnel as well as potential movement off-farm and into local 

waterways (Pell, 1997).  Assessing the survival of pathogens and fecal indicators in the 

manure waste stream, and their potential regrowth once land applied are difficult at best 

due to the myriad of storage and environmental conditions that exist on a daily basis 

(Bicudo and Goyal, 2003; Pell, 1997). McGarvey et al. (2004) characterized bacteria 

populations from raw manure, separator pit and lagoon from a free-stall dairy in 

California.  Total bacterial numbers were assessed using brain heart infusion agar and 
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were estimated to be 2.9 x 10
9
 CFU/g raw manure, 1.9 x 10

6
 in the separator pit water, 

and 2.8 x 10
5
 in lagoon water.  16S rRNA clone libraries from the same sites showed the 

manure communities were the most diverse followed by slurry and lagoon communities.  

The authors proposed that the bacterial populations at the downstream sites, especially 

the lagoons, were well adapted.  Bacterial abundance and community dynamics are not 

well characterized in dairy manure management waste streams and could be extremely 

informative to dairymen in their efforts to maximize nutrient and water returns from the 

waste stream while minimizing their environmental footprint.   

Dairy operations have been implicated in the Leon watershed in central Texas as 

a potential source of fecal contamination. The Leon River below Proctor Lake (Segment 

1221) was first placed on State of Texas Clean Water Act §303(d) List of impaired 

waters in 1996 due to bacterial contamination (TCEQ, 2008).  A watershed protection 

plan has since been completed and is available in draft form 

(http://www.brazos.org/LeonRiverWPP.asp).  Watershed modeling data, as well as BST 

from the watershed, implicated direct discharge from wildlife and livestock (including 

waste disposal fields) as substantial sources of bacteria across the watershed.  Several 

concerns arose during the modeling phase, especially the validity of using historical data 

to predict sources of contamination and their specific load reductions as well as a lack of 

watershed specific data.  Dairy producers in the watershed lack detailed information on 

E. coli abundance throughout their waste management streams.  This portion of a larger 

project aimed to survey commonly used dairy manure management practices in the 

watershed in order to address several research objectives: (1)  identify management 
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strategies most efficient at lowering E. coli abundance in the waste stream, (2) 

characterize  the E. coli manure communities across the various management streams 

using BST techniques to identify whether strains are common across techniques or even 

dairies, (3) include a temporal group of isolates from each management strategy to 

examine potential shifts in the E. coli community and their possible effects for 

downstream BST analysis and finally, (4) designate a portion of the isolates 

fingerprinted to include in the Texas E. coli BST library.   

 

Methods 

Site Descriptions  

Four dairies participated in the study and represented a diverse set of dairy 

manure management schemes in Central Texas (Figure 11).  Dairy A was a traditional 

dairy that utilized manual barn scraping of manure from the pens into piles prior to land 

application and a lagoon.  Dairy B utilized a flushing system where water was used to 

flush the barn alley ways into a settling basin to remove some solids and ultimately into 

a lagoon.  Dairy C utilized manual scraping of manure into piles as well as a separator 

which separated the solids including bedding material and sent the liquid materials down 

into a lagoon.  Dairy D utilized a vacuum to collect raw manure into a slurry pond to 

gravity separate manure solids prior to liquids flowing into a lagoon; the slurry solids 

were spread onto an adjacent drying (bed) prior to land application.  All of the lagoons 

were open air with no covering and exposed to daily ambient weather conditions.   
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Figure 11.  Schematic of dairy manure management schemes utilized at the four dairies. 

 

 

Monthly Manure Sampling and Initial Processing  

Manure samples were collected monthly from all four dairies from January 

through December of 2009.  Dairy A underwent a herd reduction in May of 2009 and 

stopped actively milking, so scrape sample collection ended in June, but lagoon 

sampling continued throughout the project.  Five to ten representative subsamples were 

collected at random from each sampling location and mixed to form a composite sample.  

In order to obtain temporally representative results, including wet and dry conditions and 

seasonal variation, samples were generally collected during the first week of each month 

by a combination of Texas AgriLife Stephenville and College Station representatives.  
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Samples were collected into sterile Whirl-Pak® Bags or autoclaved Nalgene® bottles 

and were transported on ice back to the lab in Stephenville for processing.  Manure 

processing for initial E. coli enumerations was completed with within 6 hours of sample 

collection following EPA Method 1603 (modified mTEC) per method and 

manufacturer’s instructions (USEPA, 2005a).   

Enumerations and Isolations 

After 24 hours of incubation, samples were enumerated.  Red-magenta colonies 

were considered typical E. coli on mTEC media.  Enumeration results were recorded as 

CFU/gram of wet manure or mL of lagoon wastewater.  If not delivered directly, within 

48 hours of processing, mTEC plates were shipped on ice overnight to College Station 

for isolation.     

 E. coli from quarterly samples were isolated and archived for downstream 

processing, including the months of January, April, July and September.  When possible, 

from each sample, 5 typical E. coli were isolated and transferred from mTEC onto EC-

MUG (EMD, Gibbstown, NJ) medium as a secondary screen for β-glucuronidase 

enzyme activity.  Pure culture isolates were preserved for long-term storage in tryptic 

soy broth with 20% glycerol and stored at -80°C.  Additionally, cell suspensions of each 

isolate were made using a 1µL loop of cells into 100µL of sterile molecular grade water 

for downstream fingerprinting applications.  

Fingerprinting  

 E. coli isolates were fingerprinted using the enterobacterial repetitive intergenic 

consensus polymerase chain reaction (ERIC-PCR) (Versalovic et al., 1991).  PCR 
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conditions were previously described by Casarez et al. (2007a).  Each 50µL reaction 

contained 1X PCR Buffer with 1.5 mM Mg (final) (ABI, Foster City, CA), 200 µM each 

of dNTP (GE Healthcare Biosciences, Piscataway, NJ), 600nM ERIC Primers 1R and 2 

(Invitrogen, Carlsbad, CA), 1.5 µg/µL bovine serum albumin, 2.5 units AmpliTaq Gold 

(ABI, Foster City, CA), and 5µL of cell suspension (described above).  Thermocycling 

was conducted in an Eppendorf Mastercycler (Hamburg, Germany) under the following 

conditions:  initial denaturation at 95°C for 10 min, followed by 35 cycles of 

denaturation at 94°C for 30 s, annealing at 52°C for 1 min, and extension at 72°C for 5 

min with a final extension at 72°C for 10 min.  Amplification products were stored at -

20°C until analyzed by agarose gel electrophoresis.  PCR products were loaded onto a 

20x25 cm 2% agarose gel prepared with 1X TBE buffer and a 30 tooth, 1mm thick comb 

(IBI Scientific, Peosta, IA).  Electrophoresis occurred in a cold storage room (~8°C) for 

1 hour at 100V followed by 4 hours at 200V with buffer recirculation beginning after the 

first hour.  Each gel included a marker ladder (Roche DNA Marker XIV) lane on the 

outside wells, as well as after every sixth sample.  Additionally, a no template control 

and a quality control E. coli strain (ATCC 51739) were included in every gel to ensure 

method reproducibility throughout the study.  Gels were stained for 20 minutes in 1X 

TBE buffer containing 0.5 µg/mL of ethidium bromide.  Gel images were captured using 

an UltraLum Omega 10gD Molecular Imaging system (UltraLum, Carlsbad, CA).    

Select January 2009 E. coli isolates were also fingerprinted using the automated 

DuPont Qualicon RiboPrinter (RP) system (DuPont Qualicon, Wilmington, DE).  RP 

was performed according to manufacturer’s instructions using HindIII restriction 
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endonuclease (NEB, Ipswich, MA) with digestion performed at 37°C for 20 minutes.  

The RP software normalized the banding patterns using 4 marker lanes in each 8 isolate 

batch as well as reduced noise.  The same quality control E. coli strain (ATCC 51739) 

used for ERIC-PCR was also included in every fourth batch.  Results were converted to 

text files and exported for downstream processing.   

Fingerprint Processing  

BioNumerics software (Applied Maths, Austin, TX) was used to analyze the 

ERIC-PCR and RP fingerprints.  ERIC-PCR fingerprint patterns were imported as 

tagged image file format (tiff) photos and evaluated using curve-based Pearson’s 

product-moment correlation coefficients.  RP files were imported and processed using a 

script provided by DuPont® and Applied Maths to score and weight the RP patterns.  

ERIC-PCR dendrograms were constructed using the unweighted pair group method with 

arithmetic mean values (UPGMA) using an 85% similarity cutoff.  The cutoff value was 

based on reproducibility of the ERIC fingerprint patterns of the quality control E. coli 

strain using the single ERIC-PCR fingerprinting method.  Any pattern type or group 

whose composite similarity was equal to or greater than 85% was considered to be the 

same genotype (Casarez et al., 2007a; Casarez et al., 2007b).  Once dendrograms and 

pattern similarities were determined, BioNumerics was also used to calculate community 

diversity indices.  Relative abundance of genotypes across dairy management schemes 

was also used to generate nonmetric multidimensional scaling (NMDS) plots using the 

Bray-Curtis similarity measure in PAST (version 2.05) (Hammer et al., 2001).  Graphs 

were generated using Sigma Plot 11.0. 
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Source Class Identification Using the Texas E. coli BST Library  

The January 2009 dairy manure isolates from all four dairies were chosen for 

screening for potential inclusion into the Texas E. coli BST library.  Additionally, 9 feral 

hog and 9 coyote fresh fecal samples were collected by local stakeholders when the 

animals were killed or trapped on their property.  These samples were processed using 

the same techniques as the dairy manure samples to form a small local watershed library.  

First, ERIC-PCR was performed on approximately 5 E. coli isolates per sample.  Isolates 

within each sample were screened using an 80% cutoff value to identify clonal isolates 

per state library established SOPs.  Any two isolates with greater than 80% similarity 

were considered clonal in nature and a representative isolate was chosen from that 

sample to RP.  The small local watershed library was used to first self-validate the 

isolates.  To be included in the library, the isolates had to either have a best match of 

greater than 80% back to the correct  7-way split categories (human, pets, cattle, other 

avian livestock, other non-avian livestock, avian wildlife, and non-avian wildlife) or 

their best match in the local library was less than 80% and were left unidentified.  At 

least one self-validated isolate per sample was included in the library (Casarez et al., 

2007b).  

 

Results  

Manure E. coli Levels   

Levels of E. coli for each of the 11 total samples are summarized in Table 6 and 

Figure 12.  Across dairies and management strategies, average E. coli counts were  
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Table 6.  Summary statistics of levels of E. coli (CFU/mL or g) at different stages in manure treatment.  (Data is the average of 

samples collected over one year.) 

 
Dairy-Treatment n Mean Std Dev Std. Error Min Max Range 

A-Scrape 5 7.01E+04 5.57E+04 2.49E+04 1.00E+03 1.35E+05 1.34E+05 

A-Lagoon 12 1.55E+04 2.96E+04 8.56E+03 6.00E+00 1.00E+05 1.00E+05 

B-Settling Basin 12 1.43E+05 3.08E+05 8.88E+04 1.00E+02 1.10E+06 1.10E+06 

B-Lagoon 12 3.15E+04 9.10E+04 2.63E+04 6.50E+02 3.20E+05 3.19E+05 

C-Scrape 12 3.92E+05 3.08E+05 8.90E+04 1.00E+02 7.50E+05 7.50E+05 

C-Separator Solids 12 1.42E+05 1.24E+05 3.59E+04 1.00E+02 3.35E+05 3.35E+05 

C-Separator Liquids 10 1.29E+05 1.23E+05 3.90E+04 7.00E+02 4.20E+05 4.19E+05 

C-Lagoon 12 4.64E+03 9.66E+03 2.79E+03 5.00E+01 3.50E+04 3.50E+04 

D-Drying Bed 12 9.55E+05 1.45E+06 4.19E+05 1.00E+03 5.35E+06 5.35E+06 

D-Settling Lagoon 12 2.92E+02 5.27E+02 1.52E+02 1.00E+00 1.85E+03 1.85E+03 

D-Lagoon 12 1.54E+02 1.79E+02 5.16E+01 1.30E+01 6.50E+02 6.37E+02 
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Figure 12.  Average E. coli abundance (CFU/g or mL) for each of the dairy manure 

management strategies and their respective treatment stages.  (Data represents the 

average of all samples collected at dairies A-D over one year.) 

 

 

highest in the scrape piles and continued to drop as the manure migrated through the 

management stream ultimately into the lagoons.  The two-tiered lagoon system from 

Dairy D yielded the lowest E. coli levels seen throughout the project with a mean of 154 

CFU/mL of wastewater in the final treatment lagoon.  Dairy A Lagoon samples were 

continued throughout the study, even after the herd reduction, and within two months of 

the cessation of fresh manure additions (from May to July), E. coli levels were at or 

below the level of detection (10 CFU/mL).  Even though many of the management 

techniques were not significantly different due to variation in the data, practically 

speaking the level of E. coli was reduced as the manure moved through the management 
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schemes.  Manure and effluent handling methods which employed means to remove 

solids from the manure tended to decrease the level of E. coli in effluent.   

Total E. coli Isolates Fingerprinted  

A total of 194 E. coli isolates from samples collected each quarter were 

fingerprinted using ERIC-PCR to assess community structure and are summarized in 

Table 7.  For Dairy A, the scrape isolates were only available for January and April due 

to the herd reduction.  For some months, 5 E. coli could not be confirmed or archived 

and thus could not be fingerprinted.  Community diversity indices were calculated for 

each of the various management strategies and are shown in Table 8.  Generally, all of 

the samples were very diverse, Shannon-Weiner values near 100 and Simpson’s greater 

than zero, even when grouped across the study.  Most of the individual samples with 5 

isolates fell into greater than 3 unique genotypes per sample.  The only exception was 

the Dairy C Separator Solids isolates from January where 4 of the 5 were from 1 unique 

genotype.  

E. coli Community Analysis  

 NMDS:  NMDS analysis (71 total isolates) was performed to visualize the 

relationship of the E. coli ERIC-PCR genotypes across the lagoon communities at all 

four dairies and time points (Figure 13).  No apparent trends were seen in the community 

groupings by site or by time.  
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Table 7.  Total quarterly E. coli isolates fingerprinted using ERIC-PCR. 
 

Dairy-Treatment Jan09 April09 July09 Sept09 Total 

A-Scrape 5 5 0 0 10 

A-Lagoon 5 5 0 5 15 

B-Settling Basin 5 5 5 5 20 

B-Lagoon 4 5 5 4 18 

C-Scrape 5 5 5 5 20 

C-Separator Solids 5 5 5 4 19 

C-Separator Liquids 5 5 5 5 20 

C-Lagoon 5 5 5 5 20 

D-Drying Bed 5 5 5 5 20 

D-Settling Lagoon 5 5 4 0 14 

D-Lagoon 5 3 5 5 18 

Total 54 53 44 43 194 

 

 

Table 8.  E. coli community diversity estimates at different stages of dairy manure 

treatment (ERIC-PCR 85% Similarity Cutoff). 
 

Dairy-Treatment Isolates 
Shannon-

Weiner 
Simpson’s 

A-Scrape 10 93.3 1.90 

A-Lagoon 15 90.5 2.00 

B-Settling Basin 20 96.3 2.60 

B-Lagoon 18 95.4 2.50 

C-Scrape 20 91.6 2.21 

C-Separator Solids 19 92.4 2.23 

C-Separator Liquids 20 93.2 2.37 

C-Lagoon 20 97.4 2.70 

D-Drying Bed 20 98.4 2.80 

D-Settling Lagoon 14 95.6 2.24 

D-Lagoon 18 97.4 2.58 
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Figure 13.  NMDS plot (Bray-Curtis) of relative abundance of ERIC-PCR genotypes 

across all lagoons and quarterly time points.  (Letters designate dairies A, B, C, D; LGN-

Lagoon; JAN-January, APR-April, JUL-July, and SEP-September). 

 

 

The lagoon samples from each of the dairies were also analyzed for community 

overlap across each dairy (Table 9).  There were 71 total isolates from all 4 dairies and 

they represented 37 unique genotypes using an 85% similarity cutoff.  There were a total 

of 15 possible combinations of overlaps between the 4 dairies.  A total of 65% of the 

genotypes were only found at one individual dairy and did not represent any overlap in 

the communities analyzed.  However, one pattern type that was seen in all four dairies 

represented 15% of the total isolates.   
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Table 9.  Overlap in E. coli ERIC-PCR genotypes across lagoon samples from all four 

dairies. 
 

 Unique Genotypes Total Isolates 

Dairy Number Percentage Number Percentage 

A  6 16 9 13 

B  6 16 6 8 

C  7 19 8 11 

D  5 14 6 8 

A & B   0 0 0 0 

A & C    0 0 0 0 

A & D   0 0 0 0 

B & C   2 5 4 6 

B & D   4 11 9 13 

C & D   4 11 8 11 

A,B,C  1 3 6 8 

A,B,D  0 0 0 0 

A,C,D  0 0 0 0 

B,C,D  1 3 4 6 

A,B,C,D   1 3 11 15 

Totals 37 100 71 100 

 

 

Dairy A:  Dairy A had the fewest number of total isolates fingerprinted due to the 

herd reduction during the project, as well as a lack of lagoon isolates in July, but a total 

of 25 isolates were fingerprinted (Table 10).  Combined, there were 13 unique genotypes 

in the Dairy A samples with only 32% of the isolates occurring in both the lagoon and 

scrape samples.  There were no clear temporal trends in any of the Dairy A samples 

across months (data not shown).  
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Table 10. Overlap in E. coli ERIC-PCR genotypes across Dairy A isolates. 
 

 Unique Genotypes Total Isolates 

Treatment Number Percentage Number Percentage 

Lagoon 6 46 11 44 

Scrape  5 38 6 24 

Lagoon and Scrape  2 15 8 32 

Totals 13 100 25 100 

 

 

Dairy B: Dairy B had a total of 38 isolates fingerprinted (Table 11).  The Dairy B 

site was very diverse, as 24 of the 38 isolates were unique genotypes. The settling basin 

and lagoon shared 26% of the isolates, but the majority was unique to each management 

type.  There were no clear temporal trends in the Dairy B lagoon or settling basin 

isolates as none of the isolates or genotypes were seen in a substantial portion of isolates 

in any of the seasons (data not shown).   

 

 

Table 11.  Overlap in E. coli ERIC-PCR genotypes across Dairy B isolates. 
 

 Unique Genotypes Total Isolates 

Treatment Number Percentage Number Percentage 

Lagoon 10 42 13 34 

Settling Basin  10 42 15 40 

Lagoon and Settling Basin 4 16 10 26 

Totals 24 100 38 100 
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 Dairy C:  Isolates at Dairy C exhibited a higher percentage of overlap than the 

other dairies (Table 12).  Even though 58% of the unique genotypes were from 

individual samples, 42% of the total number of isolates came from 3 genotypes that were 

seen in all four sampling sites at Dairy C.  Another 13% of the isolates overlapped in the 

separators and lagoon.  When the sampling sites were characterized by date, there were 

no clear temporal trends or overlaps with time of sampling (data not shown).  

Dairy D: Dairy D had 30 unique genotypes from 52 individual isolates from the 

three management techniques utilized (Table 13).  Isolates from individual sampling 

sites made up 64% of the isolates.  But the lagoon and drying bed as well as the settling 

lagoon and drying field also accounted for 26% of the overlapping genotypes and 42% 

of the total isolates characterized.   

Addition of Isolates to the Texas E. coli BST library  

The January 2009 isolates were chosen for potential inclusion into the Texas E. 

coli BST library.  A small watershed local library of 30 total samples, including 12 dairy 

manure samples, 9 coyote and 9 feral hog samples was created.  A total of 146 isolates 

were ERIC fingerprinted and following de-cloning 72 isolates were also RP 

fingerprinted.  Using the small local library of 72 isolates total for the self-validation, 58 

total isolates (36 dairy, 13 coyote, 9 feral hog) were self-validated against the small local 

library and added to the Texas E. coli BST Library (ver. 10-11+LRSV; 1365 isolates 

from 1215 samples).  Since the local library was limited to just the two major source 

classes, cattle and wildlife, the isolates that failed the self-validation test were 

misidentified to the opposite source class.  Of the 36 dairy isolates fingerprinted, 32 
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Table 12.  Overlap in E. coli ERIC-PCR genotypes across Dairy C isolates. 
 

 Unique Genotypes Total Isolates 

Treatment Number Percentage Number Percentage 

Lagoon 5 18 5 6 

Scrape 5 18 7 9 

Separator Liquids 5 18 5 6 

Separator Solids 1 4 1 1 

Lagoon and Scrape 2 7 6 8 

Lagoon and Separator Liquid 1 4 2 3 

Lagoon and Separator Solids 0 0 0 0 

Scrape and Separator Liquids 0 0 0 0 

Scrape and Separator Solids 1 4 2 3 

Lagoon and Separator Solids 0 0 0 0 

Separator Liquids and  

Separator Solids 
1 4 2 3 

Lagoon, Scrape and Separator Liquids 0 0 0 0 

Lagoon, Scrape and Separator Solids 1 4 3 4 

Lagoon, Separator Liquids, and 

Separator Solids 
2 7 10 13 

Scrape, Separator Solids, and 

Separator Liquids 
1 4 3 4 

Lagoon, Scrape, Separator Solids and 

Liquids 
3 11 33 42 

Totals 28 100 79 100 
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Table 13. Overlap in E. coli ERIC-PCR genotypes across Dairy D isolates. 
 

 Unique Genotypes Total Isolates 

Treatment Number Percentage Number Percentage 

Lagoon 8 27 9 17 

Settling Lagoon 5 17 5 10 

Drying Bed 6 20 6 12 

Lagoon and Settling  Lagoon 1 3 2 4 

Lagoon and Drying Bed 4 13 10 19 

Settling Lagoon and Drying Bed 4 13 12 23 
Lagoon, Settling Lagoon, and  

Drying Bed 
2 7 8 15 

Totals 30 100 52 100 

 

 

 (89%) were self-validated as their closest match was to another dairy isolate in the local 

library.  Further, 90% (28 of the 32) of the isolates best match was to a different dairy.  

There were no clear trends as to whether they matched back to a similar level of 

treatment or not (liquid versus solid). 

 

Discussion  

  As increasing numbers of streams are listed on the Texas Water Quality 

Inventory and 303(d) list for bacterial contamination, the need to adequately assess 

sources and loads of bacteria will become even more important.  Bacterial impairments 

are often addressed using a TMDL based largely on modeling efforts.  Confirmation in 

addition to watershed specific details on source loading and allocations are critical for 

decreasing the uncertainty associated with these types of analysis (Guber et al., 2011; 

Harmel et al., 2010).  This study aimed to increase the knowledge of manure 
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management strategies in the Leon watershed and their ability to reduce the abundance 

of fecal indicator organisms and thus the potential for watershed contamination via 

runoff from application fields.  Further, this study offered a unique opportunity to 

incorporate established BST techniques to further characterize E. coli communities from 

these various management techniques in order to assess similarities and differences 

across the waste streams as well as get some indication for potential temporal shifts in 

those communities which might confound downstream BST efforts.   

Monthly Manure Sampling 

 This study utilized the same methodological approach used by surface water 

quality managers to enumerate E. coli in manure to produce directly comparable results 

to recreational water quality standards (USEPA, 2005a) as well data needed for TMDL 

models (Teague et al., 2009).  All four of the dairies utilized different levels of manure 

management from the more traditional Dairy A which utilized a manual scrape and 

lagoon system, to Dairy B which used the flushing system with a settling basin and 

ultimately a lagoon, and then more complex Dairy C which employed a separator prior 

to lagoon, and finally Dairy D which a vacuum system followed by a two-tiered lagoon.    

The overall counts were highest in the more raw manures (scrape) followed by 

the secondary treatments (separators and settling basins) and the lowest in the lagoons 

with significant reductions at Dairies C and D.  Even though direct comparisons with 

previous studies are difficult to interpret side-by-side due to differences in enumeration 

methods, these results mirror results from previous studies from dairies in San Joaquin 

Valley California where aerobic plate counts, anaerobic plate counts, and coliform 
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bacteria dropped two orders of magnitude after transitioning from raw manure into the 

slurry and then another order of magnitude, down to an average of 2.8 x 10
5
, in the 

lagoon wastewater (McGarvey et al., 2004).  At Dairy C, the lagoon samples averaged 

two orders of magnitude less (10
3
 CFU/mL) than the scrape piles (10

5
 CFU/g) as well as 

the separator liquids (10
5
 CFU/mL) and solids (10

5
 CFU/mL) prior to treatment.  At 

Dairy D, both the settling lagoon (10
2
 CFU/ml) and lagoon (10

2
 CFU/mL) averaged 

three orders of magnitude lower than the drying field (10
5
 CFU/g).  

 The E. coli counts at the dairy A lagoon were not significantly different from the 

scrape piles sampled through the first five months of the study.  It was positive to note 

the drop in E. coli abundance to below levels of detection 60 days after the herd 

reduction and cessation of milking activities (data not shown).  Dairy B overall showed 

the greatest variation in E. coli counts, but that may have been attributed to the nature of 

their management system.  The settling basin was often a mixture of solids and liquids 

depending on when the last flush had occurred, and the lagoon at this dairy may have 

seen more total water volume flux due to the flushing and this re-using of the water than 

the other dairies which yielded wider ranges of counts.  This same reasoning may 

attribute to the lack of statistical difference between counts at the settling basin and 

lagoon.  Dairy C scrape and separator solids and liquids means were statistically the 

same even though the separator means were numerically lower than the raw scrape 

values.  This is logical since the separator takes the raw materials from the barns and 

separates the solid materials to be composted and land applied and sends the liquid 

materials straight to the lagoon where a significant reduction was seen in the E. coli 
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abundance.  The lagoons at Dairy D yielded the lowest E. coli data in the study.  As the 

settling basin filled, the solids were spread onto an adjacent drying field to desiccate and 

dry prior to land application.  The drying bed received a mixture of slurry solids and 

fresh manure and consistently yielded the highest E. coli counts seen across the study.  

Re-growth when spread onto the field prior to desiccation is not beyond the realm of 

possibility as the counts were significantly higher in the drying field than the slurry pond 

(Sinton et al., 2007).   

There were no clear seasonal trends in the monthly count data (data not shown) 

that might account for the variability in a portion of the E. coli enumeration data.  

Dairies produce fresh manure every day, 365 days per year, and the manure stream is in 

constant flux from routine activities.  Dungan et al. (2012) noted no significant 

differences in abundance of cultivated E. coli from dairy wastewater over a three month 

spring and summer study.  Continuous addition of manure may have masked any 

temperature-driven trends as fresh manure is created daily and all of the sampling sites 

are thus in constant flux (Hutchison et al., 2005).  Variability in these results can be 

attributed to a large number of factors that ultimately also alter the fate and transport of 

the bacteria in the environment including pH, moisture, nutrient content, and 

temperature as well as age of the manure, age and diet of the cattle (Callaway et al., 

2009; Dungan et al., 2012; Franz et al., 2005; van Elsas et al., 2011).  Since attempting 

to monitor that many factors was not feasible in a field study, the sampling strategy was 

to sample at the same time each month over a calendar year to hopefully capture a 

normal breadth of routine conditions manure at these dairies normally undergoes.   
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E. coli ERIC-PCR Genotype Analysis  

The goal of fingerprinting the E. coli communities from various management 

schemes over time was to utilize previously established methods used to build the Texas 

BST E. coli library (Casarez et al., 2007a; Casarez et al., 2007b; Di Giovanni et al., 

2010) in order to attempt to assess diversity in the fingerprint communities as well as 

potential patterns or shifts in the E. coli community based on dairy manure management 

schemes and time of sample collection.   

There were no clear seasonal or site grouping trends seen among the lagoon 

ERIC-PCR genotypes across all of the dairies (Figure 13).  Nor were there any strong 

grouping trends when assessing individual dairies across treatment and time (data not 

shown).  This approach looked at relative abundance of the genotypes across dairy-

treatment-time to see whether the communities were similar or not.  Although analysis 

of a greater number of isolates for each dairy-treatment-time combination would likely 

have increased the ability to detect overlap in the various E. coli communities, the results 

based upon small-to-moderate-sized isolate collections suggest a large amount of 

variability in E. coli genotypes at each site over time.  Others have likewise reported 

variability in E. coli fecal genotypes.  For example, Jenkins et al. (2003) assessed 

various E. coli ribotypes in feedlot steers over a one-year period and concluded that only 

8% of the ribotypes could be considered resident ribotypes.  Further, Anderson et al. 

(2005) used antibiotic resistance and ribotyping to analyze E. coli communities from 

horses, cattle, and humans and found that most of the host populations were not stable 

over time. 



 

87 

 

Overall, the ERIC-RP genotype analysis showed commensurate levels of 

diversity throughout the study.  For a majority of the individual samples 3 or 4 of 5 of 

the isolates represented a unique genotype which even at an 85% similarity cutoff is 

comparable to previous known-source sample characterizations.  The same approach that 

has been used to build the Texas E. coli BST Library was used in this case, 

fingerprinting 5 isolates per sample, but clonal isolates were not removed for this study 

as the aim was to look at genotype-level diversity across the manure management 

schemes .     

The community overlap analysis combined the dairy-treatment combinations 

over time to increase total number of isolates assessed at each combination.  The results 

showed some overlap in the communities across management schemes.  For the lagoon 

samples overall, 65% of the unique genotypes were from individual dairies.  But 60% of 

the total isolates were seen in some combination of the four dairies with 15% seen in all 

four dairies.  Dairy C showed the most commonality of all of the dairies.  All four of the 

management schemes at this dairy shared 3 unique genotypes and 42% of the total 

isolates.     

 The majority of all samples, including dairy samples, currently represented in the 

state library are from individual animals.  Lagoon samples would presumably be 

representative of the entire waste stream as well as the dairy manure most likely to be 

land applied and thus most apt to enter waterways.  Similarly, human waste is generally 

represented in the library from domestic sewage collected from wastewater treatment 

plants or septic tanks for the same reasoning. The NMDS plots did not indicate the 



 

88 

 

communities were very similar, but when combining the dataset and looking strictly at 

genotypes that occurred in all of the dairies, there was one common genotype across all 

four dairies that accounted for 15% of the total isolates.  Furthermore, genotypes that 

shared at least two dairies accounted for another 44% of the total isolates characterized.  

These results show promise for using lagoon samples versus individual cow samples 

from dairy operations in the future.  McGarvey et al. (2004) showed relative abundance 

of dominant bacterial taxa shifted in the manure at various stages and that the lagoon 

communities were less diverse than the raw manure and separator communities.  The 

authors deemed these communities to be ‘adapted to the environment’.  Lagoons are 

essentially large biological reactors used to recycle nutrients in the manure and even 

though their microbial community may undergo turnover with season or cleanout, it 

would not be surprising to learn that there is a ‘core bacterial community’ that includes 

E. coli populations that are relatively stable, including the most abundant cultivable 

portion of the community utilized in library-dependent BST.  These samples would be 

more representative of the herd as a whole as well as represent the portion of the manure 

stream most likely to be land applied and thus have more possibility of reaching surface 

water.  

The January isolates were chosen for screening and inclusion into the state 

library.  Those isolates were de-cloned (80% similarity cutoff) and the unique isolates 

also RP fingerprinted.  The more stringent 85% cutoff was used in the ERIC-PCR 

genotype analysis due to the use of only one fingerprinting technique, instead of the 

ERIC-RP combination, which has a reproducibility cutoff of 85% for the QC strain for 
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E. coli.  A more liberal cutoff value would have decreased the diversity and increased 

the amount of overlap seen in the communities.  Per current statewide library building 

methods, a small watershed library was built with available fecal samples and included 

the dairy manure samples as well as coyotes and feral hogs.  The isolates could only be 

included in the library if their best match was at least 80% similar to their 6-way source 

specific category or were less than 80% similar to any of the local library members and 

left unidentified.   

Of the 42 total dairy isolates (from twelve individual dairy samples) that were 

ERIC-RP fingerprinted, 36 (86%) were self-validated by the local known-source library.  

Even more impressive from a library-performance perspective was that 89% of these 

isolates best-matches in the local library were to E. coli isolated from a different dairy.  

This is a good indication that despite the variability in E. coli genotypes across and 

within the different dairies over time, that the use of library-dependent BST and the local 

library was sufficiently robust, both geographically and temporally, to correctly classify 

the vast majority of dairy E. coli isolates from this project.    

 

Conclusions 

 Results of this study showed that the surveyed dairy manure management 

systems are successful at reducing E. coli loads in their waste streams.  The two dairies 

with the most advanced waste management systems, Dairies C and D, showed the 

greatest reductions in E. coli abundances.  The two-tiered system at Dairy D yielded the 

lowest abundances of E. coli seen throughout the study, but the separator system prior to 
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movement into the lagoon at Dairy C was also effective.  Although there were no clear 

seasonal or site grouping trends seen among the E. coli genotypes across all of the 

dairies, some genotypes were common across managerial treatments and the 

communities across the dairies generally showed as much similarity as within each 

dairy.  Furthermore, successful classification of a vast majority of the dairy E. coli 

isolates in the local library indicated the reliability of the library-dependent BST 

approaches currently being used to track E. coli contributions from dairy manure in 

Central Texas watersheds.   
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CHAPTER V  

MICROBIAL CHARACTERIZATION OF DEER FECAL COMMUNITIES IN 

TEXAS 

 

Introduction  

Molecular advances have allowed for a tremendous expansion of library-

independent BST methods.  These approaches offer the promise for a more rapid and 

cost-effective means of assessing fecal contamination back to a particular source or 

source-group in a culture-independent manner (USEPA, 2005b; Wuertz et al., 2011).  

Intestinal communities of warm-blooded hosts have been shown to exhibit both 

coevolution and codiversification which strongly supports the hypothesis that there are 

source-specific bacterial lineages (Ley et al., 2008; Ley et al., 2006; Wuertz et al., 2011).  

A large portion of library-independent methods have looked to develop genetic markers 

for host-specific bacterial populations (Wuertz et al., 2011).  Many of these reported 

host-specific BST markers come from members of the Bacteroidales order and assays 

(both presence/absence as well as quantitative) have been developed targeting humans, 

ruminants, cattle, hogs, geese and ducks, and horses (Bernhard and Field, 2000; Dick et 

al., 2005; Hamilton et al., 2006; Layton et al., 2006; Seurinck et al., 2005; Shanks et al., 

2008; Shanks et al., 2006).  Even though host-specific markers are being developed, they 

are generally still limited, especially for wildlife which severely restricts our ability to 

specifically track this important group.  Many of these markers have come under 

substantial criticism generally due to a lack critical performance evaluation of sensitivity 
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and specificity, as well as a lack of data quality assurance (Harwood and Stoeckel, 2011; 

Shanks et al., 2010).   

Several approaches have been taken to identify host-specific BST markers 

including length-heterogeneity PCR and terminal restriction fragment length 

polymorphism (Bernhard and Field, 2000), suppression subtractive hybridization 

(Hamilton et al., 2006) and genome fragment enrichment (Shanks et al., 2006).  But 

advances in next generation sequencing technology, including 454 pyrosequencing, have 

substantially enhanced our ability to characterize entire communities at a reduced cost 

and allowed a more broad look at the entire 16S rRNA community instead of targeting 

specific groups.  In Texas, wildlife sources, such as deer and feral hogs, have been 

implicated as major contributors of bacterial impairment, but our fundamental 

knowledge of wildlife gut communities and thus ability to track them as specific 

contamination sources is lacking.  Library-independent means to track deer specifically 

are hindered by the fact that the most widely accepted ruminant specific marker, 

CF128F, cannot distinguish between cattle and deer (Bernhard and Field, 2000).  The 

ability to distinguish between wildlife and livestock sources is critical to developing best 

management practices to reduce fecal contamination.  The objective of this study was to 

use 454 barcoded pyrosequencing to characterize deer fecal communities in Texas in an 

effort to evaluate their suitability for development of a deer-specific BST marker.   
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Materials and Methods  

Sample Collection  

Deer fecal pellets were obtained directly from the lower section of the large 

intestine at time of field dressing of recently killed animals.  Samples were collected at 

the Welder Wildlife Refuge Foundation, near Sinton Texas, in both 2008 and 2009 

during annual youth hunts.  Welder staff members assisted in weighing the animals prior 

to field dressing and approximated the age of the animals.  Leon samples from 

Comanche County, TX were collected by stakeholders in the watershed during the 

winter of 2009. Samples were kept on ice during handling and transport to College 

Station and stored at -80°C.  

Bacterial Tag-Encoded Amplicon Pyrosequencing  

Bacterial community DNA was extracted in triplicate from each sample using a 

Power Soil DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA) per 

manufacturer’s instructions.  DNA samples were purified using illustra MicroSpin™ G-

25 Columns (GE Healthcare Biosciences, Pittsburg, PA) and quantified using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

Extracts were stored at -20°C for downstream applications.  Community DNA was 

submitted to the Research and Testing Laboratory (Lubbock, TX) for tag-

pyrosequencing.  Samples were amplified using primers 27F and 519R and sequenced 

using Roche titanium chemistry (Acosta-Martinez et al., 2008).  
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Sequence Analysis and Community Comparisons  

Sequence libraries were analyzed using a combination of The Ribosomal 

Database Project (RDP) (Cole et al., 2009) (accessed 17 May 2011) and MOTHUR 

(version 1.18.1) (Schloss et al., 2009).  Using MOTHUR, sequencing primers and tags 

were removed, the database was quality checked, and chimeras removed prior to 

downstream processing.  The RDP pipeline was used to assign taxonomic identities to 

the quality-screened, final 454 sequence data.  Each sequence was classified down to the 

genus level, but if an organism could not be classified with at least 80% confidence in 

RDP, it was named Unclassified at the previous scientific classification level.   

The dist.seqs function in MOTHUR was used to create distance matrices and then assign 

sequences to operational taxonomic units (OTUs, 97% similarity).  Diversity estimates 

were calculated including Shannon’s and Simpson’s diversity indices and Chao I 

richness estimates.  For community comparisons, the samples were grouped into three 

treatments by location (Welder and Leon) and year (2008 or 2009).  Phylogenetic 

structure of the libraries was assessed using the Yue-Clayton index (Theta-YC) as this 

approach utilizes both incidence and relative abundance of OTUs and thus is not 

sensitive to sample size.  Parsimony test, analysis of molecular variance (AMOVA), and 

homogeneity of molecular variance (HOMOVA) were conducted using the Theta-YC 

similarities.  Parsimony, ANOVA, and HOMOVA tests with P-values <0.05 were 

considered to be significant (Schloss, 2008).  Relative abundance of OTUs across each 

sample was also used to generate nonmetric multidimensional scaling (NMDS) plots 

using PAST (version 2.05) (Hammer et al., 2001).  Graphs were generated using Sigma 
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Plot 11.0.  Nearest-neighbor joining trees were created in MEGA (version 5.10) to 

showcase overlapping and the most abundant OTUs using representative sequences from 

the deer fecal communities and their closest GenBank hits (Altschul et al., 1990) 

(accessed 18 May 11).   

 

Results  

Deer Physical Characteristics 

The physical characteristics of the deer samples collected are summarized in Table 14.  

Detailed information was available for the Welder samples from both 2008 and 2009, 

but was not available for the Leon samples.  The Welder Wildlife refuge is home to large 

herds of deer and the samples collected varied in age and weight for both years.    

 

 

Table 14.  Deer physical descriptions. 
 

Site Sample ID Sex 
Age 

(yrs) 

Live 

Weight 

(kg) 

Welder 2008 81 Male 4.5  47 

 84 Female 5.5 42 

 87 Female 7.5 46 

 88 Female 1.5 23 

Welder 2009 91 Female 4.5 44 

 92 Female 3.5 44 

 93 Female 4.5 48 

 95 Male 1.5 38 

Leon  L1 N/A N/A N/A 

 L2 N/A N/A N/A 

 L3 N/A N/A N/A 
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Community Composition, Diversity, and Estimated Richness 

A total of 32,163 amplicon sequences were utilized in the analysis with an 

average sequence library of 2,923 ± 610bp (mean ± sd) (Table 15).  The sequence 

libraries ranged in size from 1,948 sequences in sample 91 to 3825 sequences in sample 

81.  The samples contained between 525 OTUs in sample 93 and 1559 OTUs in sample 

92.  Chao richness estimates suggest that the sequencing efforts captured approximately 

half of the diversity within the samples and additional sequencing would most likely 

yield additional OTUs in each sample.  Shannon and Simpson diversity index values 

suggest similar diversity across the samples except for sample 93 which was the least 

diverse of all the samples.     

 

 

Table 15.  Summary of sequence library size, OTUs, and diversity and richness 

estimates 
 

Sample 

Sequence 

Library 

Size 

Number of 

OTUs 

Chao I 

Richness 

Estimate 

Shannon 

H’ 

Simpson 

D 

81 3825 1388 2595 6.63 0.99 

84 2304 1168 2893 6.59 0.99 

87 2825 1358 3092 6.73 0.99 

88 3262 1298 2916 6.55 0.99 

91 1948 903 2014 6.30 0.99 

92 3508 1559 3593 6.78 0.99 

93 2047 525 1269 4.97 0.97 

95 3368 1145 2301 6.17 0.99 

L1 3198 1327 3029 6.51 0.99 

L2 2752 1019 1929 6.33 0.99 

L3 3126 1148 2317 6.42 0.99 

Overall 32163 8956 - -  
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Community Structure 

The parsimony test showed no significant difference in the community structure 

overall between the Welder samples in 2008, 2009 and the Leon samples (P=0.457).  

Similarly, the analysis of molecular variance (AMOVA) also showed no significant 

differences in the three communities (P=0.129).  The test for homogeneity of molecular 

variance (HOMOVA) did show significant differences between the three communities 

(P=0.007).  Pairwise comparisons showed significant differences between Welder 2009 

and Leon samples (P<0.001) but no significant difference between Welder 2008 and 

2009 (P=0.135) and Leon and Welder 2008 (P=0.054).  NMDS plots of all 11 samples 

show the communities grouping across one axis but not necessarily by location or time 

(Figure 14).  However, the three Leon samples grouped together more prominently than  

did the Welder samples from either year.  The Yue-Clayton similarity values were very 

high (ranging from 0.81 to 0.991) indicating that the bacterial communities in all of the 

samples were very similar (Yue-Clayton estimator is scored on a 0 to 1 scale with 0 

representing complete dissimilarity and 1 representing complete similarity) (Table 16).    
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Figure 14. NMDS plot (Bray-Curtis) of 11 deer bacterial fecal communities based on 

relative abundance of all OTUs (97% similarity). 
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Table 16.  Yue-Clayton similarities based on OTUs (97% similarity) of all 11 deer bacterial fecal communities. 
 

Sample 81 84 87 88 91 92 93 95 L1 L2 L3 

81 
           

84 0.9722 
          

87 0.9216 0.9096 
         

88 0.9667 0.9459 0.9210 
        

91 0.9510 0.8937 0.9536 0.9608 
       

92 0.9198 0.9718 0.9565 0.9751 0.9658 
      

93 0.9825 0.9892 0.9718 0.9844 0.9841 0.9808 
     

95 0.8732 0.8761 0.9662 0.9851 0.9689 0.9771 0.9906 
    

L1 0.9500 0.9718 0.9545 0.9605 0.9502 0.9402 0.9793 0.9714 
   

L2 0.9112 0.8266 0.9188 0.9568 0.9391 0.9321 0.9685 0.9698 0.8989 
  

L3 0.9477 0.9140 0.9449 0.9576 0.9356 0.9455 0.9637 0.9753 0.9026 0.8212 
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Phylogenetic Classifications 

The entire sequence database (32,163 sequences) was identified to their highest 

potential taxonomic level using RDP classifier.  To account for variable numbers in each 

sequence library, relative abundances of each particular taxonomic level were calculated.  

At the order level, Clostridiales and Bacteroidales dominated all eleven of the samples 

accounting for 90 to 97% of the total community (Figure 15).  Clostridiales ranged from 

56 to 93% of the community composition across samples while Bacteroidales ranged 

from 4 to 41% (Figure 15).  At the family level, abundances for major taxonomic levels 

are shown as a heat map relative to the average with hierarchical clustering by site 

(Figure 16).  The sites did not appear to cluster at the family level by particular location 

or year.  Again, Welder sample 93 appeared to be the most distant of the group due to an 

enrichment of Bacteroidales members and a depletion of Ruminococcaceae (Figure 16).    

Abundant and Overlapping OTUs and GenBank Hits  

Of the 8,956 total overall OTUs, 2 were seen in all 11 communities.  Referencing 

the RDP classifier data, these OTUs were identified as members of the 

Ruminococcaceae and Veillonellaceae families.  Representative sequences from these 

OTUs were chosen and a neighbor joining tree was created using their best GenBank 

hits (Figure 17).  The five most abundant OTUs represented 12% of the total OTUs 

across samples and included members of the Rikenellaceae, Porphyromonadaceae, 

Bacteroidales (Unclassified), and Ruminococcaceae families (Figure 18).  The most 

commonly shared and abundant OTUs along with their top GenBank hit and maximum 

identity are summarized in Table 17.  Ruminococcaceae family members dominated 
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Figure 15.  Bacterial composition across all 11 deer fecal samples at the order level. 
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Figure 16.  Heatmap depicting family-level taxonomic relative abundance across all 11 

deer fecal communities.  Abundances for each taxonomic group (row) were scaled 

relative to the mean across all samples and are depicted by color (red=above average, 

green= below average). 

 

 

both the common and most abundant OTUs in the dataset (Table 17).  All but one 

(OTU_2593) of the OTUs top hits were to uncultured bacterial clones originating from 

fecal communities.  The top GenBank hits for the Ruminococcaceae family OTUs were 

to dairy cattle, humans, and a miniature gazelle.   
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Figure 17.  Neighbor-joining phylogenetic tree of the two OTUs represented in all 11 of 

the deer fecal communities and their top GenBank hits.  Deer fecal community 

sequences representing the two OTUs are indicated with either a black circle 

representing Ruminococcaceae or a black square representing Veillonellaceae followed 

by their site name and five digit individual sequence identity code.   
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Figure 18. Neighbor-joining phylogenetic tree of the five most abundant OTUs found 

within the deer fecal communities collectively and their top GenBank hits.  Deer fecal 

community sequences representing the five OTUs are indicated with a black circle 

representing Bacteroidales, a black square representing Ruminococcaceae, black triangle 

representing Porphyromonadaceae, and black diamond representing Rikenellaceae 

followed by their site name and five digit individual sequence identity code.   
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Table 17.  The five most shared and abundant OTUs found in the deer fecal 

communities.  The top GenBank hit with the maximum identity is listed along with a 

description of the hit and its maximum percentage identity with the OTU. 
 

OTU OTU Taxonomy 

Top 

GenBank 

Hit 

Accession# 

Top GenBank HIT 

Description 

(16s rRNA gene) 

GenBank 

Hit Source 

GenBank 

Max 

Identity 

OTU_36
1
 Veillonellaceae 

EU778779.

1 

Uncultured 

bacterium clone 

SBSD_aaa02h10_1 

Springbok 

antelope 

feces 

95% 

OTU_111
1, 3

 Ruminococcaceae GU611449 

Uncultured 

bacterium clone 

DF3272 

dairy cow 

feces 
98% 

OTU_207
2
 Ruminococcaceae EU468955 

Uncultured 

bacterium clone 

SP2_h05 

Speke's 

gazelle 

feces 

97% 

OTU_2512
3
 Ruminococcaceae FJ651134 

Uncultured 

Firmicutes 

bacterium clone 

OB_425 

human  

feces 
98% 

OTU_2593
2
 Clostridiales JX109040 

Uncultured 

bacterium clone 

MID39_30977 

dairy cow 

uterus 

 

98% 

OTU_3135
3
 Rikenellaceae GU617071 

Uncultured 

bacterium clone 

DF8894 

dairy cow 

feces 

 

97% 

OTU_3604
3
 Bacteroidales GU613519 

Uncultured 

bacterium clone 

DF5342 

dairy cow 

feces 

 

97% 

OTU_3630
3
 Porphyromonadaceae EU469137 

Uncultured 

bacterium clone 

SP3_a11 

bighorn 

sheep feces 

 

97% 

OTU_4560
2
 Ruminococcaceae GU604899 

Uncultured 

bacterium clone 

CF4911 

cow  

feces 
96% 

1
OTUs common in all 11 samples, 

2
OTUs common in 10 of 11 samples, 

3
Five most abundant 

OTUs 

 

 

Discussion 

This survey aimed to better characterize deer fecal communities as a first step 

toward potentially developing deer-specific BST markers.  The bacterial communities 



 

106 

 

were characterized using an OTU approach and then further classified taxonomically.  

Chao I richness estimates showed that larger sequence libraries, approximately double, 

from each sample would be necessary to capture the breath of diversity across the fecal 

communities (Table 15).  Shannon and Simpson diversity indices were consistent across 

the samples with the exception of Welder sample 93 which was the least diverse of all 

the samples and proved to be somewhat of an outlier.    

Hypothesis testing was utilized to examine overall community structure and ask 

whether the communities were significantly different than would be expected by chance.  

The samples were grouped into three treatment categories for testing, Welder 08, Welder 

09, and Leon.  The global parsimony test showed no significant differences between the 

three treatments.  AMOVA is a non-parametric analog of a traditional analysis of 

variance and tests the hypothesis that genetic diversity within two populations is not 

significantly different from that which would result from pooling the two populations. 

This test also showed no significant difference between the communities.  Finally, 

HOMOVA is a non-parametric analog of Bartlett’s test for homogeneity of variance.  

There was a significant difference between variance across the groups.  Using the Yue-

Clayton distance measure, the central communities from all three groups were 

statistically the same, but the Leon samples displayed greater variance within samples.  

Diversity within individual groups was greater than between them.  The significant 

difference in variances between samples likely masked any potential power to see 

differences in the overall communities (Schloss, 2008; Schloss et al., 2009).  For ease of 

interpretation, the OTUs were converted to a relative abundance per sample basis and 
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were plotted using NMDS (Figure 14).  All of the communities lined up on one axis 

except for Welder sample 93.  There was little clustering of samples across years.    

The phylogenetic analysis yielded much lower perceived taxonomic diversity 

than the OTU-based analysis, but could have been expected.  The OTU-based analysis 

does not depend on a pre-defined taxonomy, and since many of the sequences could not 

be classified down to the genus level in RDP with confidence, they were left at the 

family level or higher.  Many of the individual OTUs classified to the same families.  

The communities were dominated by two phyla, Firmicutes and Bacteroidetes.  These 

phyla have previously been shown to constitute the majority of gut-associated bacteria in 

other mammals (Durso et al., 2010; Ley et al., 2006; Shanks et al., 2011) and each of the 

overlapping and abundant OTUs fell into these two phyla.  Proteobacteria, including E. 

coli, averaged 0.5% across all 11 samples.  The relative abundances of the family level 

taxonomic classification did not appear to cluster by site location or year (Figure 16).  

The Welder, 93, sample was the least diverse and exhibited a shift from the Firmicutes 

into the Bacteroidetes overall as seen in the depletion of Ruminococcaceae.  Previous 

studies have shown diet and geographical location cause shifts in gut and fecal microbial 

populations (Ley et al., 2008; Shanks et al., 2011).  The deer communities examined in 

this study would seem to fit the description of being geographically distant, 

approximately 350 miles apart and are in two completely different ecoregions of the 

state in the gulf coast region at Welder versus the prairie and lakes region where 

Comanche County is located.  But surprisingly at the family-level taxonomy none of the 

samples tended to cluster by location or by year.  Both the OTU analysis and taxonomic 
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classifications suggest the deer fecal communities in these two parts of Texas are similar 

and stable over time.   

Two OTUs were shared across all 11 samples and were classified as 

Ruminococcaceae and Veillonellaceae.  An additional 3 OTUs occurred in 10 of the 11 

samples, two of which were also Ruminococcaceae and the other Clostridiales 

(Unclassified).  A majority of the OTUs overall were singletons (56%).  Eckburg et al. 

(2005) noted a similar trend assessing diversity of the human intestinal microbial flora 

where 60% of the genera were recovered only once.  Further, the five most abundant 

OTUs only represented 12% of the total.  The overlap or percentage of abundant OTUs 

overlapping at either Welder or Leon also did not represent over 10% of the total OTUs.  

The five most abundant taxa were classified as Ruminococcaceae, Veillonellaceae, 

Rikenellaceae, Porphyromonadaceae, and Bacteroidales (Unclassified).  The top 

GenBank hits for representative sequences from all of the OTUs were from fecal 

communities, except for the dairy cow uterus hit.  The top GenBank hit for the 

Veillonellaceae OTU_36 was to feces from Springbok antelope which is a ruminant like 

deer and cattle.  The GenBank maximum identity to all of the common and abundant 

OTUs was less than 100% indicating uniqueness in the database.  The two strongest 

candidates for potential marker development are OTU_36 and OTU_4560.  The 

Veillonellaceae OTU_36 has the lowest identity match (95%) and was common across 

all of the samples and the Ruminococcaceae OTU_4560 also has a low maximum 

identity (96%) and was found in 10 of the 11 samples.   
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Conclusions 

The goal of this project was to utilize 454 pyrosequencing to better characterize 

deer bacterial fecal communities in Texas with the aim of finding organisms that were 

common across geographic regions and time in order to serve as a starting point for 

future research toward development of a deer-specific BST marker.  The microbial 

communities were not significantly different from an overall OTU (97% cutoff) 

standpoint and did not cluster by site or year and suggesting that the deer fecal bacterial 

communities, at least in south and central Texas, were stable over time which bodes well 

for the potential of a temporal and geographically stable source-specific marker.  At least 

two of these OTUs, OTU_36 and OTU_4560, appear to be potentially deer-specific with 

their closest non-deer matches in GenBank being only 95 and 96% similar, respectively.  

Future work will focus on primer design and screening these potential OTUs against 

non-target sources in order to verify their suitability as deer-specific BST markers. 
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CHAPTER VI  

SUMMARY AND FUTURE BST  

 

Summary  

BST aims to identify sources of fecal contamination in water in an effort to tailor 

best management practices to ameliorate this contamination.  The studies in this 

dissertation aimed to enhance BST method performance and lay the groundwork to 

expand BST in the future and are summarized below in addition to some thoughts on 

BST in the future.  

The method comparison study (Chapter III) looked to evaluate differences in E. 

coli community composition across three standard water quality assessments, including 

USEPA Method 1603 (mTEC), USEPA Method 1604 (MI), and Colilert® to ultimately 

determine their impact on BST library performance.  Results indicated that the 

enumeration data was not consistent across the six sites evaluated across Texas.  

Genotypic analysis revealed that generally, mTEC selected for the most diverse E. coli 

populations followed by MI and finally Colilert® which displayed the least amount of 

diversity across isolates at all locations.  One site, Moody Creek, displayed the simplest 

E. coli communities across all three media types, but the other five sites were 

characterized as having diverse and different E. coli communities from each media type.  

The isolates were queried against the Texas E. coli BST library which is based almost 

exclusively on isolates using EPA Method 1603 (mTEC).  When viewed on a site by site 

basis, results were extremely varied and showed no clear pattern or trend based on media 
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type.  Even though the three media assessed in this study ultimately enumerated the 

same groups of organisms (total coliforms and E. coli) the differences in the media 

composition, incubation temperature, and growth platform appear to have a strong 

selective influence on the populations of E. coli isolated using these media.  This study 

suggests that standardized methods of enumeration and isolation may be warranted if 

stakeholders anticipate the possibility of using library-dependent BST.     

Dairy farms have been implicated in the Leon River basin as a source of non-

point source pollution and this study aimed at using BST tools to enumerate and 

characterize E. coli communities across various dairy manure management techniques to 

evaluate current BST methods to track this potential contamination source (Chapter IV).  

Stakeholders in the watershed mainly utilized four general dairy manure management 

strategies and were evaluated at four dairies including manual scraping, separators, 

settling basins, and lagoons.  Results of this study indicated that manure and effluent 

management strategies which employed means to remove solids from the manure tended 

to decrease the levels of E. coli in the effluent.  The study aimed to evaluate relative 

abundance of genotypes across dairy treatment and time to assess potential BST library 

effects, but there was no clear seasonal or site grouping trends seen among the lagoon 

ERIC-PCR genotypes across all of the dairies.  Nor were there any strong grouping 

trends when assessing individual dairies across treatment and time.  But when each 

dairy-manure management scheme treatment was evaluated as a whole across the entire 

study, there was overlap in genotypes across treatments where 60% of total isolates were 

seen across some combination of the four dairies and 15% were seen in all four dairies.  
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Using ERIC-PCR and RP combination, isolates from all four dairies and management 

styles were also screened for inclusion into the Texas E. coli BST library.  Of the 42 

total local library isolates that were ERIC-RP, 36 were self-validated and 89% of those 

isolates best match (highest similarity match at 80% cutoff value for identification) were 

to an isolate from another dairy.  Despite the variability seen in the ERIC-PCR genotype 

analysis across dairies and time, the use of library-dependent BST and the local library 

was sufficiently robust, both geographically and temporally, to correctly classify the vast 

majority of dairy E. coli isolates from this project.    

Culture-independent or marker-based BST has the potential to significantly 

reduce labor and cost associated with use of BST.  Even though host-specific markers 

have been and continue to be developed, they are generally still limited, especially for 

wildlife which severely restricts our ability to specifically track this important group.  

Library-independent means to track deer specifically are hindered by the fact that the 

most widely accepted ruminant specific marker, CF128F, cannot distinguish between 

cattle and deer (Bernhard and Field, 2000).  The ability to distinguish between wildlife 

and livestock sources is critical to developing best management practices to reduce fecal 

contamination.  The deer study aimed to use 454 barcoded pyrosequencing to 

characterize deer fecal communities in Texas in an effort to evaluate their suitability for 

development of a deer-specific BST marker (Chapter V).  Deer fecal samples from 

Welder Wildlife refuge were collected over two years as well as from the Leon 

watershed.  A parsimony test showed no significant difference between the samples 

collected from both years at Welder or Leon.  The fecal communities were dominated by 
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two phyla, Firmicutes and Bacteroidetes.  Two OTUs were shared across all 11 samples 

and were classified as Ruminococcaceae and Veillonellaceae.  An additional 3 OTUs 

occurred in 10 of the 11 samples, two of which were also Ruminococcaceae and the 

other Clostridiales (Unclassified).  The top GenBank hits for representative sequences 

from all of the OTUs were from fecal communities, except for one.  The top GenBank 

hit for the Veillonellaceae OTU_36 was to feces from Springbok antelope which is a 

ruminant like deer and cattle.  The GenBank maximum identity to all of the common and 

abundant OTUs was less than 100% indicating uniqueness in the database.  The two 

strongest candidates for potential marker development are OTU_36 and OTU_4560.  

The Veillonellaceae OTU_36 has the lowest identity match (95%) and was common 

across all of the samples and the Ruminococcaceae OTU_4560 also has a low maximum 

identity (96%) and was found in 10 of the 11 samples.  Future work will focus on primer 

design and screening these potential OTUs against non-target sources in order to verify 

their suitability as deer-specific BST markers. 

 

BST – Thoughts on the Future   

Expansion of BST is currently focused on library-independent means mainly thru 

source specific marker development.  But those efforts continue to be confounded when 

challenged with large datasets as well as more and more stringent quality control 

measures warranted for regulatory purposes.  Unlike most library-independent 

techniques, library-dependent efforts often utilize fecal indicators like E. coli and thus 

have a more direct correlation to regulatory standards.  These efforts can be tailored to 
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the watershed in question where watershed-specific sources of contamination can be 

used to develop a library, whereas library-independent methods are reliant on source-

specific markers which may or may not be relevant or even source-specific in the 

watershed (Mott and Smith, 2011).  For these reasons, for the foreseeable future, I feel 

there will be place and utility for library-based techniques.  One suggestion might 

include increased use of automated fingerprinting to decrease labor and processing costs 

and speed library development.    

However, the ability to characterize entire communities, through next generation 

sequencing, more and more affordably has opened up considerable areas of study across 

the scientific community.  The idea of a single marker gene that is specific to an animal 

over time and large geographic regions may not ultimately be feasible, but with the 

current and growing sequencing capabilities we have opportunity to answer those 

questions.  Massive sequencing efforts in the human microbiome project and many 

others are looking to match health effects with the microbial community (Turnbaugh et 

al., 2007).  Further, Fierer et al. (2010) showed individuals could be traced to their own 

keyboards based on the DNA they left behind.  Bowers et al. (2011) recently 

characterized air samples across the US and then used previously sequenced potential 

known -source communities to assign source categories to the environmental 

communities.  These types of studies are shedding light on the use of next generation 

sequencing to fields besides medicine.  Reflecting on the resources we invest in a fecal 

or water sample to study only one or two organisms of interest, such as Bacteroidales or 

E. coli, we should recognize that more thorough characterization of the entire bacterial 
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community could open doors to other avenues of tracking sources of fecal 

contamination.   
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