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ABSTRACT

With the rapid expansion of the range of digital characters involved in film and

game production, creating a wide variety of expressive characters has become a prob-

lem that can not be solved efficiently through current animation methods. Key-frame

animation is time-consuming and requires animation expertise. Motion capture is

constrained by equipment and environment requirements and is most applicable to

humanoid characters. Simulation can produce physically correct motion but does

not account for expressiveness. This thesis focuses on developing a more efficient

animation system using a procedural approach in which the skeletal structure and

characteristics of motion that communicate weight and age in quadrupeds have been

isolated and engineered as user-controlled tools and modifiers to build creature shape

and synthesize cyclic gait animation. This new approach accomplished the goal of

quick generation of expressive characters. It is also successful in achieving real-time

animation playback and adjustment.
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NOMENCLATURE

PLD Point-light Display

FK Forward Kinematics

IK Inverse Kinematics

2D 2 Dimensional

3D 3 Dimensional

PCA Principal Component Analysis

GUI Graphical User Interface

MEL Maya Embedded Language

API Application Programming Interface
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1. INTRODUCTION

Recent years have seen an increase in demand for the efficient creation of distinc-

tive digital character animation in the film and game industry. Character animation

is the process of manipulating a character rig either manually, or using an animation

system, to produce the desired character performance. An efficient animation sys-

tem is one that can greatly simplify the animation generation process while creating

expressive motion. In contrast, inefficient animation systems complicate the process

and undermine the capacity to create expressive character animation.

Digital character animation is typically achieved through key-frame animation,

motion capture, or procedural systems, such as physically-based simulation. Key-

frame animation is a manual process in which animators control character rigs and

create key poses that eventually form performances. It produces expressive animation

but is time consuming and costly. Motion capture (or mocap) records an actor’s

performance and transfers it onto digital character rigs. Mocap provides realistic

animation but requires specific motion tracking equipment and acting expertise. It

is widely used on humanoid characters but is more difficult to achieve with non-

human, animal forms. Rule-based animation systems produce animation based on

the imitation of real-world behaviors defined mathematically. It brings great benefits,

such as simulation generates physically correct animation, but does not typically

include motion elements that communicate character traits. In situations that involve

large numbers and a wide variety of digital creatures, such as film series Chronicles of

Narnia (2005 - 2010) and the video game World of Warcraft, the animation methods

listed above become inefficient for production. To combat this problem, a more

feasible approach is in needed.
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This thesis aims at developing a perception based animation system to proce-

durally generate expressive quadrupedal locomotion. In this system, a dynamic

quadruped rig is driven by mathematical functions that define animal gaits. Gait

functions are acquired through biological motion experiments and analysis of real

world animal footage. Users are provided with tools to modify creature skeletal con-

figurations, interpolate between gaits, and adjust two characteristics of the generated

motion (weight and age). Motion data used in this thesis is provided by the Percep-

tion Based Animation project funded by the National Science Foundation (Award

#IIS-1016795)[15]. This thesis is focused on utilizing provided data to construct the

target animation system.
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2. BACKGROUND AND RELATED WORK

2.1 Identity Signals in Biological Motion

The usual stimuli used in biological motion experiments are Point-light Displays

(PLD). A PLD representation of a specific motion is formed by moving dots that

reflect the motion of key joints of the subject. This method was invented by Gunnar

Johansson [11] and has proven an effective and malleable experimental method for

isolating motion from shapes and surfaces in the communication of identity. Figure

2.1 shows an example of representing the progression of a human walk motion with

a PLD.

Figure 2.1: A PLD Representation of Human Walk. (side view, right to left) [24]

Biological motion contains rich information that defines the characteristics of a

person or animal. Early biological motion experiments suggested that the human

brain may contain mechanisms specialized for the detection of other humans from

motion signals. In 1977, PLD techniques were used by Lynn Kozlowski and James

3



Cutting to show that human gender can be identified through walking motion [13].

Later works utilizing PLD by several other researchers has shown that information

related to emotion and individual characteristics are also encoded in a person’s mo-

tion [6, 29]. In 2006, Cord Westhoff and Nikolaus Troje suggested that the human

brain might have more generalized detectors tuned simply to the characteristic signal

generated by the feet of a locomoting animal [28]. In 2009, studies conducted by Tim

McLaughlin and Ann McNamara have shown that animal motion can communicate

relative age, relative weight, and the identity as predator or prey [15].

Although it is clear that identity-laden information is communicated through the

motion of a person or animal, little is known about how such information is encoded.

2.2 Character Setup

Character setup is the process of creating character rigs that can be either manip-

ulated by animators or controlled by animation systems for the purpose of defining

a performance. A standard character rig involves a motion system, a control system,

and a deformation system [17]. This section investigates the common practice of

constructing these three systems.

2.2.1 Motion System

The first step of character setup is to build a motion system. A motion system

can be considered the mechanical architecture that drives the character model [17]. It

often consists of a hierarchy of articulation points commonly referred to as “joints”

or “bones” by 3D software packages. Joints are connected to each other through

parent/child relationships and form a skeletal structure that is similar to a real

skeleton. Figure 2.2 shows an example of a digital skeleton used for a tiger character.

Determining the joint pivot location is one of the most important aspects of creating

a motion system as they define the areas of the character that will articulate [7].
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Figure 2.2: A Digital Skeleton Used for a Tiger Character

2.2.2 Control System

The second step of character setup is the creation of a control system. Control

systems provide a management structure to the motion system and an interface to

animation. It mainly involves the creation of kinematics and control layers.

Kinematics is a mechanical term that defines the math behind movement in a

system. Utilizing the theories of kinematics in character setup can speed up an-

imation interactivity and add realistic movements to characters that benefit from

articulated joints [7]. The two widely used kinematics are Forward Kinematics (FK)

and Inverse Kinematics (IK). FK is a low level approach based on simple parent/child

relationships in a hierarchy of joints. It uses the joint parameters to compute the

configuration of a joint chain. The position of each joint is determined recursively
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by determining the position of the joints above it in the hierarchy.

In late 1980s, IK for determining mechanism motion were widely exploited in

robotics [21] . In 1985, IK algorithms were adopted in character animation by Gi-

rard and Maciejewski [8]. IK is a high level, goal-directed approach to animation,

meaning that animator positions the end joint, or the end-effector in the system and

the system solves for the position and orientation of all the joints in the affected

hierarchy [7]. Compared to FK, IK generates motion from simplified goals rather

than from explicitly defined key-postures. Because IK was proven to be very effective

for interactive manipulations, it quickly became one of the most important parts of

character control systems.

Control layers provide a layered user-manipulation structure over the motion

system and the kinematics. The most commonly used control layer for key-frame

animation is a set of visible controllers. Usually, controllers are built as customized

shape objects with indication of their main function. For instance, a circle controller

indicates rotation and an arrow controller indicates translation toward a certain

direction. Besides, a controller is also colored based on the region it is located. For

example, controllers on the left side are usually colored as red and controllers on

the right side are colored as blue. These rules allow the animator to easily make a

distinction between different types of controllers. Figure 2.3 shows the same tiger

rig with completed control system.

Multiple control layers are often involved in a complex control system. The

complexity of control layers is usually determined by the animation method. For

example, if a character rig is designed to be driven by a motion capture system or

a physically-based simulation system, additional control layers are needed to receive

data from these animation systems. Current animation methods are further discussed

in section 2.3.

6



Figure 2.3: The Completed Tiger Rig

2.2.3 Deformation System

The final step of character setup is the creation of a deformation system that

defines exactly how the character model deforms in motion. The four most widely

used deformation methods are joint based deformation, deformers, dynamics and

muscle systems. Joint based deformation utilizes the Skeleton-Subspace Deformation

technique to bind a character model to a motion system. Deformers are high-level

tools for dynamically changing the shape of a model. Dynamics are physically-

based approaches that are used to deform a model through soft body and rigid body

simulations. Muscle systems use underlying muscle objects to deform a model in a

similar manner that muscles deform real skin [18].

7



2.3 Current Animation Methods

As mentioned in the previous section, motion is the key of communicating per-

sonality. This section investigates current animation methods and their limitations

of producing believable motion.

2.3.1 Key-frame Animation

Traditional 2-Dimensional (2D) animation is done by hand. All the frames in an

animation have to be drawn as key-frames and in-between frames. Since each second

of film requires 24 frames, the amount of work required to create even the shortest of

animated films can be tremendous. The use of computers to create human locomotion

started at the end of the 1970s [30]. The idea of key-frame in traditional animation

was brought into computer animation around the same time. Rather than drawing

key-frames manually, 3-Dimensional (3D) computer animation is created through

posing a character in 3D space as key-frames, then the computer automatically fills

in the in-between frames by smoothly interpolating between key-frames.

Since key-frame animation is a manual process, it requires animators to have a

thorough knowledge of animation principles, as well as how to convey personality

through motion. The well-known 12 Principles of Animation is a set of rules intro-

duced by the Disney animators Ollie Johnston and Frank Thomas in 1981 [25]. Its

main purpose was to produce an illusion of characters adhering to the basic laws

of physics while contributing to effective storytelling. It also dealt with character-

istic issues, such as emotional timing and character appeal. In 1987, John Lasseter

adapted the 12 rules to computer animation. He also pointed out that the success of

character animation lies in communicating the personality, and intention of charac-

ters [14]. Later, in 1995, the first fully animated feature film Toy Story was created

by Pixar Animation Studios.
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2.3.2 Motion Capture

Motion capture refers to the process of recording of human body movement, or

other movement, for immediate or delayed analysis and playback. The information

captured can be as general as the simple position of the articulation joint on the

character, or as complex as the deformations of the face and muscle masses. Motion

capture for character animation involves the mapping of motion data onto the motion

of a digital character. The mapping can be direct, such as human arm motion

controlling a character’s arm motion, or indirect, such as human hand and finger

patterns controlling a character’s skin color or emotional state.

The use of motion capture started in the late 1970’s, and came to be widely used

in the late 1990s. In the early 1980’s, Tom Calvert attached potentiometers to a body

and used the output to drive computer animated figures for choreographic studies and

clinical assessment of movement abnormalities [3]. In 1985, Jim Henson Productions

created Waldo C. Graphic - a computer generated puppet that could be controlled in

real-time in concert with real puppets [27]. In 1988, deGraf-Wahrman Inc. developed

“Mike the Talking Head” for Silicon Graphics. The head was driven by a specially

built controller that allowed a single puppeteer to control many parameters of the

character’s face, including mouth, eyes, expression, and head position [22]. In the

late 1990s, motion capture was adopted by film industry. Final Fantasy The Spirits

Within (2011) was the first feature film made primarily with motion capture. Another

major step was made by film Lord of the Rings: Fellowship of the Ring (2001). It

created a unique character Gollum by using a combination of motion capture and

key-frame animation [17]. Because of the reusability of the captured motion data and

the ability to retarget to a variety of similar character models, game development is

another large market for motion capture.
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Motion capture produces animation with high fidelity. However, the equipment

required to perform motion capture has greatly limited it’s range of usage. For

example, performing motion capture on real animals as “actors” is almost impossi-

ble achieve. As a result, motion capture is primarily used on animating humanoid

characters in film and game production.

2.3.3 Rule-based Animation

2.3.3.1 Simulation

Physically based simulation was first used for character animation in the end of

1980s. The earliest simulation system to use inverse dynamics for character anima-

tion is proposed by Paul Isaacs and Michael Cohen in 1987 [10]. Similar systems

were later implemented in several other works including the simulation of human

walking and running [2, 12].

Since motion is generated in accordance with physical laws, the main benefit of

simulation is that physically correct animation and interaction can be achieved very

easily. However, motion generated by simulation doesn’t necessarily contain elements

that communicate the identity characteristics of the character. Moreover, the result

is not art-directable. Therefore, simulation is usually used as a supplementary tool

for character animation rather than a primary animation method.

2.3.3.2 Procedural Animation

Procedural animation is a relatively new approach for character animation. “Pro-

cedural” means that the motion of objects in 3D space is directly defined by math-

ematical functions. This method is used to automatically generate animation in

real-time to allow a more diverse series of actions than could otherwise be created

using predefined animations. Procedural animation is widely used to animate me-

chanical objects. However, it is not commonly used for character animation since
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mathematically defining characteristic components in biological motion is a challenge

that has not yet been met.

In 2002, Nikolaus Troje explored the idea of using linear combinations of sinu-

soidal basis functions to synthesize human walking motion. In his study, psychophysi-

cal experiments of gender recognition were conducted based on a set of holistic motion

capture data. Then the result was used with Fourier Analysis and Principal Compo-

nent Analysis (PCA) to extract the male and female characteristics from the motion

capture data [26]. By applying multilinear data analysis techniques to registered

motion examples, the multilinear motion models proposed in this study provided an

efficient and feasible approach to mathematically describe character motion. It also

provides the foundation and guideline for this thesis. Similar methods have been

applied in later studies of gait patterns associated with sadness and depression [16]

and human female fertility cycle [19]. To date, this approach has not been applied

to the analysis and synthesis of animal locomotion.

This thesis presents a new approach to generating expressive quadruped anima-

tion for game and film production. Based upon the techniques of Troje and the PLD

research method, this new approach is implemented as an animation system that

provides the user with control over the skeletal structure of the creature and two

identity characteristics of the motion (weight and age).
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3. METHODOLOGY

The target system can be divided into four major components: a motion data

library, a graphical user interface (GUI), a dynamic quadruped rig, and a gait genera-

tor. The relationship between them is indicated in figure 3.1. This chapter describes

concepts and methods utilized to design and construct these four components.

Figure 3.1: System Composition.
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3.1 Procedural Motion Data

One of the greatest advantages of procedural animation is efficiency - motion is

generated instantly. Therefore, procedural animation has the potential to meet the

demand of quick generation of expressive motion over wide range of characters. In

order to implement the target procedural animation system, two sets of motion data

need to be acquired: data indicating human perception of characteristics in creature

motion, and mathematical functions that describe creature gaits. Obtaining these

two data sets is not in the scope of this thesis. Desired data has been obtained

through the Perception Based Animation project funded by the National Science

Foundation (Award #IIS-1016795) with Principal Investigator Tim McLaughlin and

Co-Principal Investigator Dr. Ann McNamara [15]. Below is a brief description of

the method used to obtain these two data sets.

Motion data is acquired through an approach similar to that conducted by Niko-

laus Troje in 2002 [26]. First, video footage of quadrupedal animals walking, trotting,

and running are collected as motion examples. These footages were taken from side

view to maximize the contained motion information. Then, PLD representations of

those examples are created by manually tracking key joints on the creature. Figure

3.2 shows an example of an animal footage and it’s PLD representation. After that,

PLDs are used as stimuli for eye tracking experiments to determine the expressiveness

of the creature and key features that are necessary for conveying the expressiveness

in creature motion [15]. At the same time, Fourier Analysis is performed on PLDs to

extract sinusoidal basis functions that define the local rotation of each joint on the

creature [4]. Rather than recording the sinusoidal functions directly, motion data

used by this thesis is stored in plain text files as a series of components required to

form the sinusoidal function, such as amplitudes and phases.

13



Figure 3.2: A Trotting Lion Footage (Left) and It’s PLD Representation (Right).

Sinusoidal basis functions are driven by the time variable. It is important to

mention that most of quadruped gaits share the same pattern across both left and

right legs, the only difference is that the pattern occurs at different tempos. As a

result, only one side of the motion needs to be extracted from this process. When

applying motion data, joint rotation values on both legs can be obtained by utilizing

the same sinusoidal function but with different time shift. In order to achieve this

goal, the speed of the creature (frame per cycle) and the time shift difference (frame)

between left and right leg are also recorded in the motion file. A portion of an

example motion file can be found in appendix A.1.

One limitation of this method is that only 2D motion data can be acquired,

since PLDs are extracted only from 2D video footages. As a result, this thesis is

only focused on the generation of 2D motion although the capacity of receiving and

displaying 3D motion has built into the implemented animation system.

Quadruped can be divided into three categories: unguligrade, digitigrade, and

plantigrade. An unguligrade is an animal that walks on the tips of its toes, such as

14



horse and springbok. Similarly, a digitigrade walks on its digits and a plantigrade

walks with its podials and metatarsals flat on the ground. By the time this thesis is

completed, motion data is provided only for the front and hind legs of limited types

of unguligrade creatures. Therefore, synthesizing the motion of other body parts and

other types of quadrupeds is not included in this thesis. The motion data of these

missing parts can be extracted and facilitate this thesis in the future.

3.2 Graphical User Interface

An easy-to-use Graphical User Interface (GUI) is the key visual component for

interacting with the target system. Based on the system functionalities described

previously, the GUI can be divided into three parts: the shape control panel, the

gait control panel, and the rig control panel.

The shape control panel provides the user with tools to modify the skeletal struc-

ture of the quadruped rig, in other words, to change the joint position of the creature.

Ideally, those tools should include a skeleton preset library which contains skeletal

configuration of multiple basic creature types and a customization interface which

allows the user to create, store, load, and modify their own skeleton configurations.

The gait control panel provides the user with controls over the type, speed, and

characteristics of the procedurally generated gait. The two characteristic components

involved in this thesis are weight and age. All of these tools can be visually presented

as control sliders to enable easy interaction. In the real world, the characteristics

of motion have an influence on the speed of the creature. For instance, a heavy

creature tends to walk slower than a light creature. As a result, it is reasonable to

provide users with a switch that allows them to either define the creature’s speed by

themselves, or let the system calculates the speed automatically based on the current

characteristics.
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The rig control panel provides various options to view the generated motion. This

is necessary since users may require different viewing methods. For example, some

users prefer viewing the animation as a PLD representation. In this situation, bones

indicating the joint hierarchy and control tools should be hidden. It is also important

to provide additional view options for research purposes, such as viewing the motion

of the front legs in isolation.

3.3 Dynamic Quadruped Rig

The dynamic quadruped rig used in this thesis serves two main purposes: allowing

the user to modify the skeletal structure of the rig and displaying the generated

creature motion. This section describes the methods used to construct a generic

quadruped rig that fulfills these two goals.

3.3.1 Scripted Rig Setup

The desired rig can be setup in a similar approach to animation production.

This includes creating a motion and a control system. A deformation system is not

involved in this study. The only motion synthesized is skeletal, which is separate

from forms and surfaces. Similar to the PLD method, each joint can be visually

represented as a dot, or a 3D sphere.

As mentioned in section 3.1, the motion data provided for this study consists

of sinusoidal functions for defining local joint orientations. Together, they form the

final procedural motion as a combination of multiple sinusoids. Since this type of

data is recorded based on the joint hierarchy (or FK), the target rig needs to be

setup in an FK fashion so that the data can be displayed properly. On the other

hand, an input control layer should be created to receive procedural data and drive

joint orientations. This control layer includes building a socket node for each joint in

the skeleton hierarchy since the motion data is per-joint based. It is also necessary
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to create a standard layer of controllers to allow the user to manually fine-tune each

joint’s rotation through the key-frame animation method.

Character setup is a linear process which ultimately produces a character rig with

integrated motion and control systems. This nature of character setup usually leads

to difficulty in revising the rig and adding new features to the rig once it is completed.

To make the target animation system adjustable and extendable in the future, the

rig is procedurally generated by scripting. This means that the rig creation process

is recorded as scripts in a programming language that can be executed within the

chosen 3D animation package so that future modification can be done simply through

revision of the scripts.

Scripted rig setup involves manually placing guide objects in the 3D space to

indicate joint locations. Scripts can then be executed to build the quadruped rig

based on the provided position information.

3.3.2 Dynamically Adjusting Rig Skeleton

The reason for giving the quadruped rig a dynamic structure is so that the motion

generated by the gait generator is adjustable. As a result, the user needs to have the

ability to also modify the rig’s skeleton configuration, specifically the joint position,

so that they can create a desired creature shape that matches the motion.

A callback mechanism can be designed and utilized to make this dynamic feature

possible. Callback is the process of executing a subroutine inside a program when

a predefined event occurs. In the case of this study, a set of user-controlled guide

objects can be used to represent the current joint locations. When a guide object is

moved in 3D space, a callback function inside the system can be triggered to update

the corresponding joint position and orientation to match the guide object.

The benefit of this approach is that the dynamic feature exists as an independent
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function and separated from the quadruped rig itself. It provides easy control to the

user and minimizes the complexity of the rig structure compared to building this

feature directly into the rig.

3.3.3 Managing Customized Skeleton Structures

Users have complete control over the shape of the creature, it is therefore nec-

essary to provide them with tools to manage customized creature shapes, including

saving, loading, deleting, and mirroring functions.

To implement the saving and loading functions, an efficient method of recording

joint positions in character space is needed. Recording position in character space

is essential. It allows the system to customize and manage creature shapes based

on the current location of the character rig in 3D space. In this way, the user can

transform the whole system freely without damaging its functionality. A plain text

file is a simple effective media to record joint positions. The target system stores the

user-created text file into a specified location on the user’s hard disk and reads it

back in when called. The reading and writing process can be performed on the same

set of guide objects mentioned in the previous section since it represents the current

joint positions in 3D space.

Mirroring is a useful feature as most quadrupedal creatures exhibit a symmetrical

skeleton structure. A mirroring function speeds up the process of customizing the

creature’s shape because the user only needs to adjust joints on one side of the

creature and mirror their positions.

Another beneficial feature for speeding up the shape customization is to provide

a creature library that contains basic presets of quadruped skeleton structures, such

as a horse skeleton and a lion skeleton. When a certain preset is selected, the system

can update the rig skeleton to match the target creature type. As a result, the user
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can switch between different creatures instantly and use these presets as a foundation

to create their own creatures.

3.4 Gait Generator

The gait generator is the key component for producing expressive gaits. It is

connected to the specified control layer on the dynamic quadruped rig after the rig is

completed. The process of gait generation involves reading motion data from stored

motion files, calculating joint rotation values, and sending these values to the input

control layer which eventually drives the motion of each joint.

3.4.1 Efficiency of Gait Generation

The efficiency of gait generation is essential to enable real-time animation preview.

The whole calculation process has to be repeated every frame due to the fact that the

sinusoidal function used to compute final joint rotation values are driven by the time

variable. Inefficient design of gait generator can cause slow animation generation

which in the end undermines real-time animation display.

As discussed previously, gait generation is a fairly onerous process to be repeated

every frame. In order to optimize this process, motion data can be read in only once

and stored inside the system when the system is initialized. Output plugs should be

created to form a direct connection between them and the input control layer on the

quadruped rig. In this way, only the joint rotation calculation has to be conducted

when the time variable changes.

3.4.2 Characteristic Controls

To provide users with control over the two characteristics included in this thesis,

an approach similar to the weighted interpolation method developed by Nikolaus

Troje in 2002 [26] is used. To be specific, the target system can perform bilinear or
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multilinear interpolation in between registered motion examples, i.e. motion data

files, based upon the user input to calculate the output motion that drives the rig.

Multilinear interpolation is the method of deriving output value by weighing the

calculation results of multiple functions. In this study, a motion example can be

determined as a heavy walk during the eye tracking experiment mentioned in section

3.1. When the user raises the weight level through the system GUI, the system

can then increase the weight of the sinusoidal functions corresponded to this motion

example so that the final motion appears to be heavier.

The gait type control can also be achieve through this method. For example,

when the user changes the gait type from walk to trot, the system can increase

the influence of trot motion examples while decreasing the influence of walk motion

examples so that the final motion transits from walk to trot. This results in a linear

transaction between different gait types, which is an effective way to approximate

the gait transition in the real world.

In the real world, the gait type and the characteristics of the gait have significant

impact on the speed of the creature. For example, a heavy creature tends to walk

slower than a light creature. Conversely, speed change can lead to gait type and

expressiveness change. Because of this interrelationship between gait and speed

giving the user separate control over them can lead to situations in which these two

components to cancel each other. For instance, if the user chose to create a heavy

walk with a fast speed, the “heavy” feature could be undermined. As a result, a

control mechanism needs to be established so that the user can choose to either

only control the characteristics or manually define the creature’s speed. In the first

scenario, the system can automatically calculate the speed based upon the current

characteristics. Otherwise, the speed is directly input by the user and will not be

influenced by the characteristic change.
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3.4.3 Use of Neutral Pose

The target system provides the user with total control over the initial joint lo-

cations of the creature, meaning that the rig can be posed with full freedom. It

brings great benefit but at the same time leaves initial joint rotation values on the

rig. These initial rotation values are necessary for viewing the current pose, but

problematic for gait generation.

To apply motion data properly across various of poses created by the user, a

neutral pose needs to be defined as a pose with zero rotation value on all the joints.

Procedural data can then be applied by using this pose as an initial pose. In further

detail, the system sets the current pose to neutral pose prior to applying motion

data. This important step cleans initial rotation offsets generated during the shape

customization process, but maintains the creature’s skeleton structure, or the bone

size, that the user created. When the user stops the animation, the system is able

to retrieve the initial rotation offsets and put them back on to the rig to restore the

customized pose.
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4. IMPLEMENTATION

4.1 Development Tools and Programming Languages

4.1.1 Animation Softwares

This project has been developed using Autodesk® Maya® 2012 [1] as the 3D an-

imation system for manipulating and viewing the animated creature and its motion.

Maya is an industry standard 3D animation package that is widely used in compa-

nies and studios in the field of film and game production. Recent versions of Maya

integrated both its own scripting language, Maya Embedded Language (MEL), and

Python [20]. Besides, it also provides developers with C++ Application Programming

Interface (API), which allows developers to access and manipulate Maya data, cus-

tomize the Maya GUI, and extend Maya functionality. New features can be loaded

into Maya as plug-ins and work seamlessly with the rest of Maya [9].

Qt Creator® [5] is used as the tool for designing and creating the GUI for the

target system. Qt Creator is a powerful cross-platform GUI layout and forms builder.

The Qt framework is utilized by a large number of production tools in the animation

industry, including Autodesk Maya. As a result, the system GUI created through

Qt Creator can be easily integrated into Maya interface through provided Maya UI

commands.

4.1.2 Use of Programming Languages

Two programming Languages, Python and C++, are utilized in this thesis to

construct the two key components of the target system: the dynamic rig and the

gait generator. Python is a high-level programming language which is interpreted

and emphasized on code readability. Although not complied, Python is fully dy-
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namic, efficient, and easy-to-use, which makes it one of the most commonly used

programming languages for scripting. Python has been integrated into Maya makes

it ideal for performing most of the tasks involved in this study, including automating

quadruped rig creation, executing dynamic rig functions, and loading the system

GUI.

In comparison, C++ is an intermediate-level programming language that is stati-

cally typed, free-form, and compiled [23]. It is not as convenient to use as Python,

but since C++ is a compiled language, it runs much faster than Python. As men-

tioned in section 3.4.1, the gait generator in the target system requires high efficiency

in code execution due to its per-frame evaluation nature. To achieve this goal, C++

is a much better choice. For this thesis, Maya C++ API is utilized to construct the

gait generator as a plug-in which is eventually embedded into Maya and connected

to the quadruped rig.

4.2 Creating the System GUI

A GUI is used to manipulate the skeletal structure of the generic quadruped rig

and control the animation generated by the gait generator. To reach these goals, the

GUI is constructed as a standalone Maya window with a shape control panel, a gait

control panel, and a rig control panel.

4.2.1 The Shape Control Panel

The completed shape control panel is shown in figure 4.1. It consists of two

parts: a Presets tab and a Custom Shapes tab. The Presets tab contains the skeletal

structure of several selected quadrupeds in the horse and cat family. It provides a

basic structure for the user to use as a foundation for developing their own creature

and to preview generated procedural motion.

A Manual Mode switch is built on the very top of the shape control panel. When
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Figure 4.1: The Shape Control Panel Includes Two Tabs: The Creature Preset Tab
(Left) and the Creature Customization Tab (Right).

switched on, the system enters manual shape adjusting mode, in which the user

can directly reposition each joint on the quadruped rig to create their own creature

structure. This process is further discussed in section 4.4. Tools are provided in

the Custom Shapes tab for saving, loading, mirroring, and deleting custom shapes.

As mentioned, custom shapes are stored in a specific folder within the system as

plain text files containing joint position data. This folder is scanned during system

initialization for valid text files which are then loaded into the Saved Shapes scroll

list on the Custom Shapes tab. A portion of an example shape text file can be found
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in appendix A.2

Each button shown on the panel is linked with a specific program routine to

achieve its functionality. For example, when the Save Current button is pushed, the

corresponding function is executed to write current joint position data into a text

file in the predefined format. The code for save current shape function can be found

in appendix B.1

4.2.2 The Gait Control Panel

Figure 4.2 is a snapshot of the completed gait control panel. The panel consists

of three sections: the Gait section, the Speed section, and the Characteristic section.

The Gait section includes a Generate Gait master switch and a Gait Type slider.

The master switch starts and stops the procedural animation generation. Users

cannot view animation and adjust creature shape at the same time. To make the

system more user-friendly, an automated mode query mechanism is implemented to

prevent this conflict, i.e. if the manual shape adjusting mode is switched on while

the system is generating motion, the animation switch will be automatically set to

Off. Similarly, it will be set back to On after adjustments are completed.

The Gait Type slider controls a float type variable that reflects the current gait.

In this thesis, walking is represented as 0.0, trotting as 5.0, and running as 10.0. For

example, when the user dials the slider from 0.0 to 5.0, the current gait automatically

transits from walking to trotting.

The Speed section contains a Speed Multiplier slider and three speed sliders. As

mentioned in section 3.4.2, the speed and the characteristic of the motion influences

each other and providing the user with total control over these two aspects may

produce undesired results. To solve this issue, a switch is created for enabling user-
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Figure 4.2: The Gait Control Panel.

controlled gait speed. If enabled, the three speed sliders will be activated for the

user to individually define the walk, trot, and run speed as frames per cycle, and

the Gait Type slider and the two characteristic sliders will have no influence on the

speed of the creature. If disabled, the creature’s speed will be calculated based upon

the current gait type and characteristics, and the user has no direct control over the

speed of the creature.

The Speed Multiplier slider controls a float type variable which serves as a global

multiplier to the current speed of the motion. It can be used as a supplementary

tool for globally adjusting the animation.
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Finally, the Characteristic section involves two characteristic sliders controlling

the two expressive components included in this thesis: weight and age. Similar to

the two sliders discussed previously, they are also represented as float type variables.

For example, the weight is represented as a value between -50.0 and 50.0, where

-50.0 is light, 50.0 is heavy, and 0.0 represents a neutral weight. When the slider is

moved toward the heavy end, the weight value increases and the motion appears to

be heavier.

All the user inputs provided by the gait control panel are internally queried

and used by the gait generator to control the weight of the corresponding motion

examples.

4.2.3 The Rig Control Panel

The rig control panel provides various animation viewing options. As shown in

figure 4.3, it allows users to adjust global rig size and joint size, hide or show controls

and bones, hide or show certain parts of the creature, and turn on and off colored

PLDs.

4.3 The Generic Quadruped Rig

The generic quadruped rig creation is an automated process completed through

executing a series of python scripts in an orderly manner. This automated process

is guided by a set of locator guide objects stored in a manually created Maya file.

This section mainly discusses the key scripts used in this process, including the joint

script, the control script, the geometry script, and the clean up script.

4.3.1 Initial Skeleton

The joint script creates an generic quadruped skeleton. As mentioned in section

3.4.3, a predefined neutral pose is essential for applying motion across a wide range
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Figure 4.3: The Rig Control Panel.

of skeleton structures. The neutral pose used in this thesis is defined as the pose

shown in figure 4.4, where each of the four legs forms a vertical straight line. The

skeleton structure used in this thesis only contains two joints on the creature’s head

and spine. This is because only these joints are tracked during the motion extraction

process.

In addition, the joint script constructs another skeleton that is identical to the

previous one. This skeleton is used for guiding the shape customization process.

Further discussion of its functionality can be found in section 4.4.
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Figure 4.4: The Initial Quadruped Skeleton in Neutral Pose.

4.3.2 Establishing Control System

The control script builds multiple control layers on top of the joint hierarchy.

Figure 4.5 shows the complete control layer hierarchy on the left elbow joint. The

“elbow l CTLGRP” is the top group node. It is also used for storing translational off-

sets generated when the user reposition this joint. Similarly, the “elbow l RotOffset”

is the node used for storing rotational offsets generated during the same process. The

“elbow l CTLPRO” is the input layer for receiving procedural motion from the gait

generator. At the very bottom, the “elbow l CTL” is the FK controller shown in

figure 4.6.

The FK controller is the only control layer that is visible to the user. It controls

the joint orientation directly and is constructed in the same FK fashion to the joint
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Figure 4.5: The Control Layer Hierarchy of the Left Elbow Joint.

hierarchy. They are built so that the user is able to fine-tune the procedurally

generated motion. Besides the FK controller, other control layers are all remain

hidden to the user and can only be directly manipulated by the system.

Figure 4.6: An Example of FK Controller.

In addition to establishing control layers, the control script also builds several

miscellaneous components related to the shape customization function. These in-

clude a set of bone length measuring tools for querying the length of each bone and

resize controls for guiding the shape customization process. A portion of the control
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script is shown in appendix B.2.

4.3.3 Attaching Joint Spheres and Final Clean Up

The geometry script is executed after the completion of all control layers. It is a

straightforward process which attaches a sphere geometry to each joint as the PLD

object and assigning a meaningful color to the sphere. Similar to the roles of coloring

controllers, color assignment for these spheres is also based on region. This thesis

uses blue to represent left side, red to represent right side, and purple to represent

center region. Finally, the clean up script is executed to scan the entire rig and

lock internal components that should not be manipulated by the user, such as the

skeleton and sphere geometries. It also locks and hides useless node attributes, such

as translation attributes on the FK controller. Cleaning the rig prevents the user

from accidentally breaking the system. The fully established generic quadruped rig

is shown in figure 4.7.
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Figure 4.7: Completed Generic Quadruped Rig

4.4 Making the Rig Dynamic

The dynamic feature of the rig is implemented as a standalone callback function.

It is activated by clicking the Manual Mode button on the system GUI and allows the

user to resize the skeleton, or reposition joints, in the 3D space. The entire callback

process is shown in figure 4.8. The callback script can be found in appendix B.3.
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Figure 4.8: The Resize Callback Process

As shown in figure 4.9, the callback function is guided by two sets of guide objects:

the resize control located at the center of each joint (visualized as green locators) and

the guide joints that form a skeleton structure which is identical to the rig skeleton.
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Under normal conditions, resize controls remain hidden and move along with rig

joints. Only during manual customization mode can they be seen and manipulated

by the user. On the other hand, the position of the guide joint is constrained to the

corresponding resize control. The local rotation axis of the guide joint is set up in a

way that its X axis is pointing at its child joint. Furthermore, an IK mechanism is

built between every two adjacent guide joints so that the orientation of the parent

joint can be automatically updated when its child joint is relocated. This keeps the

parent joint’s X axis always pointing at its child joint. As a result, when the user

moves a resize control in 3D space, the corresponding guide joint is able to provide

the callback function with new joint position and orientation information.

Figure 4.9: Guide Objects for Shape Customization.

The callback function is a linear process triggered and executed when a resize
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control is moved to a new location. It queries the new joint position and orientation

as discussed above, as well as the new bone length. The new bone length is acquired

thought a series of measuring tools built into the quadruped rig. If the joint has

a parent or a child joint, the same data set is also acquired from them. After all

necessary data is obtained, the moved resize control is reset to its original position

before the skeleton update process begins.

The bone length is the first one to be updated. It is done by scaling the joint with

a multiplier calculated through dividing the new bone length with the original bone

length. Secondly, the callback function updates the joint’s position and orientation

to match the previously acquired new data. Finally, the same update process is

conducted on the joint’s parent or child joint if they exist.

When the user loads a creature preset or a customized shape, the same function

is executed. The only difference is that new joint position data is provided directly

by the text file that contains predefined joint positions. In other words, the shape

text file serves the same purpose as moving the resize control manually. Figure 4.10

shows the result of loading a custom horse shape.
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Figure 4.10: The Result of Loading a Custom Horse Shape.

4.5 Constructing the Gait Generator

The gait generator is implemented as a Maya plug-in by utilizing Maya C++ API.

It includes two major functions: a data reader function and a compute function. This

section is devoted to discussing how they were created and how they work together

to generate expressive quadruped motion.

4.5.1 Motion Data Reader

The data reader function scans a specified system folder and reads in all the

motion files within that folder one by one. As mentioned in section 3.1, the motion

file used in this thesis consists of a series of components required to form the sinusoidal

function used to compute joint rotations, such as amplitudes and phases. In order

to read in such a motion file, a series of internal array variables is used to store these
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components within the plug-in so that they can be queried without reading the same

motion files repeatedly.

As a result, the data reader function is executed only once when the gait generator

plug-in is loaded. This approach greatly improves the efficiency of the gait generator.

The completed motion data reader function is shown in appendix B.4.

4.5.2 The Compute Function

The compute function serves to calculate the final rotation value for each joint

on the creature. It first queries current time value and user inputs from the system

GUI, including the gait type value, the gait speed values, the two characteristic

values, and the mode of the user-controlled speed switch. Then, the gait speed is

calculated based upon the current mode of the switch. If the switch is on, the gait

speed is determined directly by the three gait speed values. If the switch is off,

the gait speed is calculated through a weighted interpolation between the gait speed

provided by the motion files. After that, the compute function calculates the joint

rotation value for each motion example by computing the result of a key sinusoidal

function formed by the components from the corresponding motion file. To enable

overall speed adjustment, current time is scaled by the speed multiplier before being

applied to the sinusoidal functions.

At this point, all motion examples are calculated and stored independently as

joint rotation values. The last step, which is also the most important step, is to

interpolate in between these motion examples based on the gait type and character-

istic values to compute the final joint rotation value. This process is demonstrated

in figure 4.11. The boxes on the left side of the figure represents the twelve motion

examples used by this thesis. Within each of the three gait types (walk, trot, and

run), one motion example is used to represent each of the four characteristics (light,
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heavy, young, and old). A weighted interpolation is first performed between the

two characteristics within the same characteristic category. For example, if the user

changes the creature’s weight to 20 (the entire range is from -50 to 50), then 30%

of the light gait and 70% of the heavy gait forms the rotation value for the weight

characteristic. Secondly, the function averages the resulted rotation values across

two characteristic categories. Eventually, the final rotation value is computed by

performing a similar weighted interpolation based on the user-controlled gait type

value.

The compute function is executed when the time variable or the user input

changes. This allows the user to view and adjust generated motion in real-time.

The completed motion data reader function is shown in appendix B.5.
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Figure 4.11: The Main Interpolation Process.
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4.6 Putting Everything Together

With the system GUI, the dynamic quadruped rig, and the gait generator are

completed, the final step is to integrate these three elements into one single system.

To fulfill this goal, a system initialization script and a master GUI script are created

using Python. When executed in Maya, the initialization script automates the pro-

cess of creating the quadruped rig, loading the gait generator plug-in, and connecting

attributes between the two. Besides, the master GUI script loads the GUI window

and button-related functions into Maya. It also forms direct attribute connections

between the GUI and the quadruped rig. These two scripts are packaged into a

Maya pop-up menu and shelf buttons for easy access. Figure 4.12 shows the system

implemented in Maya.

Figure 4.12: The Completed System in Maya.
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5. RESULTS AND CONCLUSION

The animation system implemented for this thesis uses a procedural method to

simplify the character animation creation process while maximizing the expressive-

ness of the generated animation by extracting characteristic signals that identify

the animal from real animal motion. It is constructed within Autodesk Maya 2012

environment as a dynamic quadruped rig and a gait generator plug-in. The whole

system, including its GUI, is embedded into Maya and integrated seamlessly into

the Maya workflow, which is in common use in animation, visual effects, and game

production.

This system is successful in synthesizing believable quadruped leg locomotion

relating to the motion observed in animal video footages. The system is useable by

untrained users to create distinctive quadruped shapes and gaits. In other words,

the user is able to efficiently construct a unique quadrupedal character and apply a

walking, trotting, or running gait onto it that expresses weight and/or age. Those

qualities can be modified in real-time. Some of the creature skeletons and motion

produced by the system are shown from figure 5.1 to 5.6.
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Figure 5.1: Skeleton 1 - A Horse Skeleton.

Figure 5.2: Skeleton 2 - A Lion Skeleton.
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Figure 5.3: Skeleton 3 - A Fantasy Creature Skeleton.

Figure 5.4: Motion Output 1 - A Heavy and Old Walk.
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Figure 5.5: Motion Output 2 - A Light and Young Trot.

Figure 5.6: Motion Output 3 - A Light and Young Run.

44



6. FUTURE WORK

6.1 Other Types of Creatures and Traits

As mentioned in section 3.1, this thesis only investigates unguligrade creatures

and two types of characteristics, weight and age, that are communicated through

motion. It is reasonable to extend the range of study to cover other types of creatures

as well, such as digitigrade quadrupeds and reptiles. Traits such as aggressiveness and

emotions such as happy and sad can also be included to expand the characteristics

involved in this thesis.

6.2 The Third Dimension

As mentioned in section 3.1, only two dimensional motion data is provided for

this study due to limitations of the method used to acquire motion data. A more

robust system would take the third dimension into consideration. Data related to the

third dimension can also be obtained through analysis of real world animal motion.

6.3 Generating Standard Animation Rig

A possible use of this study is to generate cyclic quadruped locomotion for an-

imation production. However, a production may need to manually fine-tune the

procedurally generated motion. Although the system built for this thesis contains

a FK control layer for this purpose, it is not efficient enough due to the limitations

of the FK mechanism. Therefore, a useful extension to the system would be gener-

ating a standard IK rig based on the customized quadruped skeleton with the same

procedural motion carried over.
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6.4 Interaction

This thesis is only focused on producing believable quadruped locomotion. Inter-

actions between multiple creatures and between creatures and the environment are

not involved. It is possible to build a physically-based system on top of this study

to achieve complex interactions. Including interaction has the potential to produce

more realistic and more diverse creature motion.
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APPENDIX A

FILE STRUCTURE

A.1 An Example of Motion Data File (Partial)

gaitSpeed 28.0

sideShift 13.0

#

shld_l_JNT

amp 0.418829208188 0.418895224287 ... 0.0777159882367 0.0768972420591

phase 3.13554477366 3.12949413884 ... 0.292301164687 0.291238389801

bias_init 0.91228102

t_shift 0.70833333

bias_fix 0.0893934537304

scalar_fix 0.491588813919

Ts 0.000249226888021

#

elbow_l_JNT

amp 3.31188289846 3.31268818924 ... 0.317559471586 0.310555886268

phase -0.00528405253926 -0.010573286896 ... -2.96311377224 -3.05369559847

bias_init 4.15541984

t_shift 0.45833333

bias_fix 0.237712699948

scalar_fix 0.687669784759

Ts 0.000178019205729

#

fFoot_l_JNT

amp 0.252875238719 0.252901497563 ... 0.0449747035578 0.0445147790109

phase 3.14072508903 3.13985706655 ... 0.0431395820147 0.0429736862485

bias_init 2.59282611

t_shift 0.3333333333

bias_fix -0.562946448585

scalar_fix 0.491067003711

Ts 0.000249226888021

#

fBall_l_JNT

amp 0.780617022809 0.780855989407 ... 0.160284842809 0.158493615133

phase -3.12995141802 -3.11830718496 ... -0.525018522765 -0.523346939904

bias_init 3.25784688
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t_shift 0.5

bias_fix -0.211659444817

scalar_fix 0.487962128767

Ts 0.000249226888021

#

...
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A.2 An Example of Shape Text File (Partial)

l|fLeg|0|1|0

tx:2.0

ty:14.7611550148

tz:7.3177832011

l|fLeg|1|0|0

tx:2.0

ty:11.3289396686

tz:8.91948369596

l|fLeg|2|0|0

tx:2.0

ty:8.6160001359

tz:6.97156484157

l|fLeg|3|0|0

tx:2.0

ty:4.34279081795

tz:7.06849824942

l|fLeg|4|0|0

tx:2.0

ty:1.47710086515

tz:7.08085323626

l|fLeg|5|0|1

tx:2.0

ty:-0.0170557639454

tz:8.09294564418

...
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APPENDIX B

SAMPLE CODE

B.1 The Save Current Shape Function

def saveShape(self, *args):

gaitState = mc.getAttr(self.allctl+’.generateGait’)

if gaitState == 1: self.gaitSwitch(gaitState) #### if generating gait, then

stop animation

### get input name and test if it’s valid

sn = mc.textField(self.shapeListPath+’|name_LE’, q = 1, text = 1)

if sn == ’’ or sn.find(’ ’) != -1:

mc.confirmDialog(t = ’Warning’, m = ’Please type in a valid name! (No

space in name)’, button = ’Got it’, defaultButton = ’Got it’,

dismissString = ’Got it’)

return

### append name to the scroll list

mc.setAttr(self.allctl+’.currentShape’, sn, type=’string’)

mc.textScrollList(self.shapeListPath+’|shape_LIST’, e=1, append=sn)

mc.textScrollList(self.shapeListPath+’|shape_LIST’, e=1, selectItem=sn)

### open output file

outfile = open(self.shapePath+sn+’.txt’, ’w’)

for part in [’fLeg’, ’hLeg’, ’spine’, ’head’]:

for side in [’l’, ’r’]:

if part == ’spine’ or part == ’head’: side = ’c’

for i in range (0, len(quad[part]), 1):

##### calculate joint position in character space

mRscWorld = mc.getAttr(refn + quad[part][i] + ’_’ + side

+ ’_’ +’ RSC.parentMatrix[0]’)

pRscWorld = sj.vectorXmatrix([0,0,0], mRscWorld, 1)

mGlobal =

mc.getAttr(self.allctl+’.worldInverseMatrix[0]’)

pRscGlobal = sj.vectorXmatrix(pRscWorld, mGlobal, 1)

#### wirte side, part, index, hasParent flag and

hasChild flag

outfile.write(side)
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outfile.write(’|’)

outfile.write(part)

outfile.write(’|’)

outfile.write(str(i))

outfile.write(’|’)

if i == 0: outfile.write(str(1))

else: outfile.write(str(0))

outfile.write(’|’)

if i == len(quad[part])-1: outfile.write(str(1))

else: outfile.write(str(0))

outfile.write(’\n’)

j = 0

##### write position attribute name & value

for ax in [’x’, ’y’, ’z’]:

outfile.write(’t’+ax)

outfile.write(’:’)

outfile.write( str(pRscGlobal[j]) )

outfile.write(’\n’)

j = j+1

outfile.write(’\n’)

if part == ’spine’ or part == ’head’: break

mc.textField(self.shapeListPath+’|name_LE’, e = 1, text = ’’) #### reset name

text field

if gaitState == 1: self.gaitSwitch(1-gaitState) #### if was generating gait

before saving, then restart motion
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B.2 The Control Script (Partial)

class legCTL:

def __init__(self):

self._utlCTL = rgc.utlCTL()

def setup (self, sd, part):

###### build fk contorls

for i in range (0, len(quad[part]), 1):

partN = quad[part][i]+’_’+sd+’_’

ctlN = partN+ctl

self._utlCTL.ballCTL(1, 1, ctlN, ctlN.replace(ctl, jnt), sd,

’none’)

mc.group(ctlN, n = ctlN.replace(ctl, ctl+pro))

mc.group(ctlN.replace(ctl, ctl+pro), n = ctlN.replace(ctl,

’RotOffset’))

mc.select(ctlN, r=1)

mc.addAttr (ln = ’initialOffset’, at = ’double3’)

for ax in [’X’, ’Y’, ’Z’]:

mc.addAttr (ln = ’initialOffset’+ax, p =

’initialOffset’, at = ’double’)

mc.setAttr (ctlN+’.initialOffset’, lock = 0, keyable = 0,

channelBox = 0)

offset = mc.getAttr(partN+’RotOffset.rotate’)

mc.setAttr(ctlN+’.initialOffset’, offset[0][0], offset[0][1],

offset[0][2], ’double3’)

if i == 0: mc.parent(ctlN+grp, ’fkCtl_’+grp)

else: mc.parent(ctlN+grp,quad[part][i-1]+’_’+sd+’_’+ctl)

###### build resize contorls

for i in range (0, len(quad[part]), 1):

partN = quad[part][i]+’_’+sd+’_’

rscN = partN+rsc

self._utlCTL.locCTL(1, 1, rscN, rscN.replace(rsc, jnt), sd,

’none’)

mc.parent(rscN+grp, part+’_’+sd+’_’+rsc+grp)

mc.pointConstraint(partN+jnt, rscN+grp, mo=1, w=1)
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##### add iks on guide joints

for i in range (0, len(quad[part])-1, 1):

partN = quad[part][i]+’_’+sd+’_’

rscN = partN+rsc

ikn = mc.ikHandle (n = partN+’Ref’+ikh, sj = partN+’Ref’+jnt,

ee = quad[part][i+1]+’_’+sd+’_’+’Ref’+jnt, sol =

’ikSCsolver’, s = 0)

mc.parent(ikn[0], ’ikh_’+grp)

mc.pointConstraint(quad[part][i+1]+’_’+sd+’_’+rsc, ikn[0],

mo=1, w=1)

if i == 0: mc.parentConstraint(rscN, partN+’Ref’+jnt, mo=1, w=1)

###### build distance measurement tools

for i in range (0, len(quad[part]), 1):

partN = quad[part][i]+’_’+sd+’_’

if i != (len(quad[part]) - 1):

self._utlCTL.disTool(sd, partN+rsc,

quad[part][i+1]+’_’+sd+’_’+rsc, quad[part][i])

mc.parentConstraint(partN+ctl, partN+jnt, mo=1, w=1)

legctl = legCTL()

legctl.setup(’l’, ’fLeg’)

legctl.setup(’r’, ’fLeg’)

legctl.setup(’l’, ’hLeg’)

legctl.setup(’r’, ’hLeg’)

legctl.setup(’c’, ’head’)

legctl.setup(’c’, ’spine’)

###### setup forequarter & hindquarter groups

foreOffGrp = mc.group (em=1, n = ’foreQuarter_c_PosOffset’)

foreTopGrp = mc.group(foreOffGrp, n = ’foreQuarter_c_’+ctl+grp)

mc.parentConstraint(’chest_c_’+ctl, foreTopGrp, mo=0, w=1)

mc.delete(foreTopGrp+’_parentConstraint1’)

mc.parent(foreTopGrp, ’fkCtl_’+grp)

mc.pointConstraint(’chest_c_’+ctl, foreTopGrp, mo=1, w=1)

hindOffGrp = mc.group (em=1, n = ’hindQuarter_c_PosOffset’)

hindTopGrp = mc.group(hindOffGrp, n = ’hindQuarter_c_’+ctl+grp)

mc.parentConstraint(’hip_c_’+ctl, hindTopGrp, mo=0, w=1)

mc.delete(hindTopGrp+’_parentConstraint1’)
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mc.parent(hindTopGrp, ’fkCtl_’+grp)

mc.pointConstraint(’hip_c_’+ctl, hindTopGrp, mo=1, w=1)

for sd in [’l’, ’r’]:

mc.parent(’shldBlade_’+sd+’_’+ctl+grp, foreOffGrp)

mc.parent(’hip_’+sd+’_’+ctl+grp, hindOffGrp)

mc.parent(’neck_c_’+ctl+grp, foreOffGrp)
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B.3 The Resize Callback Script

##### script jobs

def resize(side, part, index, hasParent, hasChild, ready, pMeTargetWorld):

###################################

#### PREPARE NECESSARY DATA

index = int(index)

bhasParentase = int(hasParent)

hasChild = int(hasChild)

ready = int(ready)

bLen = 3

if part == ’spine’: bLen = 14

#### get name prefix

if hasParent != 1: parent = refn+quad[part][index-1]+’_’+side+’_’

if hasChild != 1: child = refn+quad[part][index+1]+’_’+side+’_’

me = refn+quad[part][index]+’_’+side+’_’

#### get CHILD joint world position

if hasChild != 1:

pChildTargetLocal = mc.getAttr(child+’RSC.t’)

mChildTargetWorld = mc.getAttr(child+’RSC.parentMatrix[0]’)

pChildTargetWorld = vectorXmatrix(pChildTargetLocal[0],

mChildTargetWorld, 1)

#### get ME joint world position (case scriptJob)

if ready == 1: pMeTargetWorld = getTgtWorldPos_scriptJob(side, part, index)

#### get forequarter & hindquarter world positions (if working on spine

joints)

if part == ’spine’:

pForeQTargetLocal = mc.getAttr(refn+’foreQuarter_c_PosOffset.t’)

mForeQTargetWorld =

mc.getAttr(refn+’foreQuarter_c_PosOffset.parentMatrix[0]’)

pForeQTargetWorld = vectorXmatrix(pForeQTargetLocal[0],

mForeQTargetWorld, 1)

pHindQTargetLocal = mc.getAttr(refn+’hindQuarter_c_PosOffset.t’)

mHindQTargetWorld =

mc.getAttr(refn+’hindQuarter_c_PosOffset.parentMatrix[0]’)

59



pHindQTargetWorld = vectorXmatrix(pHindQTargetLocal[0],

mHindQTargetWorld, 1)

#### get ME, PARENT, and CHILD joint local rotations

if ready == 0:

mMeTargetInv = mc.getAttr(me+’RSC.parentInverseMatrix[0]’)

pMeTarget = vectorXmatrix(pMeTargetWorld, mMeTargetInv, 1)

mc.setAttr(me+’RSC.t’, pMeTarget[0], pMeTarget[1], pMeTarget[2],

’double3’)

rMeRefJNT = mc.getAttr(me+’RefJNT.r’)

if hasParent != 1: rParentRefJNT = mc.getAttr(parent+’RefJNT.r’)

if hasChild != 1: rChildRefJNT = mc.getAttr(child+’RefJNT.r’)

###################################

#### RESIZE PROCESS BEGINS

mc.setAttr(me+’RSC.t’, 0, 0, 0, ’double3’)

#### update PARENT rotation

if hasParent != 1: mc.setAttr(parent+’RotOffset.r’, rParentRefJNT[0][0],

rParentRefJNT[0][1], rParentRefJNT[0][2], ’double3’)

#### update ME position & rotation

updateXForm(me+’CTLGRP’, pMeTargetWorld, 1)

mc.setAttr(me+’RotOffset.r’, rMeRefJNT[0][0], rMeRefJNT[0][1],

rMeRefJNT[0][2], ’double3’)

#### update CHILD position & rotation

if hasChild != 1:

updateXForm(child+’CTLGRP’, pChildTargetWorld, 1)

mc.setAttr(child+’RotOffset.r’, rChildRefJNT[0][0],

rChildRefJNT[0][1], rChildRefJNT[0][2], ’double3’)

#### If adjusting spine, update forequarter & hindquarter positions

if part == ’spine’:

updateXForm(’foreQuarter_c_PosOffset’, pForeQTargetWorld, 1)

updateXForm(’hindQuarter_c_PosOffset’, pHindQTargetWorld, 1)

#### update initial offsets

updateInitOffset(side, part, index)

if hasParent != 1: updateInitOffset(side, part, index-1)

if hasChild != 1: updateInitOffset(side, part, index+1)

if ready == 1: rsReady(side, part, str(index), str(hasParent), str(hasChild),

str(ready))
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##### main functions

def go():

for part in [’fLeg’, ’hLeg’, ’head’, ’spine’]:

for index in range (0, len(n.quad[part]), 1):

for side in [’l’, ’r’]:

if part == ’spine’ or part == ’head’: side = ’c’

base = 0

end = 0

if index == 0: base = 1

if index == (len(n.quad[part]) - 1): end = 1

rsReady(side, part, str(index), str(base), str(end),

str(1))

if part == ’spine’ or part == ’head’: break

def stop():

mc.scriptJob(killAll = True)
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B.4 The Motion Data Reader

string gaitGenerator::getDataPath()

{

char * ePathP;

char ePath[128];

char * projPath;

string dataPathString;

size_t found;

/// get environment variables

ePathP = getenv ("PYTHONPATH");

strcpy (ePath, ePathP);

projPath = strtok (ePath,":");

// search for the environment variable contains "gaitGen"

while (projPath != NULL)

{

dataPathString = string(projPath);

found=dataPathString.find("gaitGen");

if (found!=string::npos) break;

else projPath = strtok (NULL, ":");

}

//replace "include/" with "motionData/" to get correct data path

dataPathString = dataPathString.substr(0, dataPathString.size()-8);

dataPathString.append("motionData/");

return dataPathString;

}

MStatus gaitGenerator::readData(string dataPathString)

{

MStatus status;

// convert data path from string to char

char dataPathChar[dataPathString.size()];

memcpy(dataPathChar, dataPathString.c_str(), dataPathString.size()+1);

// open data path
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DIR *dir;

struct dirent *ent;

dir = opendir (dataPathChar);

// check if path is valid

if (dir == NULL)

{

return MS::kFailure;

}

int fileNum=0, jntNum, i, j, lineCount, caseNum;

char fileName[80];

ifstream motionData;

string s, line, value;

size_t foundFile, found;

// iterate files one by one

while ( (ent = readdir (dir)) != NULL )

{

// convert current path to string and check if it is a valid file name

s = string(ent->d_name);

foundFile=s.find(".txt");

if (foundFile == string::npos) continue;

// form correct path pointing to current file (file path = data folder path +

file name)

sprintf(fileName, "%s%s", dataPathChar, ent->d_name);

motionData.open(fileName);

// Count lines in current file

lineCount = count(istreambuf_iterator<char>(motionData),

istreambuf_iterator<char>(), ’\n’);

lineCount ++;

motionData.seekg (0, ios::beg); // set line pointer back to the first line

// Read in motion data from current file

jntNum = 0; // reset joint #, VERY IMPORTANT - otherwise will cause memory

overrun

for (i = 0; i < lineCount; i++)

{

motionData>>line;
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found=line.find(".");

while (found!=string::npos)

{

motionData>>line;

found=line.find(".");

}

if (line == "amp") caseNum = 1;

else if (line == "phase") caseNum = 2;

else if (line == "bias_init") caseNum = 3;

else if (line == "t_shift") caseNum = 4;

else if (line == "bias_fix") caseNum = 5;

else if (line == "scalar_fix") caseNum = 6;

else if (line == "Ts") caseNum = 7;

else if (line == "gaitSpeed") caseNum = 8;

else caseNum = 0;

switch ( caseNum )

{

case( 0 ):

break;

case( 1 ):

for (j = 0; j < numComp; j++)

{

motionData>>value;

amp[fileNum][jntNum][j] = ::atof(value.c_str());

}

break;

case( 2 ):

for (j = 0; j < numComp; j++)

{

motionData>>value;

phase[fileNum][jntNum][j] = ::atof(value.c_str());

}

break;

case( 3 ):

motionData>>value;

bias_init[fileNum][jntNum] = ::atof(value.c_str());
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bias_init[fileNum][jntNum] = bias_init[fileNum][jntNum]*180/PI;

break;

case( 4 ):

motionData>>value;

t_shift[fileNum][jntNum] = ::atof(value.c_str());

break;

case( 5 ):

motionData>>value;

bias_fix[fileNum][jntNum] = ::atof(value.c_str());

break;

case( 6 ):

motionData>>value;

scalar_fix[fileNum][jntNum] = ::atof(value.c_str());

break;

case( 7 ):

motionData>>value;

Ts[fileNum][jntNum] = ::atof(value.c_str());

Fs[fileNum][jntNum] = 1./Ts[fileNum][jntNum];

omega_delta[fileNum][jntNum] = 2.0*PI*(Fs[fileNum][jntNum]/Npts);

jntNum++;

break;

case( 8 ):

motionData>>value;

gaitSpeed[fileNum] = ::atof(value.c_str());

break;

}

}

motionData.close();

//motionData.clear();

fileNum++;

}

fileCount = fileNum;

rewinddir(dir);

closedir (dir);
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return MS::kSuccess;

}
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B.5 The Compute Function in Gait Generator

MStatus gaitGenerator::compute(const MPlug& plug, MDataBlock& data)

{

MStatus status;

//// Get input attributes

bool gaitSwitch = data.inputValue(a_gaitSwitch, &status).asBool();

bool lockSpeed = data.inputValue(a_lockSpeed, &status).asBool();

float speedMultiplier = data.inputValue(a_speedMultiplier, &status).asFloat();

float walkSpeedUsr = data.inputValue(a_walkSpeedUsr, &status).asFloat();

float trotSpeedUsr = data.inputValue(a_trotSpeedUsr, &status).asFloat();

float runSpeedUsr = data.inputValue(a_runSpeedUsr, &status).asFloat();

float gaitType = data.inputValue(a_gaitType, &status).asFloat();

float frame = data.inputValue(a_frame, &status).asFloat();

float weight = data.inputValue(a_weight, &status).asFloat();

float age = data.inputValue(a_age, &status).asFloat();

float danger = data.inputValue(a_danger, &status).asFloat();

float shldBladeOffset = data.inputValue(a_shldBladeOffset, &status).asFloat();

///////////////////////////////////////////

/////// Compute walk, trot, and run speed

float walkSpeed, trotSpeed, runSpeed;

float walkWeight, walkAge, walkFinal;

float trotWeight, trotAge, trotFinal;

float runWeight, runAge, runFinal;

float Rfinal;

float jointRotOffset;

/// set up indices

int iHeavyWalk = 6;

int iLightWalk = 8;

int iOldWalk = 7;

int iYoungWalk = 8;

int iHeavyTrot = 4;

int iLightTrot = 5;

int iOldTrot = 3;

int iYoungTrot = 5;
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int iHeavyRun = 0;

int iLightRun = 2;

int iOldRun = 0;

int iYoungRun = 1;

/// normalize weight for 2 characteristics

float wWeight = (weight+50)/100;

float wAge = (age+50)/100;

/// Calculate cycle speed

if (lockSpeed)

{

walkSpeed = walkSpeedUsr;

trotSpeed = trotSpeedUsr;

runSpeed = runSpeedUsr;

}

else

{

/// WALK Interpolation

float walkSpeed_weight = wWeight*gaitSpeed[iHeavyWalk] +

(1-wWeight)*gaitSpeed[iLightWalk];

float walkSpeed_age = wAge*gaitSpeed[iOldWalk] +

(1-wAge)*gaitSpeed[iYoungWalk];

walkSpeed = ( (walkSpeed_weight + walkSpeed_age)/2 ) / speedMultiplier;

/// TROT Interpolation

float trotSpeed_weight = wWeight*gaitSpeed[iHeavyTrot] +

(1-wWeight)*gaitSpeed[iLightTrot];

float trotSpeed_age = wAge*gaitSpeed[iOldTrot] +

(1-wAge)*gaitSpeed[iYoungTrot];

trotSpeed = ( (trotSpeed_weight + trotSpeed_age)/2 ) / speedMultiplier;

/// RUN Interpolation

float runSpeed_weight = wWeight*gaitSpeed[iHeavyRun] +

(1-wWeight)*gaitSpeed[iLightRun];

float runSpeed_age = wAge*gaitSpeed[iOldRun] + (1-wAge)*gaitSpeed[iYoungRun];

runSpeed = ( (runSpeed_weight + runSpeed_age)/2 ) / speedMultiplier;

}

///////////////////////////////////////////

/////// Compute y_est
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int fileNum, ii, jntNum, side;

float time, calSpeed, calSideShift, fShldTS;

float y_est[9][2][8] = {0.0}; //////////// fileTotal couldn’t be replaced at here

//////////// format: y_est[Total File #][Two

Sides][Total Joint #]

time = frame/24.0; //converiting frame value to real-time value. ASSUMING 1 sec =

24 frames

if (gaitSwitch)

{

for (fileNum = 0; fileNum < fileCount; fileNum++)

{

/// Get the speed type for main calculation

if (fileNum < 3)

{

calSpeed = runSpeed;

}

if (fileNum >=3 && fileNum < 6)

{

calSpeed = trotSpeed;

}

if (fileNum >= 6)

{

calSpeed = walkSpeed;

}

/// Grab the shoulder joint’s t_shift, it is used to unify the starting

point of signals across all motion files

fShldTS = t_shift[fileNum][1];

for (side=0; side < 2; side++)

{

/// scale side shift to match the current cycle speed

if (side == 0)

{

calSideShift = 0;

}

else

{

calSideShift =

(sideShift[fileNum]/24)*(calSpeed/gaitSpeed[fileNum]); //// if

69



calculating the right side, conduct time shift

}

for (jntNum=0; jntNum < jointTotal; jntNum++)

{

//// form the main cosine function

for (ii=1; ii < numComp+1; ii++)

{

y_est[fileNum][side][jntNum] = y_est[fileNum][side][jntNum] +

amp[fileNum][jntNum][ii-1] *

cos(omega_delta[fileNum][jntNum] * (ii) *

(gaitSpeed[fileNum]/calSpeed )*

(time-t_shift[fileNum][jntNum]-fShldTS + calSideShift) +

phase[fileNum][jntNum][ii-1]);

}

// apply fixing values

y_est[fileNum][side][jntNum] = (1.0/(2*Fs[fileNum][jntNum])) *

y_est[fileNum][side][jntNum];

y_est[fileNum][side][jntNum] = y_est[fileNum][side][jntNum] -

bias_fix[fileNum][jntNum];

y_est[fileNum][side][jntNum] = y_est[fileNum][side][jntNum] *

scalar_fix[fileNum][jntNum];

y_est[fileNum][side][jntNum] = y_est[fileNum][side][jntNum] *

(180.0/PI);

y_est[fileNum][side][jntNum] = y_est[fileNum][side][jntNum] +

bias_init[fileNum][jntNum];

//// correct joint roation offset

switch (jntNum)

{

case 0 :

jointRotOffset = 90 + shldBladeOffset;

break;

case 4 :

jointRotOffset = 90;

break;

default :

jointRotOffset = 180;

break;
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}

y_est[fileNum][side][jntNum] = y_est[fileNum][side][jntNum] -

jointRotOffset;

}

}

}

}

///////////////////////////////////////////

/// Open Output attributes

MArrayDataHandle h_leg_l_RZ = data.outputArrayValue( a_leg_l_RZ, &status);

CHECK_MSTATUS_AND_RETURN_IT (status);

MArrayDataHandle h_leg_r_RZ = data.outputArrayValue( a_leg_r_RZ, &status);

CHECK_MSTATUS_AND_RETURN_IT (status);

///////////////////////////////////////////

// Coumpute final rotation value for each joint and set output attributes

for (jntNum = 0; jntNum < jointTotal; jntNum++)

{

for (side=0; side < 2; side++)

{

/////// WALK interpolation

walkWeight = wWeight*y_est[iHeavyWalk][side][jntNum] +

(1-wWeight)*y_est[iLightWalk][side][jntNum];

walkAge = wAge*y_est[iOldWalk][side][jntNum] +

(1-wAge)*y_est[iYoungWalk][side][jntNum];

walkFinal = (walkWeight+walkAge)/2;

/////// TROT interpolation

trotWeight = wWeight*y_est[iHeavyTrot][side][jntNum] +

(1-wWeight)*y_est[iLightTrot][side][jntNum];

trotAge = wAge*y_est[iOldTrot][side][jntNum] +

(1-wAge)*y_est[iYoungTrot][side][jntNum];

trotFinal = (trotWeight+trotAge)/2;

/////// RUN interpolation

runWeight = wWeight*y_est[iHeavyRun][side][jntNum] +

(1-wWeight)*y_est[iLightRun][side][jntNum];

runAge = wAge*y_est[iOldRun][side][jntNum] +

(1-wAge)*y_est[iYoungRun][side][jntNum];

runFinal = (runWeight+runAge)/2;
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//// GAIT TYPE transition

if (gaitType <= 10)

{

Rfinal = (1 - gaitType/10) * walkFinal + (gaitType/10) * trotFinal;

}

else

{

Rfinal = (1 - (gaitType-10)/10) * trotFinal + ((gaitType-10)/10) *

runFinal;

}

//// output rotation value

if (side == 0)

{

h_leg_l_RZ.jumpToArrayElement( jntNum );

h_leg_l_RZ.outputValue().setFloat( Rfinal );

}

else

{

h_leg_r_RZ.jumpToArrayElement( jntNum );

h_leg_r_RZ.outputValue().setFloat( Rfinal );

}

}

}

//////////////////////////////////////////

/// Set clean output attributes & plug

h_leg_l_RZ.setAllClean();

h_leg_r_RZ.setAllClean();

data.setClean(plug);

return MS::kSuccess;

}
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