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ABSTRACT 

As one of the major data analysis methods, statistical models play an important role in 

traffic safety analysis. A common situation associated with crash data is the phenomenon 

known as overdispersion which has been discussed and investigated frequently in recent 

years. As such, researchers have proposed several models, such as the Poisson Gamma 

(PG) or Negative Binomial (NB), the Poisson-lognormal, or the Poisson-Weibull, to 

handle the overdispersion. Unfortunately, very few models have been proposed for 

specifically analyzing the sources of dispersions in the data. Better understanding of 

sources of variation and overdispersion could help in managing safety, such as 

establishing relationships and applying appropriate treatments or countermeasures, more 

efficiently.  

Given the limitations of existing models for exploring the source of overdispersion of 

crash data, this research examined a new model function that could be applied to explore 

sources of extra variability through the use of the Generalized Waring (GW) models. 

This model, which was recently introduced by statisticians, divides the observed 

variability into three components: randomness, internal differences between road 

segments or intersections, and the variances caused by other external factors that have 

not been included as covariates in the model. To evaluate these models, GW models 

were examined using both simulated and empirical crash datasets, and the results were 

compared to the most commonly used NB model and the recently developed 

NB-Lindley models. For model parameter estimation, both the maximum likelihood 

method and a Bayesian approach were adopted for better comparison. 

A simulation study was used to show the better performance of this model compared to 

NB model for overdispersed data, and then an application in the empirical crash data 

illustrates its capability of modeling data sets with great accuracy and exploring the 

source of overdispersion.  
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The performances of hotspot identification for these two kinds of models (i.e., GW 

models and NB models) were also examined and compared based on the estimated 

models from the empirical dataset. Finally, bias properties related to the choice of prior 

distributions for parameters in GW model were examined by using a simulation study. In 

addition, the suggestions on the choice of minimum sample size and priors were 

presented for different kinds of datasets. 



 

iv 

 

ACKNOWLEDGEMENTS 

 

At First, I would like to express my deepest appreciation to my advisor, Dr. Dominique 

Lord for his constant encouragement and guidance throughout the research. The work 

should not be completed successfully without his continuous support. 

 

I also would like to express my appreciation to my committee members, Dr. Yunlong 

Zhang, Dr. Luca Quadrifoglio and Dr. Jeffrey D Hart for their suggestions on this 

dissertation. Special thanks are given to Dr. Yunlong Zhang for his hearty support during 

these four years.  

 

I also want to extend my thanks to Texas Transportation Institute (TTI) for providing 

funding and invaluable practical experience through my PhD study period. I have 

accumulated much useful and valuable analyzing and modeling skills during the research 

period. I wish to especially express my gratitude to Dr. Kay Fitzpatrick and Marcus for 

their advice and help for my research at TTI. 

 

I also wish to give my appreciation to my colleagues and friends, including Srinivas 

Geedipally, Fan Ye, Hancheng Ge, Chao Huang, Wen Wang, Xiaosi, Lu Wei for their help 

and healthy discussions during my study. 

 

I would like to express my deep gratitude to my parents for their continuous 

encouragement and attention. Last but not least, I am grateful to one of my special friends, 

Zhu Hui, who always encourages me to be optimistic about my future. 

  



v 

TABLE OF CONTENTS 

Page 

ABSTRACT .......................................................................................................................ii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

TABLE OF CONTENTS………………………………………………………………... v 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF TABLES .............................................................................................................. x 

I  INTRODUCTION ........................................................................................................ 1 

1.1 Problem Statement .................................................................................................... 3 

1.2 Research Objectives ................................................................................................. 4 

1.3 Dissertation Outline .................................................................................................. 5 

II  BACKGROUND ......................................................................................................... 8 

2.1 Poisson and NB Crash Count Models ...................................................................... 8 

   2.1.1 Poisson Model ................................................................................................. 8 

   2.1.2 Negative Binomial Model ............................................................................. 10 

2.2 Dual State Hurdle Model ........................................................................................ 13 

2.3 Finite Mixture Models ............................................................................................ 14 

2.4 Negative Binomial Lindley Model ......................................................................... 16 

2.5 Conway-Maxwell-Poisson Regression Model ....................................................... 17
2.6 Other Models .......................................................................................................... 18
2.7 Parameter Estimating Methods .............................................................................. 19 

   2.7.1 Maximum Likelihood Method ...................................................................... 19 

 2.7.2 Bayesian Method ...........................................................................................20
2.8 Chapter Summary ................................................................................................... 22 

III  METHODOLOGY ................................................................................................... 23 

3.1 Generalized Waring Distribution Introduction ....................................................... 23 

3.2 Theoretical Basis of the GW GLM Model ............................................................. 26 
3.3 Maximum Likelihood Parameter Estimating Method for the GW Model  ............. 29 

3.5 The Relationship between GW and NB ................................................................. 32
 3.6 Chapter Summary ................................................................................................... 33

3.4 Baysian Estimating Method for GW Models..........................................................31



vi 

IV  SIMULATED ANALYSIS ....................................................................................... 34 

4.1 Scenario 1 ............................................................................................................... 34 

4.1.1 Data Generation Method ................................................................................. 35 

4.1.2 Modeling Results ............................................................................................. 36 

4.2 Scenario 2 ............................................................................................................... 44 

4.2.1 Data Generation Method ................................................................................. 44 

4.2.2 Modeling Results ............................................................................................. 46 

4.3 Scenario 3 ............................................................................................................... 54 

4.3.1 Data Generation Method ................................................................................. 54 

4.3.2 Modeling Results ............................................................................................. 55 

4.4 Scenario 4 ............................................................................................................... 58 

4.4.1 Data Generation Method ................................................................................. 58 

4.4.2 Modeling Results ............................................................................................. 59 

4.5 Chapter Summary ................................................................................................... 62 

V  EMPIRICAL CRASH DATA ANALYSIS ................................................................ 64 

5.1 Intersection Crash Data Analysis ........................................................................... 65 

5.1.1 Toronto Data Description ................................................................................ 65 

5.1.2 Mean Functional Form Discussion ................................................................. 67 

5.1.3 Modeling Results ............................................................................................. 68 

5.2 Road Segment Data Analysis ................................................................................. 76 

5.2.1 Texas Crash Data Analysis .............................................................................. 76 

5.2.2 Indiana Crash Data .......................................................................................... 83 

5.2.3 Michigan Crash Data ....................................................................................... 89 

5.3 Chapter Summary ................................................................................................... 94 

VI  APPLICATION TO HOTSPOT IDENTIFICATION .............................................. 96 

6.1 Hotspot Identification ............................................................................................. 96 

6.2 Comparison by Empirical Crash Data .................................................................... 98 

6.3 Comparison using Simulation .............................................................................. ..99 

6.4 Results .................................................................................................................. 103 

6.5 Chapter Summary ................................................................................................. 105 

VII  SIMULATED ANALYSIS OF BAYESIAN STATISTICS .................................. 106 

7.1 Simulation Design ................................................................................................ 107 

7.2 Simulation Results ................................................................................................ 109 

7.2.1 Non-Informative Priors ................................................................................. 109 

7.2.2 Weakly-Informative Priors ............................................................................ 113 

7.3 Results .................................................................................................................. 117 

7.4 Chapter Summary ................................................................................................. 119 



vii 

VIII  CONCLUSIONS AND FUTURE RESEARCH ................................................. 120 

8.1 Summary of Work ................................................................................................ 121 

8.2 Recommendations and Future Research .............................................................. 124 

REFERENCES ............................................................................................................... 126 

APPENDIX A ................................................................................................................ 136 

APPENDIX B ................................................................................................................ 140 



viii 

LIST OF FIGURES 

Page 

Figure 4.1 Predicted vesus simulated values for GW data of low mean ..................... 43 

Figure 4.2 Predicted vesus simulated values for GW data of moderate mean ............ 43 

Figure 4.3 Predicted vesus simulated values for GW data of high mean .................... 44 

Figure 4.4 Predicted versus simulated values for NB data Φ=2 ................................. 52 

Figure 4.5 Predicted versus simulated values for NB data Φ=1 ................................. 53 

Figure 4.6 Predicted versus simulated values for NB data Φ=0.5 .............................. 53 

Figure 4.7 Predicted versus simulated values for FMP-2 data (N=1000) ................... 58 

Figure 4.8 Predicted versus simulated values for FMNB-2 data (N=1000) ............... .62 

Figure 5.1 Toronto crash frequency plot……………………………………………..66 

Figure 5.2 Goodness of fit comparison between NB and GW .................................... 69 

Figure 5.3 Relationship between fraction of variance for each 

Component and mean of each crash. ......................................................... 72 

Figure 5.4 Relationship between fraction of variance for each component 

and major traffic flow F2=5000 ................................................................ 72 

Figure 5.5 Relationship between fraction of variance for each component 

and minor traffic flow F1=20000 .............................................................. 73 

Figure 5.6 Sensitivity analysis of covariate F1 for Toronto data ................................ 75 

Figure 5.7 Sensitivity analysis of covariate F2 for Toronto data ................................ 75 

Figure 5.8 Goodness of fit comparison between NB and GW for Texas data ............ 78 

Figure 5.9 Relationship between fraction of each component and 

mean of crashes for Texas data .................................................................. 81 



 

ix 

 

Figure 5.10 Relationship between fraction of each component 

          and average daily traffic for Texas data................................................... 81 

Figure 5.11 Sensitivity analysis of covariate ADT for Texas data .............................. 83 

Figure 5.12 Goodness of fit comparison between NB and GW for Indiana data........ 86 

Figure 5.13 Relationship between fraction of each component 

          and mean of crashes for Indiana data ...................................................... 87 

Figure 5.14 Relationship between fraction of each component 

          and average daily traffic for Indiana data ................................................ 88 

Figure 5.15 Relationship between fraction of each component 

          and friction reading for Indiana data ....................................................... 88 

Figure 5.16 Sensitivity analysis of covariate ADT for Indiana data ........................... 90 

Figure 5.17 Relationship between fraction of each component 

          and mean of crashes for Michigan data ................................................... 93 

Figure 5.18 Relationship between fraction of each component 

          and average daily traffic for Michigan data ............................................ 94 

Figure 5.19 Sensitivity analysis of covariate ADT for Michigan data ........................ 95 

Figure 6.1 Comparison of rankings between NB and GW models ............................. 99 

  

  



 

x 

 

LIST OF TABLES 

 

                                                                   Page 

Table 3.1 Partition of the variance in the GW ............................................................. 29 

Table 4.1 Parameter estimation results for both models using data  

        generated by GW with low means………………………………………...37 

Table 4.2 Bias summaries using data generated by GW with low means ................... 38 

Table 4.3 RMSE summaries using data generated by GW with low means ............... 38 

Table 4.4 Parameter estimation results for both models using data  

        generated by GW with moderate means ...................................................... 39 

Table 4.5 Bias summaries using data generated by GW with moderate means .......... 40 

Table 4.6 RMSE summaries using data generated by GW with moderate means ...... 40 

Table 4.7 Parameter estimation results for both models using data  

        generated by GW with high means ............................................................ .41 

Table 4.8 Bias summaries using data generated by GW with high means .................. 42 

Table 4.9 RMSE summaries using data generated by GW with high means .............. 42 

Table 4.10 Parameter estimation results for both models using data  

         generated by NB with high-dispersed datasets (Φ=0.5) ............................ 47 

Table 4.11 Bias summaries for data generated by NB  

         with high-dispersed datasets ...................................................................... 47 

Table 4.12 RMSE summaries using data generated by NB  

         with high-dispersed datasets ...................................................................... 48 

Table 4.13 Parameter estimation results for both models using data 

         generated by NB with moderate-dispersed datasets (Φ=1) ....................... 49 

Table 4.14 Bias summaries using data generated by NB with 

         moderate-dispersed datasets ...................................................................... 49 

 



 

xi 

 

Table 4.15 RMSE summaries using data generated by NB  

         with moderate-dispersed datasets .............................................................. 49 

Table 4.16 Parameter estimation results for both models using data  

         generated by NB with low-dispersed datasets (Φ=2) ................................ 50 

Table 4.17 Bias summaries using data generated by NB  

         with low-dispersed datasets ....................................................................... 51 

Table 4.18 RMSE summaries for data generated by NB  

         with low-dispersed datasets ....................................................................... 51 

Table 4.19 Parameter estimation results for both models using data  

         generated by FMP-2 model ....................................................................... 56 

Table 4.20 Bias summaries using data generated by FMP-2 models .......................... 56 

Table 4.21 RMSE summaries using data generated by FMP-2 models ...................... 57 

Table 4.22 Bias summaries using data generated by FMP-2 models .......................... 57 

Table 4.23 RMSE summaries using data generated by FMP-2 models ...................... 57 

Table 4.24 Parameter estimation results for both models using data  

         generated by FMP-2 model ....................................................................... 60 

Table 4.25 Bias summaries using data generated by FMP-2 models .......................... 61 

Table 4.26 RMSE summaries using data generated by FMP-2 models ..................... .61 

Table 4.27 Bias summaries using data generated by FMP-2 models .......................... 61 

Table 4.28 RMSE summaries using data generated by FMP-2 models ...................... 61 

Table 5.1 Summary statistics for intersection dataset    ……………………………….66 

Table 5.2 Modeling results for the Toronto data ........................................................ .68 

Table 5.3 Variance of each component for Toronto crash data ................................... 71 

Table 5.4 Summary statistics of characteristics for the Texas data ............................. 76 

Table 5.5 Modeling results for the Texas data ............................................................. 78 



 

xii 

 

Table 5.6 Variance of each component for Texas crash data ....................................... 80 

Table 5.7 Summary statistics for the Indiana Data ...................................................... 84 

Table 5.8 Modeling result for the Indiana data ........................................................... 85 

Table 5.9 Variance of each component for Indiana crash data .................................... 86 

Table 5.10 Summary statistics for the Michigan Data ................................................ 90 

Table 5.11 Modeling result for the Michigan data ...................................................... 92 

Table 5.12 Variance of each component for Michigan crash data ............................... 93 

Table 6.1 Percent deviation on hotspots identification  

        between NB and GW models .................................................................... 100 

Table 6.2 Possible outcomes of classification (Miranda-Moreno et al., 2006) ......... 101 

Table 6.3 Results of performance criteria measures  

        when sample mean as critical value .......................................................... 105 

Table 6.4 Results of performance criteria measures  

        when 85th percentile as critical value ....................................................... 105 

Table 7.1 True values used for generating GW variables for simulation .................. 108 

Table 7.2 Results of parameters for high mean ( y >5) ............................................... 110 

Table 7.3 Bias in the estimation of parameters for high mean ( y >5) ....................... .111 

Table 7.4 MSE in the estimation of parameters for high mean ( y >5) ...................... 111 

Table 7.5 Results of parameters for medium mean (1≤ y ≤5) .................................... 111 

Table 7.6 Bias in the estimation of parameters for medium mean (1≤ y ≤5) ............. 112 

Table 7.7 MSE in the estimation of parameters for medium mean (1≤ y ≤5) ............ 112 

Table 7.8 Results of parameters for low mean ( y <1) ................................................ 113 



 

xiii 

 

Table 7.9 Bias in the estimation of parameters for low mean ( y <1) ......................... 113 

Table 7.10 MSE in the estimation of parameters for low mean ( y <1)...................... 114 

Table 7.11 Results of parameters for high mean ( y >5) ............................................. 114 

Table 7.12 Bias in the estimation of parameters for high mean ( y >5) ...................... 115 

Table 7.13 MSE in the estimation of parameters for high mean ( y >5) .................... 115 

Table 7.14 Results of parameters for medium mean (1≤ y ≤5) .................................. 116 

Table 7.15 Bias in the estimation of parameters for medium mean (1≤ y ≤5) ........... 116 

Table 7.16 MSE in the estimation of parameters for medium mean (1≤ y ≤5) .......... 117 

Table 7.17 Results of parameters for low mean ( y <1) .............................................. 117 

Table 7.18 Bias in the estimation of parameters for low mean ( y <1) ....................... 118 

Table 7.19 MSE in the estimation of parameters for low mean ( y <1)...................... 118 

Table 7.20 Recommended sample size and priors in terms of minimizing bias ....... 120 



 

1 

 

CHAPTER I 

INTRODUCTION 

 

Traffic safety is a very important issue all over the world. In 2008, there were more than 

37,000 people lost their lives in motor vehicle crashes (NHTSA, 2010). In recent years, 

this number of traffic fatalities significantly fell to a yearly average of 33,000 (NHTSA, 

2010). Unfortunately, this is still a very large number. According to a report published 

by World Health Organization (WHO), more than a million people lose their lives on the 

world’s roads each year (WHO, 2012). It is also estimated that nearly 50 million people 

are injured in road traffic crashes around the world each year and traffic crashes are the 

most important reason of death among teenagers. It has been predicted that road death 

will probably rise to the fifth leading cause of death by 2030 if without effective 

countermeasures taken (WHO, 2009). In addition, traffic crashes cause significant 

economic and social costs to society. The economic cost of road crashes and injuries 

composes around 1% of gross national product (GNP) in low-income countries, 1.5% in 

middle-income countries and 2% in high-income countries (WHO, 2009). The global 

cost related to traffic crashes is estimated to be US$518 billion per year (WHO, 2009). 

According to the report released from America Automobile Association (AAA, 2011), 

the costs caused by traffic crashes are more than three times greater than those 

associated with congestion. People coming from low-income or high-income families 

are all seriously affected by road traffic crashes. Thus, traffic safety has been a major 

concern for many government agencies and private organizations. 

 

As one of the major data analysis methods, statistical models play an important role in 

traffic safety analysis (Geedipally and Lord, 2010). They can be used to explain random 

variations of accidents across sites based on the available information, such as traffic 

flow and other road geometric variables. They also can be used to investigate specific or 

significant effects of the variables on the risk of the collision. In addition, the number of 
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crashes or crash severity can usually be predicted accurately by developing statistical 

models. 

  

The most commonly used crash count models in traffic crash analysis are the Poisson 

and Poisson-gamma (PG), also can be called the Negative Binomial (NB) model. 

Although the performance of Poisson and NB models in modeling crashes is great, there 

are some limitations for them (Oh et al., 2006). These limitations include the biased 

goodness-of-fit (GOF) statistics, improper estimation of dispersion parameter, and 

biased parameter estimates when the crash data are characterized by low sample mean 

(LSM) and small sample size (SSS) (Lord, 2006). The other important limitation 

associated with NB model is the assumption of the probability density function (PDF) 

when the data exhibit underdispersion characteristic, which indicates the mean is greater 

than the variance. Moreover, the unobserved overdispersion in traffic crash data may be 

due to internal variances across individuals and external factors that have not been 

included as covariates in the model. In the NB regression model, both sources of 

variation in the occurrence rate are jointly considered by means of the gamma 

distribution. To overcome some of the difficulties described above, researchers have 

proposed the use of zero-inflated models (Shankar et al., 1997 and 2003) which work as 

a dual state process, one of which is assumed by having a crash mean equal to zero 

(Warton, 2005; Lord, et al., 2005 & 2007; Wedagama et al., 2006). The assumption of 

the dual state process may not be right for analyzing crash data because absolutely safe 

roadway segments do not exist. Many new methods have been introduced in traffic 

safety research recently, such as the Beta-binomial model (Tong and Lord, 2007), neural 

and Bayesian neural network models (Xie et al., 2008), Support Vector Machine (SVM) 

models (Li et al., 2008), Conway-Maxwell Poisson models (Geddipally, 2008), finite 

mixture models (Park, 2010), and the NB Lindley generalized linear model (Geedipally 

and Lord, 2012). Some of them have already represented better performance compared 

to the traditional NB model in some cases. But the traditional NB model is still the most 

commonly used model for analyzing traffic crashes. Given the limitations of the NB 
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model mentioned above, it is meaningful to investigate whether better count data models 

existed for modeling motor vehicle crashes. 

 

This research aims to evaluating the application of the Generalized Waring (GW) model 

for analyzing crash data. The GW model was recently introduced by Rodriguez-Avi et al. 

(2009). More specifically, the dissertation expands on the work of Rodriguez-Avi et al. 

(2009) and evaluates the performance of GW distribution for various datasets with 

different sample means, sample size and levels of dispersion. Another major objective of 

this research is to investigate the application of the GW model for analyzing traffic 

crashes by comparing the performance of the GW model with the standard NB model 

and the NB Lindley (NB-L) model recently proposed by Lord and Geedipally (2011) and 

Geedipally et al. (2012). Furthermore, this research will examine the performance of 

GW distribution including bias for a dataset characterized by small sample size and low 

sample mean. Finally, the research will develop recommendations for implementing the 

GW model in traffic safety research and will propose some directions for future 

research. 

1.1 Problem Statement 

 

Traffic crashes are usually considered as random events by traffic analyst by assuming a 

mean crash rate existed for each roadway segment or intersection. One of the most 

common characteristics of crash data is overdispersion when the variability accounted 

for by the Poisson assumption is not sufficient.  

 

Traffic safety analysts accordingly have used NB models by adding gamma error 

distribution on the base of Poisson assumption of the mean of the number of crashes in 

order to address the extra Poisson variation. Although there are considerable efforts 

made to improve the performance of the NB model including using a varying dispersion 

parameter instead of fixed parameter (Hauer, 2001; Miaou and Lord, 2003), there are 

still some important limitations associated with these models in a crash analysis.  
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First, NB model cannot represent the nature of the overdispersion very clearly in the data. 

It only claims that overdispersion has been observed and addressed in this model (Land 

et al., 1996). It is difficult to determine the specific sources of variances, especially with 

a fixed dispersion parameter. It is also difficult to find the sources of variances even if a 

varying dispersion parameter is used in the model because the overdispersion is partly 

caused by external covariates that hard to be measured or observed.  

 

Second, it has been reported by some researchers that NB regression models have 

difficulties fitting heavily overdispersed datasets (Stein et al., 1987; Geddipally et al., 

2012). Such datasets are usually characterized by heavy long tail (Guo and Trivedi, 

2002). 

 

Third, many empirical crash data exhibit more zero observations than would be allowed 

by a NB regression model, which causes the low mean issue of traffic crash datasets. It 

is often difficult to collect large amount of data because of limited time and budget. In 

these cases that the datasets exhibit small sample sizes and low mean values 

characteristic, the performance of the parameter estimation using NB model can be 

significantly affected (Lord, 2006 , Park and Lord, 2008).  

 

Given above-mentioned limitations of the NB regression model for dealing with 

overdispersion of crash data, this research will focus on examining an alternative model 

formulation that probably can be used for explaining the nature of overdispersion and 

fitting highly dispersed crash data better.  

1.2 Research Objectives 

 

Though considerable efforts have been taken to developing crash count models to 

analyze the relationship between crash frequency and various factors, it is still 

meaningful to examine other potential statistical count models that can be used in traffic 

safety given the limitation of the most commonly used NB model and other models 
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mentioned above. The GW model was first provided by Irwin to theoretically analyze 

accidents (Irwin, 1968; Xekalaki, 1983). The main advantage of this model over the NB 

model is that the former provides more specific information about the variance. It can be 

used to further distinguish the observed overdispersion that is caused by internal factors 

inherent to each road segment or intersection from those caused by external factors that 

are hard to be observed or measured and have not been included in the model. 

The following objectives will be addressed in this research: 

 

1. Introduce the GW model and examine the performance of GW distribution using 

simulated datasets with different sample means and sample sizes by investigating the 

parameter estimation accuracy of the model in each condition. 

 

2. Apply the GW model to analyzing motor vehicle crashes. Compare the performance 

of GW model with the standard NB model by using simulated data and empirical data by 

expanding on the work of Rodriguez-Avi et al. (2009). Also, compare the performance 

of GW with the recently introduced NB-L model. 

 

3. Evaluate the performance of GW distribution including stability and presence of bias 

for different kinds of datasets. 

 

4. Examine the performance of the proposed GW model in the ability of identification of 

hotspots and compare the results between the proposed model and the NB model. 

 

5. Develop recommendations for implementing the GW model in traffic safety research 

and propose directions for future research. 

1.3 Dissertation Outline 

 

The outline of this dissertation is as follows: 
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Chapter II gives an overview about various crash count data models that have been 

proposed for modeling highway safety. These models include crash count models for 

both overdispersion and underdispersion. The major benefits and shortcomings of all 

these models are discussed in the chapter. In addition, two commonly used parameter 

estimating methods, the maximum likelihood method and the Bayesian estimating 

method are provided and discussed. 

 

Chapter III introduces the univariate GW distribution and presents the methodology for 

analyzing overdispersed crash data by using the univariate GW model. Then, the 

methodology of the two parameter estimating methods applied into the univariate GW 

model is provided. Finally, the relationship between the univariate GW model and the 

NB model is discussed.  

 

Chapter IV mainly examines the performance of the GW models using several simulated 

datasets. Four hypothetical examples are presented with different purposes. The main 

objective of this chapter is to show the better prediction capabilities of the GW model 

compared to the NB model for the overdispersed data. 

 

Chapter V applies the GW model to actual vehicle crash data and the results are 

compared with those from the NB model and the NB-L in various aspects such as 

goodness-of-fit, source of variance, and parameter interpretation. Analyses are carried 

out with four empirical crash datasets: one for an intersection crash dataset and the 

others for segment crash datasets. The segment crash datasets are empirical highly 

dispersed vehicle crash data. The main objective of this chapter is to show the major 

benefit of this model in explaining the nature of overdispersion in different segments or 

intersections. 
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Chapter VI deals with the application side of the developed model in terms of the 

identification of hotspots. The comparison of the results between the proposed model 

and the NB model is also summarized. 

 

Chapter VII will evaluate the performance of GW distribution in terms of bias in 

Bayesian statistics for different kinds of simulated datasets.  

 

Chapter VIII summarizes the major results found in this research along with the general 

conclusions and future research.  



8 

CHAPTER II 

BACKGROUND 

There have been considerable efforts to develop statistical models for analyzing crash 

data over the last decades. These models are developed for the purpose of addressing 

three common properties that can be observed in crash data: overdispersion, non-equal 

variance, and excess zeros (Park, 2010). Among them, overdispersion is the most 

common problem and has been paid much attention by researchers. Although there have 

been a large number of models developed by researchers, the essence in sources of 

variation is still unclear and need to be investigated further. 

This chapter generally presents different kinds of crash count models commonly applied 

in traffic safety analysis. It is divided into eight sections. Section 2.1 describes the most 

commonly used Poisson and NB crash count models. The dual state hurdle model, finite 

mixture model and NB-L model used in traffic safety literature are presented in Sections 

2.2, 2.3 and 2.4, respectively. Section 2.5 describes the Conway-Maxwell-Poisson model 

which can address underdispersion. Some other innovative models are also mentioned in 

Section 2.6. The two most commonly used parameter estimating methods are discussed 

in Section 2.7. Finally, Section 2.8 provides a summary for the chapter. 

2.1 Poisson and NB Crash Count Models 

This section is divided into two parts. The first part introduces the Poisson model and the 

second part discusses the most commonly used NB model. 

2.1.1 Poisson Model  

The Poisson distribution is considered to be the basic distribution for analyzing traffic 

crash data (Lord and Mannering, 2010). In the basic form of a Poisson model, the 
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number of crashes per year, iy  for a particular site i  is assumed to follow a Poisson 

distribution with the mean crashes per year
i (Lord and Geedipally, 2008): 

  iy | i  ~ Poisson ( i )                                   (2.1) 

The mean number of the crashes i  is commonly specified as the exponential function 

of the covariates as: 

 

);(  Xfi                                 (2.2) 

 

where: 

(.)f  is a function of the covariates ( X ); 

  is a vector of regression coefficients;  

X is a vector of traffic flow and site specific covariates. 

 

The probability density function (PDF) of the Poisson distribution is given by the 

following equation: 

 

     
!

)e x p (
) |( i

i

y

i
i

y

i
yp

i





                                    (2.3)                                                                                         

 

The mean and variance of the Poisson distribution is given by 

 

     iii ) |() |(   ii yV a ryE
                                  (2.4)    

                                                                          

Poisson model is appropriate when the dependent variable is a count number and was 

widely used in traffic safety area until the NB model was fully developed (as is 

described below). The advantages of using the Poisson model over those normal linear 

regression models including the better appropriateness of model assumptions and 
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improvement of goodness of fit (Joshua and Garber, 1990). In spite of these advantages, 

a disadvantage of this model lies in the limitation that the variance has to be equal to the 

mean. Overdispersion is a very common phenomenon in traffic crash datasets. It is not 

suitable in those overdispersed situations because its limitation to capture the 

overdispersion. 

2.1.2 Negative Binomial Model 

Negative Binomial (NB) distribution is the most common distribution used in the traffic 

safety analysis. This distribution is preferred over other mixed-Poisson distributions by 

including the gamma error distribution into the Poisson distribution. This model 

accordingly provides an easy way to deal with overdispersion in this way. The NB 

model has the following model specification (Lord, 2006): the mean of the number of 

crashes ‘ iY ’ for a particular 
thi  site is Poisson distributed and independent over all sites 

and time periods 

 

)(~| iii PoY   i = 1, 2,…, I                          (2.5) 

 

The mean of the Poisson is structured as: 

 

)exp()exp();( iiii eeXf                                           (2.6) 

 

where: 

(.)f  is a function of the covariates ( X ); 

  is a vector of unknown coefficients; and, 

ie  is the model error independent of all covariates. 

 

It is assumed that )exp( ie  follows gamma distribution with a mean equal to 1 and a 

variance   for all sites. 
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)/1,/1()exp( gammaei                                (2.7) 

 

where: 

     is the dispersion parameter (note: variance function is
2)( iiiYVar   ). 

Therefore (Lord and Park, 2010), 
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  is the inverse of dispersion parameter ( 1  ). 

In addition, 
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Therefore, the PDF of the Negative Binomial distribution is given by the following 

equation: 
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The mean and variance of the Negative Binomial distribution is shown in the following 

equation: 

 

iii ) |(), |(   ii yVaryE                                   (2.11)                                                                             

2

ii ), |(
iiyVar                                        (2.12) 
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It is noted that the dispersion parameter   is commonly used in different areas of 

traffic safety analyses from the computation of the weight factor using empirical 

Bayesian (EB) method (Hauer, 1997; Lord and Park, 2008) to the parameter estimation 

of crash count models (Geedipally and Lord, 2008). The dispersion parameter is usually 

considered by traffic safety researchers (Mitra and Washington, 2007) as fixed when 

using the traditional Negative Binomial model in most cases. They (Mitra and 

Washington, 2007) have also suggested that the varying dispersion parameter may not be 

necessary especially when the functional form contains many covariates. On the other 

hand, other researchers suggested that the variance function should use a varying 

dispersion parameter (Miaou and Lord, 2003) that can be used to address the site specific 

attributes. A fixed dispersion parameter will be more appropriate if there are no 

significant covariates causing the systematic dispersion (Lord and Park, 2008). 

 

Although the NB model is the most commonly used crash count model, there are some 

important limitations. The primary issue when dealing with crash data is the problem 

associated with the SSS and the LSM biases. In addition, some researchers have 

indicated that sometimes a negative dispersion parameter is a misspecification of the 

PDF of crash data exhibiting underdispersion(Clark and Perry, 1989; Saha and Paul, 

2005). Therefore, this model has difficulties converging with datasets exhibiting this 

characteristic. Another important limitation of the NB model lies in its limited ability in 

identifying sources of variances that come from internal variances and external variances. 

For the NB model, sources of variation after excluding randomness are considered 

together by means of a gamma distribution. It cannot be used to distinguish the part of 

the overdispersion further into internal factors inherent to each road segment or 

intersection and external factors that have not been included in the model because of 

difficulty of observation or measurement. 
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2.2 Dual State Hurdle Model  

 

This section presents a brief introduction of hurdle models and other dual state models, 

along with their advantages and limitations. As it was mentioned above, many crash data 

exhibit extraordinary zero observations than would be allowed by the Poisson or NB 

model. In highway safety literature, some researchers have applied the hurdle models 

(Son et al., 2009) and zero-inflated regression models for the purpose of accommodating 

the excess zeros (Shankar et al., 1997; Shankar et al., 2003). 

 

The basic concept of the hurdle model is that it partitions the data generating process 

into two parts. The first part models the probability that the value below a threshold is 

observed, and the second part models the probability that values above the threshold are 

observed. In principle, the threshold could be any value (Cameron and Trivedi, 1998). 

The general form of a hurdle model is shown as follows: 

 

 )0()( 1pyp i                                if iy =0          (2.13) 
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)0(1

)0(1
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                       if iy ≥1         (2.14) 

 

The zero-inflated model is a specific type of the hurdle model in which the zero 

outcomes can arise from one of two processes. The underlying assumption is that zero 

crash counts are generated by a dual state process: a perfect safe state which is 

absolutely safe road or a relative dangerous state with a certain mean of number of 

crashes. Therefore, zeros may come from both states. The binary process is assumed 

when modeling the unobserved state. The probability density function is shown as 

follows: 

 

  
)0()1()( 2pwwyp iii     if iy =0                          (2.15) 
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)()1()( 2 ii ypwyip        if iy ≥1                         (2.16) 

 

Although the above-described dual state models have provided a better goodness of fit to 

data as compared to other count models, they have been criticized in modeling vehicle 

crash data by some researchers (Lord et al. 2005, 2007) because of the unrealistic 

underlying assumption that there is a group of sites that never experience crashes. This is 

unrealistic since a roadway segment or an intersection always has the possibility of 

generating crashes unless there is no traffic on it. 

2.3 Finite Mixture Models 

 

The major advantage of the finite mixture model lies in its more flexible functional form 

to fit over dispersed data using a combination of several discrete or continuous 

distributions. This kind of model has been extensively used in many areas (e.g. 

Ramaswamy et al., 1994; Wang et al., 1998; Guo & Trivedi, 2002)and has been 

proposed and applied in the traffic safety context recently (Park & Lord, 2010). The 

general model structure of a finite mixture model can be formulated as follows (Park & 

Lord, 2010): 

 

)|()|()|()|( 222111 kkk yfwyfwyfwyp   
             (2.17) 

 

where the random vector 
'

2,1 )...( Nyyyy   is considered to be composed of several 

discrete or continuous distributions,  = ( 1, 2,  k)’, w ) represents all parameters 

for each distribution and 
'

2,1 )...( kwwww   means a weight vector. The sum of all 

elements of w  is equal to 1. A single density )|(. kkf   represents each distribution 

and k  is the number of distributions. The component distribution is assumed to be a 

Poisson or NB distribution when the finite mixture model is applied in traffic safety area 

(Park & Lord, 2010). 
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The mean and the variance of a finite mixture model are shown in the following 

equations 
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It is assumed that the component moments k  and k  exist. 

 

The overdispersion of data can be explained in two aspects using this modeling 

specification. First, it means the overdispersion caused by latent components. The model 

assumes that there is more than one component in the data set. Second, the 

overdispersion within each component also can be accounted for by choosing different 

kinds of distributions for each component. For example, for finite mixture Poisson 

models and finite mixture NB regression models, the overdispersion in each component 

is addressed by including Poisson distribution for the number of traffic crashes. The NB 

distribution is used to explain additional overdispersion non-related to the variables 

included in the model. In a word, the formulation of the finite mixture model is flexible 

enough to address both between-component and within-component variations (Park & 

Lord, 2010).  

 

Although the finite mixture model provides an obvious advantage in fitting 

overdispersion of population, there are also some limitations to the model. For example, 

there is still no consensus method for some issues, especially for the label switching 

problem and how to identify the optimal number of components. 

 

As can be seen from the above mentioned model structure, the traditional Poisson model 

and NB model are special cases of finite mixture models by setting K =1 in the model, 
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and the hurdle and zero inflated models mentioned in Section 2.2 are also the special 

cases of the finite mixture model where the optimal number of components are equal to 

2. 

2.4 Negative Binomial Lindley Model 

 

This Negative Binomial Lindley (NB-L) model was recently proposed by some 

researchers for analyzing traffic crash data (Lord and Geedipally, 2011). As discussed 

above, two common characteristics associated with traffic crash datasets are small 

sample size and low sample mean because they are composed of a large amount of zeros. 

The performance of traditional Poisson or NB models applied in these highly dispersed 

datasets are not so good as in other over dispersed datasets while The NB-L model is a 

good option in these cases. 

 

As it is shown in the following equation, the NB-L distribution is composed of Negative 

Binomial and Lindley distributions. The PDF of NB-L distribution is calculated by using 

the following equation. 

 

  dLindleyyNByYP );(),;(),,,(                  (2.20) 

 

Here, the parameter   means the mean of independent variable and   follows the 

Lindley distribution (Lord and Geedipally, 2011). The PDF of the Lindley distribution is 

shown in the following equation: 

 

0,0;)1(
1

);(
2




  xexxXf x 



 

                      (2.21) 

 

The mean of the Lindley distribution is (Ghitany et al., 2008): 
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The variance of the Lindley distribution is (Ghitany et al, 2008): 
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The crash variance is given by the Equation 2.22: 
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According to the results from other researchers, the NB-L fits better than the traditional 

NB model when datasets are highly dispersed, especially when datasets are characterized 

by extraordinary zeros or with a heavy tail. When the dispersion becomes smaller, the 

NB-L model is still able to provide the same performance as the NB model (Lord and 

Geedipally, 2011). Although the NB-L model provided a better fit, further work 

including the basic data generating process and whether the model is logically sound still 

needed to be done on this topic.  

2.5 Conway-Maxwell-Poisson Regression Model 

The Conway-Maxwell-Poisson (COM-Poisson) distribution, originally proposed by 

Conway and Maxwell (1962), is a kind of extension of the Poisson distributions. The 

major advantage of this kind of model lies in its ability to account for both over and 

underdispersion data. The PDF of the COM-Poisson distribution is shown in the 

following equation (Geedipally, 2008): 
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where   is a centering parameter that is related to the mean of the observations, and v  

is a shape parameter. This model address underdispersed data overdispersed data and 

equidispersed data respectively by choosing different values of v . 

The mean can be approximately calculated through some different approaches. For 

example, Shmueli et al. (2005) derived the mean and variance as follows: 
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(2.26) 

This model was applied by Lord et al. (2008) for evaluating vehicle crash data. In this 

new form,   is replaced with 
 /1  representing a clear centering parameter.

Although it is an effective method for analyzing an underdispersed dataset, there are still 

some limitations in the model, especially when it is used to analyze overdispersed data. 

The other detailed model characteristics and the performance with application to vehicle 

crash data can be investigated in Geedipally (2008). 

2.6 Other Models 

There are several other statistical models used for analyzing vehicle crashes in recent 

years. These include the multivariate Poisson-lognormal model and the application of 

Beta-binomial model (Lord et al., 2005; Tong and Lord, 2007). Bayesian network 

models and support vector machine models have also been used for crash predictions 
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(Xie et al., 2007; Li et al, 2008). However, the parameter estimation methods for these 

models are complex and hard to be generalized to all kinds of crash datasets. A two-state 

Markov switching model which is a kind of finite mixture model has been applied by 

assuming that there are two states of roadway safety changing over time (Malyshkina et 

al., 2009). Random parameter models have been initially proposed by Anastasopoulos 

and Mannering (2009). The performance of this kind of model on goodness of fit is 

better than models with fixed parameters in most cases. However, the parameter 

estimation methods are too complex to be applied in every crash dataset. 

2.7 Parameter Estimating Methods 

In this section, two most commonly used parameter estimating methods are presented 

and discussed. The first section introduces the maximum likelihood method, and the 

second discusses the Bayesian method. 

2.7.1 Maximum Likelihood Method 

This section gives a brief description of the maximum likelihood estimation (MLE). It is 

the most popular technique and has traditionally been used by many researchers for 

estimating the model coefficients. The joint probability density function has to be 

calculated in order to be able to apply MLE parameter estimation method. The PDF that 

specifies the probability of observing vector(X1, X2, X3… Xn) given the parameter w  

is shown in the following equation (Myung, 2002):  

) | ()... | (). | () | ...xxx( 21n21, wxfwxfwxfwf n (2.27) 

The likelihood function is accordingly defined as follows: 

) | ...xxx()...xx x| ( n21,n21, wfwL     (2.28) 

Then the maximum value is calculated based on the above equation. When the 

log-likelihood function is differentiable for being calculated, the maximum likelihood 
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estimation (MLE) of these parameters is obtained by getting the solution of n equations 

as follows: 

),...,1,0)|( niyL

i







 (2.29) 

The benefits of maximum likelihood estimators are (NIST/SEMATECH e-Handbook of 

Statistical Methods, http://www.itl.nist.gov/div898/handbook): 

1. The parameter estimators are of unbiased minimum variance as the sample size

becomes very large. This means that the mean value of each estimated parameter will be 

theoretically equal to the population value when a large number of samples were taken 

from the population. Minimum variance leads to the result that the estimator has the 

smallest variance and the accordingly the confidence interval becomes the narrowest. 

2. They have approximately normal distributions and sample variances that can be used

to estimate confidence intervals and generate hypothesis tests for the parameters. 

3. It is not difficult to be applied even for the large data sets because several different

types of statistical software provide existed algorithms for maximum likelihood 

parameter estimation.  According to Fruhwirth-Schnatter (2006), there are a few 

practical difficulties with the maximum likelihood estimation of regression models. For 

example, it is difficult to find a global maximum of the likelihood numerically. It is often 

the case that a local maximum has been found. Therefore, the best way to find the global 

maximum value is to use many different starting points to compare results. Furthermore, 

the algorithm is hard to converge when the sample size is too small. 

2.7.2 Bayesian Method 

The most important difference between the maximum likelihood and Bayesian methods 

lies in the way they consider the estimated parameter. The maximum likelihood method 
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regards unknown parameter   as a fixed value, and then estimates the probability 

distribution of the data being the result of a random event from a fixed parameter space 

of   (Gelman et al., 2004). The value of   is estimated through getting the maximum 

value of a likelihood function. The uncertainty about parameter estimates is quantified 

by investigating the difference between different samples. On the other hand, Bayesians 

regard the unknown parameter   as a random variable and are interested in the 

probability distribution of a model parameter (Gelman et al., 2004). This probability 

distribution is called a posterior distribution, which is a product of a likelihood function 

and a prior distribution. The hyper-parameters can be assumed either to be known or to 

be drawn from s second-stage prior distribution. The prior distribution on   is very 

important for Bayesians. The uncertainty about parameter estimates is quantified by 

determining the difference between different prior distributions given the observed data. 

The algorithms employed in the Bayesian estimating method are based on the Markov 

Chain Monte Carlo (MCMC) sampling techniques introduced by Gelman (1984), Tanner 

and Wong (1987), and Gelfand and Smith (1990). The MCMC sampling methods have 

their roots in the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953) and they 

are now become one of the main powerful computational tools in parameter estimation 

methods. 

MCMC sampling methods greatly simplify the complexity of some highly complicated 

models and make it possible to estimate the corresponding posterior distributions of 

these parameters with accuracy. Therefore, MCMC methods have made great 

contribution to the development and propagation of Bayesian theory. Some researchers 

(Gilks, 1996; Spiegelhalter, 2003) have explained the details of MCMC methods. The 

more detailed Bayesian method used in the GW model will be discussed in the following 

chapter. 
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2.8 Chapter Summary 

In this chapter, various crash count models have been described for addressing both 

overdispersion and underdispersion crash data. The chapter also summarized the two 

estimating methodologies that can be used for estimating the coefficients of regression 

models. The different models that have been proposed for addressing overdispersion 

were the main focus of this chapter since this kind of dataset is the most commonly 

observed in practice. A brief discussion about benefits and limitations of existing models 

was presented.  

One of the most important shortcomings of the models described in this chapter is 

related to the fact that the sources of the overdispersed variance in traffic crash data 

cannot be investigated efficiently. The variance observed in the data can be caused by 

internal differences across road segments or intersections, and by external unobserved 

factors that cannot be included in the model. For most models, both sources of variation 

in the occurrence rate are jointly considered instead of considering them separately. The 

next chapter describes the characteristics of GW distribution and GW model developed 

based on the distribution. 
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 CHAPTER III 

METHODOLOGY 

 

This chapter explains the methodology of the GW distribution and describes the GW 

models. It is divided in six sections. Section 3.1 provides a description of the GW 

distribution. Section 3.2 illustrates the theoretical basis for using the GW model we 

developed that was based on the distribution. Section 3.3 describes the methodology for 

analyzing crash data using this model, based on the maximum likelihood framework; 

Section 3.4 covers the Bayesian method used for this model. Section 3.5 explains the 

relationship between the GW model and the NB model. Finally, the last section, Section 

3.6, provides a summary of the chapter. 

3.1 Generalized Waring Distribution Introduction 

 

Classic accident theory (Greenwood and Yule, 1920; Newbold, 1925, 1927) 

hypothesized that the overall population of road segments are all subjected to the same 

external factors, but have unequal levels of proneness to crashes. The proneness of a 

road segment is represented by , which is the mean number of crashes incurred under 

the given exposure conditions. The variable   is assumed to have a continuous 

distribution, and the distribution of accidents among individuals with the same levels of 

proneness is assumed to be Poisson-distributed with exp )1(  . We write this as 

=1+  leads to the basis of the traditional NB model (Irwin 1968).  

 

However, we cannot know that all entities (i.e., road segments, intersections, etc.) will 

be exposed to exactly the same external risk of accident. Differences in exposure to 

external factors from one section to the next are known as differences in accident 

liability, as distinguished from constitutional or internal differences which are known as 

differences in proneness. In practice, the effects of proneness and liability are 
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confounded (that is, they are inseparable) when the Negative Binomial is used. This 

combination was originally called "susceptibility" by Newbold (1925, 1927). Therefore, 

Irwin proposed the univariate Generalized Waring distribution (UGWD) in a way that 

the gamma distribution accounts for liability and assumes a beta distribution to 

accommodate proneness. Its generating function is shown in the following form (Irwin 

1968): 
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                                         (3.1) 

 

where F is the hypergeometric series,   is the generating symbol, and  kx denotes 

x(x+ 1) ... (x+k-1). However, it is generally more convenient to put x  - a  = p  and 

write the equation in the following form (Irwin 1968): 
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(3.2) 

 

Here,  >0, a  >0, k >0 and   need not be an integer; in fact, the distribution is 

symmetrical in both a and k. 

 

Originally, Irwin was interested in the distribution because the distribution can account 

for and the dataset with a very heavy tail by choosing certain parameter. For example, 

some actual biological distributions usually had exceptionally heavy tails. Most 

theoretical distributions discussed in the literature at that time were totally inadequate to 

deal with this situation. The exception was the Yule distribution (Yule, 1924); this 

distribution is actually the particular case of a GW distribution when a = 1 and k = 1. 

Moreover, the GW distribution is so flexible that the tail does not have to be very heavy 

for all values of all the parameters. The equation can be written as (Irwin 1968): 
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                   (3.3) 

 

The integral in equation (3.3) is a well-known representation of the hyper-geometric 

function. The GW distribution can be used separately to allow for proneness and for 

liability. In the Negative Binomial, which is regarded as the distribution for individuals 

with a proneness v  arising from a Poisson distribution for individuals with a liability 

( | v ) and a fixed proneness v , where ( | v ); that is,   for a given v  has the usual 

Pearson Type III (gamma) distribution (Irwin 1968): 
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If µ now has the beta distribution (Irwin 1968): 
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                                   (3.5) 

 

It follows from Equation 3.3 that the GW distribution will give the final distribution of 

the accidents. 

 

The beta distribution for µ is a general but plausible assumption based on the literature 

review (Irwin, 1968). 

 

The total variance of the GW distribution is given by (Irwin 1968): 
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The variance of the random components is:  
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The variance of the liability component is:  
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The variance of the proneness component is:  
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3.2 Theoretical Basis of the GW GLM Model 

 

In this section, this researcher will continue to introduce the theoretical methodology of 

the GW GLM model which was developed based on the GW distribution.  The GLM 

model was developed by Rodriguez-Avi et al. (2009) by considering covariates as 

explanatory variables determined by some independent variables in the model.  In this 

research, it will be applied to traffic crash analysis. The dependent variable for the GW 

model applied here is the mean of the number of crashes in each segment or intersection. 

Moreover, this model specification assumes that proneness is independent and its 

distribution is the same for all levels of covariates because it contains all of the 

conditions inherent to each site (Rodriguez-Avi et al., 2009). Based on this assumption, 

if X ’= ( 1X ,… pX ) is the vector of the covariates, let v  be the proneness and x | v  
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the liability for a given proneness; the GW GLM model is generated according to the 

following steps (Rodriguez-Avi et al., 2009): 

 

1. (Y | X ), x , v ~Poisson( x )                                      (3.10) 

 

2. x | v ~ Gamma ( xa , v )   Y | X , v ~NB( xa ,p) with 
v

p
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3. v ~beta (  , k ), that is  
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Therefore, the PDF of Y | X  is: 
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leading to a UGWD ( xa , k ,  ), where xa , k,  >0 and:  
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4. The equation of log-linearity for the mean according to classical regression models is 

shown in the following equation: 
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(.)f  is a function of the covariates X ; 

Furthermore, the mean of the UGWD is given by: 
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Therefore,  must be greater than 1 for the positive )|( xYE , and then: 
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At last, for the purpose of guaranteeing the conditions k > 0 and   > 1, these 

parameters are written as the following formulation: 
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with 0k , 0  R. 

 

The above model is called the GW model. The different parts of variances in this 

regression model are calculated as (Rodríguez et al., 2009): 
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For xa , k >0 and  >1  

It can be seen from the above equations that there are three parts of the variance, in total, 

addressed by the GW model. The first part of the variance represents that the variability 

comes from the randomness coming from the assumed Poisson model. The other two 
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parts are liability and proneness respectively. The detail information about all these three 

parts was shown in Table 3.1.  

 

Table3.1 Partition of the variance in the GW Model (Rodriguez-Avi et al., 2009) 

Source of variability Variance Variance rate 
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It is necessary to point out that the GW model is significantly better at distinguishing the 

sources of variance than is GW distribution.  It is difficult to identify proneness and 

liability using GW distribution when an insufficient amount of information is made 

available by the covariates (Irwin, 1968). This problem is solved by using the GW model 

with more than one covariate because it renders the parameters a  and k  no longer 

interchangeable. 

3.3 Maximum Likelihood Parameter Estimating Method for The GW Model 

 

In order to use the method of maximum likelihood for the GW model, one first needs to 

specify the joint density function for this kind of model. The probability density function 

of the GW model was defined above in Equation 3.16. Therefore, for certain samples the 

joint density function of the GW model (or the likelihood function) will be (Rodríguez et 

al., 2008):  
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where n is the sample size. 

 

The logarithm of this equation is shown is the following equation: 
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Therefore, the maximum likelihood equation is as follows: 
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Because the log-likelihood function is difficult to solve, the nlm and optim functions of 

R were used for the parameter estimation of the GW model (Rodríguez et al, 2009). 

These two functions were created according to Nelder-Mead, quasi-Newton, and 

conjugate-gradient algorithms (Team, 2007). 

 

The Nelder–Mead method is a commonly used nonlinear optimization technique, and the 

quasi-Newton methods are algorithms based on Newton's method for finding the local 

maxima and minima of functions (John and Kurtis, 2004). 
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The quasi-Newton and conjugate gradient method are the other two algorithms for the 

numerical solution of certain linear equations by applying an iterative method and can be 

applied to equations too complex to be handled by direct methods. 

 

Several initial values were used for the GW model in order to get a global optimum 

solution for the parameter estimation. The different estimation results became obvious 

only when these solutions were in the boundary of the parametric space (Rodríguez et al., 

2009). 

3.4 Bayesian Estimating Method for GW Models 

 

The treatment of over-dispersion is made more explicit by introducing random effects 

into the Poisson mean ( i ) in hierarchical Poisson regression models. Depending on the 

different distributions imposed on the bases of Poisson mean, various mixed Poisson 

regression models such as Poisson-gamma, Poisson-gamma-Lindey, and 

Poisson-Gamma-beta can be derived. In this section, we present the cases for 

Poisson-Gamma-beta within the Bayesian framework. 

 

Within the Bayesian framework of the GW model, as was mentioned in Section 3.2, the 

mean response for the number of crashes, y, has the following hierarchical formulation 

(Irwin 1968): 

1. (Y | x) ~ Poisson ( x )                                              (3.23)                                   

2.  x ~ Gamma(ax, v )                                               (3.24) 

3.  v ~beta (  , k)                                                    (3.25) 

which leads to the conclusion that the PDF of Y  | X  is: 
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Base on the above mentioned formulation, the Bayesian parameter estimation method 

can be applied and calculated using WINBUGS. In detail, the number of crashes at each 

site follows the Poisson distribution, and the site-specific error follows a gamma 

distribution as a prior distribution. The shape parameter of the gamma distribution 

follows a beta distribution as a prior distribution. Accordingly, the GW model can be 

considered a three-hierarchy model involving a standard distribution at all levels. In this 

study, normal priors (non-informative) for β and gamma priors (non-informative and 

vague) for  and k are used.  

3.5 The Relationship between GW and NB  

 

The GW converges to the NB in two ways (Rodríguez-Avi et al., 2009): 
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That is, the kernel of the NB ( xa ,




1
) density, where 

1




k

. Let us observe that 

 xx a
 
and )1()|(   xxYVar . Therefore, the variance is a linear function of the 

mean and the Negative Binomial I model is obtained. As discussed in Cameron and 

Trivedi (1998), the functional form of variance for NB I is slightly different than NB II 

because the variance is a linear function of the mean. This kind of model usually is less 

flexible in capturing the variance and is not used very often by traffic safety analysts; the 

NB II is the parameterization of Negative Binomial model most commonly used in count 

data analysis. 

 



 

33 

 

Similarly, if   and kxx /   is bounded, then xa  with the same order of 

convergence, and:  
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That is, the kernel of the NB (k, 
x1

1
) density. )1()|(

k
xYVar x

x


   is calculated 

based on the PDF, therefore a Negative Binomial II model is obtained(see Cameron and 

Trivedi, 1998), which is the most commonly used model in traffic safety. From these 

results, it can be concluded that two different parameterizations of the NB model are 

nested in the GW model. 

3.6 Chapter Summary 

 

This chapter first described the methodology of the univariate GW distribution and the 

corresponding GW model based on that distribution. The GW distribution was 

developed such that the gamma distribution models were one of these sources of 

variation (liability) and they served to introduce a beta distribution for proneness. 

Therefore, the GW distribution is more flexible than the NB distribution since it can 

account for the variance by separating it into two components: liability and proneness. 

The next chapter presents the results of the simulation analysis. 
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CHAPTER IV 

SIMULATED ANALYSIS 

 

In this chapter, the performance of GW model using several simulated datasets is 

examined. The main objective of this chapter is to examine the performance of the GW 

model specification in describing the count data which exhibits over-dispersion 

compared to other count models recently used and developed by other researchers. The 

maximum likelihood method is used to analyze all the four scenarios of simulated 

datasets. It is effective to illustrate some theoretical performances of the GW models by 

using simulated datasets. 

 

Four scenarios are presented in this chapter. The first scenario, described in Section 4.1, 

is used to compare the performance of the GW and NB models when the underlying 

distribution is generated from a GW distribution. The effects of sample mean and sample 

size on the goodness of fit are also examined. The second scenario shown in Section 4.2 

is used to illustrate the performance of the GW model specifications when the data are 

generated from a NB distribution. The effects of sample size and degree of dispersion on 

the goodness of fit are also examined. The performance of the GW and NB models is 

also compared in further when the data are generated from a two-component finite 

mixture of Poisson distribution and a two-component finite mixture of NB distribution. 

The results are presented in Section 4.3 and Section 4.4. The last section provides a 

summary of the analysis described in this chapter. 

4.1 Scenario 1 

 

This section describes the simulation results for the first scenario. The objective of this 

scenario is to demonstrate the poor performance of the traditional NB model to properly 

account for the data generated by a GW distribution. To expand on the work of 
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Rodriguez-Avi et al. (2009) and simplify the analysis with previous work, the same 

simulation protocol used by these authors were utilized in this part of the research. 

4.1.1 Data Generation Method 

For generating GW random variables, two independent covariates ),( 21 iii XXX   were 

used in the link function, which were generated from the standard normal distribution. 

The independent variable was then constructed from the two covariates by assuming a 

log-linear relationship using assigned regression coefficients ),,( 210  i   

 

The random variables ( y ) were simulated in the following steps: 

 

Step 1: Set the sample size,   and the parameters of GW distribution to the required 

values. 

 

The datasets were generated based on three different mean values by selecting the 

following values of the parameter:  

 

Low mean value:

 

k =2.5,  =3.5, 0  =0.5, 1 = 0.5, 2 =-0.5.  

Moderate mean value: k =2.5,  =3.5, 0  =1, 1 = 0.5, 2 =-0.5.  

High mean value: k =2.5,  =3.5, 0  =1.5, 1 = 0.5, 2 =-0.5.  

 

The value of k  and  were assigned based on the consideration that the values of 

liability and proneness are easy to be observed. Sample sizes equal to 100, 500 and 

1,000 were analyzed separately for this simulation. 

 

Step 2: Generate two covariates ( iX1 , iX 2 ) from the standard normal distribution. 
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Step 3: Calculate the parameter i  using the log-linear function, which is used in 

normal generalized linear models (Hilbe, 2011). The functional form is as follows: 

ii
xxx

i ee 22110
'

0



  

 

Step 4: Generate the count variable iy
 
from the univariate GW distribution UGWD ( ia ,

k ,  ) where ia = i (  -1)/

 

k  by using the rghyper function in Suppdist R package 

(Rodríguez-Avi et al., 2009). 

 

Step 5: The simulated datasets were then fitted by using both GW and NB models. 

 

Step 6: Repeat Steps 1 through 5 50 times and compare the average value of simulated 

results with the theoretical values and assess the general performance of the models.  

4.1.2 Modeling Results  

As has been mentioned in the previous chapter, the likelihood function for the GW 

model is given by Equation 3.16 and can be solved using non-linear optimization 

techniques. This section shows the modeling results when the GW and NB models were 

fitted with the simulated data generated from GW distribution. Tables 4.1-4.3 summarize 

the parameter estimation results together with bias and Root Mean Square Error for the 

datasets with low sample mean values (Oh et al., 2003).  

 

It can be seen from the following tables that the sample size has a significant effect on 

the estimation process. The values of estimated parameter are closer to the true value 

when sample size increases from 100 to 1000. The estimates of k ,  ,
0 ,

1   and   
2  

have low bias and RMSE for GW model when sample size above 500 while the bias and 

RMSE is much higher when sample size is 100. In other words, the GW model was able 

to reproduce the “true” parameters for the low sample mean over-dispersed data 

generated by GW with a relative large sample size.  
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In addition, the better performance of GW model compared to NB model for low mean 

over-dispersed datasets generated by GW distribution can be seen from Table 4.1 that 

the value of AIC and BIC are constantly smaller for GW than NB model. It can also be 

seen from the Table 4.2 and Table 4.3 that the values of estimated parameter are closer 

to the true value for GW compared with NB for different sample size because the 

estimates of 
0 ,

1  and  
2  have lower bias and RMSE for GW model.  

 

Table 4.1. Parameter estimation results for both models using data generated by 

GW with low means 
 True 

values 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
-0.5 -0.36 

(0.32) 

-0.39 

(0.15) 

-0.58 

(0.22) 

-0.54 

(0.15) 

-0.58 

(0.09) 

-0.47 

(0.05) 

1  
0.5 0.65 

(0.33) 

0.62 

(0.14) 

0.46 

(0.21) 

0.53 

(0.16) 

0.47 

(0.10) 

0.49 

(0.06) 

2  
-0.5 -0.34 

(0.31) 

-0.39 

(0.13) 

-0.54 

(0.21) 

-0.52 

(0.16) 

-0.56 

(0.11) 

-0.48 

(0.05) 

  3.5 - 4.31 
 

- 3.94 
 

- 3.82 
 

k 2.5 - 3.51 
 

- 2.68 
 

- 2.59 
 

  - 0.47 

(0.18) 

- 0.46 

(0.11) 

- 0.44 

(0.08) 

- 

-2LL The 

smaller 

the 

better 

245.1 

(6.97) 
224.5 

(6.02) 

1088.5 

(26.38) 
1054.3 

(25.81) 

2160 

(45.91) 
2120 

(42.51) 

AIC ” 253.1 

(6.97) 
234.5 

(6.02) 

1096.5 

(26.38) 
1064.3 

(25.81) 

2168 

(45.91) 
2130.0 

(42.51) 

BIC ” 263.5 

(6.97) 
247.5 

(6.02) 

1113.3 

(26.38) 
1085.3 

(25.81) 

2187.6 

(45.91) 
2155.2 

(42.51) 

NOTE: ( ) indicate the standard error of the estimate 

bold characters represent best values and all the following tables are the same 

Sample mean=0.76 for sample size N=100 

Sample mean=0.71 for sample size N=500 

Sample mean=0.65 for sample size N=1000 
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Table 4.2 Bias summaries using data generated by GW with low means 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.14 0.11 -0.08 -0.07 -0.08 0.03 

1  
0.15 0.12 -0.04 0.03 -0.03 -0.01 

2  
0.16 0.11 -0.04 -0.02 -0.06 0.02 

 

Table 4.3 RMSE summaries using data generated by GW with low means 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.44 0.33 0.33 0.17 0.12 0.06 

1  
0.46 0.27 0.31 0.16 0.10 0.06 

2  
0.44 0.25 0.31 0.16 0.13 0.05 

 

 

Tables 4.4-4.6 summarize the parameter estimation results together with bias and RMSE 

for the moderate sample mean values. It can be seen from the following tables that the 

sample size still has a significant effect on the estimation process, although the effect is 

not as significant as for dataset with a lower sample mean. The values of estimated 

parameter are closer to the true value when sample size increases from 100 to 1000. The 

estimates of k ,  ,
0 ,

1   and 
2  have low bias and RMSE for GW model when 

sample size above 500 and the estimates of these parameters have obviously lower bias 

and RMSE than those datasets with low sample mean for the small sample size 100. In 

other words, the GW model is able to better reproduce the theoretical parameters for the 

moderate sample mean over-dispersed data generated by GW compared to datasets with 

low sample mean.  

 

Similar as the modeling results from datasets with low sample mean, the better 

performance of GW model compared to NB model for moderate mean over-dispersed 

datasets generated by GW distribution can be seen from Table 4.4 that the value of AIC 
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and BIC are constantly smaller for GW than NB model. It can also be seen from the 

Table 4.5 and Table 4.6 that the values of estimated parameter are closer to the true 

value for GW compared with NB for different sample size because the estimates of
0 ,

1  

and 
2  have lower bias and RMSE for GW model.  

 

Table 4.4. Parameter estimation results for both models using data generated by 

GW with moderate means 
 True 

values 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
1 1.07 

(0.41) 

0.95 

(0.20) 

1.04 

(0.32) 

1.01 

(0.13) 

1.03 

(0.08) 

0.99 

(0.03) 

1  
0.5 0.39 

(0.41) 

0.46 

(0.21) 

0.55 

(0.31) 

0.52 

(0.14) 

0.45 

(0.08) 

0.48 

(0.02) 

2  
-0.5 -0.57 

(0.40) 

-0.53 

(0.21) 

-0.47 

(0. 31) 

-0.52 

(0.13) 

-0.52 

(0.08) 

-0.49 

(0.02) 

  3.5 - 3.82 
 

- 3.68 
 

- 3.47 
 

k 2.5 - 1.63 
 

- 2.71 
 

- 2.68 

  - 0.80 

(0.18) 

- 0.81 

(0.09) 

- 0.82 

(0.07) 

- 

-2LL The 

smaller 

the 

better 

456.1 

(11.85) 
415.4 

(10.53) 

2174 

(46.32) 
2089.1 

(42.11) 

4449 

(89.21) 
4382.5 

(82.35) 

AIC ” 464.1 

(11.85) 
425.4 

(10.53) 

2182 

(46.32) 
2099.1 

(42.11) 

4457(89.21) 4392.5 

(82.35) 

BIC ” 465.3 

(11.85) 
438.4 

(10.53) 

2186.4 

(46.32) 
2120.3 

(42.11) 

4462.8(89.21) 4417.0 

(82.35) 
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Table 4.5 Bias summaries using data generated by GW with moderate means 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.07 -0.05 0.04 0.01 0.03 -0.01 

1  
-0.11 -0.04 0.05 0.02 -0.05 -0.02 

2  
-0.07 -0.03 0.03 -0.02 -0.02 0.01 

 

Table 4.6 RMSE summaries using data generated by GW with moderate means 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.42 0.21 0.32 0.13 0.09 0.03 

1  
0.42 0.21 0.31 0.14 0.09 0.03 

2  
0.41 0.21 0.31 0.13 0.08 0.02 

NOTE: ( ) indicate the standard error of the estimate 

Sample mean=3.2 for sample size N=100 

Sample mean=3.0 for sample size N=500 

Sample mean=2.9 for sample size N=1000 

 

 

Tables 4.7-4.9 summarize the parameter estimation results together with bias and RMSE 

for the high sample mean values. It can be seen from the following tables that the effect 

of sample size is not as significant as for datasets with low and moderate sample mean. 

The values of estimated parameter are always close to the true value when sample size 

increases from 100 to 1000. The estimates of k ,  ,
0 ,

1  and 
2  always have low bias 

and RMSE for GW model for datasets with different kinds of sample size and the 

estimates of these parameters have lower bias and RMSE than those datasets with low 

and moderate sample mean, especially for the small sample size 100. In other words, the 

GW model was able to replicate assigned parameters best for the high sample mean 

over-dispersed data generated by GW compared to datasets with low sample mean and 

moderate mean.  

 



 

41 

 

Similar as the modeling results from datasets with low sample mean and moderate mean, 

the better performance of GW model compared to NB model for high mean 

over-dispersed datasets generated by GW distribution can be seen from Table 4.7 to 

Table 4.9. 

 

 

Table 4.7 Parameter estimation results for both models using data generated by 

GW with high means 
 True 

values 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
1.5 1.52 

(0.35) 

1.48 

(0.18) 

1.49 

(0.27) 

1.5 

(0.09) 

1.50 

(0.05) 

1.50 

(0.01) 

1  
0.5 0.47 

(0.34) 

0.52 

(0.18) 

0.51 

(0.26) 

0.49 

(0.09) 

0.47 

(0.05) 

0.49 

(0.01) 

2  
-0.5 -0.54 

(0.35) 

-0.49 

(0.17) 

-0.46 

(0.26) 

-0.46 

(0.09) 

-0.48 

(0.05) 

-0.49 

(0.01) 

  3.5 - 3.42 
 

- 3.58 
 

- 3.55 
 

k 2.5 - 3.4 
 

- 3.1 
 

- 2.8 

  - 0.95 

(0.18) 

- 1.02 

(0.08) 

- 0.96 

(0.05) 

- 

-2LL The 

smaller 

the better 

531.1 

(13.25) 
497.2 

(12.15) 

2641.6 

(49.37) 
2592.3 

(47.87) 

5271.1 

(97.62) 
5160.6 

(94.36) 

AIC ” 539.1 

(13.25) 
507.2 

(12.15) 

2649.6 

(49.37) 
2602.3 

(47.87) 

5279.1 

(97.62) 
5170.6 

(94.36) 

BIC ” 549.5 

(13.25) 
520.2 

(12.15) 

2666.4 

(49.37) 
2623.4 

(47.87) 

5298.7 

(97.62) 
5195.1 

(94.36) 

Sample mean=5.4 for sample size N=100 

Sample mean=5.2 for sample size N=500 

Sample mean=5.5 for sample size N=1000 
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Table 4.8 Bias summaries using data generated by GW with high means 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  0.02 -0.02 -0.01 0 0 0 

1  -0.03 0.02 0.01 -0.01 -0.03 -0.01 

2  -0.04 0.01 0.04 0.04 0.02 0.01 

 

Table 4.9 RMSE summaries using data generated by GW with high means 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.35 0.18 0.27 0.09 0.05 0.01 

1  
0.34 0.18 0.26 0.09 0.06 0.01 

2  
0.35 0.17 0.26 0.10 0.05 0.01 

 

In conclusion, GW model performs better when the sample mean increases and sample 

size has a significant effect on the estimation process. The values of estimated parameter 

are closer to the true value when sample size increases. The estimates of 0 ， 1  and  

2  always have low bias and low standard errors for GW. 

 

It also can be seen from the above tables that GW significantly fits better than NB for the 

over-dispersed data generated by GW because the value of AIC and BIC is constantly 

smaller for GW than NB and the bias and RMSE of estimated parameter are lower for 

GW compared with NB for different sample size and sample mean.  

 

On the other hand, the plots in Figures 4.1-4.3 visualize the goodness-of-fit comparison 

between the generated (or observed) frequencies and the predicted frequencies from two 

different kinds of models. It clearly shows that the GW model provides better result than 

the NB model.  
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Figure 4.1 Predicted vesus simulated values for GW data of low mean 

 

 

 

Figure 4. 2 Predicted vesus simulated values for GW data of moderate mean 
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Figure 4. 3 Predicted vesus simulated values for GW data of high mean 

4.2 Scenario 2 

 

The objective of this scenario is to examine how well a GW regression model can 

approximate (or replicate) the data when they are originally generated by a NB 

distribution. In this scenario, the effect of dispersion parameter of Negative Binomial 

distribution is also analyzed.  

4.2.1 Data Generation Method 

For generating NB random variables, a similar simulation protocol as the one described 

for the first scenario was used. That is, the count was produced using a two-covariate 

functional form model, where the Poisson mean was assumed to be gamma distributed.  

 

The random variables ( y ) were simulated in the following steps: 

Step 1: Set the sample size, β and the parameters of Negative Binomial distribution to 

the required values. 
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In detail, the datasets were generated based on three scenarios of different dispersion 

values by selecting the following values of the parameter:  

 

Low dispersion value:  =2, 
0  =1, 

1 = 0.5, 
2 =-0.5.  

Moderate dispersion value:  =1, 
0 =1, 

1 = 0.5, 
2 =-0.5.  

High dispersion value:    =0.5, 
0 =1, 

1 = 0.5, 
2 =-0.5.  

 

  is the inverse of dispersion parameter. Sample size 100,500 and 1000 were analyzed 

separately for this simulation. 

 

Step 2: Generate two covariates ( iX1 , iX 2 ) from the standard normal distribution. 

 

Step 3: Calculate the parameter by using assumed log-linear function, which was 

commonly encountered in highway crash analysis ii
xxx

i ee 22110
'

0



   .   

 

Step 4: Generate the count variable iY  from the PG distribution (
i , ). This simulation 

protocol will provide similar values as if the counts were produced from the PG 

protocol. 

 

Step 5: The simulated datasets were then fitted by using both GW and NB models. 

 

Step 6: Repeat Steps 1 through 5 50 times and compare the average value of simulated 

results with the theoretical values and assess the general performance of the models.  
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4.2.2 Modeling Results  

This section documents the modeling results when the GW and NB models were fitted 

with the simulated data generated from NB distribution. Tables 4.10-4.12 summarize the 

parameter estimation results together with bias and RMSE for the highly overdispersed 

datasets.  

 

It can be seen from the following tables that the sample size still has a significant effect 

on the estimation process, although the effect is not as significant as in datasets 

generated from GW distribution. The values of estimated parameter are closer to the true 

value when sample size increases from 100 to 1000. The estimates of 
0 ,

1   and   
2  

have low bias and RMSE for both GW and NB model when sample size above 500 and 

the value of AIC and BIC for both models are almost the same for all the highly 

dispersed datasets. In other words, the GW model was able to reproduce the theoretical 

parameters and provide the same performance as NB model for the highly 

over-dispersed data generated by NB distribution with a relative large sample size.  
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Table 4.10 Parameter estimation results for both models using data generated by 

NB with high-dispersed datasets (Φ=0.5) 
 True 

values 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
1 0.91 

(0.18) 

0.91 

(0.20) 

1.02 

(0.07) 

1.02 

(0.06) 

1.01 

(0.04) 

1.01 

(0.04) 

1  
0.5 0.47 

(0.16) 

0.47 

(0.14) 

0.52 

(0.07) 

0.52 

(0.06) 

0.51 

(0.04) 

0.50 

(0.04) 

2  -0.5 -0.55 

(0.18) 

-0.56 

(0.15) 

-0.51 

(0.07) 

-0.51 

(0.07) 

-0.48 

(0.04) 

-0.48 

(0.04) 
  - - 31.5 - 33.4 

 

 34.2 
 

k - - 0.57 - 0.61 
 

 0.64 
 

  0.5 0.56(0.17) - 0.52(0.11) - 0.49(0.06)  

-2LL The 

smaller 

the 

better 

438.1 

(11.68) 
434.6 

(11.67) 

2147.6 

(52.14) 
2147.5 

(52.14) 

4296.1 

(98.32) 
4295.4 

(98.32) 

AIC ” 446.1 

(11.68) 
444.6 

(11.67) 

2155.6 

(52.14) 

2157.5 

(52.14) 
4304.1 

(98.32) 

4305.4 

(98.32) 

BIC ” 456.5 

(11.68) 

457.6 

(11.67) 

2172.5 

(52.14) 

2178.5 

(52.14) 
4323.7 

(98.32) 

4329.9 

(98.32) 

NOTE: ( ) indicate the standard error of the estimate 

 

Table 4. 11 Bias summaries for data generated by NB with high-dispersed datasets 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
-0.09 -0.09 0.02 0.02 0.01 0.01 

1  
-0.03 -0.03 0.02 0.02 0.01 0 

2  
-0.05 -0.06 -0.01 -0.01 0.02 0.02 
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Table 4. 12 RMSE summaries using data generated by NB with high-dispersed 

datasets 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.20 0.22 0.07 0.06 0.04 0.04 

1  
0.16 0.14 0.07 0.06 0.04 0.04 

2  
0.19 0.16 0.07 0.07 0.04 0.04 

 

Tables 4.13-4.15 summarize the parameter estimation results together with bias and 

RMSE for the moderate-dispersed datasets. It can be seen from the following tables that 

the sample size has a less effect on the estimation process compared to highly 

overdispersed datasets generated from NB distribution. The values of estimated 

parameter are closer to the true value when sample size increases from 100 to 1000 but 

the difference is not very obvious. The estimates of 
0 ,

1   and 
2  have very low bias 

and RMSE for both GW and NB model when sample size above 500 and the value of 

AIC and BIC for both models are almost the same for all the moderate dispersed datasets. 

It can be concluded that the GW model was able to reproduce the “true” parameters for a 

relative large sample size of moderate dispersed data and provide the same performance 

as NB model for the moderate dispersed data generated by NB distribution. 
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Table 4. 13 Parameter estimation results for both models using data generated by 

NB with moderate-dispersed datasets (Φ=1) 
 True 

value 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
1 0.94 

(0.11) 

0.94 

(0.10) 

0.99 

(0.06) 

0.99 

(0.06) 

1.01 

(0.04) 

1.01 

(0.04) 

1  
0.5 0.53 

(0.11) 
0.54 

(0.12) 
0.48 

(0.06) 
0.48 

(0.06) 
0.51 

(0.04) 
0.51 

(0.04) 

2  
-0.5 -0.48 

(0.12) 

-0.48 

(0.13) 

-0.48 

(0.06) 

-0.48 

(0.06) 

-0.49 

(0.04) 

-0.49 

(0.04) 


 - - 64.2 
 

- 73.8 
 

 72.3 
 

k - - 1.1 

 

- 1.6 

 

 1.4 

 

  
1 1.1(0.23) - 0.93(0.09) - 0.99(0.06)  

-2LL The 
smaller 

the 

better 

421.7 
(11.32) 

421.4 

(11.32) 
2123.5 
(51.24) 

2122.6 

(51.23) 
4324.1 
(96.32) 

4324.0 

(96.32) 

AIC ” 429.7 

(11.32) 
431.4 

(11.32) 
2131.5 

(51.24) 
2132.6 
(51.23) 

4332.1 

(96.32) 
4334.0 
(96.32) 

BIC ” 440.1 

(11.32) 

444.4 

(11.32) 
2148.3 

(51.24) 

2153.6 

(51.23) 
4351.7 

(96.32) 

4358.5 

(96.32) 

NOTE: ( ) indicate the standard error of the estimate 

 

Table 4. 14 Bias summaries using data generated by NB with moderate-dispersed 

datasets 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
-0.06 -0.06 -0.01 -0.01 0.01 0.01 

1  
0.03 0.04 -0.02 -0.02 0.01 0.01 

2  
0.02 0.02 0.02 0.02 0.01 0.01 

 

 

Table 4. 15 RMSE summaries using data generated by NB with moderate-dispersed 

datasets 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.13 0.12 0.06 0.06 0.04 0.04 

1  
0.11 0.13 0.06 0.06 0.04 0.04 

2  
0.12 0.13 0.06 0.06 0.04 0.04 
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Tables 4.16-4.18 summarize the parameter estimation results together with bias and 

RMSE for the low-dispersed datasets. It can be seen from the following tables that the 

effect of sample size is not very obvious on the estimation process. The values of 

estimated parameter are closer to the true value when sample size increases from 100 to 

1000. The estimates of 
0 ,

1   and 
2  have low bias and RMSE for both GW and NB 

model especially when sample size above 500 and the value of AIC and BIC for both 

models are almost the same for all the low dispersed datasets. It can be concluded that 

the GW model was able to provide the same performance as NB model for the low 

dispersed data generated by NB distribution and to reproduce the “true” parameters. 

 

 

Table 4.16 parameter estimation results for both models using data generated by 

NB with low-dispersed datasets (Φ=2) 
 True 

values 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
1 0.97 

(0.08) 

0.97 

(0.08) 

1.01 

(0.05) 

1.01 

(0.05) 

1.00 

(0.03) 

0.99 

(0.03) 

1  
0.5 0.49 

(0.08) 

0.49 

(0.08) 

0.49 

(0.05) 

0.49 

(0.05) 

0.51 

(0.03) 

0.51 

(0.03) 

2  
-0.5 -0.48 

(0.10) 

-0.48 

(0.10) 

-0.51 

(0.05) 

-0.51 

(0.05) 

-0.49 

(0.03) 

-0.49 

(0.03) 

  - - 22354 
 

- 23024 
 

 21265 
 

k - - 1.85 
 

- 1.89 
 

 2.14 
 

  2 1.95 

(0.42) 

- 1.97 

(0.21) 

- 2.02 

(0.14) 

 

-2LL The 

smaller 

the better 

412.3 

(11.16) 
412.2 

(11.16) 

2181.6 

(50.62) 
2181.5 

(50.62) 

4156.9 

(94.69) 
4156.7 

(94.69) 

AIC ” 420.3 

(11.16) 

422.2 

(11.16) 
2189.6 

(50.62) 

2191.5 

(50.62) 
4164.9 

(94.69) 

4166.7 

(94.69) 

BIC ” 430.7 

(11.16) 

435.2 

(11.16) 
2206.4 

(50.62) 

2212.5 

(50.62) 
4184.5 

(94.69) 

4191.2 

(94.69) 

NOTE: ( ) indicate the standard error of the estimate 
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Table 4.17 Bias summaries using data generated by NB with low-dispersed datasets 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
-0.03 -0.03 0.01 0.01 0 -0.01 

1  
-0.01 -0.01 -0.01 -0.01 0.01 0.01 

2  
0.02 0.02 -0.01 -0.01 0.01 0.01 

 

Table 4. 18 RMSE summaries for data generated by NB with low-dispersed 

datasets 

Estimated 

parameters 

N=100 N=500 N=1000 

NB GW NB GW NB GW 

0  
0.09 0.09 0.05 0.05 0.03 0.03 

1  
0.08 0.08 0.05 0.05 0.03 0.03 

2  
0.10 0.10 0.05 0.05 0.03 0.03 

 

In conclusion, it can be seen from above analysis that the sample size also has a 

significant effect on the estimation process for datasets generated by NB distribution 

although not as large as on datasets generated by GW distribution. It can be seen from 

above tables that the values of estimated parameter are closer to the true value when 

sample size increases. The estimates of
0 ,

1   and 
2  always have a small bias and 

low standard errors for both models applied in datasets with relative large simple size. 

 

The results of also show that the value of AIC and BIC for both models is almost the 

same and the bias and RMSE of estimated parameters are also very close, which means 

that the GW converges to the NB model. It can therefore be argued that the GW can 

approximate the data which were originally generated by a Negative Binomial 

distribution. Furthermore, the GW could technically be used over the NB when sample 

size is relatively large. However, the GW is more complex to estimate than the NB 

model. 
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In similar as Scenario 1, the plots in Figures 4.4-4.6 visualize the goodness-of-fit 

comparison between the generated (or observed) frequencies and the predicted 

frequencies from two different kinds of models applied in overdispersed datasets 

generated from NB distribution. It clearly shows that the goodness of fit is almost the 

same between the NB model and the GW regression model for these simulated datasets.  

 

 

Figure 4. 4 Predicted versus simulated values for NB data Φ=2 
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Figure 4.5 Predicted versus simulated values for NB data Φ=1 

 

Figure 4.6 Predicted versus simulated values for NB data Φ=0.5 
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4.3 Scenario 3 

 

The objective of this scenario consists of examining the performance of the GW and NB 

models when the simulated dataset is produced from a two-component finite Poisson 

mixture model.  

4.3.1 Data Generation Method 

For this scenario, the random variables ( y ) were simulated in the following steps: 

 

Step 1: Set sample size, β and the parameters of two-mixture Poisson distribution to the 

required values. 

 

Based on the two components’ means, the FMP-2 random variable for site i  was 

generated by introducing a mixing weight w . Thus, the random variable for the site i  

was generated from the Poisson ( 1,i ) distribution with probability w  and generated 

from the Poisson ( 2,i ) distribution with probability 1- w . The datasets were generated 

by selecting the following values for these parameters: w =0.2 and
0 =2, 

1 = 0.5, 
2

=-0.5 for Poisson ( 1,i
 ) distribution to represent higher crash mean population and 

0 =0, 

1 = 0.5, 
2 =-0.5 for Poisson ( 2,i ) distribution to represent lower crash mean 

population. The generated data could be classified as being highly dispersed and 

resemble empirical crash frequency plots which are commonly to be encountered in 

highway crash analysis. Sample size 100,500 and 1000 were analyzed separately for this 

simulation. 

 

Step 2: Generate two covariates ( iX1 , iX 2 ) from the standard normal distribution. 

 

Step 3: Calculate the parameter by using assumed log-linear function.   
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Step 4: Generate the count variable iy  from the two-mixture Poisson distribution. 

 

Step 5: The simulated datasets were then fitted by using FMP-2, GW and NB models. 

 

Step 6: Repeat Steps 1 through 5 50 times and compare the average value of simulated 

results with the theoretical values and assess the general performance of the models.  

4.3.2 Modeling Results 

The simulation result of parameter estimation was shown in the following Tables 

4.19-4.23. It can be seen in Table 4.19 that the values of estimated parameter are closer 

to the true value when sample size increases. The estimates of 
1 and 

2  have a smaller 

bias and lower standard errors when sample size above 500. 

 

It also can be seen from the above table that GW performs better than the NB model for 

data generated by the two-component finite mixture of Poisson distribution, shown by 

the AIC and BIC values and the smaller confidence intervals. It could therefore be 

argued that the GW is more flexible than the NB for over dispersed crash data drawn 

from two heterogeneous populations. 
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Table 4.19 Parameter estimation results for both models using data generated by  

FMP-2 model 
 N=100 N=500 N=1000 

FMP-2 NB GW FMP-2 NB GW FMP-2 NB GW 

Comp1 Comp2 Comp1 Comp2 Comp1 Comp2 

0  
2.06 

(0.10) 

0.04 

(0.12) 

0.86 

(0.12) 

0.83 

(0.12) 

1.98 

(0.05) 

0.02 

(0.06) 

0.84 

(0.04) 

0.81 

(0.06) 

1.99 

(0.03) 

-0.01 

(0.03) 

0.82 

(0.03) 

0.81 

(0.02) 

1  
-0.52 

(0.11) 

-0.55 

(0.12) 

-0.38 

(0.12) 

-0.42 

(0.11) 

-0.51 

(0.05) 

-0.51 

(0.05) 

-0.52 

(0.05) 

-0.51 

(0.04) 

-0.51 

(0.03) 

-0.51 

(0.03) 

-0.51 

(0.02) 

-0.49 

(0.03) 

2  
0.44 

(0.12) 

0.47 

(0.11) 

0.61 

(0.13) 

0.44 

(0.11) 

0.48 

(0.04) 

0.49 

(0.05) 

0.48 

(0.05) 

0.48 

(0.04) 

0.51 

(0.02) 

0.51 

(0.03) 

0.49 

(0.03) 

0.49 

(0.03) 

w 0.18 0.82 - - 0.19 0.81 - - 0.2 0.8 - - 


 - - - 13.1 - - - 6.53 - -  5.27 

k - - - 1.82 - - - 2.01 - -  2.23 

Φ - - 1.08 

(0.21) 

- - - 0.97 

(0.06) 

- - - 1.01 

(0.04) 

- 

-2LL 358 

(8.26) 

417 

(8.68) 

382 

(8.49) 

1889 

(38.26) 

2141 

(39.96) 

2090 

(38.97) 

3916 

(82.13) 

4104 

(84.63) 

4052 

(83.21) 

AIC 372 

(8.26) 

425 

(8.68) 

392 

(8.49) 

1903 

(38.26) 

2149 

(39.96) 

2100 

(38.97) 

3930 

(82.13) 

4112 

(84.63) 

4062 

(83.21) 

BIC 390 

(8.26) 

426 

(8.68) 

406 

(8.49) 

1932 

(38.26) 

2153 

(39.96) 

2121 

(38.97) 

3965 

(82.13) 

4128 

(84.63) 

4086 

(83.21) 

NOTE: ( ) indicate the standard error of the estimate 

 

 

Table 4.20 Bias summaries using data generated by FMP-2 models 

(component 1) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMP-2 NB GW FMP-2 NB GW FMP-2 NB GW 

0  
0.06 - - -0.02 - - -0.03 - - 

1  
-0.02 0.12 0.08 -0.01 -0.02 -0.01 -0.01 -0.01 0.01 

2  
-0.06 0.11 -0.06 -0.02 -0.02 -0.02 0.01 -0.01 -0.01 
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Table 4.21 RMSE summaries using data generated by FMP-2 models 

(component 1) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMP-2 NB GW FMP-2 NB GW FMP-2 NB GW 

0  
0.12 - - 0.05 - - 0.04 - - 

1  
0.11 0.17 0.14 0.05 0.05 0.05 0.03 0.02 0.03 

2  
0.13 0.17 0.14 0.05 0.05 0.05 0.03 0.03 0.03 

 

 

Table 4.22 Bias summaries using data generated by FMP-2 models 

(component 2) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMP-2 NB GW FMP-2 NB GW FMP-2 NB GW 

0  0.04   0.02   -0.007   

1  -0.05 0.12 0.08 -0.01 -0.02 -0.01 -0.01 -0.01 0.01 

2  
-0.03 0.11 -0.06 -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 

 

 

Table 4.23 RMSE summaries using data generated by FMP-2 models 

( component 2) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMP-2 NB GW FMP-2 NB GW FMP-2 NB GW 

0  
0.13 - - 0.06 - - 0.03 0.00 0.00 

1  
0.13 0.26 0.22 0.05 0.04 0.01 0.03 0.02 0.01 

2  
0.11 0.20 0.11 0.05 0.06 0.04 0.03 0.02 0.01 

 

The goodness of fit was compared and presented in the following Figure 4.7: it clearly 

shows that the GW model provides better result than the NB model for overdispersed 

data drawn from two distinct Poisson distribution. 
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Figure 4.7 Predicted versus simulated values for FMP-2 data (N=1000) 

4.4 Scenario 4 

 

It is shown in the above section that the GW model provides better goodness of fit than 

the NB model for overdispersed data drawn from two distinct Poisson distribution. In 

this section, the simulated dataset is produced from a two-component finite Negative 

Binomial distribution for the purpose of comparing the performance of these two models 

on overdispersed data in further.  

4.4.1 Data Generation Method 

For this scenario, the random variables ( y ) were simulated in the following steps: 

Step 1: Similar as the simulated data generated by two-mixture Poisson distribution, set 

sample size and the parameters of two-mixture NB distribution to the required values. 
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The datasets were generated by selecting the following values for these parameters: w

=0.2 and
0 =2, 

1 = 0.5, 
2 =-0.5 51  for NB( 1,i

 ) distribution to represent higher 

crash mean population and 
0 =0, 

1 = 0.5, 
2 =-0.5 52  for NB( 2,i ) distribution 

to represent lower crash mean population. Sample size 100,500 and 1000 were analyzed 

separately for this simulation. 

 

Step 2: Generate two covariates ( iX1 , iX 2 ) from the standard normal distribution. 

 

Step 3: Calculate the parameter by using assumed log-linear function.   

  

Step 4: Generate the count variable iy  from the two-mixture NB distribution. 

 

Step 5: The simulated datasets were then fitted by using FMNB-2, GW and NB models. 

 

Step 6: Repeat Steps 1 through 5 50 times and compare the average value of simulated 

results with the theoretical values and assess the general performance of the models.  

4.4.2 Modeling Results 

The simulation result of parameter estimation was shown in the following Tables 

4.24-4.27. Similar as the results from above section, it can be seen in Table 4.24 that the 

values of estimated parameter are closer to the true value when sample size increases.  

 

It also can be seen from the above table that GW performs better than the NB model for 

data generated by the two-component finite mixture of NB distribution because of the 

larger log likelihood values and smaller AIC and BIC values. It could therefore be 

further confirmed that the GW is more flexible than the NB for over dispersed crash data 

drawn from two heterogeneous populations. 
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Table 4.24 Parameter estimation results for both models using data generated by 

FMNB-2 model 
 N=100 N=500 N=1000 

FMP-2 NB GW FMP-2 NB GW FMP-2 NB GW 

Comp

1 

Comp

2 

Comp

1 

Comp

2 

Comp

1 

Comp

2 

0  
1.76 

(0.34) 

-0.12 

(0.13) 

1.03 

(0.14) 

1.11 

(0.19

) 

1.89 

(0.13) 

0.05 

(0.04) 

0.90 

(0.06) 

0.94 

(0.08) 

1.97 

(0.08) 

-0.03 

(0.05) 

0.82 

(0.03) 

0.89 

(0.05) 

1  
-0.54 

(0.23) 

-0.55 

(0.13) 

-0.61 

(0.12) 

-0.57 

(0.12

) 

-0.53 

(0.12) 

-0.47 

(0.06) 

-0.40 

(0.06) 

-0.46 

(0.07) 

-0.53 

(0.04) 

-0.53 

(0.04) 

-0.52 

(0.02) 

-0.49 

(0.04) 

2  
0.42 

(0.14) 

0.46 

(0.13) 

0.26 

(0.14) 

0.36 

(0.13

) 

0.46 

(0.13) 

0.46 

(0.05) 

0.42 

(0.06) 

0.45 

(0.07) 

0.52 

(0.04) 

0.52 

(0.04) 

0.48 

(0.03) 

0.49 

(0.04) 

w 0.17 0.83 - - 0.18 0.82 - - 0.20 0.80 - - 


 - - - 4.52 - - - 3.22 - -  3.31 

k - - - 2.81 - - - 2.46 - -  2.27 

Φ 3.89 

(1.46) 

4.36 

(1.43) 

0.74 

(0.14) 

- 4.45 

(1.16) 

4.35 

(1.02) 

0.71 

(0.08) 

 

- 4.68 

(0.76) 

4.78 

(0.87) 

1.01 

(0.04) 

- 

-2L

L 

368 

(9.01) 

475 

(10.25

) 

426 

(9.58

) 

1892 

(48.31) 

2115 

(42.36

) 

2081 

(40.52

) 

3951 

(83.24) 

4160 

(87.98

) 

4124 

(86.54

) 

AIC 386 

(9.01) 

483 

(10.25

) 

436 

(9.58

) 

1910 

(48.31) 

2123 

(42.36

) 

2091 

(40.52

) 

3969 

(83.24) 

4168 

(87.98

) 

4134 

(86.54

) 

BIC 409 

(9.01) 

484 

(10.25

) 

450 

(9.58

) 

1948 

(48.31) 

2127 

(42.36

) 

2112 

(40.52

) 

4013 

(83.24) 

4184 

(87.98

) 

4160 

(86.54

) 
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Table 4.25 Bias summaries using data generated by FMNB-2 models 

(component 1) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMNB-2 NB GW FMNB-2 NB GW FMNB-2 NB GW 

0  -0.24 - - -0.02 - - -0.03 - - 

1  -0.04 -0.11 -0.07 -0.03 0.10 0.04 -0.03 -0.02 0.01 

2  -0.08 -0.24 -0.14 -0.04 -0.08 -0.05 0.02 -0.02 -0.01 

 

Table 4.26 RMSE summaries using data generated by FMNB-2 models 

(component 1) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMNB-2 NB GW FMNB-2 NB GW FMNB-2 NB GW 

0  0.42 - - 0.13 - - 0.09 - - 

1  0.23 0.16 0.14 0.12 0.12 0.08 0.05 0.03 0.04 

2  0.16 0.28 0.19 0.14 0.10 0.09 0.04 0.04 0.04 

 

Table 4.27 Bias summaries using data generated by FMNB-2 models 

(component 2) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMNB-2 NB GW FMNB-2 NB GW FMNB-2 NB GW 

0  -0.12 - - 0.05 - - -0.007 - - 

1  -0.05 -0.11 -0.07 0.03 0.1 0.04 -0.03 -0.02 0.01 

2  -0.04 -0.24 -0.14 -0.04 -0.08 -0.05 0.02 -0.02 -0.01 

 

Table 4.28 RMSE summaries using data generated by FMNB-2 models 

( component 2) 

Estimated 

parameters 

N=100 N=500 N=1000 

FMNB-2 NB GW FMNB-2 NB GW FMNB-2 NB GW 

0  0.18 - - 0.06 - - 0.05 - - 

1  0.14 0.16 0.14 0.07 0.12 0.08 0.05 0.03 0.04 

2  0.14 0.28 0.19 0.06 0.10 0.09 0.04 0.04 0.04 
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The goodness of fit was compared and presented in the following Figure 4.8: it clearly 

shows that the GW model provides better result than the NB model for overdispersed 

data composed of two NB distributions. 

 

 

 

Figure 4.8 Predicted versus simulated values for FMNB-2 data (N=1000) 

 

4.5 Chapter Summary 

 

This chapter has described the compared results of performance of both GW and NB 

models on different kinds of datasets. The simulation results show several key findings.  

The first simulated scenario illustrates the good numerical approximation of GW 

regression models can provide and the poor capability of the traditional NB model when 

the underlying distribution comes from GW distribution. In addition, it is shown that the 



 

63 

 

sample size and sample mean have a significant effect on the estimation process. The 

parameter accuracy will increase as the sample size and sample mean increase, as 

expected. 

 

Secondly, simulated datasets were used to illustrate the appropriateness of the GW 

model specifications when the data were actually generated from a Negative Binomial 

distribution with different levels of dispersion. 

 

Finally, to examine potential bias with using either NB distribution or GW distribution 

to compare performance, simulated datasets were also generated using a 

two-components finite mixture of Poisson distribution and two-components finite 

mixture of NB distribution . It was shown that GW performed better than NB model for 

datasets generated from two heterogeneous populations. The next chapter focuses on 

discussion of performance of GW models on empirical crash datasets and investigation 

of source of overdispersion for these datasets. 
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CHAPTER V 

EMPIRICAL CRASH DATA ANALYSIS 

 

Simulated scenarios were analyzed in the previous chapter to illustrate the good 

performance of the GW model in accounting for over-dispersed data. It is necessary to 

examine the underlying assumption in the GW model in further when this model is 

applied to empirical crash data. It is assumed that all road segments or intersections are 

not exposed to exactly the same external risk of accident. Differences in exposure to 

external factors from one segment or intersection to another are known as differences in 

accident liability, as distinguished from constitutional or internal differences which are 

known as differences in proneness. In practice, the effects of proneness and liability are 

confounded and inseparable when the Negative Binomial is fitted. However, these two 

parts of variance can be identified by using the GW model. 

 

The objective of this chapter is to apply the GW model to actual vehicle crash data and 

to demonstrate the model's ability to discern the sources of variance in the data. The 

results of these models are compared to those produced from the standard NB regression 

model in terms of both GOF and information about sources of variance. 

 

Two kinds of datasets are considered for this application: intersection crash data (Section 

5.1) and segment crash data (Section 5.2). For intersection crash data, both the GW and 

NB models were used to analyze the signalized intersection crash data obtained from 

Toronto, Ontario.  

 

For segment crash data, this research utilized several multilane segments of crash data 

for highways in Texas, Indiana, and Michigan; all of these segments have been analyzed 

by other researchers for other studies (Geedipally and Lord, 2011). Compared to the 

intersection dataset contains only traffic flow variables, the segment dataset has more 
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covariates (such as median width and shoulder width) as well as traffic flow. Therefore, 

it is possible to examine whether the performance of the GW would work better than the 

NB both in a model with few covariates and in a more fully-specified model. It should 

be noted that the Michigan crash dataset was utilized to compare the performance of the 

NB, NB-L, and GW regression models to improve the completeness of this research. 

5.1 Intersection Crash Data Analysis 

 

This section presents the dataset and analysis results for the intersection crash data. 

5.1.1 Toronto Data Description 

In order to test the performance of the GW model for real intersection crash data, data 

collected at urban 4-legged signalized intersections in Toronto were used. Even though 

the dataset was collected a long time ago, there are two main advantages to using this 

dataset. First, this dataset has been analyzed by many traffic safety researchers for 

different purposes and the quality of this dataset has been confirmed (Lord, 2009; 

Persaud et al., 2002; Miaou and Lord, 2003; Lord et al., 2008). Secondly, the dataset 

contains only two covariates: traffic flows for major and minor approaches. Many 

factors that may affect the number of crashes have not been observed or included in the 

dataset. Therefore, it is meaningful to apply the GW model to this dataset to examine the 

different sources of variance of crashes by dividing the total variances into three parts: 

randomness, proneness, and liability.  Such an application is one of the major strengths 

of the GW model. 

 

The summary statistics for the dataset are listed in Table 5.1. There are 868 intersections 

in total; 10,030 reported crashes occurred on the road network. The number of crashes 

on each site varies from 0 to 54, and the sample mean and sample variance equals 11.56 

(crashes/intersection) and 100 (crashes/intersection) separately. 
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Since the type of crashes includes both intersection-related and non-injury crashes, the 

value of the sample mean is high. The observed crash frequency plot is shown in Figure 

5.1. The traffic volumes vary from 5,469 to 72,178 vehicles/day for major approaches, 

and from 53 to 42,644 vehicles/day for minor approaches. The more detailed 

descriptions of the dataset are described in Lord (2000). 

 

Table 5.1 Summary statistics for intersection dataset 

Variable Maximum Minimum Average Standard 

Deviation 

Major Approach (F1) 72718 5469 28045 10660 

Minor Approach(F2) 42644 53 11010 8599 

Crashes 54 0 11.56 10.02 

 

 

 

Figure 5. 1 Plot of Toronto crash frequency 
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5.1.2 Mean Functional Form Discussion 

Although there are a lot of factors that may affect the number of crashes near 

intersections, some transportation safety researchers still prefer models with the only 

traffic flow variable over models including many other covariates because they can be 

estimated and calibrated easily (Persaud et al., 2002; Lord and Bonneson, 2005). 

However, this kind of model may sometimes be significantly affected by the bias 

generated from omitted variables (Lord and Mannering, 2010). Miaou and Lord (2003) 

compiled a list of five commonly used functional forms based on previous studies: 
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Among these functional forms, the following functional form is the most popular, and 

has been most favored by transportation safety modelers for use in modeling crash data 

at intersections. It should be noted that it does not appropriately fit the data near the 

boundary conditions since the crash mean should not be zero unless both F1 and F2 are 

zero. 
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(5.2) 

 

To overcome the boundary value limitation, Miaou and Lord (2003) proposed an 

alternative form (see Equation 5.3) which represents two different risk levels for vehicles 

entering the two approaches. 
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 )exp()exp( 12022101 iiiii FFFF                                (5.3)
    

In this chapter, the empirical data was fitted based on the most popular functional form 

shown in Equation (5.2).  

5.1.3 Modeling Results 

The analysis of the modeling results is divided into three parts: a goodness of fit analysis, 

a source of variance analysis, and a covariate sensitivity analysis.  

5.1.3.1 Goodness of Fit Analysis 

The goodness of fit results of the NB and GW models are presented in the following 

table. The coefficient values of both covariates in both of the models have the same sign 

and are close to each other. The crashes increase with the increase in traffic flow in both 

models. Both models indicate that the crash risk increases at a decreasing rate as traffic 

flow increases because the coefficient is below 1. 

 

Table 5.2 Modeling results for the Toronto data 

Variable NB GW 

Intercept -10.24(0.65) -10.24(0.65) 

Ln(F1) 0.62(0.06) 0.62(0.01) 

Ln(F2) 0.68(0.03) 0.69(0.02) 
  - 8.2e+05 

K - 7.15 

1   0.14(0.01) - 

-2LL (the smaller the 

better) 

5069 5069.20 

AIC(the smaller the better) 5077 5079.20 

BIC(the smaller the better) 5096 5103.10 

MAD 4.14 4.18 

MSPE 33.50 32.87 

Pearson 2  2343.70 2127.30 

NOTE: ( ) indicates the standard deviation 
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The goodness of fit for both models can also be compared in the following figure by 

comparing the observed and predicted frequencies of each crash count outcome using 

the same method mentioned in Chapter IV. 

 

Figure 5. 2 Goodness of fit comparison between NB and GW 
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Based on the modeling results shown in Table 5.2, almost all goodness of fit statistical 

criteria are close to each other for both kinds of models; this indicates that both models 

produce a satisfactory fit for this intersection dataset. In detail, the values of AIC, BIC 

and MAD for the NB model are slightly smaller than the values for the GW model, and 

the values of MSPE and Pearson 2  for the NB model are slightly larger than those of 

the GW model.  

 

It is also shown in Figure 5.2 that the difference between the NB and GW models is very 

small, and the discrepancy of predicted frequencies between the two models is almost 

negligible. It should be noted that although the standard NB model works very well for 

this intersection dataset, it does not mean that the NB model will produce the same 

satisfactory fit as the GW model for the other crash datasets. 

5.1.3.2 Sources of Variance Analysis 

As mentioned in previous sections, although the standard NB model works very well, it 

cannot provide adequate information about the potential sources of over-dispersion. In 

this case, the GW model can be used to examine the possible existence of different 

sources of variance for crashes in each intersection and to identify the quantity of each 

part of variance. 

 

From a statistical viewpoint, the number of crashes occurring in each intersection is a 

discrete count variable with a tendency towards over-dispersion. This excess variability 

is different from the Poisson model which considers only the effect of randomness. The 

variance also is caused by external factors observable by covariates that significantly 

influence the risk of crashes (for instance, in this intersection dataset, the ADT on each 

approach of intersections). These covariates would determine what in accident theory is 

called liability.  

 

When it comes to crashes that occur in each intersection, there is a feature that is not 

related to external factors but instead is associated with the internal characteristics of 
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each intersection that are difficult to observe (that is, with their internal probability to 

cause accident, which in accident theory is called the proneness of each intersection). 

There are several internal characteristics of intersections related to that intersection's 

proneness such as the friction of the road surface, the damage condition of intersection, 

the maintenance condition of the traffic signs and the pavement markings at the 

intersection, the operation of traffic signals at the intersection, and so on. 

 

In this context, it can be seen that the proposed GW model is capable of distinguishing 

these three sources of variability and of providing more information about the data than 

any other regression model (such as the Poisson or the Negative Binomial models) 

(Rodríguez et al., 2009). 

 

Specific to this crash dataset, the GW model assumes that proneness represents 

over-dispersion due to between-intersection variations in their internal probability of 

causing accidents with the same ADT, while liability represents over-dispersion due to 

missing covariates which would affect intersections with the same ADT. 

 

Table 5.3 shows the variance of each component for this crash dataset. Each variance is 

quantified according to Table 3.1 and the GW modeling results shown in Table 5.2. 

 

Table 5. 3 Variance of each component for the Toronto crash data 

Source of variability Variance Variance rate 

Randomness  x  

x15.7

15.7
 

Liability 0 0  

Proneness 


15.7

2

x  
x

x





15.7
 

Total 
 ( x +

15.7

2

x
) 

1 
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Figure 5.3 shows the fractions of variance attributed to randomness, liability, and 

proneness for different means of crashes 
x  which were determined by all of the 

values of the covariates included in the model. The relationships among the covariate 

ADT and the fractions of each component are also indicated in Figures 5.4 and 5.5.   

 

 

 

Figure 5. 3 Relationships among the fractions of variance for each component and 

mean of each crash 

 

 

Figure 5.4 Relationships between fractions of variance for each component and 

major traffic flow (F2=5000) 
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Figure 5. 5 Relationships between fractions of variance for each component and 

minor traffic flow (F1=20000) 

 

It can be seen in Figures 5.3 to 5.5, the randomness decreases from 1 to 0.41 as the mean 

of crashes in each intersection increases from 0 to 10, which means that the randomness 

decreases when the ADT increases as the proneness increases. The fraction of proneness 

is more important in intersections with a higher ADT, which means that the source of 

over-dispersion comes more from proneness for those intersections with a higher ADT. 

In the major approach, the fraction of proneness increases from 0.25 to 0.51 with an 

increase in the average daily traffic volume from 5,000 to 30,000; in the minor approach, 

the fraction increases from 0.45 to 0.63 with an increase in the average daily traffic 

volume from 5,000 to 15,000. As was mentioned earlier, several internal characteristics 

of intersections, such as the friction of the road surface, the damage condition of the 

intersection, the maintenance condition of the traffic signs and pavement markings, and 

the operation of traffic signals can be related to the proneness. Therefore, the effects of 

these internal characteristics on the over-dispersion of traffic crashes seem to be more 

significant for the road segments with a higher ADT. Accordingly, for those segments 

with a lower mean of crashes and a lower ADT, the source of over-dispersion comes 

more from randomness. It should be noted that the liability in this dataset is always equal 

to 0 because of the extremely high value of  (according to the modeling results). As 

has been mentioned before, liability was determined by a set of external factors 

observable by covariates in the model. The external factors included in this model are 
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the ADTs in both approaches. The results indicate that the source of variance is not 

caused by the two external factors included in the GW model. Therefore, it would be 

useful for traffic engineers to take effective measures to minimize the variance of traffic 

crashes based on a better understanding of the source of the variance. Traffic engineers 

should pay more attention to factors such as the damage condition of intersections and 

the maintenance condition of traffic signs and pavement markings, especially in 

intersections with a higher ADT, which is the main source of variance of crashes when a 

dataset exhibits a highly over-dispersed characteristic.  

5.1.3.3 Covariate Sensitivity Analysis 

The functional form for modeling the Toronto data is illustrated in Equation 5.2. 

Therefore, the sensitivity analysis for the covariate ADT can be examined by using the 

following equation:  

  1

log( ) 1

iADT ADT








                                          (5.4)

 

Figure 5.6 shows the sensitivity of covariates F1 and F2 for both the NB and GW models. 

It can be seen that these two models exhibit quite similar trends. When the ADT is below 

20,000 veh/day, one unit increase in ADT would result in a significant increase in the 

logarithm form of the estimated crash. However, this increasing rate becomes smaller 

when the ADT becomes larger. 
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Figure 5. 6 Sensitivity analysis of covariate F1 for Toronto data 

 

 

Figure 5. 7 Sensitivity analysis of covariate F2 for Toronto data 
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5.2 Road Segment Data Analysis 

 

This section presents the dataset and the analysis results for the over-dispersed segment 

crash data. 

5.2.1 Texas Crash Data Analysis 

This dataset was collected from 4-lane, undivided rural segments in Texas. This dataset 

contains crash data collected from 1,499 undivided rural segments in Texas and was 

collected as a part of the NCHRP 17-29 research project (Lord et al., 2008).  This 

dataset also has been analyzed by other researchers (see, e.g., Cheng et al., 2011). The 

length of segment ranges from 0.10 to 6.28 miles and the mean of the segment length is 

0.55 mile. The mean and the variance of the crashes are 2.84 and 32.4, respectively. The 

summary statistics for the Texas data are indicated in Table 5.4. 

 

Table 5.4 Summary statistics of the characteristics of the Texas data 

Variable Minimum Maximum Mean(SD) Sum 

Number of 

crashes 

0 97 2.84(5.69) 4253 

Average daily 

traffic 

42 24800 6613(4010) - 

Lane width(feet) 9.75 16.50 12.57(1.59) - 

Total shoulder 

width (feet) 

0 40 9.96(8.02) - 

Segment 

length(miles) 

0.10 6.28 0.55(0.67) 830.49 

5.2.1.1 Modeling Estimation 

The following commonly used functional form for crash analysis was used in both 

models. 




n

j
jijX

iii eyFL 2
1

0




                                          (5.5) 

Where, 

 
i = the estimated number of crashes per year for site i ; 
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iF = vehicles per day (ADT) for segment i ; 

 
iL = length of segment i in miles; 

 y = number of years of crash data;  

 ijX = a series of covariates (e.g., shoulder width, lateral clearance, etc.) for site i ;  

 n = number of covariates; and, 

 
n .., 21
= estimated coefficients. 

The data was then fitted based on these two functional forms with the GW model and the 

NB model to compare the performance of both models.  

5.2.1.2 Goodness of Fit Analysis 

The modeling results of the NB and GW models are presented in this section. Three 

covariates are considered in this analysis. They are: average daily traffic, lane width, and 

shoulder width. Segment length was considered an offset term in order to stay consistent 

with previous research (Geedipally and Lord, 2011). The coefficient values of all three 

covariates in both models have the same sign and are close to each other. In both models, 

the crashes decrease with an increase in lane width and shoulder width. The NB model 

shows that crashes increase almost linearly with an increase in traffic flow, while the 

GW model indicates that the crash risk increases at a slower rate as traffic flow becomes 

higher because the coefficient for the flow parameter is below 1. It can be seen from the 

goodness of fit statistics that the GW model performed much better than the NB model 

because the values of AIC, BIC, MAD, MSPE, and Pearson 2
 
obtained from the GW 

model are smaller than the values obtained from the NB model. 
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Table 5. 5 Modeling results for the Texas data 

Variable NB GW 

Intercept -5.89(0.56) -6.81(0.59) 

Ln(ADT) 1.0063(0.06) 0.95(0.06) 

LW -0.1316(0.02) -0.097(0.02) 

SW -0.0316(0.01) -0.019(0.01) 
  - 3.01 

K - 1.71 

Φ 0.66(0.03) - 

-2LL (the smaller the 

better) 

6015.40 5936.20 

AIC(the smaller the better) 6025.40 5948.20 

BIC(the smaller the better) 6051.90 5980.0 

MAD 2.75 2.44 

MSPE 32.8 28.40 

Pearson 2  12148.30 11156.40 

NOTE: ( ) indicates the standard deviation 

The goodness of fit for both models is also presented in Figure 5.8 by comparing the 

observed and predicted frequencies of each crash count outcome. 

 

Figure 5.8 Goodness of fit comparison between the NB and GW models for Texas 

data 
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5.2.1.3 Sources of Variance Analysis 

As mentioned above in the section discussing intersection crash data analysis, the other 

more important advantage of the GW model is that it can provide more information 

about the sources of variance for crashes occurring in each segment. 

  

The liability was determined by a set of external factors observable by covariates 

including the ADT, the shoulder width, and the lane width in this dataset. When it comes 

to crashes occurring on each segment, there is a factor that is not related to external 

factors but is associated with the internal characteristics of each segment (characteristics 

which are difficult to observe). This is defined as the proneness of each segment. There 

are several internal characteristics of road segments that are related to the segments' 

proneness. For example, the friction of the road surface, the damage condition of the 

road segments, the maintenance condition of the rumble strips or pavement markings on 

the road segments, and so on. 

 

Specific to this crash dataset, the GW model assumes that the proneness represents the 

over-dispersion due to between-segment variations in their internal probability to cause 

accidents with the same ADT, lane width, and shoulder width, while the liability 

represents the over-dispersion due to missing covariates which would affect identically 

those segments with the same ADT, lane width, and shoulder width. 

 

Table 5.6 shows the variance of each component for this crash dataset according to 

Equation 3.1. 
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Table 5.6 Variance of each component for Texas crash data 

Source of variability Variance Variance rate 

Randomness 
x  

x71.1

4642.0

 
Liability 2.683

x  

x71.1

2457.1

 
Proneness 2.1539

2

x  

x

x





71.1
 

Total 
3.683(

x +
71.1

2

x
) 

1 

 

Figure 5.9 shows the fractions of variance attributed to randomness, liability, and 

proneness for different crash means  x  which are determined by all the values of the 

covariates included in the model. Figure 5.10 illustrates the relationship between the 

covariate for the average daily traffic and the fractions of each component for a shoulder 

width equal to 16 feet (8 feet on each side) and the lane width equal to 12 feet. These 

two values represent the largest percentage of segments with these characteristics. It 

should be noted that the relationships between other covariates included in the model 

and the fractions of each component were also investigated and are presented in 

Appendix B.  It can be seen in those figures in Appendix B that the sources of variance 

are highly dependent on traffic volumes compared to other variables included in the 

model. 
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Figure 5.9 Relationships between the fractions of each component and the means of 

crashes for Texas data 

 

 

Figure 5.10 Relationships between the fractions of each component and the average 

daily traffic for Texas data 

 

It can be seen from Figures 5.9 and 5.10 that randomness and liability decrease from 

0.27 to 0.03 and from 0.72 to 0.1 as the mean of the crashes that occur on each segment

x  increases from 0 to 10, which means that both randomness and liability decrease 
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(whereas proneness increases) when the ADT increases and the shoulder width or lane 

width decreases.  It is well-known that  x  increases with an increase in the length of 

the segment, and randomness and liability decrease (whereas proneness increases) with 

the length of segment. 

 

The fraction of proneness is more important for segments with a higher ADT, which 

means that the source of over-dispersion comes more from the proneness of those 

segments. The fraction of proneness increases from 0 to 0.79 with an increase in the 

ADT from 0 to 24,000. As mentioned above, several internal characteristics of the road 

segments such as the pavement friction, damage condition, maintenance condition of the 

rumble strips or pavement markings, and signs on the road segments can be related to 

the segment's proneness. Therefore, the effect of these internal characteristics on the 

over-dispersion of traffic crashes seems to be more significant on segments with a higher 

ADT. Accordingly, for those segments with a lower crash mean and a lower ADT, the 

source of over-dispersion comes more from the randomness and liability caused by the 

covariates included in the model. 

5.2.1.4 Covariate Sensitivity Analysis 

Figure 5.11 shows the sensitivity of covariates F1 and F2 for both the NB and GW 

models. It can be seen that those two models still have quite similar trends. When the 

ADT is below 15,000 veh/day, a one unit increase in ADT would result in a significant 

increase in the logarithm form of the estimated crash. However, this increasing rate 

becomes smaller when the ADT becomes larger. 
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Figure 5.11 Sensitivity analysis of covariate ADT for the Texas data 

5.2.2 Indiana Crash Data 

This dataset was also collected from 1995 to 1999 and includes traffic and other 

covariates for 338 rural road segments in Indiana. The covariates included in this dataset 

are more than above those of the Texas dataset. The reason for using this dataset is 

similar to that of the Toronto intersection dataset. This Indiana dataset has been analyzed 

by other researchers and confirmed to be of good quality (Anastasopoulus et al., 2008; 

Washington et al., 2011). It should be noted that 120 of the 338 segments did not have 

any reported crashes over the five-year study period. For a more detailed list of variables, 

refer to Washington et al. (2011).  There are more variables included in this dataset 

than in the above-mentioned Texas crash data. 
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Table 5.7 Summary Statistics for the Indiana Data 

Variable Min Max Average(std.dev) Total 

Number of crashes (5 

years) 
0 329 16.97(36.3) 5737 

Average daily traffic 

over the 5 years 
9442 143422 30237(28776.4) - 

Minimum friction 

reading in the road 

segment over the  

5-year period (Friction) 

15.9 48.2 30.51(6.67) - 

Pavement surface type 0 1 0.77(0.42) - 

Median width (in feet) 16 194.7 66.98(34.17) - 

Presence of median 

barrier (1 if present, 0 

if absent) (BARRIER) 

0 1 0.16(0.37) - 

Interior rumble strips 

(RUMBLE) 
0 1 0.72(0.45) - 

Segment length (in 

miles) 
0.009 11.53 0.89(1.48) 300.09 

 

5.2.2.1 Goodness of Fit Analysis 

Table 5.8 summarizes the parameter estimation results for the dataset. The segment 

length variable is still considered an offset during the estimation process. It can be seen 

from the Table 5.8 that the coefficients for the parameters of traffic flow are below 1 for 

both the GW and NB models, which indicates that the crash risk increases at a 

decreasing rate as the traffic flow increases. It is shown in Table 5.8 that the GW model 

performs better in terms of fit than the NB model. The estimated coefficients of all the 

covariates between the two models have the same sign which indicates similar results 

with regards to the effects of these variables, though there are some obvious differences 

between the values of these variables. It also can be seen from the results that the 

standard errors for the estimated coefficients are slightly larger for the GW model as 

compared to those from the NB model because the GW model is a multi-level 

hierarchical model that includes more parameters than a simple parametric model. As a 

result, the effective degrees of freedom could be smaller leading to increased standard 

errors (Geedipally and Lord, 2012). However, it is still beneficial to use the GW model 
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to improve the predictive modeling ability because of its better ability to explain any 

over-dispersion. 

 

Table 5.8 Modeling results for the Indiana data 

Variable NB GW 

Intercept 0.46(1.98) -2.81(2.6) 

Ln (ADT) 0.46(0.08) 0.70(0.14) 

FR -0.03(0.01) -0.03(0.01) 

PS 0.34(0.28) 0.44(0.34) 

MW -0.02(0.002) -0.01(0.003) 

MB -3.75(0.38) -6.24(0.74) 

IRS -0.13(0.28) -0.02(0.33) 
  - 2.85 

k - 0.55 

  2.71 - 

-2LL (the smaller the better) 2116 2086.3 

AIC 2132 2104.3 

BIC 2162 2138.7 

MAD 17.9 17.3 

MSPE 332.8 305.3 

Pearson
2  1517.5 1470.6 

 

 

The goodness of fit of both models is also presented in Figure 5.12 by comparing the 

observed and predicted frequencies of each crash count outcome. 
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Figure 5.12 Goodness of fit comparison between the NB and GW models for 

Indiana data 

5.2.2.2 Sources of Variance Analysis 

Table 5.9 shows the variance of each component for this crash dataset, according to 

Equation 3.1. 

 

Table 5.9 Variance of each component for the Indiana crash data 

Source of variability Variance Variance rate 

Randomness 
 x  

x55.0

19.0
 

Liability 
x8235.1  

x55.0

355.0
 

Proneness 
2

13.5 x  

x

x





55.0
 

Total  ( x8235.2 +5.13
2

x ) 1 

 

Figure 5.12 shows the fractions of variance attributed to randomness, liability, and 

proneness for different crash means x  which was determined by all of the values of 

the covariates included in the model. The relationship between the covariate average 
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daily traffic and the fractions of each component is indicated in Figure 5.13, and the 

relationship between the covariate friction and fractions of each component when the 

other variables included in the model are equal to their means (as determined in the data) 

is illustrated in Figure 5.14.  

 

 

Figure 5.13 Relationship between the fraction of each component and the mean of 

crashes for Indiana data 

 

 

Figure 5.14 Relationship between the fraction of each component and the average 

daily traffic for Indiana data 
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Figure 5.15 Relationship between the fraction of each component and friction 

reading for Indiana data 

 

It can be seen from Figures 5.12, 5.13, and 5.14 that both randomness and liability 

decrease from 0.36 to 0.04 and from 0.64 to 0.02, separately, as the mean of crashes on 

each segment x  increases from 0 to 10, which means that both randomness and 

liability decrease when the ADT and pavement type increases. Both randomness and 

liability decrease from 0.24 to 0.19 and from 0.61 to 0.48, separately, as the ADT on 

each segment
 
increases from 5,000 to 19,000. On the other hand, proneness decreases 

from 0.90 to 0.82 as the friction increases from 15 to 40. Accordingly, both randomness 

and liability increase from 0.03 to 0.06 and from 0.11, separately, as the friction 

increases from 15 to 40. The proneness also increases with the presence of interior 

rumble strips and median barriers. It can be seen that the effect of the friction reading on 

the fraction of each component is not as significant as is the effect of the ADT. 

 

It should be noted that there are some additional variables included in this model as 

compared to the model used for the Texas data. Therefore, the total value of the 

over-dispersion is lower than that of models that include fewer independent geometric or 

environmental variables. Accordingly, the fraction of variance for randomness is higher 

when fewer variables are included in the model. The fraction of variance for liability 
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increases and the fraction of variance for proneness decreases when more covariates are 

included in the model. 

5.2.2.3 Covariate Sensitivity Analysis 

Figure 5.14 shows the sensitivity of covariates F1 and F2 for both the NB and GW 

models. It can be seen that these two models have slightly different trends. For both 

models, a one unit increase in the ADT would result in a significant increase in the 

logarithm form of the estimated crash when the ADT is below 15,000 veh/day; this 

increasing rate becomes smaller when the ADT becomes larger. The decrease is more 

significant for the GW model than for the NB model. 

 

 

Figure 5.16 Sensitivity analysis of the covariate ADT for the Indiana data 

 

5.2.3 Michigan Crash Data 

This dataset is related to single-vehicle crashes that occurred on rural two-lane segments 

in Michigan State in 2006. This dataset was originally collected for the Federal Highway 

Administration and has been analyzed by other safety researchers such as Qin et al. 

(2004) for use in developing crash models. There are many more segments in this dataset, 

as compared to the above two datasets. Around 70% of all the segments did not include 

any reported crashes. 
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Table 5.10 Summary statistics for the Michigan Data 

Variable Min Max Average(std. 

dev) 

Total 

Number of 

crashes(1 years) 

0 61 0.68(1.77) 23168 

Annual average 

daily traffic 

(AADT) 

160 20994 4507.5(3280.6) - 

Segment 

length(miles) 

0.001 54.54 0.18(0.58) 6212 

Shoulder width(in 

feet) 

0 24 16.94(5.26) - 

lane width(in feet) 8 15 11.22(0.78) - 

Speed limit 

(SPEED) (mph) 

25 55 52.47(6.39) - 

5.2.3.1 Modeling Estimation 

The objective of this example is to compare the performances of the NB-L and GW 

models on empirical crash data. The parameter-estimating method for this example is the 

Bayesian method. Within the Bayesian framework of the GW model, as discussed in 

Chapter 3, the mean response for the number of crashes y includes the following 

formulation: 

1. (Y | x) ~ Poisson ( x )                                                                  

2. x ~ Gamma(ax, v  ) 

3. v ~beta (  , k),  

It should be noted that one of the most important steps in using Bayesian parameter 

estimation is to define the priors of all unknown parameters. In this study, normal priors 

for β, a beta prior for  , and a gamma prior for k were used.  

 

On the other hand, within the Bayesian framework of the NB-L regression model, the 

mean response for the number of crashes y has the following formulation (Lord and 

Geedipally, 2011): 

),;()|,,(  yNByYP   
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),1;(~  zGamma   

)
1

1
;(~


zBernoulliz

 

In this study, normal priors for   , a beta prior for 
1

1
, and a gamma prior for 



1

were used.  

5.2.3.2 Goodness of Fit Analysis 

The modeling results of the NB and GW models are presented in this section. Five 

covariates are considered in this analysis. They include the average daily traffic, lane 

width, shoulder width, speed, and the length of the segment. The coefficient values of all 

the covariates in the three models have the same sign and are close to each other. 

Crashes increase with increases in the AADT, length of segment, and speed in all three 

models. All three models also show that crashes increase almost linearly with an 

increase in the length of the segment. It can be seen from the goodness of fit statistics 

that the GW and NB-L regression models perform much better than the NB model 

because the values of the DIC, MAD and Pearson
2  obtained from the GW and NB-L 

RM models are smaller than value obtained from the NB model. 

 

Table 5.11 Modeling results for the Michigan data 

Variable NB NB-L GW 

Intercept -3.412(0.239) -3.260(0.193) -1.233(0.25) 

Ln (AADT) 0.426(0.014) 0.424(0.015) 0.496(0.02) 

L 0.9571(0.009) 0.961(0.009) 0.9504(0.006) 

SW -0.00009(0.002) -0.0003(0.002) -0.019(0.001) 

LW 0.0589(0.013) 0.0508(0.011) 0.042(0.002) 

SPEED 0.0098(0.002) 0.1024(0.002) 0.0036(0.007) 
  - - 7.53(1.590) 

k - - 13.35(2.930) 

 /1  0.573 0.102 - 

DIC 59354 56046 56497 

MAD 0.651 0.648 0.649 

Pearson
2  49911 44774 45826 
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5.2.3.3 Sources of Variance Analysis 

Table 5.12 shows the variance of each component for this crash dataset according to 

Equation 3.1.  Figure 5.15 shows the fractions of variance attributed to randomness, 

liability, and proneness for different mean of crashes x . 

The relationship between the covariate average daily traffic and the fractions of each 

component are also indicated in Figure 5.16 when the other variables included in the 

model are equal to the sample mean values, as observed in the dataset.  

Table 5.12 Variance of each component for the Michigan crash data 

Source of variability Variance Variance rate 

Randomness 
x

x35.13

71.3

Liability 
x59.2

x35.13

63.9

Proneness 227.0 x

x

x





35.13

Total 227.059.3 xx   1 
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Figure 5. 17 Relationships between the fractions of each component and the mean 

of crashes for Michigan data 

Figure 5. 18 Relationship between the fraction of each component and average 

daily traffic for Michigan data 

It can be seen from Figures 5.15 and 5.16 that randomness and liability decrease from 

0.27 to 0.14 and from 0.72 to 0.39, separately, as the mean of crashes on each segment

x  increases from 0 to 10, which means that both randomness and liability decrease 

when ADT, length of segment, and speed increases; on the other hand, proneness 

decreases with an increase in shoulder width.  
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5.2.3.4 Covariate Sensitivity Analysis 

Figure 5.17 shows the sensitivity of covariates F1 and F2 for all of the NB, NB-L, and 

GW models. It can be seen that these three models exhibit quite similar trends. When the 

ADT is below 20,000 veh/day, a one unit increase in the ADT would result in a 

significant increase in the logarithm form of the estimated crash. However, this 

increasing rate becomes smaller when the ADT becomes larger. 

Figure 5. 19 Sensitivity analysis of the covariate ADT for the Michigan data 

5.3 Chapter Summary 

The objective of this chapter was to apply the generalized regression models to actual 

vehicle crash data and to demonstrate their ability in discerning the sources of variance 

within the data. The results of these models were compared with those produced from 

the standard NB regression model in terms of both goodness of fit and information about 

sources of variance. 

Two kinds of datasets were considered for the application: intersection crash data (see 

Section 5.1) and segment crash data (see Section 5.2). The applications with these four 

empirical crash datasets showed that the GW model was a good candidate for 

characterizing the randomness of crash occurrences and provided useful information, 
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especially on sources of variations in traffic crashes. Although the GW model did not 

improve the performance in the goodness of fit aspect for the intersection crash dataset, 

it provided more detailed information about sources of variance in traffic crashes at 

intersections by dividing them into three parts; such detailed information could not be 

detected if we used the NB model. This information is valuable because it will help 

traffic engineers to better control the variance of traffic crashes by implementing more 

cost-effective safety countermeasures. The sources of variance are shown to be highly 

dependent on the traffic flow variable based on the results of all the empirical datasets.  

On the other hand, for all three subsequent segment crash datasets, the GW model 

improved the goodness of fit in addition to providing more valuable information about 

sources of variance, as compared to the NB model. There are additional variables related 

to road segments that are included in the Indiana data (as compared to the Texas data) 

which decreases the difference in results when fitted using both the GW and NB models. 

It should be noted that the fraction of variance for proneness decreases when more 

variables related to road segments are included in the model.  

Finally, the NB-L model was also applied in the last segment crash dataset within the 

Bayesian framework in order to provide a high level of completeness of this research. 

The NB-L model provided a slightly better performance in the goodness of fit aspect in 

this case, but it is impossible regularly to obtain such a significant amount of detailed 

information about sources of variance as needed for the GW model. The next chapter 

presents the application side of the developed GW model in the identification of 

hotspots. 
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CHAPTER VI 

APPLICATION TO HOTSPOT IDENTIFICATION 

The main objective of the previous chapter was to compare the performances of several 

regression models in empirical crash datasets and accordingly recommend the most 

appropriate statistical model for a given dataset. The GW regression model was chosen 

as a more appropriate model than the NB model for highly dispersed crash data. This 

chapter examines the performance of GW in further by focusing on the application side 

of the GW regression model in hotspot identification. Although the better performance 

of the GW model for crash datasets is shown in the previous chapter, it is still necessary 

to investigate whether this type of model will result in obviously better performance in 

hotspot identification when compared to the standard NB regression model.  

Therefore, the main objective of this chapter is to compare the performances of the GW 

and NB models in hotspot identification. Section 6.1 introductions the general concept of 

hotspot identification. Sections 6.2 and 6.3 compare the two models using empirical and 

simulated data respectively. Section 6.4 summarizes the results of the comparison. 

6.1 Hotspot Identification 

This section briefly gives an overview of materials related to hotspot identification in 

traffic safety analysis. 

A hotspot also defined as a black spot or a hazardous location can generally be defined 

as a location such as a roadway segment, intersection, or interchange with a high crash 

risk (Park, 2010). Various definitions have been used to describe crash risk at a certain 

location. For example, Hakkert and Mahalel (1978) suggested that a hotspot be defined 

as a site that has a crash frequency which is significantly higher than expected number 

given the estimated crash count models. Recently, Elvik (2008) introduced a more 
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reasonable definition of a hotspot that has a higher expected number of crashes 

compared to other similar locations with the same independent variables. 

There are various methods existed have been applied to identify hotspots. The most 

common and fundamental approach to identifying hotspots is to rank locations based on 

their actual crash frequencies for a given site. However, this approach can not address 

the effects of the random characteristic of crash frequency and accordingly cause bias. 

This kind of bias becomes more significant when the value of the dependent variable is 

lower, which has been confirmed by some researchers (Miaou and Song, 2005) using 

simple simulations. Therefore, traffic safety researchers recently prefer to use statistical 

modeling to addresses the random effects in order to identify the true hot spots more 

accurately (Miranda-Moreno et al., 2005). They have introduced criteria including 

“sensitivity” and “specificity” to compare different statistical models in the ability to 

identify hotspots (Miranda-Moreno, 2006; Elvik, 2008). These criteria can provide 

information about two types of error including “false positives” which means identifying 

a non-hotspot site as a hotspot and “false negatives” which may identify a hotspot as a 

safe site (Park, 2010). These criteria together with some other criteria mentioned in the 

following section will be used later in this chapter to compare the relative performances 

of the GW and NB models in identifying hotspots.  

Among many ranking functional forms, the following conditional means of crash 

frequency that are assumed for both the GW and NB models considering the consistence 

of analysis in Chapter 5 and other researches (Park, 2010): 

)exp( NBi

NB

I X


    (NB model) (6.1) 

)exp(


 GWi

GW

I X    (GW model) (6.2) 
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6.2 Comparison by Empirical Crash Data 

The Texas highway segment data mentioned in the previous chapter were used to 

compare the differences in ranking orders between the NB and GW models considering 

the consistence of the modeling results in the previous chapter. The values of 
NB

I



 and 

GW

I



 were calculated based on the parameter estimation results in Table 5.5. 

Figure 6.1 illustrates the comparison of ranking orders related to the hotspot 

identification for the two models. For comparison, 300 sites were selected from a list 

ranked according to values of
GW

I



 . Smaller values in the ranking order represent 

higher values in terms of
GW

I



 , and vice versa. Same ranking rule based on the values 

NB

I



 was also assigned to these selected sites. 

Figure 6.1 Comparison of rankings between the NB and GW models 
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Figure 6.1 shows that there is a strong positive association between the two rankings. It 

can also be seen from Figure 6.1 that the difference in rankings becomes larger as the 

ranking order increases above 100. This research then further compared the ranking 

orders got from the NB model with those ranked from the GW model in order to figure 

out the specific differences between the results of the two models (see Figure 6.1). 

It is can be seen from the following table 6.1 that fifty sites (m = 50) were selected as 

hotspots from the GW model; only one site was not included as a hotspot when 

estimated by the NB model. In addition, five sites for m = 100, 10 sites for m = 200, and 

17 sites for m = 300 were not on the hotspot list ranked by the NB model, whereas the 

list about GW model included them. The percentage deviation used to compare two 

ranking orders for the number of sites that are different in the two lists of hotspots 

(Miranda-Moreno et al., 2005) are computed where s is the number of hotspots common 

in the two lists and m is defined as above. The computation results are shown in Table 

6.1 as well. The ranking of the top 50 hotspots are almost the same for both models, but 

the difference in ranking tends to increase as the number of hotspots selected increases. 

The ranking results from the GW model may be more reliable than those of the NB 

model due to a better ability to accommodate over-dispersion.  

Table 6.1 Percent deviation of hotspot identification between the NB and GW 

models 

m 50 100 200 300 

s 49 95 190 283 

% deviation 2% 5% 5% 5.6% 

6.3 Comparison using Simulation 

It can only be seen from above results that there is some difference in ranking orders 

between the two models. It is necessary to confirm the conclusion that the ranking 

results from the GW model may be more reliable than those of the NB model due to a 

better ability to accommodate over-dispersion. For this reason, this research applies the 
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simulation approach proposed by Miranda-Moreno (2006) to compare the performance 

of these two models in hotspot identification in further. In simulation, the true hotspot is 

defined as a site whose expected crash mean is greater than a pre-specified threshold 

value. Once the true hotspots are identified, it can be considered as the reference to 

compare the performance of these two models in hotspot identification. The performance 

evaluation criteria and simulation design are described below (Miranda-Moreno, 2006). 

It can be seen in the following table 6.2 that n represents the total number of sites in the 

set under analysis. The value V and R correspond to the Type I and Type II errors 

mentioned in section 6.1. It should be noted that the threshold value should be carefully 

selected to optimize both Type I and Type II errors because these two errors conflict 

with each other. The lower the Type I error is, the higher the Type II error is. In addition, 

both errors lead to unnecessary costs. False positives lead to waste in costs related to 

unnecessary improvements in safety countermeasures. False negatives cause additional 

costs of traffic crashes in hotspots have not been identified. In this research, another 

major purpose is accordingly to investigate the effects of threshold values by using two 

different values. 

Table 6.2 Possible outcomes of classification (Miranda-Moreno et al., 2006) 

Number of sites 

“detected” as 

non-hotspots 

Number of sites 

“detected” as 

hotspots 

Number of “true” 

non-hotspots 

U V N0 

Number of “true” 

hotspots 

R S N1 

n-D D n 

Where  n: the total number of sites in the set under analysis 

N0:  number of “true” non-hotspots 

N1: number of “true” hotspots 

U:  number of sites correctly identified as non-hotspots 

V:  number of Type I errors 

R:  number of Type II errors 

S:  number of sites correctly identified as hotspots 

D:  number of sites identified as hotspots 
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The following five measures were used as performance criteria to evaluate the relative 

performances of the two models in detecting the true hotspots (Miranda-Moreno, 2006): 

False Discovery Rate (FDR): the ratio of false positives (Type I errors) among all 

detected hotspots by a model. Smaller values are better.  

FDR=
D

V
(6.3) 

False Negative Rate (FNR): the ratio of false negatives (Type II errors) among all 

detected non-hotspots by a model. Smaller values are better. 

FNR=
Dn

R


(6.4) 

Sensitivity (SENS): the ratio of correctly detected hotspots. Larger values are better. 

SENS=
1n

S
(6.5) 

Specificity (SPEC): the ratio of correctly detected non-hotspots. Larger values are better. 

SPEC=
0n

U
(6.6) 

Risk (RISK): the ratio of the total number of false positives and false negatives among 

all the sites under analysis. Smaller values are better. 

RISK=
n

RV 
(6.7) 
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In the simulation design process, this researcher utilized the same covariates and model 

parameters as the one described in scenario three, discussed in Chapter IV of this 

research. The crash frequency at each site was assumed to follow the FNP-2 distribution 

with known parameters in order to examine any potential bias accompanying the use of 

either the NB or GW model distributions to compare performances. In detail, the 

datasets were generated by selecting the following values for the parameter: w=0.2 and 

0 =2, 1 = 0.5, 2 =-0.5 for the Poisson (
1,i ) distribution and 0 =0, 1 = -0.5, 

2 =0.5 for the Poisson (
2i ) distribution. 

The simulation was carried out based on the following steps (Park, 2008): 

Step 1: The true mean of the crash at site i is generated using the following conditional 

mean functional form: 

)exp()exp( 2211  ii

True

I XwXw 


(6.8)

The covariate Xi and the other parameters are defined as in Example 3 in Chapter IV. 

The data are generated for 1,000 sites. 

Step 2: A threshold value k was assigned. In this study, two alternative threshold values 

were analyzed: sample mean and 85
th

 percentile. The following selection rule was

applied for each site given the assigned threshold: 

1. If
True

I



 > k, set Hi=1 and site i ii defined as a “true” hotspot 

2. Otherwise, set Hi = 0 and site i is defined as a “non-true” hotspot

Then, summing hi over n sites results in the total “true” number of hotspots. 

Step 3: For each site, simulate the crash frequency based on the method described in 

Chapter 4. 

Step 4: Based on the simulated crash frequency, the model parameters are estimated for 

the NB and GW models, respectively. The parameter-estimating method follows the one 
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described in Section 4.3.2. This step results in 
NB

I



 ˆ and 
GW

I



 , as defined in 

Equations 6.1 and 6.2.  

Step 5: Once 
NB

I



 and 
GW

I



 are obtained for each site, the following selection rule is 

applied to identify the “detected” hotspots: 

If 


I > k, set di=1 and site i is defined as a “detected” hotspot 

Otherwise, set di = 0 and site i is defined as a “non-detected” hotspot 

Summing di over n sites results in the total “detected” number of hotspots (D): 

D=


n

i

id
1

(6.9) 

Step 6: At the end of each simulation replication, the five performance criteria 

(FDR, FNR, SENS, SPEC and RISK) are computed, which are defined in Equations 6.4 

to 6.8.  

The simulation is replicated 100 times and the average of the 100 replications is used to 

produce the final results. 

6.4 Results 

The results of all five performance criteria for the two models are shown in Table 6.3. It 

should be noted that the results were obtained by using the sample mean value as a 

threshold value. The average values of five performance criteria for the GW model are 

all superior to those for the NB model. This simulation confirms the conclusion that the 

performance of GW model is better than NB model for hotspot identification. 

In detail, it can be seen from the results that the false discovery rate (0.38) and false 

negative rate (0.04) for the NB model are obviously larger than the corresponding values 
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in the GW model, and the sensitivity rate (0.81) and specificity (0.82) for the NB model 

are smaller than that of the GW model.  

Table 6.3 Results of performance criteria measurements when the sample mean is a 

critical value 

Criteria GW NB 

Average Min Max Average Min Max 

FDR (smaller 

is better) 

0.33 0.12 0.57 0.38 0.21 0.68 

FNR (smaller 

is better) 

0.02 0 0.11 0.04 0.01 0.28 

SENS (larger 

is better) 

0.97 0.82 1 0.81 0.68 0.98 

SPEC (larger 

is better) 

0.84 0.73 1 0.82 0.65 0.91 

RISK 

(smaller is 

better) 

0.12 0.04 0.18 0.16 0.07 0.34 

Another simulation was carried out with a different threshold value, the 85
th

 percentile in

order to confirm the above conclusion in further. Moreover, this simulation was used to 

compare the effects of different threshold values on performance. Table 6.4 shows the 

simulation results from using the 85
th

 percentile threshold values in the sample.

Table 6.4 Results of performance criteria measurements when the 85th percentile is 

the critical value 

Criteria GW NB 

Average Min Max Average Min Max 

FDR (smaller 

is better) 

0.38 0.12 0.57 0.43 0.22 0.73 

FNR (smaller 

is better) 

0.01 0 0.11 0.03 0 0.26 

SENS (larger 

is better) 

0.94 0.82 1 0.75 0.63 0.94 

SPEC (larger 

is better) 

0.91 0.73 1 0.85 0.67 0.95 

RISK 

(smaller is 

better) 

0.15 0.04 0.18 0.19 0.09 0.38 
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It is shown in the above table 6.4 that the same conclusion is confirmed and the effects 

of different threshold values on the performance criteria can be seen from the results. 

The total error rate decreases when the 85
th

 percentile is used as the criteria compared to

the criteria using the sample mean. On the other hand, the FDR and SPEC criteria 

increase and the FNR and SENS decrease. Thus, using a higher threshold value reduces 

the number of target hotspots for treatment, which has been pointed out by Park (2010). 

Therefore, we are more likely to have an increased cost related to the number of 

non-hotspots misidentified as hotspots if we increase the threshold value, as well as less 

success in identifying true hotspots. On the meanwhile, we can reduce the costs related 

to misidentification and increase our ability to detect true non-hotspots. Therefore, a 

decision on the threshold value should be made by considering the trade-offs between 

these two costs in order to optimize the limited budget and increase the efficiency for a 

certain project (Park, 2010). 

6.5 Chapter Summary 

This chapter first presented a overview of previous research related to hotspot 

identification in highway safety, and then made a comparison of performance in hotspot 

identification between the NB and GW models using both empirical and simulated data. 

The comparison results obtained from the empirical data illustrate a strong positive 

association between the two rankings for both models and the results from simulated 

data illustrate the better performance of GW model in hotspot identification compared to 

NB model. The next chapter focuses on an evaluation of the performance of the GW 

distribution within a Bayesian framework, in terms of stability and presence of bias for 

different kinds of datasets especially those characterized by a small sample size and a 

low sample mean. 
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CHAPTER VII 

SIMULATED ANALYSIS OF BAYESIAN STATISTICS 

Small sample size is a common difficulty encountered by traffic safety analysts when 

applied statistical models because of the limited resources involved in collecting crash 

data and the variables that influence the number of crashes (Lord and Bonneson, 2005). 

Many researchers have examined the biasness of the estimators of parameters in the NB 

model when the data are characterized by a small sample size and low sample mean 

values. Therefore, the first objective of this chapter is to examine the bias in the 

parameter estimation of the GW model when the data exhibit a low sample mean and a 

small sample size. Moreover, it is shown in previous research (Geddipally, 2008) that 

the prior specifications for the parameters in the statistical model may have a potential 

influence on the posterior estimation. The other objective of this investigation is to 

analyze the effects of different prior specifications on the bias. Finally, this chapter will 

recommend a minimum sample size for applying GW models into crash datasets with 

different sample means. This recommendation is designed to control unreliable 

estimations of the posterior mean of the parameters into an acceptable level.  

This chapter is divided into three parts. The first part outlines the characteristics of the 

simulation study. The second part presents the simulation results with different prior 

specifications and various sample sizes and sample means. The third part provides a 

summary of the results and brief guidelines for making choices regarding priors and 

sample sizes. 
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7.1 Simulation Design 

This section briefly describes the simulation study that illustrates the effects of LSM and 

SSS on the prediction of parameters for GW models. The prior distribution is defined in 

two different scenarios: a non-informative prior and a weakly-informative prior. 

The data were then simulated from the GW model using steps similar to those described 

in Section 4.2.1.  

Step 1: Set sample size, β and the parameters of the GW distribution to the required 

values. 

More specifically, the datasets were generated based on three different mean value 

scenarios by selecting the values of the parameter shown in Table 7.1.  

Table 7.1 True values used for generating the GW variables used for simulation 

High mean Moderate mean Low mean 

0 2 1 -0.5 

1  
0.5 0.5 0.5 

2  
-0.5 -0.5 -0.5 

  3.5 3.5 3.5 

k 2.5 2.5 2.5 

Sample size 100~1100 

(two hundred 

steps) 

100~1100 

(two hundred steps) 

100~1100 

(two hundred steps) 

Step 2: Generate two covariates (X1i, X2i) from the standard normal distribution. 
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Step 3: Calculate the parameter i by using an assumed log-linear function, which is 

commonly encountered in highway crash analysis 
ii

xxx

i ee 22110
'

0





. 

Step 4: Generate the count variable 
iy  from the univariate GW distribution UGWD (

ia , 

k ,  ) where 
ia = i (  -1)/ k  by using the rghyper function in the Suppdist R package. 

The MCMC implementation was then used for the model estimation process. 

Non-informative priors and weakly-informative priors for the two parameters related to 

variance were utilized for the different scenarios mentioned in the above paragraph. The 

first was the non-informative prior: ).01.0,01.0(~),01.0,01.0(~  k  

It has been pointed out by researchers that the above non-informative priors are not good 

choices in certain cases (Lord and Miranda-Moreno, 2008). The large variance can 

introduce significant bias, especially for the datasets with low sample mean and small 

sample size. Therefore, weakly-informative priors have been proposed for use in 

analyzing vehicle crash data (Washington and Oh, 2006; Miranda-Moreno et al., 2008). 

Therefore, another commonly used weakly-informative prior was introduced for both 

parameters of the GW model: ).1.0,5.0(~),1.0,5.0(~  k The mean of this prior is 

equal to 5 and the variance was reduced to 50. 

A total of three Markov chains with 25,000 iterations were used initially to check the 

convergence. A satisfactory convergence was achieved for 25,000 iterations. Then, a 

single chain with 50,000 iterations and a thinning of 10 were assigned in the Bayesian 

model estimation process. The first 25,000 iterations were considered to be burn-in 

samples and only the remaining 25,000 samples were used for estimating the coefficients. 

The simulation was replicated 100 times for each combination of sample size and 

parameters. The posterior statistics including posterior mean and standard deviation for 

each parameter estimation were recorded for each simulation. The bias information and 

the mean squared error MSE were also calculated to check for the quality of the 

estimator. 



109 

7.2 Simulation Results 

This section summarizes the simulation results for both scenarios. The first section 

summarizes the results of the assumption for non-informative priors for the parameter. 

The second section gives the results based on the assumption of weakly-informative 

priors for the dispersion parameters of the GW model.  

7.2.1 Non-Informative Priors 

The parameter estimation results for the high mean are presented in Tables 7.2 to 7.4 

below.  These data indicate that as the sample size decreases, the standard deviation 

increases. For a sample size larger than 300, all of the parameters are accurately 

estimated and the theoretical value of each parameter is almost equal to its predicted 

value. For a sample size below 300, there is a little bias to the theoretical value of each 

parameter and the standard deviation in the prediction becomes larger when compared to 

a larger sample size.  

Table 7. 2 Results of parameters for high mean ( y >5) 

Sample 

size 

100 300 500 700 900 1100 

E( 0 ) 1.632 

(0.543) 

1.835 

(0.352) 

1.936 

(0.211) 

1.958 

(0.069) 

2.101 

(0.045) 

2.085 

(0.026) 

E( 1 ) 0.368 

(0.321) 

0.467 

(0.221) 

0.498 

(0.185) 

0.496 

(0.158) 

0.504 

(0.025) 

0.501 

(0.015) 

E( 2 ) -0.380 

(0.421) 

-0.452 

(0.254) 

-0.486 

(0.241) 

-0.495 

(0.196) 

-0.497 

(0.187) 

-0.502 

0.126) 

E(  ) 6.885 

(3.625) 

4.298 

(2.123) 

3.879 

(1.962) 

3.968 

(0.985) 

3.625 

(0.756) 

3.4 

(0.524) 

E( k ) 3.269 

(2.635) 

2.236 

(1.968) 

2.635 

(1.658) 

2.639 

(0.987) 

2.469 

(0.852) 

2.563 

(0.425) 
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Table 7.3 Bias in the estimation of parameters for high mean ( y >5) 

Sample 

size 

100 300 500 700 900 1100 

0 -0.368 -0.165 -0.064 -0.042 0.101 0.085 

1  
0.21 0.1 0.13 0.12 0.04 0.01 

2  
0.18 0.12 -0.08 -0.08 -0.04 -0.03 

  3.385 0.798 0.379 0.468 0.125 -0.1 

k 0.769 -0.264 0.135 0.139 -0.031 0.063 

Table 7.4 MSE in the estimation of parameters for high mean ( y >5) 

Sample 

size 

100 300 500 700 900 1100 

0 0.66 0.39 0.22 0.08 0.11 0.09 

1  
0.38 0.24 0.23 0.20 0.05 0.02 

2  
0.46 0.28 0.25 0.21 0.19 0.13 

  4.96 2.27 2.00 1.09 0.77 0.53 

k 2.74 1.99 1.66 1.00 0.85 0.43 

The simulation results for the medium mean are presented in Tables 7.5 to 7.7. There is a 

little bias compared to the theoretical values for all the sample sizes, especially when the 

sample size is below 500. As the sample size decreases, the bias and MSE increase.  

Table 7.5 Results of parameters for medium mean (1≤ y ≤5) 

Sample 

size 

100 300 500 700 900 1100 

E( 0 ) 0.259 

(0.356) 

0.356 

(0.396) 

0.825 

(0.265) 

1.125 

(0.384) 

1.116 

(0.315) 

0.896 

(0.125) 

E( 1 ) 0.215 

(0.412) 

0.364 

(0.365) 

0.441 

(0.215) 

0.469 

(0.198) 

0.472 

(0.058) 

0.524 

(0.068) 
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Sample 

size 

100 300 500 700 900 1100 

E( 2 ) -0.187 

(0.348) 

-0.268 

(0.175) 

-0.574 

(0.169) 

-0.468 

(0.121) 

-0.474 

(0.085) 

-0.514 

(0.067) 

E(  ) 11.854 

(5.365) 

7.362 

(3.625) 

5.687 

(2.845) 

4.984 

(1.986) 

5.623 

(1.587) 

4.984 

(0.986) 

E( k ) 1.689 

(2.986) 

5.359 

(1.698) 

4.356 

(1.657) 

2.968 

(1.258) 

2.869 

(1.025) 

2.469 

(0.365) 

Table 7.6 Bias in the estimation of parameters for medium mean (1≤ y ≤5) 

Sample 

size 

100 300 500 700 900 1100 

0 -0.741 -0.644 -0.175 0.125 0.116 -0.104 

1  
-0.285 -0.136 -0.059 -0.031 -0.028 0.024 

2  
0.313 0.232 -0.074 0.032 0.026 -0.014 

  8.354 3.862 2.187 1.484 2.123 1.484 

k -0.811 2.859 1.856 0.468 0.369 -0.031 

Table 7.7 MSE in the estimation of parameters for medium mean (1≤ y ≤5) 

Sample 

size 

100 300 500 700 900 1100 

0 0.82 0.76 0.32 0.40 0.34 0.16 

1 0.50 0.39 0.22 0.20 0.06 0.07 

2  
0.47 0.29 0.18 0.13 0.09 0.07 

  9.93 5.30 3.59 2.48 2.65 1.78 

k 3.09 3.33 2.49 1.34 1.09 0.37 

The simulation results for a low mean are presented in Tables 7.8 to 7.10. These tables 

exhibit similar characteristics to those shown in the moderate mean scenario. For a 
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sample size below 500, the estimators are highly unreliable. The bias becomes negligible 

as the sample size increases to be larger than 2,000. 

Table 7.8 Results of parameters for low mean ( y <1) 

Sample 

size 

100 500 1000 1500 2000 2500 3000 

E( 0 ) -0.964 

(0.698) 

-0.756 

(0.632) 

-0.687 

(0.548) 

-0.435 

(0.421) 

-0.487 

(0.365) 

-0.496 

(0.102) 

-0.498 

(0.062) 

E( 1 ) 0.324 

(0.647) 

0.362 

(0.425) 

0.398 

(0.378) 

0.412 

(0.236) 

0.478 

(0.178) 

0.487 

(0.078) 

0.503 

(0.045) 

E( 2 ) -0.962 

(0.845) 

-0.263 

(0.368) 

-0.296 

(0.174) 

-0.396 

(0.156) 

-0.439 

(0.132) 

-0.476 

(0.078) 

-0.511 

(0.063) 

E(  ) 23.36 

(7.63) 

10.269 

(5.634) 

6.325 

(4.213) 

4.263 

(1.269) 

3.258 

(0.715) 

3.369 

(0.636) 

3.458 

(0.414) 

E( k ) 6.25 

(5.32) 

4.269 

(2.369) 

3.698 

(1.745) 

3.621 

(1.035) 

2.368 

(0.685) 

2.458 

(0.541) 

2.489 

(0.323) 

Table 7.9 Bias in the estimation of parameters for low mean ( y <1) 

Sample 

size 

100 500 1000 1500 2000 2500 3000 

0 -0.464 -0.256 -0.187 0.065 0.013 0.004 0.002 

1  
-0.176 -0.138 -0.102 -0.088 -0.022 -0.013 0.003 

2  
-0.462 0.237 0.204 0.104 0.061 0.024 -0.011 

  19.86 6.769 2.825 0.763 -0.242 -0.131 -0.042 

k 3.75 1.769 1.198 1.121 -0.132 -0.042 -0.011 
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Table 7.10 MSE in the estimation of parameters for low mean ( y <1) 

Sample 

size 

100 500 1000 1500 2000 2500 3000 

0 0.84 0.68 0.58 0.43 0.37 0.10 0.06 

1  
0.67 0.45 0.39 0.25 0.18 0.08 0.05 

2  
0.96 0.44 0.27 0.19 0.15 0.08 0.06 

  21.28 8.81 5.07 1.48 0.75 0.65 0.42 

k 6.51 2.96 2.12 1.53 0.70 0.54 0.32 

7.2.2 Weakly-Informative Priors 

This section gives the results for the scenario using the assumption of 

weakly-informative priors.  

The parameter estimation results for the high mean are presented in Tables 7.11 to 7.13. 

Similar to the results of the non-informative prior scenario, as the sample size decreases 

the standard deviation increases. All of the parameters are accurately estimated and the 

theoretical value of each parameter is almost equal to its predicted value for sample sizes 

greater than 300. It is shown that the posterior statistics including dispersion parameter 

performs better than under the non-informative prior scenario which is due to the 

reduced variance in the weakly-informative prior scenario. The difference in the 

regression parameters is very small for each of the different prior choices. 

Table 7.11 Results of parameters for high mean ( y >5) 

Sample 

size 

100 300 500 700 900 1100 

E( 0 ) 1.863 

(0.493) 

1.837 

(0.353) 

1.932 

(0.213) 

1.956 

(0.076) 

2.103 

(0.043) 

2.087 

(0.023) 

E( 1 ) 0.376 

(0.313) 

0.469 

(0.223) 

0.496 

(0.187) 

0.494 

(0.159) 

0.503 

(0.024) 

0.501 

(0.016) 



114 

Sample 

size 

100 300 500 700 900 1100 

E( 2 ) -0.375 

(0.426) 

-0.453 

(0.251) 

-0.488 

(0.224) 

-0.497 

(0.176) 

-0.499 

(0.187) 

-0.501 

(0.131) 

E(  ) 5.671 

(1.325) 

3.298 

(1.131) 

3.579 

(0.958) 

3.568 

(0.652) 

3.601 

(0.326) 

3.456 

(0.214) 

E( k ) 3.269 

(1.632) 

2.636 

(1.203) 

2.612 

(0.958) 

2.601 

(0.698) 

2.569 

(0.526) 

2.561 

(0.312) 

Table 7.12 Bias in the estimation of parameters for high mean ( y >5) 

Sample 

size 

100 300 500 700 900 1100 

0 -0.137 -0.163 -0.068 -0.044 0.103 0.087 

1  
-0.124 -0.031 -0.004 -0.006 0.003 0.001 

2  
0.125 0.047 0.012 0.003 0.001 -0.001 

  2.171 -0.202 0.079 0.068 0.101 -0.044 

k 0.769 0.136 0.112 0.101 0.069 0.061 

Table 7.13 MSE in the estimation of parameters for high mean ( y >5) 

Sample 

size 

100 300 500 700 900 1100 

0 0.51 0.39 0.22 0.09 0.11 0.09 

1  
0.34 0.23 0.19 0.16 0.02 0.02 

2  
0.44 0.26 0.22 0.18 0.19 0.13 

  2.54 1.15 0.96 0.66 0.34 0.22 

k 1.80 1.21 0.96 0.71 0.53 0.32 

The simulation results for the medium mean are presented in Tables 7.14 to 7.16. The 

predicted values are slightly misestimated as compared to the theoretical value for the 

sample sizes below 300; the standard deviation increased as the sample size decreased. 



115 

The bias and the value of standard deviation of the posterior means became highly 

noticeable for the sample size of 100. 

Table 7.14 Results of parameters for medium mean (1≤ y ≤5) 

Sample 

size 

100 300 500 700 900 1100 

E( 0 ) 0.254 

(0.353) 

0.351 

(0.392) 

0.823 

(0.262) 

1.121 

(0.385) 

1.116 

(0.313) 

0.898 

(0.122) 

E( 1 ) 0.214 

(0.415) 

0.361 

(0.361) 

0.443 

(0.217) 

0.462 

(0.191) 

0.476 

(0.055) 

0.521 

(0.061) 

E( 2 ) -0.183 

(0.344) 

-0.266 

(0.171) 

-0.571 

(0.174) 

-0.464 

(0.123) 

-0.473 

(0.097) 

-0.511 

(0.072) 

E(  ) 6.343 

(1.365) 

5.363 

(1.325) 

5.081 

(0.847) 

4.321 

(0.682) 

3.201 

(0.321) 

3.478 

(0.235) 

E( k ) 4.689 

(1.982) 

2.301 

(1.421) 

2.334 

(1.012) 

2.368 

(0.587) 

2.444 

(0.265) 

2.462 

(0.187) 

Table 7.15 Bias in the estimation of parameters for medium mean (1≤ y ≤5) 

Sample 

size 

100 300 500 700 900 1100 

0 -0.746 -0.649 -0.177 0.121 0.116 -0.102 

1  
-0.286 -0.139 -0.057 -0.038 -0.024 0.021 

2  
0.317 0.234 -0.071 0.036 0.027 -0.011 

  2.843 1.863 1.581 0.821 -0.299 -0.022 

k 2.189 -0.199 -0.166 -0.132 -0.056 -0.038 
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Table 7.16 MSE in the estimation of parameters for medium mean (1≤ y ≤5) 

Sample 

size 

100 300 500 700 900 1100 

0 0.83 0.76 0.32 0.40 0.33 0.16 

1  
0.50 0.39 0.22 0.19 0.06 0.06 

2  
0.47 0.29 0.19 0.13 0.10 0.07 

  3.15 2.29 1.79 1.07 0.44 0.24 

k 2.95 1.43 1.03 0.60 0.27 0.19 

The simulation results for the low mean are presented in Tables 7.17 to 7.19. These 

tables exhibit similar characteristics as those demonstrating the moderate mean scenario. 

For a sample size below 300, the estimators are unreliable. The bias becomes negligible 

as the sample size becomes larger than 500. 

Table 7. 17 Results of parameters for low mean ( y <1) 

Sample 

size 

100 300 500 700 900 1100 

E( 0 ) -0.965 

(0.701) 

-0.758 

(0.633) 

-0.681 

(0.549) 

-0.439 

(0.422) 

-0.491 

(0.367) 

-0.494 

(0.102) 

E( 1 ) 0.325 

(0.648) 

0.362 

(0.424) 

0.398 

(0.377) 

0.414 

(0.236) 

0.478 

(0.179) 

0.489 

(0.078) 

E( 2 ) -0.964 

(0.847) 

-0.261 

(0.368) 

-0.296 

(0.171) 

-0.397 

(0.156) 

-0.431 

(0.133) 

-0.476 

(0.078) 

E(  ) 13.02 

(5.212) 

7.269 

(3.214) 

3.015 

(1.012) 

4.063 

(0.812) 

3.758 

(0.412) 

3.469 

(0.219) 

E( k ) 4.258 

(2.213) 

3.269 

(2.012) 

2.698 

(1.254) 

2.621 

(0.785) 

2.367 

(0.532) 

2.474 

(0.213) 
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Table 7. 18 Bias in the estimation of parameters for low mean ( y <1) 

Sample 

size 

100 300 500 700 900 1100 

0 -0.465 -0.258 -0.181 0.061 0.009 0.006 

1  
-0.175 -0.138 -0.102 -0.086 -0.022 -0.011 

2  
-0.464 0.239 0.204 0.103 0.069 0.024 

  9.52 3.769 -0.485 0.563 0.258 -0.031 

k 1.758 0.769 0.198 0.121 -0.133 -0.026 

Table 7. 19 MSE in the estimation of parameters for low mean ( y <1) 

Sample 

size 

100 300 500 700 900 1100 

0 0.84 0.68 0.58 0.43 0.37 0.10 

1  
0.67 0.45 0.39 0.25 0.18 0.08 

2  
0.97 0.44 0.27 0.19 0.15 0.08 

  10.85 4.95 1.12 0.99 0.49 0.22 

k 2.83 2.15 1.27 0.79 0.55 0.21 

7.3 Results 

The results of this study show that similar to the NB model, the GW model is also 

affected by the low sample mean and small sample size bias. Several conclusions can be 

made from the results of the simulation study presented above. 

First, the parameters of the GW model are estimated more accurately for a larger sample 

mean ( y >5), as expected. Although the estimated values are close to the theoretical 

value, the standard deviation of the estimates became large for a sample size of 100. The 

difference between the minimum and maximum values of the estimates increased as the 

sample size decreased. 

Second, compared to the sample described above, the parameter estimates started to 

generate obvious bias in the median and low sample means when the sample size was 
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below 300. The estimates are highly unreliable and biased for a low sample mean when 

the sample size is below 100. 

Third, the computational time needed for the MCMC implementation of the GW model 

was also investigated. Datasets with higher sample means required more computational 

time for a given number of replications than datasets with a low sample mean. The 

computational time for the MCMC implementation of the GW model was a little bit 

larger than NB model but not very significant. 

Last but not least, the different definitions of priors for the dispersion parameters of the 

GW model did not have as much effect on the results of the regression parameter 

estimation as on the estimation of dispersion parameters. The proper definition of a 

weakly-informative prior distribution is beneficial to the accuracy of parameter 

estimation. 

Based on the modeling presented above, this research suggests certain guidelines 

regarding the selection of weakly informative priors and a minimum sample size to use 

in terms of different sample mean values. The guidelines are shown in Table 7.20. The 

minimum sample sizes required in each scenario (N =300 for high mean, N =500 for 

moderate mean, and N =1000 for small mean) were determined according to the bias and 

MSE associated with each parameter, especially those parameters related to dispersion. 

The biases related to the regression coefficients were much smaller for different sample 

sizes and sample means than the biases related to the dispersion parameters.  
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Table 7.20 Recommended sample size in terms of minimizing bias 

(weakly informative priors) 

7.4 Chapter Summary 

This chapter evaluated the performance of GW distribution in terms of stability and 

presence of bias for data with different sample sizes and sample means. The effects of 

prior distributions were also investigated. It is shown that the GW model was also 

affected by low sample mean and small sample size bias. The estimates were highly 

unreliable and biased for the low sample mean when the sample size was below 100.The 

proper definition of weakly-informative prior distribution was necessary to improve the 

accuracy of parameter estimation. Finally, the selection of priors and the minimum 

sample size to use given different sample mean values was also presented. 

Sample mean Recommended Minimum Sample Size 

High( y >5) 300 

Moderate(1≤ y ≤5) 500 

Low( y <1) 1000 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE RESEARCH 

As one of the major analysis methods, statistical models play an important role in traffic 

safety analysis. There has been considerable work in the traffic safety literature related 

to the development of statistical models for analyzing motor vehicle crashes. A common 

difficulty associated with the modeling of crash data is known as the overdispersion. It is 

a serious problem and has been addressed in a variety ways. One of the most commonly 

used methods to address this is with the NB model. However, factors that affect the extra 

variation are often unknown to researchers, and traditional models, such as the NB 

model, cannot adequately capture the nature of the dispersion found in crash data.  

Given the limitations of the NB regression model for addressing the source of 

overdispersion of crash data, this research examined an alternative model formulation 

that could be used for capturing the source of extra variability through the use of the GW 

regression model. To evaluate its performance, GW regression models were estimated 

using both simulated and empirical crash datasets, and the results were compared to the 

NB regression model as well as to the recently introduced NB-L model. Their relative 

performances were also examined in terms of hotspot identification. Finally, bias 

properties of the choice of prior distributions for parameters in GW regression model 

were characterized, and guidelines on the choice of priors and the summary statistics to 

use were presented for different datasets. 

This chapter is divided into two parts. The summary and conclusions of the research are 

presented in Section 8.1 and future research is discussed in Section 8.2. 
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8.1 Summary of Work 

This section briefly summarizes the major contributions of this research. 

In Chapter II, various crash count models addressing both overdispersion and 

underdispersion crash data have been described and a brief discussion about strengths 

and weaknesses of existing models was presented. The chapter also described the two 

estimation methodologies that can be used for estimating the coefficients of regression 

models.  

In Chapter III, the methodology of the univariate GW distribution and the corresponding 

GW model based on the distribution were presented. In addition, the basic parameter 

estimation methods applied to a GW model within both the maximum likelihood and the 

Bayesian framework were developed. Finally, the relationship between the GW 

distribution and NB distribution was described. It can be inferred that the NB models are 

nested in the GW.  

In Chapter IV, several conclusions were presented using simulated datasets. At first, 

simulated datasets were used to illustrate how GW regression models can provide good 

numerical approximations and the poor capability of the traditional NB model when the 

underlying distribution comes from GW distribution. The effects of sample mean and 

sample size on the goodness of fit were also examined.  

Next, simulated datasets were used to illustrate the appropriateness of the GW regression 

model specifications when the data were actually generated from a NB distribution. The 

effects of sample size and degree of dispersion on the GOF were also examined. 

Moreover, simulated datasets were generated by using a two- component finite mixture 

of Poisson distribution and a two-component finite mixture of NB distribution in order to 

examine potential bias with either NB distribution or GW distribution to compare 
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performance. It was shown that GW fitted better than the NB model for highly dispersed 

datasets generated from two heterogeneous populations. In sum, the GW model was a 

good candidate model in all four scenarios. 

In chapter V, the applications with four empirical crash datasets showed that the GW 

was a good candidate model to characterize the randomness of crash occurrence. It 

provided useful information, especially on source of variation of traffic crashes. 

Although the GW model did not improve the performance in goodness-of-fit aspect for 

the intersection crash dataset, it provided more detail information about source of 

variance of traffic crashes at intersections by dividing into three parts, which could not 

be detected using the NB model. This information is valuable because it will help traffic 

engineers to better control the variance of traffic crashes by implementing more 

cost-effective safety countermeasures. 

On the other hand, for all three subsequent segment crash datasets, the GW model 

improved the goodness-of-fit, in addition to providing more valuable information about 

source of variance compared to the NB model. It is worth noting that the NB-L model 

was also applied to the last segment crash dataset within a Bayesian framework for the 

better completeness of this research. It is noted that the NB-L model provided a little 

better performance in the goodness-of-fit aspect in this case, but it is not possible to 

provide as much detailed information about source of variance compared to the GW 

model. 

In the next chapter VI, the GW model was applied to compare performance in hotspot 

identification with the NB model. Five different performance criteria were used in the 

study. It showed that the average values of five performance criteria for the GW model 

are all superior to those for the NB model because of the better model specifications to 

account for variance. 
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The effects of different threshold values on the performance criteria were also 

investigated in this research. Compared to the criteria using sample mean, the total error 

rate indicated by RISK decreased when the 85
th

 percentile was used as the criteria.

However, the FDR and SPEC criteria increase and the FNR and SENS decreases\. It is 

shown that using a higher threshold value reduces the number of target hotspots for 

treatment. Accordingly it is more likely to have an increased number of false positives 

and less success in detecting true hotspots as the threshold value increases. At the same 

time, one can reduce the possibility of misidentifying hotspots as non-hotspots and 

increase the ability to detect true non-hotspots.  

Finally, in chapter VII, this research investigated the effects of different sample sizes and 

sample means especially under low sample mean and small sample size scenario. A 

simulation study was used to indicate the effects on bias properties of the GW model at 

this scenario. The effect of the different prior distributions for the parameters of GW 

model on the posterior estimation and biases of the parameters was also investigated. 

Two different priors, beta prior and gamma prior were examined. Based on the 

simulation results, general guidelines were also provided about the choice of priors and 

the summary statistics to use for different sample sizes and sample mean values. The 

minimum recommended sample sizes for each sample-mean category were N =300 for 

high mean, N =500 for moderate mean, and N =1500 for small mean. It was found that 

there was no major difference in the prediction of the estimates and the standard 

deviations with the change in prior distribution. 

In conclusion, this research developed GW model applied in traffic safety with both 

MLE and Bayesian parameter estimation methods and examined the superior 

performance of this kind of model in three major aspects: goodness of fit, source of 

variance of traffic crashes and the ability to investigate hotspots. This kind of model will 

be promising, especially for researchers to investigate the source of variance of traffic 

crashes in the future. 
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8.2 Recommendations and Future Research 

Highway safety researchers should consider using the alternate GW model if the crash 

datasets are overdispersed and the data are not well suited to a NB regression model by 

checking the sample mean and variance. In these cases, the GW model specification 

could be a good candidate model for this dataset. 

Even if the goodness-of-fit performance of the NB model is satisfactory, it could still be 

meaningful to apply the GW model for analyzing the crash dataset. The model is able to 

provide at least the same performance on goodness of fit for overdispersed data but more 

valuable information about the source of variance. 

The following are some directions for future study: 

The EB method is now commonly used in highway safety analysis for hotspot 

identification. This research can be extended by developing an EB modeling framework 

for the GW model. 

There are several other models such as random parameter models also have been used to 

describe sources of dispersion. The difference between these models with GW is 

meaningful to be investigated and compared in order to understand the source of 

variance of traffic vehicle crashes better. 

In Chapter VII, only two kinds of prior information were discussed and compared. It 

would probably be useful to investigate some better definitions of prior information for 

the parameters of the GW model, in order to improve the accuracy of parameter 

estimation. 
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There have been some discussions about the assumption related to the 

covariate-dependent dispersion for NB models. Similar to the NB model with a varying 

dispersion parameter, further research should be conducted to examine the effect of a 

covariate-dependent parameter with the GW model.   
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APPENDIX A 

R and WINBUGS CODES FOR GW MODEL 

This appendix provides codes for generating the GW, NB and FMP-2 random variables 

and simulated datasets. The implementation of the MLE and Bayesian method for GW 

model is also provided.  

1. Example of generating GW variates and MLE for GW and NB model

Library ("GWRM") 

Rho<-3.5 

k<-2.5 

N=100 

b=matrix(c(-0.5,0.5,-0.5), nrow=3, ncol=1) 

X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 

offset=c(rep(0,N)) 

xbeta=X%*%b 

m=exp(xbeta) 

a<-m*(rho-1)/k 

y<-rghyper(N,-k,-a,rho-1) 

mydata=data.frame(y,X) 

fit<-GWRM.fit(y~X[ ,2]+X[ ,3],data=mydata) 

GWRM.display(fit) 

m1<-glm.nb(y~X[ ,2]+X[ ,3],data=mydata) 

2. Example of generating NB variates and MLE for GW and NB model

N=100 

b=matrix(c(1,0.5,-0.5), nrow=3, ncol=1) 

X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 

offset=c(rep(0,N)) 
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xbeta=X%*%b 

m=exp(xbeta) 

y<-rnbinom(N,mu=m,size=2) 

mydata=data.frame(y,X) 

m1<-glm.nb(y~X[ ,2]+X[ ,3],data=mydata) 

fit<-GWRM.fit(y~X[ ,2]+X[ ,3],data=mydata) 

GWRM.display(fit) 

3. Example of generating FMP-2 variates and MLE for GW,NB and FMP-2 model

library("flexmix") 

N=100 

b=matrix(c(2,-0.5,0.5,0,-0.5,0.5), nrow=3, ncol=2) 

X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 

offset=c(rep(0,N)) 

xbeta=X%*%b 

m=exp(xbeta) 

w=rbinom(N, 1, .2) 

y=w*rpois(N,m[,1])+(1-w)*rpois(N,m[,2]) 

mydata=data.frame(y,X) 

m1<-glm.nb(y~X[ ,2]+X[ ,3],data=mydata) 

fit<-GWRM.fit(y~X[ ,2]+X[ ,3],data=mydata) 

GWRM.display(fit) 

M2 <- flexmix(y~X[ ,2]+X[ ,3],data=mydata, k = 2, model = FLXMRglm(family = 

"poisson")) 

4. Example of generating FMNB-2 variates and MLE for GW,NB model

library("flexmix") 

N=1000 

b=matrix(c(2,-0.5,0.5,0,-0.5,0.5), nrow=3, ncol=2) 
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X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 

offset=c(rep(0,N)) 

xbeta=X%*%b 

m=exp(xbeta) 

w=rbinom(N, 1, .2) 

y=w*rnbinom(N,mu=m[,1],size=5)+(1-w)*rnbinom(N,mu=m[,2],size=5) 

mydata=data.frame(y,X) 

m1<-glm.nb(y~X[ ,2]+X[ ,3],data=mydata) 

fit<-GWRM.fit(y~X[ ,2]+X[ ,3],data=mydata) 

GWRM.display(fit) 

Summary (m1) 

5. Example of generating GW variates and Bayesian estimation for GW model

Library (R2WinBUGS) 

Rho<-3.5 

k<-2.5 

N=1000 

b=matrix( c(1.5,0.5,-0.5), nrow=3, ncol=1) 

X=cbind(rep(1,N),rnorm(N,mean=0,sd=1),rnorm(N,mean=0,sd=1)) 

offset=c(rep(0,N)) 

xbeta=X%*%b 

m=exp(xbeta) 

a<-m*(rho-1)/k 

y<-rghyper(N,-k,-a,rho-1) 

mydata=data.frame(y,X) 

J<-nrow(mydata) 

y<-mydata$y 

x2<-mydata$X2 

x3<-mydata$X3 
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crash.data<-list("J","y","x2","x3") 

crash.inits<-function() 

list(b=c(1.5,0.5,-0.5),rho=3.5,k=2.5) 

crash.parameters<-c("b","rho","k") 

crash.sim<-bugs(crash.data,crash.inits,crash.parameters,model.file="C:/Desktop/winbug

sim/simGW.bug",n.chains=3,n.iter=50000,n.burnin=25000,bugs.directory="C: 

/Desktop/studyME/WINBUGS/WinBUGS14",debug=TRUE) 

print(crash.sim,digits.summary=3) 

model 

{for (i in 1:1000) 

  {error[i] ~ dgamma(phi1[i],phi1[i]) 

    phi1[i]~dbeta(rho,k) 

    mu[i]<- exp(X%*%b)*error[i] 

    y[i]~dpois(mu[i]) 

   } 

  for (i in 1:3){ 

b[i]~dnorm(0,1.0E-6) 

} 

rho~dgamma(0.01,0.01) 

k~dgamma(0.01,0.01) 

}  
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APPENDIX B 

FIGURES ABOUT RELATIONSHIP BETWEEN FRACTION OF 

EACH COMPONENT AND EACH INDEPENDENT VARIABLE IN 

GW MODELS 

Texas crash data 

Figure B.1 Relationship between fraction of each component and lane width 

Figure B.2 Relationship between fraction of each component and shoulder width 
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Indiana crash data 

 

 
 

Figure B.3 Relationship between fraction of each component and median width 

 

 

 

Figure B.4 Relationship between fraction of each component and Presence of 

median barrier 
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Michigan crash data 

 

 

 
 

Figure B.5 Relationship between fraction of each component and shoulder width 

 

 

 
 

Figure B.6Relationship between fraction of each component and lane width 
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Figure B.7 Relationship between fraction of each component and speed limit 
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