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ABSTRACT 

 

Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are 

challenging to conduct due to limitations associated with mass transport.  Nevertheless, 

there are numerous reactions such as esterification, transesterification, etherification, and 

hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) 

need to be brought into contact with a catalyst. With the intention of alleviating mass 

transport issues associated with such systems but affording the ability to separate the 

catalyst once the reaction is complete, the overall goal of this study is geared toward 

developing a catalyst that has emulsification properties as well as the ability to phase-

transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating 

the effectiveness of such a catalytic process in a practical reaction.  

 

To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides 

that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties 

(to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization 

when heated (to separate as a solid subsequent to the completion of the reaction) were 

used to test the concept.  

 

Studies included elucidating the effect of metal sites and alkoxide sites and their 

concentration effects on transesterification reaction, effect of various metal alkoxide 

groups on the phase stability of the reactant system, and kinetic effects of the reaction 
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system. 

 

The studies revealed that several transition-metal alkoxides, especially, titanium and 

yttrium based, responded positively to this reaction system. These alkoxides were able to 

be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil 

system. The alkoxides were selective to the transesterification reaction giving a range of 

ester yields (depending on the catalyst used). It was also observed that transition-metal 

alkoxides were able to be recovered in the form of their polymerized counterparts as a 

result of condensation polymerization subsequent to completion of the transesterification 

reaction.  
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CHAPTER I  

INTRODUCTION AND PROBLEM STATEMENT 

 

Introduction  

 

 Problem Statement 

 

Increasing the effectiveness of reactions that involve immiscible liquid/liquid (L/L) 

reactants is challenging due to limitations associated with mass transport as a result of 

unavailability of sufficient interfacial area. Although the L/L incompatibility could be 

ameliorated by introducing a liquid surfactant, this causes downstream product 

separation problems which reduces the effectiveness of such a system for practical 

applications. 
1
 Nevertheless, there are numerous instances where two immiscible liquid 

reactants (such as polar and non-polar liquid reactants) need to be brought into contact 

with a catalyst such as in esterification
2,3

, transesterification
4-7

, etherification
8,9

, and 

hydrolysis.
10-12

 So, there is a need for catalytic processes that can alleviate such phase 

incompatibility.  

 

For industrial purposes, it will be beneficial to have catalysts that are in a different phase 

than the reactants, such as a heterogeneous solid in a liquid medium, which allows easy 

separation of the catalyst subsequent to the completion of the reaction.  However, 
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introduction of a solid further aggravates the mass transport issues now due to the 

liquid/liquid/solid incompatibility.  

 

The overall goal of this study was to develop a catalyst that 1) has emulsification 

properties which can make the two liquid-phase reactants compatible and 2) can be 

easily separated from the reaction medium once the reaction is complete.  

 

This study was designed to identify chemical compounds that have catalytic and 

amphiphilic properties and understand the behavior of such catalysts under varying 

reaction conditions for the transesterification reaction. Transesterification was used as 

the reaction of choice since the substrates (oil and alcohol) are inherently immiscible in 

each other and would be a good benchmark to evaluate the effectiveness of the novel 

catalysts due to the abundant availability of catalysis data. The specific objectives and 

organization of the dissertation are discussed below.  

 

Dissertation Organization 

 

This dissertation consists of six chapters. Chapter I (this chapter) is a generalized 

introduction of the research problem and research objectives. Chapter II presents the 

response of a titanium isopropoxide-based phase-transforming catalyst on 

transesterification. This includes catalytic behavior of titanium isopropoxide at varying 

temperature and reaction times.  Chapter III reports a study of effects of tail groups of 
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titanium alkoxides on the transesterification reaction. Chapter IV presents the effects of 

metal groups on the transesterification reaction. Chapter V discusses the amphiphilic 

ability of selected catalyst metal alkoxides. In this chapter, phase stability as well as the 

effect of some selected catalyst concentrations (that were able to form stable emulsions) 

on transesterification is presented. Chapter VI presents kinetic data for a selected system 

along with catalyst reusability data. Chapter VII reports overall conclusions and 

recommendations for future work.   

 

The objectives and specific tasks for the research reported here are as follows: 

Objective 1 - Evaluate the overall catalytic nature of partially polymerized metal 

alkoxides (preliminary study) 

Task 1- Analyze the effect of degree of polymerization of select metal 

isopropoxide on transesterification reaction 

     Task 2- Analyze the effect of temperature on transesterification reaction 

 

Objective 2- Elucidation of the effect of alkoxide group (tail group) on catalysis of the 

transesterification reaction 

 

Objective 3- Elucidation of the effect of different metal groups on the catalysis of the 

transesterification reaction 
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Objective 4- Elucidation of effect of selected metal groups and alkoxide groups on the 

stability of the alcohol-oil-catalyst ternary system and its correlation to catalysis  

Task 1- Elucidation of the stability of the ternary system as a function of 

different alkoxides 

Task 2 - Elucidation of the emulsion stability as a function of degree of 

polymerization of the isopropoxide 

Task 3- Elucidation of the effect of emulsification on transesterification 

catalysis 

 

Objective 5- Determination of reaction kinetics and catalyst reusability  

Task 1- Elucidation of reaction kinetics 

     Task 2- Yield optimization studies 

     Task 3 - Analysis of catalyst reusability after an initial run 
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CHAPTER II 

RESPONSE OF TITANIUM ISOPROPROPOXIDE-BASED HETEROGENEOUS 

AMPHIHPILIC-POLYMER-CATA LYSTS FOR TRANSESTERIFICATION
 *

 

 

Introduction 

 

The goal of this study was to address aforementioned limitations of liquid/liquid 

substrate incompatibility by developing a heterogeneous (solid) catalyst that acts as an 

emulsifier (amphiphile) which essentially will be positioned at the interface between the 

two immiscible liquids while catalyzing the reaction. It was conceptualized that the 

amphiphilic catalyst first brings the two hydrophilic and hydrophobic liquid molecules 

together and due to the emulsification properties of the catalyst, stabilizes the emulsion. 

In the meantime, the catalyst will lend its active sites for the desired reaction to occur. 

 

We selected the transesterification reaction to test our premise. This reaction has gained 

much attention recently due to its use in the biodiesel industry. 
13,14

 Fatty acid methyl (or 

ethyl) esters commonly known as biodiesel are a renewable alternative fuel for 

compression ignition engines.
15-20

 Typical raw materials used are triglycerides of either 

plant or animal origin and used oils or fats. 
7,13,19-25

 Direct utilization of triglycerides as 

diesel fuel is not feasible due to engine operational problems associated with poor fuel 

                                                 

*
 Reprinted in part with permission from  Nawaratna, G., Fernando, S., and S. Adhikari. 2010. Response of 

Titanium Isopropoxide-based Heterogeneous Amphiphilic-polymer-catalysts for Transesterification. 

Energy and Fuels. 24 (8), 4123-4129, Copyright 2010 by American Chemical Society. 
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injection properties and the formation of deposits as a result of the high viscosity and 

high molecular weight of triglycerides. Consequently, transesterification is employed to 

lower the fuel viscosity nearer to that of petroleum diesel.  

 

Transesterification is an acid or alkaline catalytic reaction between triglycerides and 

alcohols (methanol, ethanol, etc.).
26

 Due to superior activity and favorable economics, 

the most commonly used industrial catalysts are sodium and potassium hydroxides. 

However, alkaline hydroxides often produce saponifiable matter 
27

 which originates 

from the free fatty acid neutralization. This soap formation is undesirable as it partially 

consumes the catalyst, decreases biodiesel yield, and complicates the separation and 

purification steps. In addition, the removal of these homogeneous catalysts is technically 

difficult and adds extra cost to the final products.
28-30

 Moreover, disposal of the catalyst-

contaminated glycerin is increasingly becoming an environmental concern. Therefore, 

heterogeneous catalysis is desired to simplify separation and purification of the products.  

 

 Nonetheless, heterogeneous catalysis in transesterification largely remains as an 

unsolved challenge. Present catalytic systems require extreme reaction conditions and 

are still plagued with problems associated with catalyst leaching and poisoning. The 

yield and reaction times are still unfavorable due to mass transfer limitations in 

liquid/liquid/solid (L/L/S) interface systems corresponding to 

triglyceride/alcohol/catalyst phases, respectively.
31

 The concept of heterogeneous 

amphiphilic catalysis has the potential to reduce the mass transfer barrier associated with 
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the L/L/S phase-incompatibility. In general, improved L/L/S catalytic systems will be of 

high significance where reactions involve hydrophilic and hydrophobic liquids in the 

presence of solid catalysts. Such systems include esterification
3,32,33

, 

transesterification
6,7,34,35

, etherification
8,9

 and steam reforming
36-38

 systems.  Specifically, 

amphiphilic catalysts could potentially be used in L/L catalytic environments such as 

hydrolysis of propionic anhydrite catalyzed with sulfuric acid 
39,40

, oxidative 

desulfurization of dibenzothiophene with molecular oxygen 
41

, oxidation of hydrophobic 

alcohols using aqueous hydrogen peroxide 
42

, hydroamination reactions in a liquid-liquid 

two-phase catalytic system 
43

, and reforming of hydrophobic substrates such as lignin to 

produce biorenewable hydrogen using novel systems such as aqueous phase reforming 

(APR). 

 

 Transport Aspects of Transesterification 

 

Homogeneous catalysts, in addition to providing the acid and alkali sites for the 

transesterification reaction to occur, provides the required amphiphilicity for emulsifying 

the originally bi-phasic and immiscible reactant mixture. The amphiphilic nature of the 

alkoxide intermediate (Figure 1) clearly depicts why the base catalyzed reaction occurs 

much more favorably in comparison to the acid catalyzed process. The alkyl group of the 

alkoxide is hydrophobic and would orient towards the continuous triglyceride phase 

while the polar oxide would orient inward towards the discrete alcohol droplets making a 

micelle. The reaction would occur at the oil/alcohol interface. On the other hand, 
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inorganic acid molecules are polar and would predominantly stay submerged in the 

alcohol phase. The acid-catalyzed reaction would occur comparatively much slower 

since there is no driving force (other than mechanical agitation) to drive catalyst 

molecules towards the non-polar lipid phase for the reaction to occur.     

 

  

 

 

 

 

 

 B - Base 

 
Reaction mechanism of base catalyzed 

transesterification (insert reference) 

Orientation of micelles 

with catalyst 

amphiphiles 

Figure 1: Reaction mechanism of base catalyzed transesterification along with 

orientation of the catalyst amphiphile 
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Heterogeneous Catalysts in Transesterification 

 

Heterogeneous catalysts that have been used in biodiesel production related 

transesterification include metal oxides such as ZrO2-SiO2, KOH/ZrO2-SiO2, Co2O3-

SiO2, Mo2O5-SiO2, Na2O-SiO2 
16,44

; metals such as nickel powder, palladium powder, 

cast iron shavings, steel shavings 
44,45

; zeolites 
46-48

; ion exchange resins 
16,49,50

; and salts 

such as sulfated zirconia.
2,25,51

 Literature suggests that the heterogeneous catalysts that 

showed the best performance are zeolites - mainly the ETS-10 group.
52

 ETS-10 with a 

catalyst loading of 11 wt% in a 1 ml vial reactor gave a conversion of 95.8% in 24 hours 

at 150 
o
C with a 6:1 molar ratio of methanol to soybean oil.

44
 However, “Esterfip-H” 

offered by Axens is the only commercial process available that uses a heterogeneous 

catalysts.
14,53,54

 This process uses a mixture of zinc oxide, aluminum oxide, and zinc 

aluminates as the catalysts and requires a temperature between 170-250 
o
C, a pressure of 

approximately 100 bar, and a two-stage reaction. By contrast, homogeneous basic 

catalysts give conversions near 100% at temperatures at or below 65 
o
C in less than 3 

hrs.
31

 The challenge in developing heterogeneous catalysts for transesterification is that 

the catalysts with strong catalytic activity require strong basicity and compounds with 

such strong basicity are inherently soluble in alcohol. Consequently, there is a tradeoff 

between solubility and basicity. Consequently, our approach looks at a highly basic 

catalyst that is insoluble in the hydrophilic alcohol environment.  
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The solid phase basic heterogeneous catalyst was titanium isopropoxide which was 

polymerized into dimeric, trimeric, tetrameric and polymeric/dendritic forms or mixtures 

of these by a sol-gel synthesis method. The focus of this study was to evaluate the 

catalytic aspect of the inorganic polymer for the transesterification reaction. In this case, 

soybean oil was used as the triglyceride and isopropanol as the alcohol. Isopropanol was 

used: 1) since the molecule has a larger hydrocarbon tail group (in comparison to 

methanol or ethanol) favoring miscibility in hydrophobic triglyceride phase and 2) to be 

compatible with the titanium isopropoxide which will exchange the alkoxide ligand with 

the alcohol during the transesterification (to ensure homogeneity of the alkoxide group).  

 

Materials and Methods 

 

The transesterification reaction was carried out in a high pressure thermal reactor (4570-

Parr instrument, Moline, IL USA.). The reactor has a maximum operating temperature of 

500 
o
C and pressure of 5000 Psi. The reactor was used in the batch mode. Pure soybean 

oil was purchased in bulk from STE Oil Company, San Marcos, TX USA. Titanium 

isopropoxide was purchased from Sigma-Aldrich chemical company. Isopropanol was 

purchased from EMD chemicals Inc., while pure biodiesel was purchased from SoyGold 

(Ag environmental products, LLC, Omaha, NE USA).  
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 Catalyst Preparation  

 

Titanium isopropoxide (99%, sigmaarldrich) was used as the catalyst precursor. 

Consequently, isopropanol was used as the alcohol for the transesterification reaction. 

Titanium isopropoxide was dispersed  in isopropanol using ultrasonication. The 

dispersed catalyst-containing alcohol was a clear liquid prior to water condensation. 

Water condensation of the isopropoxide was also carried out under ultrasonication in 

isopropanol. Subsequent to water addition, the inorganic polymer molecules start to 

grow causing the solution to turn turbid (white). The reaction scheme associated with the 

water condensation process is given in Figure 2.  
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Figure 2: Hydrolysis and water condensation reactions of titanium isopropoxide 
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First, a water molecule hydrolyzes an alkoxide bond of the titanium isopropoxide 

generating a hydroxyl group. Two such molecules having orthogonal hydroxyl groups 

react to give -Ti-O-Ti- via water condensation. The degree of polymerization was 

controlled by changing the isopropoxide:water ratio. Accordingly, five different catalysts 

were prepared with water:titanium isopropoxide ratios of 0, 0.5:1, 1:1, 1.5:1, and  2:1 as 

given in Table 1.  

 

   Table 1 Corresponding structures with degree of polymerization 

Water:Titanium isopropoxide  ratio Expected Resultant molecule 

 

 

0 

Monomer 

 

 

1: 2 (0.5:1) 

 

 

 

Dimer 
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Table 1 Continued 

Water:Titanium isopropoxide  ratio Expected Resultant molecule 

1:1 

based polymer with two 

propoxide groups residing per monomer 

3:2 (1.5:1) 

base polymer with one 

propoxide group residing per monomer 

2:1 

Ti OH

OH

OH

OH

condensing to TiO2 

polymer 

 

In order to obtain the desired structures, water addition was done while the isopropoxide 

– alcohol mixture was subjected to ultrasonication as indicated earlier. The sonication 

system (UP400S, Hielscher ultrasound technology), was capable of producing 24,000 

kHz waves with a power output of 400W. The reaction was carried out in a high pressure 
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reactor. A Schematic diagram of the high pressure reactor is shown in figure 3. The 

pressure reactor consisted of a magnetic drive stirrer with maximum speed of 2000 rpm 

and a tachometer module with accuracy ± 10 rpm. The stainless steel reactor vessel was 

capable of handling 500 ml of reactants. In order to initiate the transesterification 

reaction, 1% (w/w) of the catalyst was added to the triglyceride immediately after 

preparation and the reactor was sealed. Initial pressure of the reactor was kept constant at 

atmospheric pressure. The reaction was carried out at 6 different temperatures: 50, 100, 

150, 200, 250, and 300 
o
C. Samples were drawn from the reactor only after reaction 

temperature reached to the desired level for that experiment. However, ancillary data 

were collected in order to assess how much conversion had occurred from the onset of 

the reaction until the desired temperature was reached (it was observed that during 

temperature ramping there was only slight conversion). After temperature reached the 

set value, 6 samples were drawn from each experimental batch in 30 minute intervals up 

to 3 hours. The samples drawn were cooled immediately in order to cease the reaction 

from progressing further. Then, the samples were centrifuged at 10,000 RPM and 12 
o
C 

to separate propyl esters and glycerol. Catalyst and product separation was done by a 

centrifuge system (Sorvall Legend 23 R- Thermo Scientific) that could reach up to 

24,000 RPM and was capable of cooling to (-) 4 
o
C.  
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The top fraction of the products was analyzed for esters yield. Samples were analyzed by 

gas chromatography (GC-6850 Agilent Technologies, Santa Clara, CA USA). Auxiliary 

analysis was carried out by GC mass spectroscopy (GC-MS 7890 Agilent Technologies, 

Santa Clara, CA USA).  

 

The fatty acid propyl esters yield with respect to the degree of polymerization, time of 

reaction and the temperature are discussed in following sections. The results were 

analyzed statistically using Design Expert software. A response surface reduced 

quadratic model was used to analyze the data. The GC method utilized for isopropyl 

esters detection is given below: 

 

 

Figure 3: Actual setup of the reactor (a) and schematic of the reactor (b) 
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Table 2 GC method for isopropyl ester detection 

Inlet Temperature 250 
o
C 

Split ratio 50:1 

Injection volume 1 µl 

Column flow (Helium) 1.6 ml/min (constant flow) 

FID temperature 280 
o
C 

H2 Flow 40 ml/min 

Air flow 450 ml/min 

Makeup gas (Nitrogen) 30 ml/min 

Oven program 50 
o
C hold 1min, to 200 

o
C at 25

 o
C/min, hold 3 min, to 

230 
o
C at 3 

o
C/min, hold 18 min 

Column 30m x 0.25mm x 0.25µm (DB-Wax Column) 

 

Results and Discussion 

 

In the field of titanium alkoxides this is the first time such an extensive study of the 

behavior of the titanium isopropoxide system on transesterification at varying 

temperatures, degrees of polymerization and residence times has been performed. The 

primary objective of the study was to indentify the optimum combination of these 

parameters to maximize the transesterified product yield. In order to capture the 

correlation of all these parameters of the system as a whole, the following combinations 

were analyzed: Ester yield at varying temperatures and degrees of polymerization; yield 
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at varying degrees of polymerization and reaction time and; yield at varying 

temperatures and reaction time. Hypothesized surfactant formulation around the phase 

boundary is shown in figure 4.  

 

The behavior of the titanium isopropoxide system with varying reaction times at 

increasing degrees of polymerization is depicted in figure 5. In these graphs, time begins 

after the reaction mixture reached the designated temperature. In certain instances, 

negative ester yields are reported. This means that the yields have fallen beyond the 

starting yield for that temperature.  

 

At lower temperatures, i.e., 50 to 100
o
C, it is clearly noticeable that at lower residence 

times, the degree of polymerization does not have a significant effect on ester yields 

(Figure 5 A). However, as residence time increases, the polymers tend to produce lower 

ester yields than the monomeric and dimeric forms. It is also noteworthy that as the 

residence times increase, the yields increase regardless of the degree of polymerization. 
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Figure 4: Orientation of titanium isopropoxide polymer in oil/alcohol interface 

 

It was interesting to note that as the temperatures increased beyond 150
o
C, the trend 

reversed, i.e., lower residence times resulted in higher ester yields (Figure 5B). The 

turning point for this behavior was approximately 150
o
C (notice the two-way saddle 

point in Figure 5B). Interestingly, at higher temperatures, the polymeric forms tended to 

Catalyst laden 

alcohol micelles 
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result in higher ester yields as compared to monomeric and dimeric forms (although the 

overall yields were much less than those at lower temperatures). At longer residence 

times (and higher temperatures), the degree of polymerization seemed to be less 

significant for the transesterification reaction and produced very low ester yields.  

The reason for low ester yields at lower temperatures may be due to less favorable 

kinetics (regardless of the number of active sites available in the reaction environment). 

At higher residence times, the monomeric form of the catalyst tended to produce more 

esters and this is expected due to the higher availability of OR
-
 groups per catalyst 

molecule. The monomeric isopropoxide has four active sites per molecule.  

The reduction of overall ester yields at higher temperatures could be attributed to 

thermal cracking and associated reactions that include deoxygenation and 

polymerization of unsaturated chemical moieties. A GCMS study of the high 

temperature - high residence time products indicated the presence of aromatic 

compounds including benzene and cyclohexane suggesting deoxygenation (most likely 

via decarboxylation
55,56

). 
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One key objective of this study was to identify the operating point at which the 

maximum esters yield occurs. The most straightforward to confirm was the response of 

the system to temperature. The temperature response of the system to varying degrees of 

A. Temperature 100 
o
C 

 
 

B. Temperature 150 
o
C 

 

C. Temperature 200 
o
C 

 

D.  Temperature 250 
o
C 

 

Figure 5: Time and degree of polymerization variation with ester yield at different 

temperature 
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polymerization and residence times is given in Figures 6 and 7. It was clear from our 

analysis that the optimum temperature for the reaction was between 150 and 200
o
C. 

Notice that regardless of degree of polymerization or the residence times, the maximum 

ester yields were obtained between these temperatures. The statistical analysis predicted 

the optimum temperature to be 181 
o
C.  

 

 

 

 

 

 

B. Degree of polymerization=2 

 

A. Degree of polymerization = 0 

 

Figure 6: The effect of temperature and time on esters yield at (A) 0% and (B) 100% 
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In order to determine the optimum residence time for the reaction, we did an analysis 

similar to the one above, where the response of the system at 150 and 200
o
C was 

evaluated at different degrees of polymerization and residence times. Again, referring 

back to figure 5, it could be noticed that at 200
o
C, the highest ester yield was observed at 

the shortest residence time of 0 hrs. This means that by the time the reactor reached 

200
o
C, the maximum ester yield had already been reached. In order to further analyze 

the yield behavior at these temperatures, the response of the system for varying 

residence times were compared (Figure 8). In order to make the comparison easy, the 

ester yields were adjusted to zero after the reaction medium reached the desired 

temperature at 200 
o
C. The resultant maximum esters yield was 32.3 % at 150 

o
C after 2 

A. Time = 0.5 hr 

 
 

B. Time = 3 hr 

 

Figure 7: The effect of temperature and degree of polymerization on esters yield at 

(A) time =0 hr and (B) time = 3 hr 
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Figure 8: Time vs adjusted biodiesel yield at 150 and 200 
o
C, at various degree of 

polymerization 

hours of reaction with the monomeric catalyst.  According to Figure 8, it could be noted 

that most of the systems had reached equilibrium by 2 hours of reaction time.  

 

 

  

Subsequent to identifying the best operating temperature and residence time, 

identification of the most active catalyst system was straightforward. According to 

Figure 6, it could be noted that the most active catalyst was the titanium isopropoxide 

monomer. The least active was TiO2 inorganic polymer.  Although statistically, 

insignificant, the intermediate complexes had intermediate activity. For example, at 0.5 

hr residence time, the best catalytic activity was displayed by the 1:1 dimer (Figure 8). 

The only piece of literature that is available to compare these findings is on the efficacy 

of titanium dioxide on transesterification.
35

 They reported a yield of 79.6% with 0.3:1 
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moles catalyst: moles of oil even after an eight hour residence time span. Our 

observations suggest that although much weaker than the titanium isopropoxide 

counterparts, titania (TiO2) has a respectable activity for transesterification at 

temperatures above 150
o
C.  Statistical analysis showed significant interaction between 

variables, temperature and degree of polymerization and also between temperature and 

residence time. 

 

Specific Conclusions 

 

This study confirms that monomeric, dimeric, trimeric, and polymeric forms of titanium 

propoxides and titania have significant catalytic activity toward transesterification with 

isopropanol. A maximum ester yield of 41.56% was observed at a reaction temperature 

of 200 
o
C after 3 hours of reaction with monomeric titanium isopropoxide. However, 

polymerization reached equilibrium yields after approximately two hours.  It was 

observed that the reaction reached its optimum at temperatures between  150 – 200
o
C 

after 2-3 hours of reaction time. The statistical analysis concluded that only temperature 

and time had significant effects on ester yields. The temperature has the most profound 

effect. The interaction between temperature and degree of polymerization and the 

interaction between temperature and residence time were significant. The degree of 

polymerization had little effect on the reaction although it was noticed that the 

monomeric forms of the catalyst performed slightly better than the polymeric forms. 

Based on the observations, it is recommended that further experiments are needed to 
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elucidate the specific impacts of alkoxide groups and metals groups as well as the kinetic 

effects of the reaction system.  
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CHAPTER III 

EFFECT OF HYDROCARBON TAIL-GROUP OF TRANSITION METAL 

ALKOXIDE BASED AMPHIPHILIC CATALYSTS ON TRANSESTERIFICATION
†
 

 

Introduction 

 

In the previous chapter, the effectiveness of titanium-isopropoxide-based monomers, 

oligomers and polymers as transesterification catalysts was studied.
57

 It was observed 

that there was an optimal level of oligomerization that is most effective in 

transesterification catalysis. The aforementioned study looked at the catalytic ability of 

methoxide groups that are tethered to the Ti-O-Ti matrix of different polymeric 

complexity. However, the study did not look at the behavior of such a system to alkoxide 

groups with varying carbon composition. The importance of the carbon composition is 

that in alcohol-in-oil systems where oil is the continuous phase, the longer the 

hydrophobic tail, the better the ability of the amphiphile to stabilize an alcohol-in-oil 

emulsion. The objective of this study is to fill this gap, i.e., understand the catalytic 

behavior of titanium-based amphiphiles with alkoxide groups with varying carbon 

numbers (in terms of length and enantiomers).  

 

                                                 

†
 Reprinted with permission from Nawaratna, G., Fernando, S., and Lacey, R. 2012. Effect of 

Hydrocarbon Tail-group of Transition Metal Alkoxide Based Amphiphilic Catalysts on 

Transesterification. Catalysis Science and Technology. 2012, 2, 364–372, Copyright 2012 by Royal 

Society of Chemistry. 
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We selected transesterification reaction to test our premise due to a multitude of reasons. 

This reaction has gained much attention recently due to its use in the biodiesel 

industry.
13,14

 Fatty acid methyl (or ethyl) esters, commonly known as biodiesel, are a 

renewable alternative fuel for compression ignition engines.
15-20

 Typical raw materials 

used are triglycerides of either plant or animal origin and alcohols (methanol, ethanol, 

isopropanol).
19

 The reaction is ideal since the reactants (triglyceride and alcohol) are 

immiscible in each other. Moreover, since the reaction has been widely studied, there is 

a large body of benchmark data with which to compare the effectiveness of 

heterogeneous amphiphilic catalysts that we are working on.    

 

Transesterification is an acid or alkaline catalyzed reaction.
26

 Due to superior activity 

and favorable economics, the most commonly used industrial catalysts are sodium and 

potassium hydroxides that are in a homogeneous phase with the reactants. However, 

alkaline hydroxides often produce saponifiable matter 
27

 which originates from the free 

fatty acid neutralization. The soap formation is undesirable as it partially consumes the 

catalyst, decreases biodiesel yield, and complicates the separation and purification steps. 

In addition, the removal of these homogeneous catalysts is technically difficult and adds 

extra cost to the final products.
28-30

 Moreover, disposal of the catalyst-contaminated 

glycerin is increasingly becoming an environmental concern. Therefore, heterogeneous 

catalysis is desired to simplify separation and purification of the products. Development 

of a heterogeneous catalyst that also helps ameliorate transport limitations would be an 

added potential benefit of this study to the biodiesel industry. 
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Selection of titanium as the base metal and its alkoxides as the active site with 

amphiphilic properties was based on several reasons. Titanium based alkoxides 

(especially titanium isopropoxide) is a widely used reagent in sol-gel chemistry 
58

 and 

chemical vapor deposition.
58,59

 As a result, the chemistry of primary alkoxides is well 

characterized and understood. Also, titanium-based alkoxides have already been 

successfully used for transesterification in a previous study.
57

  

 

Materials and Methods 

 

The transesterification reaction was carried out in a high pressure thermal reactor (4570-

Parr instrument, Moline, IL USA.) with maximum operating temperature rating of 500 

o
C and pressure of 5000 Psi. The reactor was used in the batch mode. Degummed 

soybean oil was purchased in bulk from STE Oil Company, San Marcos, TX USA.  

Catalysts titanium methoxide, titanium ethoxide, titanium propoxide, titanium 

isopropoxide, and titanium butoxide, were purchased from Sigma-Aldrich chemical 

company. Titanium isobutoxide was purchased from Alfa Aesar Company. Isopropanol 

was purchased from EMD chemicals Inc. Propanol and butanol were purchased from 

Sigma-Aldrich chemical company while ethanol and methanol were purchased from 

VWR International LLC. Isobutanol was purchased from Alfa Aesar Company. Pure 

biodiesel was purchased from SoyGold (Ag environmental products, LLC, Omaha, NE 

USA). Hammett indicators 2, 4-dinitroaniline, 4-chloro-2-nitroaniline, 4-chloroaniline, 
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crystal violet, dimethyl yellow, methyl red, neutral red, Nile blue, phenolphthalein and 

tropaeolin were purchased from Sigma-Aldrich chemical company. 

 

Catalyst Preparation 

 

All the catalysts were prepared by ultrasonic mixing with respective alcohols. Titanium 

methoxide based oligomer catalysts were prepared using ultrasonic mixing of titanium 

methoxide with methanol and then, prescribed amounts of water. The sonication system 

(UP400S, Hielscher ultrasound technology), was capable of producing 24,000 kHz 

waves with a power output of 400W for this purpose. 

 

The catalyst polymerization was kept at 1:0.5  alkoxide: water mole ratio
57

 to control the 

degree of polymerization via water condensation. Although adding stoichiometric ratio 

of water to alkoxide amount, this will not guarantee the hydrolysis of half of the 

alkoxides.
60-64

 Adding limited water will limit the hydrolysis of alkoxides which will 

limit the particle size. It has been reported that alkoxides with larger tail groups are 

slower to hydrolyze and slower to diffuse.
65-68

 Because of that large tail group alkoxides 

tend to make smaller polymeric particles.
64

 Dilution of the water and alkoxide in a 

solvent affect the mean particle size of the product from hydrolysis and 

polymerization.
69

 The water needed for condensation-polymerization was first diluted in 

the respective alcohol prior to addition to the titanium alkoxide monomer under 

ultrasonication. Dilution of water in alcohol makes the water well dispersed and in turn 
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helps in formation of a polymer with consistent molecular size. Although the probable 

end product from the hydrolysis and condensation of alkoxide are oligomers, we have 

given the dimerization reaction here for basic understanding of the reaction. An example 

condensation dimerization reaction for titanium isopropoxide is given in Figure 9. 
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Figure 9: Hydrolysis and water condensation reactions of titanium isopropoxide 

 

In this reaction, first, a water molecule hydrolyzes an alkoxide bond of the titanium 

isopropoxide generating a hydroxyl group. Two such molecules having orthogonal 

hydroxyl groups react to give -Ti-O-Ti- via water condensation. The degree of 

polymerization of other metal alkoxides can be controlled by changing the 
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alkoxide:water ratios in a similar fashion. The starting monomers and resulting 

oligomers are given in Table 3. 

 

Table 3 Molecular configurations of the oligomers resulting from water 

condensation 

Monomer Resulting oligomer 

Titanium methoxide 
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The transesterification reactions were carried out in a high pressure reactor with a vessel 

of 500 ml. The pressure reactor had a magnetic drive stirrer with maximum speed of 

2000 rpm and a tachometer module with accuracy ± 10 rpm. In order to initiate the 

transesterification reaction, 1% (w/w) of the catalyst was infused into the reaction 

chamber containing triglyceride, immediately after the contents reached the designated 

temperature (200 
o
C ) through a high pressure liquid pump ( Eldex 5790, Eldex 

laboratories Inc. Napa, CA ). It was noticed that when the reactor reached 200 
o
C, the 

pressure increased up to 10 psi. Samples were drawn from the reactor at 30-minute 

intervals up to 3 hours. The samples drawn were cooled immediately to cease the 

reaction from progressing further. Then, the samples were centrifuged at 10,000 RPM 

and 12 
o
C to separate products (alkyl esters and glycerol) and catalyst. The centrifuge 

system used (Sorvall Legend 23 R- Thermo Scientific) had a maximum rated speed of 

24,000 rpm and minimum temperature of (-) 4 
o
C.  

 

The top fraction of the products was analyzed for esters using gas chromatography (GC-

6850 Agilent Technologies, Santa Clara, CA USA). Auxiliary analyses for confirmation 

of the products were carried out via GC Mass spectroscopy (GC-MS 7890 Agilent 

Technologies, Santa Clara, CA USA).  

 

The gas chromatograph was calibrated with the respective alkyl ester standards each 

time prior to obtaining quantitative yields. Alkyl ester standards (pertinent to methyl, 



 

 33 

ethyl, propyl, isopropyl, butyl, and isobutyl esters of C 16:0, 18:0, 18:1, 18:2, 18:3 fatty 

acid alkyl esters) were purchased from Nu-Chek Prep Inc.(Elysian MN 56028, USA). 

The GC method utilized (for isopropyl esters) detection is as described in chapter 2. The 

fatty acid alkyl esters yield was calculated by Chemstation software (Agilent 

technologies). An internal standard method was used to analyze the ester yields. The 

area under the peak from the FID chromatogram corresponded to the concentration of 

that component. These concentrations were determined using calibrations with pure ester 

standards along with an internal standard (C-12 ester). The results were statistically 

analyzed by Design Expert software.  

 

Catalyst Characterization 

 

The basic strength of the catalyst was determined by the Hammett indicator method.
70

 

The Hammett indicator method is used to determine qualitative information of the basic 

properties of solid catalysts. The Hammett indicator method is a fast and straightforward 

method to analyze the basicity and acidity of a catalyst. This method is only accurate for 

qualitative analysis because of potential issues associated with indicator molecules 

diffusing into the micropores.
70,71

 Nevertheless, the basicities obtained using the 

Hammett indicator method are in good agreement with the catalytic findings. 

 

About 10 ml of sample containing catalyst was shaken with 5 drops of Hammett 

indicator in methanol solution and left to equilibrate for 3 h. In the Hammett indicator 
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method, the base strength is quoted as being stronger than the weakest indicator which 

exhibits a color change, but weaker than the strongest indicator that produces no color 

change.
70,71

 In these experiments, the following basic Hammett indicators were used: 

Neutral red (pKa value, 6.8), Methyl red (pKa value ) 4.8), P-dimethylaminoazobenzene 

(pKa value ) 3.3), and Crystal violet (pKa value ) 0.8). The acidic Hammett indicators 

(for base site strength) used were Phenolphthalein (pKBH+ value ) 8.2), Nile blue 

(pKBH+ value ) 10.1), Tropaeolin (pKBH+ value ) 11), 2,4-dinitroaniline (pKBH+ value 

) 15), 4-chloro-2-nitroaniline (pKBH+ value ) 18.2), and 4-chloroaniline (pKBH+ value ) 

26.5). To measure the basicity of the catalysts, the method of Hammett indicator–

benzene carboxylic acid (0.02 mol/L anhydrous methanol solution) titration was used 

[20–22].  

 

Results and Discussion 

 

The primary goal of this study was to understand the link behind the emulsifying ability 

of a molecule and its catalytic properties. Although this experiment did not measure the 

emulsification ability of the selected catalysts, it is an established fact that molecules 

having longer hydrophobic tails (with a hydrophilic head) will have better emulsifying 

ability in water-in-oil emulsions.
72

 Analogously, it was conjectured that the catalysts 

with longer tail-groups will have better emulsifying abilities in alcohol-in-oil emulsions. 

The catalytic behavior of the selected amphiphiles is analyzed below with this premise in 

mind.  
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Figure 10 shows the respective ester yields with tail groups of increasing carbon 

numbers. The selected cubic model response surface indicates that, irrespective of time 

in reaction, ester yields tend to decrease with increasing carbon number on the tail. The 

maximum reported ester yield was 64.25 % and this was when titanium methoxide was 

used as the catalyst.  

 

 

 

The reason for smaller alcohols to display significantly higher catalytic ability may be 

due to favorable mass transport properties that smaller molecules have as compared to 

larger counterparts. Smaller methoxide molecules may be more mobile between phases 

assisting catalysis within the L/L/S system.  The ester yields increased with increased 

Figure 10: Ester yield variation with respect to amphiphiles with different carbon 
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reaction time. The statistical analysis points out that although the two factors (time and 

carbon number) were significant, their interaction wasn’t significant.  

 

The right side graph of figure 10 depicts ester yield at 3 hrs along (with the (+/-) 

standard deviations lines) vs. the carbon number. It is interesting to note that a clear 

increase in esters yield is observable when butoxide is used instead of the shorter form, 

propoxide. The likely scenario in this instance would be the further reduction of 

transport limitations of the alcohol/oil system resulting from the increase of 

hydrophobicity of the alcohol. In such an instance, all three components (i.e., alcohol, oil 

and the catalyst) would be substantially hydrophobic. Alternatively, the alkyl groups in 

simple alcohols may not be large enough to generate such hydrophobicity. 

 

Figure 11 depicts the yield differentiation between isomers with longer tail groups 

(propoxide and butoxide). In this case, the objective is to discern the catalytic variations 

of alkoxides due to linear and branched tail groups. Titanium isopropoxide and titanium 

isobutoxide were used against titanium propoxide and titanium butoxide to analyze the 

stereo-effects.  
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Figure 11 (left) shows how the carbon number affects the ester yields. The analysis 

depicts that the ester yields do not differ significantly between propoxide and butoxide 

From figure 11, clear yield increase is present when going from 3C to 4C alkoxides. 

However, the normal and iso forms significantly affect the ester yields.   

According to Figure 11 (right), it is observed that the ester yields do not depend on the 

type of isomer at initial stage of the reaction. However, as time pass by, the normal 

alkoxides display greater activity than the iso-forms. The likely reason for this is the 

steric hindrance.  

 

Catalyst basicity using Hammett Indicator method is depicted in Table 4. Based on the 

observations, the smaller forms, titanium methoxide and titanium ethoxide, had a pKa 

Figure 11: Ester yield with respect to different isomer type (for carbon numbers 3 

and 4 only) 
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value of 11.2 while the lager forms, titanium butoxide and titanium propoxide, had a 

pKa value of 10.1. The basicity analysis indicates that the alkoxides with higher basicity 

resulted in greater ester yields indicating that the shorter forms are more prone to 

ionization in the medium as compared to the more bulky alkoxides. Since there was no 

significant color change between iso and normal alkoxides, it was conjectured that these 

forms had the same basicity. 

 

Table 4 Acidity/basicity of oligomerized alkoxide catalysts 

Catalyst pKa value (Hammett Indicator Method) 

Titanium methoxide oligomer 11.2 

Titanium ethoxide oligomer 11.2 

Titanium propoxide oligomer 10.1 

Titanium isopropoxide oligomer 10.1 

Titanium butoxide oligomer 10.1 

Titanium isobutoxide oligomer 10.1 

 

Based on above observations, the transesterification reaction mechanism given in 

Scheme 1 is initially proposed.
73
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In the first step, titanium alkoxide will initiate the reaction by nucleophilic attack on a 

carbonyl group in the triglyceride (Eq. 1). This will create a positively charged catalyst 

and an intermediate (tetrahedral) which will produce a fatty acid alkyl ester and a 

diglyceride neucleophile (Eq. 2). The now electrophilic titanium catalyst will attack the 

respective alcohol with the alcohol getting deprotonated (Eq. 3). This will create an extra 

proton which will terminate the reaction by producing a molecule of diglyceride (Eq. 4). 

The reaction continues until glycerol and three molecules of fatty acid alkyl esters are 

produced. This scheme is proposed based on Bronsted basicity that the titanium 

alkoxides displayed (similar to main group metal alkoxides 
73

) in which alkoxides of the 

outer-sphere migrate and attack the ester bond of the triglyceride. 

However, another possibility is that the transesterification is a concerted process 

occurring at the Ti center.  In this premise, there is no migration of the alkoxide group 

from the titanium to the ester resulting in a coordinately unsaturated titanium cation and 

an organic anion such as is shown in reaction 1 under scheme 1. It is likely that both of 

those species are thermodynamically unstable and would not form as discrete species in 

solution.  Ti(IV) is a high valent metal and, as such, is a strong Lewis acid with vacant d 

orbitals to accommodate the lone pair from the ester (triglyceride).  In this case, the 

triglyceride ester coordinates directly with the Ti and group migration occurs 

concertedly at the metal center, ultimately eliminating the new ester.  This premise is 

proposed since there is never a time when any of the ionic species shown in the 

mechanistic scheme would exist in solution. Accordingly, the reaction mechanism in 

Scheme 2 is proposed.  
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In the first step, titanium alkoxide will initiate the reaction by nucleophilic attack on 

carbonyl group in the triglyceride (Eq. 1). Here Titanium isopropoxide acts as a Lewis 

acid, and the non bonding electrons on the alkoxide oxygen forms coordinate bond with 

empty d orbitals on the metal
74

. This will create a coordinated  intermediate (tetrahedral) 

which will produce alkyl ester and diglyceride neucleophile (Eq. 2). Then electrophilic 

titanium catalyst will get attacked by the respective alcohol while the alcohol getting 

deprotonated (Eq. 3). The reaction continues until glycerol and three molecules of fatty 

acid alkyl esters are produced.
74

 

 

Mechanism proposed in Scheme 2 also gives a clue as to why the smaller Ti alkoxides 

are more reactive. It is likely that the sterically smaller alkoxides allow the ester to 

coordinate more easily to the metal. They also provide a much smaller barrier to group 

migration around the metal to achieve transesterification.     

 

Specific Conclusions 

 

This study looked at the catalytic behavior of oligomerized alkoxides with varying 

carbon numbers. The study confirmed that the number of carbons in alkoxides and their 

steric effects significantly affect the ester yields in transesterification. The maximum 

ester yield (64.25 %) obtained was with oligomerized titanium methoxide catalyst after 3 

hours of reaction. Although the temperature and the number of carbon in the tail group 

significantly affected the ester yields, a statistically significant correlation was not 
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present (the two parameters affected ester yields independently). It was clear that the 

alkoxides with a smaller carbon numbers had a higher ester yields towards 

transesterification. It appears that the sterically smaller alkoxides allow the ester to 

coordinate more easily to the metal. They also provided a much smaller barrier to group 

migration around the metal to achieve transesterification. An interesting observation was 

the slight increase of esters yield when butoxides were used as the catalyst as opposed to 

propoxides. This behavior was attributed to overall increase of the hydrophobicity of the 

three-component system.  
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CHAPTER IV 

EFFECT OF METAL GROUPS OF ALKOXIDE BASED CATALYSTS ON 

TRANSESTERIFICATION
‡
 

 

Introduction 

 

In a previous study, the effectiveness of titanium isopropoxide based monomers, 

oligomers and polymers as transesterification catalysts was studied.
57

 It was observed 

that there was an optimal level of oligomerization that is most effective for 

transesterification catalysis. The aforementioned study looked at the catalytic ability of 

methoxide groups that are tethered to the Ti-O-Ti matrix of different polymeric 

complexity. In a follow-up study, we looked at how varying hydrocarbon tail groups 

affect the ester yields.
75

 In that study it was evident that shorter carbon chains favored 

ester yields. A parallel need is to understand the effect of different metal ions on 

transesterification catalysis since the metal ion can alter the electronics and thus the 

acidity or basicity of the organometallic alkoxide. Accordingly, in this study we looked 

at the effect of eight different transition metals (Titanium, Iron, Chromium, zirconium, 

yttrium, nickel, lanthanum, lithium)alkoxides on their catalytic ability toward 

transesterification.  

 

                                                 

‡
 Reprinted with permission from Nawaratna, G. and S.D. Fernando, Effect of Metal Groups in Transition 

Metal Alkoxide Catalysts on Transesterification. Advances in Materials, 2012.1(1): p. 1-8, Copyright 2012 

by  Science Publishing Group. 
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Materials and Methods 

 

The transesterification reaction was carried out in a high pressure thermal reactor (4570-

Parr instrument, Moline, IL USA.) a with maximum operating temperature rating of 

500
o
C and pressure of 5000 psi. The reactor consisted of a 500 ml vessel fitted with a 

magnetic drive stirrer having a maximum speed of 2000 rpm and a tachometer module 

with an accuracy ± 10 rpm. The reactor was used in the batch mode. Degummed 

soybean oil was purchased in bulk from STE Oil Company, San Marcos, TX USA. The 

typical fatty acid profile of soybean oil is: C16:0-11%,  C18:0-4%, C18:1-23%, C18:2-

54% and C18:3-8%.
76

  

 

Isopropoxide was selected as the alkoxide group due to the wide availability of metal 

alkoxides in this form (as opposed to methoxides or ethoxides). Isopropoxides of nickel, 

iron, lanthanum, chromium, yttrium, and zirconium were purchased from Chemat 

Technology Inc. Titanium, sodium isopropoxide and sodium methoxide were purchased 

from Sigma-Aldrich Corp. Isopropanol and methanol were purchased from EMD 

chemicals Inc. Pure biodiesel was purchased from SoyGold (Ag environmental products, 

LLC, Omaha, NE USA).  
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Catalyst Preparation 

 

All the catalysts were prepared by ultrasonic mixing with respective alcohols. 

Isopropoxides were diluted in isopropanol while methoxides were diluted in methanol. 

The sonication system (UP400S, Hielscher ultrasound technology) was capable of 

producing 24,000 kHz waves with a power output of 400W for this purpose. As different 

metal alkoxides have different numbers of alkoxide groups, monomers were chosen to 

ensure homogeneity. Catalysts were prepared according to previously developed 

methods
75

. Here it should be noted that not all the metal isopropoxides dissolved in 

isopropanol. In all cases, fine powder forms of metal alkoxides were used for the 

reaction and when not dissolved, a suspension of metal alkoxide in isopropanol was 

used.  Titanium, iron, zirconium, yttrium, and sodium isopropoxides dissolved in 

isopropanol while nickel, chromium, and lanthanum isopropoxides didn't.   

 

Transesterification 

 

The transesterification reactions were carried out in the aforementioned high pressure 

reactor. In order to initiate the transesterification reaction, 1% (w/w) of the catalyst was 

infused into the reaction chamber containing triglyceride immediately after the contents 

reached the designated temperature (200 
o
C) through a high pressure liquid pump (Eldex 

5790, Eldex laboratories Inc. Napa, CA). It was noticed that when the reactor reached 

200
o
C, the pressure increased up to 10 psi. An alcohol to oil ratio of 3:1 (molar basis) 
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was used for the transesterification reaction. Isopropanol was used as the esterification 

reagent for all of the reactions with isopropoxide catalysts. Methanol was used as the 

esterification alcohol when sodium methoxide was used as the catalyst. Samples were 

drawn from the reactor at 30-minute intervals up to 3 hours. The samples drawn were 

cooled immediately in order to cease the reaction from progressing further. Then, the 

samples were centrifuged at 10,000 RPM and 12 
o
C to separate products (alkyl esters 

and glycerol) and the catalyst. The centrifuge system used (Sorvall Legend 23 R- 

Thermo Scientific) had maximum rated speed of 24,000 rpm and minimum temperature 

of - 4 
o
C.  

 

The top fraction of the products was analyzed for esters using gas chromatography (GC-

6850 Agilent Technologies, Santa Clara, CA USA). Auxiliary analyses for confirmation 

of the products were carried out via GC Mass spectroscopy (GC-MS 7890 Agilent 

Technologies, Santa Clara, CA USA). The gas chromatograph was calibrated with the 

respective alkyl ester standards each time prior to obtaining quantitative yields. Alkyl 

ester standards (pertinent to methyl and isopropyl, esters of C 16:0, 18:0, 18:1, 18:2, 

18:3 fatty acid alkyl esters) were purchased from Nu-Chek Prep Inc.(Elysian MN 56028, 

USA). 

 

The GC method utilized (for isopropyl esters) detection is as described in chapter 2. The 

amount of fatty acid alkyl esters yield was calculated via Chemstation software (Agilent 

technologies). The area under the peak from the FID chromatogram corresponded to the 
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concentration of that component. These concentrations were determined using 

calibrations with pure ester standards along with an internal standard (C-12 ester).  

 

Catalyst Selectivity 

 

There are many definitions for calculating selectivity in literature. IUPAC defines 

selectivity in two ways: 1) the discrimination shown by a given reactant A when it reacts 

with two alternative reactants B and C, or in two different ways (e.g. at two different 

sites) with a reactant B and 2) the ratio of products obtained from given reactants. In the 

context of this work, the following formula was used: 
77

 

 

                    
                            

                      
      

The results were statistically analyzed by Design Expert software.  

 

Catalyst Characterization 

 

The acidity and basicity of each catalyst was determined by the Hammett indicator 

method
70

. The Hammett indicator method is a fast and widely accepted method for 

determining the basicity and acidity of solid catalysts. However, it should be noted that 

this method is only accurate for qualitative analysis due to the potential issues associated 

with indicator molecules diffusing into the micropores when present.
70,71
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About 1-2 ml of sample containing the catalyst was shaken with 5 drops of Hammett 

indicator in isopropanol solution and left to equilibrate for 3 h. In the Hammett indicator 

method, the base strength is quoted as being stronger than the weakest indicator which 

exhibits a color change, but weaker than the strongest indicator that produces no color 

change.
70,71

 In these experiments, the following Hammett indicators were used: Neutral 

red (pKa value 6.8), Methyl red (pKa value  4.8), P-dimethylaminoazobenzene (pKa 

value 3.3), Crystal violet (pKa value  0.8), Phenolphthalein (pKBH+ value  8.2), Nile 

blue (pKBH+ value  10.1), Tropaeolin (pKBH+ value  11) and 2,4-dinitroaniline 

(pKBH+ value 15).  All the indicators were purchased from Sigma-Aldrich Co. LLC.  

 

Results and Discussion 

 

Experiments were carried out in two stages. During the first stage, the ester yields were 

evaluated using select transition metal alkoxides as catalysts. Then, the ester yields were 

normalized according to the number of alkoxide ligands bound to the metal. By doing 

this, it is possible to eliminate the yield differences due to variable numbers of alkoxide 

active sites. This also would help compare results of this work with other work that has 

been done in this area with other metal alkoxides.
74,78

 It should be noted that the effect of 

thermal reactions (not-catalytic reaction due to high temperature) was studied previously 

and it was observed that no significant transesterification occurred during the time span 

of 3 hours without any catalyst at 200 
o
C.

75
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Figure 13 depicts the ester yields of various metal isopropoxides with time. It was 

observed that titanium and yttrium isopropoxide showed almost similar ester yields after 

3 hours. However, titanium demonstrated a faster reaction rate at the beginning (while 

the rate diminished toward to end of the reaction period). Yttrium, on the other hand, had 

the same rate throughout the reaction period.  

 

 

 

 

 

 

 

Na isopropoxide was used as the control to compare the performance of other 

isopropoxides since alkaline metal alkoxides are the most widely used catalyst for 

transesterification.
15,16

 It is interesting to observe that Ti (42%) and Y isopropoxides 

Figure 12: Ester yields with respect to time for alkoxide catalysts with different 

metal groups. 
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(35%) yielded higher amounts of esters as compared to Na (18%). The ANOVA table 

for yield is shown in table 5. Statistical analysis indicates that the effect of time and 

metal head group are significant. The analysis depicts that the ester yields for Cr, Fe, La, 

Zr, Ni isopropoxides are not significantly different after three hrs. Also none of the 

above isopropoxides displayed comparable ester yields to Ti or Y.  

 

  

 

 

 

 

 

 

The ester yields depicted in figure 12 are based on identical weights of catalyst. It should 

be noted that the catalyzing reaction can take place at the Ti center (where Ti acts as a 

Lewis acid) or at the alkoxide center (where the alkoxide acts as a Bronstead base, 

depending on the metal used).
75

 Presuming that the basic reaction is more dominant, the 

yield variability may be as a result of the varying number of alkoxide ligands and not 

due to the nuances of the metal center. To correct this situation we have normalized the 

Table 5 ANOVA table for yield analysis with different metal alkoxides 
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yields per moles of ligand group attached. For example titanium isopropoxide has 4 

alkoxide ligands attached to the titanium center while nickel has only two. In order to 

rectify this discrepancy, the ester yields per alkoxide branch were calculated (figure 13). 

For this calculation we have based the yields of all alkoxides with respect to the one that 

gave the highest ester yield (assigning it a 100% activity) per mole of active branches in 

the reaction.  

 

 

It is evident that even after normalizing for the number of active sites, titanium based 

catalyst renders the highest ester yield per mole of active branch. Nevertheless, only 

titanium and yttrium resulted in significant ester yields. It is important to note that the 

performance of sodium isopropoxide was still much inferior to that of titanium and 

Figure 13:  Normalized ester weight (%) with respect to the heights ester yield 

and number of active ligands. 
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yttrium counterparts.   The graph to the right compares the ester yields per ligand after 

during 3 h of reaction time. It is clear that in the early stages of reaction, titanium results 

in much higher ester yields as compared to yttrium and sodium.  

 

It is important to compare the transition metal alkoxide catalytic activity to alkali metal 

catalytic activity since alkali metals are the most widely used in industry. Sodium and 

potassium alkoxides are the most prevalent catalysts for transesterification in the 

biodiesel industry.
15

 Accordingly, the transesterification ability of sodium isopropoxide 

was compared to that of sodium methoxide (Figure 14). It is clear that the catalytic 

ability of sodium methoxide is far superior to that of the sodium isopropoxide. Sodium 

methoxide had a maximum ester yield of 83% after 30 min of reaction. This yield is 

several fold higher than the isopropoxide counterpart which yielded less than 20% esters 

even after 3 hours of reaction. In alkali metal alkoxide homologous series, molecular 

complexity increases with increasing carbon number in the alkoxide. Thus, there is 

higher covalence between metal and the oxygen atom for higher carbon alkoxide groups. 

This makes it harder for the higher carbon numbered alkoxide to participate in branch 

confirmation reactions. However it should be noted that alkali metal methoxides are 

metastable compounds compared to alkali metal isopropoxides. Therefore polymerizing 

to its oxide form is less favorable in methoxide than isopropoxide.
79

 Accordingly, 

methoxides (to a large extent) would stay in solution as a homogenous catalyst while 

propoxides will oligomerize and eventually polymerize becoming a solid (heterogeneous 

catalyst). It is interesting to note that titanium methoxide, resulted in an ester yield of 
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64% after 3 hours of reaction. The titanium methoxide data were collected in a previous 

study.
75

 The analysis suggests that the activity of titanium methoxide as a 

transesterification catalyst is not far from that of the sodium counterpart.  

 

 

 

Although sodium methoxide caused a reduction of ester yields with time, the yields are 

much higher compared to those of sodium isopropoxide.  A possible explanation for low 

ester yields when using sodium methoxide in this experiment (although sodium 

methoxide is the most active catalyst for transesterification) is thermal degradation of 

produced esters. Results suggest that transesterification reaction occurs at a fast rate 

during the first 30 minutes of reaction time (our first sample was drawn after only 30 

min). However, results from Figure 14 indicate that after three hours of reaction, the 

yields have decreased (when sodium methoxide was used as the catalyst). It is likely that 

Figure 14: Ester yields sodium isopropoxide and sodium methoxide 
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when sodium methoxide was used at 200
o
C, the yield of transesterification products 

peaked before 30 min.    

 

The selectivities of selected catalysts towards different fatty acid components are shown 

in figure 15. It is evident that all three catalysts, sodium , titanium and yttrium 

isopropoxides had very comparable selectivities toward fatty acids (with only subtle 

nuances between the catalysts). At the onset of the reaction, the selectivity for stearate 

and linolinate was zero for all the catalysts (depicting that the product spectrum had only 

C16:0, C18:1 and C18:2 fatty acids). Ti was more selective for C18:1 fatty acids, 

compared to Na and Y. Sodium, on the other hand, had higher selectivity towards C18:2 

linoleate ester (63%) at the beginning of the reaction.  

 

At the end of three hours, stearate and linolinate esters also appeared in the product mix. 

At this point, titanium had higher selectivity for all the major fatty acids except C18:2 

linoleate ester.  It was noted that ester composition of triglycerides closely followed the 

selectivity numbers. Literature suggest that, fatty acids C16-12%, C18- 5%, C18:1- 25%, 

C18:2- 52%, C18:3- 6% by weight in soybean oil. The overall conclusion subsequent to 

the statistical analysis is that after three hours of reaction time, all the three catalysts are 

equally selective for component fatty acid hydrolysis. 

 

 



 

 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An interesting observation was that although all metal isopropoxides were homogeneous 

with the reaction medium at the onset of the reaction, most transition metal 

isopropoxides were separable as a heterogeneous product subsequent to the reaction. 

Figure 16 depicts that alkali metal catalyst cannot be separated (or visible) after vigorous 

centrifugation of the content. Nevertheless, most transition metal catalysts were able to 

Figure 15: Product selectivity for different head group metals with respect to time 
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be separated from esters and glycerol. The transition metal alkoxides likely polymerized 

via alcohol condensation at higher temperature.
11,58,59,72,80

 This suggests that the 

transition metal alkoxides also went through a concurrent polymerization reaction while 

participating in the transesterification catalysis reaction. The fortuitous outcome is a 

fully separable heterogeneous catalyst from the reaction medium subsequent to the 

reaction. These observations are in line with findings from our previous studies that 

partially polymerized transition metal alkoxides act as transesterification catalysts.
57,75

 

 

 

 

 

The studies also suggest that the early transition metals are significantly more 

catalytically active towards transesterification than the others tested. It is evident that 

metal alkoxides in group III and IV in d-bock (transition periods) rendered the highest 

Figure 16: Transesterification products after centrifugation – homogeneous alkali 

metal alkoxide catalyst (left) and heterogeneous transition metal alkoxide catalyst 

(right) 
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transesterification yields. The reasons for this could be several-fold. At the beginning of 

the reaction, it is likely that all metal alkoxides would be in their monomeric (or the 

thermodynamically most stable forms). The group IVB metals possess the highest 

number of carbonyl ligands coordinated around the metal center. This translates to a 

higher number of catalytic active sites per mole participating the reaction and thus higher 

ester yields when compared to other metals in the same period.  

 

However, as the transesterification reaction progresses, it is evident that the alkoxides 

oligomerize either via alcohol condensation or water condensation routes. It should be 

noted that all the metal alkoxides oligomerize even with traces of water present - and 

when they do oligomerize forming meta-loxo-alkoxides, the ligands arrange according to 

least complex formation. The main principle is that metal atoms attempt to achieve the 

highest coordination with the lowest possible molecular complexity.
81

 Accordingly, 

when comparing the transition metal alkoxide homologs along the transition metal 

series, oligomerized Ti-oxoalkoxides would have the highest number of alkoxide ligands 

attached per metal center. This explains the significantly high activity of early transition 

metals (Ti and Y). Interestingly, zirconium, though an early transition metal did not 

perform as well as Ti. This could be due to the fact that all reactions with metal 

alkoxides depend on the electronegativity of the metal atom which decreases moving 

down a group.  
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It should be noted here that the heterogeneous forms of all the isopropoxides tested can 

be relatively easily transformed chemically to their original monomeric forms for 

reuse.
79

 Regeneration can be achieved by chemically or thermally converting 

polymerized metal alkoxides in to monomers. More details about regeneration will be 

discussed in the last chapter. 

 

Catalyst Characterization 

 

The catalyst basicity matrix, using the Hammett Indicator method is depicted in Figure 

17. It is important to notice that not all the metal alkoxides are basic. For example 

zirconium isopropoxide is strongly acidic. However, zirconium showed very low 

conversion throughout the experiment. Titanium and yttrium are highly basic metal 

alkoxides which gave high ester yields. Table 6 indicates the conjugate-base basicity of 

different metal alkoxides used in this experiment. It is clear from the analysis that 

Lithium isopropoxide which is an alkali metal alkoxide is strongly basic. It is evident 

that catalysts that showed strong basicity favored transesterification as opposed to the 

acidic counterparts.  
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This analysis indicates that transition metal isopropoxides can catalyze 

transesterification using either alkoxide ligands located at the exterior of the metal 

complex via base catalyzed route or using the (acidic) metal center depending on the 

acidity/basicity of the complex. This has been explained in chapter 3.  
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Figure 17: Hammett indicator method on different metal alkoxides 
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Table 6 Acidity/basicity of selected metal alkoxide catalysts 

Catalyst pKa value (Hammett Indicator Method) 

Lithium isopropoxide 11.2 

Zirconium isopropoxide 3.25 

Nickel isopropoxide 11.2 

Titanium isopropoxide  10.1 

Iron isopropoxide 6.8 

Yttrium isopropoxide 11.2 

 

Specific Conclusions 

 

This study looked at the catalytic behavior of transition metal alkoxides toward 

transesterification. Maximum ester yields reported were 42 % for titanium isopropoxide, 

35% for yttrium isopropoxide (both after 3 hours of reaction time) and 18% for sodium 

isopropoxide with 1% catalyst by weight. The ester yield was 83% with sodium 

methoxide after only 30 minute of reaction time. The study confirmed that of the 

transition metal isopropoxides tested, titanium and yttrium had the highest activity. The 

study also confirmed the superior catalytic ability of sodium alkoxides. It was 

established that the catalytic ability of the methoxide was far superior to that of the 

isopropoxides. After correcting for the number of active sites present per mole of 

catalyst, it was evident that the activity of titanium and yttrium isopropoxides was far 

superior to that of the sodium counterpart which was unexpected. The study also 
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revealed that the isopropoxide catalysts are equally selective toward component fatty 

acid hydrolysis. 

 

An interesting finding is that transition metal alkoxides undergo a concurrent 

polymerization reaction while catalyzing the transesterification reaction. Although all 

the catalysts were homogeneous with the reaction medium at the onset of the reaction, as 

a result of this simultaneous polymerization, the transition metal alkoxide catalysts were 

easily separable from the reaction medium subsequent to completion of the reaction.    

The analysis also suggests that transition metal isopropoxides can catalyze 

transesterification using either alkoxide ligands located at the exterior of the metal 

complex via a base-catalyzed route or using the (acidic) metal center depending on the 

acidity/basicity of the complex. Ni, Ti and Yi isopropoxides displayed basic properties 

whereas Zr and Fe isopropoxides displayed acidic properties. 
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CHAPTER V 

PHASE STABILITY OF OIL/ALCOHOL/SURFACTANT SYSTEM  

 

Introduction 

 

The specific objective of this study was to elucidate the phase behavior of the 

alcohol/triglyceride system in the presence of selected metal alkoxides. During previous 

studies, the impact of metal groups and alkoxide groups of transition metal alkoxides on 

the catalytic ability of the transesterification reaction was elucidated. This study is 

geared toward understanding the concomitant impact of the alkoxide on the phase 

stability, i.e., the stability of an emulsion and the catalysis of the reaction. Understanding 

the effect of the amphiphilicity of the catalyst on the reaction system will help in 

determining the best component compositions that will help catalyze as well as 

ameliorate conditions for effective progression of the reaction. 

 

It should be noted that in the absence of surfactants, reactants that involve immiscible 

liquids have to be constantly and vigorously mixed to allow adequate reactant contact. 

However the use of surfactants may help in reducing the energy penalty required for 

mixing and heating. 
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Materials and Methods 

 

Degummed soybean oil was purchased in bulk from STE Oil Company, San Marcos, TX 

USA. Surfactants titanium methoxide, titanium ethoxide, titanium propoxide, titanium 

isopropoxide, and titanium butoxide, were purchased from Sigma-Aldrich chemical 

company. Titanium isobutoxide was purchased from Alfa Aesar Company. Isopropanol 

was purchased from EMD chemicals Inc. Propanol and butanol were purchased from 

Sigma-Aldrich chemical company while ethanol and methanol were purchased from 

VWR International LLC. Isobutanol was purchased from Alfa Aesar.   

 

Initially, alcohol and the surfactant were mixed before adding the triglyceride (oil). A 

vortex mixer (VWR Model# 58816-121) was used to rapidly mix the three components. 

The vortex mixer had a maximum power rating of 150W.  All the samples were mixed 

for 1 minute at room temperature (25 
o
C). The mixed samples were kept for 3 hours to 

allow phase separation. Ternary phase diagrams were plotted on CHEMIX (School 

Version 3.51) software. 

 

The experiment was carried out in two stages. The first stage was adopted to analyze the 

effect of alkoxide tail group on phase stability of the ternary system while the second 

stage looked at the alkoxide polymerization effect on the stability of the system. We 

have discussed the effects of tail group and polymerization in earlier studies.
57,82

 In the 

first stage, titanium ethoxide, titanium propoxide, and titanium butoxide were compared 
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for their effect on the phase stability of the system while in the second stage the effect of 

titanium isopropoxide was elucidated. All the experiments were carried out at room 

temperature.  

 

In order to identify the spatial distribution of the alkoxide among different liquid phases, 

confocal images were obtained. The experiments were carried out with titanium 

isopropoxide as the surfactant-catalyst. Pyrene (sigma-aldrich Co. LLC, St. Louis,  MO), 

which has excitation wave length of 335 nm and emission at 380 nm was used as the 

fluorescent agent. Pyrene was used as a florescent agent in titanium-based molecule 

identification 
83

, but this is the first instance where pyrene was attempted as a florescent-

agent in a titanium-isopropoxide-based oil/alcohol emulsion system.  

 

A Bio Tek synergy 4 microplate reader was used to initially evaluate the excitation and 

emission wave lengths of isopropanol, isopropanol with pyrene, titanium isopropoxide in 

isopropanol with pyrene, and titanium isopropoxide in isopropanol with pyrene mixed 

with oil. After analyzing the wavelengths, a Zeiss 510 META NLO multiphoton 

Microscope was used to image oil in alcohol and alcohol in oil emulsions. A 458nm 

laser was used for excitation and the emission wavelength of pyrene was detected at 420 

nm. 
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Results and Discussion  

 

The phase behaviors of partially polymerized titanium alkoxides are depicted in Figure 

18. It is clearly evident that with addition of water, the phase stability of the system 

reduced significantly. The amount of water added did not seem to impact much, i.e., the 

addition of even a small quantity of water dramatically reduced the area of a single phase 

in the phase diagram.  The reason for the shrinkage of the single-phase area in the phase 

diagram can be attributed to the polymerization effect via water condensation (producing 

oligomers and polymers of different complexity with the fully polymerized form being 

titanium dioxide). This is because of the insufficient surfactant in the system due to 

heavy polymerization of titanium isopropoxide via condensation reaction. 

 

The subsequent study focused on elucidating the effect of the hydrocarbon tail group of 

titanium-based alkoxides (butoxide, propoxide, ethoxide and methoxide) or subsequent 

alcohol depending on need of surfactant on the phase stability of the alcohol-oil ternary 

system. 
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The resultant ternary phase diagrams are depicted in figure 19. It was noted that n-

butanol and isobutanol mixed well with oil even in the absence of an emulsifier. Because 

of this, the effects of the surfactant-catalyst on the stability of these systems were not 

1:1 catalyst to water 

ratio 

1:1.5 catalyst to water 

ratio 

1:2 catalyst to water 

ratio 

1:0 catalyst to water 

ratio 

Figure 18: Ternary phase diagrams of alcohol (isopropanol), oil (soybean oil) and 

titanium alkoxide (catalyst prepared with different isopropoxide:water ratios) 

system. Note: areas enclosed by the phase boundaries are single-phase regions. 
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established for n-butanol and isobutanol. N-propanol also resulted in a stable emulsion 

with little addition of the emulsifier (catalyst). This could be attributed to increasing the 

hydrocarbon tail of alcohols becoming more non-polar and being more miscible with 

hydrophobic oil. Molecules with longer hydrocarbon tails would also be better alcohol-

in-oil surfactants having a larger affinity toward the continuous oil phase.    

 

 

 

From the observations, it is clear that alcohols with smaller tail groups have a lesser 

propensity to create single phase systems with oil compared to those with longer tail 

groups. Consequently, the amount of surfactant (titanium ethoxide) needed to create a 

stable emulsion was comparatively higher than titanium n-propoxide in the n-

propanol/oil system.  Since ethanol did not create a single phase, a higher amount of 

surfactant was needed to create a stable emulsion. On the other hand, n-propanol:oil 

resulted in a single-phase system at most composition ratios and only less than 1 % of 

Titanium ethoxide in 

ethanol 

 

Titanium n-propoxide in n-

propanol 

Single-phase 

Figure 19: Tail group effect on phase stability-ternary phase diagrams.  
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surfactant was needed to form a stable emulsion. Thus, larger carbon-numbered (tail-

group) surfactants work well with alcohol-in-oil immiscible systems. 

 

It was observed that titanium isopropoxide and titanium n-propoxide has significantly 

different responses in terms of phase stability. Isopropoxides rendered a lesser stability 

(smaller single phase area) to the system in comparison to n-propoxide. This is mainly 

due to the less nonpolar tail group of isopropoxide compared to the n-propoxide. 

 

To enumerate the correlation of the surfactants ability to emulsify the alcohol and the oil 

system as well as to catalyze the transesterification reaction, selected samples that 

produced stable single phase emulsions were analyzed for ester composition. 

Accordingly, samples with oil: alcohol: surfactant ratios of 7:3:2.5 and 6: 4: 2.5 (volume 

base), were analyzed for ester composition after the samples were allowed to equilibrate 

at room temperature. Samples were drawn after 1 hour and 2 hours. The results are 

depicted in Figure 20. It was interesting that the samples contained high quantities of 

esters (c.a. 50% ester yields) despite the fact that the samples were only at room 

temperature (25 
o
C). It should be noted that previous studies presented in chapters 2 and 

3 even after 3 hours of reaction time at 200 
o
C did not show this level of ester yields.

57,82
 

This significant observation exemplifies the importance and impact of catalysts that have 

amphiphilic properties on reactions that involve immiscible or poorly miscible reactants.   
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Figure 20 shows significant ester yields on both samples. However, 7: 3: 2.5 

(oil:alcohol:catalyst) mixture resulted in higher ester yields than 6: 4: 2.5 mixture. Note 

that in both samples, the catalyst concentration is the same. It is interesting to note that 

having different oil: alcohol concentrations results in different ester yields – with the 

system with better stability, rendering better yields.  

 

To further understand the impact of catalyst phase on the reaction, another experiment 

was conducted with a series of partially polymerized titanium isopropoxide oligomers to 

fully polymerized titania (rutile). Figure 21 depicts the ester yields of the three catalysts. 

It is clear that using titanium isopropoxide increases the ester yield significantly over 

titanium dioxide. The intermediate oligomerized form of isopropoxide rendered better 

Figure 20: Ester yields for single phase system at room temperature. The 

legend depicts oil: alcohol: catalyst (titanium isopropoxide) volume ratios 
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ester yields as compared to titanium dioxide but lesser in comparison to monomeric 

titanium isopropoxide.   

 

 

 

 

It is likely that the higher number of alkoxide active sites per unit weight of catalyst 

combined with the more active basic pathway contributed to the better performance 

when titanium isopropoxide monomer was used. When water was added in the ratio 

given, it is likely that a majority of the alkoxide groups disappeared via water 

condensation leaving TiO2 behind contributing to comparatively lower ester yields. In 

the case of pure titanium dioxide (rutile), the reduced ester yields can be attributed to 

switching to the acidic pathway (as described in Chapter 3).  

Figure 21: Ester yield w.r.t different catalyst type. (1- TiO2, 2- Ti(OC3H7)4, 

3- Ti(OC3H7)4 treated with 1:2 titanium isopropoxide: water. 
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The next set of studies was carried out to elucidate the spatial distribution of the alkoxide 

catalysts in the oil/alcohol system. The experiments were designed to test the premise 

that was made during Chapter 2 that the amphiphilic catalysts would position themselves 

at the oil/alcohol interface of the emulsion droplets to stabilize the emulsion as well as 

lend active sites for the reaction between molecules in the opposing phases to occur.   

 

An initial study was carried out to enumerate the excitation behavior of pyrene when 

mixed with the components of the system. Pyrene was used as the fluorescent agent 

based on previous studies on titanium-alkoxide based systems.
83

 Excitation wavelengths 

of different components are presented in figure 22. 

 

 

 
Figure 22: Excitation wavelength for different materials tested 
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When excited with a laser of 335nm wavelength with intensity 80%, it is evident that 

pyrene responded with an excitation wavelength of 385 nm. The isopropanol control did 

not get excited. However, it was evident that titanium isopropoxide – bound pyrene gets 

excited at 385 nm even in the presence of isopropanol though with a lesser intensity than 

pure pyrene in isopropanol. The next requirement for imaging this system was to 

identify if the isopropoxide-bound pyrene fluorescence once excited. The emission 

spectrum of pyrene is shown in figure 23 when excited with 420 nm laser. 

 

 

 

It was evident that although the isopropanol (control) did not contribute to any 

emissions, the titanium-isopropoxide-bound-pyrene-in-isopropanol contributed to 

emissions at 335 nm (with a lower intensity than pyrene-in-isopropanol) with this laser. 

Figure 23: Emission wavelength of pyrene when excited with 420 nm laser 
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There was also a peak shift between the two solutions (which could be used to 

differentiate the solution systems if necessary).  

 

A Zeiss Axiovert microscope was used to image the solution systems. Figure 24 shows a 

set of images taken with different (oil/alcohol) component ratios. Figure 24-1 shows the 

background image taken with just oil and alcohol without any pyrene. In the background 

figure, the boundary of the sample is visible as a dark tangential line running across from 

top-right to bottom-left of the picture. Absence of any lighter-colored specs confirm the 

absence of fluorescence and thus absence of any pyrene.  

 

Images 2-4 are with pyrene shown on the image as cyan-colored spots. It is evident that 

pyrene was attached only to the titanium isopropoxide and alcohol since clear cyan spots 

are being seen from the confocal microscope. Literature has stated that pyrene can be 

attached to the titanium isopropoxide.
83

 Figure 24-2 shows an initial picture of a small 

alcohol bubble in oil while 24-3 shows a bigger propagated bubble.  
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Figure 24-2 shows an alcohol-in-oil emulsion with pyrene clearly distributed in the 

discontinuous alcohol phase. It is clear that from this image that titanium isopropoxide 

preferentially resides in the alcohol phase in the presence of oil. Image 24-3 depicts the 

counter situation where oil is dispersed in a continuous pyrene-bound alcohol phase. It is 

evident that still, titanium isopropoxide preferentially resides in the alcohol phase. 

1 2 

4 3 

Figure 24: 1- Background image; 2- alcohol+surfactant (20%) in oil (80%) emulsion 

(the lighter specs show distribution of pyrene-bound titanium isopropoxide in the 

inner alcohol phase); 3- oil 20% in alcohol+surfactant 80% emulsion (showing 

amphiphile distributed in the outer alcohol phase). 4- oil (20%) in alcohol+surfactant 

(80%) emulsion (showing amphiphile accumulation at the oil/alcohol interface after 

some time has elapsed) (images are 200 um x 200 µm). 
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However, image 24-4 depicts what happens after the system is allowed to equilibrate for 

some time.  It is evident that the isopropoxides are now residing at the oil/alcohol 

interface. This experiment confirms that titanium isopropoxides can act as amphiphile 

that eventually contribute to stabilization of the phases as observed in phase diagrams in 

Figure 19 at component concentrations given. It should be noted that the component 

concentrations used for the microscopic imaging study did not stabilize the emulsions 

and coalescence was observed throughout the imaging process. The component 

concentrations were selected to form large enough micelles to allow imaging with light 

microscopy  

 

Specific Conclusions 

 

Ternary phase diagrams were developed for alcohol/oil/catalytic-surfactant systems.  It 

was observed that the emulsifying ability of titanium alkoxides increased with the 

increase in carbon number of the hydrocarbon tail group. Higher C-4 alcohols were 

miscible in oil even in the absence of a surfactant. It was noticed that oligomerization or 

polymerization of titanium isopropoxide reduced its surface active properties – reducing 

the phase stability of the ternary system. It was noticed larger carbon numbered alcohols 

were more miscible in oil than the smaller counterparts. Accordingly, the amount of 

smaller alkoxide needed to stabilize the alcohol/oil system was also comparatively 

higher. Also, n-propanol was more miscible in oil than iso-propanol: thus, the amount of 

n-propoxide needed to stabilize that system was much less than isopropoxide.  
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The amphiphilic nature of the catalyst had a substantial impact on the performance of the 

catalyst. It was observed that introducing adequate amount of amphiphilic catalyst that 

can bring the system to a single phase triggered the reaction to progress at room 

temperature at the same rate the reaction progressed at 200
o
C.  

 

An imaging study confirmed that titanium isopropoxide catalyst preferentially stays in 

the alcohol medium and migrates toward the alcohol-oil interface with time. This 

behavior likely contributes to the remarkable catalytic activity of the titanium 

isopropoxide catalyst at room temperature. 
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CHAPTER VI 

KINETICS AND REUSABILITY STUDY FOR TITANIUM ISOPROPOXIDE 

CATALYZED TRANSESTERIFICATION 

 

Introduction 

 

The objective of this study was to enumerate kinetic aspects of the transesterification 

reaction in the presence of select transition metal alkoxide amphiphilic catalysts. A 

parallel study on the reusability of spent metal alkoxide catalyst is also presented. 

 

There are a number of kinetic studies in the literature on the transesterification of esters 

with alcohol.
84-88

 However, almost all these studies have relied on base catalysts such as 

sodium and potassium hydroxides (or alkoxides) and inorganic acids (such as sulfuric 

acid
84,85,89-93

). Also, only a handful of studies have looked at kinetic aspects of 

heterogeneous catalysts.
88,91,93

 In contrast, this study will look at kinetic aspects of 

transition-meal alkoxides as transesterification catalysts. The studies on the 

transesterification kinetics for fatty esters typically include determination of the reaction 

rate constants, the equilibrium constant, and the activation energy for the 

transesterification reaction. Such parameters help in predicting to what extent the 

reaction occurs under a particular set of conditions.  

 

  



 

 79 

Mass transfer limitations play an important role on the rate of reaction and conversion 

and product formation, particularly in catalytic systems. In a homogeneous catalytic 

reaction in which all substances (reactants, products, and catalyst) are in the same phase, 

the effect of mass transfer between phases is nonexistent. In a heterogeneous catalytic 

reaction, however, the catalyst is usually in a different phase from the reactants. 

Commonly the catalyst is in the solid phase dispersed in the reacting species which 

usually are in the liquid or gaseous phase.
87

 Consequently, the reaction rate principally 

relies on mass transfer or diffusion between these phases. In our approach, the catalyst is 

initially in same phase as the reactants making the system homogeneous. This is 

expected to alleviate mass transfer issues, at least during the initial phase of the reaction. 

However, as observed during previous studies, transition-metal alkoxide catalysts 

undergo a phase transformation during the reaction via condensation and the kinetics of 

such a system is of significant interest.  
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Materials and Methods 

 

Transesterification Reaction Kinetics with Titanium Isopropoxide and Monoolein 

 

To elucidate the transesterification kinetics with titanium isopropoxide catalyst, 

isopropyl alcohol was used as the alcohol. The glycerol monooleate was used as the 

model glyceride. Oleate was used since this is a commonly found fatty acid in vegetable 

oils and the ease of deciphering the kinetic data. As monooleate has only one fatty acid 

chain, the reaction stoichiometry is 1:1 with isopropanol.  

 

The development of an accurate kinetic model requires that external and internal mass 

transfer resistances be minimized in reaction. To ensure that there were no external mass 

transfer resistances, the transesterification reaction was carried out with 

lipid/alcohol/surfactant ratios such that the reaction mixture was in a single phase (as 

described in the previous chapter). A ratio of lipid:alcohol:surfactant of 3:2:1 that proved 

to be in the single phase was selected for this study. Since the system was a single phase, 

transport limitations were expected to be minimal.  

 

The transesterification reaction was carried out in high pressure reaction tubes (10 ml, 

glass) with continuous stirring by magnetic stirrer. Monoolein(rac-Glycerol 1-

monooleate) was purchased from Sigma-Aldrich Corp. Isopropanol was purchased from 
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EMD chemicals Inc. Titanium isopropoxide catalyst was purchased from Sigma-Aldrich 

Corp.  

 

The monoglyceride was heated to 70 
o
C on a standard hot plate stirrer while stirring 

continuously with the reaction vial closed with high pressure septum. Alcohol and the 

catalyst (titanium isopropoxide) were added as soon as monoglyceride reached the 

reaction temperature. A temperature of 70 
o
C was chosen so that the reaction occured 

below the boiling point of isopropanol.  

 

Samples were drawn from the reaction mixture at 10 min intervals. Samples were 

weighted and analyzed via gas chromatography (GC-6850 Agilent Technologies, Santa 

Clara, CA USA) for ester composition. The gas chromatograph was calibrated with the 

respective alkyl ester standard (oleate isopropyl ester, Nu-Chek Prep Inc., Elysian MN 

56028, USA) prior to obtaining quantitative yields. Three replicates were carried out and 

the results were analyzed using statistical software, design expert (Stat-ease Inc.). 

Kinetic data were calculated assuming batch reactor conditions and a homogeneous 

phase. 

 

Yield Optimization 

 

Yield optimization and catalyst re-usability studies were carried out as a part of the final 

phase of this series of experiments. In the yield optimization study, titanium 
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isopropoxide concentrations of 1%, 2%, 3%, 4%, 6% and16% (w/w) were tested as the 

transesterification catalyst.    

 

Catalyst Reusability 

 

The once spent catalyst was isolated from the medium using centrifugation. The catalyst 

was dispersed in isopropyl alcohol prior to use in the reaction. The re-used catalyst was 

also used at a 1% (w/w) level. However, since catalysts were separated from the 

products by centrifugation, the catalysts had significant amounts of liquid (isopropanol + 

unreacted triglyceride +glycerol) associated with them,  thus the weights were 

approximate. 

 

The catalyst reusability studies were carried out in a high pressure reactor that had a 

magnetic drive stirrer with maximum RPM of 2000 and a tachometer module with an 

accuracy of ± 10 rpm. The stainless steel reactor vessel is capable of handling 500 ml of 

reactants. The reactor was used in the batch mode. Degummed soybean oil was 

purchased in bulk from STE Oil Company, San Marcos, TX USA. In order to initiate the 

transesterification reaction the catalyst was infused into the reaction chamber containing 

triglyceride immediately after the contents reached the designated temperature (200 
o
C) 

through a high pressure liquid pump ( Eldex 5790, Eldex laboratories Inc. Napa, CA ). 

Alcohol to oil ratio of 3 : 1 (molar basis) was used for the transesterification reaction. 

The GC method utilized (for Oleate esters) detection is as in table 7. 
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Table 7 GC method for oleate ester detection 

Inlet Temperature 250 
o
C 

Split ratio 50:1 

Injection volume 1 µl 

Column flow (Helium) 1.6 ml/min (constant flow) 

FID temperature 280 
o
C 

H2 Flow 40 ml/min 

Air flow 450 ml/min 

Makeup gas (Nitrogen) 30 ml/min 

Oven program 75 
o
C hold 1min, to 200 

o
C at 50

 o
C/min, hold 3 min, to 

230 
o
C at 20 

o
C/min, hold 10 min. 

Column 30m x 0.25mm x 0.25µm (DB-Wax Column) 

  

The amount of fatty acid alkyl esters yield was calculated via Chemstation software 

(Agilent technologies). The area under the peak from the FID chromatogram 

corresponded to the concentration of that component. These concentrations were 

determined using calibrations with pure ester standards along with an internal standard 

(C-12 ester).  
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Results and Discussion 

 

Transesterification Reaction Kinetics with Titanium Isopropoxide and Monoolein 

 

Figure 25 depicts the glyceride conversion vs time graph. It was noticed that it took up to 

one hour to detect any initial products.  The reasons for this observation may be due to 

the detection limits of the gas chromatograph or the system not being able to overcome 

the activation energy.  

 

 

 

It was observed that the reaction was completed after 180 minutes. Samples were taken 

at 20 minute intervals after 120 minutes. Kinetics of this system were calculated with 

conversion factors as obtained via the GC analysis.  

Figure 25: Conversion of oleate mono glycerol with time 
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The transesterification reaction is a reversible. Therefore, excess isopropanol was used to 

drive the reaction forward. Eq. (1) shows the generalized reaction, where A is the 

monoglyceride, B is isopropanol, C is isopropyl oleate ester and D is glycerol. The 

equation also shows the stoichiometric relationship between the reactants and the 

products. 

   
    
                             (1) 

We can write the general rate equation for the above reaction, 

 
   

  
    

   
 

                        (2) 

where, 

   

 
  is the consumption of reactant A per unit time, k is the rate constant, CA and CB are 

the concentrations of reactant A and B at time t respectively, α and β are the order of the 

reaction with respect to A and B components. Then we can write the following equations 

for species A and B. 

                     (3) 

                        (4) 

  
   

   
           (5) 

where, 

CA0 and CB0 are initial concentrations of species A and B respectively. θ is the ratio of 

initial concentrations of species B and A, while X is the conversion. Finally we can 

conclude to a generalized equation for conversion as follows: 
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                        (6) 

 

In this study, nine different cases for reaction order were looked at. Since most of the 

literature stated transesterification has 0, 1, or 2 order, the nine different cases were 

considered. For each case, equation 6 was integrated from t=0 to t=t with conversion 

X=0 to X=X. Finalized equations are listed below: 

 

Case1: (α=0, β=0) 

        

Case 2: (α=1, β=0) 

  
 

     
    

Case 3: (α=0, β=1) 

  
     

 
    

Case 4: (α=1, β=1) 

 

     
  

     

      
       

Case 5: (α=2, β=0) 

 

     
       

Case 6: (α=0, β=2) 
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Case 7: (α=2, β=1) 

 

     
 

 

     
 

 

     
  

     

     
      

   

Case 8: (α=1, β=2) 

 

     
 

 

      
 

 

     
  

      

     
      

   

Case 9: (α=2, β=2) 

       
 

     
 

 

      
      

      

     
      

   

 

All these equations conform to y=mx (linear) form and as the concentration is known, 

when conversion (X) plotted against time in each case, the resulting plot would be a 

straight line going through the origin. The gradient of the straight line gives the reaction 

rate constant (k). The correlation coefficient (R
2
- value) of each plot was compared for 

discerning the best fit.  

 

Figure 26 depicts plots of all scenarios along with the R
2
- values. It is evident that three 

cases have a correlation coefficient around 0.8. It should be noted that case 3 and 8 have 

negative gradients and in a reaction engineering context, these are invalid.   
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Figure 26: Kinetic equation plots for 9 cases studied 
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From case 1 and 6 it is clear that case 6 has significantly higher correlation coefficient of 

0.88. So, we can conclude that the transesterification reaction behaves according to the 

case 6 scenario. Therefore, transesterification reaction of our interest has order of 2 with 

respect to alcohol in the system and zero order for triglycerides. This is in agreement 

with some of the literature (although the order of the transesterification reaction has been 

reported to vary depending on the situation and type of starting materials.
21,84,85,87

  

 

From aforementioned information, the rate constant was calculated to be 0.0002 min
-1

. If 

we consider case 1, rate constant calculated to be 0.0067 min
-1

.  Thus it can be 

concluded that this is a second order reaction with respect to isopropanol. 

 

Yield Optimization 

 

Figure 27 depicts the ester yields for the different percentages of titanium isopropoxide 

catalyst used. Results show that 1% (w/w) catalyst has significantly lower ester yields 

than any other catalyst concentrations (note that we used 1% catalyst for most of our 

experiments). The highest ester yield was 71% with 16 % catalyst by weight after 2 

hours of reaction time. Since titanium isopropoxide was added to the liquid phase and 

due to formation of the phase transformed gel, it was not possible to add more than 16 % 

of catalyst to the system.  
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Based on the results, it is likely that the optimal catalyst concentration would be 

somewhere in between the 6% and 16% levels. 

 

Catalyst Reusability 

 

The ester yields of the once used catalyst are depicted in Figure 28. As was expected, the 

ester yields from the fresh catalyst were significantly higher as compared to the reused 

catalyst. The maximum ester yield for reused catalyst was 34% while maximum for 

fresh catalyst was 41 %. The results are encouraging since more than 80 % from the 

original yield can be achieved from a once used catalyst.  

Figure 27: Ester yield % vs time plot for different % of catalyst by weight 
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It should be noted here that the spirit of this catalyst technology is not to reuse the spent 

catalyst in its transformed (solid) form, but to regenerate via transforming it to the liquid 

isopropoxide form. The oligomerized/polymerized form of titania can be transformed to 

the isopropoxide form using the following reaction scheme.
79,94

 

 

 

                  

                         

 

Both reactions are reversible, thus application of these methods is expedient in the case 

of alcohols with low boiling point.
94

 This method is called alcoholysis of metal oxides. 

Figure 28: Performance comparison of raw catalyst vs reused catalyst 

Scheme 3- Metal alkoxide produce from metal oxides 
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Specific Conclusions 

 

The kinetic study revealed that transesterification of monoolein with titanium 

isopropoxide having a second order with respect to isopropyl alcohol. However zero 

order reaction is also plausible. The rate constant was evaluated to be 0.0002 min
-1

.  

 

Optimization studies revealed that this catalytic system can yield up to 71 % ester yields 

using 16% (w/w) of catalyst. However results suggest better yields may be plausible 

with a catalyst composition between 6% and 16%.  

 

The separated (gel), likely having significant amounts of titania rendered a maximum 

yield of 34% ester yield. This depicts that the catalyst retained more than 80% of its 

activity after an initial use.  
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CHAPTER VII 

OVERALL CONCLUSIONS 

 

The study revealed several transition-metal based alkoxide catalysts that have 

amphiphilic as well as catalytic properties toward transesterification. It was revealed that 

monomeric forms of liquid-phase transition-metal alkoxides act as amphiphile and 

would position (themselves) at the interface of the immiscible oil/alcohol interface of the 

emulsion. The composition of the hydrocarbon ligand of the alkoxide catalytic 

amphiphile significantly affected the amphiphilicity and thus the stability of the 

oil/alcohol emulsion. Metal alkoxides with larger hydrocarbon groups favored 

stabilizing alcohol-in-oil systems whereas smaller hydrocarbon groups favored oil-in-

alcohol emulsions. In terms of transesterification reaction where a smaller amount of  

alcohol is dispersed in a larger continuous phase of oil, metal alkoxide ligands with 

larger hydrocarbon groups seemed to favor formation of more stable emulsions. It was 

noted that once the alcohol-oil-surfactant/catalyst system was brought to a single phase 

by addition of appropriate amount of surfactant-catalyst, the transesterification reaction 

occurred at room temperature. This was an unexpected and remarkable observation. 

 

Of the many transition metal alkoxides tested, the early transition metals, Ti and Y, fared 

well for the transesterification reaction. It was revealed that most monomeric forms of 

liquid-phase transition-metal alkoxides, in addition to participating in the 

transesterification catalysis, undergo an autonomous condensation 



 

 94 

olygomerization/polymerization reaction (in the presence of alcohols) resulting in solid 

gels – affording the term “phase-transforming catalysts”. Depending on the level of 

polymerization and the type of metal present in the metal alkoxide catalyst, the 

transesterification reaction proceeds via exterior alkoxide driven Bronsted basic pathway 

(monomeric forms) or interior metal center driven Lewis acidic pathway (polymeric 

forms). Ni, Ti and Yi isopropoxides displayed basic properties whereas Zr and Fe 

isopropoxides displayed acidic properties. The Bronsted basic catalytic pathway was 

superior (in terms of activity) to the acidic pathway.  

 

The novelty of this catalytic process is the ability to introduce the catalyst in liquid-

phase and the capability to cyclically remove the spent catalyst from the reaction 

medium as a solid and reintroduce to the reaction medium after regenerating as a liquid. 

Nevertheless, it was revealed that the spent (solid) catalyst retains about 80% of its 

activity after one cycle. 

 

The kinetic study revealed that transesterification with titanium isopropoxide catalyst 

having second order with respect to isopropyl alcohol (although the possibility of zero 

order cannot be excluded).  Reaction rate constant was evaluated to be 0.0002 min
-1

.  
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Recommendations for Future Studies 

 

 Elucidating the behavior of this phase transforming metal alkoxide catalysis with 

a broader range of metals, alkoxides and conditions to achieve industrially 

feasible ester yields (in excess of 90%). 

 Understanding the effect of oligomerization on transesterification catalysis in a 

more controlled manner (ensuring that dimerization, trimerization etc. occurred 

as presumed).  

 Evaluating the feasibility of the use of such phase-transforming catalysts to other 

reaction system that utilize immiscible liquid phase reactants. 

 Studies on effective regeneration of spent catalysts.  
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