
EXTENSIBLE SOFTWARE ARCHITECTURE FOR A DISTRIBUTED

ENGINEERING SIMULATION FACILITY

A Thesis

by

JAMES FRANKLIN MAY, JR.

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John Valasek
Committee Members, Thomas W. Strganac

Sivakumar Rathinam
Department Head, Rodney D. W. Bowersox

May 2013

Major Subject: Aerospace Engineering

Copyright 2013 James Franklin May, Jr.

ABSTRACT

A need has arisen for an easy-to-use, flexible, transparent, and cross-platform

communication backbone for configuration and execution of distributed simulations

and experiments. Open source, open architecture, and custom student written pro-

grams have extended the capabilities of educational research facilities and opened the

way for the development of the architecture presented in this thesis. The architec-

ture is known by the recursive acronym hADES: hADES Architecture for Distributed

Engineering Simulation. Included in this thesis is a discussion of the design and im-

plementation of the novel hADES software architecture for Ethernet and wireless

IEEE 802.11 network-based distributed simulation and experiment facilities. The

goal of this architecture is to facilitate rapid integration of new and legacy simu-

lations and laboratory equipment to support undergraduate and graduate research

projects as well as educational classroom activities and industrial simulation and

experiments.

ii

DEDICATION

To Anne, Jim, Liz, Cali, and Scout

iii

NOMENCLATURE

A/P Autopilot

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CFG Configuration

COTS Commercial Off-The-Shelf

EFS Engineering Flight Simulator

GPL GNU General Public License

GUI Graphical User Interface

hADES hADES Architecture for Distributed Engineering Simulation

HDD Head-Down Display

HLA High Level Architecture

HW Hardware

IANA Internet Assigned Numbers Authority

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IP Internet Protocol

LAN Local Area Network

LCD Liquid Crystal Display

LQR Linear-Quadratic Regulator

OOP Object-Oriented Programming

PC Personal Computer

RFC Request for Comments

RTI Run-Time Infrastructure

iv

SGI Silicon Graphics Incorporated

SW Software

TAMU Texas A&M University

TCP Transmission Control Protocol

TCP/IP Internet Protocol Suite (Transmission Control Protocol/Internet Protocol)

UDP User Datagram Protocol

UI User Interface

VSCL Vehicle Systems & Control Laboratory

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Software . 2

1.2 Hardware . 3

1.3 Distributed Simulation Communication 7

1.4 Other Distributed Architectures . 10

1.5 Extensible Architecture . 11

1.5.1 Daemon . 12

1.5.2 Application Programming Interface 13

1.5.3 Modules . 13

1.6 Research Objectives . 14

1.6.1 Cross-Platform Daemon Design 15

1.6.2 Creation of API Libraries . 15

1.6.3 Integration of Simulation Modules with Architecture 15

1.6.4 Evaluation of System Performance 16

2. ARCHITECTURE LEGACY . 17

3. DAEMON . 23

3.1 Synchronization Process . 26

vi

3.2 Configuration Process . 27

3.2.1 Configuration Storage . 31

3.2.2 Configuration Uniqueness . 33

3.2.3 Configuration Commands . 34

3.3 Communication Process . 36

3.3.1 Simulation Data Storage and Transmission 41

4. APPLICATION PROGRAMMING INTERFACE 45

5. EXAMPLE MODULE INTEGRATION 50

5.1 Joystick Module . 51

5.2 Aircraft Simulation Module . 52

5.3 Visualization Module . 55

5.4 Data Routing Configuration . 56

6. EXAMPLE IMPLEMENTATION RESULTS 59

7. CONCLUSIONS . 67

7.1 Recommendations . 68

REFERENCES . 69

APPENDIX A. ADDITIONAL RESULTS . 75

vii

LIST OF FIGURES

FIGURE Page

1.1 Aircraft Class Inheritance Example 4

1.2 Transistor Count and Moore’s Law - 2011 5

1.3 Calculations per Second and Moore’s Law 6

1.4 UDP Transmission Types . 9

1.5 Transmission Data Packet Format . 10

1.6 Architecture Overview: Functional Groups 12

2.1 VSCL Engineering Flight Simulator c. 1998 19

2.2 Pilot Station Hardware Architecture 20

2.3 VSCL Engineering Flight Simulator c. 2009 20

2.4 EFS Hardware Architecture . 21

2.5 VSCL Pilot Station Simulators c. 2009 22

3.1 Daemon Task Diagram . 25

3.2 Example Network Daemon CFG TCP Socket Layout 28

3.3 Daemon Configuration Task Flowchart 30

3.4 Command Syntax . 36

3.5 Sampled-Data Examples . 38

3.6 Daemon Communication Task Flowchart 40

3.7 Module Classes in Communication Process 42

4.1 API-Module Functional Diagram . 46

4.2 API-Module Execution Flowchart . 49

5.1 Example Module Topology . 50

5.2 Joystick Module Output Specifications 51

viii

5.3 Aircraft Module I/O Specifications 55

5.4 Visualization Module I/O Specifications 56

5.5 Example Module Data Routing . 58

6.1 Joystick Module Outputs Axes Time History 60

6.2 Joystick Module Outputs Button 8 and Hat X-Y Time History 61

6.3 Aircraft Module Inputs Time History 61

6.4 Aircraft Module Outputs 0-3 Time History 62

6.5 Aircraft Module Outputs 4-7 Time History 63

6.6 Visualization Module Inputs Time History 63

6.7 Autopilot Toggle Across Network Time History 65

A.1 Joystick Module Outputs Buttons 0-3 Time History 75

A.2 Joystick Module Outputs Buttons 4-7 Time History 76

ix

LIST OF TABLES

TABLE Page

3.1 Data Type Conversion Compatiblity 44

x

1. INTRODUCTION

The primary use of engineering simulation is to emulate the physics behind ad-

vanced systems. It has become a major tool in engineering research, design, testing,

and education. However, because advanced systems blend fields such as mechanics,

electronics, chemistry, nuclear physics, and optics, the time and resources required

to develop new simulations can sometimes be large and require engineers with skills

in many areas outside their expertise and/or major field of study[1].

The proliferation of simulation use is fueled by increasing power and decreasing

cost of modern computing technologies. Modern simulation architectures typically

allow for large scale distributed computer simulations, but many usable distribu-

tions, such as some implementations of the High-level architecture[2], are highly

proprietary and/or unique to the problems being studied since they are developed

by private companies and engineering firms. A problem with simulation architectures

being unique to each system is the lack of a simple and common method of commu-

nication between modules. A second problem is complex interdependence between the

code bases of networked modules. Specifically and historically, the lack of a common

or flexible method of communication leads to statically compiled data structures for

data transmission - where a change in the data structure of one simulation mod-

ule will require a change in all connected simulation modules. Without high-level,

multi-platform communication codes, practical application of network distributed

simulation systems, especially in an academic environment, remains near the low

level of bits and bytes and requires a development team made up of students from

many engineering and computer science disciplines[3].

1

1.1 Software

The original simulation technologies were developed using hardware and software

that are primitive by today’s standards. Code was restricted to the monolithic struc-

tures of single thread procedural architectures and primitive high-level programming

languages, such as the original versions of BASIC[4], FORTRAN[5], and Pascal[6].

Although procedural code is laid out linearly, functional interdependencies are difficult

to comprehend and must be manually mapped out, line by line, throughout the code[7]

including the implications and paths of branching and conditional structures. Vari-

ables in procedural architectures have limited protection and encapsulation; much

care and bookkeeping is needed to ensure the integrity of variables because they can

be intentionally or unintentionally altered anywhere in the codebase.

A step forward in architecture design was the progression to modular architec-

tures which allowed common code functionality to be broken out of the procedural

paradigm into reusable subroutines and functions in programming languages such as

C[8, 9] and some initially procedural programming languages, such as FORTRAN,

which had function and subroutine capabilities upgraded in later versions[10]. Scala-

bility is also an issue with modular architectures when moving from simulations with

one body or modeled system to simulations hosting many bodies or modeled systems

because the data for each is not encapsulated[7]. Data variables or data structures

for each body of a multi-body system must be separately created and maintained

but still remain available and viewable from anywhere in the codebase. Data for

each body of a multi-body system must also have unique variable names or structure

names if not already in an array. Data in an array will usually lack a unique name

and have only array indices. Thus, an extensive simulation architecture redesign is

usually required when moving from a single-body simulation to a multi-body system.

2

A second paradigm shift in simulations was the introduction of object-oriented

architectures where similar functions and data can be encapsulated into objects using

object-oriented supported programming languages such as C++[11], Java[12], and

Python[13]. The use of objects allows for massive code reuse and the ability to

define simulation bodies or systems into objects of which many instances can be

created inside a program. Common variables and functions can be implemented in

a base class which can be inherited to create more complex objects. An example

of this, shown in Figure 1.1, is a base aircraft class which has position, velocity,

acceleration, mass, inertia, force, and moment variables. A base aircraft class can be

inherited into a fighter aircraft class which adds the fighter thrust module, number

of engines, and weapons and payload modules. The same base class can be inherited

into a commercial transport aircraft class which adds its own thrust module, number

of engines, payload variables, passenger data, and autopilot functions. Both are

aircraft and use the common aircraft data from the aircraft base class. Collections

of objects can also be placed in an array, vector, list, or some other container for

a higher level of organization of simulation bodies in a simulation program. These

advances have allowed for simultaneous simulation of multiple vehicles’ systems and

environments to be easily, efficiently, and clearly coded into one computer program.

1.2 Hardware

The advent of personal computers (PCs) has expanded engineering simulation

use as well. Early high-fidelity simulations were only implemented using high-end

and proprietary hardware[14]. While powerful, high-end hardware traditionally has

very high purchase, support, and maintenance costs[14]. Simulations that once re-

quired proprietary, specialized, and expensive computer mainframe hardware is now

executed using common and cheaply procured personal computers with a much wider

3

Figure 1.1: Aircraft Class Inheritance Example

support base. The ability for simulations to be executed on PCs has derived from

major increases in computing power, performance, and availability of PCs. This can

be visibly shown using Moore’s Law[15] and derivatives of Moore’s trend in Figure

1.2[16], showing microprocessor transistor count, and Figure 1.3[17], showing calcu-

lations per second per monetary cost. The key point in Moore’s Law is that at a

fixed cost, the number of calculations per second has been exponentially increasing

over time allowing previously computationally expensive and prohibitive simulations

to be executed quickly on modern hardware.

When simulations began to exhaust the hardware and software resources of a

single PC, multiple network-distributed computers began to be used for executing a

simulation. The expansion to multiple PCs was due to simulation of large numbers

of complex simulated agents and vehicles[14, 18, 19], considerably complex and high

fidelity environments and vehicles[18, 20, 21, 22], standalone commercial-off-the-shelf

4

Figure 1.2: Transistor Count and Moore’s Law - 2011[16]

5

Figure 1.3: Calculations per Second and Moore’s Law[17]

6

(COTS) software integration to simulation networks[14, 23], and other features and

capabilities expanded upon from and by previous generations of architectures[14,

24]. Distributed simulations increase scalability, flexibility, and reconfigurability of

a simulation environment promoting exchange, reuse, and inter-operation between

multiple simulation components[25] and do not require all functions of a simulation

environment to be compiled or included in a single program. Distributed simulations

in this thesis are simulations spread across commonly used Linux and Windows PCs

connected using Ethernet and wireless IEEE 802[26] networks.

1.3 Distributed Simulation Communication

Multiple methods exist for software programs to communicate with one another

when located on the same computer, but options are limited when programs are

located on separate computers. PCs are most commonly connected to one another

using Ethernet and wireless IEEE 802 networks. The Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) of the Transport Layer of the Internet

Protocol Suite[27] are designed to establish host-to-host (i.e. program-to-program)

connectivity and handle data transmission between programs across various types of

networks including IEEE 802 standard networks and even RFC 1149[28] networks.

Provided drivers are available for the PC networking hardware in use, virtually all

modern desktop and server operating systems support communication using these

protocols. TCP is a bidirectional error checking transmission protocol that ensures

exact bit-by-bit delivery of the data packets sent as well as the order of such packets.

Bidirectional in this case means that a point-to-point connection is made and either

end of the connection can send data. Error checking is handled transparently by the

protocol across the connection. Additional overhead is required to ensure this type

of error checking and thus it is a slower protocol than UDP. UDP is a unidirectional

7

connectionless transmission protocol. Unidirectional in this case means that data is

transmitted in a send-and-forget fashion where data packets are sent to a specific

address and then no more information is transferred regarding them. Error checking

is not done during transmission and thus less overhead is required for this protocol

than TCP. Error checking can, however, be applied to UDP communication in the

form of a checksum added to the packet which is handled in the Application Layer[27]

instead of the Transport Layer[27] as in TCP. The programming languages used in

this thesis have objects and/or data types for transmitting packets using TCP and

UDP called “sockets” and is referred to as such in this thesis.

UDP sockets have unicast, multicast[27], and broadcast[27] transmission abilities

where the recipient(s) of data are designated by IP address. Unicast is point-to-point

communication where the sending address is an IP address for a specific computer.

Multicast is point-to-multipoint communication. Sending data multicast is func-

tionally identical to sending data unicast data except that the sending address is a

multicast IP address. Multicast addresses are a range of addresses known as Class

D[27] addresses in RFC 1122. If a client wants to receive information that is sent

to a multicast address, it registers with network routers for that address and the

networking hardware will handle the multipoint delivery. Sending data broadcast is

also functionally identical to sending data unicast except that the sending address

is in the broadcast IP address range[27] chosen to broadcast messages to a specific

subnet or a whole network. Broadcast messages are not used in the architecture

developed in this thesis. Figure 1.4 shows the different types of transmission and

the path(s) the data takes from the sender to the recipient(s). In addition to an IP

address, sockets need a port number for requesting a connection using TCP and for

sending data packets using UDP. Where an IP address is analogous to a building

address for sending physical mail, a port number is analogous to a specific mailbox

8

(a) Unicast (b) Multicast (c) Broadcast

Figure 1.4: UDP Transmission Types

number at that building address - both are necessary to deliver mail.

It is common for programming languages with TCP and UDP functionality to

send and receive data only as a character or an array of characters data type. For

other data types to be sent, they must first be converted using a direct byte-by-byte

conversion to a character array. The Internet Protocol Suite does not modify the

contents of the message or data, so the data sent is generally expected to be the exact

same data received unless some sort of noise or transmission error occurs. With the

expectation that the data sent will be the exact same data received and that any

data can be converted into a character array for transmission, multiple data can be

grouped together in a known order and sent to another program to be received in

the same order. Both programs must agree on what order and types the data is

going to be represented for transmission. An example of a data packet format for

transmission is shown in Figure 1.5 where the data packet format is identical on each

end of communication for successful data transmission and reception. Because it is

outside the scope of many simulation programs to handle data format translation

in an on-the-fly manner, this leads to hard-coded data packet formats where the

data type and order is programmed before run-time for any and all programs that

share data in a distributed simulation. The main cause of complex interdependence

9

between the codebases of interconnected simulation programs has been the use of

hard-coded data packet formats, where a change in one program would require all

other connected programs to be adjusted and recompiled[23]. An architecture that is

flexible to changes in data packet formats is needed to avoid recompilation of source

code of connected simulations and manual analysis and confirmation that all data

packet formats match between all connected programs upon modifications of one

program in the distributed system[23].

Figure 1.5: Transmission Data Packet Format

1.4 Other Distributed Architectures

Other distributed simulation architectures, such as the High Level Architecture[2]

(HLA), already exist. The main component of the HLA is the Run-Time Infrastruc-

ture (RTI). The RTI is a middleware that coordinates data exchange between soft-

ware modules (defined as federates in the HLA) during simulation runtime. Many

RTI implementations exist; some are under commercial license or are completely

proprietary and some are freely available or under GPL or US Government licens-

ing. Creating an RTI according to the HLA standard is very time consuming due

to the number of specifications required in relation to the time constraints of many

student simulation designers and even industry engineers. A second consideration

10

for not choosing the HLA is that requiring students to write a federate program to

the HLA specifications is technically demanding. The limited programming expe-

rience and time constraints of students can severely prohibit other laboratory and

research progress. Lastly, although a custom API to the HLA could be written to

ease federate program integration, the HLA standards are excessive compared to

the requirements of a typical university research laboratory and Vehicle Systems &

Control Laboratory simulations[23] and the desired features discussed in Section 1.6.

Distributed Interactive Simulation[29] is another open standard for real-time dis-

tributed simulations. This standard is designed for large scale wargames. Reasons for

not choosing and building an architecture according to this standard closely mirror

those for the HLA[23].

1.5 Extensible Architecture

The architecture presented in this thesis is named as the recursive acronym

hADES: hADES Architecture for Distributed Engineering Simulation. There are sev-

eral novel extensible features and methods of interaction between features of hADES

to be described in this section. The extensible features are implemented using three

distinct functional groups shown in Figure 1.6: The simulation Daemon to handle

communication and configuration between computers on the simulation network,

Module API libraries for connecting a simulation Module to a network of Daemons,

and the actual simulation Modules themselves. The simulation Modules are stan-

dalone computer programs that execute the actual dynamical simulations or give

software access to acquired experimental data. In Figure 1.6, a computer network

can be described as having N computers. One instance of the Daemon, as described

in Section 1.5.1, exists on each computer. Each computer executes Mi programs

locally. The Module API is paired with each simulation Module code to create a

11

standalone program capable of connecting to, configuring with, and communicating

with a simulation Daemon network.

Figure 1.6: Architecture Overview: Functional Groups

1.5.1 Daemon

The simulation Daemon handles intermodule communication and configuration.

It is a standalone program (usually a daemon process of the operating system) that

is executed in the background of all simulation computers. The Daemon communi-

cates the availability of and access to the actual simulation Module data between

all other Daemons on the network - in other words, it tells other Daemons where

to expect data that simulation Modules need. It is designed to be cross-platform

(Linux and Windows) and make communication between multiple operating systems

and platforms transparent to the simulation module designer.

Whereas previous distributed architectures were plagued by hard-coded data

packet formats between directly connected software modules[23], the main novel

feature of the hADES Daemon developed in this thesis is that it has the ability

to modify data packet formats in transit between modules, combine all or parts of

multiple data packets to create a new one, and create constant faux data when no

12

input is available. An example of when faux data may be necessary is an aircraft

simulation that expects a landing gear control but no control is available on the

joystick being used as input. For standard flight, the landing gear control can be

assumed to be constantly in the “up” state and input that way by the Daemon to

the aircraft simulation Module. Modified data packet formats consist of added data

to packet, data removed from packet, changing data type, and changing data units.

Configuration of data paths between modules is handled by the Daemon through a

user interface. Registration of a new software Module to the network of Daemons is

handled using the Module API libraries.

1.5.2 Application Programming Interface

The Module API is a set of programming libraries used to integrate software

Modules into the distributed architecture developed in this thesis. The purposes of

the API libraries are to register input and output data packet formats with the Dae-

mon, communicate with the Daemon, and give executive control of software modules

- allowing software Modules to communicate with one another and for their execution

to be controlled remotely. The API acts as a “wrapper” around the main software

Module functions to start and stop modules and to send and receive data. These

libraries are programming language and operating system dependent. Requirements

on the programming language and operating system are that they have the ability to

communicate via the TCP/IP protocol. Communication methods using the Daemon

API standardizes implementation of intermodule communication.

1.5.3 Modules

Simulation Modules are the programs which execute the actual dynamical sim-

ulations or, if connected to tangible experimental hardware, give software access

to experimental data. These Modules have a predefined set of inputs and outputs

13

(I/O) consisting of data type, order of data expected in I/O structures, data units,

and expected data transmission rate. This set of information is used by the API li-

braries when registering with the simulation Daemon. Module execution is initiated

when the Daemon has configured all I/O between connected modules. Simulation

execution commands are sent through the API.

1.6 Research Objectives

High-level objectives of this thesis are to address the deficiencies in current ar-

chitectures and to meet the needs of the Texas A&M University (TAMU) Vehicle

Systems & Control Laboratory (VSCL) discussed in Chapter 2. The main objective

and novel feature of hADES is to mitigate or remove the complex interdependence be-

tween the codebases of distributed simulation programs that communicate with one

another. Previous distributed architectures were plagued by hard-coded data packet

formats between directly connected software modules, but the hADES Daemon can

modify data packets in transit between Modules to avoid having to statically compile

and/or verify that transmission data structures match between distributed Module

I/O mappings. The next objective is to standardize methods for implementing dis-

tributed simulations in a straightforward manner. Module design engineers may not

be software engineers, thus the implementation methods must be minimal and flex-

ible to allow the design engineers to easily create, modify, and connect simulation

Modules. Lastly, an objective of the hADES system is that it must not degrade

performance compared to previous architectures. Performance can be tested on a

case-by-case implementation basis for any set of connected, distributed Modules.

Development of the proposed extensible software architecture for distributed sim-

ulations has four main tasks:

14

1.6.1 Cross-Platform Daemon Design

A minimal number of implementations of the simulation Daemon is preferred to

provide similar performance across a simulation network. This can be achieved using

a programming language, such as Python, where one codebase can be executed on

virtually any platform that has a modern Python implementation available. In this

thesis, a set of requirements for the simulation Daemon is proposed and developed

according to the special needs of the VSCL that relate directly to the needs of many

experimental simulation laboratories and research groups.

1.6.2 Creation of API Libraries

Development of the Daemon and the API libraries can be accomplished indepen-

dently once the interface protocol between the two is defined. API libraries specific

to each programming language and operating system platform can also be developed

independently from one another and as needed by new or legacy software modules.

Current needs of the VSCL require API libraries for the C++, Python, and MAT-

LAB programming languages and environments. The example case in this thesis

uses the Python programming language.

1.6.3 Integration of Simulation Modules with Architecture

The API libraries function as a “wrapper” around simulation modules. The API

libraries feed information into modules, send information out of modules, and have

executive control over execution of the main loop of a module. Methods for each

function need to be developed and tested. Multiple modules will be integrated in

the example case for this thesis.

15

1.6.4 Evaluation of System Performance

Upon completion and integration of module API libraries with software modules,

performance of a distributed simulation is evaluated. Each configuration is unique

and the evaluation process must be completed for every new configuration.

16

2. ARCHITECTURE LEGACY

The Vehicle Systems & Control Laboratory is a part of the Department of

Aerospace Engineering at Texas A&M University. The purpose of the lab is to be an

aerospace vehicle research, simulation, and education facility. The VSCL currently

has a series of distributed networked PCs for simulation[14]. These PCs are used

for manned vehicle simulations, unmanned vehicle simulations, machine learning and

control, cockpit displays, and many other aerospace related uses. The expansion to

multiple PCs was due to simulation of large numbers of complex simulated agents

and vehicles[14, 18, 19], considerably complex and high fidelity environments and

vehicles[18, 20, 21, 22], standalone commercial-off-the-shelf (COTS) software inte-

gration to simulation networks[14, 23], and other features and capabilities expanded

upon from and by previous generations of architectures[14, 24].

As an educational facility, the VSCL hosts many classroom activities. One activ-

ity is for aircraft flight dynamics and design students to experience simulated flight

dynamics and building and testing mathematical aircraft models. The Cockpit Sys-

tems and Displays class designs and tests displays, interfaces, and human factors

in the VSCL. Students also design and test autopilot and stability augmentation

systems in the laboratory. Flight test engineering students and researchers practice

simulated flight test maneuvers and data acquisition in the laboratory before per-

forming their experiments on actual test aircraft. Many of these classroom activities

use multiple identical software modules but may require a few more or less sets of

data input and output transmitted from the simulation system than others. Many

simulation designers and maintainers are students or novice engineers with limited

experience[3]. As such, it is outside the abilities for many of the simulation engineers

17

to implement a custom distributed architecture to meet their needs; nor do they have

the knowledge of the distributed computer communication programming techniques

required to implement such an architecture.

The initial hardware architecture of the VSCL in 1998 (then called the Flight

Simulation Laboratory) included only a single engineering flight simulator (EFS)[24]

using a monolithic architecture. The EFS used a Silicon Graphics Incorporated

(SGI) Onyx Reality 2 computer for scenery generation and six degree of freedom

aircraft model dynamics calculations[3] in a single compiled binary executable using

a mixture of procedural and modular architecture paradigms[24] in the Atlas simu-

lation code. The SGI computer had the aforementioned high purchase, support, and

maintenance costs and also created a single point of failure in the ability to run sim-

ulations for the laboratory. The EFS cockpit hardware and human interfaces were

constructed from a surplus Air Force T-37 fuselage with glass displays replacing the

original instrument panel and three projectors for the out-the-window view[24] as

shown in Figure 2.1. The glass display interfaces were generated using Windows 98

PCs[3]. The flight controls and standard pilot input devices in the cockpit were fitted

with a variety of optical rotary encoders, potentiometers, and switches which were

interfaced to several data acquisition boxes from BG Systems and US Digital[14].

18

Figure 2.1: VSCL Engineering Flight Simulator c. 1998[3]

The next upgrade to the VSCL in 2005[14] distributed the main EFS computing

to multiple PCs, added three PC based pilot stations, of which the hardware archi-

tecture for each is shown in Figure 2.2, upgraded the Windows operating systems

to Windows XP, as well as installing touch screen liquid crystal displays (LCDs) to

replace the cathode ray tube displays and input buttons of the previous HDDs as

shown in Figure 2.3.

The EFS left out-the-window display and left head-down display were generated

with one Windows PC, the EFS center out-the-window display were generated with

one Windows PC, the EFS right out-the-window display and right head-down display

were generated with one Windows PC, and the T-37 control inputs and cockpit

outputs interface with one Linux PC. The pilot stations consisted of one Windows

PC generating the out-the-window view and HDD. Connected to the pilot stations

are COTS PC pilot yoke and pedal systems. A minor upgrade consisting of new PC

19

Figure 2.2: Pilot Station Hardware Architecture[30]

Figure 2.3: VSCL Engineering Flight Simulator c. 2009

20

Figure 2.4: EFS Hardware Architecture[30]

hardware and COTS yoke and rudder hardware was implemented in 2009. Included

in the 2009 upgrade were new Windows PCs for each of the EFS HDDs, where now

each of the EFS display computers generate only one display as shown in Figure 2.4.

Figure 2.5 shows the current setup of the VSCL pilot stations simulators.

Distributed simulations in the VSCL communicate data using TCP and UDP

sockets of the Internet Protocol Suite. Communication can be point-to-point, multi-

cast, or broadcast. The main cause of complex interdependence between modules has

been the use of hard-coded I/O data packet formats for network-based distributed

communication, where a change in one module would require all of the modules to

be adjusted and recompiled[30]. A wide variety of programming and scripting lan-

guages are used in the VSCL. A large number of the educational simulations are

created in MATLAB. C and C++ are used to communicate with the EFS control

input hardware and for some of the dynamical simulations. Other languages used in

21

Figure 2.5: VSCL Pilot Station Simulators c. 2009

VSCL codes are Fortran, Java, and Python. An architecture implementation will be

required to interface with each of these programming languages.[23]

22

3. DAEMON

The hADES simulation Daemon can be described as an information backbone

for the simulation architecture. The Daemon is an object-oriented program that

is executed in the background of all simulation computers and communicates the

availability of and access to the actual Module data between all Modules on the

network. The simulation Daemon is similar to the Run-Time Infrastructure of the

High Level Architecture. In this thesis, the Daemon is programmed to be cross-

platform (Linux and Windows) by implementation using the Python programming

language. The intent is to make communication between multiple operating systems

and platforms transparent to the simulation Module designer. A novel feature of the

simulation Daemon is that it can convert data types, data units, and fill in missing

data on-the-fly without recompiling or reprogramming connected simulation modules

that may have conflicting input and output data structures.

The three main functional tasks of the simulation Daemon are synchronization,

configuration, and communication. These tasks are run as parallel processes with

asynchronous interprocess communication between the three. The synchronization

task handles synchronization between the system clocks for all Daemon computers

on the simulation network. The configuration task handles connecting to new sim-

ulation Modules and recording the input and output data information (described

in Section 3.2.1) for that Module. The configuration task then relays to all other

Daemons on the network the availability of data and details about that data for

the simulation modules connected locally to a Daemon. This task is also used to

map where the inputs to any simulation Module come from (i.e. which Module on

which computer, remote or local, to read Module output data from). Another novel

23

feature implemented in order to make the architecture easily extensible is a defined

interface to the configuration task to allow data paths to be defined on-the-fly during

run-time. The usual endpoint to this interface is a GUI to be used by a human op-

erator that will display data paths for all Modules and their respective data as well

as provide a way for the operator to command changes to data paths between any

Modules connected to the architecture. The configuration task is designed to pass

commands from a local UI to remote Daemons anywhere on the network to allow

a single user from one location to be able to configure all Modules anywhere in the

simulation network. The communication task receives remote Module output data,

does conversions if necessary, and sends it as input data to a local Module. Because

data is only converted as necessary when being received, it is not necessary to have

simulation Modules send their output data through the local Daemon. Thus, output

data from simulation Modules is sent directly to the simulation network avoiding

extra and unnecessary transmission steps and latency of sending data from a local

Module to a local Daemon and then from that Daemon to the network.

Figure 3.1 is a functional diagram showing how simulation data and configura-

tion information are passed between the ith Daemon in a network, the Daemon main

tasks, and the other N-1 Daemons in a network. The Daemon uses TCP sockets for

sharing configuration data and UDP sockets for all simulation data. For all further

descriptions in this chapter of how a Daemon instance on a network computer com-

municates with other Daemons on the network and with remote and local Modules,

the local Daemon is the ith Daemon and is referred to as “a Daemon”, the local

Modules are referred to as the 1st through M th
i Modules for all Mi Modules located

on the ith computer, and the other Daemons on the network, whose Modules are

called global or remote Modules, are referred to as the 1st through N th Daemons

noninclusive of the ith which is local.

24

F
ig

u
re

3.
1:

D
ae

m
on

T
as

k
D

ia
gr

am

25

3.1 Synchronization Process

The computing systems in this thesis operate using commonly used nondeter-

ministic or non-real-time operating system software environments. Because a broad

goal of the architecture is to give as close to real-time performance as possible, a

soft real-time approach, where the underlying software systems attempt to meet

time deadlines as best as possible by scheduling tasks according to a system clock,

is used. The system clock on each PC is not guaranteed to be accurate relative to

an independent source. In order to synchronize the execution of simulation Module

loops, the Berkeley algorithm[31] for clock synchronization is implemented in this

thesis. The master Daemon, with respect to the synchronization algorithm, main-

tains a database of the offset for all other Daemons relative to itself. The master

notifies the slaves of what offset they should maintain. The synchronization process

passes offset data for its local Daemon to all other processes on the Daemon via

internal process-to-process communication. The synchronization process maintains

TCP connections to all the other Daemons for passing synchronization messages as

shown in Figure 3.1. If the master Daemon goes offline, another Daemon is cho-

sen as master according to the algorithm. Also, if the master Daemon computer is

overloaded with processing tasks, another Daemon can be chosen as the master.

The Berkeley algorithm follows the following process inside a Daemon:

1. A Daemon is chosen as the master clock via an election process and all other

Daemons become slaves.

2. The master polls the slaves with a message that contains the timestamp when

the master sent the message. The slaves reply to the message by returning the

original message with a timestamp from the slave computer appended to it.

26

3. The master calculates the round-trip time for each of the message replies for

each of the slaves.

4. The message polling process is repeated multiple times ignoring any values far

from the average for each slave.

5. The master sends an offset amount to each of the slaves of how much each

must adjust its own clock by.

3.2 Configuration Process

The configuration process is designed to send and receive information about Mod-

ules connected to the Daemon network. This process functions using the Client-

Server Model[32] for configuration information sent over TCP sockets. The con-

figuration task on a Daemon acts as the source of all configuration properties for

Daemons and the Modules located on that computer; thus acting as the “Server”

in the Client-Server model. All other Daemons on the network act as “Clients”

in the Client-Server model for receiving configuration information as necessary via

server-push[33] style messages. Figure 3.2 shows how the TCP sockets for shar-

ing Daemon configuration (CFG) information for a 4-computer simulation network

are connected. Each circle is a Daemon on the network and the arrows show the

TCP socket connections between Daemons and the direction of communication for

that socket. It is important to note that even though TCP sockets are bidirectional

between any two connected Daemons, this architectures uses two TCP sockets for

communication of CFG information - one for sending information and one for receiv-

ing information. The purpose of having two sockets is because Daemons can join

the network at any time; this method avoids a race condition where two Daemons

attempt to create a connection with the other when only one connection would be

wanted. This method also maintains the “Client-Server” relationship with respect

27

to the data being transmitted across the respective sockets. Figure 3.1 shows the

sockets used for this process and what type of information is sent across them. In

the Client-Server model, a socket is open to accept incoming connection requests

and spawn a new connection when accepted. A separate accepting socket exists for

each type of data to be sent/received: UI data, global Daemon CFG data, and local

Module CFG data.

Figure 3.2: Example Network Daemon CFG TCP Socket Layout

When a Daemon joins a network, it must notify other Daemons (if any) of its ex-

istence. This is done using the Beacon UDP Socket. The Beacon UDP socket is used

to send and receive CFG status information - a way to identify if the configuration

has changed on a remote Daemon. The Beacon CFG status is sent at a specific rate

to multicast address that all Daemons are subscribed to so only one transmission of

the data is required for all other Daemons to receive it.

Figure 3.3 shows the flowchart of the Daemon configuration task process which

is executed at a specific rate. When a Daemon program first starts, the CFG stor-

age data structures and objects are initialized and sockets for accepting network

28

communication and notifying other Daemons on the network of the ith Daemon’s ex-

istence are established. The main loop first checks all sockets for data and incoming

connection requests. If Beacon CFG status information is received from a remote

Daemon, it is processed to verify if the local copy of the remote Daemon’s CFG

information is correct. If a beacon signal is received from an unknown Daemon, an

attempt is made to create a TCP communication link with it. If a remote Daemon

is attempting to make a TCP communication link with the local Daemon, new CFG

storage data structures are created for the remote Daemon and the connection is

accepted. If new CFG information is received on a TCP communication link from

a remote Daemon, the CFG information is updated. If commands are received on

a TCP communication link from a remote Daemon, the commands are processed.

If a local Module is attempting to make a TCP communication link with the local

Daemon, new CFG storage data structures are created for the local Module and the

connection is accepted. If CFG information is received from a local Module, the info

is updated in the CFG storage data structures and forwarded to the global Dae-

mons. If commands are received from the UI communication link, the commands

are processed and sent to global Daemons if required. If any communication links

are lost with local Modules or remote Daemons, the communication link sockets and

data structures are cleaned up and remote Daemons are notified if necessary. The

UI is then updated with the current state of the Daemon network. The loop then

sleeps until the next beacon update is due or the next configuration update is due.

Because CFG information and commands are not sent very often, the loop rate for

the configuration process can be set to a low value to avoid slowing the computer

down with many loops that do not actually receive or process data. If a shutdown

is caught, the main loop ends.

29

Figure 3.3: Daemon Configuration Task Flowchart

30

The communication process, as shown in Figure 3.1, uses UDP sockets to send

and receive data. The data output from each Module is unique. As such, a unique

port number is reserved for use exclusively by each Module that has output data to

send. The reason for this is to minimize any extra computation required to sort and

determine which data packets came from which Module if multiple Modules were

sending data to the same port. Port numbers can be reserved internationally with

the IANA for use by specific programs[34]. The full range of port numbers are 0-

65535. A subset of the full range of available ports are a set meant for dynamic use

and cannot be registered with the IANA. Ports in the dynamic use range (49152-

65535)[34] are used by the architecture presented in this thesis to avoid conflicting

with international agreements and programs that may have registered and already

be using specific ports in the lower range. The port designation and reservation is

handled by the configuration process. Ranges of ports can be either predetermined

and known by each Daemon at run-time or Daemons can choose a port number and

ask if other Daemons are using it. The dynamic use range includes 16384 ports

which is several orders of magnitude larger than the number of expected distributed

Modules envisioned when developing the architecture in this thesis. Thus, either

method of port distribution should be sufficient. The configuration process notifies

the communication process of ports to use via internal process-to-process communi-

cation and notifies local Modules of ports to use via local Module CFG information

TCP sockets.

3.2.1 Configuration Storage

The configuration process stores information about each Module on the simula-

tion network regardless of whether the Module is remote or local. This information is

used to route communications across the network. A mapping can be made between

31

the outputs of one Module to the inputs of another. The configuration information for

remote Modules is stored on each Daemon to allow the operator connected through

the UI interface to see the state of all Modules on the simulation network as well as

send commands to configure Modules anywhere on the network. All configuration in-

formation is stored as text. The storage data types for CFG text information should

be consistent across all Daemons which includes character array length. The CFG

information is used for defining the uniqueness of a module in the configuration pro-

cess as well as for performing data type and unit conversions in the communication

process.

Relevant configuration information for Modules are:

• Module Name

• Module Version

• Author

• API Language

• API Version

• Module Loop Rate

• Ordered list of input data packet

– Data Name

– Data Type

– Units

– Source

• Ordered list of output data packet

– Data Name

– Data Type

– Units

32

3.2.2 Configuration Uniqueness

The architecture developed in this thesis provides the ability to implement a

very complex and extensible simulation environment capable of connecting multiple

unique heterogeneous simulation Modules and allowing them to communicate with

one another. With multiple engineers authoring Modules that may serve similar

purposes, it is possible that the authors will choose Module names that are not

unique. However, it is still possible to differentiate Modules with the same name

from one another if some of the other CFG information is not identical. Not all

possible CFG information is required for a Module to be assimilated into a network

and executed, however, a subset of that information is and can be used to uniquely

identify it.

Several items of information required to uniquely identify a Module on a network

are:

• Module Name

• Module Version

• API Language

• API Version

• Module Loop Rate

• Ordered list of input data packet

– Data Name

– Data Type

– Units

• Ordered list of output data packet

– Data Name

– Data Type

– Units

33

A concatenated string of the unique CFG information text in the order presented

can be long and modules are not guaranteed to have the same concatenated string

length as others. In order to shorten the length of the unique string identifying

a module as well as guarantee identical length, a hashing function can be used to

store a unique identifier for each Module implementation. A hashing function is an

algorithm that maps a data set or text string of variable length to smaller data sets

or text strings of fixed length. Many hashing functions can be used for this process.

A hashing function that will allow only few or no collisions is desired. An example

hashing function that is included in the initial implementation of this architecture is

the MD5 algorithm which takes as input a message of arbitrary length and produces

as output a 128-bit “fingerprint” or “message digest” of the input[35]. An advantage

of this algorithm is that it is computationally infeasible or very unlikely to randomly

produce two messages having the same message digest, or to produce any message

having a given prespecified target message digest[35].

The CFG information for a Module is stored internally using the pair of the

Module name and Module CFG hash as an identifier or key for the Module. The

identifier can be used to determine how many instances of a Module are located on

a local computer and/or on the entire simulation network.

3.2.3 Configuration Commands

Configuration commands are the method of communication of CFG information

between a local Module and the corresponding Daemon on the computer it is located

on. Commands are also passed between Daemons to share CFG information about

Modules connected locally to each Daemon. Commands are also used by the UI, and

passed from Daemon-to-Daemon, in order to start and stop simulations groups and to

define output-input mappings. The same command syntax can be used for all types of

34

messages. Examples of why the term “command” is used is because a local Daemon

will command other global Daemons to update their CFG information when new local

Modules join or leave the network or an operator will command a simulation group to

start through the UI. Because the commands are used by both the Daemon and the

API libraries, the command syntax must be easily implemented in any programming

language. A message standard has been implemented for this architecture to be

both simple to implement and easy to parse so as to not require complex or third-

party parsing libraries. The message standard is also ASCII-character-based[36] to

be human readable and thus easy to debug by any programmer.

Because commands are sent over TCP connections, the IP address, and thus the

Daemon origin for each command is embedded in the socket/data transmission and

is not included in the command text. The command syntax (Figure 3.4) has several

variables. The characters available for command variables are [a-z][A-Z][0-9] of the

ASCII character set to make them easily human readable. Several special characters

are used as separators in the command and to define the beginning and end of a

command. The first variable, cHash, is the command hash - a unique identifier for

the command. A unique identifier is required for each command that originates

on a Daemon because some commands will require responses. This will allow a

Daemon to keep a cache of commands expecting a response so as to know how to

properly process the response message. The second variable, rHash, is the response

hash - it notifies which command is being responded to. The response hash is an

optional variable that is only required for commands that are responding to other

commands. The command hash and response hash are separated by the respond

separator character: a period, ‘.’, ASCII character. The third variable, cName, is the

command name - a unique name used to determine how many command arguments

to expect and what to do with the arguments. The command name is separated

35

from the previous variable by the argument separator character: a comma, ‘,’, ASCII

character. The last variables, cArgs, are the command arguments - optional variables

that correspond to the arguments for each command in the order they are expected.

Some commands have no arguments and some have many. The start of command

character is the less-than ASCII character, ‘<’. The end of command character is

the greater-than ASCII character, ‘>’.

Figure 3.4: Command Syntax

3.3 Communication Process

The purpose of the communication process is to create soft real-time performance

of simulation data transmission at a desired rate. The main functions of this process

are to receive output data from global Modules, convert the data as necessary, and to

send input data to local Modules. Between the UI and the configuration process, a

mapping is designated between the outputs of certain Modules to the inputs of others.

The configuration process then notifies the communication process of which global

Module outputs are required as inputs for the local Modules. The communication

process will create data structures and objects for receiving global data, converting

it if necessary, and then for sending it to the local modules.

Initial implementation of the architecture communication process functions as

a sampled-data system, where the most recent data from the output of a global

Module is sampled, processed, and sent as input to a local Module. The purpose of

this is to allow Modules with different internal loop rates to communicate with one

another as shown in Figure 3.5. If a local Module main loop executes at a faster rate

36

than the remote Module, the most recent data is used for all loops until new data

is available as shown in Figure 3.5a. If a local Module is at a slower rate than the

remote Module, the data available when the local Module loop starts is used and

subsequent data will be thrown away until the local Module loop is finished as shown

in Figure 3.5b. This is not the only option for handling extra data, but is the initial

implementation for this architecture. Because a sampled-data system will require all

Modules to calculate outputs in the first loop of execution without having sampled

inputs, initial conditions for all states will be required to be known by each Module

before run-time. Initial conditions can be prescribed internally to each Module, or

can be set via commands from the UI.

Worst case transmission and processing latency from a remote Module to a lo-

cal Module should be the loop rate of the remote Module if a packet transmission

is missed. Empirically in the VSCL, data packet transmission rates of over 50kHz

are possible across a 1Gbit/s Ethernet connection suggesting that transmission rates

will be significantly faster than processing loop rates. This architecture implements a

small delay (significantly smaller than the Module loop rate but larger than expected

LAN transmission time) before attempting to read in data from remote Modules in

order to not miss packets. The configuration process will share clock sync informa-

tion with the communication process. The clock sync information paired with the

delayed data reading leads to very small expected distributed transmission and pro-

cessing latency. Read delay times and rate of clock syncing are adjustable parameters

available to fine-tune simulation setups.

Figure 3.6 shows the flowchart of the Daemon communication task process. When

a Daemon program first starts, the communication task prepares data objects and

structures for storage of simulation data. The main loop checks for CFG updates

to determine if the Daemon needs to prepare to receive data from remote Daemons.

37

(a
)
F
as
te
r
to

S
lo
w
er

(b
)
S
lo
w
er

to
F
as
te
r

F
ig

u
re

3.
5:

S
am

p
le

d
-D

at
a

E
x
am

p
le

s

38

Next the communication process checks for updates on clock synchronization. After

that, if any remote Modules are scheduled to have sent data to the network, that

data is received. To help avoid erroneous network data and to reduce total bandwidth

usage on the network, transmission of Module data between Daemons will be sent

using multicast addresses unique to each Daemon. If data transmission deadlines

are being missed, the configuration process and UI can be notified. Once data has

been received, if any local Modules are scheduled to be sent data, the appropriate

data is converted if necessary, packed into the proper data structure, and sent to the

local Modules. The loop will then sleep until data is scheduled to be received from

remote Modules or sent to local Modules or for a preset amount of time of in order to

receive CFG or synchronization updates should they have been sent to the process.

The sleep times are adjustable parameters available to fine-tune simulation setups.

If a shutdown is caught, the main loop ends.

39

Figure 3.6: Daemon Communication Task Flowchart

40

3.3.1 Simulation Data Storage and Transmission

The Daemon communication process can create Object-Oriented Programming

(OOP) paradigm objects to receive and store data from any simulation Module. OOP

objects can also be created for any local Module in order to convert, modify, and/or

create new data packets to be set as input to the local Module - a novel feature of

this architecture. The classes for defining the previously mentioned types of objects

can be broken into two types: ReceiveModule class for defining objects for receiving

data from Modules and SendModule class for defining objects for sending data to

local Modules. Module objects are designed with sending or receiving methods to be

used by the communication process for packing, converting, and sending data and

for receiving and storing data. The configuration process stores mappings between

the outputs of Modules to the inputs of others. This mapping is shared with and

also stored in the communication process to create receiving Module objects for any

Module only while data is required from them as inputs to local Modules. The specific

information in the mapping is which data item in the ordered list of an output data

packet for a Module maps to which data item in the ordered list of an input data

packet for a local Module including the corresponding data types and units for each.

The ReceiveModule class (Figure 3.7) is designed to receive data from any Mod-

ule whose data is required to be sent to a local Module. It has an address variable for

storing a string tuple of the multicast IP address and Port number that corresponds

to the Module whose data is to be received. A socket for receiving data is created

in the class. A packet format, which is a string representation of the data type and

order for all output data to the Module, is stored as well. This class has a method

for getting data which polls the socket and receives data, unpacks it according to the

packet format, and stores it in the data objects. Data objects are designed to have

41

methods for unit and type conversion. The data objects are stored in an ordered list

with the order defined by the CFG information for that Module.

The SendModule class, as shown in Figure 3.7, is designed to take data stored

in ReceiveModule objects, convert it if necessary, and send it to local Modules as

input. It has an address variable for storing a string tuple of the localhost IP

address and Port number that corresponds to the local Module data is to be sent

to. A packet format, which is a string representation of the data type and order for

all input data to the Module, is stored as well. This class has a get method which

uses the output-input mapping to get data from the corresponding ReceiveModule

data objects, converts the data types and units if necessary, and stores it in the data

objects. As introduced in Section 1.5.1, another novel feature are faux data objects

which can be created for data that doesn’t exist as output on the network but can

be substituted with a constant of specified data type and units. This class also has

a send method which takes the data stored in the ordered list of data objects, packs

into a packet according to the packet format string, and sends it as input to a local

Module.

Figure 3.7: Module Classes in Communication Process

Examples of data types and some of the possible type conversions are included

in Table 3.1. This list is not exhaustive of all common data types available, but

includes those in the initial implementation of this architecture and are based on C

42

data types. Great care by the module programmer is needed for some conversions

because converting a number from a format of longer bit length to a shorter one may

result in the original number exceeding the size of the shorter format which will only

be caught as an error at run-time. Initial implementation will cause an error to be

sent to all Daemons when a data type conversion size violation occurs but it is also

possible to truncate the number at the largest allowable size for the destination data

type. Allowing conversions from longer formats to shorter ones is allowed because of

historical prevalence of saving numbers in formats with maximum size significantly

larger than the largest expected value of a variable in legacy code. Floating point

numbers are allowed to be converted to integers by rounding because of historical

prevalence of saving some integer numbers in floating point data types in legacy code.

Strings of characters are handled as C-type character arrays and are converted to

larger arrays by padding whitespace to the right or to smaller arrays by truncating

from the right. The format code is a unique character to define the data type for the

packet format string and is based on Python struct module[13] format codes.

43

F
or

m
at

C
o
d
e

C
ty

p
e

#
B

it
s

Compatible Conversions

? Bool 8 b, B, h, H, i, I, l, L, q, Q, f, d, Ns

b signed char 8 ?, B, h, H, i, I, l, L, q, Q, f, d, Ns

B unsigned char 8 ?, b, h, H, i, I, l, L, q, Q, f, d, Ns

h short 16 ?, b, B, H, i, I, l, L, q, Q, f, d, Ns

H unsigned short 16 ?, b, B, h, i, I, l, L, q, Q, f, d, Ns

i int 32 ?, b, B, h, H, I, l, L, q, Q, f, d, Ns

I unsigned int 32 ?, b, B, h, H, i, l, L, q, Q, f, d, Ns

l long 32 ?, b, B, h, H, i, I, L, q, Q, f, d, Ns

L unsigned long 32 ?, b, B, h, H, i, I, l, q, Q, f, d, Ns

q long long 64 ?, b, B, h, H, i, I, l, L, Q, f, d, Ns

Q unsigned long long 64 ?, b, B, h, H, i, I, l, L, q, f, d, Ns

f float 32 ?, b, B, h, H, i, I, l, L, q, Q, d, Ns

d double 64 ?, b, B, h, H, i, I, l, L, q, Q, f, Ns

Ns N len char[] Nx8 Ms (M len char[])

Table 3.1: Data Type Conversion Compatiblity

44

4. APPLICATION PROGRAMMING INTERFACE

The Module Application Programming Interface (API) is a set of programming

libraries used to integrate software modules into the distributed architecture devel-

oped in this thesis. Section 3 describes the architecture Daemon program used to

synchronize configuration information across the simulation network, denote the vari-

ous input-output mappings between simulation Modules, and to pass communication

between the individual simulation Modules. This section describes the purposes and

high-level overview of the API libraries: to register input and output data packet

formats with the Daemon, communicate commands with the Daemon, and give exec-

utive control of software modules - allowing software modules to communicate with

one another and for their execution to be controlled remotely.

Software modules can be implemented in many programming languages and op-

erating systems. As such, the API libraries need to be implemented for each pro-

gramming language and operating system combination for software Modules required

to connect to a simulation Network. Requirements for the API implementation pro-

gramming language and operating system are that they have the ability to commu-

nicate via the TCP/IP protocol.

Figure 4.1 shows the functional diagram of how the API and the Module code

connect to create a single program that can communicate with a Daemon and the rest

of a simulation Network. The API acts as a “wrapper” around the main software

module. The API functions are used to send and received CFG and command

information to and from the Daemon using the TCP port and to send and receive

Module input and output using the UDP data socket. Section 3.3 explained how the

architecture resembles a sampled-data system and requires initial conditions for all

45

states in order to function. The initial conditions are loaded by the API either at

load-time of the program, or on-the-fly as commands coming through the Daemon

from the UI. The API functions are also used to start and stop execution of the

simulation loop that calls the user implemented Module functions at the Module

specified rate.

Figure 4.1: API-Module Functional Diagram

The API libraries are programming language specific and are used by engineers

to design and integrate new simulation Modules and/or integrate COTS or legacy

Modules to a simulation network. Communication methods using the API stan-

dardizes implementation of intermodule communication for a distributed simulation

network for any organization, group, or researcher that uses this architecture. The

API is meant to be minimally intrusive to Module development while still fostering

extensibility.

46

There are several high-level functions the API fulfills:

• Connect a Module to the simulation network through the Daemon

• Transfer I/O CFG data information to the Daemon

• Start and stop module main loop execution

• Update internal loop timing with synchronization data from Daemon

• Receive other Module data as inputs from the Daemon

• Send Module outputs to the network

The main methods that need to be implemented by the API code are:

• Initializing all data structures and preparing sockets

• Reading, processing, and/or returning commands and other info through the
Daemon TCP socket

• Reading and unpacking simulation data from the UDP socket

• Registering a callback function for the Module specific main loop function

• Executing the Module specific main loop function

• Packing and sending simulation data to the network through the UDP socket

Figure 4.2 shows a flowchart of Module operation using the API. A simulation

Module initializes by setting up all relevant data structures, variables, and objects

required for receiving commands from and communicating CFG information with

a Daemon. A connection is then made with a local Daemon. CFG information is

sent to the Daemon and a socket address for receiving UDP data is received from

the Daemon. The socket address the Module uses for receiving data is also used

for sending data to the network. If a Module has outputs, then an address to send

output data to is received from the Daemon and stored. The API main loop then

begins. A shutdown event inside the module is checked for first and a shutdown

and data cleanup happens if caught. Otherwise the API will check for commands

47

coming from the Daemon and process any received. If a “start Module” command

has been received, the module state is changed to “running”. If the module stat is

“running”, first any inputs are received and unpacked from the Daemon, the Module

specific main loop functions are executed, and then any outputs for the Module are

packed and sent to the network. The Module specific main loop functions are the

main methods defined by the Module implementation programmer; in the context

of the VSCL and related engineering simulation tasks, these functions are related to

simulating dynamical systems. Lastly, the API main loop will sleep until the loop is

due to process information again based on the Module rate.

48

Figure 4.2: API-Module Execution Flowchart

49

5. EXAMPLE MODULE INTEGRATION

To test the main features of hADES, an example set of Modules is integrated to

emulate a relevant use case for the VSCL. The example setup implements a piloted

aircraft simulation. Modules implemented are a joystick Module for accepting pilot

inputs, an aicraft simulation Module for simulating the physics of the aircraft, and

a visualization Module for displaying relevant state output to the pilot.

Figure 5.1 shows the topology of Daemons and Modules and directions for I/O

mapping for the example setup. Two computers are used for simulation in the

network. A Daemon is run on each computer - Daemon 1 on Computer 1 and

Daemon 2 on Computer 2. Computer 1 hosts two Modules - the Joystick Module and

the Aircraft Simulation Module. Computer 2 hosts one Module - the Visualization

Module. The Joystick Module has only output states. The Aicraft Simulation Module

has input states that are converted and transmitted to it by Daemon 1 and also has

output states. The Visualization Module has input states that are converted and

transmitted to it by Daemon 2 and also has output states.

Figure 5.1: Example Module Topology

50

5.1 Joystick Module

The Joystick Module is a data acquisition program to record data at 50Hz from a

Microsoft R© Sidewinder R© Precision Pro joystick. The Precision Pro joystick has four

axes: a roll axis, a pitch axis, a yaw axis, and a throttle axis. It also has nine digital

buttons and a four-direction (x-y) hat switch. The roll, pitch, and yaw axis positions

are output as floating point numbers in the domain [−1, 1] for left-to-right or down-

to-up respectively. The throttle axis positions are output as floating point numbers

in the domain [−1, 1] for minimum-to-maximum respectively. All buttons are output

as integer numbers; 0 for unpressed and 1 for pressed. Hat x and y positions are

output as integer numbers in the domain [-1,0,1] or left-center-right respectively for

x-position and up-center-down respectively for y-positions. The ordered output data

structure for the Joystick Module is shown in Figure 5.2.

Figure 5.2: Joystick Module Output Specifications

51

5.2 Aircraft Simulation Module

The Aircraft Module is the lateral-directional dynamical physics simulation for a

Commander 700 aircraft using a discrete linear state-space model set to update at

100Hz. The Aircraft Module has inputs to turn a built-in autopilot on or off. The

continuous state-space equation matrices[37] are linearized about a cruise speed, U1,

of 206.21ft/s; altitude, H1, of 8500ft; angle-of-attack, α1, of 5.25◦; dynamic pressure,

q̄, of 37.7psf, and an elevator deflection, δe, of 0.1◦.

The continuous state-space equation in vector form for states, x, controls, u, state

matrix, A, and control distribution matrix, B, is given as:

ẋ = Ax+Bu (5.1)

For the Commander 700, the elements of the continuous lateral-directional state-

space equations in vector form [37] for states: sideslip angle, β, body x-axis angular

rate, p, body z-axis angular rate, r, φ roll angle, and ψ heading angle and controls:

aileron deflection, δA, and rudder deflection δR, is given as:

x =



β

p

r

φ

ψ


; ẋ =



β̇

ṗ

ṙ

φ̇

ψ̇


; u =

δAδR
 (5.2)

52

A =



−0.119 −0.0013 −0.993 0.159 0

−1.22 −2.00 0.0040 0 0

2.80 −0.964 −0.374 0 0

0 1 0 0 0

0 0 1 0 0


; B =



0 0.0038

1.92 0.191

0.137 −1.59

0 0

0 0


(5.3)

The discrete form of the linear state-space equations for current timestep, k, and

next timestep, k + 1, is:

xk+1 = Φxk + Γuk (5.4)

The continuous state-space linear equations can be converted to discrete equations

for a specific update rate, T using:

Φ (T) = eAT ; Γ (T) =

 T∫
0

eAτdτ

B (5.5)

Which leads to the discrete state, Φ, and control, Γ, matrices for the Commander

700:

Φ =



0.9987 0.0000 −0.0099 0.0016 0

−0.0121 0.9802 0.0001 −0.0000 0

0.0280 −0.0095 0.9961 0.0000 0

−0.0001 0.0099 0.0000 1.0000 0

0.0001 −0.0000 0.0100 0.0000 1.0000


(5.6)

53

Γ =



−0.0000 0.0001

0.0190 0.0019

0.0013 −0.0159

0.0001 0.0000

0.0000 −0.0001


(5.7)

The autopilot is a full state feedback linear-quadratic regulator (LQR) controller

implemented as a yaw-damper and heading regulator. The LQR controller is of the

form uk = −Kxk to minimize the discrete cost function:

J =
1

2

N∑
k−0

[
xTkQxk + uTkRuk

]
(5.8)

To function as a yaw-damper (for r) and heading regulator (for ψ), the matrices

Q and R are chosen as:

Q =



0 0 0 0 0

0 0 0 0 0

0 0 5 0 0

0 0 0 0 0

0 0 0 0 10


; R =

1 0

0 1

 (5.9)

This leads to the optimal gain, K, that minimizes the cost function, J , from

Equation 5.8:

K =

 0.7176 0.4132 −0.1370 0.8236 0.9970

−1.1943 0.3387 −2.4325 −0.0498 −2.9437

 (5.10)

The autopilot can be turned on or off via one of two inputs: The Autopilot (A/P)

54

Hardware (HW) Toggle input or the Autopilot Software (SW) Toggle input. The

first is to allow the autopilot to be toggled on or off from a button on a joystick. The

second is to allow the autopilot to be toggled on or off from a GUI-based button on

the pilot Visualization Module display. Either of the toggle buttons can be pressed

to toggle the autopilot state to on or off, and the state change will happen on a

downward edge detect when the button releases. A downward edge detect is when

the button state goes from high/1/pressed to low/0/unpressed. This type of press

detection does not toggle the state until the button is released to avoid toggling the

state back and forth if the button is held down longer than one loop of the program.

The state of the autopilot is output as the A/P Status where on is 1/high and off

is 0/low. When the autopilot is engaged on, the joystick inputs to the Module are

ignored and only the autopilot drives the system.

The ordered I/O data structures for the Aircraft Module are shown in Figure 5.3.

(a) Inputs (b) Outputs

Figure 5.3: Aircraft Module I/O Specifications

5.3 Visualization Module

The Visualization Module shows the relevant aircraft navigation states to the

pilot at 30Hz. The states shown are roll angle, φ, and heading angle, ψ, in degrees.

55

In addition, the actual deflections (δA and δR) of the control surfaces are displayed

as well. The autopilot status is also displayed to the pilot. A software-based control

is available as an output for the pilot to toggle the autopilot on or off.

The ordered I/O data structures for the Visualization Module are shown in Figure

5.4.

(a) Inputs (b) Outputs

Figure 5.4: Visualization Module I/O Specifications

5.4 Data Routing Configuration

In this example, a scripting program performs the Module data mapping con-

figuration prior to Module execution. The scripting program sends the required

ASCII-character-based configuration commands to a Daemon through the Config-

uration Task UI TCP Socket. Module output will need to be verified both during

and after Module execution to determine proper routing and data unit and type

conversions. Lack of Daemon and Module runtime errors or notices of improper or

incomplete I/O mapping are also a sign of full configuration success.

As explained in Section 3 and Section 4, each Module uses the API to send its

output directly to the simulation network. When a specific Module requires the

output of another as input, the local Daemon fetches the data, converts data types

and units if necessary, and sends it to the Module. Figure 5.5 shows which Module

outputs are required and configured through a Daemon to be relayed as input to

56

other Modules for this example setup. The inputs and outputs are shown with the

given data type / units / name for each. The Joystick Module has only outputs

which are the joystick and throttle axes, the joystick buttons, and the joystick hat

positions. All joystick axes are output as floating point numbers and all buttons and

hat positions are output as integers. The inputs for the Aicraft Simulation Module

are the Roll Axis coming from the Joystick Module Roll Axis, the Yaw Axis coming

from the Joystick Module Yaw Axis, the Autopilot (A/P) Hardware (HW) Toggle

button coming from the Joystick Module Button 8, and the A/P Software (SW)

Toggle button coming from the Visualization Module A/P SW Toggle. The outputs

for the Aicraft Simulation Module are the lateral-directional aircraft states as floating

point numbers, the control surface deflections as floating point numbers, and the A/P

Active Status as an integer. All angular outputs for the Aicraft Simulation Module

are in radians or radians/second. The inputs for the Visualization Module are the

control surface deflections as double precision numbers in degrees, the roll and yaw

Euler angles as double precision numbers in degrees, and the A/P Active Status as

an integer. The outputs for the Visualization Module are an A/P SW Toggle signal

for activating/deactivating the autopilot from the pilot’s display.

57

F
ig

u
re

5.
5:

E
x
am

p
le

M
o
d
u
le

D
at

a
R

ou
ti

n
g

58

6. EXAMPLE IMPLEMENTATION RESULTS

A successful implementation of Daemons and Modules will meet transmission

deadlines allowing for seamless sampled-data distributed simulation performance.

For the example setup described in Section 5, a series of data and other architecture

parameters were internally sampled from each program during run-time execution

on a network in order to test the success criteria. Daemons were used to configure

the I/O mapping for the example implementation prior to Module execution.

The success criteria for configuration and information transmission between Dae-

mons are if the I/O between Modules is correctly received, converted, and trans-

mitted. This will verify that the I/O mapping and other I/O CFG information was

shared between Daemons correctly. Because each configuration is unique, the im-

plementation human operator must check that data I/O for each Module is correct.

The example implementation is designed to allow the human operator to easily and

visibly determine if there is an error in I/O transmission.

Section 3.1 describes clock synchronization between Daemons on a simulation net-

work. In this example, Daemon 1 on Computer 1 is the master clock and Daemon 2

on Computer 2 is a slave and receives a clock offset from the master. The clock offset

between the Daemons/Computers in this example for Computer 2 is that it must add

0.056636 [s] to its own clock for all scheduled events to match with the master clock.

Once clocks are synced, all data can be compared between Daemons/Computers ac-

cording to the time that it was processed and logged on that computer. The time

axis on all time history plots in this section are displayed as time elapsed from the

initial start execution time for the Modules. The start execution time is prescribed

by the human operator and relayed automatically by the Daemons.

59

It can be seen and compared in Figure 6.1, Figure 6.2, and Figure 6.3 that

the Roll Axis, Yaw Axis, and Button 8 outputs from the Joystick Module match

respectively and directly in units and output with the Roll Axis, Yaw Axis, and A/P

HW Toggle inputs from the Aircraft Simulation Module as prescribed in the Module

Data Routing from Figure 5.5. More unused Joystick output time histories can be

found in Appendix A.

Figure 6.1: Joystick Module Outputs Axes Time History

60

Figure 6.2: Joystick Module Outputs Button 8 and Hat X-Y Time History

Figure 6.3: Aircraft Module Inputs Time History

It can be seen and compared in Figure 6.4, Figure 6.5, and Figure 6.6 that the

Aileron Deflection (δA), Rudder Deflection (δR), Roll Angle (φ), Heading Angle (ψ),

and A/P Status outputs from the Aircraft Simulation Module match respectively

and directly with converted data types and units with the Aileron Deflection (δA),

61

Rudder Deflection (δR), Roll Angle (φ), Heading Angle (ψ), and A/P Status inputs

from the Visualization Module. Radian outputs are converted to degrees as inputs.

When the autopilot is off, the Roll and Yaw axes from the Joystick Module in

Figure 6.1 match by a scaling factor with the Aileron Deflection (δA) and Rudder

Deflection (δR) in Figure 6.5 as described in the Aircraft Simulation Module Section

5.2. Also, the Autopilot Toggling method described in Section 5.2 can be verified by

comparing Figure 6.1 and Figure 6.3 for Toggle Button transmission and Figure 6.5

for A/P Status output.

Figures 6.4-6.6 also verify that the LQR controller of the Aircraft Simulation

Module described in Section 5.2 is working correctly based on the inputs fed from

remote Modules. The Heading Angle, ψ, and Yaw Rate, r, are regulated to 0 when

the autopilot is active.

Figure 6.4: Aircraft Module Outputs 0-3 Time History

62

Figure 6.5: Aircraft Module Outputs 4-7 Time History

Figure 6.6: Visualization Module Inputs Time History

63

Because hADES executes Modules in a sampled-data manner, the outputs of

one module are not available until the next time that Module is scheduled to loop.

This allows each Module to use the entire loop time if necessary to do complex

calculations and send and receive large data structures. Figure 6.7 shows when an

Autopilot Toggle button press is sent across the network, remote Modules will not

receive or react to that data until the next time the Joystick Module is scheduled

to execute and similarly for transmitting A/P Status information. Figure 6.7 also

verifies the Autopilot Toggling method described in Section 5.2. Note that all three

modules execute at different rates. In Figure 6.7, blue dots represent when outputs

are generated, the red dotted line represents the loop time for that Module, and the

red triangle represents when the generated outputs will be available elsewhere on the

network.

Sampled-data operation also allows Modules to continue to run even if there

are delays or errors in data packet transmission. The fallback action when data is

expected to be received, but isn’t, is to use the previous timestep data. In the example

trial presented in this section, only one packet transmission delay was detected.

Daemon 2 on Computer 2 expected, but did not receive, data from the Aircraft

Simulation Module on Computer 1 at 29.94 seconds into the 30 second trial. After

this packet loss was detected, data was received for the remainder of the simulation

trial time.

It is also important to execute distributed simulation implementations using net-

working hardware able to provide the required data throughput in a timely manner.

A throughput test on consumer-grade wireless 802.11g hardware empirically resulted

in significant packet transmission delay when sending multicast simulation data. For

100Hz data packet transmission, groups of 4-6 packets were delayed in transit at the

networking hardware level and then released at one time to the computers on the net-

64

F
ig

u
re

6.
7:

A
u
to

p
il
ot

T
og

gl
e

A
cr

os
s

N
et

w
or

k
T

im
e

H
is

to
ry

65

work where the Daemons on each computer reported receiving the multiple packets

during a single scheduled loop. Subsequent trials, including the one presented, were

executed on a consumer-grade wired 100Mbit/s Ethernet network which resulted

in significantly less to no packet transmission delays. End-user implementation of

hADES should be executed on industry or commercial-grade 1Gbit/s Ethernet net-

working hardware allowing for faster data transmission, more data throughput, and

fewer packet delays.

66

7. CONCLUSIONS

hADES is able to mitigate or remove the complex interdependence between the

codebases of distributed simulation programs that communicate with one another.

The hADES Daemon does this by modifying data packets in transit between Modules

to avoid having to statically compile and/or verify that transmission data structures

match between distributed Module I/O mappings. Module API configuration infor-

mation is shared with the Daemons allowing for a human operator to define the I/O

mappings between Modules from anywhere on the simulation network.

The Module API libraries allow Module designers to supply necessary information

to the Daemons for extensible configuration and remove the requirement for Module

designers to write distributed communication code and logic. The API libraries stan-

dardize methods for implementing distributed simulations using the defined library

functions.

Performance was evaluated for an example system in Section 6 and determined to

be acceptable, comparable, and as good as performance in legacy VSCL architectures.

Recorded performance data for the example system in Section 6 shows that time

deadlines are almost always being met by hADES. Data packets are being received,

converted, and transmitted correctly. For all of the Modules for the entire 30 seconds

of run-time, only 1 packet out of 5400 was transmitted late and missed the scheduled

deadline giving a transmission/reception success rate of 99.98%.

The example system emulates a use-case scenario and shows that hADES is an ac-

ceptable method for connecting distributed simulation in the VSCL and other similar

laboratories. The codebases for the different modules were developed independently

of the others and the Daemon handled data and unit conversion flawlessly.

67

7.1 Recommendations

Based on the success of the example implementation, current and legacy Modules

can and should be converted for use in a hADES network to allow greater flexibility

and to foster future Module development. Performance can be tested on a case-by-

case implementation basis for any set of connected, distributed Modules.

The delay time for reading network data, described in Section 3.3, should be

empirically determined for a planned implementation network or defined on a case-

by-case basis. Future implementations could define a “smart” delay that changes

based on network performance, but the logic for that was not explored in this thesis.

The database of unit conversions is included in the Daemon program. This

database can and should be expanded to include every set of units to be used a

an implementation facility. A secondary extension may be to allow new units and

unit conversions to be added using the user interface in Figure 3.1. The command

set for adding units and unit conversions will need to be defined in the Daemon as

shown in Section 3.2.3.

For public use, documentation for an hADES end-user and Module implementer

will need to be created to the level and as would be expected of any commercial

or sufficiently advanced open-source project. Upon completion of all requirements

for this thesis and related graduate work and finalizing all developer manuals and

documents, the hADES codebase will be publicly available with an appropriate free

software license at the following url: https://github.com/jimmayjr/hADES.

68

https://github.com/jimmayjr/hADES

REFERENCES

[1] Ippolito, C. A. and Pritchett, A. R., “Software Architecture for a Reconfig-

urable Flight Simulator,” Proceedings of the AIAA Modeling and Simulation

Technologies Conference and Exhibit , AIAA, Denver, CO, 14-17 August 2000.

[2] IEEE Computer Society, “IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA) - Framework and Rules,” IEEE Std. 1516-2000,

The Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New

York, NY 10016-5997, USA, 21 September 2000.

[3] Painter, J., Valasek, J., and Ward, D., “Integrating the Evolving Modern Cock-

pit,” Proceedings of the AIAA Guidance, Navigation, and Control Conference

and Exhibit , AIAA, Montreal, Canada, 6-9 August 2001.

[4] Dartmouth College, Hanover, NH, BASIC: A Manual for BASIC, The Elemen-

tary Algebraic Language Designed For Use With The Dartmouth Time Sharing

System, 1964.

[5] International Business Machines Corporation, 590 Madison Avenue, New York,

NY, The FORTRAN Automatic Coding System for the IBM 704 EDPM: Pro-

grammer’s Reference Manual , 15 October 1956.

[6] Wirth, N., The Programming Language Pascal , Swiss Federal Institute of Tech-

nology, Zurich, Switzerland, 2nd ed., November 1971.

[7] Hawley, P. A., “An Object-Oriented Simulation Architecture,” Proceedings of

the AIAA Modeling and Simulation Technologies Conference and Exhibit , AIAA,

Providence, RI, 16-19 August 2004.

69

[8] Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice

Hall, Englewood Cliffs, NJ, USA, 2nd ed., April 1988.

[9] Ritchie, D. M., “The Development of the C Language,” Proceedings of ACM

History of Programming Languages II , Cambridge, MA, 20-23 April 1993.

[10] International Business Machines Corporation, 590 Madison Avenue, New York,

NY, FORTRAN II for the IBM 704 Data Processing System : Reference Man-

ual , 1958.

[11] Stroustrup, B., The C++ Programming Language - Reference manual , AT&T

Bell Laboratories, Murray Hill, NJ 07974, November 1984.

[12] Gosling, J. and McGilton, H., The JavaTMLanguage Environment: A White

Paper , Sun Microsystems, Mountain View, CA, May 1996.

[13] Python Software Foundation, “About Python,” 14 November 2012,

http://www.python.org/about/.

[14] Doebbler, J., Rong, J., Ding, Y., Spaeth, T., and Valasek, J., “Design and Imple-

mentation of a Distributed Multi-Pilot Engineering Flight Simulation Facility,”

Proceedings of the AIAA Modeling and Simulation Technologies Conference and

Exhibit , AIAA, San Francisco, CA, 16 August 2005.

[15] Moore, G. E., “Cramming more components onto integrated cir-

cuits,” Electronics , Vol. 38, No. 8, 19 April 1965, Archived at

http://download.intel.com/museum/Moores_Law/Articles-Press_

Releases/Gordon_Moore_1965_Article.pdf, accessed on 14 November

2012.

70

http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf

[16] Simon, W. G., “Transistor Count and Moore’s Law - 2011,” Web

resource: http://en.wikipedia.fcorg/wiki/File:Transistor_Count_and_

Moore%27s_Law_-_2011.svg, accessed on 13 October 2012.

[17] Kurzweil, R., “Moore’s Law, The Fifth Paradigm.” Web Resource: http://

en.wikipedia.org/wiki/File:PPTMooresLawai.jpg, accessed on 5 July 2005,

Released for use by Kurzweil Technologies, Inc. http://www.kurzweilai.net.

[18] Rong, J., Spaeth, T., and Valasek, J., “Small Aircraft Pilot Assistant: Onboard

Decision Support System for SATS Aircraft,” Proceedings of the AIAA 5th ATIO

and 16th Lighter-than-Air and Balloon Systems Conferences , AIAA, Arlington,

VA, 26-28 September 2005.

[19] Rong, J., Ding, Y., Valasek, J., and Painter, J. H., “Intelligent System Design

with Fixed-Base Simulation Validation for General Aviation,” Proceedings of the

2003 IEEE International Symposium on Intelligent Control , IEEE, Houston,

TX, 5-8 October 2003.

[20] Ding, Y. and Valasek, J., “Feasibility Analysis of Aircraft Landing Scheduling

for Non-Controlled Airports,” Journal of Guidance, Control, and Dynamics ,

Vol. 30, No. 1, January - February 2007, pp. 252–255.

[21] Rong, J. and Valasek, J., “Onboard Pilot Decision Aid for High Volume Opera-

tion (HVO) in Self-Controlled Airspace (SCA),” Proceedings of the 23rd Digital

Avionics and Systems Engineering Conference, AIAA, Salt Lake City, UT, 24-18

October 2004.

[22] Doebbler, J., Gesting, P., and Valasek, J., “Real-Time Path Planning and Ter-

rain Obstacle Avoidance for Aircraft,” Proceedings of the AIAA Guidance, Nav-

71

http://en.wikipedia.fcorg/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://en.wikipedia.fcorg/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://en.wikipedia.org/wiki/File:PPTMooresLawai.jpg
http://en.wikipedia.org/wiki/File:PPTMooresLawai.jpg
http://www.kurzweilai.net

igation, and Control Conference, AIAA, San Francisco, CA, USA, 5-18 August

2005, pp. AIAA–2005–5825.

[23] May Jr., J. and Valasek, J., “Extensible Software Architecture for a Distributed

Engineering Simulation Facility,” Proceedings of the AIAA Modeling and Simu-

lation Technologies Conference and Exhibit , AIAA, Toronto, Ontario, Canada,

2 August 2010, pp. AIAA–2010–8102.

[24] Ward, D. T., Alcorn, W. P., Hull, J., Miller, A., Robbins, A. C., Shandy, S. U.,

and Yu, R., “EFS System Description, Version 1.1,” Technical report, Texas

A&M University Department of Aerospace Engineering, College Station, TX

77843-3141, November 30, 1998.

[25] Roza, M. and van Gool, P., “Simulating Free Flight in HLA Federations,” Pro-

ceedings of the AIAA Modeling and Simulation Technologies Conference and

Exhibit , AIAA, Denver, CO, 14-17 August 2000.

[26] IEEE Computer Society, “IEEE Standard for Local and Metropolitan Area

Networks,” IEEE Std. 802-2001, The Institute of Electrical and Electronics En-

gineers, Inc., 3 Park Avenue, New York, NY 10016-5997, USA, 7 February 2001.

[27] Braden, R., RFC 1122 Requirements for Internet Hosts - Communication Lay-

ers , Internet Engineering Task Force, October 1989, Web resource: http:

//tools.ietf.org/html/rfc1122, accessed on 11 October 2012.

[28] Waitzman, D., RFC 1149 A Standard for the Transmission of IP Datagrams on

Avian Carriers , BBN STC, 1 April 1990, Web resource: http://tools.ietf.

org/html/rfc1149, accessed on 10 October 2012.

72

http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1149
http://tools.ietf.org/html/rfc1149

[29] IEEE Computer Society, “IEEE Standard for Information Technology - Pro-

tocols for Distributed Interactive Simulations Applications. Entity Information

and Interaction,” IEEE Std. 1278-1993, The Institute of Electrical and Elec-

tronics Engineers, Inc., 3 Park Avenue, New York, NY 10016-5997, USA, 22

March 1993.

[30] May, J., Doebbler, J., and Valasek, J., “Simulation Architecture Development of

a Distributed Multi-Pilot Engineering Flight Simulation Facility,” Proceedings

of the AIAA Modeling and Simulation Technologies Conference and Exhibit ,

AIAA, Honolulu, HI, 18-21 August 2008.

[31] Gusella, R. and Zatti, S., “The Accuracy of the Clock Synchronization Achieved

by TEMPO in Berkeley UNIX 4.3BSD,” IEEE Transactions on Software Engi-

neering , Vol. 15, No. 6, July 1989, pp. 847–853.

[32] Gralla, P., How the Internet Works, Chap. 9 , Que Publishing, Indianapolis, IN,

September 1998, p. 41.

[33] Rao, S., Vin, H., and Tarafdar, A., “Comparative Evaluation of Server-Push

and Client-Pull Architectures for Multimedia Servers,” Proceedings of NOSS-

DAV’96 , Zushi, Japan, 23-26 April 1996, pp. 45–48.

[34] Cotton, M. et al., RFC 6335 Internet Assigned Numbers Authority (IANA)

Procedures for the Management of the Service Name and Transport Protocol

Port Number Registry , Internet Engineering Task Force (IETF), August 2011,

Web resource: https://tools.ietf.org/html/rfc6335, accessed on 11 Octo-

ber 2012.

[35] Rivest, R., RFC 1321 The MD5 Message-Digest Algorithm, Massachusetts Insti-

tute of Technology Laboratory for Computer Science and RSA Data Security,

73

https://tools.ietf.org/html/rfc6335

Inc., April 1992, Web resource: http://tools.ietf.org/html/rfc1321, ac-

cessed on 10 October 2012.

[36] Cerf, V., RFC 20 ASCII Format For Network Interchange, University of Cali-

fornia, Los Angeles, October 1969.

[37] Valasek, J., Linear Aircraft Models - Block 5-2 - Aero 625 , Texas A&M Univer-

sity, College Station, TX, December 2012.

74

http://tools.ietf.org/html/rfc1321

APPENDIX A

ADDITIONAL RESULTS

This appendix includes unused Joystick output time histories from the example

simulation in Section 6 to provide a complete set of time histories combined with the

other figures in the section.

Figure A.1: Joystick Module Outputs Buttons 0-3 Time History

75

Figure A.2: Joystick Module Outputs Buttons 4-7 Time History

76

	ABSTRACT
	DEDICATION
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Software
	Hardware
	Distributed Simulation Communication
	Other Distributed Architectures
	Extensible Architecture
	Daemon
	Application Programming Interface
	Modules

	Research Objectives
	Cross-Platform Daemon Design
	Creation of API Libraries
	Integration of Simulation Modules with Architecture
	Evaluation of System Performance

	Architecture Legacy
	Daemon
	Synchronization Process
	Configuration Process
	Configuration Storage
	Configuration Uniqueness
	Configuration Commands

	Communication Process
	Simulation Data Storage and Transmission

	Application Programming Interface
	Example Module Integration
	Joystick Module
	Aircraft Simulation Module
	Visualization Module
	Data Routing Configuration

	Example Implementation Results
	Conclusions
	Recommendations

	REFERENCES
	APPENDIX Additional Results

