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ABSTRACT 

 

In this work, I present the development of analytical solutions in the Laplace domain for a fully-

penetrating, horizontal well producing at a constant flow rate or constant wellbore pressure in the center of 

a composite, cylindrical reservoir system with an impermeable outer boundary.  The composite reservoir 

consists of two regions.  The cylindrical region closest to the wellbore is stimulated, and the permeability 

within this region follows a power-law function of the radial distance from the wellbore.  The 

unstimulated outer region has homogeneous reservoir properties.  

 

The current norm for successful stimulation of low permeability reservoir rocks is multi-stage hydraulic 

fracturing.  The process of hydraulic fracturing creates thin, high permeability fractures that propagate 

deep into the reservoir, increasing the area of the rock matrix that is exposed to this low-resistance flow 

pathway. The large surface area of the high conductivity fracture is what makes hydraulic fracturing so 

successful. Unfortunately, hydraulic fracturing is often encumbered by problems such as high capital costs 

and a need for large volumes of water. Therefore, I investigate a new stimulation concept based upon the 

alteration of the permeability of a large volume around the producing well assembly from its original 

regime to that following a power-law function.  I evaluate the effectiveness of the new concept by 

comparing it to conventional multi-stage hydraulic fracturing.  

 

The results of this investigation show that the power-law permeability reservoir (PPR) has a performance 

advantage over the multi-fractured horizontal treatment (MFH) only when the fracture conductivity and 

fracture half-length are small. Most importantly, the results demonstrate that the PPR can provide 

respectable flow rates and recovery factors, thus making it a viable stimulation concept for ultra-low 

permeability reservoirs, especially under conditions that may not be conducive to a conventional MHF 

treatment. 
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1. INTRODUCTION 

 

1.1 Statement of the Problem  

Unconventional plays (e.g., shale, tight sands, and coalbeds) contain vast volumes of hydrocarbon 

resources.  Shale plays alone are estimated to contain 500 to 1,000 Trillion cubic feet (Tcf) of recoverable 

reserves of natural gas (Arthur et al. 2008). Until the 1990's, these hydrocarbon resources remained locked 

and unattainable beneath the surface, confined by the low permeability rock matrix and a lack of natural 

fracture networks that precluded recovery using conventional methods. The advent of hydraulic fracturing, 

coupled with advances in horizontal drilling, unlocked this vital energy resource, achieving economical 

flow rates in low and ultra-low permeability rock media.  In fact, as a direct result of applying hydraulic 

fracturing and horizontal drilling technologies, U.S. proved reserves have risen from 166.474 Tcf of 

natural gas and 22.017 billion barrels of crude oil in 1996 to 304.625 Tcf of natural gas and 23.267 billion 

barrels of crude oil in 2010 (US EIA 2012).  

 

The tremendous success of hydraulic fracturing as an effective means of stimulating low permeability 

reservoirs does not come without significant drawbacks. First, hydraulic fracturing is expensive. For a 

typical Marcellus shale well, hydraulic fracturing can constitute one third of the entire well's drilling and 

completion costs (Hefley et al. 2011). Second, the process of hydraulic fracturing requires billions of 

gallons of water, which is often a limited and valuable resource.  The EPA estimates that 35,000 wells are 

hydraulically fractured each year in the U.S. (ORD 2011). If a majority of these wells are horizontal, the 

annual water requirements could range from 70 to 140 billion gallons, which is equivalent to the annual 

water use of one or two cities with populations of over 2.5 million people (ORD 2011).  

 

Consequently, industry and academia have been evaluating less expensive and more water conservative 

stimulation techniques, such as the slot-drill technique proposed by Carter (2009) or the Repeated Electro 

Dynamic Stimulation (REDStim) method currently being investigated by researchers at Texas Tech 

University (TTU 2011). In this thesis, I do not present a new, alternative stimulation technique that will 

rival the success of hydraulic fracturing or that will cost less, or that will use less water. Rather, I solve 
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analytically and assess an alternative stimulation concept or stimulation outcome that has not yet been 

attempted or realized in the field. This new concept presumes the technology exists (or will exist) to create 

an extensive altered permeability zone that follows a power-law function of the radial distance from a 

horizontal wellbore. I do not suggest any mechanism that might create a power-law permeability 

distribution. My primary goal is to evaluate the performance of this conceptual approach in low 

permeability reservoirs by comparing its productivity to that corresponding to the current stimulation 

practice (i.e. hydraulic fracturing). 

 

1.2 Research Objectives 

The focus of my work is the study of a composite, cylindrical reservoir with a horizontal well at its center, 

and with a power-law permeability distribution in the inner cylindrical subdomain (i.e., the altered 

permeability zone or stimulated zone) that surrounds the well.  Such a reservoir will be hereafter referred 

to as a PPR (Power-law Permeability Reservoir).  The primary objectives of this work are: 

● To develop an analytical expression describing the spatial and temporal distribution of pressure in a 

PPR with the horizontal well at its center producing at a constant flow rate. 

● To develop an analytical equation describing the rate behavior in time for a PPR with the horizontal 

well producing at a constant bottom-hole pressure. 

● To validate the analytical solutions by comparing their results to numerical simulation predictions. 

● To compare the productivity of a PPR to that of a reservoir stimulated by multiple vertical fractures 

along a horizontal wellbore. 
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2. LITERATURE REVIEW 

 

2.1 Cylindrical Composite Model 

The term, cylindrical composite reservoir, describes a cylindrical reservoir volume comprised of multiple 

concentric "rings".  Each "ring" defines a "zone" (or "region") with physical properties (i.e., fluid and/or 

rock properties) different than those of the adjacent volume(s) (Fig. 2.1). 

 
 

 
 

Figure 2.1 — Radial composite reservoir  

A homogeneous, isotropic model can rarely (if ever) adequately represent natural reservoirs. Natural 

heterogeneities may exist because of the vagaries of the depositional environment or from the variability 

of diagenetic processes. They may also result from the interference of drilling and production operations 

(e.g., drilling fluid invasion, the injection of fluids during enhanced oil recovery processes or the 

precipitation of condensates in gas condensate reservoirs).  

 

The cylindrical composite models were developed to describe radial heterogeneities created by well-

related operations, including damaging (e.g., drilling fluid invasion) and stimulating (e.g., matrix 
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acidizing) processes. One of the first solutions was presented by Hurst (1960), who considered an infinite 

reservoir composed of two sands in series with different peremabilities as part of an interference study 

between two oil fields. Mortada (1960), also interested in the interference between oil fields, presented an 

analytical solution for a similar reservoir system, but avoided the point-source limitation. Loucks and 

Guerrero (1961) studied a two-zone infinite reservoir, anticipating that an understanding of the pressure 

drop behavior in composite reservoirs would assist in the interpretation of some pressure build-up curves 

that deviated from homogenous reservoir solutions. Carter (1966) focused on solutions for a finite 

cylindrical composite reservoir. He also sought to develop solutions that could help explain the abnormal 

behavior of some pressure transients, and expected his results to be particularly useful in the interpretation 

of reservoir limit tests. Satman et al. (1980) developed a solution for a two-zone cylindrical composite 

reservoir with different permeabilities, porosities, and fluid compressibilities in the two regions. Their 

study focused on the analysis of the characteristics of injection/falloff tests to detect the swept volume 

during thermal oil recovery processes (e.g., in-situ combustion and steam injection).  

 

All of the analytical solutions mentioned thus far utilize the Laplace transform method. It is the most 

common approach found in the literature to solve cylindrical composite systems. The method produces 

rigorous analytical solutions in the Laplace domain but is based on the assumption of linear or linearized 

processes and requires numerical inversion to obtain solutions in the time domain. Given today's 

computing capabilities, the numerical inversion is relatively easy to compute. Although there are 

approaches that do not use the Laplace transform, such as the numerical approach utilized by Bixel and 

Van Poolen (1967) and the approximate analytical approach presented by Ramey (1970), and thus avoid 

complex Bessel functions (often found in Laplace transform solutions to radial flow problems) and 

Laplace space inversion, the availability of literature using the Laplace transform method and the 

rigorousness of the solutions make it ideal for this work.  

 

2.2 Permeability Distributions 

Several studies have considered cylindrical composite models with homogeneous, isotropic properties 

within each region.  In this study, I examine a two-zone cylindrical composite model with a variable 
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permeability distribution in the inner region and constant properties in the outer region.  Therefore, I 

present literature that also focused on systems (though not all composite systems) with variable 

permeability distributions that are directly relevant to this work, and perhaps useful for later studies.  

 

Zhang et al. (2006) and Mursal (2002) investigated power-law permeability distributions in an infinite 

cylindrical composite system and a single cylindrical finite volume, respectively. Both studies explored 

means to improve well test analysis for a well surrounded by an altered permeability zone. Their power-

law permeability distribution in the altered zone is similar to what I present in this work and is given by: 

 
n

w

wr r

r
krk 








  .............................................................................................................................. (2.1) 

kr (md) is the reservoir permeability as a function of radial distance, r (ft). kw (md) is the permeability at 

the wellbore radius, rw (ft).  n is the power-law exponent. In the Zhang et al. (2006) study, Eq. 2.1 applies 

only to the inner region. In the infinite outer region, the permeability is constant.  This permeability model 

permits a significant permeability discontinuity at the interface between the two regions.  My power-law 

model constrains the permeability to exactly equal the original reservoir permeability at the interface, and 

unlike Mursal (2002), the distribution does not extend to the edge of the reservoir but only to the edge of 

the stimulated region. Because of the similarity in permeability distributions, boundary conditions, and 

Laplace transform approach, Mursal (2002) provided an excellent resource for the derivation and 

organization of my solution.    

 

El-Khatib (2009) used an inverse-square permeability distribution (i.e., with the permeability proportional 

to the inverse of the square of radial distance from the wellbore) for the inner region that would avoid a 

discontinuity across the interface in a finite cylindrical composite model. This permeability model is 

described as follows:   

 
2

D

DrD r

b
ark   ............................................................................................................................. (2.2) 

a and b are dimensionless constants defined by the permeability ratio and depth of invasion, and krD  is the 

dimensionless permeability as a function of the dimensionless radius, rD.  This choice of permeability 
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model was also guided by the fact that it permits an analytical solution in the Laplace domain, in addition 

to appropriately describing the formation alteration caused by the invasion of drilling fluids and particles. 

El-Khatib (2009) applied the solution to examine the effect of the permeability ratio (of the altered 

permeability at the wellbore to the original reservoir permeability), depth of invasion and reservoir size on 

the pressure response.  

 

Wilson (2003) used a variable permeability model to predict the spatial and temporal gas permeability 

behavior in a gas condensate reservoir. Liquid condensates precipitate as a result of the pressure drop close 

to the wellbore, forming a "condensate bank" that reduces the effective permeability. His permeability 

distribution is given by:  

    

















t

r
kkktrk

2

minmaxmin

1
exp1,


 ................................................................................... (2.3) 

k (md) is the reservoir permeability as a function of time, t (s), and radial distance, r (ft); α ((cp-psi-1)/md) 

is an empirical constant related to the reservoir fluid and rock properties; kmin (md) is the minimum 

effective permeability to gas (or the permeability at the wellbore), and kmax (md) is the maximum effective 

permeability to gas. Wilson (2003) does not utilize a radial composite model. His solution domain 

involves an infinite reservoir volume, the permeability of which increases exponentially from the wellbore 

permeability kmin to a constant value, kmax, at infinity. Wilson (2003) used the Boltzmann transformation to 

develop an analytical solution, eliminating the need to develop Laplace-space solutions that would need 

numerical inversion. Nevertheless, the "pressure" form of his solution cannot be resolved as a closed form 

solution and requires numerical evaluation.  

 

2.3 Hydraulic Fracturing Stimulation Concept 

In this section, I briefly review the hydraulic fracturing stimulation concept, to which I will be comparing 

the power-law permeability stimulation concept. Hydraulic fracture treatments involve pumping large 

volumes of fluids (liquids) at high rates and pressures into the formation at specific predetermined 

locations along the wellbore. These fluids are often water-based, usually consisting of a gelling agent, a 

proppant at an appropriate (carefully designed) concentration, and various other additives like friction 
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reducers, gel breakers, biocides, oxygen scavengers and other stabilizers. The high pressure of the 

fracturing fluid "breaks down" the formation at the perforations, creating fractures that propagate outward 

until its energy is depleted.  The gelling of the fracturing fluid allows the proppant to remain suspended for 

efficient transport into the created fracture.  Natural tectonic forces tend to force the fracture to close, but 

the proppant is designed to withstand the stress and keep the fracture open (Freeman 2010).   The final 

result is a large area of the low-permeability rock matrix exposed to a high conductivity pathway that leads 

directly to the wellbore. 

 

If the horizontal wellbore is drilled parallel to the least principal tectonic stress direction, and is 

sufficiently deep so that the greatest principal tectonic stress is in the vertical direction, then a vertical 

fracture will propagate perpendicular to the wellbore (Freeman 2010). In reality, hydraulically-induced 

fractures in MHF treatments are likely to have the irregular shape and geometry shown in the simulation-

derived figure in Fig. 2.2; however, in my simulations (see SECTION 4) I use a simple disk (circular) 

geometry to represent the fractures. 

 
 

 
 

Figure 2.2 — Fracture geometry created by a fully-gridded finite element simulation 
(Montgomery and Smith 2010) 
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Repeating the fracturing process in stages along the horizontal length of the wellbore creates what is called 

a "multiple-fractured horizontal well" (Fig. 2.3).  This is the stimulation practice that the industry employs 

in ultra-low permeability reservoirs, and is the standard to which I will compare the power-law 

permeability stimulation concept. 

 
 

 
 

Figure 2.3 — Diagram of multiple-fractured horizontal wellbore (Freeman 2010)  
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3. DEVELOPMENT OF THE PRESSURE AND RATE SOLUTIONS 

 

3.1 The Concept of the Power-Law Permeability System 

I chose the "power-law" permeability distribution to represent this new conceptual stimulation approach 

because this type of profile seems feasible given that hydraulic, sonic, or electromagnetic pulse energy 

would be expended mostly near the wellbore. I could also expect this kind of distribution from chemical 

alteration such as the injection of acid, but I recognize that acidizing would not be viable for such a long 

exposure as an impractically large volume of acid would be required to substantially alter the native state 

permeability in a shale. I believe that the "power-law" permeability distribution should be the most 

conservative permeability profile (i.e., the permeability declines very quickly from the maximum 

permeability at the wellbore) that can be achieved by hydraulic, mechanical, or chemical mechanisms. 

Consequently, I assume a stimulation process that alters the original reservoir permeability so that the 

resulting permeability distribution follows a power-law function of radial distance from a horizontal 

wellbore. Mathematically, the permeability distribution is expressed as: 

 
n

s

or r

r
krk 








  .............................................................................................................................. (3.1) 

ko (md) is the original reservoir permeability; rs (ft) is the stimulation zone radius and n is the 

dimensionless power-law exponent that controls how quickly the permeability declines from the wellbore. 

The stimulated volume spans the entire length of the horizontal wellbore, and its inner boundary is defined 

by rs. Outside the stimulated zone, the permeability is constant and equal to ko.  The reservoir has a finite 

cylindrical volume defined by the reservoir radius, re (ft) and by the wellbore length, Lw (ft) in the z-

direction. It is represented by the two-zone cylindrical composite model depicted in Fig. 3.1.  
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Figure 3.1 — The physical model  

Fig. 3.1 shows that the reservoir length coincides with the wellbore length. Although in reality this is 

rarely, if ever the case, this simplification reduces the problem to a single dimension (the radial direction).  

 

To repeat, at the risk of redundancy, I am comparing two stimulation approaches. The first stimulation 

approach is at the conceptual stage, and revolves around the idea of altering the permeability of a 

cylindrical subdomain of rock with a significant volume. I assume that the permeability declines with 

distance in a power-law manner from its highest level at the wellbore (the center of the stimulated region) 

to its lowest level (i.e., the original reservoir permeability at some radial distance from the wellbore).  The 

second stimulation approach is the standard practice of multi-stage hydraulic fracturing. 

 

3.2 Development of the Analytical Solutions in the Laplace Domain 

In this section I first derive the Laplace space analytical solution of spatial pressure distribution in the 

composite domain depicted in Fig. 3.1.  Then, using the Van Everdingen and Hurst (1949) relationship 

between constant rate and constant pressure solutions, I derive analytical expressions for the rate and 

cumulative production in the Laplace domain. 
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3.2.1 Development of the Pressure Solution in the Laplace Domain 

The equations governing fluid flow in the two porous media of the cylindrical composite system are the 

well-known diffusivity equations. A detailed derivation of the diffusivity equations in dimensionless form 

is given in Appendix A.  The equations for these two regions are:   

● Stimulated Zone 
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● Unstimulated Zone 
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Where subscripts 1 and 2 denote the stimulated zone and unstimulated zone respectively. rD is the 

dimensionless radius; rsD is the dimensionless stimulation radius; reD is the dimensionless reservoir radius; 

tD is the dimensionless time and pD is the dimensionless pressure. All dimensionless variables in Eqs. 3.2 

and 3.3 are defined by the following expressions: 

w
D r

r
r   .......................................................................................................................................... (3.4) 

w

s
sD r

r
r   ......................................................................................................................................... (3.5) 

w

e
eD r

r
r   ....................................................................................................................................... (3.6) 

 pp
qB

Lk
p i

eo
D 


2  .................................................................................................................. (3.7) 

2

wt

o
D rc

tk
t


  .................................................................................................................................... (3.8) 

rw (ft) is the wellbore radius; re (ft) is the reservoir radius; Le (ft) is the length of the reservoir (equivalent 

to the wellbore length in this case); q (bbl/day) is the liquid flow rate; B (RB/STB) is the liquid formation 

volume factor; µ (cp) is the liquid viscosity; ϕ (fraction) is the formation porosity; ct (1/psi) is the total 

compressibility; p (psi) is the reservoir pressure, and pi (psi) is the initial reservoir pressure. The power-
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law permeability function can also be rewritten in dimensionless form. First, I define the dimensionless 

permeability as:  

o

r
D k

k
k   ......................................................................................................................................... (3.9) 

kD is the dimensionless permeability. Then, replacing r, rs and kr in the power-law permeability function 

(Eq. 3.1) with their dimensionless forms (Eqs. 3.4, 3.5 and 3.9 respectively) gives the following 

dimensionless expression: 

n

sD

D
D r

r
k 








  .................................................................................................................................. (3.10) 

The derivation of Eqs. 3.2 and 3.3 involved the following significant assumptions: 

● The liquid is slightly compressible  

● There is only single-phase Darcy flow 

● The formation porosity and liquid viscosity are constant 

● Gravity effects are neglected 

● The horizontal wellbore penetrates and produces along the entire length of the reservoir (radial flow 

only) 

The outer boundaries of the reservoir are all impermeable, and the well produces at a constant rate. The 

pressure before the onset of production (tD=0) in the stimulated and unstimulated volume is uniform. 

Additionally, the pressure and flux across the interface between the stimulated and unstimulated volumes 

are continuous at all times. A detailed derivation of the initial and boundary conditions in dimensionless 

form is given in Appendix A. Mathematically, the aforementioned boundary and initial conditions are 

represented by the following equations:  

● Initial Conditions (uniform pressure at time zero) 

    0,, 0201   DtDDDDtDDD trptrp  ......................................................................... (3.11) 
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● Outer Boundary Condition (no-flow outer boundary) 

02 
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





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 eDrDrD

D
D r

p
r   ................................................................................... (3.12) 

● Inner Boundary Condition (constant flow rate) 

n
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● Interface Condition (continuous pressure across the interface) 

   
sDrDrDsDrDrD pp   21  ............................................................................................. (3.14) 

● Interface Condition (continuous flux across the interface) 
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Transforming the dimensionless diffusivity equations into the Laplace domain and inserting the initial 

condition, Eq. 3.11, into the transformed Eqs. 3.2 and 3.3 gives:  

● Stimulated Zone 
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● Unstimulated Zone 
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s is the Laplace transform variable and ̅݌஽ represents pD in the Laplace domain. Then, transforming the 

boundary conditions into the Laplace domain (see derivation details in Appendix A) yields:  

● Outer Boundary Condition (no flow outer boundary) 
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● Inner Boundary Condition (constant flowrate) 
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● Interface Condition (continuous pressure across the interface) 

   
sDrDrDsDrDrD pp   21  ............................................................................................. (3.20) 

● Interface Condition (continuous flux across the interface) 
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Expansion of the radial partial derivative term in Eq. 3.16 with some additional rearrangement results in a 

Bessel differential equation (derivation details in Appendix A) : 

● Stimulated Zone 
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The general solution of which was provided by Bowman (1958).  
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In/(n-2) is the modified Bessel function of the first kind of order (n/(n-2)) and c1 and c2 are two unknown, 

dimensionless constants. The general solution to Eq. 3.17 is well known (Van Everdingen and Hurst 1949) 

and given by:  

● Unstimulated Zone 

    DDD rsKcrsIc
s

p 0403232
1

  ................................................................................. (3.24) 

where K0 is the modified Bessel function of the second kind of order zero and c3 and c4 are two unknown, 

dimensionless constants. Eq. 3.23 describes the pressure behavior for r varying from rw to rs. Eq. 3.24 
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describes the pressure behavior for r ranging from rs to re. Finally, I determine the four unknown constants 

(c1,c2,c3,c4) by substituting Eqs. 3.22 and 3.23 into their corresponding boundary conditions (Eqs. 3.18-

3.21) and solving the resulting system of four equations. The resulting expressions for c1,c2,c3, and c4 are 

given by: 
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I solved the system of equations and verified that the solutions satisfy the boundary conditions and original 

diffusivity equations in Laplace space using the Mathematica (2010) software and employing the code that 

I list in Appendix B. 

  

3.2.2 Development of the Rate Solution in the Laplace Domain 

I compute the dimensionless rate and dimensionless cumulative production for a well producing at a 

constant bottom-hole pressure from the dimensionless pressure solution (Eq. 3.23). I use the approach of 

Van Everdingen and Hurst (1949), who established the following relationship between the solutions for a 

constant wellbore pressure and a constant rate in the Laplace domain: 

● Dimensionless Rate 
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● Dimensionless Cumulative Production 
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qD is the dimensionless rate and QD is the dimensionless cumulative production. Inserting Eq. 3.23 into 

Eqs. 3.29 and 3.30 gives: 

● Dimensionless Rate 
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● Dimensionless Cumulative Production 
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The qD and QD variables in Eq. 3.31 and 3.32 are defined by the following expressions (Callard and 

Schenewerk 1995): 

● Dimensionless Rate 
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● Dimensionless Cumulative Production 
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Q (bbl) is the cumulative production, and pw (psi) is the pressure at the wellbore. 

 

3.3 Graphical Presentation and Discussion of Analytical Solutions 

In this section, I will present a variety of results for the analytical pD, |rD dpD/drD|, tD dpD/dtD and qD 

functions. I obtain the real domain solutions by numerical inversion from the Laplace domain using the 

Gaver-Wynn-Rho algorithm (Valkó and Abate 2004; Abate and Valkó 2004). 

 

Fig. 3.2 presents an example of the permeability distributions used in the results for rsD=200. Previously, I 

mentioned the rapidly declining nature of the power-law function. Fig. 3.2 clearly illustrates how the 

degree of stimulation (and, consequently, the permeability) is greatly reduced at a short distance from the 

wellbore. Notice that the legend in the graph not only identifies the n but also a new parameter which I 

will call the dimensionless wellbore permeability, kwD. We define it as: 

o

w
wD k

k
k   ..................................................................................................................................... (3.35) 
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where kw (md) is the permeability at the wellbore (r=rw). It is related to rsD and n by the following 

expression: 

n

sD

wD r
k 










1
 ............................................................................................................................... (3.36) 

I use the kwD and not n to identify the permeability distributions in my results because kwD provides a more 

intuitive perception of the degree of stimulation-induced permeability enhancement than the n and allows 

for a more attractive graphical presentation.  

   

 
Figure 3.2 — Power-law permeability distributions for rsD=200 (left: semi-log, right: log-log) 

Table 3.1 provides all n values corresponding to each pair of rsD and kwD parameters used in the analytical 

solutions.  
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Table 3.1  —  Power-law permeability parameters used in analytical solutions 
 

 

 
 

 

Fig. 3.3, which shows the decrease in percent of the maximum permeability with increasing radial distance 

when rsD=200, presents a more quantitative illustration of the permeability reduction with distance than 

Fig. 3.2. For kwD > 100, the kD has decayed to 10% of the kwD at or before a distance corresponding to 10% 

of the rsD. The stimulated radius may be large, but the majority of stimulation-induced permeability 

increase occurs within a very short distance from the wellbore. The power-law function serves as a very 

"conservative" stimulation model. 

 
 

n 300 200 100 50 20 20

1000 -1.2110825 -1.303764 -1.5000001 -1.7657738 -2.3058654 -2.3058654

500 -1.0895573 -1.1729398 -1.3494849 -1.5885914 -2.0744872 -2.0744872

200 -0.92891244 -1 -1.150515 -1.3543665 -1.7686218 -1.7686218

100 -0.807388 -0.86917582 -1 -1.1771831 -1.5372436 -1.5372436

50 -0.68586456 -0.73835182 -0.84948507 -1 -1.3058653 -1.3058653

20 -0.52521819 -0.56541192 -0.65051493 -0.7657756 -1 -1

10 -0.40369398 -0.43458787 -0.5 -0.58859184 -0.76832176 -1.5372436

5 -0.28217007 -0.30376361 -0.34948491 -0.41140789 -0.5372436 -1.3058653

2 -0.12152103 -0.13082287 -0.15051508 -0.17718366 -0.23137841 -0.23137841

k w
D

r sD
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Figure 3.3 — Change in percent of the maximum permeability with radial distance (rsD = 200) 

 

3.3.1 Dimensionless Pressure, Radial Pressure Derivative, and Time Pressure Derivative Solutions 

I first present the dimensionless pressure solutions as a function of rD/rsD, evaluated at specific points in 

time, i.e., at tD=1, 10, 100, 103, 104, 105. Unfortunately, the radial composite system utilized to solve my 

problem does not allow the kind of "type curve" representation presented by Wilson (2003) because my 

full pressure solution consists of two distinct equations, each valid for a separate region. 

 

Figs. 3.4 – 3.9  display the analytical solutions of the pressure distribution of Eqs. 3.22 and 3.23 at specific 

times for the cylindrical composite reservoir of Fig. 3.1 with the permeability of the inner (altered) 
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cylindrical region following a power-law distribution. The permeability distribution controls the pressure 

response. The pD values vary considerably depending on the degree of the stimulation-induced 

permeability enhancement (i.e., kwD) and how quickly the effects of stimulation dissipate (i.e., the 

magnitudes of rsD and of n) — where larger values of n and smaller rsD correspond to steeper permeability 

declines. The effect of kwD and rsD on the dimensionless pressure is most pronounced near the wellbore, 

where the permeability change is the largest. At distances far from the wellbore, close to rD/rsD=1, where 

the altered permeability is approaching the native reservoir permeability (as dictated by Eq. 3.10), the 

dimensionless pressure displays similar behaviors for all cases. For example, notice the rsD=20 cases at 

tD=100 in Fig. 3.6. In the stimulated region near rD/rsD=1, there is little divergence in pD between all cases 

because there is also little divergence in permeability between all cases. Eventually, the kwD cases for 

rsD=20 converge at rD/rsD=1 (see Fig. 3.7). They form a single curve (i.e. unable to distinguish one kwD 

case from another) because the pressure transient has moved beyond the stimulated zone, and the pD is no 

longer influenced by the variable permeability.  
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Figure 3.4 — Log-log plot of the analytical pD solutions at tD=1 for a horizontal well producing 

at a constant rate, centered in a radial composite reservoir with a power-law 
permeability distribution in the inner region 
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Figure 3.5 — Log-log plot of the analytical pD solutions at tD=10 for a horizontal well producing 
at a constant rate, centered in a radial composite reservoir with a power-law 
permeability distribution in the inner region 
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Figure 3.6 — Log-log plot of the analytical pD solutions at tD=100 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 
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Figure 3.7 — Log-log plot of the analytical pD solutions at tD=103 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 



 

26 

 

 
 

Figure 3.8 — Log-log plot of the analytical pD solutions at tD=104 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 
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Figure 3.9 — Log-log plot of the analytical pD solutions at tD=105 for a horizontal well 

producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 

The pD solutions presented above are validated by comparison to numerical simulation results. I present an 

example for the case of rsD=200 at tD=103 in Fig. 3.10. Fig. 3.10 shows that there is excellent agreement 

between the numerical and analytical solutions. There is a slight divergence in solutions shown in the 

semi-log graph (right-hand side) at radial distances farther from the wellbore where the reservoir pressure 

is approaching that of the initial reservoir pressure (pi). The difference can be considered negligible. The 

rest of the analytical and numerical comparisons presented in Appendix C confirm that the solutions (Eq. 

3.24-3.28) can be considered "analytically" accurate (i.e. near exact).  
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Figure 3.10 — Comparison of analytic pD solution to numerical pD solution for a reservoir with 
rsD=200 at tD=103 (left: log-log, right: semi-log) 

 

 

The dimensionless radial pressure derivatives (pDdr) in Figs. 3.11 – 3.16 (as functions of rD/rsD) correspond 

to Figs. 3.4 to 3.9, and evaluated at the same times. This rendering of the pDdr clearly identifies the n of 

each case's power-law permeability distribution by exhibiting a linear portion of the pDdr. I mark examples 

of the linear pDdr using dashed black lines in Fig. 3.11.  The slope of a line on a log-log scale corresponds 

to the exponent value of a power-law function, so by determining the slope of the linear portion of the 

pDdr, I also obtain n. The pDdr linear behavior does not necessarily cease at rD/rsD=1. For a sufficiently small 

rsD (such as rsD=20), I can also identify the constant permeability (homogeneous) region of the reservoir. 

When the pressure transient is deep into the unstimulated zone, the pDdr clearly displays – as expected - a 

horizontal line or zero-slope at a pDdr value of 1 (marked by a dashed line in Fig. 3.16). A pDdr with zero-

slope corresponds to a power-law permeability distribution with n = 0 which signifies a constant 

permeability. 
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Figure 3.11 — Log-log plot of the analytical pDdr solutions at tD=1 for a horizontal well producing 
at a constant rate, centered in a radial composite cylinder with a power-law 
permeability distribution in the inner region 
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Figure 3.12 — Log-log plot of the analytical pDdr solutions at tD=10 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 
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Figure 3.13 — Log-log plot of the analytical pDdr solutions at tD=100 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 
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Figure 3.14 — Log-log plot of the analytical pDdr solutions at tD=103 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 
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Figure 3.15 — Log-log plot of the analytical pDdr solutions at tD=104 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 
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Figure 3.16 — Log-log plot of the analytical pDdr solutions at tD=105 for a horizontal well 
producing at a constant rate, centered in a radial composite reservoir with a power-
law permeability distribution in the inner region 

Fig. 3.17 shows the dimensionless time pressure derivative (pDdt) as a function of tD. The behavior of pDdt 

can clearly identify the time beyond which the stimulated zone no longer influences the pressure response. 

For a homogeneous radial flow system, pDdt should converge to a value of 0.5.  In the cases of small rsD 

(=20, 50, 100), pDdt does converge to a value of 0.5 (denoted by the horizontal part of the curve) because 

the pressure response is no longer affected by the variable permeability in the limited stimulated zone. 

However, in the cases of larger stimulated region, i.e., rsD=300 and 200, pDdt does not converge to a value 

of 0.5 before the onset of the pseudo-steady state flow at tD=105, beyond which the pDdt displays a unit 

slope. In other words, at no point in time before pseudo-steady state is the pressure response at the 

wellbore not subject to the influence of the stimulated zone.  
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Figure 3.17 — Log-log plot of the analytical pDdt solutions at rD=1 for a horizontal well producing 

at a constant rate, centered in a radial composite cylinder with a power-law 
permeability distribution in the inner region 

3.3.2 The Rate Solutions 

Fig. 3.18 presents the dimensionless production rate, qD, for a wellbore producing at a constant pressure 

when the permeability distribution and the geometry of the reservoir are the same as in the previous 

section (3.3.1). As expected, the permeability distribution controls the rate response. At early times (tD<10-

1), when the pressure transient has not advanced very far into the reservoir, kwD controls the rate response 

— the larger the kwD, the greater the initial rates. As time progresses, qD response depends on both the 

degree of the stimulation-induced permeability enhancement (i.e., kwD) and how quickly the effects of 
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stimulation dissipate (i.e., the magnitudes of rsD and of n).  The quicker the permeability dissipates, the 

steeper the rate declines. Eventually (around tD=105), transient flow is succeeded by an exponential 

decline, indicating that the pressure transient has reached the impermeable outer reservoir boundary. The 

reservoirs with the largest rsD reach boundary-dominated flow first, followed by the reservoirs with 

progressively smaller rsD.  

 
 

 
 

Figure 3.18 — Log-log plot of the analytical qD solutions at rD=1 for a horizontal well producing 
at a constant pressure, centered in a radial composite cylinder with a power-law 
permeability distribution in the inner region 
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I validated the analytical qD solutions by comparing them to numerical simulation results. I present an 

example for the case of rsD=200 in Fig. 3.19. Fig. 3.19 shows that there is excellent agreement between the 

numerical and analytical solutions. There is some divergence in the solutions for the smaller kwD cases. 

This is a result of insufficient grid discretization near the wellbore not a deficiency in the analytical 

solution. The ultra-low permeability of the reservoir requires extremely small grids close to the wellbore 

where the pressure and permeability change is greatest. Overall, the results of the analytical and numerical 

comparisons (more presented in Appendix C) validate the analytical qD solution.  

 
 

 

 

Figure 3.19 — Log-log plot comparing the analytic qD solution to numerical qD solution for a 
reservoir with rsD=200 at rD=1.  
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4. COMPARISON OF POWER-LAW STIMULATION TO MULTI-STAGE 

HYDRAULIC FRACTURING 

 

4.1 Simulation Parameters and Gridding 

The main objective of this component of my study is to compare the performance of the two stimulation 

approaches I discussed earlier. To achieve this end, I utilized a fully implicit numerical simulator (FTSim 

– Flow and Transport Simulator) based on the TOUGH+ reservoir simulation code developed at the 

Lawrence Berkeley National Laboratory (Moridis et al. 2008; Moridis et al. 2010). I did not employ the 

PPR analytical solution for the comparisons because by using the same simulator (thus the same methods 

of calculating changes in porosity and liquid density with pressure) for both stimulation approaches, I am 

able to isolate the differences in solutions to only the stimulation geometries (i.e., equally spaced, circular 

fractures along the wellbore versus a cylindrical volume of stimulated rock along the entire length of the 

well) and the permeabilities within those geometries.  

 

I limit the simulations to isothermal Darcy flow of a single-phase, single-component, black oil in an ultra-

low permeability reservoir. Table 4.1 lists the reservoir fluid and rock properties used in the simulations. 
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Table 4.1 — Reservoir, completion and fluid properties used in simulations of power-law 
permeability reservoir and multi-fractured horizontal 

 

 

 
 

The reservoir, completion and fluid properties listed in Table 4.1 are the same for all simulation cases. The 

reservoir is originally (i.e., before stimulation) homogeneous and isotropic, and the fluid properties are 

uniform throughout the reservoir. Only the oil density and the matrix porosity change with pressure 

according to the following functions: 

  atmoatmo ppc  exp  ............................................................................................................. (4.1) 

  ifi ppc  exp ..................................................................................................................... (4.2) 

ρo (lbm/ft3) is the oil density; ρatm (lbm/ft3) is the oil density at atmospheric pressure; patm (psi) is the 

atmospheric pressure; co (1/psi) is the oil compressibility; ϕi (fraction) is the porosity at pi and cf  (1/psi) is 

the matrix compressibility. The primary practical differences between simulations of the power-law 

permeability reservoir (referred to as "PPR") and the multi-stage hydraulically fractured reservoir with a 

horizontal well (referred to as "MFH") are obviously the permeability distributions and the respective 

Reservoir and Completion Properties SI Units Field Units

Reservoir permeability, k o 9.8693x10-20 m2 1.0x10-4 md

Matrix compressibility, c f 1.0x10-9 1/Pa 6.8948x10-6 1/psia

Matrix porosity (at p i ), ϕ i 4% 4%

Reservoir height, h or 2*r e 60.96 m 200 ft

Reservoir width, w  or 2*r e 60.96 m 200 ft

Reservoir length, L e 1524 m 5000 ft

Wellbore length, L w 1524 m 5000 ft

Wellbore radius, r w 7.62x10-2 m .25 ft

Fracture width, w f 3.048 mm .01 ft

Fracture porosity, ϕ f 33% 33%

Initial reservoir pressure, p i 2.4132x107 Pa 3500 psia

Well pressure, p wf 6.8946x106 Pa 1000 psia

Fluid Properties SI Units Field Units

Oil compressibility, c o 1.0x10-8 1/Pa 6.8948x10-5 1/psia

Oil density (at 14.7 psia), ρ atm 696.658 kg/m3 43.5 lbm/ft3

Oil viscosity, µ o 4.93x10-4 Pa·sec .493 cp
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domain geometries, as these affect the discretization (grid development) approach. I discretize the PPR 

using cylindrical grids, which is an obvious choice when considering the form of the analytical solution 

and the power-law permeability function (Eq. 3.10). I discretize the reservoir only in the radial direction 

(Fig. 4.1), i.e., I consider a single cylindrical slice (along the z-axis) of the system shown in Fig. 3.1, and I 

only model one-dimensional flow. 

 
 

 
 

Figure 4.1 — Grid scheme for numerical simulation (radial increments = 2 cm) 

Eq. 3.1 determines the permeability of the grid cells within the stimulated zone, with the radius (r) 

measured from the grid center to the center of gravity of each cell. Table 4.2 lists all combinations of PPR 

model stimulation parameters (rs, n, kwD) used for the comparison to the MFH performance.  
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Table 4.2  —  Power-law permeability reservoir stimulation parameters used for comparison to multi-   
fractured horizontal 

 

 

 
 

I also discretize the domain corresponding to the MFH treatment using a cylindrical grid system to 

eliminate any geometric differences between the MFH and PPR that might distort the comparisons. I 

discretize the MFH domain in two dimensions. The radial discretization (r) advances along the direction of 

the hydraulically-induced fracture (now represented as a cylindrical disk), and the horizontal discretization 

(z) advances in the direction of the wellbore. Both the fracture and wellbore contribute to flow. I neglect 

gravity, so the orientation of the wellbore doesn't matter as long as the fractures are in the same position 

relative to the wellbore. The fracture radius does not reach the top or bottom boundaries of the reservoir 

(i.e., I consider a partially-penetrating fracture). I constrain the fracture height to be the same dimensions 

as the full fracture length (2*xf), creating a perfectly circular fracture area.  

 

I simulate various combinations of fracture dimensions, fracture properties and number of fractures for 

comparison to the PPR cases. Table 4.3 lists the various combinations I used in this study. 

 
 
 
 
 
 
 

n 75 ft 50 ft 25 ft

10000 -1.6147777 -1.7383519 -2

5000 -1.4932535 -1.6075279 -1.8494849

2000 -1.3326073 -1.434588 -1.650515

1000 -1.2110825 -1.303764 -1.5000001

500 -1.0895573 -1.1729398 -1.3494849

200 -0.92891244 -1 -1.150515

100 -0.807388 -0.86917582 -1

50 -0.68586456 -0.73835182 -0.84948507

20 -0.52521819 -0.56541192 -0.65051493

k w
D

r s
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Table 4.3 — MFH stimulation parameters used for comparison to PPR 
 

 

 
 

4.2 Comparison of PPR and MFH Performance  

In this section I compare three sets of PPR and MFH simulation results (displayed in a dimensionless 

form) in an ultra-low permeability reservoir. Each set considers a xf  and rs of different size, ranging from 

xf = 75 ft. and rs = 75 ft. (large) to xf = 25 ft. and rs = 25 ft (small). The PPR stimulation radius (rs) equals 

the MFH fracture half-length (xf) in each comparison. The PPR cases include various kwD, ranging from 20 

to 10000. The MFH cases include wkf of 10, 1, and 0.1 md-ft, with a fracture density of 25, 50, 75 and 100 

fractures along the horizontal wellbore (see Table 4.1). In all the simulations, pw, was kept constant at 

1000 psia for a period of 40 years.  

 

I compare qD, QD, and recovery factor (RF) as a percent of original oil-in-place (OOIP) estimated from the 

PPR and MFH simulations. The main objective of this effort is to evaluate whether the PPR provides a 

promising stimulation strategy in ultra-low permeability reservoirs by comparing it to the performance of 

the current standard stimulation method of multi-stage hydraulic fracturing.  Note that there are no 

economic considerations in this study, which only aims to evaluate a stimulation method - that is currently 

no more than a concept – vis-à-vis a production standard. 

Fracture half-length, x f Fracture conductivity, wk f

75 ft 10 md-ft
75 ft 1 md-ft
75 ft 0.1 md-ft
50 ft 10 md-ft
50 ft 1 md-ft
50 ft 0.1 md-ft
25 ft 10 md-ft
25 ft 1 md-ft
25 ft 0.1 md-ft

Number of fractures istance between fractures, d f

100 50 ft
75 66.66 ft
50 100 ft
25 200 ft

Each set of parameters above is simulated with the following number of fractures:
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4.2.1 Comparison of PPR to MFH: Large Stimulation Size 

The first set of simulation results compares the qD corresponding to the PPR with rs=75 ft to that for the 

MFH with xf=75 ft. I discuss the results sequentially, beginning from the highest fracture conductivity case 

and moving to the lowest, beginning with wkf =10 md-ft. 

 

All measures of comparison, i.e., qD, QD and RF (see Figs. 4.2–4.4, respectively), show that the MFH 

cases with wkf =10 md-ft, outperform the PPR, with the exception of the case of the 25 fracture ( = low) 

density. The MFH case with fracture frequency of 25 does not provide enough fractures, thus not enough 

fracture surface area to outperform all of the PPR cases. It exhibits a qD, QD and RF between those 

corresponding to the kwD=500 and kwD=200 PPR cases. In general, Fig. 4.2 shows that the PPR provides 

excellent qD at early times, but the rate steeply declines as a result of the rapidly declining nature of the 

power-law permeability function. The MFH, because of its high conductivity fractures, also demonstrates 

excellent initial rates. However, the initial rate decline is more gradual than the PPR because the large 

fracture surface areas provides access to significant volumes of easily drainable hydrocarbons. Then 

between tD =10 and tD =103, I observe an accelerated rate decline with the onset of formation linear flow 

when the MFH qD curves exhibit a slope of -1/2. PPR cases with a kwD>500 display qD declines with a 

slope similar to the MFH during formation linear flow, but this is coincidence. There are no fractures in 

the PPR, so it does not experience formation linear flow. 
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Figure 4.2 — Log-log plot of qD vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 10 

md-ft fracture conductivity 
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Figure 4.3 — Log-log plot of QD vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 

10 md-ft fracture conductivity 
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Figure 4.4 — Linear plot of RF vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 10 

md-ft fracture conductivity 

 

Next, I evaluate the relative performance of the PPR and the MFH approaches for the case of wkf =1 md-ft 

using the same qD, QD and RF criteria. The effect of the change in fracture conductivity shows most 

distinctly in the early time qD (Fig. 4.5) during the drainage of the fracture and near fracture regions. The 

lower fracture conductivity diminishes the initial rates by an order of magnitude and extends the time it 

takes to drain the fracture and near fracture regions. As in the wkf =10 md-ft case, the qD,  QD (Fig. 4.6) 

and RF (Fig. 4.7) clearly show that all MFH cases except that for the fracture density of 25, outperform 

the PPR. With wkf =1 md-ft, the 25 fracture case exhibits a qD, QD and RF between those corresponding to 
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the kwD=200 and kwD=100 PPR cases. The results of this study indicate that PPR does not perform as well 

as the MFH when the fracture conductivity is high and the fracture density is high, but the PPR can yield 

modest (or even decent) production from ultra-low permeability reservoirs (if it can progress past the 

concept stage and shown to be feasible) and could be a potentially viable production alternative under 

appropriate economic, reservoir and operational conditions that are not favorable to the MHF treatment. 

 

 

 
Figure 4.5 — Log-log plot of qD vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 1 

md-ft fracture conductivity 
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Figure 4.6 — Log-log plot of QD vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 1 

md-ft fracture conductivity 



 

49 

 

 

 
Figure 4.7 — Linear plot of RF vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 1 

md-ft fracture conductivity 

Finally, I compare the PPR and MFH with low conductivity fractures, i.e., with a wkf = 0.1 md-ft.  As Fig. 

4.8 clearly shows, the PPR performs better than the MFH for this low fracture permeability case of wkf.  

The early qD corresponding to the PPR is a full order of magnitude larger than that for the MFH treatment 

(Fig. 4.8).  Although the MFH rates decline much slower than the PPR (notice that formation linear flow is 

no longer observable as it has been in the higher conductivity comparisons), the early qD of the PPR is so 

much larger that it is not until between tD = 103 and 104 that the PPR qD has declined to similar values as 

the MFH. The QD (Fig. 4.9) and RF (Fig. 4.10) show that not until late time (tD=2*104), near the onset of 

boundary dominated flow, does the 100 fracture MFH case (the most productive MFH case) produce 
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volumes comparable to the kwD = 10000 PPR case (the most productive such case), and the 25 fracture 

MFH case matches kwD=20 PPR case (the least productive such case). Figs. 4.8–4.10 demonstrate that the 

PPR with rs=75 ft has a consistent production advantage over the MFH with a wkf  = 0.1 md-ft because of 

a more favorable permeability regime. 

 
 

 
 

Figure 4.8 — Log-log plot of qD vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 
0.1 md-ft fracture conductivity 
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Figure 4.9 — Log-log plot of QD vs. tD for a PPR with rs = 75 ft and a MFH with xf = 75 ft and 
0.1 md-ft fracture conductivity 
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Figure 4.10  —  Linear plot of RF vs. tD for a PPR with rs=75 ft and a MFH with xf = 75 ft and 0.1 md-ft 
fracture conductivity 
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4.2.2 Comparison of PPR to MFH: Medium Stimulated Region 

In the second set of simulations, we compare the production estimates for a PPR with rs=50 ft (i.e., with a 

medium-sized stimulated cylindrical region) to those for a MFH treatment with xf=50 ft.  We follow the 

same evaluation approach as the previous section, progressively reducing the fracture conductivity (which 

are the same as in Section 4.2.1) and comparing the results. First, we compare the PPR production 

performance to that of an MFH treatment with wkf  =10 md-ft. 

 

The reduction in the fracture surface area that results from the decrease of xf from 75 to 50 ft adversely 

(and significantly) affected the performance of the MFH treatment compared to that of the PPR (Figs. 

4.11–4.13). The early MHF values of qD (Fig. 4.11) differ little from the MFH cases with xf =75 ft and wkf 

= 10 md-ft, but the smaller fracture surface area has expedited the onset of the formation linear flow 

(denoted by a slope of -1/2 of the qD curve on the log-log plot). As a result, the production advantage of 

the 100 fracture and 75 fracture cases over the PPR has reduced significantly, but they still perform better 

than all PPR cases. The evolution of QD (Fig. 4.12) and RF (Fig. 4.13) over time show that the MFH case 

of fracture frequency of 50 performs similarly to the PPR case with kwD = 2000, but in Section 4.2.1 (the 

wkf = 10 md-ft comparison), the 50 fracture case outperformed all PPR cases.  The QD (Fig. 4.12) and RF 

(Fig. 4.13) curves for a fracture frequency of 25 display an early time performance between kwD=500 and 

kwD=200 and late time behavior that appears to match the kwD=50 PPR case. Clearly, the effect of the 

decrease in the fracture surface area in the MFH on production and recovery is more important than the 

effect of the reduction in stimulation radius (rs) of the PPR.  
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Figure 4.11  —  Log-log plot of qD vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 10 md-

ft fracture conductivity 
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Figure 4.12  — Log-log plot of QD vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 10 

md-ft fracture conductivity 
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Figure 4.13  — Linear plot of RF vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 10 md-

ft fracture conductivity 
 
 
 
Figs. 4.14–4.16 show the comparison between PPR and MFH with a wkf = 1 md-ft. The reduction in 

fracture surface area (from xf=75 ft in Section 4.2.1) has not affected the early time production 

performance (Fig. 4.14).  Therefore, we can conclude that the wkf  dominates the early time qD of the 

MFH. In the middle-time and late-time regions however, the reduction in xf (or fracture surface area) has 

dominated the rate response, causing a significant drop in productivity. We observe that the reduction in 

fracture surface area has diminished the production advantage of the 100 fracture and 75 fracture cases, as 

seen in the QD (Fig. 4.15) and RF (Fig. 4.16) curves. Also, the 50 fracture case performance has reduced to 
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a similarity with the kwD=1000 PPR case, and the 25 fractures case displays a production performance 

between the kwD=50 and kwD=20 PPR cases.  

 

 
 

 
 

Figure 4.14  — Log-log plot of qD vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 1 md-ft 
fracture conductivity  
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Figure 4.15  — Log-log plot of QD vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 1 md-

ft fracture conductivity  
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Figure 4.16  — Linear plot of RF vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 1 md-ft 
fracture conductivity  

 
 
 

Figs. 4.17–4.19 show the comparison between PPR and MFH with wkf =0.1 md-ft. This comparison 

displays a lot of similarities with the wkf=0.1 md-ft comparison in Section 4.2.1 (Figs. 4.8-4.10). First and 

most importantly, the PPR performs better than the MFH for this low fracture permeability case of wkf. 

Also, the early qD corresponding to the PPR is a full order of magnitude larger than that for the MFH 

treatment (Fig. 4.17), and formation linear flow is not observable. However, what we do not see is a 

significant effect of reducing the fracture surface area as seen in the wkf=10 md-ft and wkf=1 md-ft 

comparisons (Figs. 4.11-4.13 and Figs. 4.14-4.16 respectively). The QD (Fig. 4.18) and RF (Fig. 4.19) 

show that the fracture frequencies of 100, 75, 50 and 25 perform only marginally less than that shown in 
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the QD and RF of Fig. 4.9 and 4.10 respectively. This is because the low wkf   dominates the rate response 

for an extended period of time (until tD=103). The fracture size (i.e., xf) does not exert a significant 

influence on the MFH productivity until much later than that of the wkf=10 md-ft (Figs. 4.11-4.13) and 

wkf=1 md-ft (Figs. 4.14-4.16) comparisons.  

 
 

 

 
Figure 4.17  — Log-log plot of qD vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 0.1 

md-ft fracture conductivity 
 



 

61 

 

 

 
Figure 4.18  — Log-log plot of QD vs. tD time for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 

0.1 md-ft fracture conductivity 
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Figure 4.19  — Linear plot of RF vs. tD for a PPR with rs = 50 ft and a MFH with xf = 50 ft and 0.1 md-

ft fracture conductivity 
 

 
4.2.3 Comparison of PPR to MFH: Small Stimulated Region 

The third and final set of simulation results compares the PPR with rs=25 ft to the MFH with xf=25 ft. 

Because of the similarity in the wkf=10 md-ft and wkf=1 md-ft comparisons in Section 4.2.1 and Section 

4.2.2, we limit the comparisons in this section to wkf=10 md-ft and wkf=0.1 md-ft.  

 

The MFH qD in Fig. 4.20 shows evidence of formation linear flow (dqD/dtD = -1/2) from the very 

beginning. The small xf and the high wkf allow the low permeability matrix to quickly dominate the rate 

response. As a result, contrary to the results for the cases of medium and large rs, the PPR outperforms the 
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MFH treatment when the stimulated region is limited (rs=25 ft and xf=25 ft). The PPR displays a small 

productivity decline because of the limited rs and rapidly diminishing permeability, but the productivity of 

the PPR does not appear to be as sensitive to a change in the rs as the MFH is to a change in xf.  The small 

xf  has greatly diminished the productivity of the MFH. The evolution of QD in Fig. 4.21and RF in Fig. 

4.22 shows that the fracture frequencies of 100 and 75 perform similarly to kwD=2000 and kwD=200 PPR 

cases respectively. The 50 fracture case performance is between that of the kwD=50 and kwD=20 PPR cases 

and the 25 fracture case performs well below all PPR cases.  

 
 

 

 
Figure 4.20  — Log-log plot of qD vs. tD for a PPR with rs = 25 ft and a MFH with xf = 25 ft and 10 md-

ft fracture conductivity 
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Figure 4.21  — Log-log plot of QD vs. tD for a PPR with rs = 25 ft and a MFH with xf = 25 ft and 10 

md-ft fracture conductivity 
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Figure 4.22  — Linear plot of RF vs. tD for a PPR with rs = 25 ft and a MFH with xf = 25 ft and 10 md-

ft fracture conductivity 
 

 
Figs. 4.23–4.25 show the comparison between PPR and MFH with low fracture conductivity (wkf = 0.1 

md-ft). The qD, QD, and RF in Figs. 4.23, 4.24 and 4.25, respectively, show that the PPR clearly 

outperforms the MFH in the case of low wkf and small xf. It appears that the PPR concept can be a viable 

and promising stimulation alternative (if it can be adequately developed in the field) when there is a 

hindrance or failure to develop adequate fracture conductivity or sufficient fracture surface area. When 

these conditions are not met, the PPR may not outperform the MFH, but it can provide respectable rates of 

hydrocarbon recovery from ultra-low permeability reservoirs. 
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Figure 4.23  — Log-log plot of qD vs. tD for a PPR with rs = 25 ft and a MFH with xf = 25 ft and 0.1 

md-ft fracture conductivity 
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Figure 4.24  — Log-log plot of QD vs. tD for a PPR with rs = 25 ft and a MFH with xf = 25 ft and 0.1 

md-ft fracture conductivity 
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Figure 4.25  — Linear plot of RF vs. tD for a PPR with rs = 25 ft and a MFH with xf = 25 ft and 0.1 md-

ft fracture conductivity 
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary: 
 

In this work I have proposed a conceptual solution for a horizontal well with a radially propagating 

"power-law" permeability distribution — where this permeability distribution represents an 

improvement of the permeability.  This concept model presumes that the maximum permeability is at 

the wellbore itself, and the minimum permeability is actually the native permeability existing at some 

physical distance away from the wellbore.  The "power-law" permeability distribution was chosen to 

represent this scenario because: 

● Such a distribution would seem feasible given that hydraulic, sonic, or electromagnetic pulse 

energy (that would be used to effect reservoir stimulation) would be expended mostly near the 

wellbore, hence creating the type of profile we envision. 

● Similarly, a distribution such as this could also be expected from chemical alteration (e.g., using 

acid); note that I recognize that the specific method of well acidizing would not be a viable 

stimulation method because it would require a long exposure and an impractically large volume of 

acid to substantially alter the native state permeability in a shale. 

● Based on the results of literature review, I believe that the "power-law" permeability distribution 

should be the most conservative permeability profile that can be achieved by hydraulic, mechanical, 

or chemical mechanisms. 

 

I developed both analytical and numerical solutions for this scenario, I provided validation of the 

analytical solution through comparison to the numerical one, and I compiled an exhaustive suite of 

simulation cases to provide illustrative pressure and rate behavior.  I also provided numerous 

performance comparisons with the standard horizontal multi-fracture well case, and I gave relevant 

commentary as to these comparisons.  In summary, the proposed case of a horizontal well with a 

power-law permeability distribution appears to be competitive with the standard horizontal multi-

fracture well case under certain circumstances.  It is important to note that, at present, there is no 
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known mechanism or process to generate a power-law permeability distribution around a horizontal 

well, but this is possible as well completion techniques continue to evolve. 

 

Conclusions: 
 

● The analytical dimensionless pressure and dimensionless rate solutions derived for the case of a 

radial composite reservoir with a power-law permeability distribution in the inner region were 

solved in the Laplace domain and numerically inverted into the real domain using the Gaver-Wynn-

Rho algorithm implemented in Mathematica (Valkó and Abate 2004; Abate and Valkó 2004).  

These solutions are considered to be "analytically" accurate (i.e., near exact) and are presented in 

terms of dimensionless time and dimensionless distance in order to illustrate the relevant features of 

the proposed model.  

● I have validated the analytical dimensionless pressure (pD) and dimensionless rate (qD) solutions by 

comparing them to numerical simulation predictions. The results show excellent agreement between 

the analytical and numerical solutions. There are negligible divergences in the dimensionless 

pressure solutions at radial distances far from the wellbore where the pressure is approaching that of 

the initial reservoir pressure, and there are slight divergences in the dimensionless rate solutions for 

low stimulation cases (low kwD) because of insufficient grid discretization near the wellbore. The 

ultra-low permeability of the reservoir requires extremely small grids close to the wellbore where 

the pressure and permeability change is greatest. 

● I observed that the slope of the dimensionless pressure derivative (in terms of dimensionless radius) 

yields the power-law exponent (n) of the power-law permeability distribution in the inner 

stimulated zone.  This rendering also yields a horizontal trend during the times where the pressure 

transients have moved into the outer (constant permeability) region.  However, if the stimulated 

region extends close to the reservoir outer boundary, pseudosteady-state will be observed (as would 

be expected). 

● I observed that, when comparing the "power-law permeability reservoir" (or PPR) and the "multi-

fracture horizontal" (MFH) cases, it appears that a change in the magnitude of the stimulation 

affects the MFH significantly more than the PPR.  The primary advantage of the MFH is that this 
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method creates a tremendous amount of surface area by way of the fractures.  Increasing or 

decreasing the fracture size has a profound effect on the fracture surface area and thus the 

effectiveness of the stimulation.  However, the productivity of the PPR does not appear to be as 

sensitive to a change in the PPR stimulation radius (rs).  If the dimensionless wellbore permeability 

(kwD) remains the same, then reducing the stimulation radius (rs) increases the power-law exponent 

(n) and accelerates the rate of permeability decline.  This change in the permeability distribution 

does not affect the PPR as significantly as a change in fracture size affects the MFH. 

● Comparing the MFH and PPR cases, the PPR presents a performance advantage over the MFH 

when the fracture conductivity and fracture half-length are small.  As such, I believe our results 

provide sufficient evidence to conclude that the PPR stimulation concept is suitable for the efficient 

recovery of hydrocarbons from ultra-low permeability reservoirs.  

 

Recommendations: 
 

Based on the results of this study, I recommend the following areas as subject for future work:  

● The cases of a "linear" and an "exponential" permeability propagation trend.  As I have stated, I 

believe that the power-law case is the most conservative permeability profile, so it is warranted to 

consider other profiles, particularly in light of the fact that stimulation technology may provide a 

substantially better permeability profile than currently envisioned. 

● The effects of pressure-dependent porosity and permeability profiles in the inner cylindrical region. 
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NOMENCLATURE 

 

B =  formation volume factor, L3/L3, res bbl/STB  

 ct =  total compressibility, Lt2/m, atm 

 Ix =  modified Bessel function of the first kind of order x 

 kD =  ratio of permeability at the wellbore to original reservoir permeability, dimensionless 

 ko =  original permeability of the reservoir, L2, D 

 kr =  permeability in the radial direction, L2, D 

 kw =  permeability at the wellbore, L2, D 

 Kx =  modified Bessel function of the second kind of order x 

 Le =  Length of the reservoir/wellbore in the z-direction, L, cm 

 n =  power-law model exponent, dimensionless 

 p =  pressure, m/Lt2, atm 

 pD =  dimensionless pressure, dimensionless 

pwD =  dimensionless pressure at the wellbore, dimensionless 

Dp  =  Laplace transform of dimensionless pressure, dimensionless 

 pi =  initial reservoir pressure, m/Lt2, atm 

 pw =  bottomhole pressure, m/Lt2, atm 

Q    =  cumulative production, L3, cm3 

 q =  liquid flow rate, L3/t, cm3/s 

QD =  dimensionless cumulative production, dimensionless 

 qD =  dimensionless liquid flow rate, dimensionless  

 r =  radial distance in the reservoir, L, cm  

 rD =  dimensionless radius, dimensionless 

 re =  radial extent of the reservoir, L, cm 

 reD =  dimensionless reservoir radius, dimensionless 
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 rs =  radial extent of the stimulated zone, L, cm 

 rsD =  dimensionless stimulation radius, dimensionless 

 rw =  radius of the wellbore, L, cm 

 s =  Laplace parameter, dimensionless  

 t =  time, t, s  

 tD =  dimensionless time, dimensionless 

 r =  Effective pore radius of the considered porous medium, length. 

 =  Liquid viscosity, cp. 

  =  porosity, fraction 
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APPENDIX A 

DERIVATION OF THE ANALYTICAL SOLUTION 

 

In this Appendix, I derive an analytical representation of the pressure behavior in time and space for a 

fully-penetrating horizontal well (i.e. the well length is equal to the reservoir length) producing at a 

constant rate in the center of a composite, cylindrical reservoir system. The composite reservoir consists of 

two regions. The inner region, closest to the wellbore, is stimulated and exhibits a continuous permeability 

distribution with the highest permeability achieved at the wellbore. The distribution follows a power law 

function, decreasing to original reservoir permeability at the outer boundary of the inner region. The outer 

region is unstimulated and has homogenous reservoir properties. Mathematically, I describe this composite 

system by writing two governing equations for fluid flow in porous media known as diffusivity equations, 

one for each region: 
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● Unstimulated Volume 
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The significant assumptions involved in the construction of Eqs. A-1 and A-2 are:  

● Slightly compressible liquid 

● Single-phase Darcy flow 

● Constant formation porosity and liquid viscosity 

● Gravity effects are neglected 

● Horizontal wellbore penetrates and produces along the entire length of the reservoir (radial flow only) 
 

The outer boundaries of the reservoir are all sealed, and the well produces at a constant rate. The pressure 

before production (t=0) in the stimulated and unstimulated volume is uniform and equal to pi. Also, the 

pressure and flux across the interface between the stimulated and unstimulated volumes are continuous. 

Mathematically, the stated boundary and initial conditions are represented by the following equations: 
 

● Initial Conditions (uniform pressure at time zero): 
 

    itt ptrptrp   0201 ,,  .....................................................................................................  (A-3) 
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● Outer Boundary Condition (no flow outer boundary): 
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● Inner Boundary Condition (constant flow rate): 
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● Interface Condition (continuous pressure across the interface): 
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● Interface Condition (continuous flux across the interface): 
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I need to transform the diffusivity equations, initial and boundary conditions into dimensionless form. I 

define the following dimensionless variables from the conditions of the problem (i.e. uniform pressure 

initial condition and constant flow rate inner boundary condition) and using intuitive definitions: 
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First, I will transform Eq. A-1 and A-2 into dimensionless form followed by the conditions of the problem. 

Solving Eq. A-8 for r and substituting into Eq. A-1 and A-2 I have:  
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● Unstimulated Volume 
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Factoring out the rw terms from inside the derivatives and simplifying gives 
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Multiplying both sides of Eq. A-15 and A-16 by rw
2 results in 
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● Unstimulated Volume 
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Solving Eq. A-11 for p and substituting into Eq. A-17 and A-18 provides 
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● Unstimulated Volume 
 










































2
2

2 2

1
 

2

11
D

eo
iwtD

eo
i

D
Do

DD
p

Lk

qB
p

t
rcp

Lk

qB
p

r
rk

rr







 ......................  (A-20) 

 

Expanding the derivatives of the pressure terms gives 
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Recognizing that the derivative of a constant is equal to zero, Eq. A-21 and A-22 simplifies to 
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Factoring out constants from the derivative terms and simplifying further, I have 
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Solving Eq. A-12 for t and substituting into Eq. A-25 and A-26 provides 
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● Stimulated Volume 
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By factoring out and canceling the ko terms, I get the final form of the dimensionless diffusivity equation 

for the unstimulated zone: 
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Now, I introduce the power law model for the behavior of permeability in the stimulated zone: 
 

 
n

s
or r

r
krk 








  .........................................................................................................................  (A-30) 

 

Substituting Eq. A-30 into Eq. A-27 results in 
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Moving all constants out from inside the derivatives and simplifying yields 
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Solving Eq. A-8 and A-9 for r and rs respectively and substituting into Eq. A-32 gives 
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Factoring out rw and simplifying gives the final form of the dimensionless diffusivity equation for the 

stimulated volume 
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Next, substituting the definitions of r, rs, re, p, and t from the dimensionless variables of Eq. A-8, A-9, A-

10, A-11 and A-12 will provide the dimensionless initial and boundary conditions 
 

● Initial Conditions (uniform pressure at time zero): 
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 Subtracting pi from each term gives 
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And then dividing by 
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● Outer Boundary Condition (no flow outer boundary): 
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Expanding the terms inside the derivative, 
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Recognizing that the derivative of a constant is equal to zero and dividing by all constant terms gives 
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● Inner Boundary Condition (constant flowrate): 
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Performing the same steps as for the outer boundary condition results in 
 

r

o

DrD

D
D k

k

r

p
r 











1

1  ............................................................................................................  (A-42) 

 

I can modify Eq. A-42 to be only in terms of rsD  and n by transforming the power law model of Eq. A-30 

into a dimensionless form and evaluating at rD=1. Substituting the dimensionless definitions of rs  and r 

and solving for ko/kr yields 
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Evaluating Eq. A-43 at rD=1 and simplifying gives me 
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Substituting the results of Eq. A-44 into Eq. A-42 and I have 
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● Interface Condition (continuous pressure across the interface): 
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Reducing, 
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● Interface Condition (continuous flux across the interface): 
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Reducing, 
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Acquiring the general and particular solution to Eq. A-29 and A-34 requires transformation to the Laplace 

domain. So, I take the Laplace transformation of each diffusivity equation, where s is the Laplace 

transform variable, and I have 
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● Unstimulated Volume 
 

 0  
1

22
2 










DDD
D

D
D

DD
tpps

dr

pd
r

rr
 ..............................................................................  (A-51) 

 

Substituting the initial conditions of Eq. A-37 into Eq. A-50 and A-51 gives 
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● Unstimulated Volume 
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I also need to transform the boundary conditions into the Laplace domain. Taking the Laplace 

transformation of the boundary conditions results in 
 

● Outer Boundary Condition (no flow outer boundary): 
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● Inner Boundary Condition (constant flow rate): 
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● Interface Condition (continuous pressure across the interface): 
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● Interface Condition (continuous flux across the interface): 
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I can manipulate and rearrange Eq. A-52 to facilitate obtaining the general solution. For instance, I can 

expand Eq. A-52 using the product rule to give 
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Multiplying both sides by 2/ n
D
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Eq. A-59 is the transformed version of the Bessel differential equation given by Bowman (1958) which 

has the following form: 
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And has the general solution: 
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In my case, 
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However, notice that Bowman’s (1958) equation differs by a negative sign in the non-derivative term. 

Therefore, the general solution will consist of modified Bessel functions as follows: 
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I can perform similar manipulations to the unstimulated volume diffusivity equation, Eq.A-53. Beginning 

by expanding the derivatives I have 
 

● Unstimulated Volume 
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Multiplying both sides by rD
2 gives 
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Eq. A-65 has the well-known form of a modified Bessel equation which appears as follows: 
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And has the general solution: 
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In my case, 
 

0,,,2  sarxpy DD  .......................................................................................  (A-68) 

 

And so the general solution for the unstimulated zone is 
 

   DDD rsKcrsIcp 04032   .............................................................................................  (A-69) 

 

At this juncture in the derivation, I have two general solutions. Eq. A-63 represents the pressure behavior 

in the porous media from a radius at the wellbore, rw, to the radius of stimulation, rs. Eq. A-69 represents 

the pressure behavior in the porous media from rs to the reservoir boundary, re. Each equation has two 

unknown constants for a total of four unknowns (i.e. c1,c2,c3,c4). Therefore, I need four boundary 
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conditions to formulate a unique solution to this problem. I have a no flow outer boundary condition (i.e. 

the reservoir is a tank with no fluid passing to or from the outer reservoir boundary, re), and I have a 

constant flow rate inner boundary condition at the wellbore. The two additional boundary conditions come 

from the interface of the two regions. I specify that the pressures and the flux must be continuous across 

this interface.  
 

 I solved this system of equations using Mathematica. The final result is presented below with simplifying 

notation. 
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● Unstimulated Volume 
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Simplifying notation: 
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APPENDIX B 

OBTAINING THE PARTICULAR SOLUTION AND VERIFYING THAT 
PROBLEM CONDITIONS ARE SATISFIED 

 
 

Laplace space solutions 
 

 Stimulated zone: general solution in Laplace space 
 

 
 

 Unstimulated zone: general solution in Laplace space 
 

 
 

 Stimulated zone: first derivative of general solution in Laplace space 
 

 

 Unstimulated zone: first derivative of general solution in Laplace space  
 

 
 

 Boundary Conditions in Laplace space: 
There are four boundary conditions. The first is a Neumann inner boundary condition that specifies 
constant flow rate at the wellbore. The second is a Neumann outer boundary condition that specifies no 
flow across the boundary.  The third is a Dirichlet boundary condition at the interface between the 
stimulated and unstimulated zone specifying that the pressure must be continuous across the interface. 
The fourth is a Neumann boundary condition at the interface between the stimulated and unstimulated 
zone specifying that the flux must be continuous across the interface.  
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1. Inner Boundary Condition: 
 

 

2. Outer Boundary Condition: 
 

 

 

3. Constant Pressure at the Interface: 
 

 

 

4. Constant Flux at the Interface: 
 

 
 

 Using the boundary conditions to solve for the four constants: 
The output of the following cell expression is not shown here. The constant expressions are too long and 
tedious to follow in the form presented by Mathematica. 
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 Stimulated zone: particular solution in Laplace space 
Inserting the constants into the general solution provides us with the particular solution in Laplace space 
for the stimulated zone. The solution is not revealed here because of its long and tedious form. I also 
present the first and second derivatives with respect to radius for later use in verifying the solution. 
 

 

 

 

 

 

 

 Unstimulated zone: particular solution in Laplace space 
Inserting the constants into the general solution provides us with the particular solution in Laplace space 
for the unstimulated zone. The solution is not revealed here because of its long and tedious form. I also 
present the first and second derivatives with respect to radius for later use in verifying the solution.  
 

 

 

 

 

 

 

 Introducing notation to simplify the appearance of the particular solutions: 
Although the notation does simplify the user’s ability to visualize the solution, its main advantage is to 
facilitate easier application of the equations into a program for calculations. 
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 Stimulated zone: particular solution 
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 Unstimulated zone: particular solution 
 

 

 

Verifying solutions 
 

 Arbitrary parameters for solution evaluation: 
I have selected arbitrary values for n, rDs, rDe and s to test whether the solution with new notation is the 
same as the original solution, that the solution meets the problem conditions and that the left-hand side 
equals the right-hand side of the original dimensionless diffusivity equation for each cylindrical region. 
 

 

 

 

 Comparing original solutions to the solutions with simplifying notations: 
 

 Stimulated Zone 

 

 Unstimulated Zone 
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 Testing that the solution meets the boundary conditions: 
 

1. Inner Boundary Condition 

 
 

2. Outer Boundary Condition 

 
 

3. Constant Pressure at the Interface 

 
 

4. Constant Flux at the Interface 
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 Testing that the solution satisfies the original dimensionless diffusivity equation for the stimulated 
zone: 
 

 
 

 Testing that the solution satisfies the original dimensionless diffusivity equation for the 
unstimulated zone: 
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APPENDIX C 
 

COMPARING ANALYTICAL PRESSURE AND RATE SOLUTIONS TO 
NUMERICAL SIMULATION RESULTS 

 
 
 
C.1 Dimensionless Pressure Solutions 
 

 
 

Figure C.1 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=300 at tD=1 (left: log-log, right: semi-log) 
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Figure C.2 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=200 at tD=1 (left: log-log, right: semi-log) 
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Figure C.3 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=100 at tD=1 (left: log-log, right: semi-log) 
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Figure C.4 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=50 at tD=1 (left: log-log, right: semi-log) 
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Figure C.5 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=20 at tD=1 (left: log-log, right: semi-log) 
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Figure C.6 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=300 at tD=10 (left: log-log, right: semi-log) 
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Figure C.7 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=200 at tD=10 (left: log-log, right: semi-log) 
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Figure C.8 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=100 at tD=10 (left: log-log, right: semi-log) 
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Figure C.9 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=50 at tD=10 (left: log-log, right: semi-log) 
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Figure C.10 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=20 at tD=10 (left: log-log, right: semi-log) 

 

  
 

Figure C.11 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=300 at tD=100 (left: log-log, right: semi-log) 
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Figure C.12 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=200 at tD=100 (left: log-log, right: semi-log) 

 

 
 

Figure C.13 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=100 at tD=100 (left: log-log, right: semi-log) 

 
 



 

106 

 

  

 

Figure C.14 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=50 at tD=100 (left: log-log, right: semi-log) 

 

  
 

Figure C.15 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=20 at tD=100 (left: log-log, right: semi-log) 
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Figure C.16 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=300 at tD=103 (left: log-log, right: semi-log) 

 

  
 

Figure C.17 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=200 at tD=103 (left: log-log, right: semi-log) 
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Figure C.18 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=100 at tD=103 (left: log-log, right: semi-log) 

 

  

 

Figure C.19 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=50 at tD=103 (left: log-log, right: semi-log) 
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Figure C.20 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=20 at tD=103 (left: log-log, right: semi-log) 

 

  

 

Figure C.21 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=300 at tD=104 (left: log-log, right: semi-log) 
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Figure C.22 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=200 at tD=104 (left: log-log, right: semi-log) 

 

  

 

Figure C.23 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=100 at tD=104 (left: log-log, right: semi-log) 
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Figure C.24 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=50 at tD=104 (left: log-log, right: semi-log) 

 

  

 

Figure C.25 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=20 at tD=104 (left: log-log, right: semi-log) 
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Figure C.26 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=300 at tD=105 (top: log-log, bottom: semi-log) 
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Figure C.27 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=200 at tD=105 (top: log-log, bottom: semi-log) 
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Figure C.28 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=100 at tD=105 (top: log-log, bottom: semi-log) 
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Figure C.29 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=50 at tD=105 (top: log-log, bottom: semi-log) 
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Figure C.30 — Comparison of analytic pressure solution to numerical pressure solution for a 
reservoir with rsD=20 at tD=105 (top: log-log, bottom: semi-log) 
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C.2 Dimensionless Rate Solutions 
 

 
 

Figure C.31 — Log-log plot comparing the analytic rate solution to numerical rate solution for a 
reservoir with rsD=300 at rD=1.  
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Figure C.32 — Log-log plot comparing the analytic rate solution to numerical rate solution for a 
reservoir with rsD=200 at rD=1.  
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Figure C.33 — Log-log plot comparing the analytic rate solution to numerical rate solution for a 
reservoir with rsD=100 at rD=1.  
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Figure C.34 — Log-log plot comparing the analytic rate solution to numerical rate solution for a 
reservoir with rsD=50 at rD=1.  
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Figure C.35 — Log-log plot comparing the analytic rate solution to numerical rate solution for a 
reservoir with rsD=20 at rD=1.  

 




