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ABSTRACT 

Conversion of MixAlco Process Sludge to Liquid Transportation Fuels. (May 2012) 

Eliasu Azinyui Teiseh, B.S., University of Buea; 

M.S., University of Wyoming 

Chair of Advisory Committee: Dr. Sergio Capareda  

  
About 8 tons of dry undigested solid waste is generated by the MixAlco process 

for every 40 tons of food residue waste fed into the process.  This MixAlco process 

produces liquid fuels and the sludge generated can be further converted into synthesis 

gas using the process of pyrolysis. The hydrogen component of the product synthesis gas 

may be separated by pressure swing adsorption and used in the hydrogenation of ketones 

into fuels and chemicals. The synthesis gas may also be catalytically converted into 

liquid fuels via the Fischer-Tropsch synthesis process.  

The auger-type pyrolyzer was operated at a temperature between 630-770 oC and 

at feed rates in the range of 280-374 g/minute. The response surface statistical method 

was used to obtain the highest syngas composition of 43.9±3.36 v % H2/33.3±3.29 v % 

CO at 740 oC. The CH4 concentration was 20.3±2.99 v %.  For every ton of sludge 

pyrolyzed, 5,990 g H2 (719.3 MJ), 65,000 g CO (660 MJ) and 21,170 g CH4 (1055.4 MJ) 

were projected to be produced at optimum condition. At all temperatures, the sum of the 

energies of the products was greater than the electrical energy needed to sustain the 

process, making it energy neutral. 

To generate internal H2 for the MixAlco process, a method was developed to 

efficiently separate H2 using pressure swing adsorption (PSA) from the synthesis gas, 

with activated carbon and molecular sieve 5Å as adsorbents. The H2 can be used to 

hydrogenate ketones generated from the MixAlco process to more liquid fuels. 

Breakthrough curves, cycle mass balances and cycle bed productivities (CBP) were used 

to determine the maximum hydrogen CBP using different adsorbent amounts at a 

synthesis gas feed rate of 10 standard lpm and pressure of 118 atm. A 99.9 % H2 purity 
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was obtained. After a maximum CBP of 66 % was obtained further increases in % 

recovery led to a decrease in CBP. 

The synthesis gas can also be catalytically converted into liquid fuels by the 

Fischer-Tropsch synthesis (FTS) process. A Co-SiO2/Mo-Pd-Pt-ZSM-5 catalyst with a 

metal-metal-acid functionality was synthesized with the aim of increasing the selectivity 

of JP-8 (C10-C17) fuel range. The specific surface areas of the two catalysts were 

characterized using the BET technique. The electron probe microanalyzer (with WDS 

and EDS capabilities) was then used to confirm the presence of the applied metals Co, 

Mo, Pd and Pt on the respective supports. In addition to the gasoline (C4-C12) also 

produced, the synthesis gas H2:CO ratio was also adjusted to 1.90  for optimum cobalt 

performance in an enhanced FTS process. At 10 atm (150 psig) and 250 oC, the 

conventional FTS catalyst Co-SiO2 produced fuels rich in hydrocarbons within the 

gasoline carbon number range. At the same conditions the Co-SiO2-Mo-Pd-Pt/HZSM-5 

catalyst increased the selectivity of JP-8. When Co-SiO2/Mo-Pd-Pt-HZSM-5 was used at 

13.6 atm (200 psig) and 250 oC, a further increase in the selectivity of JP-8 and to some 

extent diesel was observed. The relative amounts of olefins and n-paraffins decreased 

with the products distribution shifting more towards the production of isomers.  

Key words:: MixAlco process; response surface method; pyrolysis; sludge; syngas 

composition; efficiency; pressure swing adsorption; cycle bed productivity; % recovery, 

% purity; Fischer-Tropsch synthesis; JP-8; gasoline; diesel; selectivity; Co-SiO2/Mo-Pd-

Pt-HZSM-5 catalyst 
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NOMENCLATURE 
 
Meanings of symbols and their units 
MC=moisture content (wt %)                                  

VCM=volatile combustible matter (wt %) 

FC=fixed carbon (wt %) 

Hvg=heating value of syngas (MJ/kg) 

BO=bio-oil 

Mf=mass of sludge pyrolyzed (kg) 

Ws=auger shafting work (J) 

P.dV=work done on system (J) 

Q=thermal energy supplied (J) 

ΣEg=total energy of syngas (J) 

Eb=energy of bio-oil (J) 

Ec=energy of char (J) 

ΣMg=total energy of syngas (J) 

Mb=mass of bio-oil (kg) 

Mc=mass of char (kg) 

Vt=total volume of syngas (L) 

Cg=concentration of syngas (v %) 

P=P*=1 atm 

tbr=breakthrough time (minutes) 

ρ=density of H2 at standard conditions (g/L) 

Ø= mol fraction of H2 in feed (mol %) 

Q= feed flow at standard conditions (SLPM) 

p= hydrogen purity (%) 

ζ=dimensionless parameter relating axial distance bed length and pressure drop 

Patm = atmospheric pressure (atm) 

Dk = Knudsen diffusivity (m2/s) 

Dm = molecular diffusivity (m2/s) 

T=temperature (oC ) 
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M=molecular weight (g) 

r=radial coordinate in microparticle 

D= Poiseuille diffusivity (m2/s) 

μ= viscosity (gcm-1s-1) 

R= universal gas constant, 0.08205, Latm/K/mol 

              ̇ideal  as  mola  feed  ate of ideal  as (
mol

standa d lite 
) 

 ̇ideal  as   ol met i  feed  ate of ideal  as standa d lpm   

pideal gas=feed partial pressure of ideal syngas (atm) 

Ai = GCMS peak area of hydrocarbon i in the effluent stream 

n=number of liquid hydrocarbons produced per experimental run 

Wcat=catalyst weight (g) 

GHSV= gas hourly space velocity (minute-1) 

Feedideal gas = feed rate of ideal synthesis gas (standard lpm) 
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CHAPTER  I 

INTRODUCTION 
 

                      1.1   Background  

In order to produce gasoline, JP8 and diesel fuel, the MixAlco process developed 

by Professor Mark Holtzapple of the Department of Chemical Engineering of Texas A & 

M University in College Station ferments (using a mixed culture of acid-producing 

micro-organisms) wastes from paper and pulp and mixed food residues to produce 

carboxylate salts. The salts are thermally converted to ketones which are then 

hydrogenated into a mixture of alcohols. Then a ZSM-5 catalyst converts the alcohols to 

hydrocarbons [1].   

The problem is that, for every 40 tons per hour (on a dry basis) fed into the 

MixAlco process, about 8 tons per hour (on a dry basis) is produced as undigested 

material (personal communication, Dr. M. Holtzapple). The undigested material is then 

wasted as effluent sludge. The enormity of the sludge that will be produced annually in a 

scaled up plant becomes obvious. The associated waste management and the 

environmental and health externalities will be a burden for the proponents of the process. 

A schematic of the MixAlco process is shown in Figure 1.1.  

 

 

 

 

 

 

___________ 
This dissertation follows the style of Biomass & Bioenergy Journal. 
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Figure 1.1 The MixAlco process for the conversion of wastes to liquid fuels 
 
 

Although iron based Fischer-Tropsch synthesis catalyst has been largely 

employed in biomass-to-liquid synthesis process, iron catalysts are prone to deactivation. 

Also use of iron leads to a reduction in the productivity of higher hydrocarbons. The use 

of iron instead of cobalt is validated by the fact that the hydrogen production potential of 

biomass feedstock is low compared to steam reforming of methane which is usually 

accompanied by the WGS reaction.  

Since iron catalyst catalyzes the WGS reaction, this reaction is usually employed 

as part of the overall conversion scheme to increase the H2:CO ratio to a level amenable 

to the production of heavier hydrocarbons. The problem is that relying on internal 

H2:CO ratio adjustment constrains the ability to operate at a desired target syngas 

composition necessary for optimum cobalt catalyst performance. Secondly compared to 

cobalt, iron catalyst has a lower productivity to higher hydrocarbons in the jetfuels and 

diesel boiling range [29,33].  

The pyrolysis of the MixAlco process sludge and other biomass feedstocks will 

generate syngas (H2 and CO) together with methane. External modification of the final 

syngas composition for use in the FTS catalyst may involve the steam reforming of the 
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CH4 (after separation using PSA) to achieve the feed gas in appropriate composition for 

cobalt catalyst. Cobalt catalyst performs optimally at a H2: CO ratio of 1.7-2.0 in the 

production of liquid fuels.  

 In this work we show how the syngas from the pyrolysis of the MixAlco process 

sludge in the approximate H2:CO ratio of 1.3 (~45 v% H2 and 35 v% CO) can have its 

H2:CO ratio increased to 1.9. The proposed external modification of the composition of 

the syngas is shown in Figure 1.2 for 1 ton of sludge pyrolysed. This is achievable 

through the steam reforming of a third CH4 product produced in a concentration of up 

20.3 v%. The gasoline, jetfuel and diesel generated from this process will increase the 

overall yield and capacity of the MixAlco process.  

Higher temperature pyrolyis (700 to 950 oC) in particular is known to increase 

the yield of syngas, although bio-oil and char yields both decrease under those 

conditions [7]. A moving fixed bed pyrolyzer will at different sludge feeding rates 

pyrolyze the sludge at temperatures in the range of 630-770 oC to optimize the 

production of synthesis gas.  

Our main goal is to show how liquid transportation fuels (typically hydrocarbons 

in the JP-8 carbon number range) can be produced from the sludge produced by the 

MixAlco process. This is possible by integrating pyrolysis, pressure swing adsorption 

and Fischer-Tropsch synthesis processes.   
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Figure 1.2  Adjustment of H2: CO ratio by steam reforming of CH4 produced by 
sludge pyrolysis 

 

 

The syngas production potential of some biomass feedstocks can be significantly 

high. In a 300 W microwave pyrolyzer for example the pyrolysis of rice straw gave 

volumetric syngas yields of 55 % H2/17 % CO2/ 13 % CO/10 % CH4 [16].  Using a 

conventional fixed bed pyrolysis at 650 oC the total syngas volumetric yields of 

wastewood, cardboard and textile feedstocks were respectively 41.3 %, 42.3 % and 45.8 

% in a separate study [9].  

The hydrogen separated from the syngas by pressure swing adsorption (PSA) can 

be used in the hydrogenation of ketones in the MixAlco process to produce liquid 

transportation fuels. Another possibility will be to separate the methane from the syngas 

(by PSA) so that the key components, H2 and CO can be catalytically converted to 

higher hydrocarbons using an enhanced Fischer-Tropsch synthesis process. Hence the 

three main objectives to be attained are the following: 
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1.     Maximize the production of syngas (H2 and CO) and/ or CH4 from the 

sludge derived from the MixAlco process. 

 The hypothesis is that, if temperature and biomass feeding rate are factors that affect 

the composition of syngas generated from the process of sludge pyrolysis, then there 

should be a combination of temperature and/or feeding rates for which the 

concentrations (v%) of hydrogen, carbon monoxide and methane are potentially all or 

individually maximum. 

2.     Determine ½ cycle bed recovery that is based on an optimum cycle bed 

productivity from a critical amount of adsorbent with savings on adsorbents used in the 

separation of hydrogen from low concentration synthesis gas streams. 

The second hypothesis is that there is a given amount of adsorbent that gives 

maximum cycle productivity (ie cycle mass of hydrogen obtained per unit mass of 

adsorbent used). That amount of adsorbent (if it exists) applied to low concentration 

sygas streams will lead to the use of a two-bed PSA system for efficient product 

recovery versus multiple-bed systems. 

3.    Design and test a novel Fischer-Tropsch (Co-silica/Mo-Pd-Pt-HZSM-5)  

hybrid catalyst that produces even longer chain hydrocarbons(in the JP-8 and diesel 

carbon number range) from syngas compared to Co-silica.  

The third hypothesis is that a hybrid Co-SiO2/Mo-Pd-Pt-HZSM-5 catalyst can 

increase the selectivity of hydrocarbons in the JP-8 and diesel carbon number range 

versus normal Co-SiO2 at lower temperatures and pressures in a fixed bed reactor mode 

of operation.   

One of the primary benefits of the conversion of the sludge to useful products is 

that the minimum selling price of the fuels produced from the original biomass feedstock 

will be reduced to less than their estimated US $1.24/gallon [1].  This is justified because 

this price tag was arrived at assuming that the market price of the externally supplied 

hydrogen will be US $1/kg [1]. The fuels production capacity of the plant will also 
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increase. Given that the effluent sludge constitutes waste that might have to be dealt with 

otherwise, waste management costs are also saved. Other benefits include environmental 

cost savings and derived carbon credits. Generally speaking, this makes the MixAlco 

process competitive, even without government subsidies. 

 

                      1.2   Review of Related Literature 

                       1.2.1  Biomass pyrolysis into syngas, bio-oil and char 

Hydrogen, carbon monoxide and methane constitute components of synthesis gas 

although ideally pure syngas contains only hydrogen and carbon monoxide in specific 

proportions for liquid fuels production, especially via the Fischer-Tropsch synthesis 

process (FTS) [2-4]. Syngas is a building block for a variety of fuels and chemicals. 

Hence the syngas(from biomass) platform for the production of liquid transportation 

fuels represents a re-articulation of the lignocellulose-to-liquid fuels pathway [5]. 

As a renewable energy source, biomass is derived from carbon-based materials 

and its environmental benefit is carried in its being carbon neutral – the carbon dioxide 

emitted during its combustion equals the amount consumed during carbon fixation in 

photosynthesis [7-8]. Pyrolysis process is more energy efficient and is energy neutral 

especially for commercial and industrial feedstocks [10]. Perhaps it is in part for this 

reason that in the UK, Renewable Energy Obligation Certificates (ROCs) are issued as 

an incentive for the setup and operation of pyrolysis units [9]. 

During pyrolysis, organic matter is depolymerized/decomposed in the absence of 

oxygen to produce syngas, liquid (bio-oil) and char. Because of a broader product 

distribution, the process (especially fixed bed pyrolysis) is sometimes preferred over 

gasification because product gas dilution by the fluidizing gas is not an issue. Pyrolysis 

involves dehydration and decarboxylation as primary reactions at low temperatures and 

secondary cracking reactions of phenols and carboxylic acids at higher temperatures. 

The bio-oil can be catalytically converted into liquid fuels, upgraded and combusted, 

providing heat to process boilers. The char can be used to make activated carbon applied 
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to soils to enhance productivity, or used to make carbon electrodes [9-11]. The syngas  

like bio-oil can be combusted in combustion units such as boilers and the thermal energy 

recycled to sustain the process or converted into liquid fuels in an add-on catalytic 

process [10, 12-14]. 

Fast or slow pyrolysis can be defined based on the biomass temperature heating 

rate or the residence time of the biomass in the reactor. Operating under isothermal 

conditions, the defining parameter becomes the residence time or biomass feeding rate. 

For a given residence time (feeding rate) the heating rate becomes the defining 

parameter.  Reactor configurations include auger driven, ablative, vacuum or fluidized 

beds. 

A number of studies have been done on resource recovery and environmental 

preservation or management through the pyrolysis of agricultural wastes, municipal solid 

wastes (MSW) or sewage sludge. Various feedstocks pyrolyzed under different 

conditions of temperature, pressure, feeding rates and heating rates result in products in 

different amounts in fluidized beds, auger driven, ablative or vacuum reactors [49]. 

 For example, the fast pyrolysis of Japanese larch produced higher bio-oil at lower 

temperatures with a maximum obtained at 450 oC. As the temperature increased, syngas 

production increased, while char production decreased. This is attributed to the 

promotion of secondary cracking reactions at higher temperatures which convert the bio-

oil and char to gaseous products. In a fluidized bed system, enhanced bio-oil recovery is 

observed because of improved mass and energy transfer efficiencies. In particular more 

bio-oil is recovered when the product gas is used as the fluidizing medium, since they 

also take part in gas phase secondary reactions, producing organic phase chemical 

species [15]. An increase in the residence time (lower feed rate) leads to a reduction in 

the bio-oil yield and an increase in the syngas yield [49-50]. 

Microwave oven pyrolyzers have also been used for the pyrolysis of biomass. 

Huang et al (2008) pyrolyzed rice straw in a microwave oven significantly reducing its 

fixed carbon content and producing up to 55 v% of hydrogen in the product gas stream. 
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The amount of harmful poly-aromatic hydrocarbons produced in the liquid phase was 

also reduced. Use of microwave technology is again based on higher energy efficiency 

since energy is converted from electromagnetic to thermal energy directly and does not 

have to be transferred in the dielectic (microwave adsorbing materials) [16]. 

Little attention has been devoted to the thermo-chemical conversion of biomass 

sludge to useful resources such as syngas (the hydrocarbons building blocks in the gas –

to- liquid technology) eventhough the United States produced up to 6.9 million tons of 

dried sludge in 1998 and was estimated to reach 8.2 million tons in 2010. China also was 

expected by estimates to generate an identical 8.0 million tons (dry basis) in 2010 [17]. 

There is therefore little or no literature information with regards to the maximization of 

syngas concentrations from sludge using a moving fixed bed auger driven pyrolyzer with 

consideration given to mass and energy balances for process efficiency purposes. The 

mo in  fixed bed a  e  system has the ad anta e that we don’t ha e to wo  y abo t the 

dilutions of product synthesis gas by the fluidizing fluid, usually nitrogen. This makes 

the separation of hydrogen or methane [for the case where conversion of H2 and CO to 

liquid fuels is the preferred route] relatively straightforward from a technical and system 

complexity standpoint. The optimized hydrogen in the syngas can be separated by 

pressure swing adsorption for use in the MixAlco process.  

 

                         1.2.2  Hydrogen separation by pressure swing adsorption 

1.2.2.1  Merit of the technology and principles  

Low to medium scale plants are increasingly embracing pressure swing 

adsorption (PSA) as the separation technology of choice. This is evident by the number 

of PSA patents filed per year. There has been an increasing acceptance for its use in the 

recovery of raffinate product from traditionally low-concentration feed streams such as 

in the recovery of methane from anaerobic fermentation products of digesters in 

wastewater treatment plants or from landfill biogas [17-18]. In PSA systems the impurity 

(more strongly adsorbed adsorbate) is retained on the adsorbent, while releasing a 
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product stream enriched in the less strongly adsorbed adsorbate at higher pressures. The 

more strongly adsorbed gases are released when the pressure swings to a lower value.  

 PSA has traditionally seen applications in cases where H2/CO mole ratios in the 

synthesis gas are greater than 2 (as for syngas derived from the steam reforming of 

methane). There is the need to adjust the H2/CO ratio to a value suitable for optimum 

catalytic performance in adjoining gas-to-liquid conversion processes. Such higher 

H2/CO mole ratios are produced in industrial syngas production processes using natural 

gas rather than biomass as the feedstock [6]. With a higher feed CH4 concentration, the 

flexibility of the technology also allows the adjustment of the syngas compositions either 

by way of complete removal of methane  (usually not desired in feeds) or otherwise for 

biomass-to-liquid conversions processes such as FTS. Again, PSA technology is more 

competitive for low to medium capacity gas production plants. 

 

1.2.2.2   PSA systems design 

 The design of a PSA packed adsorption separation column begins with selection 

of appropriate adsorbent whose interaction with the adsorbates creates two broad 

separation modes – sorption equilibrium or kinetic rate based separations [24]. In 

equilibrium based separation (studied using the linear driving force model), mass 

transfer of one adsorbate to the adsorbent surface is greater than for its competing 

counterparts. The adsorbate with less mass transfer to the adsorbent leaves as the 

separated product. For kinetically based separation (studied using diffusivity model), the 

selective sieving of smaller molecules through the pore sizes leads to a greater bulk gas 

phase mass transfer of the smaller molecule as the enriched gas phase product.  

Equilibrium or kinetically based isotherms for the separation of various gases 

using activated carbon, zeolites, or carbon molecular sieves can be generated or are 

available in the literature. Using Langmuir, Freundlich, Langmuir-Freundlich, ideal 

adsorbed solution theory or vacancy solution models, the sorption isotherm of pure or 

m ltiple  omponent mixt  es  an be obtained and then  sed with the B  na e ’s 
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classification to reckon an isotherm as favorable (type I) or unfavorable (types II, II, IV). 

This determines the selection of blowdown, purge( in terms of selection of purge to feed 

ratio) or desorption steps (co- or counter-current to feed, or at subatmospheric or 

atmospheric conditions) in overall PSA cycle [24]. Model parameters calculated from 

such isotherms can also be used in overall process models used in process performance 

simulations [20-22]. Breakthrough curves are generally used to study the dynamics of 

the wavefront or concentration profile of the impurity that characterizes the mass 

transfer zone separating the saturated zone behind it from the fresh adsorbent zone rich 

in the product in front [22-23]. 

 

1.2.2.3  Literature findings 

The key output parameters used to study PSA systems are % purity, % recovery, 

and productivity. Each of these parameters can be changed by changing other input 

design parameters such as adsorbent particle size, cycle time, feed pressure, bed 

configuration, pressurization, purge with product or external hydrogen and increasing 

the number of beds per cycle. For example, an increase in the number of beds has little 

or no impact on the % purity but could dramatically increase % recovery by over 50 %, 

while an increase in the total cycle time decreases the purity, and increases the recovery. 

Yang et al (2009) found that an increase in % recovery with linear velocity of feed flow 

only occurred to a certain extent after which recovery dropped due to a broadening of 

adsorption wave front in the bed [24-26].  

The experimental studies by Shivaji et al (2011) showed that an adsorbent 

particle size of 0.35 mm, a total cycle time of 3-5 s and a feed pressure of 2.9-4.0 atm 

produced an O2 recovery of ~25-35 % for a percent purity of ~90 % O2 in the product 

stream in a novel PSA unit for medical oxygen concentrator [27]. Separation of one 

component from a ternary mixture where 2 gases have almost identical separation 

factors on one adsorbent is achieved by splitting the separation process between two or 

more layered adsorbents. Layered bed configurations are also used in ternary gas 
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mixtures when one of the impurity species has a significantly favorable sorption 

isotherm with respect to the first adsorbent. This permits the separation of the product 

from the remaining species on a second top bed where the adsorption of the less desired 

species is much stronger.  Hydrogen has been separated in a 4-bed PSA system to a 

99.999 % purity and a recovery up to 66.00 % using a double adsorbent of activated 

carbon and molecular sieve 5A with feed gas having the composition, 72.2 % H2/21.6 % 

CO2/ 2.03 %  CO/ 4.17 % CH4 and derived from the SRM process. It was found that 

increasing the time in the adsorption step from 40 to 50 seconds caused the recovery to 

improve from 58 to 66 %, although the purity remained unaffected [28].  

 

1.2.2.4  Maximizing PSA H2 recovery from low H2 concentration syngas 

In order to recover hydrogen from a low concentration pyrolysis gas stream (for 

use in the hydrogenation of ketones in the MixAlco process) with minimal complexity 

and costs, yet achieving efficient product cycle recovery, we propose to use a layered 

bed configuration of activated carbon and molecular sieve 5Å. By doing breakthrough 

curve and cycle mass balance studies for different amounts of adsorbents, a specific 

amount of adsorbent that gives optimum cycle bed productivity will be determined.  

It is hoped that using this amount of adsorbent in PSA systems will reduce the 

number of beds and complexity hence saving costs and optimizing product recovery 

especially for a low hydrogen pyrolysis syngas. One alternative route is to select an 

adsorbent that will selectively adsorb CH4 enriching a product of H2 and CO for use in 

an enhanced Co-SiO2/Mo-Pd-Pt-HZSM-5 hybrid Fischer-Tropsch synthesis process to 

increase selectivity in the JP8 and diesel range. This when fed into the MixAlco process 

will increase its fuels production capacity. 
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1.2.3   Fischer-Tropsch synthesis process for syngas conversion to  

            liquid fuels 

1.2.3.1  History and products distribution 

The Fischer-Tropsch synthesis (FTS) process, named after two German pioneers 

Han Fischer and Franz Tropsch converts syngas to hydrocarbons over transition metal 

catalysts supported on basic metal oxide supports producing diesel and heavy waxes 

[29]. Fundamentally, FTS process involves the hydrogenation of CO followed by 

polymerization of monomers over transition metal active sites. The product distribution 

is statistical and follows the Anderson-Schulz-Flory probability model. Hence there is 

only a 48 % chance of producing a hydrocarbon within the desired gasoline range (C4 to 

C12). This means that as the probability for chain growth increases, the selectivity of 

higher hydrocarbons and waxes increases dramatically [30]. 

 

1.2.3.2   Catalyst design 

The design of heterogeneous catalytic systems involves some unit operations 

such as impregnation (typically achieved by pH controlled ion-exchange between the 

support surface and precursor solution), precipitation, deposition-precipitation. Other 

new techniques include sol-gel, eggshelling, colloidal, microemulsion, solvated metal 

atoms and dispersion. Intended to transfer the precursor to the support surface with 

optimum dispersion, and hence maximum active surface area, each of these methods will 

be able to maximize key design and assessment metrics such as specific conversion (or 

specific activity), selectivity, stability and revivification (or regenerability). Their 

selection and use depends on intended catalyst loading, interaction between catalyst 

nanoparticles and support and whether a homogeneous or inhomogeneous dispersion 

will result.  

All these directly affect activity or deactivation and overall performance of the 

catalyst [31-32]. Drying allows improved dispersion of the precursor followed by 
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calcining to convert the precursor to its oxide form. The oxide is then reduced to the pure 

metal active form in a hydrogen reduction step. Post preparation parameters such as 

hydrodynamics, retention time, reactor configuration and alignment, amount of catalyst, 

and thermodynamics affect performance of the catalyst [33]. 

 

1.2.3.3   Fischer-Tropsch synthesis catalysts in biomass-to-liquid  
              technology 

Cobalt and iron are generally used although iron is used mainly for low hydrogen 

syngas sources such as biomass and coal. It is however more temperature flexible while 

cobalt being more temperature sensitive is more active at low temperatures with an 

enhanced production of higher hydrocarbons. For cobalt catalysts in general, a specific 

feed composition results in ideal performance with selectivity of higher hydrocarbons 

achieved with increase in pressure although addition of modifiers achieves the same 

effect with a reduction in methane selectivity [29,33].  

 

1.2.3.4  Tuning the product selectivity 

To promote secondary reactions or reformation reactions that lead to the 

production of longer chain alkanes and alkenes (with increased energy output), and 

isomers and aromatic hydrocarbons (with a higher octane rating), new interests are being 

developed in coupling FTS catalyst with zeolites in a hybrid system that may be either 

single-stage (with thermodynamic constraints) or two-stage (with no thermodynamic 

constraints). Depending on the catalyst of choice, in-situ deactivation resulting from the 

migration of OH- to the acid zeolite might dictate catalyst bed as either physical 

admixture or dual layer configuration. Such setups create a bi-functional catalytic system 

with a metal activity on the FTS catalyst and an acid activity on the zeolite catalyst 

[13,34]. Typical secondary reforming reactions on zeolite include: an acid functionality 

such as long-chain hydrocarbons cracking and transition metal functionality such as 

isomerization, oligomerization and/or polymerization of shorter chain hydrocarbons and 
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aromatization (at high temperatures and pressures) of products from the FTS process. 

This means that a ZSM-5 zeolite with a low Si/Al ratio can have an acid-metal 

functionality when those metals are in low concentrations. 

 The rationale for using Fe instead of Co in biomass to liquid processes is to 

exploit the ability of the former in catalyzing the water-gas-shift reaction to enhance the 

H2/CO ratio to an acceptable value to increase the yield to higher hydrocarbons. The 

pyrolysis of paper- and pulp-derived sludge from the MixAlco process can produce a 

relatively high amount of CH4 and synthesis gas (compared to coal). SRM and 

modification of the syngas composition can be used for the production of liquid 

transportation fuels (with higher selectivity of higher hydrocarbons) using cobalt instead 

of iron. This by-passes the water-gas shift reaction internal modification process that 

relies on proper functioning of the iron catalyst among other factors.  

Hence the main objective of this part of the work will be to produce liquid 

transportation fuels in the gasoline (C4 to C12) and jetfuel or JP-8 (C10 to C17) using a 

hybrid Co-SiO2/Mo-Pd-Pt/HZSM-5 tri-functional metal-metal-acid environment versus 

the bi-functional environments currently proposed in literature. This novel hybrid FTS 

catalyst will extend the capability of the conventional FTS cobalt catalyst to the 

production of a fuel with more JP8 and diesel that can be fed into the transportation fuel 

product stream of the MixAlco process. Throughout this work future references to 

selectivities of gasoline, JP-8 and diesel will mean selectivities of hydrocarbons with 

carbon numbers in the ranges C4-C12, C10-C17 and C15-C25 respectively. 
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                CHAPTER  II 

                       PYROLYSIS OF MIXALCO PROCESS SLUDGE TO SYNTHESIS  

GAS 
 

          2.1   Experimental  

2.1.1   Experimental setup 
   The schematic of the process is shown in Figure 2.1. A moving bed auger 

pyrolyzer having a hopper with the dimensions 2 ft by 2 ft by 4.25 ft was used for the 

experiments. 

 

 

 
                       Figure 2.1   A schematic representation of an auger (moving fixed bed) pyrolyzer for 

the conversion of sludge to syngas 

 

 

The pyrolysis reaction occurred in the heated middle zone of a tubular furnace 

heated electrically by a Linberg/Blue M heater supplied by Thermoelectron 

Corporation/Centigrate Service Inc (Ashville, North Carolina). The tube furnace, also a 
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Linberg/Blue M type was also supplied by Thermoelectron Corporation/Centigrade 

Service In.c (Ashville, North Carolina). The furnace chamber contained a 0.3 ft nominal 

diameter cylindrical tube containing an auger. The cylindrical tube was a conduit for the 

feedstock.  The sludge was initially fed into a hopper, which was connected to the heated 

zone of the reactor. A 2.5 amps Honeywell electric motor (Rockford, Illinois) provided 

rotational and translational motion of the auger, which in turn moved the ground sludge 

into the reactor.  

 

2.1.2   Calibration 

The biomass feeding rates were varied from a calibration curve relating the 

number of auger RPMs to the biomass feed rates. The hopper was fed with the pretreated 

sludge at room temperature and pressure and the time taken for a given amount of the 

feedstock to move from the hopper to the char collection bin was recorded for a given 

RPM. The biomass feed rate was then determined by dividing this amount collected by 

the recorded time. Runs for each RPM were performed in duplicate.  

Auger RPMs of 2.6, 3.0 and 3.4 corresponded to 290, 330 and 374 g/minute of 

biomass fed. By setting the auger to a given RPM, a specific value for the sludge feed 

rate could be predetermined. Since preliminary experiments showed that hydrogen, 

carbon monoxide and methane will be the gases produced, the GC was previously 

calibrated for these gases using a gas standard with the composition, 20 v% CH4/20 v% 

H2/ 20 v% CO with the balance being nitrogen. The established calibration curve is 

diagrammed in Figure 2.2. 
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Figure 2.2  Biomass feeding rate versus auger rotations per minutes 

 

 

2.1.3  Sludge pretreatment and analysis 

The sludge was dewatered by sun-drying until almost all of its moisture was 

 emo ed (“bone d y”). A bone dry sludge was one whose moisture content was less than 

10 wt %. The dewatered sludge was then crushed to powder form to facilitate its 

movement into the heated zone of the furnace. Proximate analysis included the 

determination of volatile combustible matter (ASTM D 3175-07), moisture content 

(ASTM E 871-82 reapproved in 2006), ash content (ASTM D1102-84 reapproved in 

2007) and fixed carbon. To determine the moisture content, pretreated sludge was dried 

constantly until its moisture content was <10 wt %. The dry feed stock was volatilized at 

950 oC in a furnace for 15 minutes and the volatile combustible matter (VCM) calculated 

as the percentage loss in weight. The ash content was determined using the residue from 

the VCM determination experiment and was further heated at 550 oC for 4 hours and the 

weight of the residue expressed as a percentage of the weight of the dry feed stock, after 
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the loss of the fixed carbon. The fixed carbon content was determined by arithmetic 

difference.  

Minerals analysis was done by Huffman Laboratories (Golden, Colorado). 

Before analysis, the samples were centrifuged and the free aqueous layer (containing 

dissolved organics) was removed. All the results were reported from the remaining 

organic fraction. Ash was determined by stage ashing in air to a final temperature of 750 
oC and holding at that temperature for 8 hours. The heating values of the feedstock, char 

and bio-oil were determined using a Parr 6200 bomb calorimeter supplied by Parr 

Instruments Company (Moline, Illinois). The heating values of the syngas used were 

values reported in Perry et al (1984) [52] and are shown in Table 2.1.  

 

2.1.4  Pyrolysis experiments 

 Between 2,240 and 3,400 g of the dry feed was fed into the hopper of the 

pyrolyzer per run. Runs were carried out isothermally at 630, 680, 730, 750 and 770 oC 

and at atmospheric pressure conditions. Three sludge feeding rates of 290, 330 and 374 

g/minute were studied in different combinations with the temperature. After feeding and 

tightening the hopper, the furnace was then heated to the preset temperature. The furnace 

temperatures were measured by installed J-K type thermocouples. The entire system was 

purged for 25 minutes with industrial grade nitrogen (98.9 % purity) supplied at a flow 

rate 250 ml/minute (to create an oxygen free environment) at the end of which sludge 

was delivered into the reactor by the auger system. To enable the condensation of 

condensable gases into bio-oil following pyrolysis, the condensable and uncondensable 

gas mixture was passed through a 0.5 inch internal diameter stainless steel pipe 

immersed in ice-frozen water. A line of the uncondensed syngas stream was passed 

through an online Horiba digital gas analyzer, supplied by Horiba Instruments Inc. (Ann 

Arbor, Michigan).  

  The first product of the process (char) was collected into a char collection bin. 

The condensable and non-condensable products went through a condenser where bio-oil 
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was recovered from the condensable gases. The non-condensable gases then left as the 

desired synthesis gas. The experiments were performed at atmospheric pressure 

conditions in triplicates for each combination of temperature and biomass feeding rate. 

Total experimental run time was between 20-25 minutes. 

 

                           2.2   Experimental Design  

A direct approach used for a process optimization is the response surface method 

(in a central composite design) frequently employed in statistical studies for the 

optimization/minimization of a given parameter [51]. The technique was employed here 

to determine the set of temperature and biomass feeding rates needed for the optimum 

production of some or all of hydrogen, methane and carbon monoxide. For our range of 

temperature and biomass feeding rates, preliminary results showed a response surface 

center point (temperature, feeding rate) of (750 oC, 329 g/min). Above this combination, 

syngas concentration seemed to increase for each component and decreased below it. 

Actual experimental runs were therefore initially done for a range of temperature 

between 730 to 770 oC for the three biomass feeding rates of 290, 330 and 374 g/min.  

The results were analyzed to see the influence of each parameter. Since fractional 

volumetric gas production seemed to peak at this temperature range, for all feeding rates, 

a meaningful gas production trend was established by extending to lower temperatures 

of 630 oC and 680 oC, at a feeding rate of 329 g/min. This gave a 1/2 factorial design for 

a total of 21 experiments from a possible total of 45. The stated hypothesis (H) was that: 

              H: If temperature and biomass feeding rate are factors that affect the 

composition of syngas generated from the process of sludge pyrolysis, then there should 

be a range temperature and/or feeding rates for which the concentrations of either 

hydrogen, carbon monoxide or methane and some other possible combinations thereof 

are maximum. 
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                   2.3   Mass and Energy Balances  

 The flow of material (energy and mass) in and out of it is shown in Figure 2.3. 

An energy and mass balance on this control volume was performed. Gravimetric 

measurements of masses in and out of the pyrolyzer and the determination of energy 

contents of feed and products from their heating values were used to calculate mass 

recovery and energy efficiencies. The heat contents of the products and feed sludge were 

calculated as shown in Eqs.2.1-2.2.  

The ratio of the sum of the energies of the products to the electrical energy 

needed or of the sum of the mass of the feed to the combined mass of the products 

quantified energy and mass recovery efficiencies as shown in Equations 2.3-2.4. The 

ratio of the energy of the products to the electrical energy needed to pyrolyze the 

feedstock was used to establish the energy neutrality of the process. A ratio of at least 

100 % meant energy neutrality. 

 

 

 

Figure 2.3 Material flow in and out of pyrolyzer (for energy and mass balances) 
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                      2.4   Data Collection and Analysis 

 The amount of sludge pyrolyzed was the difference between the amount fed into 

the hopper and the amount left unpyrolyzed. The amounts of char and bio-oil produced 

were determined gravimetrically. The syngas produced was directed into gas balloons as 

it exited the effluent line. Since these balloons were spherical, their volumes were easily 

calculated. The total volume of the synthesis gas produced together with its 

concentration (v%) were used to determine the mass of each constituent by first 

determining its density at room temperature and pressure using the ideal gas law. These 

masses were then used in mass balances to determine the mass recovery. The products of 

the masses of the feedstock or the products and their respective heating values were used 

in energy balance calculations. 

During each run, a triplicate sampling of the syngas was performed although 

each set of pyrolysis condition was examined also in triplicate. Peak readings on the 

Horiba output display gave indications of the maximum compositions of the synthesis 

gas that would be obtained under steady state constant pyrolysis of the feedstock for all 

conditions of temperature and feeding rates. Samples were collected in 1.0 L Tedlar bags 

supplied by SKC Inc (Houston, Texas) when readings close to this optimum composition 

were observed and analyzed using an 8610C SRI GC (Torrance, California) equipped 

with a TCD and an HID detector. The GC column temperature program maintained an 

initial column temperature of 60 oC for 5.0 minutes which was ramped to 220 oC at a 
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ramp rate of 20 oC/minute. It was maintained at this temperature for 30 minutes before 

cooling to 60 oC in a column reconditioning subprogram.  

The percent composition results from the GC were analyzed using the Design 

Expert® software to arrive at a quadratic response surface model for each gas species. 

The spread of the data was reported in terms of standard deviations by Design Expert® 

software. The results were statistically analyzed using the analysis of variance (anova) at 

the 95 % confidence level. 

  

                           2.5    Results and Discussion 

 2.5.1    Sludge and products characterization 

The proximate and mineral analyses and the heating values of the pretreated 

sludge and products are shown in Table 2.1. The volatile combustible matter (VCM) 

content of the feedstock was the highest. This is typical for most sludge biomass 

especially sludge from industrial sources. The VCM gets converted into gaseous 

products at higher pyrolysis temperatures [9,10,17-18].  

The biomass structure also contained Ca, Fe and Mg known for their catalytic 

activities in converting oxygenates into hydrocarbons and hydrogen at higher 

temperatures. The low S content of the biomass minimizes the production of sulfur 

compounds or gases in the products stream. This means that the catalytic upgrade of 

products from the pyrolysis of the sludge has a low chance of being plagued with sulfur 

catalyst poisoning [33,44]. The enriched hydrocarbons content of the bio-oil explains 

why its heating value is highest. The conversion of the fixed carbon of the sludge into 

other products during pyrolysis leads to a fall in the heating value of the char produced 

[7]. 
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Table 2.1 Proximate and mineral analyses and heating values 

proximate analysis (wt %) 

   MC VCM FC Ash   

   7.2±1.6 66±2.1 3.1±3.2 23.7±1.8   

mineral analysis (wt %) 

S Al Ca Fe Mg P K Si Na 

0.7 0.3 9.2 0.2 0.2 0.7 0.1 0.5 0.1 

heating value (MJ/kg) 

  sludge char bio-oil H2 CH4 CO  

  13.71±2 10.7±2.9 25.6±3.6 120 49.8 10.2  

 

 

                           2.5.2   Optimum synthesis gas production and the anova model 

The statistical model for the optimization of the concentrations of hydrogen, 

methane and carbon monoxide was significant with a p-value <<0.05. Temperature was 

also important as a main effect variable determining the composition of syngas with a p-

value (α)<<0.05. The inte a tion between tempe at  e and feedin   ates was not 

significant (p-value >0.05). The feeding rate also turned out not to be significant in 

influencing syngas production (p-value >0.05) (Table 2.2). This could be explained 

partly by the fact that the range of feeding rates studied was narrow. It is possible that 

temperatures in the range 630 oC to 770 oC were high enough to de-polymerize the 

sludge biomass into products making feed rate not really significant. That might explain 

why statistically there was no significant interaction between the two parameters. In 
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particular, temperature has been reported to be the dominant factor influencing product 

yield in pyrolysis [16].  

                A normality test revealed that the error distribution of the data for all three 

gases was approximately normal with the data fitting a straight line as shown in the 

normal plot of the residuals in Figure 2.4 for hydrogen concentrations only. The 

significance or non-significance of the models and parameters of temperature (T) and 

sludge feed rate (F) are shown in Table 2.2 with the generated best-fit regression models 

for hydrogen, carbon monoxide and methane concentrations(v%) shown in Eqs.2.5-2.7. 

 

 

Table 2.2   Anova for response surface quadratic model 
a)  Response 1: Hydrogen concentrations statistical analysis 

source 
sum of 

squares 

deg of 

freedom 
mean square F value 

p-value, 

prob >F 
significance 

model 1404 5 280.9 24.9 <0.0001 significant 

T: temperature 765.9 1 765.9 67.9 <0.0001 significant 

F: feed rate 3.9 1 3.9 0.35 0.56 
not 

significant 

TF 5.6 1 5.6 0.5 0.49  

T2 47.5 1 47.5 4.2 0.05  

F2 0.35 1 0.35 0.031 0.86  
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Table 2.2  continued  
b)  Response 2:  Carbon monoxide concentrations statistical analysis 

source 
sum of 

squares 

deg of 

freedom 
mean square F value 

p-value, 

prob >F 
significance 

model 118.2 5 23.6 2.2 0.105 not significant 

T: temperature 87.8 1 87.8 8.3 0.01 significant 

F: feed rate 8.9 1 8.9 0.8 0.37 not significant 

TF 14.3 1 14.3 1.4 0.26  

T2 0.37 1 0.37 0.04 0.85  

F2 13.1 1 13.1 1.24 0.28  

 

 

 

 

 

c)   Response 3 : Methane concentrations statistical analysis 

source 
sum of 

squares 

deg of 

freedom 
mean square F value 

p-value, 

prob >F 
significance 

model 257 5 51.5 5.7 0.003 significant 

T: temperature 130 1 130 14.5 0.0017 significant 

F: feed rate 2.96 1 2.96 0.33 0.57 not significant 

TF 7.52 1 7.52 0.84 0.37  

T2 3.3×10-3 1 3.3×10-3 3.7×10-4 0.98  

F2 0.2 15 8.9 0.02 088  
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Figure 2.4  Test of normality: normal plots of the residuals 

 

 

[H2] = -650.7 +1.5T + 492.7F -0.85FT - 7.8×10-4T2 + 217.8F2
…………......….......…. .5 

[CO] = 209.5 – 0.49T - 135F + 1.4TF + 6.8×10-5T2 – 1330.8F2
……….…………..….. .6 

[CH4] = -250.8 + 0.38T + 617.7F – 0.98FT + 6.5× 10-6T2 + 164.4F2
………..….……..2.7 

 

The respective R-squared values for [H2], [CO] and [CH4] models were 0.8926, 

0.4260 and 0.6574 respectively. Hence the model strength for the three syngas 

components could be ranked as H2 > CH4>CO. The equilibrium composition of the 

synthesis gas will depend on a large variety of complex factors determining the 

conversion of carbon in the gas-solid and gas phase reactions. This will include among 

others biomass VCM, total heat lost or gained and the overall amount of oxygen that 

might be present [50]. Given also the data variability that can be possible with auger 

based pyrolysis systems and the losses involved, these models will not be robust and 

typify empirical correlations in their predictive capacities.   

Figure 2.5 [(a) to (c)] shows response surface curves for the range of temperature 

and feeding rates wherein hydrogen, carbon monoxide and methane are optimized for a 
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moving bed (auger) pyrolyzer. From the trend of the response surface models, it would 

appear that the range of temperatures and feeding rates at which  the concentration of 

hydrogen becomes maximum does not lead to a maximum concentration of either 

methane or carbon monoxide or both, and vice versa.  

The  syngas composition [concentration (v%) ± standard deviation]  of 

~43.9±3.36 H2/33.3±3.29 CO/ 20.3±2.99 CH4  (the remainder being air that was 

collected into the sampling bag during analysis) was obtained for a temperature range  of 

740 oC-770 oC. This corresponded to the highest possible concentration for each 

component. At the 95 % confidence level, the confidence interval (volume %) for the 

respectively gases were as follows: 33.9-43.8 for H2 with an overall data mean value of 

39.1, 23.5-31.6 with an overall data mean value of 27.0 for CO and 13.9- 20.0 with an 

overall data mean of 19.0 for CH4.  

It is possible from the trends of the response surfaces generated that further 

increase in temperature could increase the concentrations of the syngas species. With a 

fall in the process energy efficiency with increase in temperature, further runs at higher 

temperatures were not justified. See Table A 1 in the Appendix for raw syngas 

components concentrations data. The non-conventional microwave- based method of 

pyrolysis gave a higher hydrogen yield (55 v%) than our results obtained using an auger 

conventional pyrolysis method, although the results were based on rice straw rather than 

an industrial sludge from paper and pulp material [16]. The results therefore compare 

favorably considering the established higher heat transfer efficiencies of microwave 

pyrolyzers versus non-fluidized fixed bed pyrolysis reactors. 
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a) H2  production as a function of temperature and biomass feeding rate 

 

b) CH4  production as a function of temperature and biomass feeding rate 
Figure 2.5 Anova response surface models for optimum syngas compositions – a) 

hydrogen, b) methane and c) carbon monoxide 
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c) CO  production as a function of temperature and biomass feeding rate 
Figure 2.5 continued 

 

 

More gas was produced as the temperature was increased due to cracking of the 

organic components of the bio-oil to gaseous products. The increase in the amounts of 

hydrogen and methane could be partly explained by the fact that some components of 

the organic portion of the bio-oil, such as phenols are converted into hydrogen and 

methane by catalytic secondary cracking reactions at higher temperatures [7,9,15]. Since 

elemental analysis showed the presence of alkali earth metals in the feedstock, they 

might be involved in the cracking of the organic fractions of the bio-oil to the respective 

constituents [18]. No CO2 was detected in the chromatogram of the GC during syngas 

analysis. This could be explained partly by the fact that sparging with nitrogen created 

sufficiently oxygen-free conditions. The iron present in the biomass (0.2 wt %) together 

with the high temperature might have also created appropriate conditions for the 

catalytic steam reforming of methane and the water gas reaction (H2O oxidation to CO 

and H2) [ 18]. 
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                          2.5.3   Overall product recovery and process efficiency 

Yields and efficiencies were calculated according to definitions in Eq. 2.3-2.4. 

There was no correlation between char production and temperature and/or feeding rate. 

The % char yield (ratio of char weight to weight of sludge pyrolyzed) varied from 

40.6±2.8 wt % (at 680 oC) to 51.6 ± 1.0 (at 750 oC). This could be explained by the fact 

that some decomposition of the biomass by micro-organisms had already taken place 

prior to pyrolysis at the high temperatures selected for the experiments making energy 

supplied at higher than 630 oC enough for carbonization.  

The production of the char, bio-oil and syngas together with the change in 

process efficiencies with temperature is shown in Table 2.3. The overall bio-oil yield 

decreased from 0.18 g/kg at 630 oC to just 0.02 g/kg g at 770 oC. This was to be 

expected since at higher temperatures, the bio-oil is converted to gaseous products by 

catalytic cracking reactions. The average mass balance was approximately 84.6 wt %. 

This together with energy efficiency results are consistent with results obtained by 

Boateng et al.(2007). The raw data obtained is shown in Table A 2 of the Appendix 

section. 
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Table 2.3 Product yields and process efficiencies at all temperatures examined 

temp. syngas H2 CH4 CO bio-oil char yield  energy eff. 

(oC) L L/kg L/kg L/kg g/kg % % 

630 231±9 21.6±4.2 13±1.8 25±3.2 0.18±2.8 46.8±3 81.2±2.6 

680 237±5 34±2.2 17±1.0 28±1.8 0.16±1.6 40.6±2.8 77.2±3.8 

730 384±4 76±1.6 34±0.8 47±1.4 0.05±2.1 45.2±4 70.8±1.7 

750 296±9 67±4.1 29±1.8 43±3.1 0.04±1.1 51.6±1 64.7±2.8 

770 243±6 50±2.7 22±1.2 35±2.1 0.02±0.8 43.8±5 57.8±5.0 

              Yields are based on an average of 2.2 kg of feed pyrolyzed for three replicates. 

 

 

A total of 231L of syngas was produced at 630 oC (the equivalent of 108 ±5.7 L/ 

of feed). Maximum syngas production (384 L) occurred at 730 oC after which the total 

amount of gas produced decreased steadily to 243 L at 770 oC. Although more gas was 

produced as the temperature increased, the overall low energy content of the syngas 

contributed little in helping the energy efficiencies at higher temperatures. Also a 

decrease in the production of bio-oil with a relatively higher heating value helped in 

decreasing the energy efficiency as the process temperature increased.  

The energy efficiency therefore varied from 81.2 % at 630 oC (where  more bio-

oil was produced) to just 57.8 % at 770 oC. Pyrolysis is an endothermic process so that 

when the energy needed to overcome the activation energy is supplied, any excess at 

higher temperatures is lost as heat to the surroundings. Therefore increases in 

temperature will lead to an overall fall in the energy efficiency because more electrical 

energy degraded to thermal energy will be needed to maintain the higher temperatures. 

However, since the amount of electrical energy needed to sustain the process was less 

than the total energy combined of the products, pyrolysis of sludge from the MixAlco 
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process is energy neutral. At the lowest efficiency, the total energy content of the 

product was ~190 % of the electrical energy input needed to sustain process. 

 

                         2.5.4   Product energy distribution 

Generally speaking, more than 60 % of the energy of the feedstock is lost largely 

to char as can be seen in Figure 2.6. While the percentage of energy stored in bio-oil is 

high at lower temperature that of syngas is low at lower temperature with the percentage 

of syngas energy at higher temperature surpassing that of bio-oil. This is because more 

syngas is produced at higher temperature versus bio-oil which has a relatively higher 

production at lower temperatures.  

The energy distribution per unit mass of the feedstock for all components in the 

product stream is shown in Table 2.4. The impact of the decrease in the amount of bio-

oil produced with increase in process temperature is reflected in the decrease in the bio-

oil energy yield with increase in temperature with the bio-oil energy yield dropping from 

4.3 MJ/ kg at 630 oC to 0.1 MJ/kg at 770 oC. Although more syngas is produced at 

higher temperatures, the energy yield associated with it is small compared to both char 

and bio-oil at lower temperatures. Figure 2.7 shows how the energy yields for the 

various syngas species vary with temperature. 
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Figure 2.6  Product component energy as a percentage of total product 
energy 

 

 

The yield of all syngas components tended to increase with temperature right up 

to ~ 730 oC beyond which further increase in temperature led to a decrease in the energy 

output per unit of feedstock pyrolyzed. This is explained by the fact that the total syngas 

volumetric output reached its peak at 730 oC and then decreased thereafter.  
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Table 2.4 Energy yield (MJ/kg sludge) and product energy distribution (%) 

 energy yield(MJ/kg feed) % energy of component 

temp.(oC) char bio-oil syngas char bio-oil  syngas 

630 7.4±2.3 4.3±0.8 0.4±0.03 60.7 35.6 3.7 

680 6.8±1.2 3.8±0.9 0.6±0.1 60.8 33.8 5.4 

730 7.2±1.6 1.1±0.05 1.2±0.3 76.2 11.3 12.5 

750 7.4±2.1 0.5±0.03 1.0±0.2 82.9 6.1 11.0 

770 7.1±1.9 0.1±0.01 0.8±0.01 89.2 0.7 10.1 

 

 

              At temperatures between 630 to 680oC syngas energy content was less than bio-

oil energy content with the reverse occurring at higher temperatures. The energy 

contribution for each syngas species was in the order: methane >hydrogen> carbon 

monoxide although the component concentrations was in the order hydrogen > carbon 

monoxide > methane. As the temperature increased from 630 oC to 770 oC, the energy 

yield of hydrogen doubled from 212.5 to 505 KJ/kg due to an increase in its production 

at higher temperatures. A similar trend was observed for methane due partly to the fact 

that the higher temperature catalytic cracking of oxygenates or organic products of 

pyrolysis largely results in the production of methane which being a hydrocarbon has a 

high energy value. The energy value of carbon monoxide is the lowest of all three gases 

explaining why despite its higher production versus methane it still had a relatively 

lower energy yield. 
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Figure 2.7  Pictorial trend for the change in energy yields of the syngas components 
with process temperature 

 

 

                     2.6   Chapter  Summary 
In a nutshell, our results show that the sludge produced from the MixAlco 

process can be converted into a useful resource in the form of synthesis gas. 

Additionally, there is a set of temperature and /or sludge feeding rate for an auger driven 

pyrolyzer at which the synthesis gas can be produced with its constituents in maximum 

concentration. It was also found that although there was no obvious yield trend for char, 

synthesis gas yield increased with increase in temperature with the opposite trend for 

bio-oil.  

Generated models for the concentrations of synthesis gas revealed approximate 

maximum concentrations (in volume percent) of ~43.9±3.36 H2, 33.3±3.29 CO and 

20.3±2.99 CH4  (the remaining being air that was collected into the sampling bag during 

analysis) for temperatures in the range of 740-770 oC. At this concentration, a total of 
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5,990 g of H2 with an energy content of 719.3 MJ will be produced from 1 ton of sludge 

pyrolyzed whose energy content is 12,441.2 MJ. The syngas with this hydrogen 

concentration can be passed through a pressure swing adsorption separation process to 

recover either pure hydrogen or a mixture of just hydrogen and carbon monoxide, both 

of which can be used to produce more liquid transportation fuel for the process. 
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CHAPTER  III 

PSA HYDROGEN SEPARATION FROM THE OPTIMUM SYNGAS 

COMPOSITION  

 
3.1   Experimental 

3.1.1   Description of setup and experimental approach 
A single column PSA unit was used to simulate the performance of a two-bed 

PSA system. The adsorbents used were activated carbon and molecular sieve 5Å.  Figure 

3.1 is a schematic of the experimental setup used to do studies on impurities 

breakthroughs, cycle mass balances and cycle bed productivity (CBP) during runs with 

continuous hydrogen withdrawal. 

 

 

 
 

Figure 3.1 Schematic layout of the setup used in the separation of hydrogen from 
syngas by pressure swing adsorption 
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The activated carbon, a 4×8 mesh size coca 60 was supplied by Activated Carbon 

Corporation (Compton, California). The molecular sieve was supplied by UOP LLC 

(Des Plaines, Illinois). The column was a 5.0 cm internal diameter stainless steel pipe. 

The manufacturer reported physical properties of the adsorbents were as shown on Table 

3.1.   

  Syngas with its components in their highest concentrations ((v/v) of 45 % H2/35 

% CO/20 % CH4 and obtained from the pyrolysis of the MixAlco process sludge was 

used as the feed.  The syngas was delivered from a tank into a column holding a dual bed 

of adsorbents, namely activated carbon (at the bottom) and molecular sieve 5Å (at the 

top). The feed gas went through a pressure regulator, a pressure gauge and a digital mass 

flow controller before entering at the bottom of the bed. At the top, another pressure 

gauge was installed to measure potential bed pressure drop.  

 

 

Table 3.1 Physical properties of adsorbents – manufacturers’ report 

properties 5Å ( / 6” pellets) activated carbon 

(granular) 

unit 

specific surface area - 1200 m2/g 

bulk density 0.71 0.47 g/cc 

moisture content 1.0 2.0 wt % 

min. CCl4 activity - 60 - 

ash content - 3.0 wt % 

particle diameter 0.16 - cm 

ater capacity 21 - wt % 

 

 

 To maintain the bed pressure, the exit gas flow was controlled by a digital 

hydrogen mass flow     controller. The feed gas pressure was regulated using a pressure 

regulator supplied by McMaster-Carr (Aurora, Ohio). The effluent gas pressure and the 

pressure dynamic of the bed were read from digital pressure gauges supplied by Cole-
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Parmer (Vernon Hills, Illinois). The feed flow was then controlled by a programmable 

digital mass flow controller supplied by Alicat Scientific (Tucson, Arizona). 

Downstream the column, a ball valve, the same mass flow controller and pressure gauge 

(in make and manufacturer) were installed. 

           Separation and recovery of hydrogen from impurity carbon monoxide and 

methane was through a series of cycle steps such as pressurization with feed (with no 

hydrogen discharged), pressurization with feed (with hydrogen discharged), co-current 

depressurization, counter-current depressurization and external purge with hydrogen, 

described in detail in an appropriate section. Experiments to determine cycle recoveries 

from cycle bed productivities for three different adsorbent amounts were preceded by 

preliminary experiments to test separation effectiveness of selected adsorbent pair. 

 

3.1.2   Preliminary experimental runs  
Syngas feed flow rate was studied at two levels – 7.0 and 10.0 standard lpm 

while the pressure was studied at three levels – 310, 610 and 710 kPa in 15 experimental 

runs. A 200 cm stainless steel column was first filled to 120 cm with 1,585 g of activated 

carbon, and then was topped with 1,307 g of molecular sieve 5Å. The adsorption column 

was pressurized until a predetermined pressure was reached. At that pressure, sampling 

port 9-1 was opened and the effluent analyzed using an SRI 8610C GC supplied by SRI 

Instruments (Torrance, California).   

A random factorial experimental statistical design using the Design Expert 

software was performed for all combinations of feed rate and pressure to study the 

impact of each input parameter on traditional output parameters such as hydrogen purity 

(%), hydrogen recovery (%) and hydrogen discharge rate ( standard lpm). Experiments 

were performed in triplicates for each combination of feed flow and pressure with the 

intention of selecting the feed rate and pressure that gave the best hydrogen purity and 

per-pass recovery for use in actual experiments meant to efficiently recover hydrogen 

from the syngas with the specified composition. 15 out of a full factorial total of 18 
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experiments were performed. The Design Expert software was used to analyze the data 

obtained. 

 

3.1.3   Investigative experiments using three different adsorbent  

           amounts 
                 Because of the positive influence of pressure and feed rate on the discharge 

rate and % recovery, a higher pressure of 8.0 atm and a mass flow controller full range 

feed rate of 10 standard lpm were therefore selected to conduct separations in continuous 

run mode for the purposes of determining impurity breakthrough times (from 

breakthrough curves), cycle mass balances and bed productivities at a constant hydrogen 

draw rate of ~4.5 standard lpm. This draw rate was selected because it approximately 

balanced the rate at which hydrogen was fed into the bed, giving a constant pressure 

dynamic condition.  A total of 9 experiments, in triplicates (to determine breakthrough 

times for impurities CO and CH4) were then performed using 200 cm, 135 cm and 70 cm 

columns each containing 2,892 g, 1,962 g and 1,013 g of adsorbent respectively with a 

feed rate of 10 standard lpm and 809 kPa pressure.  Another 9 experiments, in triplicates 

were performed at the same condition of pressure, flow rate and adsorbent amounts to 

carry out cycle mass balances and hence determine cycle recovery and cycle bed 

productivities but with the times for pressurization (with hydrogen discharge) being less 

than the breakthrough times to prevent the Co and CH4 impurity front from reaching the 

top of the column. The stated hypothesis (H) goes thus: There is an optimum CBP 

(corresponding to a given adsorbent amount) for a ½ cycle. Consequently, basing cycle 

recovery on the CBP can be a better method for assessing PSA cycle performance.  

 

                      3.1.4   Cycle description and breakthrough times  

             In order to characterize pressure drops in dynamic systems Sundaram and 

Wankat (1988) combined Da  y’s Law with the continuity equation and then arrived at a 
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characteristic dimensionless  onstant,ζ, whi h  a ies in e sely with the  ol mn len th. 

Thei    le of th mb was that, fo   al es of ζ   eate  than 0.5, the p ess  e d ops can be 

assumed insignificant. PSA beds can be run under dynamic or static conditions, and the 

sele tion of ζ may be ome  ele ant in dynami  systems. For ζ < 0.5, a certain bed height 

results in significant pressure drop limiting impurities adsorption and breakthrough time. 

            The  al e of ζ was not spe ifi ally dete mined altho  h expe iments we e 

performed under dynamic conditions. To account for this, breakthrough times were 

determined for each adsorbent bed height or adsorbent amount used and cycle mass 

balances were conducted for pressurizations step with durations less than the 

breakthrough time for each bed height or adsorbent amount. Large adsorbent particle 

sizes minimized bulk mass transfer limitations hence eliminating pressure drop across 

the beds. A robust dynamic pressurized bed was obtained with an inlet pressure of 8.2 

atm and a nearly constant bed pressure of 8 atm. 

            The effluent leaving port 9-2 was analyzed at specific time intervals until CO and 

CH4 exited column. With all pressure units in atm, the cycle steps employed in cycle 

mass balance and CBP estimations were: 

1  A pressurization with feed synthesis gas (with no hydrogen leaving bed) from 

atmospheric pressure to a pressure of 809 kPa. 

2  A continuous pressurization at 809 kPa with feed (as hydrogen was discharged at the 

top of the column). 

3 A co-currrent depressurization from (from 809 kPa to 379, 448 and 482 kPa 

respectively for 200 cm, 135 cm and 70 cm beds). During this step, there was no feed 

stream but with hydrogen released at the top of the bed. The hydrogen from steps 2 

and 3 were collected into the storage tank and later wasted.  

4 Acounter-current depressurization further decreased the bed pressure to 101 kPa. 

5 Pure hydrogen was delivered counter-currently (through valve 5-3) from the    

hydrogen purge tank and then used to pressurize the bed from 101 kPa to 310 kPa. 

6 The bed pressure was finally reduced to 101 kPa by opening valve 5-2. The effluents 

of steps 4 and 6 were wasted by directing to the outside through the fume hood. 
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           The overall cycle times for the 200, 135 and 70cm columns each holding a total 

of 2892 g, 1962 g and 1013 g of adsorbent respectively were 23.8, 16.3 and 7.8 minutes. 

Step 2, continuous pressurization at 809 kPa took place for a total time that was less than 

the breakthrough time (tbr) at which the impurities (CO and CH4) brokethrough to 

prevent the impurity front from reaching the top of the column. The time in steps 1 and 2 

were combined to get the time during which hydrogen was fed into the columns.  

           Figure 3.2 is a pictorial schematic of a two-bed PSA system based on a half cycle 

on bed 2 (complete cycle on bed two only). Bed 1 undergoes a blowdown (release of 

column contents) followed by external purge with molecular hydrogen. At the same 

time, bed 2 initiates and undergoes pressurization to a predetermined operational 

pressure, followed by pressurization with feed during which impurities adsorb on the 

bed. During this step pure hydrogen is discharged at the top of the bed with simultaneous 

use of the hydrogen in the purge step of bed 1 (in the case of internal purge with 

hydrogen). Bed 2 then undergoes blowdown (by way of co-current and counter –current 

depressurization/desorption). At the end of the blowdown, bed 2 is then purged to be 

ready for the next half cycle after bed 1 completes its own next half cycle. The cycle 

steps are phased out for continuous discharge of pure hydrogen. We used the half cycle 

steps detailed in Figure 3.2 on bed 2 to purify hydrogen and performed a half cycle mass 

balance that was used to calculate cycle bed productivity for a 2-bed PSA system. A 

detailed cycle step timing data are shown in Table 3.2. 
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Figure 3.2 Half cycle steps on bed 2 for a two-bed PSA system 

 
 

Table 3.2 Cycle steps, times (minutes) and pressure changes (atm) for the three 
adsorbent amounts 

column time        

height (cm) 1 2 3 4 5 6 7 B* 

200 7.7 12 3.3 0.2 0.3 0.3 23.8 15.0 

135 4.6 9.0 2.2 0.2 0.2 0.2 16.3 11.2 

70 2.4 4.0 1.0 0.2 0.1 0.1 7.8 4.4 

pressure changes (atm) 

200   8.0-3.9 3.9-1.0     

135   8.0-4.6 4.6-1.0 1.0-3.2 3.2-1.0   

70   8.0-5.0 5.0-1.0     

1=pressurization with feed (no discharge); 2 =co-current pressurization (with discharge); 

3=co-current depressurization; 4=counter-current depressurization; 5= H2 pressurization 6= 

H2 purge; 7= cycle time; B*=tbr (for CO and CH4) 
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 3.1.5  Parameter estimation 

The percent per-pass recovery and purity were as defined in Equations 3.1 and 

3.2 for initial experiments performed on the 200 cm column with 2,893 g of adsorbent.  

This definition of recovery is in accord with the traditional definition of the product 

recovery where the flow rate of the raffinate product is expressed as a percentage of the 

flow rate of the feed stream for the desired product. The hydrogen discharge rate was 

characterized by the rate at which hydrogen exited the top of the column at the 

maximum set pressure. See numerator of Equation 3.1. Since this rate increases with 

increase in the bed pressure, the value at the maximum pressure was the maximum 

hydrogen discharge rate. 

pe  pass   e o e y ( )=
max     flow  ate        in p od  t st eam 

total feed flow        hyd o en feed  on ent ation
  00….. .  

 

p  ity    =
 on . of    in the p od  t st eam      at samplin  time

s m of the indi id al  on .of spe ies in the p od  t st eam     
  00… . .  

 

        In order to perform cycle mass balances for the respective bed heights/adsorbent 

amounts, the beds were pressurized to 8.0 atm at a feed rate of 10 standard lpm. This 

was followed by co-current pressurization but with hydrogen released. The combined 

time fo  these p ess  ization steps was  sef l in  al  latin  the hyd o en “mass in”. The 

hyd o en “mass o t” was obtained f om the hyd o en dis ha  e  ate and the time in 

steps 2 and 3. 

             To get the actual hydrogen mass in or out, a plot of hydrogen flow rates versus 

time was obtained and the Matlab software was used to calculate the total area by the 

T apezoidal R le (“t apz” f n tion). This was numerically equal to the volume of 

hydrogen discharged over the respective times in the relevant cycle steps. The product of 

the density of hydrogen at standard conditions and the discharge rate gave the mass flow 

rate of hydrogen out. With focus on the amount of hydrogen discharged the hydrogen 
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adsorption or accumulation on the adsorbent pores was considered as losses and ignored 

largely because of the difficulties associated with measuring with accuracy the flows of 

gas mixtures with varying compositions. The terms in the mass balance are shown in 

Equation 3.3 while the definitions of cycle recovery (%) and cycle productivity are 

shown in Equations 3.4 and 3.5 respectively. The error margins per cycle of both the 

mean mass of hydrogen discharged, and of the recovery (%) for each bed height or 

adsorbent amount was within 4.0 %. 

 

cycle mass of hydrogen out (g) = cycle mass of hydrogen in (g) -cycle mass of hydrogen 

lost to the adsorbents (g)............................................................................................3.3 (a) 

 

ρ  (o t)∫ pdt

t

0

= ρ  (in)∫ dt –  y le mass of hyd o en lost…….……… .… …… .  (b)

t

0

 

 

   y le  e o e y=
mass of hyd o en  a  ht pe   y le

mass of hyd o en fed pe   y le
  00…………….……  ……  … .  

 

 y le  p od  ti ity (
m 

 
)= 

mass of hyd o en  a  ht pe   y le

 ombined wei ht of adso bents
                  

 

                      3.2   Results and Discussion 

                         3.2.1   Preliminary experiments on 2,892 g of adsorbent 
The Design Expert generated summary results for all combinations of input 

parameters during preliminary screening experiments for the 200 cm (2,892 g of 

adsorbent) bed are shown in Table 3.3. The mean values of the three parameters were as 

follows: % purity (99.9), % recovery (55) and discharge rate (2.1).  

This means that a little over half of the hydrogen in the feed stream will be 

recovered as the product with the balance lost to the adsorbent matrix. This translates to 
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a mean hydrogen discharge rate of 2.1 standard lpm across the range of pressures and 

feed rates studied. The productivity (L/kg) increased with bed pressure and feed rate 

from 35.2±4.4 at 3 atm/45 psig and 7slpm to 1270.2±35.4 standard lpm/kg of 

adsorbent/minute at 7 atm/102 psig and 10 standard lpm. 

 

 Table 3.3 Summary results for runs on 2,892 g adsorbents 

response name units analysis min max mean std model 

Y1 purity % factorial 99.9 99.9 99.9 0 2 factor 

Y2 recovery % factorial 22.7 85.6 55.0 25.3 2 factor 

Y3 discharge slpm factorial 1.0 3.9 2.1 2.1 2 factor 

 

 

              The results showed that the composite adsorbent bed can be used to separate 

hydrogen from a low hydrogen concentration pyrolysis gas stream with hydrogen, 

methane and carbon monoxide at their optimum production concentrations (v/v) of 45 % 

H2/ 35 % CO/ 20 % CH4 to a 99.9 % H2 purity. The variations in the output parameters 

with changes in the input parameters are shown in Figure 3.3. Both high pressure and 

feed flow rate improved the percent recovery and discharge rate as shown in Figure 3.3. 

Since 15 out of 18 possible factorial experiments were performed (excluding the 

triplicate from the condition of 7 standard lpm and 710 kPa), the point on Figure 3.3 for 

this condition is a poorly predicted non-experimental point and was considered as an 

outlier. This is evident by the fact that, unlike other points, this point lacks an error bar.   

 

  



47 

 

 

 

 

a) Change in the % recovery with feed flow and pressure (kPa) 

 

 

b) Change in H2 discharge rate with pressure (kPa) and feed flow 
Figure 3.3  Changes in % recovery and throughput with changes in feed flow rate 

(slpm) and bed pressure (kPa) – a) [% recovery]; b) [discharge rate (slpm) of 
hydrogen produced] 
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The two factors studied, the interaction between them and the generated model 

were statistically significant (p-value <<0.05) as factors affecting recovery and discharge 

rate. For a given feed rate, the percent recovery and discharge increased with increase in 

bed pressure, but the increase in recovery seemed to be less at higher feed rates 

compared to lower feed rates for a given bed pressure. The bar heights represent 

predicted mean values from a software generated best fit-model. 

Yang et al. (2009) studied the dynamics of bed recovery using superficial 

velocity, rather than feed flow. Arriving at the same conclusion, they explained the fall 

in recovery with increase in superficial velocity by arguing that there is a broadening of 

the mass transfer zone with increase in feed rate or superficial velocity. For a given 

pressure, increasing the feed flow (superficial velocity) reduces the residence time of the 

least strongly adsorbed desired H2, thereby reducing the impact of H2-co-adsorption on 

the adsorbent. Higher pressures means an increase in the concentrations of CO and CH4 

each having a higher affinity for adsorbent. Both compete more favorably with H2 as the 

number of H2 adsorption sites is reduced. This leads to more enriched hydrogen leaving 

the top of the column. Our result of an increase in recovery at higher pressure is 

explained by the pressure dependence of PSA separation in both Knudsen and bulk 

molecular diffusion models for hydrogen  [Poisseuille Equation, 3.8].  

 

                       3.2.2  Breakthrough curves and breakthrough times 

The effluent concentrations of hydrogen, methane and carbon monoxide are 

shown in Figure 3.4. Figure 3.5 shows the hydrogen purity time profile for the three 

column heights each holding a different amount of the 2 adsorbents investigated with the 

actual volumetric flow rate (or discharge rate) being the product of the constant 

discharge rate of 4.5 standard lpm and the percent purity of hydrogen. The breakthrough 

times (reported with standard errors of the means and as deduced from the impurity gas 

concentrations profile curves) and H2 recovery (from areas under the discharge vs time 

curves) are summarized in Table 3.4.  
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Table 3.4 Performance data for the 3 adsorbent amounts (10 slpm and 8 atm) 

bed height 

(cm) 

adsorbent 

height in 

bed (cm) 

adsorbent 

type 

adsorbent 

weight (g) 

H2 

mass 

in (g) 

H2 

mass 

out (g) 

Cycle 

recovery (%) 

impurity 

breakthrough 

time (min.) 

200 
120 AC 1585 

7.9 5.7 72.2 14.95±2.1 
80 5Å 1307 

135 
73 AC 1067 

6.7 4.4 65.4 12.35±1.0 
62 5Å 896 

70 
38 AC 555 

2.6 1.6 60.2 5.4±1.3 
      32      5Å       458 

 

 

 

 a) 2,892 g of adsorbent 

Figure 3.4  Concentrations of product gas streams against time of run at 8.0 atm for 
a feed rate of 10 slpm: a) 2,892 g, b) 1,962 g and c) 1,013 g of adsorbent used 
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 b) 1,962 g of adsorbent 
 

 

 

  c) 1,013 g of adsorbent 
Figure 3.4 continued 

 

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

0 4 8 12 16 20 24

ga
s c

on
ce

nt
ra

tio
ns

,v
 %

 

run time, minutes 

hydrogen

methane

carbon monoxide

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

0.0 3.0 6.0 9.0 12.0 15.0

ga
s c

on
ce

nt
ra

tio
ns

, v
%

 

run time, minutes 

methane
hydrogen
carbon monoxide



51 

 

 

 

Figure 3.5  Hydrogen purity versus run time 

 

 

             It should be noted that, the concentrations of the three gases (together with those 

of O2 and N2 carried over in the sampling bag during gas sampling) added to 100. From 

curves in Figure 3.4 and Figure 3.5, the smaller the adsorbent amount, the shorter the 

breakthrough time (tbr) for CO and CH4 for a given flow. Hence the greater the amount 

of adsorbent used, the better the separation, and the % recovery.   

              In PSA beds, the dynamics of kinetically and thermodynamically controlled 

physi-sorption interactions of the adsorbates with the adsorbent surface creates three 

distinct zones along the length of the adsorption bed. When the fresh feed gets into the 

bed, the impurity front generated under pressure is largely a saturated zone. Further 

down the middle of the bed, a concentration gradient between the gas phase inside the 

pores and the pore surfaces creates a mass transfer zone. The bed terminates with a fresh 

zone of unsaturated adsorbent at the top. Separation always aims at pushing the mass 

transfer zone away from the top of the column at the end of each ½ cycle to reduce the 

partial pressure of the impurities in the bed. This enhances the % purity. 
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             In terms of critical diameter the ranking for methane, carbon monoxide and 

hydrogen is as follows: methane > carbon monoxide > hydrogen. While the pore 

structure of activated carbon is unimodal, that of molecular sieve (5Å) is bimodal with 

microspores interconnected by macropores. The size of hydrogen and to some extent that 

of carbon monoxide permit their mass transfer flux to be largely dominated by both  bulk 

molecular and Knudsen diffusion (through activated carbon and 5Å molecular sieve) 

according to Equations 3.6 and 3.7. 

Dm  
T . 

 √ 
                                      

 

D    √
T
 ⁄ ………………………………………….…………………..……………. .7 

              Recovery of hydrogen at lower pressures is largely due to faster bulk molecular 

diffusion through both adsorbents. Larger molecules such as CO and CH4 move slowly 

by Knudsen diffusion through the pores especially at lower pressures. The flux of each 

adsorbate moves at a different rate (and hence breakthrough at different times) due 

largely to differences in molecular weight. In the intermediate mass transfer region, mass 

flux in PSA is governed more by the equivalent Poiseuille diffusivity that depends 

largely on pressure since the influence of viscosity is undermined by the minimal 

differences in the viscosities of the gases under the same conditions of temperature and 

pressure. Hence improved recovery is obtained at higher pressure as illustrated in 

Poiseuille Equation: 

D= 
   

 μ
                                       

The persistent micropores in unimodal adsorbents such as activated carbon and in 

bimodal heterogeneous zeolites such as 5Å create a medium for micropore diffusion for 

each adsorbent. In micropores mass transfer is largely dependent on differences in 

concentration gradients and steric hindrances or activation energy barriers arising from 

different kinetic diameters of the molecules. For a given micropore channel, only species 
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with a given critical diameter will move across and be separated, because they 

experience low steric hindrance. Those with larger critical diameters experience higher 

steric hindrances, requiring a higher activation energy. The channels of zeolites therefore 

kinetically and selectively sieve out only smaller critical diameter molecules. 

 

3.2.3  Hydrogen recoveries and cycle bed productivities 

             As can be seen from Table 3.4, decreasing the adsorbent amount from 2,892 to 

1,962 g caused the recovery to dive from 72.2% to 65.4 %. A further decrease to 1,013 g 

caused the recovery to fall almost 60 %. This could be explained by a reduction in the 

retention time for CO and CH4 removal from the gas phase with decreasing bed volume. 

An increase in the retention time has been shown to boost recovery, Yang et al. (2009). 

The areas under the graphs in Figure 3.6 represent the mass of hydrogen recovered per 

cycle.  This area increased with increase in the amount of adsorbent used, and hence an 

increase in the amount of H2 discharged at the end of the cycle. 

 

 

 

a) 2,892 g adsorbent (200 cm bed) and 1,962 g of adsorbent (135 cm bed) 

Figure 3.6  Cycle hydrogen discharged  versus separation time: a) 2,892 and 1,962 
g, b) 1,013 g of adsorbent 
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b) 1,013 g of adsorbent (70 cm bed) 

Figure 3.6 continued 
 

 

           Figure 3.7 shows that although the cycle recovery seems to increase with an 

increase in bed height and hence amount of adsorbent needed, the cycle bed productivity 

(CBP) maintained that trend only to a certain adsorbent amount beyond which it (CBP) 

peaked, and then decreased with increasing adsorbent amount. The experimental data fits 

a polynomial model neatly. Maximum cycle productivity (2.25 mg/g adsorbent) 

occurred for an adsorbent amount of ~2,300 g.               

             A relatively low hydrogen concentration synthesis gas stream is produced from 

the pyrolysis of biomass compared to the amount of hydrogen generated from say 

industrial steam reforming of methane followed by the water-gas-shift reaction. From 

base experimental data the projected syngas production was up to 95,160 g (2,434.7 MJ)  

per ton of MixAlco sludge pyrolyzed. This translates into 5,990 g H2, 65,000 g CO and 

21,170 g CH4 produced at optimum condition. From Figure 3.7 maximum CBP gives a 

cycle bed recovery of 66.2 %. This translates to 3,965 g H2 or (476.2 MJ) per ton of 

MixAlco process sludge available for its hydrogenation unit operations to produce more 

gasoline, JP8 and diesel. The figure also shows that cycle bed productivity can be a more 
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cost effective way of assessing PSA performance because although cycle recovery 

actually increases, after the maximum CBP of 2.25 mg H2/g of adsorbent (for 2,300 g of 

adsorbent) is attained, a higher cycle recovery of 72 % (past maximum CBP) actually 

corresponds to a lower CBP of 1.8 mg H2/g. It would appear % recovery is a weaker 

evaluation metric. Hence a stronger metric with cost implications is the CBP, which can 

be used in assessing PSA bed performances in multi-bed PSA systems. This is because it 

directly relates to the amount of adsorbent, and hence the total cost associated with 

product recovery especially for low hydrogen concentration feed streams.   

 

 

 

Figure 3.7 Effect of adsorbent amount on PSA bed productivity 
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3.2.4   Integrating pyrolysis and PSA for optimum hydrogen recovery 
            The product gas is usually needed to provide the needed pressure in the next 

pressurization step in vessels that previously underwent a blowdown in PSA systems 

with a cascade of vessels in series.  It is for this reason that one of the requirements is 

that the product species to be captured should be in a higher concentration in the feed 

streams, preferably in excess of 65 v% [37]. The primordial PSA system was the 

Skarstrom system with two beds alternately undergoing pressurization and 

depressurization in a single cycle [19]. Many modifications to this system have resulted 

in the connection of multiple beds in series to improve percent recovery and purity. 

While this is difficult with low concentrations of the desired species in the feed stream, 

such multiple cascading of the beds results only in a slight increase in the percent purity 

although an increase in recovery of about 50 % has been reported [38]. 

             Figure 3.8 shows how combining a PSA system with optimum bed productivity 

could be used to harness hydrogen produced from relatively lower hydrogen 

concentration sources such as ones derived from the pyrolysis of MixAlco process   

 

 

 

     Figure 3.8 Efficient integrated hydrogen recovery for use in the MixAlco process 
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sludge to increase yields of liquid transportation fuels. At our experimental conditions, 

for each ton of sludge pyrolyzed, the PSA will recover up to 3,965.4 g of H2 gas for 

5,990 g of H2 supplied at optimum syngas composition (43.9±3.36 v % H2/33.3±3.29 v 

% CO/20.3±2.99 v % CH4) at 740 oC for an optimum CBP of 66.6 %. The energy 

equivalent of this hydrogen will be approximately 476.2 MJ.  Hence selecting the 

adsorbent amount that leads to optimum CBP will lead to an improved hydrogen 

recovery with yet a minimum number of beds versus the multiple beds used for product 

recovery in PSA systems with the attendant costs. 

 

                     3.3  Chapter  Summary 
Only about 44.3 v% hydrogen was obtained from the syngas obtained from the 

pyrolysis of the MixAlco sludge process. Hence efficient hydrogen separation is 

necessary because the concentration of hydrogen from this source is low compared to the 

stoichiometric value of 75 v% obtained from the industrial steam reforming of methane. 

A method was developed to efficiently separate hydrogen from the synthesis gas 

obtained from the pyrolysis of the sludge derived from the MixAlco process.  The 

method developed was based on cycle mass balances and determined the PSA % cycle 

recovery using another parameter called the cycle bed productivity.  

It was found that while the % recovery will increase with an increase in the 

amount of adsorbent used, the cycle bed productivity declined after its maximum value 

as the amount of adsorbent increased. A cycle bed productivity of 66.2 % will mean that 

up to 3,965.4 g (476.2 MJ) of hydrogen will be recovered for every 5,990 g (719 MJ) of 

hydrogen in the feed stream [obtained from 1.0 ton (12,441.2 MJ) of MixlAlco sludge 

pyrolysed]. Using the traditional % recovery value of 72.2 % led to a higher amount of 

hydrogen recovered, but the amount of adsorbent used increased by ~22 %. 
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                                CHAPTER  IV 

CATALYTIC CONVERSION OF MIXALCO PROCESS DERIVED 

SYNGAS TO LIQUID FUELS 

                     4.1  Description of Setup 

The feed synthesis gas was derived from the pyrolysis of sludge obtained as the 

by-product of the MixAlco process. This syngas was originally produced with an 

approximate H2:CO ratio of 1.3. The schematic of the process used for the catalytic 

conversion of the syngas to transportation fuels is diagrammed in Figure 4.1. 

 

 

 
                Figure 4.1  A schematic representation of the setup for the catalytic conversion of    

 syngas to liquid hydrocarbons 
 

 

Three gas tanks (one with pure air, another with pure hydrogen and a third 

containing a 65 mol % H2/35 mol % CO syngas mixture, after adjustment of H2:CO 
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ratio) were connected to a catalyst bed via a pressure regulator (Air Gas, College Station, 

Texas), a mass flow controller (Alicat Scientific, Tucson, Arizona) and a pressure gauge 

(McMasters Carr, Aurora, Ohio) respectively. The catalyst was heated electrically in a 

horizontal tube furnace (ThermoScientific, Ashville, North Carolina). The products of 

the process were then passed through another pressure gauge, a cooling trap and then a 

back pressure regulator (H. Lorimer Corp., Longview, Texas).  While the uncondensed 

gases exited to be analyzed every hour, the liquid hydrocarbon products were condensed 

in a condenser maintained at the pressure of the system by the back pressure regulator.   

              

                     4.2   Experimental  Method 

                      4.2.1  Catalyst selection 
The conventional Fischer-Tropsch catalyst for the hydrogenation of CO was 

cobalt supported on silica. The water of the WGS reaction tends to react with the active 

Fe metal resulting in the formation of the metal oxides. The net result is a reduction in 

overall conversion and the undesirable increase in methane selectivity. Unlike iron, 

cobalt catalyst is more resistant to deactivation by the water gas shift reaction (Eq.4.1). 

Also, cobalt catalysts tend to produce more higher molecular weight hydrocarbons 

[29,31, 33].  

CO + H2O                 CO2 + H2……...……..…………………………………...4.1 

Generally speaking, supports are expected to disperse the active phase, resulting 

in an increase in the available metal surface area of the catalyst. Supports stabilize the 

active phase thereby minimizing loss of active surface area and maintain overall catalyst 

thermal and mechanical strengths. Support pores and matrix provide a medium for mass 

and heat transfers for catalysts subjected to diffusion limitations. Catalyst-support 

interactions can facilitate or inhibit the reduction of the precursors to their active form 

[33]. Too high an interaction can inhibit reduction, while a loosely bound precursor on 

the support can lead to catalyst loss to attrition. The nano-particles under those scenarios 

eventually sinter and agglomerate leading to deactivation. SiO2 was selected because its 
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interaction with the metal is small enough to promote reduction but high enough to limit 

sintering and agglomeration. Metal-support interactions have been shown to decrease in 

the order Al2O3>TiO2>SiO2 for the acidic base metal supports [49]. Selection of SiO2 

therefore minimized high support-metal interaction, thereby decreasing the chance for 

the formation of irreducible forms of cobalt oxide. Such mixed oxides eventually sinter 

and agglomerate leading to catalyst deactivation [32,39]. 

The second catalyst supported platinum, palladium and molybdenum on an acid 

form of  ZSM-5 (HZSM-5). Palladium has been reported to have a stabilizing effect by 

binding active metals to the support although it also plays a key role in 

reforming/secondary reactions such as isomerization and cyclization [40-41]. Platinum 

and molybdenum have strong dehydrogenation/hydrogenation capabilities with 

molybdenum being able to further hydrogenate carbon monoxide, thereby increasing CO 

conversion [42]. Both metals also have strong metal functionalities in oligomerization 

and/or polymerization of olefins formed by the conventional catalyst. Platinum also 

catalyzes the dehydrogenation of alkanes to alkenes in the metal-acid 

dehydrogenation/hydrogenation reactions involving metal and acidic sites of HZSM-5 

[43]. 

The three metals (Mo, Pd and Pt) are to be supported on a pre-protonated(acid 

form) of ZSM-5 synthetic zeolite (with Na+ as the exchangeable cation) with a medium 

pore size in the range of 5.6-6.0 Å. It has been reported that medium to large pore size 

ZSM-5 has the effect of facilitating mass transfer within the inter-locking channels [43-

44]. The chosen ZSM-5 had a Si/Al ratio of 23. This high acidic property increases the 

density of the Brönsted acid sites which will only be partially reduced when some of 

those acid sites are taken up by the three metals introduced in low concentrations. The 

combination of Co-SiO2 and Mo-Pd-Pt/HZSM-5 therefore creates a hybrid metal-metal-

acid functionalization of the catalyst versus the metal-acid functionality reported in the 

literature. Hydrocarbons with increased selectivity to jetfuels and diesel can therefore be 

produced (under appropriate thermodynamic conditions) from an improved Fischer-

Tropsch synthesis reaction according to Eq. 4.2 and Eq.4.3: 
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nCO + 2nH2           CnH2n + nH2O……………………………….……………………..4.2     

nCO + (2n+1)H2            CnH2n+2 + nH2O …………………………………….…..……4.3 

The hypothesis is that a hybrid (a mixture of Co-SiO2 and Mo-Pd-Pt-HZSM-5) catalyst 

can increase the selectivity of hydrocarbons in the JP-8 and diesel carbon number range 

versus normal Co-SiO2 at lower temperatures and pressures in a fixed bed reactor mode 

of operation.      

 

                        4.2.2  Catalyst  preparation 

The silica support was supplied by The Research and Development Center of the 

PQ Corporation (Conshohocken, Pennsylvania). The cobalt nitrate [Co(NO3)2.6H2O] 

precursor salt was supplied by VWR (Radnor, Pennsylvania). By wet impregnation 

method, the final catalyst (Co-SiO2) was prepared to contain 20 wt % cobalt nano-

particles. Mass balance calculations showed a total catalyst weight of 25 g for an initial 

support mass of 20 g. Stoichiometrically, a total of 24.7 g of the nitrate precursor was 

needed to impregnate 5.0 g of cobalt nano-metals on the support. The calculated weights 

of the support and salt were then mixed and dissolved in 200 mL of distilled water. For 

cation adsorption on the support, the equilibrium (Eq.4.4), controlled largely by the pKa 

of the acidic surface is established: 

M-OH+ + C+ ↔  -OC+ + H+
…………………………..………………………….…...4.4 

The pH of the metal precursor/silica support solution was raised to 5.4 (with 1.0 

N NaOH solution) which is above the point of zero charge (isoelectric point) for the 

support, reported to be between 1.0-2.3 [31]. Above this pH, the support surface is 

negatively charged, thereby creating a migration of cobalt precursors to be adsorbed on 

the SiO2 surface [31]. The solution was magnetically stirred with simultaneous heating at 

a temperature between 70 -90 oC for at least 18 hours until “dry” to the to  h. The “d y” 

catalyst was then dried in air at a feeding rate of 400 mL/min at 120 oC overnight (12 

hours) at 1 atm/15 psig. To calcine the catalyst in-situ, the air flow rate was ramped to 
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500 mL/min and maintained there for 4 hours at a temperature of 400 oC. Gravimetric 

measurements showed the difference between the weight of the catalyst and the initial 

weight of the support to be ~4.6 g, which was approximately the weight of cobalt 

transferred to the support. 

The zeolite was supplied by Zeolyst International (Kansas City, Kansas) and was 

received in the ammonium form. Since it has been reported that heating in air converts 

the ammonium to the acid/protonated form [30, 45], the zeolite was converted to the acid 

form (HZSM-5)] by calcining the ammonium form in 500 mL/min of air at 500 oC for 4 

hours and then cooled. 17.2 g of the support was thus calcined in 500 mL/min of air at 

500 oC for 4 hours and allowed to cool. 14.4 g of HZSM-5 was recovered after removal 

of nitrogen (as ammonia) and water of hydration. The Mo-Pd-Pt-HZSM-5 catalyst was 

then prepared by ion-exchange method. 

Bis[ethylenediamine]platinum (II) chloride, ammonium molybdate (VII) 

tetrahydrate-99+% (both powders) and palladium (II) chloride stock solution were 

precursors for platinum, molybdenum and palladium respectively. Ammonium 

molybdate (VII) tetrahydrate was supplied by Fischer Scientific (Pittsburgh, 

Pennsylvania), while the platinum and palladium precursors were both supplied by 

VWR(Radnor, Pennsylvania). The Mo-Pd-Pt/HZSM-5 catalyst was prepared to contain 

8.0 wt % Mo, 1.8 wt % Pd and 1.5 wt % Pt respectively by ion-exchange method.  This 

corresponded to ~1.31 g Mo, 0.2997 g Pd and 0.25255 g of Pt for a total metal loading 

of 1.862 g. The equivalent amounts of precursors containing these amounts of metals 

were weighed out after stoichiometric calculations. 

The measured amount of bis[ethylenediamine]platinum (II) chloride was 

dissolved in a predetermined volume of a stock solution of PdCl2 (containing the 

stoichiometric amount of Pd) and made to 50 mL using distilled water. The 

predetermined amount of ammonium molybdate (VII) tetrahydrate was completely 

dissolved in 50 mL of distilled water. This ammonium (VII) tetrahydrate solution was 

then added to the solution containing bis[ethylenenediamine]platinum (II) chloride and 

palladium (II) chloride. The combined solution was made to about 250 mL and stirred 
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continuously to dissolution. The final pH was then adjusted to between 5 and 5.4(using 

1.0 N NaOH) since the isoelectric point of ZSM-5 is between 3.0 and 4[46]. The 

combined precursor mixture was heated (with magnetic stirring) at between 70-90 oC for 

at least 20 hours with the HZSM-5 for  ion-exchange and then drying to occur. The 

“d y”  atalyst was then o en-dried for 3 hours before being transferred to a micro-

reactor where a stream of air at 200 mL/min was passed through it at 110oC for 4 hours. 

It was then calcined in air at atmospheric pressure at a feeding rate of 500 mL/min for 5 

hours at a temperature of 500 oC. The mass of catalyst at the end of the preparation was 

~ 16.1 g. The difference being the weight (combined) of the metals loaded.  

 

                       4.2.3  Initial reactor startup and catalyst  testing 

The prepared catalysts Co-SiO2 and Mo-Pd-Pt-ZSM-5 were ground and sieved to 

32-   μm. Then a total of  . 5 g (1 g of Co-SiO2 and 0.75 g of Mo-Pd-Pt-ZSM-5) were 

thoroughly mixed and loaded into a 1.3 cm internal diameter stainless steel micro-reactor 

supplied by Swagelok (Houston, Texas). 1.0 g of Co-SiO2 was used in pure Co-SiO2 

experiments. This gave a catalyst bed length of about 40 mm with no pressure drop in 

the bed. The catalyst bed was trapped between quartz wools. Disks of stainless steel 

screens (on each side of the bed) delicately welded to stainless steel wires in turn held 

the wools in place. Before each experiment, the catalyst was activated or reduced in a 

stream of hydrogen fed at the rate of 150 mL/minute for 12 hours at 400 oC and 1 atm/15 

psig. 

With continuous hydrogen flow, the reactor temperature was reduced to 180 oC 

at a rate of  1 oC/minute. Then hydrogen flow was turned off and syngas (H2:CO ratio of 

1.81) was fed into the reactor at 500 mL/minute for 20 minute to purge out residual  

hydrogen from the catalyst reduction step at 1 atm/15 psig and acclimatize the catalyst 

for subsequent experiment. It should be noted that the H2: CO ratio of 1.81 is an 

adjustment of the maximum syngas composition that would normally be obtained after 

pyrolysis of sludge from the MixAlco process. This external adjustment is achievable if 
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the high amount of methane (~20 v%) produced from the pyrolysis of MixAlco process 

sludge is converted into more hydrogen and carbon monoxide by steam reforming.  

 This composition is best for the catalytic performance of low temperature (<300 
oC) cobalt catalysts. While maintaining the temperature at 180 oC the reactor was 

pressurized gradually with the feed syngas to the two pressures studied: 10 atm/150 psig 

and 13.6 atm/200 psig maintained using the backpressure regulator. The syngas feed rate 

was then adjusted to 110 mL/min and the temperature ramped to 250 oC at a ramp rate of 

5 oC /min. For each set of conditions, the experiments were performed in duplicate. It 

should be noted that multiple preliminary experiments at 300 and 320 oC and at a 

pressure of 20 atm/300 psig were attempted. Since these experiments gave very high 

conversions, b t  o ldn’t yield any meanin f l liq id hyd o a bons d e to diff sion 

limitations, only the conditions 10 atm/150 psig and 13.6 atm/200 psig at 250 oC were 

investigated. A residence time (inverse gas hour space velocity) of 269 gmin/mol was 

used and calculated using Equations 4.5-4.7. Table 4.1 summarizes the key catalyst 

reduction and operating reactor parameters and conditions.The feeding rate of 110 

mL/minute was maintained at the inlet for a time on stream (TOS) of 9 hours. 
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Table 4.1 Catalyst reduction and experimental operating parameters and 
conditions 

reduction in hydrogen 

temperature(oC) pressure (atm) 
H2 flow 

(SLPM) 

H2 flow 

(kmol/min) 
time(hours) 

W/F 

(gmin/mol) 

400 1 150 6.1 12 187 

experimental run 

temperature(oC) pressure (atm) 

syngas 

flow 

(SLPM) 

syngas flow 

(kmol/min) 
time (hours) 

W/F 

(gmin/mol) 

250 10, 13.6 110 4.5 9 269 

 

 

4.2.4   Analysis 

Uncondensed effluent gas samples were collected every hour for analysis using 

0.5 L tedlar bags supplied by SKC  Inc. (Houston, Texas) following the attainment of the 

predetermined thermodynamic conditions of temperature and pressure at reactor startup. 

The uncondensed regular gases namely unconverted CO and CO2 were analyzed using 

an SRI 8610C GC equipped with an HID and a TCD detector. The SRI GC sampling 

loop was programmed to inject 1.0 mL of gas sample per injection. The uncondensed 

C1-C6 hydrocarbons were analyzed using another SRI 8610C GC equipped with a 30 

m 0.5  mm  0 μm H -plot/Q column supplied by Agilent Technologies (Santa Clara, 

California).  0 μL of  as sample was injected using a gas-tight syringe. The condensed 

hydrocarbons were collected at the end of the TOS and analyzed using a GCMS 

(Thermo Electron Corporation, Pittsburgh, Pennsylvania) having an Rxi 5ms 60 m×0.25 

mm 0. 5 μm  ol mn.  
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The SRI GC was previously calibrated with lower olefin (alkene) and paraffin 

(alkane) (C2-C6) standards including methane. The quantification of the concentration of 

each of the lower/lighter hydrocarbon product was therefore based on a calibration one-

point coefficient after the injection of  0 μL of sample. Calibration coefficients are 

shown in Table A 3 in the Appendix section. After collection of the liquid product, it 

was allowed to settle for the establishment of a phase separation of the top lighter 

hydrocarbons from the bottom water phase.  

A liquid-ti ht  lass sy in e was  sed to withd aw  00 μL of the top 

hyd o a bons pa t. This was then t ansfe  ed into a  00 μL inse t  ial  ontained in a 2 

mL GCMS sampling vial. 0.5 μL of the liquid hydrocarbons product was injected into 

the GCMS by the auto-sampler undiluted using  a 250:1 split ratio with a split flow rate 

of 375 mL/minute. The GC initial temperature was 50 oC and was maintained there for 5 

minutes before ramping to 320 oC at a ramp rate of 20 oC/minute. The temperature was 

maintained at 320 oC for 5 minutes. The helium carrier gas flow rate was 1.5 mL/min 

with an inlet temperature of 225 oC. The MS   ion source and transfer line temperatures 

were maintained at 250 oC. The analysis of only the top portion of the liquid sample 

following a phase separation ensured that the injected samples were purely hydrocarbons 

in composition with negligible amounts of oxygenates if ever produced. Target 

compound spectra (fingerprints) generated in GCMS chromatogram were matched with 

the spectra of candidate compounds suggested from the library established by the NIST.  

The effluent and feed CO concentrations were used to establish the % conversion 

(X) as defined in Equation 4.8. Since over 130 hydrocarbons were detected and 

identified, a semi-quantitative method based on the peak areas of the compounds was 

used to determine the selectivity of hydrocarbons within a given carbon number range in 

the effluent stream. The sum of the peak areas of hydrocarbons with a given carbon 

number in the effluent stream was first calculated. The selectivity of all hydrocarbons 

within that carbon number range was then obtained by expressing the sum of their peak 

areas as a percentage of the difference between the sum of the peak areas of all 

hydrocarbons and the sum of the peak areas of the hydrocarbons in that carbon number 
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range. See Equation 4.9. Because of the sampling method, the gas phase (CO, CO2 and 

C1-C6) and liquid phase analyses were performed separately. The compositions of CH4 

and CO2 were plotted against the TOS. The selectivities of C2 to C6 were determined 

(based on effluent concentrations) at steady state conversion when catalyst deactivation 

was minimal, or at the peak of limiting reagent conversion in the case where deactivation 

was observed. 

   O  on e sion    =
 O feed  on ent ation –  O exit  on ent ation

 O feed  on ent ation
  00  ……… .  

 

sele ti ity, wt =
∑   

 
   

∑ Ai ∑   
 
   

n
i=6

  00        …………………  …… ..…  ………. .  

                       The distributions of the various classes of hydrocarbons (paraffins, olefins and 

isomers) were determined by expressing the sum of the GCMS peak areas of the 

hydrocarbons in each class as a percentage of the total hydrocarbons peak area. The two-

sample t-test was used to statistically compare the selectivities (from the cross-over 

points of the selectivity versus carbon number plots) of the two catalysts; Co-SiO2 and 

Co-SiO2/Mo-Pd-Pt-HZSM-5 at 10 atm/150 psig at 250 oC using Minitab 16 statistical 

environment. The same statistical technique was used to compare the selectivities of the 

hybrid catalyst at two pressures 10 and 13.6 atm at 250 oC. In each case, after the cross-

over point in the selectivity versus carbon number plot, the mean selectivity of the 

hydrocarbons with carbon numbers of 12 or more were compared. This method was used 

because the area under the selectivity versus carbon number plot has no real physical 

significance.  

 

4.2.5  Characterization 

Specific surface area characterizations of the supports and then the catalysts were 

performed using a multi-point BET surface area analyzer with nitrogen as the adsorbate 
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in a Nova 4200e supplied by Quantachrome Instruments (Boynton Beach, Florida). 

Samples were first pretreated by vacuum degassing for a period of 3 hours at 320 oC. 

The pretreated samples were then transferred to the analysis station at an adsorbate 

temperature of -195 oC. Nitrogen was delivered into the sampling cells for a period of 1 

hour. The specific surface area of the ZSM-5 dropped from 559 m2/g to 120.9 m2/g after 

loading with Mo, Pd and Pt in Mo-Pd-Pt/HZSM-5. When the SiO2 was loaded with Co, 

its specific surface area dropped from279.9 m2/g to 118.3 m2/g. The determined specific 

surface area of the acid form of ZSM-5, HZSM-5 was 230.6 m2/g. 

Electron probe microanalysis (EPMA) was used to qualitatively verify the 

presence of each metal on the support. Backscattered electron images (BSE) and 

elemental analyses were acquired on a four wavelength-dispersive spectrometer (WDS) 

Cameca SX50 electron microprobe at an accelerating voltage of 15 kV and beam 

currents of 1 to 100 nA. Energy-dispersive X-ray (EDS) qualitative analyses (spectra) 

we e obtained with the   50’s Imix   in eton  amma Te h (  T) system   sin  an 

ultra-thin window detector. Wavelength-dispersive X-ray (EDS) qualitative scans 

(spe t a) fo   d and  t we e obtained with the   50’s  ET diff a tin    ystals at an 

accelerating voltage of 15 kV and a beam current of 100 nA. X-ray elemental 

dist ib tion “maps” we e obtained with wavelength dispersive spectrometers (WDS) at 

15 kV and 20 nA beam current in beam scanning mode. The beam was rastered in either 

a 128 by 128 point grid with a grid spacing of 0.07 micron (10,000x mag), or a 256 by 

128 grid with a grid spacing of 0.24 micron (1500x mag).  The X-ray acquisition time 

per grid point (pixel) was 15 milliseconds. The inverted x-ray maps for cobalt on silica 

and for molybdenum, palladium and platinum on HZSM-5 are shown in Figure 4.2. 
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Figure 4.2  BSE for Co (top left) and x-ray images for Mo (bottom left), Pd (bottom 

right) and Pt (top right) 
 

  

Preliminary characterization entailed determining actual x-ray counts for the 

elements of cobalt, molybdenum, palladium and platinum on their respective supports. 

Because of relatively higher concentrations of cobalt and molybdenum, EDS x-rays of 

these two elements were easily discernible from the x-ray spectra. The lower 

concentrations of palladium and platinum made their own spectra peaks relatively weak. 

The dark images in Figure 4.2 indicate the locations of the respective metals. Inverted x-

ray maps of the pure supports when compared to the actual catalysts showed relatively 

reduced visual appearances of dark images due largely to the presence of exchangeable 

sodium cations for the zeolite support. To ascertain the presence these two metals, a 

WDS scan was performed and the peaks for detected palladium and platinum are shown 

in Figure 4.3. 

Four candidate catalyst grains were examined for the distribution of the metals. 

The cobalt dispersion was relatively dense owing to the high loading with clusters 
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unevenly spread on the support matrix. From the backscattered electron and the x-ray 

maps, the relative surface presence of the metals were Co> Mo>Pd>Pt. The presence of 

clusters was common to both catalysts probably pointing to localized regions of metal 

nano-particle sintering and agglomerization especially as a significant surface of the 

catalyst showed evidence of uniform distribution. Reduction in sintering and 

agglomerization was probably aided by magnetic stirring during aging and longer 

periods of drying in air. 

 

 

 

Figure 4.3 Results of WDS scans for palladium and platinum 
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4.3  Results and Discussion 

4.3.1   Co-SiO2 versus Co-SiO2 /Mo-Pd-Pt-HZSM-5 catalyst (250 oC and  

         10 atm) 
About 123 to 130 hydrocarbon compounds were identified for the Co-SiO2 

catalyst while 135 to 148 hydrocarbon compounds were identified when the hybrid 

catalyst was used.  The hydrocarbons were in the classes of striaght-chained n-

alkanes/paraffins, alkenes/olefins and isomers with isomers being mono-, di-, tri- and 

tetra-branched. 

The usual Co-SiO2 catalyst produced hydrocarbons primarily in the gasoline (C4-

C12) carbon number range at 250 oC and 10 atm. The gasoline fraction had its highest 

selectivities in the C9 to C11 carbon number range with lower selectivities of JP-8 (C10-

C17). Under a similar condition, and using Co-SiO2/Mo-Pd-Pt-HZSM-5 catalyst, the 

maximum selectivity reduced (from ~19.8 to ~10)  but the selectivity of fuel in the JP-8 

carbon number range showed an increase as can be shown by the shift in the selectivity 

curve of the hybrid catalyst in Figure 4.4. See Figure A 4 and Tables A 5-A 6 

respectively in the Appendix for liquid hydrocarbons chromatogram and nomenclature 

for results at 10 and 13.6 atm for a temperature of 250 oC. 
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Figure 4.4 Effect of catalyst on hydrocarbons selectivity at 250 oC and 10 atm 
            

 

The result shows that mixing Co-SiO2 catalyst with Mo-Pd-Pt-HZSM-5 can 

increase the selectivity of the conventional Fischer-Tropsch catalyst to higher 

hydrocarbons in the JP-8 range. However, Figure 4.5 shows that Co-SiO2 catalyst will 

produce more isomer and olefins than the hybrid catalyst. Furthermore, more straight-

chained hydrocarbons in the JP-8 range are produced for the Co-SiO2/Mo-Pd-Pt-HZSM-

5 over Co-SiO2 catalyst.  Thermodynamics favors the oligomerization of lower olefins to 

longer chain hydrocarbons at temperatures lower than 300 oC (low temperature Fischer-

Tropsch processes). Therefore, at 250 oC lower olefins diffuse through the pores of the 

Mo-Pd-Pt-HZSM-5 catalyst component to become hydrogenated on the Brönsted acid 

sites of the Mo-Pd-Pt-HZSM-5 to produce active carbonium ion intermediates. The 

metal functionalization of the HZSM-5 then leads to the combination of the carbonium 

ions (during olefins oligomerization) to form longer chain n-paraffins. Hence the 

increase in the relative amounts of paraffins [44]. 
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Figure 4.5  Distributions of the various classes of hydrocarbons for the two 
catalysts at 10 atm  and 250 oC 

 

 

It would appear that isomerization is favored over oligomerization on Co-SiO2. 

Since the olefins are starting materials for active intermediate ions (carbonium ions) 

needed for secondary reactions, more olefins diffuse through the acidic pores of the Co-

SiO2 where they become chemisorbed and protonated on the acid sites to become 

tertiary, secondary and primary intermediates. The carbonium ions then diffuse and 

become isomerized into mono-, di-, and tri-branched isomers [44]. In the Co-SiO2/M-

Pd-Pt-HZSM-5 catalyst, the intermediates from olefin hydrogenation are 

thermodynamically used as materials for oligmerization to JP-8, rather than for 

isomerization. When Co-SiO2 is the catalyst, the intermediates isomerize. This explains 

an increase in the amount of isomers in the Co-SiO2 versus the Mo-Pd-Pt-HZSM-5 

catalyst. Hence Co-SiO2 seems to be a good catalyst for the production of predominantly 

gasoline fuels. Mixing Co-SiO2 with Mo-Pd-Pt-HZSM-5, therefore creates a hybrid 

catalyst for the production of fuels predominantly in the JP-8 boiling range. Although 

there might be a decrease in the octane rating, due to decrease in the distribution of 
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isomers or olefins, the overall power output increases because of the increase in the 

molecular weights of the species hydrocarbons. No aromatics were produced largely due 

to thermodynamic reasons. 

 

                       4.3.2  Hybrid catalyst –conversion and  CO2 and CH4 productions at 10    

          and 13.6 atm  and 250 oC 
    Figure 4.6 shows the carbon monoxide conversion vs the time on stream for the 

hybrid catalyst at 250 oC studied for two pressures; 10 and 13.6 atm. After a brief 

transient period for both conditions, conversion of CO quickly peaked at around 88 %. 

Steady state performance was maintained at the condition of 13.6 atm, while 

deactivation of the catalyst was observed after 5 hours for the condition of 10 atm. It has 

been reported in the literature that condensation of gas phase hydrocarbons on the 

catalyst surface leads to deactivation through carbon nano-rods formation on the surface 

of the catalyst [47]. 

 

 

 

Figure 4.6 Conversion vs time on stream for the hybrid catalyst at 10 and 13.6 atm 
(250 oC) 
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Figure 4.7 Variations in the CH4 concentrations at 10 and 13.6 atm  

 

 

             Figure 4.7 shows how the methane concentration in the effluent changed with the 

time on stream for the two pressures. The change with the time on stream (TOS) of the 

concentration of carbon dioxide is shown in Figure 4.8. At a high catalytic activity 

which corresponded to steady state CO conversion, the product stream concentration of 

ethylene seemed low compared to when deactivation kicked in. The corresponding 

methane concentrations seemed to be highest. This suggested ethylene cleavage into 

methane. The latter being a stable molecule is unlikely to undergo carbon-carbon 

coupling secondary reactions into higher hydrocarbons. Whence, methane partial 

pressure and its concentration in the effluent gas phase will be expected to increase. 
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Figure 4.8  Variations in the CO2 concentrations at 10 and 13.6 atm 

 

 

             The difference in methane concentration at the two pressures is best explained by 

the Anderson-Schulz-Flory (ASF) statistical model. At lower pressures, the probability 

for chain growth (α) in the p opa ation step of the o e all  ea tion decreases so that 

more short chain hydrocarbons (C1-C3) are produced. In particular methane will have the 

highest selectivity. As the pressure increases the value of α also increases. This then 

increases the selectivity of higher hydrocarbons leading to a decrease in the selectivity of 

methane. 

The increase in the selectivity of CO2 at higher pressures is best explained partly 

by the stoichiometry of the water gas shift reaction and the overall reaction kinetics 

during the transient state of the reaction. An extra mole of CO2 is produced for an 

additional mole of CO consumed at a higher pressure. At higher pressures, the 

concentration of CO in the gas phase (and hence its number of moles converted) 
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increases. This means that the rate of steam reforming of the extra CO to produce more 

CO2 in the forward WGS reaction will increase. The reverse occurs at lower pressures 

when the concentration of CO reduces at a lower CO catalyst bed pressure leading to a 

reduction in the concentration of the CO2 in the effluent. Since an explicit kinetics study 

of the WGS reaction was not the main objective of this work, one can only speculate an 

increase in the rate of the forward reaction producing more CO2 product species at 

higher catalyst bed pressures, with the reverse occurring at lower pressures [53]. 

 

                         4.3.3  Hybrid catalyst – uncondensables at 10 and 13.6 atm (250 oC) 

The plot of selectivities at 10 and 13.6 atm for a temperature of 250 oC is shown 

in Figure 4.9 for C1 to C6 hydrocarbons. The distributions of the various hydrocarbons 

classes are shown in Figure 4.10 for the same non-condensables (C1 to C6). At higher 

pressures, there is a general drop in the selectivity of the lower hydrocarbons compared 

to the selectivity at lower pressures. Since it was also observed that an increase in 

pressure caused an increase in the selectivity of higher hydrocarbons in the JP-8 and 

diesel range, increase in pressure probably favored more secondary oligomerization 

reactions of the lower hydrocarbons to higher hydrocarbons. For the non-condensable 

hydrocarbons, the selectivity also decreases with the carbon number for all two pressures 

studied. Lower hydrocarbons, especially (C2-C4) olefins are some of the main products 

of the primary Fischer-Tropsch synthesis process [40]. At a low probability for the 

propagation of the active intermediates (usually at low reactor pressures), the selectivity 

of lower hydrocarbons will be expected to increase. 
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Figure 4.9  Selectivity versus the carbon number for uncondensables 

 

 

 

Figure 4.10 Class distributions for the uncondensables 
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At both 10 and 13.6 atm, results show the production of lower paraffins, lower 

olefins and lower isomers. Increasing the pressure from 10 to 13.6 atm causes an 

increase in the amount of n-paraffins, an increase in the amount of olefins and a decrease 

in the amount of isomers. An increase in the pressure increases the concentration of CO 

in the gas phase. This increases the production of lower olefins which become 

protonated by the Brönsted acid sites of the Mo-Pd-Pt/HZSM-5 catalyst and the acidity 

of the SiO2 to increase the concentration of carbonium ions ions. The intermediates then 

oligomerize on the metal sites to produce shorter chain n-paraffins. Thermodynamics 

still favors oligomerization over isomerization. 

 

                         4.3.4  Hybrid catalyst – selectivities and class distributions at 13.6 atm  

             (250 oC) 

In order to investigate the influence of pressure on selectivity and product class 

distribution, runs were carried out for the catalyst Co-SiO2/Mo-Pd-Pt-HZSM-5 at 13.6 

atm and 250 oC. As shown in Figure 4.11, the selectivities of JP-8 and to some extent 

diesel automotive fuels increased when the results were juxtaposed with results obtained 

at 10 atm and 250 oC.  
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Figure 4. 11 Increase in selectivity with increase in pressure for the Co-SiO2/Mo-
Pd-Pt-HZSM-5 hybrid catalyst 

 

 

 

Figure 4.12 Product class distribution for the Co-SiO2/Mo-Pd-Pt-HZSM-5 hybrid 
catalyst 
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From Figure 4.12 this increase is at the expense of paraffins and olefins. At the 

same time enhanced isomerization of the olefins and a decrease in the paraffin selectivity 

are observed. At higher pressures, dehydrogenation of the paraffins to the olefins could 

occur. If the olefins become rehydrogenated on the acid sites of the catalyst, the 

intermediates produced can in another metal functionality of the catalyst become 

isomerized into more isomers. Given the low temperature at which the experiments were 

performed, the likelier scenario is that the olefins already generated from the primary 

FTS process immediately undergo hydrogenation on the acid sites followed by the metal 

functionalization of the carbonium ions into isomers. This means that an increase in 

pressure promotes isomerization at the expense of oligomerization and/or polymerization 

into straight-chained paraffins. The mean difference in selectivity of the Co-SiO2/Mo-

Pd-Pt-HZSM-5 catalyst over Co-SiO2 was 0.61 with a p-value of 0.29.  The mean 

difference in selectivity of the Co-SiO2/Mo-Pd-Pt-HZSM-5 when the pressure was 

raised to 13.6 atm from 10 atm was 1.53 with a p-value of 0.11. Selectivity of a 

conventional FTS process could therefore be altered in two ways: changing the catalyst 

for the same condition and altering process thermodynamics for the same catalyst. 

 

                      4.3.5   Proposed  reaction mechanisms 
The 3 main secondary reactions affecting product selectivity are isomerization, 

oligomerization and polymerization (to long-chain paraffins). All three reactions depend 

on the products of the Co-SiO2 primarily olefins and involve the formation of active 

intermediate carbonium ions. When the selectivity of JP-8 is increased, the major 

hydrocarbons class distribution shows that the relative amounts of the various classes 

increase in the order paraffins > isomers> olefins for the hybrid catalyst at both pressures 

of 10 and 13.6 atm respectively.  One might then conclude that at the thermodynamic 

state of the system, the predominant secondary reactions are oligomerization and/or 

polymerization followed by isomerization. Free available olefins from primary FTS 

reaction and to some extend those generated from the metallic dehydrogenation of lower 
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alkanes are converted to intermediates and those intermediates are in turn preferably 

converted more to longer-chain hydrocarbons by oligomerization and/or polymerization 

over isomerization. 

 Figure 4.13 shows how propane and/or propylene can be polymerized to a 

longer-chain hydrocarbon (via dehydrogenation into propylene) with the created 

intermediate possibly undergoing a parallel isomerization reaction. Both reactions feed 

on a common propylene pool with the propylene generated from the catalytic activity of 

Co-SiO2 and from the metal dehydrogenation of propane. 

 

 

 
 

Figure 4.13  Proposed mechanisms for the oligomerization of propylene and the 
isomerization of the derived intermediates 
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When the alkanes are used as starting materials for secondary reactions, they are 

first converted to olefins  by the dehydrogenation activity of the platinum on HZSM-5. 

This is because, alkane adsorption on to ZSM-5 is limited but will chemisorb in the 

presence of a transition metal to become dehydrogenated to their corresponding alkene 

or olefins, thereby increasing the olefin pool [44]. With the aid of acid sites and Mo/Pt 

catalytic activities, propagation to longer chain alkanes will occur with Pd catalyzing the 

isomerization reactions.  

Oligomerization reaction reduces the total number of hydrocarbons in the system, 

thereby reducing the overall system entropy versus isomerization which leaves the 

entropy somewhat the same. This leads to a greater negative change in the Gibbs free 

energy thereby encouraging species propagation over structural reconfiguration as is the 

case with isomerization. Less isomers are therefore produced. The dehydrogenation of a 

paraffin to an olefin, the attachment of olefins to free acid sites to generate intermediates 

and the eventual surface interaction of the intermediates to form the longer chain 

paraffins are Langmuir-Hinshelwood-Hougen-Watson style mechanistic steps [48]. 

Since the possibility also exists for the interaction of a surface adsorbed intermediate 

with a free fluid phase olefin to form a JP-8 molecule in a final step, the Eley-Rideal 

mechanism also comes into play.  

 

4.4  Chapter Summary 
  Experiments were performed to catalytically convert syngas with the 

composition of 65 mol % H2 and 35 mol % CO using a conventional Fischer-Tropsch 

synthesis catalyst (Co-SiO2) at a pressure of 10 atm and a temperature of 250 oC. The 

liquid product obtained contained hydrocarbons mainly in the gasoline and JP-8 carbon 

number ranges.  

When this catalyst was mixed with a newly designed Mo-Pd-Pt/HZSM-5 catalyst 

with a metal-metal-acid functionality, the resulting hybrid catalyst caused the selectivity 

of the liquid product to shift more to the hydrocarbons in JP-8 carbon number range. At 

a higher pressure of 13.6 atm and a temperature of 250 oC, the selectivity of 
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hydrocarbons with their carbon numbers within the JP-8 and to some extent diesel was 

further increased. Hence using the hybrid catalyst and the MixAlco process derived 

syngas with the stated composition will enable the process extend its fuels production to 

more JP-8, gasoline and diesel. This will go a long way to increase the fuels production 

capacity of the plant. 
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CHAPTER  V 
CONCLUSIONS 

 

5.1   Syngas from the Pyrolysis of MixAlco Process Sludge 

Under the conditions at which the pyrolysis of the feed was conducted, it was 

found that the undigested effluents from the MixAlco process can be pyrolyzed to 

recover hydrogen, carbon monoxide (as the major components of synthesis gas) together 

with methane. The key pyrolysis findings can be summarized as follows: 

            1.    operating at 630-770 oC  with a biomass feed rate of 300-400 g/minute, an auger 

pyrolyzer and the response surface statistical method were use to obtain a maximum 

syngas composition of 43.9±3.36 v % H2/33.3±3.29 v % CO at 740 oC. The CH4 

concentration was 20.3±2.99 v %.  It was projected that, up to 5,990 g H2 (719.3MJ), 

65,000 g CO (660 MJ) and 21,170 g CH4 (1,055.4 MJ) can be produced at optimum 

condition per ton of sludge pyrolyzed. At optimum composition a ton of pretreated 

sludge produced up to 5,990 g of internal hydrogen for the hydrogenation of ketones to a 

mixture of alcohols in the MixAlco process. This reduces their projected price per gallon 

of fuels produced by this process from US $1.24 to US $1.00 making the process more 

competitive.   

            2.     the energy efficiency decreases with increase in temperature, the process also being 

energy neutral. The energy neutrality of the process can be further enhanced by 

recycling up to 1,715.4 MJ of energy from the combustion of CO and CH4 combined(per 

ton of sludge pyrolyzed) when the process is operated under optimum conditions. 

         

           5.2    Hydrogen Separation by PSA 

Pressure swing adsorption can be used to recover hydrogen efficiently from the 

syngas derived from the pyrolysis of sludge from the MixAlco process, although such 

syngas sources traditionally have lower concentrations of hydrogen versus industrial 
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sources. Under the condition at which PSA hydrogen separation was performed it can be 

concluded that: 

            1.      An increase in the percent cycle recovery with increase in the amount of adsorbent 

used does not always translate into an increase in cycle bed productivity with a 99.9 % 

H2 purity achieved. In particular, after maximum cycle bed productivity is reached, 

further increase in % recovery only leads to a decrease in cycle bed productivity. At a 

maximum CBP of 66.2 % up to 3,965.4 g of hydrogen will be recovered from the PSA 

unit per ton of pretreated sludge pyrolyzed.  

 

           5.3   Production of Liquid Transportation Fuels from Syngas 

A low temperature cobalt based enhanced Fischer-Tropsch synthesis catalyst 

with a metal-metal-acid functionality (Co-SiO2/Mo-Pd-Pt-HZSM-5) can be used to 

produce liquid transportations in an add-on catalytic process to the MixAlco process 

using syngas derived from the pyrolysis of the MixAlco process sludge. This boosts its 

overall fuel production capacity since the gasoline (C4-C12), JP-8(C10-C17), diesel (C16-

C25) were produced. Within the range of our experimental conditions we conclude as 

follows: 

            1.   At 10 atm and 250 oC, Co-SiO2/Mo-Pd-Pt-HZSM-5 hybrid Fischer-Tropsch catalyst 

can be used to increase the selectivity of JP-8 versus Co-SiO2 conventional catalysts in a 

fixed bed continuous flow system. 

            2.  Raising the pressure to 13.6 atm, the Co-SiO2/Mo-Pd-Pt-HZSM-5 catalyst will 

further increase the selectivity of JP-8 and to some extent diesel automotive fuels at a 

pressure lower than the 20 atm reported in the literature. The extra production capacity 

of the process has the potential to make biomass-to-liquid production process plants 

more competitive in addition to the overall environmental costs savings. 
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APPENDIX 

                   Raw Data  

Table A 1:: Temperature, feeding rate and syngas composition for sludge pyrolysis 

run temperature feed rate H2 comp. CH4 comp. CO comp. 

# oC kg/min v/v % v/v % v/v % 

1 730 0.29 44.1 20.1 28.4 

2 730 0.29 44.8 19.2 28.1 

3 730 0.29 37.8 17.6 24.2 

4 730 0.37 42.7 18.3 23.5 

5 730 0.37 45.3 19.6 27.4 

6 730 0.37 41.8 19.9 25.7 

7 770 0.29 44.8 20.6 31.8 

8 770 0.29 45.3 20.3 32.1 

9 770 0.29 46.5 17.7 30.6 

10 770 0.37 41.8 19.6 29.9 

11 770 0.37 46.5 21.1 31.6 

12 770 0.37 43.2 20.8 30.3 

13 750 0.33 44.3 19.6 27.6 

14 750 0.33 48.3 21 32.2 

15 750 0.33 43.2 20.1 28.7 

16 630 0.33 20.2 13.7 26.4 

17 680 0.33 30.0 14.5 25.4 

18 680 0.33 27.2 14.5 22.5 

19 630 0.33 26.7 11.5 21.3 

20 680 0.33 35.8 17.5 29.9 

21 630 0.33 19.7 10.4 20.9 
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Table A 2:: Summary raw data from sludge pyrolysis 
run Temp 

(cel) 

feed rate 

(rpm) 

sludge fed 

(g) 

bottle 

weight (g)  

bottle + 

bio-oil (g) 

Char (g) unpyrolyzed 

(g) 

Pyrolyzed 

(g) 

1 730 2.6 2971 4150.4 4177.6 929.9 998 1973.2 

2 770 3.4 3425 4150.4 4151.4 1292.8 590 2835 

3 730 3.4 2926 4150.4 4218.5 1179.4 612 2313 

4 730 2.6 2971 4150.4 4150.4 1043.3 839 2131 

5 770 2.6 2971 4150.4 4150.4 997.9 794 2109 

6 770 3.4 3062 4150.4 4154.9 1020.6 635 2200 

7 730 3.4 2903 4150.4 4159.5 1043.3 748 2109 

8 730 2.6 2812 4150.4 4218.5 997.9 612 2358 

9 750 3.0 2971 4150.4 4164.1 1043.3 1066 1905 

10 750 3.0 3062 4150.4 4159.5 1111.3 862 2200 

11 770 2.6 2903 4150.4 4150.4 1043.3 839 2063 

12 770 2.6 2812 4150.4 4150.4 997.9 726 2086 

13 730 3.4 2722 4150.4 4150.4 1020.6 635 2086 

14 770 3.4 2722 4150.4 4150.4 952.6 885 1837.1 

15 750 3 2722 4150.4 4150.4 1043.3 590 2131.9 

16 630 3 2948 4422.6 4898.8 1020.6 499 2449.4 

17 680 3 2948 4422.6 4694.9 884.5 975 1973.2 

18 680 3 2722 4422.6 4694.7 825.6 318 2404.1 

19 630 3 2268 4422.6 4604.0 1066.0 136 2131.9 

20 680 3 2495 4422.6 4581.4 929.9 318 2177.3 

21 630 3 2563 4422.6 4898.9 907.2 318 2245.3 

 

 
 

Table A 3:: Conversion factors(×10-3) used in the one-point calibration 
measurements of  gaseous hydrocarbons 

methane ethylene Ethane propylene propane 1-butene n-butane 

13.22 6.65 6.65 4.54 4.54 3.45 3.47 

cis-2-butene 1 pentene n pentane iso pentane hexene n hexane  

3.43 3.46 3.40 3.39 3.40 2.9  
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Table A 4:: GCMS hydrocarbons chromatogram for sample at 13.6 atm and 250 oC 

 

 
Table A 5:: Carbon number and liquid hydrocarbon nomenclature (13.6 atm, 250 oC) 

C # nomenclature C# nomenclature 

6 hexane 9 4 methyl octane 

7 2 methyl hexane  3 methyl octane 

 3 methyl hexane  cis-2-nonene 

 heptane  trans-4-nonene 

 cis-3-heptene  nonane 

 2 heptene  2-nonene 

8 2 methyl heptane 10 2 ethyl octane 

 4 methyl heptane  5 methyl nonane 

 3 methyl heptane  2 methyl nonane 

 2-octene  4 ethyl octane 

 cis-3-octene  cis-2-decene 

 octane  1-decene 

 2-octene   trans-4-decene 

 cis-3-octene  2-decene 
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Table A 5 continued:: Carbon number and liquid hydrocarbon nomenclature (13.6 atm, 250 oC) 

C # nomenclature C# nomenclature 

11 cis-5-undecene 14 4 methyl tridecane 

 4 methyl 1-decene  5 methyl tridecane 

 5 methyl decane  2 methyl tridecane 

 4 methyl decane  3 methyl tridecane 

 2 methyl decane  3 methyl tridecane 

 3 methyl decane  cis-4-tetra decene 

 5 undecene  1-tetradecene 

 undecene 15 2,5 dimethyl tridecane 

 2 undecene  5 methyl tetradecane 

12 4 methyl 1-undecene  4 methyl tetradecane 

 dodecane  3 methyl tetradecane 

 2,3 dimethly decane  1 pentadecene 

 3 methyl undecane  pentadecane 

 cis-3-dodecene 16 7 methyl pentadecane 

 3 dodecene  5 methyl pentadecane 

 dodecane  4,11 dimethyl tetradecane 

 2 dodecene  2 methyl pentadecane 

13 5 tridecene  3 methyl pentadecane 

 2,6 dimethyl undecane  1 hexadecene 

 5,1 methyll undecane  hexadecane 

 4 methyl dodecane 17 7 methyl hexadecane 

 2,3 dimethly undecane  2,6,10 trimethyl tetradecane 

 3 methyl dodecane  4 methyl hexadecane 

 6 tridecene  3 methyl hexadecane 

 tridecene  heptadecane 

 1 tridecene 18 8 methyl heptadecane 

 

 

 

 

 



97 

 

 

Table A 5 continued:: Carbon number and liquid hydrocarbon nomenclature (13.6 atm, 250 oC) 

C# nomenclature C# nomenclature 

18 2,6,10 trimethyl tetradecane 22 10 methyl heneicosane 

 4 methyl hexadecane  docosane 

 Octadecane 23 9 hexyl heptadecane 

19 2,6 dimethyl heptadecane  Tricosane 

 5 methyl octadecane 24 2 methyl tricosane 

 4 methyl octadecane  tetracosane 

 2,3 dimethyl heptadecane 25 9 octyl heptadecane 

 3 ethyl octadecane  2,6,10,14,18 pentamethyl eicosane 

 Nonadecane 26 Hexacosane 

20 9 methyl nonadecane 27 heptacosane 

 5 butyl hexadecane 28 octacosane 

 4 methyl nonadecane 29 nonacosane 

 eicosane 30 tricosane 

21 10 methyl eicosane   

 8 hexyl pentadecane   

 2 methyl eicosane   

 3 methyl eicosane   

 heneicosane   
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Table A 6:: Carbon number and liquid hydrocarbon nomenclature (10 atm ,250 oC) 

C # nomenclature C# nomenclature 

6 hexane 10 2,3 dimethyl decane 

7 2,4 dimethyl pentane 11 5 methyl decane 

 3 methyl hexane  2 methyl decane 

 heptane  3 methyl decane 

8 2 methyl heptane  trans- 5- undecene 

 2methyl heptane  undecane 

 3 ethyl hexane  5 undecene 

 octane  cis- 3-undecene 

 2-octene 12 6 methyl undecane 

9 4 methyl octane  2,3 dimethyl decane 

 3 methyl octane  3 methyl undecane 

 cis 4 nonene  3 dodecene 

 nonane  trans- 3- dodecene 

 cis 2 nonene  dodecane 

 4 nonene  trans- 3- dodecene 

10 4 methyl octane  trans-2- dodecene 

 5 methyl nonane 13 2,3 dimethyl undecane 

 2 propyl heptane  5-(1-methyl propyl)nonane 

 3 ethyl, 2 methyl heptane  2,3 dimethyl undecane 

 3 methyl nonane  4 methyl dodecane 

 cis-3-decene  3 methyl dodecane 

 cis-4-decene  6 tridecene 

 decane  6 tridecene 

 cis-2-decene  tridecane 

 3 ethyl octane  1 tridecene 

 2,3 dimethyl decane   

 

  

 

 

 



99 

 

 

Table A 6 continued:: carbon number and liquid hydrocarbon nomenclature (10 atm ,250 oC) 

C # nomenclature C# nomenclature 

14 2,5 dimethyl dodecane 17 2,6,10 trimethyl tetradecane 

 5 methyl tridecane  4 methyl hexadecane 

 4 methyl tridecane  3 methyl hexadecane 

 2,3 dimethyl dodecane  2, methyl E-7 hexadecene 

 3 methyl tridecane  heptadecane 

 5 tetradecene 18 7 methyl heptadecane 

 cis- 4- tetradecene  2,6,10 trimethyl heptadecane 

 tetradecane  4 methyl heptadecane 

 1 tetradecene  3 methyl heptadecane 

15 2,5 dimethyl tridecane  1 octadecene 

 5 methyl tetradecane  octadecane 

 4 methyl tetradecane 19 2,6 dimethyl heptadecane 

 2 methyl tetradecane  5 methyl octadecane 

 3 methyl tetradecane  2,3 dimethyl heptadecane 

 1 pentadecene  3 methyl octadecane 

 pentadecane  nonadecane 

16 7 methyl pentadecane 20 9 methyl nonadecane 

 5 methyl pentadecane  5 butyl hexadecane 

 4,11 dimethyl tetra decane  4 methyl nonadecane 

 2 methyl pentadecane  2 methyl nonadecane 

 3 methyl pentadecane  3 methyl nonadecane 

 1 hexadecene  ecosane 

 cis-3 hexadecene  10 methyl eicosane 

 hexane 21 5,15 dimethyl nondecane 

 7 methyl hexadecane  2,3 dimethyl nonadecane 
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Table A 6 continued:: carbon number and liquid hydrocarbon nomenclature (10 atm ,250 oC) 

C # nomenclature C# nomenclature 

21 2, 3 dimethyl nonadecane 24 2 methyl tricosane 

 3 methyl eicosane  3 methyl tricosane 

 heneicocane  tetracosane 

 docosane 25 9 octyl heptadecane 

22 5 methyl heneicosane  pentadecane 

 3 methyl heneicosane 26 11, (1-ethylpropyl) heneicosane 

 docosane 27 heptacosane 

23 9 hexyl heptadecane 28 5-octyl eicosane 

 4 methyl docosane    29 nonacosane 

 tricosane   
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