ORGANISM INTERACTIONS AND THEIR ENVIRONMENTAL SIGNIFICANCE, AS ...

Harris, William Maurice, Jr *ProQuest Dissertations and Theses*; 1987; ProQuest Dissertations & Theses Full Text pg. n/a

INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17" \times 23"$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6'' \times 9''$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

Order Number 8802086

Organism interactions and their environmental significance, as exemplified by the Pliocene-Pleistocene fauna of the Kettleman Hills and Humboldt Basin, California

Harris, William Maurice, Jr., Ph.D.

Texas A&M University, 1987

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

1.	Glossy photographs or pages
2.	Colored illustrations, paper or print
З.	Photographs with dark background
4.	Illustrations are poor copy
5.	Pages with black marks, not original copy
6.	Print shows through as there is text on both sides of page
7.	Indistinct, broken or small print on several pages
8.	Print exceeds margin requirements
9.	Tightly bound copy with print lost in spine
10.	Computer printout pages with indistinct print
11.	Page(s) lacking when material received, and not available from school or author.
12.	Page(s) seem to be missing in numbering only as text follows.
13.	Two pages numbered Text follows.
14.	Curling and wrinkled pages
15.	Dissertation contains pages with print at a slant, filmed as received
16.	Other

University
Microfilms
International

ORGANISM INTERACTIONS AND THEIR ENVIRONMENTAL SIGNIFICANCE, AS EXEMPLIFIED BY THE PLIOCENE-PLEISTOCENE FAUNA OF THE KETTLEMAN HILLS AND HUMBOLDT BASIN,

CALIFORNIA

A Dissertation

bу

WILLIAM MAURICE HARRIS, JR.

Submitted to the Graduate College of
Texas A&M University
In partial fulfillment of the requirement for the
degree of

DOCTOR OF PHILOSOPHY

August 1987

Major Subject: Geology

ORGANISM INTERACTIONS AND THEIR ENVIRONMENTAL SIGNIFICANCE, AS EXEMPLIFIED BY THE PLIOCENE-PLEISTOCENE FAUNA OF THE KETTLEMAN HILLS AND HUMBOLDT BASIN,

CALIFORNIA

A Dissertation

bу

WILLIAM MAURICE HARRIS, JR.

Approved as to style and content by:

(Chairman of Committee)

(Member) Ethan Grossman

Robert J. Stanton, Jr.

Head of Department)

John H. Spang

Eric N. Powell

(Membér)

Anne Raymond

Jeffrey D. Hart

August 1987

ABSTRACT

Organism Interactions and Their Environmental
Significance, as Exemplified by the Pliocene Pleistocene Fauna of the Kettleman Hills and Humboldt
Basin, California. (August 1987)
William Maurice Harris, Jr., B.S., Baylor
University; M.S., Texas A & M University
Chair of Advisory Committee: Dr. Robert J. Stanton, Jr.

Evidence of organism interactions (predatory and non-predatory) in Recent samples from the Texas Gulf Coast and Pliocene - Pleistocene samples from the Humboldt Basin and Kettleman Hills of California were studied in order to determine their usefulness in interpreting the fossil record. The Recent samples were analyzed as potential fossil communities to determine the ecologic factors controlling the distribution of organism interactions. The Pliocene - Pleistocene samples of California were analyzed to determine latitudinal and temporal distribution of interaction types and interaction pairs.

Seven types of interactions were identified from the Recent and fossil material. They included gastropod predation, algal/fungal borings, clionid sponge borings, polychaete borings, encrusting bryozoans, attached bivalves, and encrusting barnacles.

The Texas Gulf Coast samples indicate that the distribution of interaction types was controlled by environmental stress at the sediment/water interface as it controls the availability of "host" shell materials (epifauna) and the viability of "guest" species. The intensity of interaction, with the exception of predation, was dependent on the presence of live epifauna and/or the presence of physical/biological processes which bring shell material to the surface and maintain it there.

The Humboldt Basin samples represented a depositional gradient from basin to shoreface. Predation by naticids occurred at all stratigraphic levels independent of water depth, with intensity increasing upwards as a function of available, preservable prey species. The other types of interactions did not appear until stable, shelfal conditions were established. The number of incidents of interaction increased upward in the section with an abrupt decline in the shoreface environments. Kettleman Hills samples were from relatively stable environments. The interactions did not show changes through time, and host-guest preferences remained invariant. The Kettleman Hills data indicated that interaction relationships did not change within the time frame represented (approximately 4 million years) and that the changes seen in the Humboldt Basin were ecologically, not evolutionarily, produced.

Organism interactions provide useful tools for understanding shell accumulations and for making paleoecological interpretations. Detailed study of specific interaction pairs is needed to fully understand the importance of these pairs in the interpretation of the fossil record.

For the students...

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Objectives of the Study	2
The Community in Paleontology	4
Previous Studies in Organism Interactions	7
1ETHODS	9
Field Methods	9 9 11
Laboratory Methods	13
Data Considerations	15
GULF COAST	18
Station Characteristics	2 2
Interactions by Station	35
Specific Interactions	50
Summary	63
NUMBOLDT BASIN	67
Stratigraphy and Sedimentology Eel River Section	7 2 7 4 7 8
Depositional Setting	8 2
Paleontologic Analyses	86
Organism Interactions	94 94 105 108
Summary	112
CETTLEMAN HILLS	115
Stratigraphy and Sedimentology	117

	Page
Organism Interactions Gastropod Predation Micro-borings Clionid Sponge Borings Polychaete Borings Bryozoa Bivalves Barnacles	125 134 141 145 150 156 160
Summary	170
CONCLUSIONS	173
REFERENCES CITED	177
APPENDIX I	184
APPENDIX II	188
APPENDIX III	203
APPENDIX IV	229
VITA	254

LIST OF TABLES

Table		Page
1.	Texas Coast faunal distribution	23
2.	Texas Coast shells with indication of utilization and interactions	36
3.	Fauna and interactions from the North Mustang Island, Gulf of Mexico beach location	37
4.	Fauna and interactions from the Corpus Christi Ship Channel location, North Mustang Island	39
5.	Fauna and interactions from the Mustang Island State Park, sandbar location	4 2
6.	Fauna and interactions from the Mustang Island State Park, beach location	43
7.	Fauna and interactions from the Bird Beach Boat Basin, sandbar location	46
8.	Fauna and interactions from the Bird Beach Boat Basin, beach location	48
9.	Fauna and interactions from the Stead-man Island oyster bar location	49
10.	Fauna and interactions from the Gunder-son's Marine (Portland, Texas) oyster bar location	5 1
11.	Fauna and interactions from the Copano Bay location	5 2
12.	Intensity of interactions found within the epifaunal and infaunal organisms (as defined in the introduction) from the localities on the Texas Coast	65
13.	Bivalve species bored by gastropods at the Eel River section and number of in- cidents of predation	103
14.	Gastropod species bored by polychaete worms at the Eel River section and number of incidents of utilization	106

Table		Page
15.	Epibiontic guest abundance in the samples from the Humboldt Basin	108
16.	Stratigraphhic faunal distribution for the Kettleman Hills	128
17.	Distribution of interactions within major faunal divisions for the Kettleman Hills samples	131
18.	Stratigraphic distribution of inci- dents of gastropod predation for the Kettleman Hills samples	135
19.	Stratigraphic distribution of algal/fungal borings for the Kettleman Hills samples	142
20.	Stratigraphic distribution of clionid sponge borings for the Kettleman Hills samples	146
21.	Stratigraphic distribution of poly-chaete borings for the Kettleman Hills samples	151
22.	Stratigraphic distribution of encrustation by bryozoans for the Kettleman Hills samples	157
23.	Stratigraphic distribution of attached bivalve guests for the Kettleman Hills samples	161
24.	Stratigraphic distribution of attached barnacle guests for the Kettleman Hills samples	166

LIST OF FIGURES

Figu	re	Page
1.	Map of Texas Coast showing the location of samples used in this study	10
2.	Map of California. Insets show the location of the two regions from which fossil material was collected for this study	1 2
3.	Detailed map of the Texas Coast showing sampling staions	19
4.	Classification of bay and lagoonal en- vironments of the Texas Coast from Parker (1959)	20
5a	Relationship of gastropod shell orientation to inhabitant	5 5
5 b	 Distribution of epibiontic guest organisms on pagurized shells 	5 5
6.	Ternary diagram used for the display and comparison of interactions found at the Texas Coast locations	58
7.	Percentasge interactions present in the samples from the Texas Coast stations	60
8.	Index map showing geographic location of Humboldt Basin (from Burkle, et al., 1980).	68
9.	Generalized geologic map of Neogene strata of the Humboldt Basin showing the location of the text sections	68
10.	Stratigraphic section of the Wildcat Group at the Eel River section with map showing the collection zones by formational units	70
11.	at the Centerville Beach section with map showing the collection zones by formational	
12.	units. Black dots represent sample sites Comparison of the stratigraphic sections at the Centerville Beach and Eel River	7 1
	localities (after Burkle et al. 1980)	73

Figure		Page
13.	Stratigraphic section at the Eel River locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV	7 5
14.	Stratigraphic section at the Centerville Beach locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV	7 9
15.	Benthic foraminiferal biofacies and esti- mated paleobathymetry for the Centerville Beach location (from Ingle, 1980)	84
16.	Estimated paleobathymetry of the Humboldt Basin sections as determined by Ingle (1976) and Stanton (unpublished)	8 5
17.	Stratigraphic and paleobathymetric distri- bution of guest organisms at the A. Eel River section and B. Centerville Beach section	8 9
18.	Lithologic groups as defined for the Eel River section	9 1
19.	Lithologic groups as defined for the Centerville Beasch section	9 2
20a.	Sample size (total shells) and number of interactions by lithologic group for the Eel River section. (Note different Y-axis scales.)	93
20ь.	Sample size (total shells) and number of interactions by lithologic group for the Centerville Beach section. (Note different Y-axis scales.)	93
21a.	Total shells vs. interaction intensity by lithologic group for the Eel River section	9 5
21b.	Total shells vs. interaction intensity by lithologic group for the Centerville Beach section.	0.5

Figure	2	Page
22.	A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Eel River section. B. Prey bivalve/gastropod dominance percentages within samples with boreholes	97
23.	A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Centerville Beach section. B. Prey bivalve/gastropod dominance percentages within samples with boreholes	98
24.	Distribution of prey gastropods and bi- valves for the Eel River section	100
25.	Distribution of prey gastropods and bi- vales for the Centerville Beach section	102
26.	Location of the Kettleman Hills region, California with reference to large-scale, nearby structure (from Stanton and Dodd, 1970)	116
27.	Generalized geologic map of the Kettleman Hills (after Woodring, et al., 1940)	118
28.	Early Pliocene paleogeography of west central California (after Galehouse [1967], from Dodd and Stanton, 1981)	119
29.	Late Pliocene paleogeography of west central California (after Galehouse [1967], from Dodd and Stanton, 1981.)	122
30.	Stratigraphy, sedimentology, faunal zones, transgression/regression curves and oxygen isotope data for the Kettleman Hills from Stanton and Dodd, 1970	124
31.	Stratigraphic section showing cyclic sedi- mentation and north-south environmental facies patterns, from Stanton and Dodd, 1970	127

LIST OF PLATES

Plate	I.	Eel River Sectionin pock	e t
Plate	II.	Centerville Beach Sectionin pock	et

INTRODUCTION

Key to the concept of a modern marine community is that the members of that community interact with each other. In the processes of living, the organisms will compete for resources such as space, nutrients, and sunlight. In modern communities it is possible to observe organism interactions, detect the changes that a community undergoes as it matures, and note the roles which component species play within that community.

In the fossil record, however, it is possible to have an admixture of shells of organisms from several biological communities concentrated within a single stratum. Reconstruction of a single community out of the composite assemblage may be very difficult. Species may show conflicting environmental tolerances, share incompatible positions of dominance within the community, or appear to violate rules of competitive exclusion within the assemblage. Time resolution of geologic analyses is not precise enough to allow us to define a year's standing crop, detect seasonal variations within an environment, or separate out biological responses to short-term environmental variability. It may be possible, however, to recognize

The format and style follows that of the United States Geological Survey Professional Papers.

contemporary components of an assemblage by the interactions between individuals if the interaction between the two organisms resulted in modification of the shell or shells of the organisms involved.

Some organisms, in the process of living, modify the shells of the species with which they interact and in doing so leave a preservable record of that interaction. Some invertebrate species require a hard substrate for attachment or for protection and will utilize the shells of other organisms for that purpose. By cementing themselves to the shell or boring into the surface, they modify it. Each of these types of interactions has the same chance of being preserved as the shell itself. Predatory species that attempt to penetrate shells to get at the food inside leave a record of the attack that can be identified. In the process of breaking the shell, or boring into it, they leave characteristic traces of the interaction.

Objectives of the Study

The purpose of this study was to assess the preservation and usefulness of organism interactions in interpreting the fossil record. To accomplish this study, interactions were studied in Recent fauna from the central Texas Coast and in Pliocene - Pleistocene fauna of the Humboldt Basin and Kettleman Hills of California. These data were interpreted in terms of

host - prey selectivity, evolution of interaction pairs, and paleoenvironment.

There were three major objectives of this research. The first objective was to compile evidence from the study areas (the Gulf Coast, Humboldt Basin, and Kettleman Hills) of the presence of organisms which had little potential for preservation as body fossils (ie. those with chemically unstable shells or no shells at all) but which are preservable if they interacted with other organisms and modified the shells of their hosts/prey in a characteristic manner. The organisms which modify the shells of host species are rarely included in faunal lists of fossil communities. A record of the types of interactions present at each of the study areas was compiled with attention being paid to the stratigraphic position and geographic distribution of each of the types of interaction pairs.

The second major objective was to evaluate the environmental distribution of the organism interaction pairs. The Gulf Coast of Texas provided a modern analogue to study the distribution of interactions within the shallow water depositional environments of the California locations. Analytic tools for interpretation of the fossil material were developed and tested against the known depositional environments of the Recent material. In the Humboldt Basin the

differences in the depositional environments occurred both vertically within each of the sections which were studied and laterally between each of those sections. In the Kettleman Hills the lateral distribution of depositional environments was of primary interest although vertical differences through the sections were also observed.

The third objective was to look for possible evolution of interaction within the time interval represented by these strata. Because of the potential for change in interaction character of a host or guest species through time, the nature of these changes must be recognized. The changes in distribution of interactions within a stratigraphic section which are attributable to evolution within each type of interactions must not be confused with the changes in interaction pairs resulting from changes in depositional environment through that same time.

The Community in Paleontology

The determination of depositional environments using single genera and species is known as autecology (Dodd and Stanton, 1981). Most individual organisms do not live an isolated existence, but relate in one way or another to other individuals of the same species and of other species within the community. A community may be defined as an assemblage of co-occurring and

interacting organisms that recurs in time and space and that is a recognizable unit with biotic controls (Schafer, 1972). The study of fossil communities is not without its problems. Some workers believe that because no two environments are identical, there can be no two communities that are the same (Raup and Stanley, 1978). While this premise may hold true between different microenvironments, large scale community structure can be recognized. Rollins and Donahue (1975) indicate that several types of fossil communities may be recognized using modern ecological stability-time concepts. The stability-time concept is based on the relationships between the environmental stability and diversity (Sanders, 1968). The paleocommunities defined by the methods previously listed do recur and occur within a defined time and space, and the assembages of fossils do represent the biotic control of the environment. The nature of the fossil record is such that these paleocommunities do not necessarily represent the group of interacting organisms.

Taphonomy plays an important role in what is perceived as the fossil community. Through taphonomic processes, most soft-bodied organisms are removed, and the preservation of hard-shelled species is biased by differences in shell mineralogy and shell structure

(Driscoll and Swanson, 1973). This bias may be compounded by time averaging. Time averaging occurs because of the nature of sediment accumulation. Sedimentation rates, which average approximately 3 cm/1000 years (Kukal, 1971; Olsen, 1978; Schindel. 1980), potentially could concentrate shell material of many generations within a single rock stratum if actual sedimentation rates approximate the average. Schindel states "sedimentation in nearly all depositional environments is either too slow or too intermittent to permit resolution of short-term continuous biological processes [such as interactions] in the fossil record." In that way, shells of individuals from many temporally distinct "communities" could be combined into an apparent single community. If the composite nature of the fossil assemblage is not recognized, it would be misinterpreted as the representation of a single community.

An alternate view of the nature of the fossil record is that very little of the living community has a potential for being preserved. Physical shell destruction and chemical dissolution in modern clastic environments rapidly remove most shells within a short time period. The fossil record, therefore, would represent either the very slow accumulation of shell material (having little relationship to the living

community) or the incorporation of shells into shell layers through the big event (storms, hurricanes, etc.) (Cummins, et al., 1986a). Until we understand the nature of fossil accumulation, the relationship between the fossil community and the living community is left unresolved. For the interpretations of this study, time averaging is assumed.

Previous Studies in Organism Interactions Direct evidence of organism interactions and community structure in the fossil record is best preserved in the relationships of encrusting and boring organisms to their host/prey. These hard-substrate organisms constitute "assemblages in situ with time averaging... reduced to a minimum due to the short life-span of the hosts and zero net sediment accumulation" (Bottjer, 1982). The literature on encrusting and boring (predatory and nonpredatory) organisms is extensive concerning both the activities of individual organisms (Boekschoten, 1970; Bromley and Surlyk, 1973; Kobluk and Risk, 1977; Brett, 1978; McNamara, 1978; Killingley and Lutcavage, 1983) and their paleoecological and paleoenvironmental reconstructions (Roughgarden, 1975; West, 1977; Bottjer, 1982; Karlson and Shenk, 1983; Akapan and Farrow, 1984). Organism interaction has been studied in terms of predation (Caullery, 1952; Carriker, 1951;

Bishop, 1975; Virnstein, 1977, 1979) and community structure (Boekschoten, 1970; Stanton and Dodd, 1976b; Scott, 1978; Levine, 1980; Stanton and Nelson, 1980; Stanton, et al., 1981; Kitchell, et al., 1981; Boggs, et al., 1984).

METHODS

Field Methods

Gulf Coast

Shallow marine benthic communities of the Texas Coast were studied at nine localities between Copano Bay and Laguna Madre at North Padre Island (fig. 1). These localities were selected to provide a range of water depth, salinity, substrate, wave energy, and turbidity. Beach environments were studied at: station l, on the gulf side of Mustang Island near Park Road 4; station 2, along the Corpus Christi Ship Channel on the back side of North Mustang Island near the University of Texas Marine Food Research Lab; station 4, in Redfish Bay at Mustang Island State Park; and station 6, at Bird Beach Boat Basin in Padre Island State Park. Sandbar environments were studied off two of the beach localities: station 3, in Mustang Island State Park and station 5, at the Bird Beach Boat Basin. Oyster Bar environments were studied at station 7, off the south side of Steadman Island, and station 8, in Portland near Gunderson's Marine in Nueces Bay. The bay environment was studied at station 9, at the mouth of the Aransas River in Copano Bay.

Several parameters of the physical environment were determined at each station. Water samples were collected for later determination of salinities.

Figure 1. Map of Texas Coast showing the location of samples used in this study.

Turbidity was measured by checking the visibility of a metal ruler as it was lowered into the water. The depth at which the end of the ruler disappeared was recorded. Sediment samples were collected, and grain size analyses and organic content were estimated qualitatively from the sediment sample. At stations where shells were sparse, an attempt was made to collect all of the shells within the area, being careful not to contaminate the sample with spoil materials. At stations with abundant shell material the samples were collected at random with care being taken not to bias the collection with shells having interactions.

The shells were treated in a salt water and sodium hypochlorite bath for one hour to kill the living organisms and facilitate the removal of the hermit crabs from the gastropod shells. Next the samples were washed with no less than six fresh water baths to remove all traces of the sodium hypochlorite. The materials were transported to Texas A & M University in plastic trash cans filled with enough water to completely cover the shells.

California

Pliocene - Pleistocene fossils were collected from the Humboldt Basin and Kettleman Hills of California (fig.2) to augment specimens collected and archived at

Figure 2. Map of California. Insets show the location of the two regions from which fossil material was collected for this study.

Texas A & M University by Drs. R. J. Stanton and J. R. Dodd. The samples from the Humboldt Basin were collected from the Centerville Beach and Eel River sections (Jennings, 1983). Stratigraphic samples of the macrofaunal shell material were collected from each of the sections. In the sparsely fossiliferous lower units, all of the in-place shells were collected. In richly fossiliferous units, a sample of thirty (or more) shells of each species was collected at random in order to not bias the sample towards shells with interactions. If interaction types were present but did not fall into the random sample, the sample size was increased in increments of twenty shells until representatives of all interaction types occurred within the sample.

Samples from the Kettleman Hills were collected from more than 170 stations in order to cover the complete range of stratigraphic horizons.

Laboratory Methods

The Gulf Coast material was rinsed four additional times upon arrival at Texas A & M University to completely remove all traces of salt water and sodium hypochlorite to prevent shell destruction. The attached, but not cemented, epifauna (such as the gastropod Crepidula) by this time had fallen from their host shells. The shells were vigorously brushed with a

tooth brush to dislodge any loose epifauna which had not fallen off previously. The samples were treated so that the only interactions left on the shells were those which could potentially be preserved in the fossil record (i.e. cemented epifauna and endoliths). The samples were dried and identified to the lowest taxonomic level possible using Jean Andrews'(1971) Seashells of the Texas Coast.

The fossils from California were prepared carefully to avoid destroying evidence of interactions. Preservation of the fossils, particularly from lower stratigraphic units in the Humboldt Basin, was extremely poor. The condition of some of the fossils resulted in the loss of data in transportation to the lab. Fossils were identified by comparison with the collection of Drs. Stanton and Dodd, and species names were verified through the information included in Myra Keen and Herdis Bentson's (1944) Check List of California Tertiary Marine Mollusca and Barry Roth's (1979) Ph.D. dissertation from the University of California, Berkeley.

Each shell was studied at low magnification with a Zeiss binocular microscope and host and guest organisms, shell condition, articulation, and location of interaction on the host shell were recorded.

Appendix I lists the organisms present at the Gulf

Coast localities. Appendix II lists the fossil fauna of the California localities. The life habit for each species is included in this appendix. Organisms were classified as being infaunal if they are either completely or are periodically covered by sediment. The epifaunal organisms were defined as those which lie on, attach to, or move about on the sediment surface. The degree to which infaunal shells are utilized is an important factor in the analyses of the processes which make these shells available for interaction. Appendix III lists the localities from the Kettleman Hills from which samples were used in this study. The data from the Humboldt Basin localities are summarized in Appendix IV.

Data Considerations

The data presented in this study are composed of individual specimens from localities of differing sample strategy within regions with different distributions of (depositional) environmental complexity. The pertinent ecologic data include: salinity, sediment type, water depth, ecologic stability, and faunal complexity. Each of these factors must be considered when comparing interaction information between samples and localities. Sample size and measurement of numerical significance presented a problem in the analyses. Individual

samples varied between one to five hundred or more shells per locality, with most samples containing fewer than twenty specimens.

The Humboldt Basin sections present the best example of the problem of sample size. The problem was not the result of insufficient collection of samples but that the Pullen, Eel River, and lower Rio Dell were only sparsely fossiliferous. Even when every available shell was collected, the occurrence of one shell in a hundred to a thousand feet of section was not uncommon. Some of the strata in the upper portion of the Rio Dell Formation contained more shells than the entire lower section collectively. The problem was in comparing percentages of the interactions between the lower and upper sections. With the nature of the samples and all other problems mentioned above, it was decided to make qualitative observations from the quantitative data.

Each type of interaction is discussed in terms of the major objectives of this study. The interpretations presented within this section are based on the lithology, inferred depositional environment, faunal abundance and ratios, life habits, and the specific nature of the interaction types. The amount of data involved in the interpretation is too large to include a discussion of each individual sample from every location. Pertinent instances of individual

interactions are included when discussion requires such. The data for the Texas Gulf Coast localities are provided in tables in that section. The data from which the conclusions are derived for the Humboldt Basin are presented in Appendix IV.

GULF COAST

The Gulf Coast of Texas (fig. 3) is used as the modern analogue for development of the methodology to be used on the Pliocene - Pleistocene localities in California. The area covered in this portion of the study lies between San Antonio Bay in the north and Batfin Bay in the south. The environments within the study area represent a wide range of clastic depositional settings. The variability in salinity, substrate character, turbidity, current influence, and water depth present in this area allows for the analysis of the factors which may affect the distribution of organism interactions.

The Gulf Coast of Texas has been extensively studied and characterized (for a comprehensive bibliography of studies on the Texas Gulf coast see Brown, et al., 1976). Parker (1959) studied the area around Rockport, Texas and Laguna Madre in order to determine the distribution of the macrofaunal assemblages of the bays and the lagoons of the south central Texas coast. He subdivided the environments of the Texas coast into eight types of environments (fig. 4); sampling for this study covers five of these. Copano Bay has been extensively studied by Calnan (1980), and the nature of shell accumulation has been studied in detail at sample location 9 (Cummins, et

Figure 3. Detailed map of the Texas Coast showing sampling stations. 1. Gulf of Mexico Beach, 2. Corpus Christi Ship Channel, 3 & 4. Mustang Island State Park, 5 & 6. Bird Beach Boat Basin, 7. Steadman Island oyster bar, 8. Gunderson's Marine oyster bar, 9. Copano Bay.

Figure 4. Classification of bay and lagoonal environments of the Texas Coast from Parker (1959).

al., 1986a; Cummins, et al., 1986b; Staff, et al., 1986).

The coastline of Texas has been actively building outward since the beginning of the Cenozoic era. sediments of the Texas coastline were deposited in "fluvial-deltaic, barrier-strandplain-chenier ... bay-estuary-lagoon ... as well as eolian (wind) ... and well-developed marsh-swamp system(s)" (Brown, et al., 1976). As sea level fluctuated during the Pleistocene, the shoreline migrated across the coastal plain and shallow shelf areas. These movements of the shoreline are marked in relict shoreline deposits along the shores of the Laguna Madre and the bays. Approximately 3,000 to 2,500 years ago sea level stabilized at its present position, and the features of the today's coastline began to form. Small barrier islands (what are now St. Joseph, Mustang, and Padre Islands) began forming and grew by spit accretion and agglomeration. As the barrier islands formed, the waters of the bays became separated from the conditions of the open Gulf. The processes which have shaped the Texas coast to its present configuration continue to operate and modify the existing environments (Brown, et al. 1976).

The materials presented in this section are organized to provide the necessary information for the interpretation of organism interactions present at each

of the locations. The physical and hydrological conditions at each of the localities are presented. A list of host organisms (and their distributions) is presented in Table 1. Characteristic interactions are discussed in the light of the conditions present at each locality. This is followed by an interpretation of the distribution of each type of interaction (predation, non-predatory shell borings, and encrustations).

Station Characteristics

Mustang Island along a fifty foot section of beach immediately south of Beach Access Road 4. Shells were collected between the high tide mark and the first sandbar offshore (0 to 3 feet water depth). The salinity was 35 %/oo at the time of collection. The water was turbid, and visibility was limited to a depth of 1.5 feet. The area is subject to strong wave and current activities which suspend sediments to occlude visibility.

The substrate was composed of medium sand and shell material and was relatively low in organic content (dead oil present in the sample from offshore dumping makes observation of the natural organic content difficult). The sediment in the swash zone was firm but liquified easily with minor vibration. The

	Terebra (S.) dislocata				×					
	ensγez (.Ι) svílO	×								
	gnakcou ;				×					
	gnekcou e• bjødoene		×							
	Busycon contrarium		×	×	×		×	×		
	Cantharus (P.) cancellarius		×	×	×			×		
	Anachis a. semplicata					×		×		
	? siedI		×							
ds.	Murex (P.) pomum		×		×					
astropod	Thais (5.) h. haysae		×							
astr	Thais (5.) h. floridana		×	×	×			×		
Ö	Polinices (N.) duplicatus		×	×	×		×		×	
•	Sidbidela			×	×			×	×	
n.	Crepidula (J.) plana			×	×			×		
tribution.	Crepidula (C.)	×	×		×		×			
rib	Strombus ?		×							
dist	Strombus alatus		×							
7	Cerithium (.T) floridanum		×			×		×		
fauna	Vermicularia fargoi		×							
st f	Littorina (L.) irrorata				×					
Coa:	<u>boqo11ss2</u>									
Table I. Texas		North Mustang Island-Beach	Corpus Christi Ship Channel	Mustapg Island State Park- Sandbar	Mustang Island State Park- Beach	Bird Beach Boat Basin- Sandbar	Bird Beach Boat Basin- Beach	Steadman Island Oyster Bar	Gunderson's Marine Oyster Bar	Copano Bay
		Nor	Cor	Mus	Mus	Віг	Bir	Ste	Gun	Сор

	Tagelus (M.) plebeius				×	×				×
	Family Tellinidae		×			×				
	Donax v. texasina	×								
	Rangia cunesta									×
	Cardita (.3) floridana	×			×					
	Diplonta semiaspera		×							
	si₁1sə∪pə sə⊺1sO				×				×	
	Grassostrea virginica				×			×	×	
	Family Ostreidae	×			×					
	xəlqmis simonA	×			×					
	Plicatula gibbosa		×					×	×	
	Aequipecten (P.) amplicostatus		×	×	×	×		×		
	Atrina serrata	×								
	Brachidontes (I.) recurvus								×	
	Brachidontes (I.) exustus								×	
	Noetia (E.) ponderosa				×					
ivlave	eilsvo (.l) siebenA		×		×					
Biv	Anadara (.3) brasiliana				×					
:	Barbatia				×					
.	Family Arcidae				×					
ned	Bivalves									
Table 1. Continu		North Mustang Island-Beach	Corpus Christi Ship Channel	Mustang Island State Park- Sandbar	Mustang Island State Park- Beach	Bird Beach Boat Basin- Sandbar	Bird Beach Boat Basin- Beach	Steadman Island Oyster Bar	Gunderson's MarineOyster- Bar	Copano Bay

Driftwood	×								
<u>ademinanl</u>									
Serpula sp.					×			*	
Розусћаете									
Fish bone					×				
Fish skull	×								
Pisces									
Mellita quinquesperforata	×								
шаероитиоз									
Arenaeus cribarius	×								
Crab claw				×					
Balanid Barnacle							×		
Arthropods									
Periploma inequale	×								
Corbula ?			×						
Corbula				×					
Mercenaria c. texana		×			×				
Mercenaria campechiensis	×	×	×	×			×		
Chione cancellata		×		×	×		×		
Dosina (D.) discus									
	North Mustang Island-Beach	Corpus Christi Ship Channe.	Mustang Island State Park- Sandbar	Mustang Island State Park- Beach	Bird Beach Boat Basin- Sandbar	Bird Beach Boat Basin- Beach	Steadman Island Oyster Bar	Gunderson's Marine Oyster- Bar	Copano Bay
	Chione cancellata Mercenaria campechiensis Corbula Corbula ? Periploma inequale Balanid Barnacle Crab claw Arenaeus cribarius Arenaeus cribarius Piscos Fish bone Piscos Fish bone Fish bone Fish bone Fish skull	Chione cancellata Mercenaria campechiensis Corbula Corbula ? Periploma inequale Balanid Barnacle Crab claw Crab claw Arthropods A	<pre>x</pre>	<pre></pre>	<pre></pre>	A compared by the companies of the com	A	By the cancellate and the cancel	X X X X Yercenaria campechiensis X X X X X Recenaria campechiensis X X Corbula Y Retrinopoda X Corbula Y Rechance cribarius X Renaeus cribarius X Arenaeus cribarius X Renaeus cribarius X Renaeus cribarius X Arenaeus cri

currents constantly move the sediments and preclude the rooting of vegetation or establishment of sessile epifauna.

The shells of this station represent material in situ (collected live) and material carried northward and shoreward by wave induced and prevailing longshore currents.

The gulf beach station represents an ecologically complex area. Broad areas were alternately inundated with water and exposed to the air. High wave and current energies do not allow for a large epifaunal component. The only live epifauna observed were highly mobile and generally located near the first sandbar. The most conspicuous infaunal organism in the swash zone was the bivalve Donax variabilis texasina Reeve.

Donax is brought to the surface by the surging water and crashing waves and quickly reburies itself before the next wave arrives. No other infaunal organisms were collected alive.

Station 2 is located along the shoreline of the Corpus Christi Ship Channel, one-quarter mile southwest of the University of Texas Marine Food Research Laboratory on north Mustang Island. This location is a "variable salinity sound environment" as defined by Parker (1959). Shells were collected along a sixty-five foot section of the beach, extending to one

foot of water depth. Care was taken to ensure that no Pleistocene material, eroded out of the bank immediately north of the station, was collected. The older material was dredged out of the ship channel and is not characteristic of the present fauna of this environment. Inclusion of this older material in the analyses would have invalidated the usefulness of this station. The salinity was 33 %/oo at the time of collection, and the bottom was visible to depths below that which were sampled. Tidal currents moved shell material along the shore, and wave activity was almost non-existent.

The substrate was composed of fine sand and coarse silt-sized particles with locally abundant strands of shell material. The substrate was firm and relatively stable. Currents move the sediments along the beach to a lesser extent here than at the gulf beach station. There was no rooted vegetation, and the only plant material collected was derived from the nearby lagoon and floated in.

No live bivalves were collected. With the exception of <u>Cantharus</u> (<u>P</u>.) <u>cancellarius</u>, none of the gastropods were noted alive within the site. Numerous gastropod shells were collected with pagurid crustaceans (hermit crabs) in them. The majority of the shells collected at this site have been either

biologically or mechanically transported to the location. Some of the shells represent the lagoonal environments to the southwest while most shells represent an inlet (or more normal saline) environment.

Station 3 is located in Redfish Bay on a sandbar off the beach in Mustang Island State Park, slightly north of the Fish Pass inlet. The site represents what Parker termed "inlet dominated." Samples were collected on a sandbar separated from the beach by a shallow (3 to 4 foot deep) channel filled with the seagrass Thalassia testudinum. Shells were taken from the south end of the sandbar in water depths of slightly less than one foot. The salinity at the time of collection was 32 0/oo. Water visibility across the sandbar was unrestricted. The area is subjected to minor wave and current activity, and small current ripple marks were observed across the entire sandbar. Few shells were present on the surface of the sandbar.

The substrate was composed of fine sand-sized particles with very little clay and had a low organic content. Burrowing worms and sandtube worms were observed while the infauna was being collected. The sediment was firm and would not liquefy with agitation. The shallowness of water depth and the current activity act to exclude vegetation; no sessile epifauna were

observed at this station. The shells of this station represent infaunal material and transported shells.

Station 4 is located in Redfish Bay on the beach across from station 3. Samples were collected from the shoreline and adjacent water to a depth of 6 inches. Salinity was $32^{-0}/00$, and the water was clear. Slow water currents move across the collecting area with minimal wave activity.

The beach has a fine sand, silt, and clay substrate with low shell abundance, and the sediment was organic rich. The surface was firm and was relatively stable being bound by algae and the sea grass Thalassia testudinum. Currents keep the shallow water nearshore areas from becoming anoxic and allow the lush growth of vegetation which would otherwise be impossible. The rooted vegetation provides protection. No shells were collected with live host organisms in them. Shell material was brought up to the beach from the channel/seagrass community by the hermit crabs, and most of the gastropod shells were found to be housing live hermit crabs.

The two Mustang Island State Park stations share similar water chemistry conditions but were physically different. The water from the Fish Pass inlet brings normal salinity organisms and shells to the back of the barrier island. These shells reach the beach but can

not reach the sandbar across the shallow channel. The sediment of the sandbar is subject to intense heating during low tide in the summer. The water that flows across the sandbar is not significantly heated, but the sediment is.

Station 5 is located on a sandbar in Laguna Madre off of the beach at the Bird Beach Boat Basin in Padre Island National Park. This site represents Parker's "hypersaline lagoon." Samples were collected from a sandbar/spit formed on the north side of a storm washover channel. Shells were taken from a zone at the southernmost point of the sandbar. The water depth was a maximum of five inches. Salinity at the time of collection was 36 % oo. The area is subjected to moderate wave and current activity.

The substrate was composed of medium sand-sized material and was low in organic content. The sediment was firm and slightly resistant to burrowing. The shallow water depth precludes the rooting of seagrasses, and the moderate currents remove most of the sessil epifauna. The shells of this station were primarily those of infaunal organisms. The gastropod shells were inhabited by hermit crabs.

Station 6 is located across from the sandbar at the Bird Beach Boat Basin. Shells were collected on the beach and adjacent shallow water areas. Salinity

was 32 °/oo at the time of collection (it had rained within the past 24 hours), and the water was clear. Moderate currents flow across the beach from north to south, and wave activity was minimal.

The beach has a medium sand, silt, and clay substrate with low shell abundance. The surface was firm, relatively stable, and organic rich. There was rooted vegetation nearby, and the seagrasses help to baffle the wave energy before it reaches the beach. No live host were collected. Hermit crabs were found in the occupied gastropod shells, having removed these shells from the seagrass areas of the nearby channel.

The two Bird Beach Boat Basin stations were chemically and physically very similar. The currents from the northern end of Laguna Madre bring high salinity organisms and shells to this back barrier island station. These shells were transported to the sandbar/spit but did not reach the protected beach area across the shallow channel.

Station 7 is an oyster bank at the northern end of Redfish Bay on Steadman Island. Steadman Island is joined partially to Harbor Island (a predominantly man-made island) (Brown, et al, 1976). The closest Parker term for this location would be "shallow grassy bay." Samples were collected from an oyster bar (reef core) and surrounding areas. Water depth ranged from

2.5 to 3.5 feet. The salinity at the time of collection was 33 $^{\rm O}/{\rm oo}$, and the bottom was visible throughout the total depth range. The area may be subjected to strong wave and current activity but is usually quiet.

The substrate was silty clay (around the reefs) and shell to shelly clay (in the reefs proper) and has a high organic content. The substrate was relatively soupy except where stabilized by the seagrass <a href="https://doi.org/10.1007/jha.2007/jh

The shells of this station represent material in situ (collected live), material carried out from Steadman Island during storms, and material carried in by hermit crabs. The reefs off Steadman Island were located adjacent to a wind-tidal flat (Brown, et al, 1976). This area is protected by Harbor Island from the inlet influence of Aransas Pass and the open gulf. The construction of the causeway between Port Aransas and Aransas Pass isolates this station from environmental influences to the north (separating Redfish Bay from Aransas Bay). This station was the only one in which live naticids (Polinices) were observed preying on bivalve hosts. There were spoil piles throughout the area, and care was taken to avoid collecting reworked Pleistocene materials.

Station 8 is located west of Gunderson's Marine Boat Shop in Portland, within Nueces Bay. The oyster bar is separated from the shore by a dredged channel. approximately 6 to 7 feet deep. This location is that of a "bay margin" as defined by Parker. Shells were collected from the reef and the shallow water areas around it. Care was taken when sampling not to collect material dumped when the channel was dredged. Salinity was 28 0/oo at the time of collection, and high water turbidity restricted visibility to less than one foot. There were moderate currents passing over the sampling location, and wave activity is at times strong enough to break shells off of the buildup, as evidenced by the amount of rubble in the sediments around the reef proper.

The reef and surrounding area has a clayey shell to clayey medium sand substrate with locally high shell abundance. The surface was unstable except in reefal areas. There was rooted vegetation (Diplanthera [Halodule] wrightii), which acts to stabilize the substrate and provide protection in areas around the reef. Several organisms were collected live. Live host organisms include both gastropods and bivalves.

The reefs at this station are in a protected part of Nueces Bay at the north end of the Highway 181 bridge. Low salinity water from the Nueces River mixes

with the more saline waters of Corpus Christi Bay.

Damage done to the reefs by dredging has had

detrimental effect on the biota. Relatively few live

oysters were observed on the reef proper, and most of

the reef served as refuge for the mobile epibionts of

the area.

Station 9 is situated at Black Point at the southern end of Copano Bay and is located at the point where the Aransas River and Chiltipin Creek empty into the bay. This site represents Parker's "river influenced low salinity estuary." Shells were taken from a zone within approximately 200 feet of the bridge. Water depths ranged between one to 2.5 feet. The salinity at the time of collection was 5 0/00, and the water was turbid. The water's turbidity at this location is the result of sediment being brought into Copano Bay by the Aransas River. The area was occasionally subjected to strong current activity.

The substrate was composed of medium sand, silt, and clay and has a relatively high organic content. The sediment was soupy except for patches which have been stabilized by the bivalve Rangia cuneata Gray. The margins of the area were sparsely vegetated with seagrass.

The shells of \underline{Rangia} at this station were removed from within the sediment. The live organisms were

largely infaunal, and the shells of the dead organisms were lying at the sediment surface.

Interactions by Station

Each station is characterized by different and distinctive interactions. Table 2 shows the number of shells present at each of the localities. The degree of utilization of host shells and the relative percentages of the different types of non-predatory interactions are also indicated. These percentages are the result of the combined influence of water chemistry, substrate availabililty, currents, nutrients, and the compatibility of the organisms. cases where the hosts were alive when the interaction takes place, the combined requirements of both organisms are important. The distribution of predation, especially of the gastropods, is controlled by the availability of suitable prey. Epibiontic and endolithic organisms utilize the shells of live and dead hosts. The physical character of the shell becomes more important than the ecology of the host organism when these guests use the shells after the death of the host.

The interactions from the beach of the Gulf of Mexico are presented in Table 3. Most of the shells from the beach were not involved in interactions. The shells which show the most intensive interaction, the

Table 2. Texas Coast shells with indication of utilization and interaction

Station	Total Shells % None	% None	% Epibionts	% Endoliths
Gulf of Mexico Beach	231	74.02	5.19	20.77
Corpus Christi Ship Channel	141	20.56	46.80	32.62
Mustang Island State Park, Sandbar	105	58.09	19.04	22.85
Mustang Island State Park, Beach	249	56.22	18.47	25.30
Bird Beach Boat Basin, Sandbar	51	80.39	15.68	3.92
Bird Beach Boat Basin, Beach	41	46.34	29.26	24.39
Steadman Island Oyster Bar	131	24.42	45.80	29.77
Gunderson's Marine Oyster Bar	87	28.73	52.87	18.39
Copano Bay	7.0	71.42	25.71	2.85

Table 3.	Mexi	auna a ico be	and each	inter 10ca	actions tion.	suo.	from	the	North		Mustang	I	sland	ď,		
120Н	Doowflis	Leatropodostael	Crepidula sp.	Oliva (I.) sayana Bivalve-general	Atrina serrata	Ostreidae	xəlqmis-simonA	Cardita (C.) floridana Donax variabilis texasina	Chione cancellata	Dosina (D.) discus	Mercenaria campechiensis	Periploma inequale	Arenaeus cribarius	Mellita quinquesperforata	Fish skull	
None	2	9	-	21		~	-	16	-	~	7	2 2	_	105	-	
Cliona				2		16										
Cheilostome bryozoan			-		~	٣	-									
Natacid boring								9		-						
Oyster		_				4			-		-					
Polydora-small (.15mm)	5	_	2			13	-									
Polydora-medium (.5-1mm)	2		2			6	-									
Polydora-large (1+mm)	-		-			-										
Sepulid worms					2	2										
Crab breakage			~													
Barnacle					7						~					

Ostreidae with greater that 72% of the shells showing some type of interaction, are not typical of the beach and were shells that have been brought in by currents and wave action. The most active guest organisms were the polydoran worms and the encrusting bryozoans. The gastropod Oliva (I.) sayana showed a tendency to be bored by the all sizes of the worm Polydora commensalis. The shells of Oliva did not possess hermit crabs when collected and were found in the deepest water of the collecting zone.

The interactions from the beach of the Corpus Christi ship channel at the Marine Food Research Lab are presented in Table 4. Most of the shells from the beach were involved in extensive interactions. Aequipecten (P.) amplicostatus, Plicatula gibbosa, and Mercenaria campechiensis contained the highest numbers of interactions of the bivalves found. Aequipecten and Plicatula were dominated by the activities of epibiontic organisms while Mercenaria was dominated by the borings of Polydora; the difference can be related to life habit of the host organism, Mercenaria being infaunal. Strombus(?) and Thais (Stramonita) haemastoma floridana were involved in the most interactions involving the gastropods. Thais was the most selected host species of this location. Guests of Thais include equal numbers of epibiontic and

	Chione cancellata	10	~	2	1	-	2	9	2	~		
	Diplodonta (.9) semiaspera	-										
	Cardita (C.) floridana	ĸ			-							
p a l	Plicatula gibbosa		-	-		2	-				-	
Shi ner	Aequipecten (.9) amplicostatus	-		-	-	-	7		2		2	
sti d-ge	eilavo (.l) atabenA			. -			~	' -				
Chri ropo	ĺar∋n∋v-∋víg			(- -	-	-		7	-		-	-
S S t	Busycon spiratum plagosus											
orpu Ga	Busycon contrarium			2		2	2	-			2	
e Cc a·	mumoq (.9) xəruM			_		-	_	_	-			
th d.	Thais (S.) haemistoma floridana	~		16		17	14	16	11	~	15	
from slan	? eiedī			-					-	-		
ns f g Is	Strombus elatus					-					-	
tion tan	Strombus?		-	-		~		-	2		-	
erac Mus	Polinices (N.) duplicatus	4		2		2	-	_	-		7	~
inte rth	ogs (•J) slubiqərJ	~										
nd No	l mushizofi (.I) muidiisə	~										
na a ion,	Vermicularia fargoi	~~										
Faun	Castropod-general							-				
10	Host											
e 4 nel	1							(E	(m			
Table Chann				oan				15m	.5-1m	(ww+		
H O 1	•			bryoz	<u></u>			.) [ium (Je (1.	_	E
				come 1	bori		•	1-ѕта	.bem-ı	ı-larç	word	e woı
		ñ	Cliona	Cheilostome bryozoan	Naticid boring	Oysters	Barnacle	Polydora-small (.15mm	Polydora-medium (.5-1mm)	Polydora-large (1+mm)	Serpulid warm	Sand Tube worm
		None	C13	Che	Nat	Oye	Ваг	Pol	Pol	Pol	Ser	San

Crassostrea												
t o												
discus												
(b.)												
Dosina	esinigiiv esiteseil				7	5	9	15	7	4	7	
	Ostrea equestris	-	=			2	4	7	9	2	2	
ب	Tellinidae	-										
Continued.	Mercenaria c. texana	-							_			
t i nı	Mercenaria campechiensis	_	5	3		2	~	9	9	2	3	
Con	Dosina (.d) anisoO	4			-							
ica ica	Host											
Table 4 virgini		None	Cliona	Cheilostome bryozoans	Naticid boring	Oysters	Barnacle	Polydora-small (.15mm)	Polydora-medium (.5-1mm)	Polydora-large (1+mm)	Serpulid worm	Sand Tube Worm

endolithic guests. The most active guest organisms at this station were the cheilostome bryozoans, oyster spats, barnacles, all sizes of <u>Polydora</u>, and the serpulid worms.

The interactions from the sandbar at Mustang Island State Park are presented in Table 5. Most of the shells from the sandbar were not involved in any interactions. The bivalve Aequipecten (P.) amplicostatus was the most utilized bivalve host with only epibiontic interactions. Polinices (Neverita) duplicatus and Busycon contrarium were the most active of the gastropod hosts. Polinices shows a tendency towards Polydora borings over other interactions. Busycon had a more even mix of interactions with endolithic and epibiontic organisms. The most numerous interactions were with the barnacles, small polydorans, and crabs. Slightly less than three- quarters of the barnacles were found on gastropod shells with almost half of those on the shells of Busycon. occurrences of the small polydorans and the signs of crab predation were concentrated on the shells of Polinices.

The interactions from the beach at Mustang Island
State Park are presented in Table 6. Less than half of
the shells from the beach were involved in
interactions. Chione cancellata was the most selected

location.															
snadbar															
Park,															
State															
sland	Seludio	-													
I gı	Mercenaria campechiensis	2						-							
stan	Dosina (D.) discus	7						2							
Mu	Aequipecten (P.) amplicostatus	8						-				_	~		
the	Busycon contrarium	~~	5	5			4	8	9	7	5	9		4	
rom	Cantharus (P.) cancellarius	-						-	2	_		~ -			7
လ	Thais (S.) haemastoma floridana							-	3	-	2				-
tion	Polinices (N.) duplicatus	18	-	~				4	14	-				—	9
erac	C. (Janacus)plana	23	_									_			
int	(Selubiqera)	6													
and	Host														
Fauna				Cheilostome bryozoans	-				Polydora-small (.15mm)	Polydora-medium (.5-1mm)	Polydora-large (1+mm)		Crepidula (Janacus)plana		
5.				ome bi	poring	oring		m	-small	-mediu	-large	-	ı (Jan	. sp.	kage
Table		ā	Cliona	ilost	Muricid boring	Naticid boring	Oysters	Barnacles	ydora-	ydora-	ydora-	Tube worm	pidula	Crepidula sp.	Crab breakage
Ta		None	C11	Che	Mur	Nat	0ys	Bar	Pol	Pol	Pol	Tub	Cre	Cre	Cral

Host Crepidula sp. Crepidula (L.) inforsts Crepidula (C.) sp. Crepidula (C.) sp. Crepidula (C.) sp. Crepidula (C.) plana Crepidula (J.) plana Terebra (J.) plana Terebra (J.) plana Crepidula (J.) plana Terebra (J.) plana Crepidula (J.) plana Description (J.) plana Crepidula (J.) plana Crepidul	e 6. Fauna al Littorina (L .	nd i ir	ntera rorat	ctio	ns f Cra	rom	the	M N	tan rgi	g Is nica	land.	Stati	e Park	, be	ach	100	ation		
2 14 17 12 2 1				Crepidula (C.) sp.									, ,	silavo (.J) eTabenA				Crassostrea virginica	
1 2 1 11 1		2		14		12	2	_			-	4			-				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_		_		. 2	_		6	•	_			-	2	-	
1									2		1								
1 4 3 2 17 1						_			-	_				_					
4 3 2 17 1 1 1 5 6 1 2 1 16 2 1 1 2 3 1 5 1 2 1 17 2 1 1 1 1 3 1 6 19 19 19 1								4			12					-	2	-	
5 6 1 2 1 16 2 1 1 1 2 3 1 5 1 2 1 17 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1						4			~		11		-		Ì	_	₩		
3 1 5 1 2 1 17 1 3 1 6 19						2		,	2	-	16	, 2	_	_	•	~	2	_	
1 3						~			7	-	17	2	-		ì	_	€	-	
1 1 6						-	,	~									7		
				5	-	_	_	9			19						-	_	
						_		ξ=	_		~								
1 1 3																			

				•									
claw.													
Crab													
t o													
amplicostatus													
amb	Crab claw	_											
(<u>P</u> .)	Сотрија		-					-					
	Mercenaria campechiensis		-				_						
Aequipecten	Chione cancellata	99	6	2	2	M	7	25	12	-		2	
ipe	suiadalq (.M) aulagsī	2											
Aequ	Cardita (.) floridana												
р.	xəlqmis simonA	æ											
	Aequipecten (P.) amplicostatus	m				(-	-	-					
Continued.	Host												
t i n ı								<u></u>	<u>-</u>				
Con				zoan				,15mm	. 5-1mm	(mm+		formis	
. 9				bryo	but			111 (i um	,) ab,	Ę	traei	
1 e				tome	l bor		e)	a-sma	a-mec	a-lar	d wor	ia as	la
Table		None	Cliona	Cheilostome bryozoan	Naticid boring	Oysters	Barnacle	Polydora-small (.15mm)	Polydora-medium (.5-1mm)	Polydora-large (1+mm)	Serpulid worm	Astrangia astraeiformis	Crepidula

bivalve host organism at this site. Slightly less than half of the Chione were involved in interactions, most of them involved with polydoran guests. The gastropods Polinices (N.) duplicatus, Thais (S.) haemastoma floridana, and Busycon contrarium were the dominant gastropod hosts. Polinices shows a similar relationship with endolithic polydorans on the beach as they have on the adjacent sandbar. Busycon interactions were almost evenly weighted between endolithic (oyster spats and barnacles being the dominant epibionts) and epibiontic organisms. Thais occurred almost exclusively as a host organism with few unutilized shells. The most active guest organisms were the oyster spats, barnacles, and smaller polydorans.

The interactions present on the sandbar at the Bird Beach Boat Basin station on northern Padre Island are presented in Table 7. Shells without interactions predominate in this environment where most of the hosts were infaunal, and the shells of the dead organisms were partially or wholly buried. The most active host was <u>Tagelus</u> (M.) <u>plebeius</u> with slightly less than a third of the shells showing an interaction. The most prevalent guest was the sandtube worm with all of its activity on <u>Tagelus</u>.

location							
sandbar							
Basin,							
Boat							
Beach	Fish bone	,					
Sird	Serpula sp.						
the B	Mercenaria campechiensis texana	-					
	7ellinidae	10		-			
from	Chione cancellata	-					
suo	Tagelus (M.) plebeius	19			_	-	9
cti	Aequipecten (P.) amplicostatus		_				
interaction	Anachia avara semplicata						
	Cerithium (T.) floridanum	9					
and	Host						
Fauna			zoan		l (<.1mm)	Polydora-small (.15mm)	
7.			bryo	ing	smal	all (Orm
Table			stome	d bor	ra-v.	ra-ຣm:	w eqr
E1		None	Cheilostome bryozoan	Naticid boring	Polydo	Polydo	Sand Tube worm

The interactions present at the beach at the Bird Beach Boat Basin station on northern Padre Island are presented in Table 8. With the exception of Crepidula (epibionts themselves), the only host shells present were those of dead gastropods, and they were utilized by hermit crabs. Over sixty percent of the shells present had some type of interaction with serpulid worms and Crepidula being the most active guests.

The interactions present on the reef near the Steadman Island station in northern Redfish Bay are presented in Table 9. Most of the shells were involved in interactions. The bivalve Crassostrea virginica was the most interactive host. Crassostrea, making up the reef structure, was affected by all of the present guest organisms. Thais (S.) haemastoma floridana and Busycon contrarium were the most interactive gastropod hosts. Thais was affected by an equal number of epibiontic and endolithic organisms; there were no unaffected shells present in the sample. The guest organisms on Busycon were predominantly epibiontic with cheilostome bryozoans and balanid barnacles present. The most active guest organisms were Cliona and oysters. Live Cliona were collected in Crassostrea shells only at this site. This station was the only one in which a live gastropod was found boring into the shell of a bivalve (a Mercenaria fragment).

Fauna and interactions from the Bird Beach Boat Basin, beach location. . ω Table

Polinices (N.) duplicatus Busycon contrarium	;		1	2	1 1	4	1 1	8 1	7
Host Crepidula (C.) sp.	ſ	6	2		-				
		None	Oysters	Chama	Barnacle	Polydora-small (.15mm)	Polydora-medium (.5-1mm)	Serpulid worm	Crepidula sp.

Fauna and interactions from the Steadman Island oyster bar location. Table 9.

aisenzed	-	-						-			
Plicatula gibbosa		-	~	9	2	9	_	7			
Crassostrea virginica		54	30	81	15	36	18	30		2	
Mercenaria campechiensis					~			~			
Chione cancellata	۴	2		_	_			-			
Aequipecten (P.) amplicostatus	2										
Arcidse	2										
Busycon contrarium		-	5	3	9	7	~	9	-		
Anachis avara semplicata	~-										
Cantharus (.9.) cancellarius	-										
Thais (5.) h. floridana			—	2	5	9	-	7	_		
Crepidula (J.) plana	2										
Crepidula sp.		_				-	-	-			
Cerithium (.1) floridanum	22					-		_			
Host											
	None	Cliona	Cheilostome bryozoan	Oyster	Barnacle	Polydora-small (.1~.5mm)	Polydora-medium (.5-1mm)	Serpulid worm	Crepidula sp.	Vaticid boring	

The interactions present on the reef near Gunderson's Marine station in northern Nueces Bay are presented in Table 10. Most of the shells at this station were also involved in interactions. The oysters, Crassostrea virginica, Ostrea equestris, and Plicatulata gibbosa were the most interactive hosts. The epibionts on the oyster shells were the cheilostome bryozoans, oysters (adult and spat), and barnacles. This was not unexpected because the oysters make up the frame of the reef and were present for attachment by other organisms.

Few interactions were present at the mouth of the Aransas River station in southern Copano Bay (Table 11). Rangia cuneata dominated this environment and its interactions. Cheilostome bryozoans and barnacles were the dominant guests found on Rangia. These guest organisms were primarily concentrated on the anterior tip of the infaunal shell where the siphons are extruded. Guest organisms on other portions of the Rangia shell were found on the shells of dead Rangia lying on the sediment surface.

Specific Interactions

Throughout the stations sampled in this study, with the exception of the Copano Bay location, the guest organisms on bivalve hosts show no preference for attachment location which can be attributed to the life

Texas)							
(Portland, 1							
Marine							
Gunderson's							
	Plicatula gibbosa	89	2	15		13	
the	Crassostrea virginica	2	8	7	6	7	-
from	Ostrea equestria	7	20	30	3	21	15
	Serpula sp.						-
ion	Polinices (N.) duplicatus		_				
a C L	Crepidula (J.) plana			-	2		2
interactions	Busycon contrarium	-					
	Brachidontes (8.) exustus	2	_		-		
and ion.	Host						
auna						\sim	
Fa.			an			5mm)	
0. bar			yozog			5	
e r e r			ne br			small	MOLM
Table 10. oyster bar			Cheilostome bryozo	3.	ac Je	fora-:	hild
H O		None	Chei	Oyster	Barnacle	Polydora-small (.1	Serpulid worm

Fauna and interactions from the Copano Bay location. Table 11.

ęş	conea	eigneA	50	14	89	17	2	-	7	_
plebeius	(W*) s	Tagelus		-		-				
		Host								
			Nane	Cheilostome bryozoan	Oyster	Barnacle	Polydora-medium (.5-1mm)	Crepidula sp.	Brachidontes (I.) recurvus	Sand Tube worm

habit of the live host. The orientation of the epibiontic guest organisms was a function of the attitude of the shell on the substrate. The infaunal Rangia cuneata at Copano Bay had epifuanal guests located on the exposed portion of their shells. These surfaces provide some of the only substrate in this environment and were utilized by all available guest organisms.

In interactions between live gastropods and epibiontic guest organisms, no preference for attachment location was noted. Some of the gastropod shells were covered from the apex to the bottom of the body whorl by cheilostome bryozoans and/or were bored completely by the sponge Cliona. The distribution of the bryozoans on the conch and presence of the bryozoans and clionid borings inside of the body whorl indicate that the guest organisms interacted with the shell after the gastropod host had died.

The only clear evidence for crab predation was present at the beach station on the Gulf of Mexico side of Mustang Island. The shell material of the body whorl of the gastropod Oliva (I.) sayana has been peeled off in a pattern characteristic of crab predation (Schafer, 1980). Potential crab predation evidence exists in the shells of the gastropod Polinices (N.) duplicatus from the sandbar at the

Mustang Island State Park station. The body whorls of the <u>Polinices</u> were almost entirely removed. The poor condition of these shells and the degree of encrustation preclude labeling this as crab predation.

Some gastropod shells, especially those of Polinices (N.) duplicatus and Busycon contrarium, possess a unique distribution of epibiontic and endolithic organisms. The distribution of the guest organisms was not controlled by a live gastropod host but by the activities of the pagurid crustaceans (hermit crabs) which use their shells as homes. Gastropods hold their shells with the aperture downward or only slightly elevated to the front. The pagurids orient the aperture much higher (fig. 5a), relative to the substrate, and the way that they move the shell concentrates the guest organisms onto an area on the body whorl, one-quarter to one-half revolution behind the aperture (fig. 5b). The shell surface in contact with the sediment is uniformly clear of epibionts and endolithic organisms and shows signs of abrasion. distribution of organisms was noted by Walker (1986) in samples from the modern shells of Bodega Bay, California and fossil shells from the California Pleistocene. She termed this activity 'pagurization'.

A single pagurid will use a wide range of shell sizes as it grows. Pagurids were observed in shells of

Figure 5a. Relationship of gastropod shell orientation to inhabitant: 1. gastropod, 2. hermit crab.

Figure 5b. Distribution of epibiontic guest organisms on pagurized shells. I. Apical view, 2. Apertural view.

Cantharus (Pollia) cancellarius at station 6. These shells were less than 1 cm in length. Pagurids were observed in all of the sizes of the shells of Polinices (N.) duplicatus at the same station; some of these shells reached a length in excess of 20 cm. Utilization of all shell sizes, as observed in this study, would lead to the conclusion that the pagurids do not affect the shell size distribution of the gastropods as previously proposed (Walker, 1986).

The pagurids removed shells of gastropods from the seagrass and oyster reef environments, where live gastropods are found, and moved them into the shallow beach environments. To attempt to reconstruct the ecological structure of the beach community using the ecology of the live gastropod species, and not the pagurids ecology, would lead to erroneous conclusions. In the act of moving the shells, the pagurids were homogenizing the faunal component of laterally distinct environments. This biotransportation of shell material does not yield distinctive shell deposits. Unlike shells which have been transported by currents, the shells transported by the pagurids do not show any signs of being concentrated, oriented in the sediment, or size selected by the activities of the pagurids. Without the distribution of the epibiontic and endolithic organisms, the detection and proper

utilization of pagurized shells' ecological information are extremely difficult.

Shells of the live gastropods and unoccupied shells of the dead gastropods did not display any preferred orientation of guest organisms. Most live gastropods had shells which were clear of endoliths, and a large number of these shells had no epizoans. The shells of the infaunal gastropods show an epizoan encrustation characteristic of epifauna if they are "pagurized." In the fossil record the presence of epibiontic guest organisms could indicate incorrect life habit information for the host species.

Station Relationships

A method for visually displaying the interaction character of the localities was developed for use in this study (fig. 6). The diagram uses the percentages of shells with epibiontic guests, endolithic guests, and the percentage of shells which were free of guests as apices. In this way, the diagram describes both the abundance of utilized shells and the types of organisms that use them. With this diagram, the general character of each locality is readily comparable to that at other locations. By presenting the data in this manner, it is possible to distinguish between stations with similar host fauna from different environments, if the environmental factors affect the

Figure 6. Ternary diagram used for the display and comparison of interactions found at the Texas Coast location. Points located at apices represent 100% of the sample.

availability of guest organisms, and between widely different environments, regardless of host distributions.

Figure 7 displays the positions of the interaction composition at each of the stations. The Gulf of Mexico beach, Bird Beach Boat Basin sandbar, and Copano Bay stations have the fewest shells involved in interactions. Each of these stations was populated by infaunal (or shallowly infaunal) organisms as the result of adverse conditions present at the sediment/water interface. The high-energy environment of the shoreface at the gulf beach location precludes inhabitance by most epifaunal molluscan species. epifaunal gastropod shells found here were empty at the time of collection. The presence of large numbers of the sand dollar Melita quinquesperforata contributed to the low overall interaction intensity at the station. Live Melita were found on the second sandbar offshore (where the waves begin to break). When they die, their shells are brought to the shore by wave generated currents, and most are rapidly disarticulated by the crashing waves. This activity happens rapidly after death, and there is not enough time to develop interactions before these shells are destroyed. presence of warm, stagnant, shallow water over the Bird Beach Boat Basin sandbar location precludes the

Figure 7. Percentage interactions present in the samples from the Texas Coast stations. 1. Gulf of Mexico beach, 2. Corpus Christi Ship Channel, 3. Mustang Island State Park sandbar, 4. Mustang Island State Park beach, 5. Bird Beach Boat Basin sandbar, 6. Bird Beach Boat Basin beach, 7. Steadman Island oyster bar, 8. Gunderson's Marine oyster bar, 9. Copano Bay.

formation of large epifaunal host populations, and all live host organisms collected there were infaunal. shells that were exposed on the surface were those of thin-shelled bivalves (Tagelus and some tellinids) and some small gastropods. The shells are too thin to be bored by polydorans, and clionids are fragmented rapidly after exposure. The Copano Bay station has an exclusively infaunal host species component, and, although what was brought to the surface was utilized, this percentage was low relative to the standing host crop at any one time because of shell destruction (Cummins, et al., 1986a). As indicated by these three stations, the presence of a high percentage of unutilized shells in a fossil community may represent stressed environments. In the fossil record, rapid burial also may lead to underutilization of shells by interactants. The type of environmental pressures which result in low utilization can be varied, and the causes are not readily evident from the position of the station on the diagram.

Both of the Mustang Island State Park stations group close together. The similarity of the two stations is related to the overriding control of the waters of Fish Pass. Water depths were greater at this sandbar than at Bird Beach. The Mustang Island State Park sandbar station also differs in that it is

continuously bathed by waters flowing in through Fish Pass. The water conditions allowed for a greater epifaunal host component on the sandbar. The water conditions on the sandbar did not differ from those of the shoreline, and, therefore, both stations from this location possess close interaction relationships.

The Bird Beach Boat Basin locations, sandbar and beach, were dissimilar. The sandbar at Bird Beach is a relatively stagnant water environment with no epifauna. Pagurid crabs, found in the channel separating the sandbar from the beach, take the gastropod shells out of the seagrass beds into the less harsh beach environment and not onto the sandbar. The only shells collected from the beach were pagurized gastropod shells. Lack of an infaunal component at the beach gives it a lower percentage of unutilized shells.

Both of the oyster bank stations, Steadman Island and Gunderson's Marine show extensive utilization of shell material by both epizoic and endolithic organisms. The substrate conditions relegate most epifaunal organisms to attachment on the reef mass. These stations have the largest percentage of host organisms present as epibiontic guest organisms. The degree of interaction at these locations shows a high degree of interdependence. Reduced salinity at the Gunderson's Marine station appears to adversely affect

endolithic organisms (<u>Cliona</u> was not present here). More work needs to be done to establish the use of relative endolith/epizoan percentages to distinguish between inner bay and lagoonal oyster reefs.

The Marine Science Food Research Lab beach location has the highest percentage of utilized shells of the localities in the study. Most shells were utilized by more than one type of guest organism with both epizoans and endoliths present. The large number of interactions is explained in the nature of the shell accumulation at this beach. Shell material is moved along the beach by currents in the Corpus Christi ship channel. Shells are moved up into shallow water and are continuously maintained at the sediment surface by the same currents. Hermit crabs also carry the shells into this area of beach from the channel and were noted moving against the currents at ebb tide. Shell accumulation at this station is the result of physical and biological transportation. The high degree of shell utilization is a function of the amount of time that these shells are maintained on the surface.

Summary

The physical environment (substrate, salinity, water depth, turbidity, and wave activity) is the primary control of the distribution of the hosts and guests. The relationship between the types of

interacting organisms and the environments that characteristic interaction pairs are found in is a complex one. The physiological requirements of both the host organism and the guest organism must have been relatively similar, if interaction occurred when both were alive. If the shell has been colonized after death of the host, only the requirements of the guest will lead to the correct interpretation of the depositional environment. The identification of transported shells in a fossil assemblage is important when using interaction pairs to determine paleoenvironment. Differences in the mechanisms of mechanical and biological transportation can yield differences in the amount and types of interactions.

The differences in the intensities of interactions between epifaunal and infaunal host species from the Gulf Coast stations are displayed in Table 12. With the exception of the Copano Bay locality, 18% or more of the shells of infaunal organisms were involved in interactions at each of the stations. The degree of shell utilization within the Texas coast areas studied is a function of the residence time of the shell on the sediment surface. Epifauna are subject to the activities of epibionts and endoliths throughout their lives. If the shell is maintained on the surface after death, by physical or biological means, a diverse set

Table 12. Intensity of interactions found within the epifaunal and infaunal organisms (as defined in the introduction) from the localities on the Texas Coast.

	Interaction Epifauna	
Gulf of Mexico Beach	90.7	48.8
Corpus Christi Ship Channel	88.2	61.9
Mustang Island State Park: Sandbar	26.1	53.7
Beach	38.3	46.1
Padre Island State Park: Sandbar	11.1	18.4
Beach	25.0	78.6
Steadman Island Oyster Bar	68.9	92.3
Gunderson's Marine Oyster Bar	75.6	0.0
Copano Bay	0.0	26.4

of interactions can develop on the shell. Infaunal organisms that are brought to the surface have only the time until reburial to be involved in interactions. Depending on the time of their exposure, diverse and intricate interactions can develop on the shells.

It is possible that the mechanisms that maintain shells on the surface, and are engaged in interactions, keep the shells from being incorporated into the sediment and preserved. The data from the Humboldt Basin and the Kettleman Hills indicate that preservation of intensely utilized shells is the exception and not the rule in fossil accumulations.

HUMBOLDT BASIN

The Gulf Coast data has shown that there are diverse ecological elements that control the distribution and degree of organism interactions. Each of the stations represents the variations within an overall depositional setting. Differences from station to station were the result of faunal variations brought on by environmental differences. In time, these environments will migrate as the Texas coast builds outward, and the potential fossil record would include a mixture of shells from several adjacent environments.

In order to study interactions across a large environmental gradient, an area with directed changes in the depositional settings was chosen. The Neogene Wildcat Group of the Humboldt Basin, northern California (fig. 8) contains a continuous section of basinal to littoral sediments. The Humboldt Basin formed rapidly during Late Miocene. Through the Pliocene and into the Pleistocene, the basin was filled with sediments and became progressively shallower (Jennings, 1983). The changes in environments in the shoaling basin provide the setting for this portion of the study. Two sections in the onshore portion of the Humboldt Basin were sampled for macrofauna, one at Centerville Beach and the other along the Eel River by Scotia (fig. 9). The geology of the area and the

Figure 8. Index map showing geographic location of the Humboldt Basin (from Burckle, et al., 1980).

Figure 9. Generalized geologic map of Neogene strata of the Humboldt Basin showing the location of the text sections.

A. Centerville Beach, B. Eel River (from Burkle, et al., 1980).

stratigraphy was first described in detail by Ogle (1953).

The Eel River section is located along the banks of the Eel River by the towns of Rio Dell and Scotia (fig. 10). The lower portion of the Wildcat Group (Pullen, Eel River, and lower portion of the Rio Dell Formations) is exposed on the west bank of the river, upstream from the town of Rio Dell. The upper portion of the Wildcat Group (the middle and upper portions of the Rio Dell, Scotia Bluffs, and Carlotta Formations) is exposed along the railroad tracks on the east bank of the river, downstream from the town of Scotia. Centerville Beach section is located north of False Cape and Cape Mendocino (fig. 11). The rocks of the Wildcat Group are exposed in the seacliffs at this section. The northward dip of the beds provides easy access to the complete section along the coastline.

These sections have been sampled by other workers, and studies have been published on the diatom biostratigraphy (Burkle, et al., 1980), foraminiferal biostratigraphy (Haller, 1967), megafaunal biostratigraphy (Ogle, 1953, and Faustman, 1964), sedimentology (Piper, et al., 1976), carbon and oxygen isotopes (Kammer, 1979; and Dodd, et al., 1984), trace fossils (Jennings, 1983) and magnetostratigraphy (Dodd, et al., 1977). Many of the conclusions in this study

Figure 10. Stratigraphic section of the Wildcat Group at the Eel River section with map showing the collection zones by formational units.

Figure 11. Stratigraphic section of the Wildcat Group at Centerville Beach section with map showing the collection zones by formational units. Black dots represent sample sites.

are based on the strong biostratigraphic and paleoecologic framework prepared by these previous studies.

The sediments of the Centerville Beach section represent the open marine, deep-water portion of the onshore Humboldt Basin whereas those of the Eel River section represent more basin-margin conditions. The samples used in this study were collected in situ. Precautions were taken to avoid the collection of "float" material. These precautions were taken to avoid mixing samples of stratigraphically distinct faunas.

Stratigraphy and Sedimentology

The Humboldt Basin formed at the site of convergence between the margin of the American plate and the margin of the Gorda plate (Dodd, et al., 1984). The initial transgressive phase of basin formation is represented by the Late Miocene to Early Pliocene shallow water deposits of the lower Pullen Formation (fig. 12). The upper Pullen, Eel River, and lower Rio Call Formations represent deep water basinal sedimentation. As subsidence slowed and the basin filled, sedimentation graded upward into slope (middle Rio Dell Formation), shelf (upper Rio Dell Formation and Scotia Bluffs Sandstone), and continental deposits (Carlotta Formation) (Jennings, 1983). The Rio Dell

Figure 12. Comparison of the stratigraphic sections at the Centerville Beach and Eel River localities (after Burkle, et al., 1980).

Formation, undifferentiated at the Eel River section, can be subdivided at the Centerville Beach section based on lithology.

Eel River Section

With a total stratigraphic thickness in excess of 6000 feet, the Eel River section is one of the thickest continuous exposures of the Wildcat Group in the Humboldt Basin (fig. 13). The dominant lithology of the Eel River section is massive clayey siltstone. The distinction between the Pullen, Eel River, and Rio Dell Formations is based on the presence or absence of the mineral glauconite.

The basal portion of the Pullen Formation contains conglomeratic lenses of matrix-supported pebble and clay clasts. These lenses are developed on an unconformity surface between the Pullen Formation and the underlying Yager Formation. The lithology of the lower Pullen is indicative of deposition by debris flows. The Pullen Formation, about 400 feet above the base, grades into a fine-grained, conchoidally weathered, extensively fractured clay siltstone. The stratigraphic thicknesses of the Pullen at the Eel River and Centerville Beach sections are nearly equal.

The contact between the Eel River and Pullen Formations at the Eel River section is placed at the occurrence of a thin, pebbly interval and accompany-

Figure 13. Stratigraphic section at the Eel River locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV.

ing glauconitic bed about 1200 feet into the section (Ogle, 1953). The lower portion of the Eel River Formation is composed of several glauconitic beds and coarse- grained, channelized glauconitic sandstones. The dominant lithology in the middle of the Eel River Formation changes from the glauconitic sand back to a darker, massive, weathered clay siltstone. The upper part of the Eel River Formation is composed of massive clayey siltstones with pebble clasts and wood fragments common.

The Rio Dell Formation is not subdivided into the Lower, Middle, and Upper Members at the Eel River locality because the changes in lithology are indistinct. The lower portion of the Rio Dell consists of fine-to-medium grained, poorly sorted sandstones which are interbedded with conchoidally weathered, fractured, clayey siltstones. Five hundred feet into the Rio Dell, the dominant lithology changes to massive clayey siltstones. The boundary between the lower and middle portions of the Rio Dell Formation at this section is gradational and is placed where the clayey siltstones give way to concretionary lenses and sandstone beds.

Most of the middle portion of the Rio Dell Formation is composed of massive clayey siltstones with exposures generally being covered by vegetation. The

clayey siltstones grade into alternating beds of thick (10 to 20 feet), massive, fine-grained sandstones and massive, conchoidally fractured, weathered clay siltstones which grade back into clayey siltstones.

The "phantom-banded' sequence of the Rio Dell Formation appears at the boundary between the middle and upper portions of the Rio Dell. Texturally, the "phantom-banded" sequence is a cleaner, fine-grained sandstone. The typical sequence within the bands is that of a scoured basal contact with a basal shell lag, changing to a laminated sandstone, and finally to a homogenized (bioturbated) zone. The upper portion of the Rio Dell contains three "phantom-banded" sequences. Clayey siltstones, characteristic of the entire upper portion of the section, exist between these sequences. Six hundred feet below the top of the Rio Dell, the bands become less distinct, and the unit becomes finer grained.

The contact between the Scotia Bluffs and the Rio Dell Formations is gradational and is characterized by a change in lithology to massive, tan, medium-grained sandstones. The sandstones of the Scotia Bluffs are fine-grained at the base and grade into medium-grained sandstones and conglomerates near the top.

Bi-directional crossbedding and bar-shaped sand and conglomerate deposits of the Scotia Bluffs Formation

reflect the influence of wave and tidally dominated processes. Macrofaunal remains are found in the lower portion of this formation in the conglomeratic channel deposits (Jennings, 1983).

Centerville Beach Section

At the Centerville Beach section approximately 5600 feet of Wildcat Group sediments are exposed. The Centerville Beach section (fig. 14) begins at the base of the lower Pullen north of False Cape and is underlain by the mudstones and siltstones of the Upper Jurassic/ Lower Cretaceous Yager Formation. The contact between the Upper Rio Dell and the overlying Hookton Formation is unconformable. The dominant lithology at this section is a very fine-grained, massive, clayey siltstone with occasional fine-scale planar laminations.

The lower Pullen Formation at this section is a blocky, fractured siltstone and is characterized by the occurrence of glauconitic, sandy and conglomeratic lenses. The fauna found within this portion of the Pullen indicate shallow-water deposition. The middle Pullen is composed of mudstones with cream-colored concretions. These concretions have been interpreted as mudballs which may represent debris transported downslope into the basin along with some glauconitic material (Jennings, 1983). The upper portion of the

Figure 14. Stratigraphic section at the Centerville Beach locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV.

Pullen Formation consists of massive, conchoidally weathered clay siltstone and mudstone. Wood fragments, whale bone fragments, and concretionary lenses are common in this unit. Macrofauna are virtually absent in the Pullen Formation with the exception of some shells in the lower, shallow-water portion.

The presence of several glauconitic units marks the contact between the Pullen and Eel River Formations. The Eel River Formation is characterized by glauconitic units, massive clay siltstones, and bedded sandstone units. The base of the Eel River Formation is marked by several sandstone units with well-preserved A,B,C Bouma sequences. These thinbedded turbidite units are overlain by thicker layers of massive, fine- to medium-grained sandstones. Individual channel lenses possess scoured, irregular basal contacts and are overlain by thin, ripple-dominated sandstones and glauconite beds. The sand lenses are surrounded by conchoidally weathered clay siltstone. Above the turbidite units, rhythmically interbedded layers of thin rippledominated sandstones and siltstones become dominant. The rhythmically bedded units are evidence of slower flow regimes characteristic of distal turbidite deposition and the presence of reworking currents. This sequence (the ripple-dominated sandstones)

continues throughout the upper portion of the Eel River Formation and extends into the Lower and Middle Rio Dell Formation. The contact between the Eel River and the Rio Dell Formations is gradational and is marked by a reduction in glauconite content.

The Centerville Beach section of the Rio Dell
Formation can be subdivided into the Lower, Middle, and
Upper Members based on lithologic differences. The
Lower Rio Dell Member consists of 1000 feet of
thin-bedded, interbedded ripple-dominated sandstones
and siltstones which are overlain by clay siltstone and
claystone seams. The base of the Middle Rio Dell
Member is marked by a change to rhythmically bedded,
ripple-dominated sandstones. This sequence of rippledominated sandstones continues throughout the Middle
Rio Dell.

The presence of several glauconitic lenses marks the transition between the Middle and Upper Rio Dell Members. Interbedded with these glauconitic lenses are lenses of thin sandstone, seams of thinly-laminated claystones, massive clay siltstone, and thin ash beds. Tan sandy concretions are also found at this level. Higher up in the section, clay siltstone with abundant bivalve and gastropod fragments, iron-stained concretions, and wood chip layers becomes the predominant lithology. Four hundred feet into the

Upper Rio Dell Member, the clay siltstone grades into layers of alternating sandstones and siltstones that are analagous to the "phantom-banded" sequences of the Eel River section. The banding is not as developed at this section. The Upper Rio Dell Member is characterized by the occurrence of alternating sequences of clay siltstones, claystone seams, and "phantom-banded" sediments. Some of the "phantom-banded" sandstones are characterized by the presence of basal shell lags overlying massive sandstones and planar laminated siltstones. sequences are suggestive of either turbidite or storm generated deposition. Some of the exposures of the Upper Rio Dell Member are obscured by creek drainage, faulting, and landslides. The Upper Rio Dell is overlain unconformably by the Hookton Formation. The uppermost Rio Dell, Scotia Bluffs, and Carlotta Formations are missing in this section. The Hookton Formation is composed of medium-to-coarse- grained cross-bedded sandstones and conglomerates suggestive of continental deposition.

Depositional Setting

The depositional setting of the Humboldt Basin provides the framework for this paleontologic analysis. Ingle (1976), in his study of diatoms and foraminifera in the Humboldt Basin, proposed water depths and basin

settings for the Centerville Beach section (fig. 15). Ingle places the Pullen Formation below water depths of 1900 meters on the basin plain. The Eel River Formation, Lower Rio Dell Member, and the lower half of the Middle Rio Dell Member were grouped into a deep sea fan classification with water depths starting at 1750+ meters and shallowing to 1200 meters. The upper portion of the Middle Rio Dell Member and the lower third of the Upper Rio Dell Member are basin slope deposits. The water depths rapidly decrease from 1200 meters to 200 meters. Ingle proposed that the upper two-thirds of the Upper Rio Dell Member were representative of outer shelf and shelf edge depostion. with water depths no shallower than 100 meters at the upper boundary unconformity. Jay Philips (oral comm.) believes that the water depths of Ingle's studies did not take into account the possibility of upwelling currents and that deeper water fauna could have lived at shallower depths. This would mean that Ingle's figures could be taken as lower limits to water depths.

Stanton (oral comm.) also feels that the depositional classifications of Ingle were too extreme and proposes that the Pullen and Eel River Formations at the Centerville Beach section represent basinal conditions (fig. 16). He feels that the Lower, Middle, and lower third of the Upper Rio Dell Members were

Figure 15. Benthic foraminiferal biofacies and estimated paleobathymetry for the Centerville Beach location (from Ingle, 1980).

Figure 16. Estimated paleobathymetry of the Humboldt Basin sections as determined by Ingle (1976) and Stanton (unpublished).

deposited basin slope environments and the upper two-thirds of the Upper Rio Dell Member was deposited in shelfal conditions. The unconformity at the top of the Rio Dell Formation removes the shoreface environments, and the sediments of the Hookton are non-marine.

At the Eel River section, Stanton's interpretation of the environments of the Pullen and Eel River Formations is the same as at Centerville Beach, that of basinal sedimentation. The lower fourth of the undifferentiated Rio Dell Formation represents basin slope, and the remainder of the Rio Dell was deposited in a shelf setting. The shelf/shoreface boundary occurs around the contact between the Rio Dell and Scotia Bluffs Formations. After inspection of the samples, the author feels that the interpretations of Stanton are probably the most correct and that his environmental interpretations will be used in the formulation of the conclusions of this study.

Paleontologic Analyses

With the exception of bivalve epibionts, examples of each of the major types of interactions identified in the Gulf Coast study were observed in the samples from the Humboldt Basin. These types of interactions include gastropod predation, algal/fungal borings, clionid borings, polychaete borings, encrusting

bryozoans, and encrusting barnacles. The number of interactions, in general, was low throughout both Humboldt Basin sections. Figure 17 shows the stratigraphic distribution of the interaction types for the Centerville Beach and Eel River sections.

The majority of shells collected from this area have fair to poor preservation, and identification below the generic, and sometimes familial, level was not possible. A listing of the fauna of the Humboldt Basin sections can be found in Appendix III. An additional listing of the samples, fauna, and interactions is included in Appendix IV.

The faunal collection from the Humboldt Basin include materials collected by Dr. R. J. Stanton, (Texas A & M University), Dr. J. R. Dodd (Indiana University), and the author. These samples comprise one of the most complete collections from the Centerville Beach and Eel River sections.

Fossil abundance was low throughout the lower two-thirds of the section (the Pullen, Eel River, and lower Rio Dell Formations) at each of the locations (plates I and II provide a summary of the data for each locality). The samples that were available, in the lower portions of the section, were very sparse. The samples from these units represent the original fauna as best as can be obtained. These samples will be

Figure 17. Stratigraphic and paleobathymetric distribution of guest organisms at the A. Eel River section and B. Centerville Beach section.

treated as being representative of an original depauperate fauna and analyzed as such. The conclusions reached in this section are those justified by the sample and do not include conjectural species compositions.

Relative to the number of shells in the collection, the percentage which contains interactions is small. The numbers of interactions in individual samples range from 5 % to 20+ % of the shells present. In samples of fewer than ten specimens, the percentages of each type of interaction appear to be arbitrarily high. As sample size increases upwards in the section, the percentage of the total that each type of interaction comprises becomes less. relationships indicate that the percentage of each interaction type in the small samples should be viewed as being the upper limit for that type of interaction within that sample. The extreme variability in sample size, from one to more than 100 per sample, caused concern about the relationship between the interaction intensities and sample size. The samples from the Centerville Beach and Eel River sections were placed into groups based on stratigraphic position and lithologic character to allow for the comparison of interaction intensity trends and sample size (figs. 18 and 19). As figures 20a and 20b show, the number of

				Lithologic
	Sample	Formation	Lithology	Group
		Scotia Stuffs	Send and Conglomerate	15
- 5000	- 2000 E - 1900		Sendy Shale	14
			Bandy Shale	13
- 5000	E 170		Sendstone	12
	150	Rio Dell	Shale	11
4000			Slightly Sandy Shale	10
-	F 140		Sandy Shale	9
- 3000	130		Alternating Sand and Shale	8
	110		Sandy Shale	7
2000	50	Eei River Pullen	Shale	6
	F		Sandstone	5
	-40		Sandy Shale	4
- 1000 -	20		Shale	3
	<u> </u>		Sendy Shale	2
	E-10	<u> </u>	Sandstone	1

Figure 18. Lithologic groups as defined for the Eel River section.

	Sample	Formation	Lithology	Lithologic Group
		Hookton	Send and Conglomerate	12
- 6000	-110 -		Shale	11
	- - 100	Upper Rio Dell Mander	Sandy Shale	10
- 5000			Shale	9
4000	8 8		Sandy Shale	8
ļ			Shale	7
- 3000	E 60	Middle Rio Dell Member	Sandy Shale	6
- 2000	-40	Lower Rio Dell Member	Sandy to Yary Sandy Shale	5
1000	20	Eet River	Shale to Sandy Shale	4
ł			Sandy Shale	3
-		Pullen	Shale	2
<u> </u>	<u> </u>		Covered	1

Figure 19. Lithologic groups as defined for the Centerville Beach section.

Figure 20a. Sample size (total shells) and number of interactions by lithologic groups for the Eel River section. (Note different Y-axis scales.)

Figure 20b. Sample size (total shells) and number of interactions by lithologic group for the Centerville Beach section. (Note different Y-axis scales.)

shells with interactions varies with the total number of shells within each lithologic group.

The distribution of samples within the section and the low total number of shells within some of the units do not allow for normal statistical comparison.

Figures 21a and 21b display the relationship between the total numbers of shells and the interaction intensities. It is clear from these figures that the interaction intensity is not simply a function of sample size. The similarity of patterns within the two sections indicates that common ecologic controls on interactions play a part in the distribution of guests.

Organism Interactions

Gastropod Predation

The gastropod predators are represented in the Humboldt Basin section by the borings of members of the families Naticidae and Muricidae. The bivalve Macoma elimata was the first utilized prey of naticids at both sections. The first naticid boring, at the Eel River section, occurs 700 feet below the first appearance of naticids. The lowest occurrence of a naticid boring was at the top of the Pullen. The first naticid,

Natica (Cryptonatica) clausa, appears at the top of the Eel River Formation. The first naticids of the Centerville Beach section appear at the base of the Eel River Formation, while the first naticid boring was not

Figure 21a. Total shells vs. interaction intensity by lithologic group for the Eel River section.

Figure 21b. Total shells vs. interaction intensity by lithologic group for the Centerville Beach section.

found until 1100 feet higher in the section, in the Lower Rio Dell Member. At both sections, muricids and muricid borings occur higher in the section.

To determine general prey preference, the dominance ratio of bored bivalves to bored gastropods in each section was computed. Figures 22 and 23 show the dominance ratio of prey selected between bivalves and gastropods. This dominance ratio is presented along with the dominance ratio of potential bivalve to gastropod prey. To determine values for total shell and prey dominance, the following formulas were used:

if bivalves were dominant,

Dominance Ratio = - Bivalves

Total (Bivalve+Gastropod)

if gastropods were dominant,

(The dominance ratio was developed solely for the display of data, and no inherent significance of the values should be assumed.) The pattern of prey preference of the gastropods is different between the two sections. The Eel River and lower portion of the Rio Dell Formations at the Eel River section (fig. 22), have a dominance ratio of bivalve to gastropod prey of -1. This ratio begins to change at the shelf slope break. From one-quarter of the way into the Rio Dell

Figure 22. A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Eel River section. B. Prey bivalve/gastropod dominance percentages within samples with boreholes.

Figure 23. A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Centerville Beach section. B. Prey bivalve/gastropod dominance percentages within samples with boreholes.

to the top, the bivalves were utilized to the exclusion of all gastropod prey species except for instances of continued predation on Natica (Cryptonatica) clausa (fig. 24). Predation incidents increase upward in the section with naticids being the dominant borer throughout. The total number of specimens increases upward in the section but is not paralleled by an increase in the number of incidents of predation. increase in number of bored individuals is a reflection of the appearance of key bivalve prey species. the Rio Dell and Scotia Bluffs contact the number of specimen and borings decrease. The shells collected from the Scotia Bluffs Formation were found in lag deposits. Because the material was brought into the area from elsewhere, no environmental interpretation can be presented.

The character of the dominance ratio of bivalve to gastropod prey at the Centerville Beach section was different (fig. 23). Throughout the section the dominance ratio fluctuates as the number of incidents of predation increases upward throughout the Rio Dell. Although the dominance ratios vary widely throughout the section, the gastropod borers show no change in overall preference as the inferred water depths decrease. The deeper water prey species (gastropod) continue their range into shallower waters and continue

Figure 24. Distribution of prey gastropods and bivalves for the Eel River section. The numbers represent bored shells. The black lines show the range of the prey within the section.

to be preferred over bivalves (which become more abundant upward). The amount of gastropod predation does not diminish upwards in the Rio Dell, and the record was abruptly terminated at the contact between the Rio Dell Formation and the non-fossiliferous, continental, Hookton Formation(fig. 25).

The preferred gastropod as gastropod prey at the Eel River section was the naticid Natica (C.) clausa. Predation on N. (C.) clausa begins at the shelf/slope break and continues into the Scotia Bluffs, shoreface portion of the section. Other gastropods found bored at the Eel River section are Antiplanes (A.) major, Antiplanes perversa, and Beringius (?), each of which have only one specimen with a borehole within the section. As with Polinices at the Texas Gulf Coast, the naticids appear to have been a preferred prey of themselves. At the Centerville Beach section, the number of specimen with boreholes was greater. The majority of the gastropods as their own prey are found within the naticids, muricids, and turrids with a slight preference towards the muricids and turrids in the upper portion of the section. Latisipho hallii was the only neptuneid species preyed upon within the section. Other members of the family are present throughout the section but were not attacked.

Figure 25. Distribution of prey gastropods and bivalves for the Centerville Beach section. The numbers represent bored shells. The black lines show the range of the prey within the section.

A disproportionally larger number of reports of gastropod borings in the shells of the bivalves was found at the Eel River section. The preferred bivalves as gastropod prey at the Eel River section are from the order Veneroida and are concentrated in the families Veneridae and Tellinidae. Table 13 lists the bivalve prey.

Table 13. Bivalve species bored by gastropods at the Eel River section and number of incidents of predation.

Bivalve Prey	# of shells attacked
Protothaca staylei hannibali	7
Psephidea lordi ovalis	5
Macoma elimata	5
Macoma inquinata arnheimi	4
Macoma nasuta	2
Clinocardium meekianum	1
Nuculana fossa	1
Cryptomya (?)	1

At the Centerville Beach section the reverse condition is true; the number of bivalves with gastropod boreholes is much fewer than those in gastropods. The bivalve most commonly preyed upon was the carditid Cyclocardia ventricosa. Predation on this Cartididae did not occur below the base of the Upper Rio Dell Member even though specimen of C. ventricosa were abundant below this horizon. The primary predatory gastropod on C. ventricosa was of the naticid type and

the onset of boring occurs at the same level as the first appearance of the naticid species <u>Polinices</u>

(<u>Euspira</u>) <u>pallidus</u>. The only other bivalves with boreholes were a sample of <u>Macoma elimata</u> in the Lower Rio Dell Member and a sample of <u>Macoma</u> aff. <u>M</u>.

inquinata arnheimi in the middle of the Upper Rio Dell Member.

Other types of interactions are more abundant when compared to the number of incidents of gastropod predation. This finding was especially true at the Eel River section. The control mechanism determining the preference between bivalves and gastropods as gastropod prey is complex. A possible control on the preference is the species composition as controlled by the location of each of the sections with reference to their place in the depositional settings of the basin itself. The sediments at the Eel River section are more varied than at the Centerville Beach section. The Rio Dell sediment types at the Eel River section fluctuate rapidly as would be expected under shallower water, more terrestrially controlled conditions. sediments in the Centerville Beach section reflect the stability of deeper-water conditions, separated from fluctuating terrestrial conditions. The differences in the stability of the environments and the conditions of the substrate (firmness, organic content, etc.) would

produce different faunas and potentially different prey availability.

Borings (Non-predatory)

In the Humboldt Basin there were few occurrences of borings of algae, fungi, and clionid sponges.

Because of the few reports of these types of borings, few conclusions can be made about these types of interactions for this area. The following material briefly summarizes their occurrence:

Algal:

Centerville Beach

Compsomyax subdiaphana -middle of the Upper

Rio Dell Member.

Fungal:

Centerville Beach Yoldia scissurata

-Lower Rio Dell Member

Neptunea (Sulcosipho) tabulata

-in lowermost Middle Rio Dell Member

Natica sp.

-lowermost portion of the Upper Rio Dell Member

Clionid:

Eel River

Beringius arnoldi

-lowermost Rio Dell Formation

Protothaca staleyi hannibali

-in middle portion of the Rio Dell Formation

Centerville Beach bivalve fragment

-middle portion of the Upper Rio Dell Member Polychaete borings were abundant in the shells from the upper portion of the Eel River section. There were few occurrences below the lower portion of the Rio Dell Formation. This level is interpreted as being on the middle of the basin slope. At the Centerville Beach section the polychaete borings were sparse below the Upper Rio Dell Member, again located on the middle of the basin slope region as defined by Stanton.

Table 14 lists the gastropod species from the Eel River section which were preferentially bored by worms. These gastropods have relatively thick shells in which the worms could bore without penetrating the inner shell surface. Other than the general lack of worm borings in the deeper water deposits, there are no depth related trends for these borings in the gastropods at the Eel River section. The bivalve/worm interactions were concentrated within the Pectinidae,

Table 14. Gastropod species bored by polychaete worms at the Eel River section and number of incidents of utilization.

Gastropod Hosts	# of shells utilized
Natica (C.) clausa Neptunea (S.) tabulata	14
Neptunea (G.) smirna Beringius arnoldi	3

Veneridae, and Tellinidae. The most utilized bivalves were <u>Pecten</u> sp., <u>Patinopecten</u> (<u>P.</u>) <u>caurinus</u>, <u>Clinocardium meekianum</u>, and <u>Protothaca staleyihanniballi</u>.

Polychaete worm borings do not appear until the lower Middle Rio Dell Member at the Centerville Beach section and were widespread to the upper boundary unconformity. The pattern of the borings shows no preference between gastropod or bivalve shells for boring with deeper water host shells continuing to be bored, even after new, shallower water forms become abundant. At the Centerville Beach section the gastropod species which were the most consistently bored are Natica (C.) clausa, Antiplanes (A.) major, and Latisipho hallii. The bivalve species which was the most consistently bored was Patinopecten (P.) caurinus, Cyclocardia ventricosa, and Pandora grandis.

The increase in the number of specimen and species with epibiontic and endolithic interactions at the mid-slope level of both sections indicates that there was some common control over the intensity of these borings. There were an adequate number of shells in the lower section for the lack of borings to be merely a function of shell availability. The mid-slope level may represent the first level of substantial food supply to support a diverse interactive fauna. At the

Eel River section the number of non-predatory borings is reduced as the transition between the Rio Dell and the Scotia Bluffs Formations is reached as are the number of other types of interactions. The higher energy nature of the shoreface environments with their periods of potential exposure could prohibit the settlement of some larvae or the development of an epifaunal community (such as at the Gulf of Mexico beach locality from the Texas Gulf Coast).

Host as a Substrate

Several types of encrusting organisms were found on the shells from the Humboldt Basin (Table 15).

Table 15. Epibiontic guest abundance in the samples from the Humboldt Basin.

Guest	# of incidents
barnacles bryozoans serpulid worms	30 2 1
total available shell	.s 1534

The number of incidents of encrustation was few in comparison to the total number of shells. The lithology of the lower units of the Wildcat Group would indicate that the substrate was not firm and that there were no natural surfaces present which would have supported the epibiontic guests. The encrusting

organisms which were present would have been relegated to locations on shells of organisms specifically adapted for the environment.

To interpret the epibiontic interactions in the Humboldt basin, the controls on distribution of this type of interaction must be addressed. For recruitment to be successful, there must be surfaces on which the larvae of the epibionts may land. If shell material is lacking or spread out over a broad area, species with short planktic larval stages will not remain viable. For this reason, even if shallow water forms were introduced downslope by turbidity or grain-flow mechanisms, these forms would not be able to populate deeper water environments and would appear as single (or low) report occurrences. These occurrences would not be indicative of the presence of characteristic epibiontic associations within the particular environment. Another control on the distribution of epibiontic organisms would be the availability of non-living surfaces to populate. Modern epibiontic invertebrates will grow on most smooth surfaces, even man-made ones. The growths of barnacles on the hulls of ships would be of prime example. If there were other surfaces for the epibionts to colonize, such as rocks or firm sedimentary substrates (firm sand or gravel), the epibionts which did not derive vital

benefits from the interactions with the host could exist on these surfaces in times when living substrates were uncommon. A third factor controlling the presence of epibiontic organisms would be the stability of the environment. Environments with periods of rapid sedimentation or sediment bypass would experience a periodic killoff of the standing crop of epibionts and possibly hosts. The need for continuous repopulation would keep the communities present within these environments from reaching stability and organism integration.

Very few incidents of epibiontic interaction occur within the samples from the Eel River section. With the exception of one sample from the Eel River Formation, there were no basin or slope epibiontic interactions at the this section. This sample contains a fragment of Clinocardium encrusted by barnacles. The fragment of Clinocardium was transported into the deeper water environment, as attested to by abrasion of the shell. One-third of the way into the Rio Dell Formation two neptuneid gastropod species, Neptunea cf. N. (Golikovia) smirna and Latisipho hallii, have epibiontic interactions. The epibionts are barnacles and encrusting bryozoans. The majority of the interactions with epibionts occur in the middle and upper Rio Dell Formation and within the shelfal

environment as defined by Stanton. The mactrid bivalve Spisula hemphilli was the only bivalve species (of note) with epibiontic interactions. At each level (between samples 141 and 144) S. hemphilli has at least one report with barnacles attached.

At the Centerville Beach location there were no epibiontic interactions below the Upper Rio Dell Member, and barnacles were the only encrusting guest organism present at this locality. Barnacles first appear on shells in sample 87 (coincident with the first appearance of barnacles, attached or not). Barnacles as epizoans extend almost up to the top of the Rio Dell Formation. The barnacles show no preference, at any level, to any one specific host. The barnacles appear to show a concentration within members of the families Pectinidae, Cardiidae, and Veneridae. The infaunal bivalves, such as the Tellinidae, show no encrustation within a rich record of individuals. This absence could be attributed, in the deeper water horizons, to the lack of a mechanism for working these shells to the surface.

There are no relationships between lithology and occurrence of epibionts at either location. The epibionts occur on shells in shales, silty shales, and sandstones. The basinal environments in the Humboldt Basin with a sparse fauna, few non-living surfaces for

colonization, and periods of rapid sedimentation have few epibiontic interactions. The slope environments with an even sparser fauna, no surfaces to colonize (non-living), and depositional instablility have even fewer epibiontic interactions. The shelf environments have the most varied and abundant fauna and were also the most stable, and it is in the shelf area that the most epibiontic interactions take place. Some of the reports of interaction in deeper waters were transported from shelfal environments. At each section, the first reliable occurrences of epibiontic interactions occur in shelf environments. The shelf conditions would be conducive to keeping a shell exposed long enough to become encrusted.

Summary

The Centerville Beach section presented the broadest range of environments with which to interpret the distribution of specific interactions. The predatory borings first appeared in the slope deposits of the lower Rio Dell Formation and continued to the top of the section. Increasing numbers of bored shells represent the increased faunal abundance and diversity of the shallower water, upper shelf, and slope environments. Prey selection was influenced by the availability of prey species (again a function of water depth). As shallow water species became available, the

gastropods added these species to their "menu," but did not remove other species in turn. The termination of gastropod/deep water prey interactions occurred at the stratigraphic termination of the prey organism.

The endolithic and epibiontic interactions of the Centerville Beach section first appeared at the shelf/slope break (low in the Rio Dell) and continued to the upper boundary unconformity with the Hookton. Polychaete borings were the most abundant and pervasive evidence of interactions in the section. The intensity of interaction continued up to the top of the Upper Rio Dell Member without reduction. This would indicate that the shallowest water environments, present at the Eel River section, were lost in the formation of the unconformity at the top of this section.

The Eel River section provided the <u>most complete</u> range of environments, basin to shoreface, of the sections. This section allows us to look at interactions in the shallowest water environments, missing at the Centerville Beach section. Predatory gastropod borings showed the same depth distributions and prey selection here as they did at the beach locality. The larger number of gastropod borings at this section are attributable to the abundant and diverse fauna developed on the shelf.

Endolithic and epibiontic interactions first occur on the slope and increase at the shelf/slope break. There was a sharp decline in the number and types of interactions at the shelf/shoreface transition. Most of the shoreface samples were collected from channel lag deposits and more clearly transported materials.

KETTLEMAN HILLS

If the sediments of the Humboldt Basin were deposited in constantly shallow water depths, would we have seen the same relationships of intensity and types of interactions that were attributed to water depth? How much of the trend was actually attributable to the evolution of interaction relationships through time? It is possible that the appearance of the first interactions at the Humboldt Basin sections corresponds to the time of development of each of the interaction types for the entire California coast.

To test these possibilities, one must study the fossils from deposits reflecting an environment which was relatively constant through time. To test the rate of change in the interactions, if any prove to be present, the deposits of this area should be approximately the same age as the Humboldt Basin material and contain some related genera. If the changes in the interactions were solely related to evolution of interaction sets, the changes seen at the Humboldt Basin would be visible in this setting also. The area of constant environments chosen to test this against was the Kettleman Hills of central California (fig. 26).

The Kettleman Hills are doubly plunging anticlinal hills formed as a portion of the Coastal Ranges. These

Figure 26. Location of the Kettleman Hills region, California with reference to large-scale nearby structure (from Stanton and Dodd, 1970).

hills extend into, and disappear below, the sediments of the San Joaquin Valley (fig. 27). The Pliocene and Pleistocene strata exposed in the core and flanks of the Kettleman Hills have been subdivided into three formations; Etchegoin, San Joaquin, and Tulare, oldest to youngest respectively (Woodring, Stewart, and Richards, 1940).

Stratigraphy and Sedimentology

The sediments of the Kettleman Hills region were deposited in an embayment which extended to the north as far as San Francisco, to the east into the San Joaquin Valley, westward into the Coastal Ranges, and southward (at least initially) as far as Santa Maria (fig. 28). The control on distribution of sediment types and ecological habitats was primarily tectonic. Formation of the Sierra Nevada mountain range and the Coastal Ranges, along with movement along the San Andreas fault, influenced sediment supply and connection of the embayment with normal marine conditions (Stanton and Dodd, 1970).

The Kettleman Hills and surrounding areas fall within the Coalinga district (Woodring, et. al., 1940), an important petroleum region (now approaching abandonment in the Kettleman Hills proper). Interest in the oil and gas potential of the sediments in the Kettleman Hills structure provided the impetus for the

Figure 27. Generalized geologic map of the Kettleman Hills (after Woodring, et al, 1940).

Figure 28. Early Pliocine paleogeography of west central California (after Galehouse [1967], from Dodd and Stanton, 1981).

publication of many stratigraphic (Watts, 1894;
Andreson, 1905; Arnold and Anderson, 1910; Musser,
1929; Gestner, 1933; and Kleinpell, 1938) and
paleontologic (Cooper, 1894; Arnold, 1910; Hannibal,
1912; Kew, 1920; and Pilsbry, 1934) papers. In 1940,
W. P. Woodring, R. Stewart, and R. W. Richards
described the detailed stratigraphy, paleontology, and
structure of the Kettleman Hills in the United States
Geological Survey Professional Paper #195. This work
continues to be used as the primary reference for the
area. Some of the localities listed in the back of the
work are used in this study and are referenced in
Appendix III.

Some of the more recent publications on the paleontology of the Kettleman Hills region have looked at paleoecology (Stanton and Dodd, 1970), depositional environments (Stanton and Dodd, 1972, 1976a), paleosalinities (Dodd and Stanton, 1975, 1976a), and trophic structure (Stanton and Dodd, 1976b). It is within the framework established by these previous studies that the question of organism interactions is considered.

Exposed in the eroded crests and flanks of the North, Middle, and South Domes of the Kettleman Hills are the Etchegoin, San Joaquin, and Tulare Formations. During the lower Pliocene, marine waters transgressed

inland and covered an area which included the Kettleman Hills. A complete lithologic section is present as the result of continuous deposition in this area. The transgressive portion of the transgressive regressive depositional package includes another formation. The initial deposits of this inland embayment fall within the Jacalitos Formation. The sediments of the Jacalitos are not exposed at the surface in the Kettleman Hills but can be observed in Jacalitos Canyon to the northwest. The deposits of the Jacalitos

By the middle Pliocene, the southern connection of the embayment had closed (fig. 29) restricting the communication of the southern regions with the marine waters to the north (Stanton, pers comm.). The closing of the southern entrant signaled the end of the transgressive phase and the beginning of the regressive phase of deposition represented by the sandstones, siltstones, and conglomerates of the Etchegion, San Joaquin, and Tulare Formations. The regressive phase was punctuated by minor (apparent?) transgressive and regressive cycles. Each of the cycles contains a relatively thin fossiliferous lower unit and a thicker upper nonfossiliferous unit. Each of the fossiliferous units in the Kettleman Hills was named after the

O 50

Figure 29. Late Pliocene paleogeography os west central California (after Gale-house [1967], from Dodd and Stanton, 1981.)

characteristic fossil of the unit (fig. 30) (Woodring, et al., 1940).

The middle Pliocene Etchegoin Formation is composed of thin sand stringers, silty sandstones, and sandy siltstones. It is subdivided into five fossil zones; Patinopecten, Macoma, Siphonalia, Upper Pseudocardium, and Littorina. The San Joaquin Formation, late Pliocene, is composed of sandstones and mudstones and is generally composed of finer sediments than the Etchegoin. Two distinctive conglomeratic units occur within the San Joaquin, one at the base of the unit and is termed the Cascajo Conglomerate and the other (approximately one-half way up the section) is at the base of the Pecten Zone. The six zones of the San Joaquin of the Kettleman Hills are the Cascajo Conglomerate, the Neverita zone, the Pecten zone, the Trachycardium zone, the Acila zone, and the Upper Mya zone. The Tulare Formation, Pleistocene in age, was deposited in essentially non-marine settings and contains the coarsest average grain size. The basic Tulare sediment type is that of a buff sandstone which is frequently interrupted by thin conglomeratic units (Stanton and Dodd, 1970). This unit contains relatively few fossils and will not be analyzed in any great detail in this work.

Figure 30. Stratigraphy, sedimentology, faunal zones, transgression/regression curves and oxygen isotope data for the Kettleman Hills from Stanton and Dodd, 1970.

Each of the transgressive/regressive packages represents fluctuations in rates of subsidence of the embayment or changes in the sediment supply with probably no exposure of the units. The depositional environments of the Etchegoin and San Joaquin Formations fluctuated throughout the time of the deposition with minor transgressions and regressions. Most of the fossil zones were deposited in similar conditions, those of the initial transgressive lithology. The samples were treated as representing an essentially stable depositional environment, and the trends of organism interaction found within this area are attributable to changes through time, not changes throught varied environments.

Organism Interactions

Shell dissolution influenced the preservation of interaction evidence in the shells from the Kettleman Hills. Commonly, the shells had signs of point dissolution caused by the pressure of the matrix grains against the shell, making the detection of microborers difficult or impossible. The outer shell layers, where most of the interactions would have occurred, were missing in some genera. Chama and Mytilus, were consistently missing their outer shell layers. In order to be consistent throughout the study, questionable traces of interaction were not noted and

will not enter into the formulation of the conclusions for this section. Even with all of the difficulties in the identification of potential interaction traces, clearly over one-third of the shells collected from the Kettleman Hills contain some sign of organism interaction.

The localities sampled in the Kettleman Hills are listed in Appendix III by zone. Data obtained from the fauna recovered from the Kettleman Hills is presented in tabular form in this section and is available from the author by request. The interpretation of depositional environments for the strata of the Kettleman Hills that was used in this study is that of Stanton and Dodd (1970) and is summarized in figure 31. The analysis of Kettleman Hills organism interactions was performed primarily on the host gastropod and bivalve components of the fauna. Corals, barnacles, and echinoderms are mentioned as hosts where important. Gastropod predation of the fauna is considered separately from the other types of shell penetrants because of the inherent differences in primary motive.

Table 16 provides a display of the major fossil groups found in this study with their number of occurrences listed by zone. Table 17 provides, by host group, a display of the distribution of the seven types of recognized interactions; predation by gastropods,

Figure 31. Stratigraphic section showing cyclic sedimentation and north-south environmental facies patterns, from Stanton and Dodd, 1970.

Table 16. Stratigraphic faunal distribution for the Kettleman Hills. a. Coelenterates to Neptuneidae.

Family Neptuneidae	2		2	~					13		
Family Cancellariidae				5							
Family Olividae	-		-	4	994	-					
Family Nassariidae	9		2	54	7			5	6	2	
Family Collumbellidae					6						
Family Naticidae	4	۴	9	75	12	18		7	13	7	
Family Calyptraeidae	2	7	19	25			7	19	23	5	2
Family Cerithidae								7			
Family Littorinidae	4	15	-	71			~	8			
Family Turritellidae			-	3				2			
Family Trochidae	~		2	31				2	14	-	
Gastropod (General)	14		2	142	-		_	æ	89	89	-
Family Dallininae				-							
Family Discinidae			2					-			
Branching Bryozoans				2							
Encrusting Bryozoans				4					_		
Bryozoans (General)						_		-			
Rhizopsammia				13							
Coelenterates (General)				8							
	Tulare Formation	Upper Mya Zone	Acila Zone	Pecten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Macoma Zone	Patinopecten Zone

Family Chamidae Family Hitellidae Family Corbulidae Family Myidae Family Solenidae Family Mactridae Family Psammobiidae Family Semelidae Family Tellinidae Family Veneridae 18 Family Cardiidae Family Lucinidae Bivalve to Chamidae. Family Diplodontidae 16 Family Pectinidae 148 204 13 Family Ostreidae 162 Family Mytilidae Гатіју Сіусутетідае 20 Family Arcidae Family Muculanidae Family Muculidae 37 Bivalve (General) Pecten/Trachycardium Zone Upper Pseudocardium Zone Cascajo Conglomerate Patinopecten Zone Tulare Formation Siphonalia Zone Upper Mya Zone Littorina Zone Neverita Zone Macoma Zone Acila Zone

р· Continued. 16. Table

Family Serpula Vertebrate: bone Vertebrate: vertebra Fish otolith Fish vertebra Fish bone Pholadidae to Serpula. Skate and shark teeth Fish scales and plates Fish Teeth 10 Family Dendrasteridae 99 Order Clypeasteroida Echinoderm (General) Family Cancrinae . Family Balanidae 15 Continued. Barnacle (General) 126 Family Pholadidae Pecten/Trachycardium Zone Upper Pseudocardium Zone Cascajo Conglomerate Patinopecten Zone **Tulare Formation** Siphonalia Zone Upper Mya Zone Littoring Zone Neverita Zone Macoma Zone Acila Zone

Family Neptuneidae 22 Distribution of interactions within major faunal divisions for the Family Cancellariidae The total number of specimen is listed for each Family Olividae 473 Family Nassariidae 78 Family Collumbellidae 9 Family Naticidae 141 Family Calyptraeidae 28 Family Cerithidae 4 Family Littorinidae 102 Family Turritellidae 9 56 Coelenterates to Neptuneidae. Family Trochidae Castropod (General) 155 Family Dallininae Family Discinidae Branching Bryozoans Encrusting Bryozoans Hills samples. Bryzoans (General) EimmesqozidA 13 Coelenterates (General) Total Samples: Algal/Fungal Borings Gastropod Predation Kettleman Encrusting Bryozoa Table 17. division. Attached Bivalves Polydoran Borings Clinoid borings Barnacles

Family Corbulidae Family Myidae 127 Family Solenidae Family Mactridae 703 Family Psammobiidae Family Semelidae Family Tellinidae Family Veneridae Family Cardiidae Family Chamidae 98 Family Lucinidae 7 Bivalve to Chamidae. Family Diplodontidae 18 Family Pectinidae 242 Family Ostreidae Family Mytilidae Гатілу блусутетідае 24 Family Arcidae Family Muculanidae Family Nuculidae 70 Bivalve (Ceneral) 141 Total Samples: Algal/Fungal Borings Gastropod Predation Encrusting Bryozoa Polydoran Borings Attached Bivalves Clinoid Borings **Oarnacles**

Family Hitellidae

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ъ,

Continued.

Table 17.

	Family Serpula								29
	Vertebrate: bone						¥	+	36
	Vertebrate: vertebra						*		
	Fish otolith							*	_
	Fish vertebra								2
	Fish bone								1?
a.	Skate and shark teeth						*	*	15
Serpula	Fish scales and plates							*	
	fish Teeth							·	‡ 51
t o	Family Dendrasteridae						.	.	14
Pholadidae	Order Clypeasteroida				-		•	7	431
ladi	Echinoderm (General)							als.	7
Pho]	Family Cancrinae							*	56
	Family Balanidae						*	*	29
ပ	Barnacle (General)	*	*	*		*	*	*	41
ed.		*	*	*		*	*	*	177
Continued.	Family Pholadidae	*			*				8
ont									
ပိ		SÚ			_				les:
17.		3orin	S	/020a	lat i or	lves		.ngs	Total Samples:
aj.		ja] E	oring	y Bry	Prec	lival		Bori	tal
Table		/Fung	id Be	sting	pada	3 par	cles	ารอก	J.
Ξ		Algal/Fungal Borinqs	Clionid Borings	Encrusting Bryozoa	Gastropod Predation	Attached Bivalves	Barnacles	Polydoran Borings	

algal/fungal borings, clionid sponge borings, encrusting bryozoans, encrusting bivalves, and encrusting barnacles. The total number of specimens of each type that was studied is also presented. Twenty-six of the fifty-five "host" categories have fewer than ten specimens each, six of the categories are affected by all of the interaction types, two additional categories have all types of interaction except for predation by gastropods, and two of the categories have all types of interaction except for attached bivalves. The importance of each of these observations will be discussed in the following sections. The interactions will be studied with regard to: 1) the types of host organisms involved, 2) types of interaction related to the life habit of the hosts (ie. epifaunal/ infaunal), and 3) types of interactions which show a change in preference relative to stratigraphic level. The life habits and the environmental ranges used for the host species are those of the closest modern analogues (Keen, 1971, Keen and Coan, 1974, and Ricketts and Calvin, 1968).

Gastropod Predation

As evidenced by the data, gastropod predation pressure was relatively mild in the Kettleman Hills (Table 18). With one notable exception, there are no more than six instances of gastropod predation per prey

ttle- the *".												
Ke on, n "	family Neptuneidae											
the acti th a	Family Cancellariidae				1 (20)							
for nter d wi	Family Ulividae					70	(22)					
ion e i ate	Family Wassariidae				1/1* (2)-(2)		_			-	(11)	(20)
edat h tho ndica	Family Collumbellidae				(2		(11)					
pr wit e i	Family Naticidae			- 5	(16) 2 (3)						(7)	
opod men s ar	Family Calyptraeidae			 (3							
str eci ing	Family Cerithidae											
f ga f sp bor	Family Littorinidae				- (5)				(13)*	ì		
s o r o cid	Family Turritellidae								,	•		
ident numbe Muri	Family Trochidae				5 (16)					4	(2)	
e •	Castropod (General)				2 (1) (
f t en	Family Dallininae											
ion o er is perc	Family Discinidae											
ut mb 11	Branching Bryozoans											
trib r nu e ce	Encrusting Bryozoans											
is pe th	; (terened) simpozyja											
hic dhe up) is	-;											
D I												
18. Stratigils samples. (in parentheoelenterates		Iulare Formation	Upper Mya Zone	Acila Zone	Pecten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Мвсотв Zone	Patinopecten Zone
Table man H lower a. C.		Tula	Прре	Acil	Pect	Neve	Cascı	Litte	Прре	Siph	Maco	Patin

Psammobiidae Mactridae Solenidae Myidae Corbulidae	Family Family Family Family Family Family									*	100)	1 (00)		
Semelidae	remily					_					_			_
1ellinidae	Family				2 (3			* (3				- (9
Venetidae	Lamijy			- 3	(2) - (3)	(3)							7	1
Sebiibie	Family													_
Lucinidae	Family													
Diplodontidae	Family													
Pectinidae	Family													
gebieiteû	Family				- 5	3				-	Ξ			
Mytilidae	Family					3 (27								
Clycymeridae	Lamily)	•		1 (3)	2	Ξ,	-		
Arcidae	Family				9 (0)	(2) 4 80)				—	(3)			
Nuculanidae	Family					3								
Nuculidae	Family			. (Ĉ									
(Isianad) s	Bivelve	Tulare Formation	Upper Mya Zone	Acila Zone	Pecten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone 1 (25)	Upper Pseudocardium Zone	Siphonalia Zone		масома соле	Patinopecten Zone	
	Muculidee Muculanidee Arcidee Clycymeridee Clycymeridee Mytilidee Diplodontidee Cardiidee Cardiidee Pectinidee Pectinidee Pectinidee Pectinidee Tellinidee Tellinidee Tellinidee Tellinidee	Bivelve (General) Family Nuculadee Family Arcidae Family Arcidae Family Glycymeridae Family Glycymeridae Family Getreidae Family Getreidae Family Getrinidae Family Pectinidae Family Cardiidae Family Cardiidae Family Semelidae Family Semelidae Family Semelidae Family Semelidae Family Mactridae Family Mactridae Family Mactridae Family Hitellinidae Family Moneridae	Bivelve (General) Family Muculidae Family Arcidae Family Clycymeridae Family Mytilidae Family Mytilidae Family Mytilidae Family Diplodontidae Family Dectinidae Family Cardiidae Family Cardiidae Family Moneridae Family Meneridae Family Semelidae Family Semelidae Family Semelidae Family Mactridae Family Mactridae Family Moneridae Family Moneridae	Bivelve (General) Family Nuculidae Family Arcidae Family Arcidae Family Clycymeridae Family Mytilidae Family Mytilidae Family Diplodontidae Family Veneridae Family Solenidae Family Solenidae Family Mactridae Family Mactridae Family Moneridae	Bivalve (General) Family Nuculidae Family Nuculanidae Family Arcidae Family Clycymeridae Family Clycymeridae Family Cattinidae Family Veneridae Family Veneridae Family Veneridae Family Veneridae Family Veneridae Family Veneridae Family Semelidae Family Veneridae Family Semelidae Family Mactridae Family Mactridae Family Mactridae Family Monaridae Family Monaridae Family Monaridae Family Monaridae Family Monaridae Family Hitelliniae	Bivelve (Ceneral) Femily Nuculidee Femily Nuculanidee Femily Arcidee Femily Clycymeridee Femily Clycymeridee Femily Diplodontidee Femily Diplodontidee Femily Diplodontidee Femily Pectinidee Femily Pectinidee Femily Cardiidee Femily Peneridee Femily Peneridee Femily Peneridee Femily Peneridee Femily Mytalidee Femily Mytalidee Femily Moctridee Femily Moctridee Femily Moctridee Femily Mytaee	Bivelve (General) Family Nuculidee Family Nuculidee Family Muculanidee Family Mytilidee Family Pectinidee Family Diplodontidee Family Pectinidee Family Pectinidee Family Veneridee Family Veneridee Family Veneridee Family Solenidee Family Solenidee Family Solenidee Family Solenidee Family Solenidee Family Myidee Family Myidee Family Myidee Family Myidee Family Moctridee Family Peammobiidee Family Wordtidee Family Widee	Pivelve (General) Sone (3) (3) (2) (3) (4) (5) (5) (2) (2) (2) (3) (3) (4) (5) (5) (5) (6) (7) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9	Bivelve (General) Family Nuculidee Family Nuculidee Family Nuculidee Family Hytilidee Family Diplodontidee Family Detreidee Family Pectinidee Family Pectinidee Family Pectinidee Family Pectinidee Family Pectinidee Family Mytilidee Family Mytilidee Family Mytilidee Family Mytilidee Family Mytilidee Family Mytilidee	Page (25) 1 (3) 2 2 3 (1) 1 (2) 4 (2) 5 (2) 1 (3) 6 (2) 7 7 8 (2) 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	And the second state of th	Pivelve (General) (2) 1 Family Muculanidae Family Muculanidae Family Mytalidae Family Family Mytalidae Family Mytalidae Family Family Mytalidae Family Mytalidae Family Mytalidae Family Mytalidae	Bivalve (General) (2) - Family Muculidae Family Muculidae Family Mytlidae Family Mytlidae	Singly Muculides (3) - Femily Muculides Femily Muculides

	Family Serpula											
	Vertebrate: bone											
	Vertebrate: vertebra											
	Fish otolith											
	Fish vertebra											
	Fish bone											
	Skate and shark teeth											
la.	Fish scales and plates											
Serpul	Fish Jeeth											
	Family Dendrasteridae				2	Ξ						
e to	Order Clypeasteroida											
Pholadidae	(Ceneral) (Ceneral)											
olac	Family Canctinae											
Ph	Family Balanidae											
	(ferened) sinented				- 5	3						
d.	Family Pholadidae											
Table 18. Continued.		Tulere Formation	Upper Mya Zone	Acila Zone	Pacten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Mucoma Zone	Patinopecten Zone

organism type at any one horizon, even though the total numbers of shells within some of the families was high. Each of the gastropod families that were without signs of predation had few total specimens.

The number of times that gastropods occur as gastropod prey were higher than the number of times that bivalves were (130 for the gastropods and 38 for the bivalves). The reason for the high number of bored gastropods was that from locality 244, in the Neverita zone, 105 specimen (out of a total of 466 shells) of Olivella cf. O. pedroana had been bored by a naticid predator, probably Neverita reclusiana (6 specimen were collected along with the prey). This locality is the only sample collected from the $\underline{\text{Neverita}}$ Zone. The significance of this locality, as being representative of the zone, can not be determined. The sample is unique in its composition and, compared to other localities, represents an abnormal set of environmental/biological circumstances. If this anomalous sample is removed from consideration because of its indeterminate nature, the bivalves have a slightly higher number of incidents of gastropod predation.

The families of gastropods which were preyed upon did not fall into any pattern of life habit or environment. They include members of infaunal and

epifaunal, attached and mobile, shallow and deeper water gastropod families. The percentage of bored shells, when related to the total numbers of shells in each zone, show no overall stratigraphic trend. Within the Etchegoin Formation, samples with borings were distributed across the faunal zones. The concentration of the borings around the Pecten/Trachycardium zone in the San Joaquin Formation is an artifact of sampling. The largest number of specimen and sample localities for this portion of the study were from this zone.

The total number of all bivalve specimen with gastropod borings is less than one percent of the total number of bivalve shells studied from the Kettleman Hills. None of the families in the superfamily Carditacea (Diplodontidae, Lucinidae, Chamidae, and Cardiidae) were found with gastropod borings. The diplodontids, lucinids, and cardiids were infaunal, although this could have made them harder for the naticids to find; other infaunal bivalves such as the mactrids were preyed upon. With the exception of the Tulare samples, species from these families occurred in large samples. At some of these localities, naticids were relatively abundant, yet no carditacean was bored. Members of the family Chamidae were epifaunal, yet no genus from the family was preyed upon.

All but three occurrences of gastropod borings occurred in what were considered to be localities with normal salinity. With the exception of the Chamildae, all of the bivalve families without gastropod borings were infaunal (most were only shallow burrowing). The presence of large numbers of gastropods and epifaunal bivalve species (in great abundance in some zones) and the lack of large numbers of borings is another indication that predation pressure on the preservable fauna was low. Some of these samples included a large naticid component in the fauna, yet borings were rare or absent.

The number of instances of predation was low, without regard to the total number of shells (with the exception of the borings in the shells of the Olivella). If the number of predatory borings found in a rare species was one specimen of a total of ten specimens per sample or stratigraphic level, it was one in one hundred specimens in an abundant species per sample or stratigraphic unit. The fact that the number of borings does not vary with sample size indicates that predation pressure was low. Unless the chances for preservation of shells with gastropod borings was low, the naticid gastropods collected from the Kettleman Hills must have utilized soft-bodied and non-preservable food resources, such as worms. This same

situation, too many predatory gastropods for the amount of preserved food resource, has been noted in the Eocene Stone City Formation (Clairborne Group, Middle Eocene, Central Texas; Stanton, et al., 1981). Studies by Stanton, et al., (1981) have come to a similar conclusion that the missing food resource must be soft-bodied organisms.

Micro-borings

Shell corrosion made the detection of microborings difficult. Pressure dissolution pitting from the matrix grains and groundwater destroyed most of the smaller borings from this area. The activities of algal and fungal microborers (seen in Table 17) was pervasive and affected members of almost half of the host categories present. Table 19 shows the occurrences of microborers by stratigraphic zone. The one algal/fungal interaction with gastropods in the Littorina zone was in a normal marine, inner bay environment. The Neverita, Pecten/Trachycardium, and Acila zone interactions all occurred within the outer bay localities, and none were within brackish or restricted environments.

Host selection by the algal/fungal guests differed between the Etchegoin and San Joaquin Formations. In the Etchegoin Formation, the venerids, tellinids, and mactrids (all infaunal) were preferentially bored. In

an Hil	he lower	ily Cancellariidae ily Neptuneidae	_				1 25)							
tle	,	ily Olividae	me i				1 1 (1) (25)							
Ке	tion ae.	sebiilesseV yli	шв٦				Ŭ							
the	rac eid	ily Collumbellidae	Fam											
ų,	<u>ت</u> ي	ily Naticidae	Fam.				4 (1)	3 (25)						
s s	n e Ne	ily Calyptraeidae	.ms i			1 (5)						1	·	
	n r	ily Cerithidae	Fam:											
1 b	a t	ily Littorinidae	F sm:				- E							
т О	men ter	ily Turritellidae	F am:											
/ f	pecı elen	ily Trochidae	ime 7				6 (61.)							
l ga	CO	(istanad) boqot	າຂອວ				1 6 (1) (19)							
4	er a.	asninilleG yli	r ami											
ion	umb t.	ily Discinidae	ime 1											
ut	မ	ensozoyas gridor	B18											
r i	s cn per	snaozoy18 gnijeu:	1903											
d i	e11	coans (Ceneral)	Bryz											
1 C	umbe he c	eimmesqo	z <u>t 48</u>											
ra	r nu s th	(Lerened) setereine.	ГэоЭ											
•	ippe s) i						Zone				one			
Strat	ine up) hesis)						ica		ate		um Z			
	the			ion	0		card		omer	6	ardi	흔		Zone
19.	s. ren			rmat	Zon	ō	echy	Zone	ongl	Zon	ndoc	a 7.o	Пе	ten
(pa pa			e Fo	Мув	Zon	n/Tr	ita	jo C	rina	Pae	nali	в 2о	obec
Table	(in parenthesis)			Tulare Formation	Upper Mya Zone	Acila Zone	Pecten/Trechycerdium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Мвсотв Zone	Patinopecten Zone
• • •					_	•	_	_	•	_	_	3,	_	-

	Сһатідае	Family											
	Hitellidae	Family				1 (16)							
	Corbulidae	Family											
	Myidae	Family				13							
	гојеитаве	Family		1 (14)									
	Mactridae	Family								2 (1)		1 (8)	
	Psammobiidae	Family											
	Semelidae	Family											
	Tellinidae	Family				2 (3)						2 (6)	
	Veneridae	Lamily								2 (15)			1 (5)
	Cardiidae	Family											
	Lucinidae												
ae.	Diplodontidae					4 2 (2) (12)							
Chamidae	Pectinidae			_									_
Cha	Ostreidae			B (13)		6 (4)							1 (2)
t o	Mytilidae					$\frac{2}{(3)}$							
Bivalve	Glycymeridae												
Віν	Arcidae	•											
ъ.	Nuculanidae												
•	Muculidae				1 (12)	(3 v j							
Table 19. Continued	(<u>L</u> enena)	Ві чвіче	Tulare Formation	Upper Mya Zone	Acila Zone	Pecten/Trachycardium Zone 4 (5)	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Macoma Zone	Patinopecten Zone

Family Serpula Vertebrate: bone Vertebrate: vertebra Fish otolith Fish vertebra Fish bone Skate and shark teeth Pholadidae to Serpula. Fish scales and plates Fish Teeth Family Dendrasteridae Order Clypeasteroida Echinoderm (General) Family Cancrinae L <u>C</u> Family Balanidae ე Pecten/Trachycardium Zone 3 5 (100) (4) Sarnacle (General) 1 (25) Table 19. Continued. Family Pholadidae Upper Pseudocardium Zone Cascajo Conglomerate Patinopecten Zone **Tulare Formation** Siphonalia Zone Upper Mya Zone Littorina Zone Neverita Zone Macoma Zone Acila Zone

the San Joaquin Formation, the nuculanids, mytilids, ostreids, pectenids, and solenids were bored by these microborers. With the exception of the solenids, all of the San Joaquin host species were epifaunal. With the exception of the difference in life habit between the Etchegoin and San Joaquin hosts, this type of interaction does not follow any trend in salinity, sediment type, or station potential host composition. Clionid Sponge Borings

The clionid sponge borings (Entobia) are intermediate in abundance between the algal/fungal and polychaete types of borings. The clionid borings occur in the shells of gastropods, bivalves, and barnacles (Table 20). Only four species of gastropods possess clionid borings; Calyptraea filiosa, Crepidula princeps, Neverita reclusiana, and Nassarius sp. Calyptraea filiosa and Crepidula princeps are epifaunal attached gastropods whose shell surfaces were available for colonization throughout the life of the individual. Specimen of Crepidula princeps, from the Macoma zone of the North Dome (a middle bay locality), and of Calyptraea filiosa, from an outer bay locality in the Aclia zone, were bored. This difference in concentration of interactions is the result of the lower numbers of Crepidula in the San Joaquin Formation, not a change in actual preference. Neverita

ls (in												
Hil wer	Family Weptuneidae											
eman e low												
t 1 t h	Family Cancellariidae											
Ket n,	Family Olividae											
the ctio	Family Wassariidae											
. מ	,					~	3					
fonte	Family Naticidae				9	1 (3)	(8)					
ings he i tune	Family Calyptracidae				1 (2)						2	(40)
bori h th Nept	ramily Cerithidae											<u> </u>
nge wit to	Family Littorinidae											
spo men tes												
id eci era	Family Trochidae											
lion f sp	Gestropod (General)									2	(25)	12)
of c er o Coe	Family Dallininae										3	Č
on umb a.	Family Discinidae											
ים ם	ensozovia gnidansta											
tribut s the cent.	Encrusting Bryozoans											
dis r i per	Bryzoans (General)											
hic umbe ell	<u>simmesqosidA</u>											
ap n c	Coelenterates (General)											
Stratigra The upper s) is the					one				e e			
otre le u					ium Z		te		m Zoi			
Th Tis)		ion	60		cardi		mere	•	ırdiu	த		one
Table 20. Stratigr samples. The upper parenthesis) is the		Tulare Formation	Upper Mya Zone	ģ	achy	Zone	ongl	Zone	ndoce	a Zor	e e	ten 2
Table 20 samples. parenthe		re Fc	r My£	a Zor	ın/Ir	ita	Jo C	rina	Pse	nali	a Zo:	opeci
Tat san par		Tula	Uppe	Acila Zone	Pecten/Irachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Macoma Zone	Patinopecten Zone

	Chamidae	Family				7	(7)						
	Hitellidae	Family											
	Corbulidae												
		Family											
	Solenidae												
	Mactridae				- (5)	S - :	(8)			21	16 (5)	(8)	3 (9)
	Psammobiidae												
	Semelidae												
	Tellinidae						_						
	SebitaneV	_			_	m į	(7				2 (6)		
	Sections				1 (12)	2							
	гиститав												
lae.	Diplodontidae						_						
Chamid	Pectinidae			_		77 (_	, 1) (12)		3 (23)
	Ostreidae			2	}					22	(2)		
e to	Glycymeridae Mytilidae				1 (9	4 (9)				7 (10)		
Bivalve	Arcymeridee				:		Ω.						
Biv	Nuculanidae				e, E) v (<u></u>						
р.	Muculidae												
ф.	(General)						_			_			$\widehat{}$
Continue	(1-1-1-3)	[anid				one 5	3			րе 1 (8	5		1 (10
onti						ium Z		ate		um Zor			
			tion	ē		Pecten/Trachycardium Zone	Q	Cascajo Conglomerate	9	Upper Pseudocardium Zone	910		Zone
20.			Forme	iya Zc	one.	Trach	a Zon	ე ნიიე	na Zo	seudo,	lie 2	Zone	ecten
Table			Tulare Formation	Upper Mya Zone	Acile Zone	octen/	Neverita Zone	всвјо	Littorina Zone	рег Р	Siphonalia Zone	Macoma Zone	Patinopecten Zone
Τέ			=	ă,	Ac	Pe	Š	ű	ij	꿁	Si	Σ	Рв

	Skate and shark teeth Fish vertebra Fish otolith Vertebrate: vertebra Vertebrate: bone											
Serpula.	Fish Teeth Fish scales and plates											
	Family Dendrasteridae											
ae to	Order Clypeasteroida											
did	Cchinoderm (General)											
Pholadidae	Family Cancrinae											
	Family Balanidae			2						1 2 (4) (28)		1 (9)
٥.	Barnacle (General)	2 (22)			2	(2)				1 (4)		
Table 20. Continued.	Family Pholadidae	Tulare Formation	Upper Mya Zone	Acila Zone	Pacten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Macoma Zone	Patinopecten Zone

reclusiana and Nassarius sp. are infaunal gastropods whose shells contain borings of clionid sponges. Basic sponge ecology indicates that boring into the shells of these genera would not have occurred while the shells were buried in the mud (ie. alive host), but while the shell was exposed at the surface (after or near death). Specimen of bored Neverita were found in both the Neverita and Pecten/Trachycardium zones. The clionid bored, infaunal Nassarius shell was found in the Neverita zone in a normal salinity, outer bay locality.

The clionid-bivalve interactions greatly outnumber those with gastropods. The interactions found within the Etchegoin Formation occur evenly between and including the Patinopecten and Upper Pseudocardium zones. The number of clionid interactions was greater in the Etchegoin Formation with a peak in the Upper Pseudocardium zone in the species Ostrea atwoodi and Pseudocardium densatum at localities throughout middle bay environments. The interactions found in the San Joaquin Formation are within the zones between and including the Neverita and Upper Mya zones. The greatest number of different types of bivalves involved in clionid-bivalve interactions occurs in the Pecten/Trachycardium zone. Most of the bivalves involved in this type of interaction were either epifaunal or shallowly infaunal. Almost all of the

clionid-bivalve interactions are in normal salinity, middle to outer bay environments. The only two exceptions are the occurrence of clionid borings in the shells of Ostrea vespertina sequens from brackish water localities in the Upper Mya zone. These occurrences are like those found between Crassostrea virginica and clionid sponges as noted earlier in Nueces Bay, Texas.

The barnacles with clionid borings show a similar distribution to that between the clionids and the bivalves (most of the barnacles were located on bivalve shells). The exception to this is the appearance of two bored barnacles in the Tulare Formation. The ecologic implications of these and other interactions in the Tulare Formation are discussed in the section summary.

Polychaete Borings

The borings produced by the polychaetes are pervasive throughout the formations in the Kettleman Hills, and these are the most abundant type of interaction present (Table 21). Polychaete interactions occur throughout the section. The polychaete borings occur within each of the affected families with equal likelihood in each zone and formation, and no change in preference was noted in the samples.

ills (in													
man H lower	Family Neptuneidae									~ ((50) 9 (63)	(20)	
tle he	Family Cancellariidae					2 (40)							
Ket n, t	Family Olividae												
the tio	Family Massariidae					1	Ì				- [=	
for erac ae.	Family Collumbellidae					_		_			_		
gs f inte eida	Family Naticidae					18		2 (11)		- ((14)		
rin he tun	Family Calyptraeidae				1	3 (12)			5	(28)	£ 7 £	ř,	
m bo th t Nep	Family Cerithidae												
worr wit	Family Littorinidae					-5	,			- ((71)		
ete imen ates	Family Turritellidae										-		
ychae speci ntera	Family Trochidae					3 (10)							
o 1 f 1 e	(Lastropod (Ceneral)				1 (50)	4 (3)					1 (21)	<u>;</u> –	(12)
of p er o Coe	Family Dallininae												
on umb a.	Family Discinidae												
e ut	Branching Bryozoans												
tr s ce	Encrusting Bryozoans												
dis r i per	Bryzoans (General)												
phic numbe cell	eimmesqosidA												
๗	Coelenterates (General)					1 (12)							
Stratigr The upper s) is the						Zone				oue			
tra e u is						ica		ate		JM ZC			
. St The		5	į	•		ard		Mer.	_	rdit	9		one
21. s. hes		- Temp		Zonı	ø	achyı	?one	ongle	Zone	Idoce	ı Zar	ē	en 2
e í les ntE				Мув	Zunt	/Tre	ta i	و رز	ina	Paet	alie	Zor	pect
Table 21 samples. parenthe		Lilare Formation		Upper Mya Zone	Acilo Zune	Pecten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siptionalia Zone	Масома Zone	Patinopecten Zone
E & &		-	•	,	Ac	P.	N	CB	Ľ	롸	Si	Ma	Pa

	Hitellidae Chamidae							37	(39)							2	(20)			
	Sebiludioa													_						
	Myidae	Family						2	(7)		2	(33)	-	(8)		2	(16)			
	Solenidae	Family																		
	Mactridae	Family				12	(63)	47	(33)						(6)	53	(16)	,	(16)	15 (45)
	Psammobiidae	Family																		
	Semelidae	Family																		
	Tellinidae	Family						_	Ξ							2	(14)	2	(6)	
	9sbí19n9V	Family	2	(6)					(54)					1	2 (15)					
	SebiibīeJ	Family				3			(16) (3						٠		(10)			
	eepţuţoną	Family					٠		٢								J			
	Oiplodontidae	Family																		
idae	Pectinidae	Family				7	(22)	45	(42)							2	(25)			7 53)
Chamida	Ostreidae	Family	7	41)	7 12)	7	30)	919	31)					L.	5)					1 29 7 (8)(55) (53)
to (Mytilidae	Family	-	(16)	7 (12)	4	(36)	21	(30)(•	(65)	14	(20)			1(8)
ve	Clycymeridae	Family		16)											(15)					
ivalve	Arcidae	Lamily		_		46	41)	89	24)	1 (20)	- [(5)			ر (15) (•	1 (50)
9	Nuculanidae	Family					<u> </u>		_)					_		ت			_
ъ.	Nuculidae	Family				٣	(6)		(3)											
Continued.	(Ceneral)	Byl a vi8				-	(12)	m Zone 11	(15)		6 0			,	(8) auo 7	2	(14)	-	(20)	2 (20)
Table 21. Con			Tulare Formation		Upper Mya Zone	Acila Zone	(12)	Pecten/Trachycardium		Neverita Zone	Cascajo Conglomerate		Littorina Zone		upper recudocardium tone	Siphonalia Zone		Macoma Zone		Patinopecten Zone

	Family Serpula											
	vertebrate: bone				3 (10)	2						
	Vertebrate: vertebra											
	Fish otolith											
	Fish vertebra					1 (100)	•					
	Fish bone											
	Skate and shark teeth				2 (16)	2						
la.	Fish scales and plates				2 2 (33) (16)	}						
Serpula.	Fish leeth				10)	2						
	Family Dendrasteridae				4 (2))					2 (6)	4 (6)
e to	Order Clypeasteroida											
dida	Echinoderm (General)				- (9							
Pholadid	Family Cancrinae				2 (10)							
Ph	Family Balanidae			4	(07				1.05	3 3 (42)	•	7 (63)
°.	Barnacle (General)	3 (33)	•	1	(16) (29) 29 (23)	Ì			1 (33)	7 3 (26) (42)		
· p ·	Family Pholadidae										1 (25)	
Continued					euc				ě		S	•
nt j					m 2c		0		Zor			
Co		_			rdiu		erat		Ji u			ခ္
		ıtio	er.		усв	ē	lom	90	CBEC	one		Zor
2 1		orme)Z 8.	ē	rach	Zor	Conç	в 2с	endo	ie Z	one	cten
l e		9. F	r Hy	3 20	I/ue	rita	óĆ	rin	e B	nal	, Z вт	obe
Table		Tulare Formetion	Upper Mya Zone	Acila Zone	Pecten/Trachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Масома Zone	Patinopecten Zone

The majority of the gastropod families were involved in interactions with the boring polychaetes. Three of the four families without interactions, Turritellidae, Cerithidae, and Collumbellidae, are represented by fewer than 10 specimens. The fourth family, the Olividae, has 473 specimen present, 466 of them at one locality in the Neverita zone. Very few specimen from this locality were involved in interactions. The polychaete borings present at this locality were widely distributed among gastropod and bivalve hosts. Of the four families, the Olividae species were the only ones which could be considered infaunal.

The <u>Siphonalia</u> zone had the highest number of polychaete interactions in the Etchegion Formation with the highest number interacting with the cancellariids. The cancellarids with borings were widespread throughout the localities within outer bay enironments. The <u>Pecten/Trachycardium</u> zone had the highest number of polychaete interactions in the San Joaquin Formation with six of the gastropod families with borings (three or fewer families were represented in any of the other zones). The naticids have the highest number of interactions with the boring polychaetes within the <u>Pecten/Trachycardium</u> zone. These interactions occur along the Kettleman Hills at localities from the North,

Middle, and South Domes. These environments include inner to outer bay, normal salinity conditions.

The polychaete/bivalve interactions are numerous and widespread in families with many specimen. The bivalve families with few or no polychaete borings are infaunal. At least one specimen of every epifaunal species of bivalve was affected to at least some extent. The only infaunal bivalve family with a significant number of polychaete borings was the mactrids with most of the interactions (=75%) occurring within the Etchegoin Formation where the mactrids are the most abundant. The most frequently bored host bivalve species are: Anadara trilineata with 123 interactions, Ostrea atwoodi with 170 interactions, Ostrea vespertina sequens with 126 interactions, and Pseudocardium densatum with 92 interactions.

There are no readily visible trends to the bivalve interactions with the polychaetes. This finding includes the number of interactions as well as the distribution of their occurrences. With most of the other types of interactions, there were many fewer interactions of that type in the Etchegoin Formation than there were in the San Joaquin Formation. This was not true of the polychaete borings. The boring polychaetes extend throughout the range of environmental conditions while interactions of the

other types of boring organisms (the algal/fungal group and the clionids) tended toward the open marine conditions. The polychaete borings were found in environments with normal salinities, "fresh" and brackish waters, and occurred within a range of substrate types.

The borings of the polycheates were so pervasive in the Pecten/Trachycardium zone that their borings are found in the shells of barnacles and echinoderms as well as shark and ray teeth (the enamel bases), fish bones, and animal bones.

Bryozoa

Encrusting, cheilostome bryozoans occur on slightly less than 0.1% of the shells from the Kettleman Hills. The largest percentage of shells encrusted by bryozoans (=70%) belonged to bivalves (Table 22).

The bryozoans were found on both infaunal and epifaunal gastropod shells, possibly indicating that the bryozoans had encrusted the shells after the host organisms had died, and not before. The bivalve shells with bryozoan encrustations were scattered throughout the section with no visible trends. The arcids and ostreids were the only families which were consistently encrusted, and these occurrences were in low numbers. Nearly eighty percent of the encrusted bivalves were

an the ae.						_					- (8	3	
lem s, eid	y Neptuneidae	Famil				1 (33)					` 3		
ett ion tun	y Cancellariidae	Famil											
e K act Nep	98bivilO y	Famil					4 (1)						
r th nter to	y Nassariidae	(Lamil)											
for e in	y Collumbellidae	(Lime ³											
ans th era	y Naticidae	Famil)				- <u>E</u>							
yozo with lent	y Calyptraeidae	(Lims]				1 (4)							
, br nen Coe	Serithidae	(Lime3											
n by ecim a.	ebinitotit v	Famil)											
tio sp	V Turritellidae	(Lime 7											
sta of	- Trochidae	(Lime?									1	3	
encru number l perc	oboq (ceneral)	ortsea									1 (5)	1 (12)	Ì
of e e nu ell	• Dellininee	Family											
on c the	Discinidae	Lamily F											
uti is th	ensosoy18 pnir	Branch											
tribu mber) is	sting Bryozoans	Enton3											
dis nu sis	(Leneral) and	Bozyzoa											
hic pper nthe	81mm88	Rhizop				3 (23)							
rap e u are	(Lerates (General)	Coeten				1 (12)							
tig Th n p										one			
Strati es. T r (in						E C		ate		Jm Z			
			ion	60		card		омег	63	ardi	ē		Zone
22. St samples number			ırmat	uoz ı	စ္အ	всћу	Zone	angl	, Zon	oopn	ю 2 в	au.	ten
			è Fc	Мує	1 Zor	ın/II	ita) o (rina	, Pae	ilanı	лв Z c	padou
Table Hills lower			Tulare Formation	Upper Mya Zone	Acila Zone	Pecten/Irachycardium Zone	Neverita Zone	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Масома 2опе	Patinopecten Zone
, , <u>, , , , , , , , , , , , , , , , , </u>				_	-	_		-					-

	əsbimsdə	víime i				7 (7)					1 (36)	(67)	
	Hitellidae	Family											
	Corbulidae	Family									_		
	Myidae	Family									1	9	
	Solenidae	Family								_		_	_
	Mactridae	Family								8 () - (3	1
	9sbiidomms29	Family											
	Semelidae	Family											
	Tellinidae	Family											
	Venetidae	Family				2 3 (16) (7)	•						
	9sbiib1sJ	Family				2 (16)							
	Lucinidae	Family											
	Diplodontidae	Family				_							
Chamidae	Pectinidae	Family				55							
Cha	Ostreidae	Family				9 (7)				3	£ (c)	}	1 (2)
t o	Mytilidae	Family									2 (3)		
lve	Glycymeridae	Family											
Bivalve	Arcidae	Family			2 (12)	14 (5)					ره)	è	
	Nuculanidae	Family											
.	Nuculidae	Family											
Continued.	([stened])	Bivalva			1 (12)	Pecten/Trachycardium Zone 3 (4)		ø,		Upper Pseudocardium Zone 1	•		
Co			ton	•		sardiu		xmerat	_	ırdium	Ð		one
22.			Tulare Formation	Upper Mya Zone	9	rachyc	Zone	Cascajo Conglomerate	Littorina Zone	udoce	Siphonalia Zone	ne	Patinopecten Zone
Table 22.			are f.	er Myı	Acila Zone	ten/I	Neverita Zona	ogec)	torine	er Pse	ilanot	Мвсомв Zone	inopec
Tab			Tul	Upp	Aci	Pec	Nev	Cası	Lit	ıddn	Sipl	Macc	Pat

Family Serpula Vertebrate: bone Vertebrate: vertebra Fish otolith Fish vertebra Fish bone Skate and shark teeth Pholadidae to Serpula. Fish scales and plates Fish Teeth Family Dendrasteridae Order Clypeasteroida Echinoderm (General) Family Cancrinae Family Balanidae ٠ ن Barnacle (General) Table 22. Continued. Family Pholadidae fulere Formation Upper Mya Zone Acila Zone

1 2 (1) (40)

Pecten/Trachycardium Zone

Neverita Zone

Cascajo Conglomerate

Littorina Zone

Upper Pseudocardium Zone

Siphonalia Zone

Мвсомв Zone

Patinopecten Zone

infaunal, and their shells had to have been exposed at the surface at the time of interaction. Chama pellucida might have been more extensively encrusted than the four times recorded for the species. Most of the shells of this species were found without the outer shell layer attached. The intensity of bryozoan encrustation found in the Pecten/Trachycardium zone indicates that the shells had remained at the surface, or were brought up to and maintained at the surface, for a longer period of time in this zone than in the other zones.

Bivalves

The epifaunal attached bivalves made up the least abundant type of interaction (Table 23). They occurred on shells of few hosts, most of which were within bivalve families. Three genera of attached bivalves occurred within the Kettleman Hills area. They are Ostrea, Chama, and Mytilus (in decreasing order of abundance).

There were no instances of gastropod shells being encrusted with bivalves. This differs from the results of the Gulf Coast study where the shells of <u>Polinices</u> and <u>Busycon</u> were often covered with small oyster spats. Comparatively speaking, the gastropod shells from the Kettleman Hills were relatively small. The only Kettleman Hills species to grow to a fairly large size

 Stratigraphic distributi 	o uo	tta	ched b	ival	90	est	for			lem	an Hil	1 s
e upper number is the n	umbe	of s	E	n wi	ᆮ	a	terac	tion	, L	he 1	ower (٠٦
esis) is the cell percen		oelen	a	s to	Nept	nne	dae.					
rates (General)	epțuțosi)	ellininae (General) bo	rochidae	asbiniotti.	erithidae	Salyptraeidae	Maticidae Collumbellidae	96bíi1626V	9ebivi[[Sancellariidae	Veptune i dae	
Rhizopsa Bryzoans Encrusti	Family D			_	Family C			Family ?	Е вштух с	Family (Family 1	
Tulare Formation												
Upper Mya Zone												
Acila Zone												
Pacten/Trachycardium Zone 3 4 (37)												
Neverita Zone												
Саясајо Conglomerate												
Littorina Zone												
Upper Pseudocardium Zone												
Siphonalia Zone												
Macoma Zone												
0.00 to												

	Сћатаае					11 (12)	ì						
	Corbulidae Hitellidae												
	Myidae												
	Solenidae									_ ^			
	Mactridae									- 3			
	Psammobildae												
	Semelidae	Yimel											
	Tellinidae	Ylimel								_			_
	Veneridae	[amily								1 (8)			(5)
	Cardiidae	Family											
	гоститавь	Family											
•	Diplodontidae	Ylimel											
hida	Pectinidae	Family				- 3							
Chamida	Ostreidae	Family	1 (6)	11 (18)	8 (34)	18	Ì			(2)	21		3 (6)
to	Mytilidae	Family			Ū	- 3							(8)
lve	Clycymeridae	Family											
Bivalve	asbiciA	Family			- E	7	Ì						
α	Nuculanidae	Family											
þ.	Nuculidae	Family											
ed.	(Seneral)	Bivalve											
23. Continued			Tulare Formation	Cone		Pacten/Trachycardium Zone	ane	Cascajo Conglomerate	Zone .	Upper Pseudocardium Zone	Zone	n	Patinopecten Zone
			э Гог	Нув ;	Zone	n/Tra	ita Zı	jo Cor	เรเกล	Pseu	nalia	a Zon	opecto
Table			Tular	Upper Mya Zone	Acila Zone	Pecte	Neverita Zone	Савса	Littorina Zone	Upper	Siphonalia Zone	Масома Zone	Patin

Vertebrate: bone Vertebrate: vertebra Fish otolith Fish vertebra Fish bone Skate and shark teeth Pholadidae to Serpula. Fish scales and plates Fish Teeth Family Dendrasteridae Order Clypeasteroida Echinoderm (General) Family Cancrinae 2 (13) Family Balanidae ပ် 3 (2) Barnacle (General) Continued. Family Pholadidae Pecten/Irachycardium Zone Upper Pseudocardium Zone Cascajo Conglomerate Patinopecten Zone **Tulare Formation** Siphonalia Zone Upper Mya Zone Littorina Zone Table 23. Neverita Zone Macoma Zone Acila Zone

Family Serpula

were <u>Neverita reclusiana</u> and <u>Siphonalia kettlemanensis</u>. The use of bivalve shells, to the exclusion of the shells of gastropod shells (at locations where there were abundant), indicates that the epibiontic bivalves either could not get to, or could not set on, the gastropod shells.

The number of bivalve families acting as hosts to the encrusting bivalves was relatively few in number with four of the seven families (Arcidae, Mytilidae, Ostreidae, and Chamidae) possessing almost all of the recorded interactions, most of them on the shells of Ostrea. The bivalve epibionts occurred on either epifaunal or shallowly infaunal bivalves with no preference to location on the shell. The ostreid epibionts have a tendency to set on shells of their own species even when they co-occur within a locality.

Ostrea atwoodi and Ostrea vespertina sequens co-occur at five localities within the section in the North Dome. There are no localities where both Ostrea species co-occurred in abundance. Biological differences between these two species may have allowed them to competitively exclude each other within their respective environments.

Chama pellucida never occurred attached to other members of its own species. This absence might be related to the roughened texture of the outside of the

right (upper) valve. Chama is only found encrusting host bivalves in the deposits of the Pecten/Trachycardium zone in outer bay localities. Mytilus occurred encrusted on only three shells, and no conclusions could be derived from this data. Barnacles

The barnacles were second only to the boring polychaetes in the number of zones affected in the Kettleman Hills (Table 24). The identification of barnacles as guest organisms was often made from their fragmentary remains or base plates which were found attached to shells. Identification of the guest barnacles, either balanid or coronulid, was not possible on this basis. The coronulid barnacles have been recorded only as host organisms. Their presence indicated that there were attached coronulid barnacles present at the Kettleman Hills localities, but that no identifiable pieces were found on any of the host shells. This absence may indicate some type of bias toward preservation of the balanid barnacle interactions over those of the coronulid. The coronulid host shells are listed in Appendix IV.

The occurrence of barnacles on gastropod hosts is relatively rare with four or fewer occurrences in only five of eleven families with an even ratio of epifaunal to infaunal gastropod species. Of the total of eleven

i 1 1	(in													
H	wer													
eman	100	Family Neptuneidae					1 (33)					2	(31)	
ettle	the	Family Cancellariidae					2 1 (01/)	()						
×	Ś	Family Olividae						- (3					
the	tion	Family Nassariidae												
for	rac e.	Family Collumbellidae												
sts	inte eida	Family Naticidae	,	(25)	,		3	}						
gue	he tun	Family Calyptracidae												
c l e	th t Nep	Family Cerithidae												
r n a	t 1.	Family Littorinidae												
d ba	imen ates	Family Turritellidae												
chec	peci	Family Trochidae					1	3						
tta	f s len	Gastropod (General)					3	}					- 5	7
of a	er o Coe	Family Dallininae												
u o	umb a.	Family Discinidae												
buti	he n t.	ensozovia pridonsia												
trib	s t cen	Encrusting Bryozoans												
d i s	r pe	Bryzoans (General)												
phic	numbe cell	simmeeqozidA					1 (8)	ì						
Ø		Coelenterates (General)												
Stratigra	The uppers) is the						oue.				ā			
ra(u is						т 2с		Ð		Zor			
St	lhe i)		,	_			diu		ırat		ij			Ð
	S.			lulare formation	a u		Pecten/Irachycardium Zone	يو	Cascajo Conglomerate	9	Upper Pseudocardium Zone	one		Patinopecten Zone
24	s. he		!	orme	в Zc	e e	rach	Zon	Cong	э 20	opne	ia Z	auc	ten
l e	ple ent		ů,	ī o	H XX	701	ń/I	ita	oć.	rine	Pae	nali	a 20	obec
Table 24.	samples. parenthe		-	Jar	Upper Mya Zone	Acila Zone	3cte	Neverita Zone	39CB	Littorina Zone	per	Siphonalia Zone	Macoma Zone	tin
Ξ	s D		÷	=	בֿ	Ă	ے	ž	ű		ă	S	ž	Pe

	эвbimedЭ	Family					r	· (C)						-	(22)			
	Hitellidae	Family																
	Corbulidae	Family																
	Myidae	Family																
	Solenidae	Family					•	(13)	•									
	Mactridae	Family				- (3					5	(2)	7	(3)			
	Psammobiidae	Family						_										
	Semelidae	Family					•	(20)							_			
	Tellinidae	Family												2	(14)			
	Venetidae	Family					٢	^ E						2	(9)		-	(5)
	Sebiibie	Lamily										-	(3)				-	(100) (5)
	глститавь	Family																_
e.	Diplodontidae	Family																
Chamida	Pectinidae	Family		(14)											(12)			
Cha	Ostreidae	Family	7	(12)		- 3	3 5	: C				-	Ξ	17	(10)		2	(4)
t o	Mytilidae	Family				- 3	9 7	5						14	(20)	2 (66)	4	(43)
ivalve	Сіусутегідае	Family																
Biva	Arcidae	Family	2	(33)		9 (2)	3	9)						~	(8)			
	Nuculanidae	Family																
φ,	Nuculidae	Femily																
ned,	(General)	Bivalve				- ;	(21.)	, (<u>)</u>					(23)	4	(28)	(50)	~	(30)
Continued							ı	U07 E		ø.		Zone						
Cor			5				;	ardıu		merat		rdium		83			one	
24.			rmeti	Zone	2	Ð		achyc	Zone	onglo	Zane	udoca		a Zon		ne	ten Z	
			Tulare Formation	Unner Mva Zone		Acila Zone	1	Pecten/Irachycardium Zone	Neverita Zone	Cascajo Cong lomerat e	Littorina Zone	Upper Pseudocardium Zone		Siphonalia Zone		Macoma Zone	Patinopecten Zone	<u>L</u>
Table			Tule	Hope	i	Acil		Pect	Neve	Casc	Litt	Uppe		Siph		Maco	Pati	

	Fish otolith Vertebrate: vertebra Vertebrate: bone Family Serpula				1 (3)							
	Fish vertebra											
	Fish bone				1 (1)							
	Skate and shark teeth				1 (8)	Ì						
la.	Fish scales and plates											
Serpula	Fish Teeth				1 (10)	•						
	Family Dendrasteridae				_							
ae to	Order Clypeasteroida											
did	Echinoderm (General)											
Pholadidae	Family Canctinae	1 (33)										
P.	Family Balanidae			9 (40)	2 (40)				1 (50)	2 (28)	100)	1 (6)
٥.	Barnacle (General)	1 (2)	-	2 (33)	27 2 (21) (40)	•				6 (23)	1 1 1 (25) (25) (50)(100)	3 (75)
ed.	Family Pholadidae										1 (25)	
Table 24. Continued.		Tulare Formation	Upper Mya Zone	Acila Zone	Pecten/Trachycardium Zone	Neverita Zane	Cascajo Conglomerate	Littorina Zone	Upper Pseudocardium Zone	Siphonalia Zone	Мвсомв Zone	Patinopecten Zone

recordings of barnacles attached to gastropods, only four occur outside of the Pecten/Trachycardium zone. There does not appear to be any preference to any one gastropod host by the barnacles, but the number of samples was too small to be certain.

Most of the barnacle interactions occur with bivalves and with other barnacles. Over half of the bivalve families have recordings of barnacle interactions; the ones with few occurrences are infaunal bivalves which would only be encrusted when brought to the surface after or near death. "usual" bivalve host species, the arcids, mytilids, ostreids, and pectenids are the most heavily utilized hosts for the barnacles with stratigraphic concentrations of the interactions between the Littorina and Upper Pseudocardium zones of the Etchegoin Formation and between the Pecten/ Trachycardium and Acila zones of the San Joaquin Formation. Barnacles found attached to other barnacles show the same general relationships as to stratigraphic location as the ostreids and pectinids. Several barnacles within the Pecten/Trachycardium zone were found attached to fish and vertebrate remains (along with some of the polychaete borings noted earlier).

There were several occurrences of barnacles on shells in the Tulare Formation, a supposedly fresh to

brackish water unit. Most of the barnacles from the brackish water localities from the Gulf Coast study were small and thin shelled. The barnacles on the shells from the Tulare of the Kettleman Hills were not thin shelled or small (relative to the size of the shells that they were on).

Summary

The most abundant guest types (polychaete borers, and barnacles) were found on shells of many different animate and inanimate (fish teeth and bones) objects. This would indicate that in their interactions with the "host" shells, the boring polychaetes and encrusting barnacles of the Kettleman Hills were not using the attributes of the live hosts. The host shell provided substrate, and the conditions of the host, alive or dead, may not have had any effect on the guest.

Although epifauna are normally selected by guest organisms as attachment sites or as substrate to bore into, shallow infauna were made available (on the surface) at many of the Kettleman Hills localities. The Siphonalia zone of the Etchegoin Formation and the Pecten/Trachycardium zone of the San Joaquin Formation are similar in that interactions seem to have been unusually abundant at these horizons. Both were relatively open marine times with open bay conditions in the North Dome and fresh water conditions in the

South Dome. The shells must have stayed at the surface for a longer time through either bioturbation or lower rates of sedimentation, although neither zone was lithologically distinctive enough within the section to support this hypothesis.

No clear trends of change in the preferences appear within the interactions. The nature of host types and specificity remain fairly constant between the <u>Patinopecten</u> zone at the base of the Etchegoin Formation and the Upper <u>Mya</u> zone of the San Joaquin Formation. This would indicate that interaction pairs did not evolve within the time span represented by these units (approximately 4 million years). The significance of this observation is that, within a geologically short time span, change does not occur in interactions and basic interaction pairs through time within a stratigraphic section. Changes in interactions and pairings represent directed changes in the environment, not changes in the guest organism's capabilities.

Some types of organisms showed a tendency towards interaction with epibiontic and endolithic organisms, termed "guest" organisms in this study. The gastropod families most commonly found in interactions were the Calyptraeidae and the Naticidae. The naticids were preferentially utilized by all of the guest types with

the exception of attached bivalves (the naticids of the Gulf Coast study includes bivalves as guest organisms). The calyptraeids were affected by a wide variety of guest organisms, but not to the same numerical extent as the naticids.

Five of the bivalve families have records of interaction with every type of guest organism present. They are the Arcidae, Ostreidae, Pectenidae, Veneridae, and Mactridae. Instances of interaction with the arcids, ostreids, and pectinids were the most numerous of all host organisms studied from the Kettleman Hills. The barnacles showed similar trends of interactions and numbers of instances of interaction as did the ostereids and pectinids, the shells to which they were commonly attached.

CONCLUSIONS

- The sites of interaction of epibiontic and 1. endolithic guests with the gastropod shells from beach and nearshore localities in the Laguna Madre and Redfish Bay exhibit shell surface distributions which do not relate to the life position of the gastropod hosts. The shells of dead gastropods have been removed from the shallow nearshore and sea grass areas and are brought to the beach by the hermit crabs (pagurid crustaceans). The distributions of the host-guest interactions are related to the way that hermit crabs orient and move the shells (see fig.5). The epibionts (barnacles, bryozoans, and serpulid worms) colonize the highest shell surface (that provided while the shells are being used by the hermit crab) to stay above the sediment-water interface and utilize water currents at that level above the sediment. No interactions exist, including those of boring guests, at the site where the shell is in contact with the sediment surface.
- 2. The guest organisms at the Texas Gulf Coast localities show no preference interactions on host shells which could be related to the life habit of a live host. Samples with similar location of interactions on the shells of epifuanal and infaunal organisms are indicative of environments where shells

are brought to, and maintained, at the surface after or near the death of the host.

- 3. The fewest interactions occurred at the Gulf Coast localities in which the environmental conditions at the sediment-water interface are the most severe. All of the live host organisms at these locations were infaunal and not involved in interactions until the shells were brought to the surface at or near death of the host. The highest numbers of interactions occurred at the oyster bank localities, each of which exhibit well integrated systems of organism interactions. The epibiontic and endolithic interactions were complex and varied, representing the degree of interdependence developed within the fauna which form the banks.
- 4. Patterns of predation selection in the Humboldt Basin do not show depth dependence. Samples from the Humboldt Basin indicate that new species are added (as they appear) to the types of prey as water depths decrease while deeper water prey are retained (throughout their depth ranges). It appears that some species are preferentially preyed upon (although this can not be statistically proven).
- 5. The Pullen, Eel River and lower portion of the Rio Dell Formations in the Humboldt Basin contain few epibiontic interactions. These basin and slope environments have an extremely sparse fauna and were

sedimentologically unstable. Transport of sediment in turbidity and grain flow movements prevented the establishment of integrated pairs of host and guest organisms and lack of available shell surfaces keep shallow water guests from populating the deeper waters that they may be carried down into.

- 6. The environmental dependence of interactions and interaction pairs is evident at the Humboldt Basin sections. The interactions of the Eel River section show an increase in intensity with decreasing water depth. The number of interactions with epibiontic and endolithic guests increase upwards from the base of the Pullen to the middle of the Rio Del Formation (slope to shelf break) at the Eel River section. The number of these interactions, particularly with the polychaete worms, decreases from this level upwards to the boundary between the Rio Dell and the Scotia Bluffs where the depositional environment changes from shelf to shoreface. Failure of the interactions to decrease in the Upper Rio Dell at the Centerville Beach locality indicates that shoreface conditions are absent at that section and as much as 1500 feet of the Rio Dell may potentially be missing at the upper boundary unconformity.
- 7. At the Kettleman Hills, with the exception of the intense predation on Olivella cf. $\underline{0}$. pedroana by a

naticid predator in the Neverita Zone of the Etchegoin Formation, no particular type of interaction (epibiontic, endolithic, or predatory) becomes favored within a zone as the number of potential host shells increases. This indicates that the intensity of interactions must reflect a quality of the environment, independent of the host fauna. Most interactions occur at open outer bay or unrestricted inner bay localities. Host specificity, when it does occur, is a function of available host shells as controlled by the processes which bring shells to the surface and maintain them there.

- 8. The molluscan families Naticidae, Ostreidae, and Pectinidae are heavily utilized at the Texas Gulf Coast, Humboldt Basin, and Kettleman Hills localities. The intensity of interactions is lower in the fossil material but the predelection of these families to be involved in interactions of all types is maintained.
- 9. Barnacles, as hosts, show the same types and stratigraphic distributions of interactions as did their bivalve hosts. In the bivalve host shells with barnacles and other endolithic guests, the shells of the barnacles were bored as a continuation of the host shell. The barnacle's ecologic characteristics were not being utilized by the individual guest organism types.

REFERENCES CITED

- Akapan, E. B. and Farrow, G. E., 1984, Depth of deposition of early Holocene raised sediments at Irvine deduced from algal borings in mollusc shells: Scottish Journal of Geology, v. 20, p. 237-247.
- Anderson, F. M., 1905, A stratigraphic study in the Mount Diablo Range of California: California Academy of Science Proceedings, 3rd series, v. 2, p. 155-248.
- Andrews, J., 1971, Sea shells of the Texas coast:
 Austin and London, University of Texas Press,
 298 p.
- Arnold, R., 1910, Paleontology of the Coalinga district, Fresno and Kings Counties, Calif.: U. S. Geololgical Survey Bulletin, v. 396, 173 p.
- Arnold, R., and Anderson, R., 1910, Geology and oil resources of the Coalinga district, Calif.: U.S. Geological Survey Bulletin 3981, 354 p.
- Bishop, G. A., 1975, Traces of predation: in Frey, R. W., ed., The Study of Trace Fossils: New York, Springer-Verlag, p. 261-282.
- Boekschoten, G. J., 1970, On bryozoan borings from the Danian at Faske, Denmark: in Crimes, T. P. and Harper, J. C. eds., Trace Fossils: Liverpool, Seel House Press, p. 43-48.
- Boggs, C. H., Kitchell, J. F., Kitchell, J. A., and Rice, J. A., 1984, Predation at a snail's pace: what's time to a gastropod: Oecologia, v. 62, p. 13-17.
- Bottjer, D. J., 1982, Paleoecology of epizoans and borings on some Upper Cretaceous chalk oysters from the Gulf Coast: Lethaia, v. 17, p. 75-84.
- Brett, C. E., 1978, Host-specific pit-forming epizoans on Silurian crinoids: Lethaia, v. 11, p. 217-223.

- Bromley, R. G., and Surlyk, F., 1973, Borings produced by brachiopod pedicle, fossil and Recent: Lethaia, v. 6, p. 349-365.
- Brown, L. F. Jr., Brewton, J. L., McGowen, J. H., Evans, T. J., Fisher, W. L. and Groat, C. G., 1976, Environmental Geologic Atlas of the Texas Coastal Zone-Corpus Christi area: Austin, Texas, Bureau of Economic Geology, 123 p.
- Burckle, L. H., Dodd, J. R., and Stanton, R. J. Jr., 1980, Diatom Biostratigraphy and its relationship to paleomagnetic stratigraphy and molluscan distribution in the neogene Centerville Beach section, California: Journal of Paleontology, v. 54, p. 664-674.
- Calnan, T. R., 1980, Molluscan distribution in Copano Bay, Texas: Austin, Texas, Bureau of Economic Geology, 76 p.
- Carriker, M. R., 1951, Observation on the penetration of tightly closing bivalves by Busycon and other predators: Ecology, v. 32, p. 73-83.
- Caullery, M., 1952, Parasitism and Symbiosis: translated by A. M. Lysaght: London, Sidgwick and Jackson Ltd., 340 p.
- Cooper, J. G., 1894, On some Pliocene fresh-water fossils of California; California Academy of Science Proceedings, 2d series, v. 4, p. 166-172.
- Cummins, H., Powell, E. N., Stanton, R. J. Jr., and Staff, George, 1986a, The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 52, p. 291-320.
- ----, 1986b, Assessing transportation by the covariance of species with comments on contagious and random distributions: Lethaia, v. 19, p. 1-22.
- Dodd, J. R., and Stanton, R. J. Jr., 1975, Paleo-salinities within a Pliocene Bay, Kettleman Hills, California: A study of the revolving power of isotopic and faunal techniques: Geological Society of America Bulletin, v. 86, p. 51-64.

- ----, 1976, Paleosalinities within a Pliocene Bay, Kettleman Hills, California: A study of the resolving power of isotopic and faunal techniques (reply to discussion): Geological Society of America Bulletin, v. 87, p. 160.
- ----, 1981, Paleoecology, Concepts and Applications: New York, John Wiley and Sons, 559 p.
- Dodd, J. R., Mead, J., and Stanton, R. J. Jr., 1977, Paleomagnetic stratigraphy of Pliocene Centerville Beach Section, Northern California,: Earth and Planetary Science Letters, v. 34, p. 381-386.
- Dodd, J. R., Stanton, R. J. Jr., and Johnson, M., 1984, Oxygen isotopic composition of Neogene molluscan fossils from the Eel River Basin of California: Geological Society of America Bulletin, v. 95, p. 1253-1258.
- Driscoll, E. G., and Swanson, R. A., 1973, Diversity and structure of epifaunal communities on mollusc valves, Buzzard Bay, Massachusetts: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 14, p.229-247.
- Faustman, W. F., 1964, Paleontology of the Wildcat Group at Scotia and Centerville Beach, California: California University Publications of Geological Science, v. 47, p. 97-160.
- Galehouse, J. S., 1967, Provenance and paleocurrents of the Paso Robles Formation, California: Geological Society of America Bulletin, v. 78, p. 951-978.
- Gestner, G. C., and Galloway, J., 1933, Geology of Kettleman Hills oil field, Calif.: American Association of Petroleum Geologists Bulletin, v. 18, p. 435-475.
- Haller, C. F., 1967, Neogene foraminiferal faunas of the Humboldt Basin, California: Unpublished Ph. D. Dissertation, University of California, Berkeley, 204 p.
- Hannibal, H., 1912, A synopsis of the Recent and Tertiary fresh-water Mollusca of the Californian Province: Malacological Society of London Proceedings, v. 10, p. 112-211.

- Ingle, J. C., 1976, Late Neogene paleobathymetry and paleoenvironments of the Humboldt Basin, northern California, in Fritsche, H. Terbest, Jr. and W. W. Wornardt, eds., The Neogene Symposium: Society of Economic Paleontologists and Mineralogists, Pacific Section, San Francisco, p. 53-61.
- Jennings, R. H., 1983, Trace Fossils and Environments of Deposition, Humboldt Basin, California: Unpublished Master's Thesis, Texas A & M University, 207 p.
- Kammer, T. W., 1979, Oxygen and carbon isotope variation in the Neogene foraminifera

 Globigerina and Uvigerina from DSDP Site 173

 and the Centerville Beach section, California:

 Marine Micropaleontology, v. 4, p. 45-60.
- Karlson, R. H., and Shenk, M. A., 1983, Epifaunal abundance, association, and overgrowth patterns on large hermit crab shells: Journal of Experimental Marine Biology and Ecology, v. 70, p. 55-64.
- Keen, A. M., 1971, Sea shells of tropical west America: Stanford, California, Stanford University Press, 1064 p.
- Keen, A. M., and Bentson, H., 1944, Check list of California Tertiary Marine Mollusca: Geological Society of America, Special Papers, no. 56, 280 p.
- Keen, A. M. and Coan, E., 1974, Marine molluscan genera of western North America, an illustrated key (2nd ed.): Stanford, California, Stanford University Press, 208 p.
- Kew, W. S. W., 1920, Cretaceous and Cenozoic Echinoidea of the Pacific coast of North America: California University, Berkeley, Department of Geology, Bulletin, v. 12, p. 23-236.
- Killingley, J. S., and Lutcavage, M., 1983, Loggerhead turtle movements reconstructed from 180 and 13C profiles from commensal barnacle shells: Estuarine, Coastal and Shelf Sciences, v. 16, p. 345-349.
- Kitchell, J. A., Boggs, C. H., Kitchell, J. F., and Rice, J. A., 1981, Prey selection by naticid gastropods: experimental tests and application to the fossil record: Paleobiology, v. 7, p. 533-552.

- Kleinpell, R. M., 1938, Miocene stratigraphy of California: Tulsa, American Association of Petroleum Geologists, 450 p.
- Kobluk, D. R., and Risk, M. J., 1977, Algal borings and framboidal pyrite in Upper Ordovician brachiopods: Lethaia, v. 10, p. 135-143.
- Kukal, Z., 1971, Geology of Recent Sediments: New York, Academic Press (in Czechoslovakia: Prague, Czech-slovak Academy Science), 490 p.
- Levine, S., 1980, Several measures of trophic structure applicable to complex food webs: Journal of Theoretical Biology, v. 83, p. 195-207.
- McNamara, K. J., 1978, Symbiosis between gastropods and bryozoans in the late Ordovician of Cumbria, England: Lethaia, v. 11, p. 25-40.
- Musser, E. H., 1929, Preliminary report on the Kettleman Hills oil field: California Oil Fields (California Division Mines and Mining), v. 14, p. 5-17.
- Ogle, B. A., 1953, Geology of the Eel River Valley Area, Humboldt County, California: California Division Mines Bulletin, v. 164, 128 p.
- Olsen, Curtis, R., 1978, Sedimentation rates: in Fairbridge, Rhodes W., and Bourgeois, Joanne, eds., The Encyclopedia of Sedimentology, v. 6, The Encyclopedia of Earth Scieces: Stroudsburg, Pennsylvania, Dowden, Hutchinson, and Ross, p. 687-692.
- Parker, R. H., 1959, Macro-invertebrate assemblages of central Texas coastal bays and Laguna Madre:
 American Association of Petroleum Geologists
 Bulletin, v. 43, p. 2100-2166.
- Pilsbry, H. A., 1934, Pliocene fresh-water fossils of the Kettleman Middle Dome fields, progress in development: California Oil Fields (California Division Oil and Gas), v. 18, p. 5-20.
- Piper, D. J. W., Normark, W. R., and Ingle, J. C., 1976, The Rio Dell Formation: A Plio-Pleistocene basin slope deposit in northern California: Sedimentology, v. 23, p. 309-328.

- Raup, D. M., and Stanley, S. M., 1978, Principles of Paleoecology: San Francisco, W. M. Freeman and Co., 481 p.
- Ricketts, E. F. and Calvin, J., 1968, Between Pacific Tides (4th ed. rev.): Stanford, California, Stanford University Press, 614 p.
- Rollins, H. B., and Donahue, J., 1975, Towards a theoretical basis of paleoecology: concepts of community dynamics: Lethaia, v. 8, p. 255-270.
- Roth, B., 1979, Late Cenozoic Marine Invertebrates from Northwest California and Southwest Oregon: Unpublished Ph. D. dissertation, Berkeley, University of California, 830 p.
- Roughgarden, J., 1975, Evolution of marine symbiosis A simple cost-benefit model: Ecology, v. 56, p. 1201-1208.
- Sanders, H. L., 1968, Marine benthic diversity: a comparative study: American Naturalist, v. 102, p. 243-282.
- Schafer, W., 1972, Ecology and Palaeoecology of Marine Environments: Chicago, University of Chicago Press, 568 p.
- Schindel, D. E., 1980, Microstratigraphic sampling and the limits of paleontologic resolution: Paleobiology, v. 6, p. 408-426.
- Scott, R. W., 1978, Approaches to trophic analysis of paleocommunities: Lethaia, v. 11, p. 1-14.
- Staff, G. M. and Stanton, R. J. Jr., Powell, E. N. and Cummins, H., 1986, Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: Death assemblages in Texas bays: Geological Society of America Bulletin, v. 97, p. 428-443.
- Stanton, R. J. Jr., and Dodd, J. R., 1970,
 Paleotechniques Comparison of faunal and
 geochemical analyses of Pliocene paleoenvironments, Kettleman Hills, California: Journal of
 Paleontology, v. 44, p. 1092-1121.
- ----, 1972, Pliocene cyclic sedimentation in the Kettleman Hills, California: in Rennie, E. W., Jr. (ed.), Geology and oil fields, west side central San Joaquin Valley: Pacific Section American

- Association of Petroleum Geologists, Guidebook 1972, p. 50-58.
- ----, 1976a, Pliocene biostratigraphy and depositional environment of the Jacalitos Canyon area, California: in Fritsche, A. E., Terbest, H. Jr., and Wornardt, W. W., eds., The Neogene Symposium: Society of Economic Paleontologists and Mineralogists, Pacific section, p. 84-85.
- ----, 1976b, The application of trophic structure of fossil communities in paleoenvironmental reconstruction: Lethaia, v. 9, p. 327-342.
- Stanton, R. J. Jr., and Nelson, P.C., 1980, Reconstruction of the trophic web in paleontology: Community structure in the Stone City Formation (Middle Eocene, Texas): Journal of Paleontology, v. 54, p. 118-135.
- Stanton, R. J. Jr., and Powell, E. N., and Nelson, P. C., 1981, The role of carnivorous gastropods in the trophic analysis of a fossil community:
 Malacologia, v. 20, p. 451-469.
- Virnstein, R. W., 1977, The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay: Ecology, v. 58, p. 1199-1217.
- ----, 1979, Predation on estuarine infauna: response patterns of component species: Estuaries, v. 2, p. 69-86.
- Walker, Sally E., 1986, Influence of hermit crabs on gastropod taphonomy: Fourth North American Paleontological Convention, Boulder, Colorado, Abstracts with Programs, p. A48.
- Watts, W. L., 1894, The gas and petroleum yielding formations of the central valley of California: California Mines Bureau Bulletin, v. 3, 100 p.
- West, R. R., 1977, Organism-substrate relations: Terminology for ecology and paleoecology: Lethaia, v. 10, p. 71-82.
- Woodring, W. I., Stewart, R., and Richards, R. W., 1940, Geology of the Kettleman Hills oil field, California: U. S. Geological Survey Professional Paper 197, 170 p.

APPENDIX I

Gulf Coast Taxonomy

```
Life habit, as defined in the Introduction, for the fauna
is provided (in parenthesis).
E - Epifaunal
I - Infaunal
Phylum Mollusca
     Class Gastropoda
          Order Mesogastropoda
               Family Littorinidae
                    Genus Littorina
                          Species L. (Littoraria)
                               irrorata (E)
               Family Turritellidae
                    Genus <u>Vermicularia</u>
                          Species V. fargoi
               Family Cerithiidae
                    Genus Cerithium
                          Species C. (Thericium)
                               floridanum (E)
               Family Strombidae
                    Genus Strombus
                          Species S. alatus
               Family Calyptraeidae
                    Genus Crepidula
                          Species C. (Janacus)
                           plana (E)
               Family Naticidae
                    Genus Polinices
                          Species P. (Neverita)
                               duplicatus
          Order Neogastropoda
               Family Muricidae
                     Genus Thais (E)
                          Species T. (Stramonita)
                               haemastoma floridana
                          Species T. (Stramonita)
                               haemastoma haysae
                     Genus Murex
                          Species M. (Phyllonotus)
                           pomum (E)
```

```
Family Columbellidae
                Genus Anachis
                     Species A. avara
                      semiplicata
           Family Buccinidae
                Genus Cantharus
                     Species C. (Pollia)
                           cancellarius
           Family Melongenidae
                Genus Busycon
                     Species \underline{B}. \underline{contrarium} Species \underline{B}. \underline{spiratum}
                           plagosus
           Family Olividae
                Genus Oliva
                     Species O. (Ispidula)
                      sayana (I)
           Family Terebridae
                Genus Terebra
                      Species T. (Strioterebaum)
                           dislocata
Class Bivalvia
     Order Arcoida
          Family Arcidae (E)
                Genus Barbatia
                Genus Anadara
                      Species A. (Cunearca)
                           brasiliana
                      Species A. (Lunarca)
                           ovalis
           Family Noetiidae (I)
                Genus Noetia
                      Species N. (Eontia)
                           ponderosa
     Order Mytiloidae
           Family Mytilidae (E)
                Genus Brachidontes
                      Species B. (Brachidontes)
                           exustus
                      Species B. (Ischadium)
                           recurvus
           Family Pinnidae (E)
                Genus Atrina
                      Species A. serrata
     Order Pterioida
           Family Pectinidae (E)
                Genus Aequipecten
                      Species A. (Plagioctenium)
                           amplicostatus
```

```
Family Plicatulidae (E)
          Genus Plicatula
                Species P. gibbosa
     Family Anomiidae (E)
          Genus Anomia
                Species A. simplex
     Family Ostreidae \overline{(E)}
          Genus Crassostrea
                Species C. virginica
          Genus Ostrea
                Species O. equestris
Order Veneroida
     Family Ungulinidae (E)
          Genus Diplodonta
                Species D. (Phlyctiderma)
                     semiaspera
     Family Carditidae
          Genus <u>Cardita</u> (E)
Species <u>C</u>. (<u>Carditamera</u>)
                     floridana
     Family Mactridae (I)
          Genus Rangia
                Species R. cuneata
     Family Donacidae (I)
          Genus Donax
                Species D. variabilis
                     texasiana
     Family Tellinidae
     Family Solecurtidae
          Genus Tagelus
                Species T. (Mesopleura)
                     plebeius
                                 (I)
    Family Veneridae (I)
          Genus Dosinia
                Species D. (Dosinidia)
                     discus
          Genus Chione
                Species C. cancellata
          Genus Mercenaria
                Species M. campechiensis
                Species M. campechiensis
                     texana
Order Myoida (I)
     Family Corbulidae
          Genus Corbula
Order Pholadomyoida
     Family Periplomatidae
          Genus Periploma
                Species P. inequale
```

```
Phylum Arthropoda
     Class Cirripedia
         Order Thoracia
              Family Balanidae (E)
     Class Malacostraca
         Order Decopoda
               Infraorder Brachyurra
                    Crab claw
                 Family Cancridae (E)
                    Genus Arenaeus
                         Species A. cribarius
Phylum Echinodermata
     Class Echinoidea
          Order Clypeasteroidea
               Genus Mellita (I)
                    Species M. quinquiesperforata
Phylum Annelida
     Class Polychaetia
          Order Sedentaria
               Family Serpulidae
                    Genus Serpula (E)
```

APPENDIX II

California Taxonomy

The specimens from the California locations were coded for computer analysis. The coding follows each species name or pertinent classification level (in parenthesis.) Kingdom Protista Phylum Protozoa Class Sarcodina Order Foraminifera (010001)Kingdom Plantae General (020001,020002) Coal (020003) Wood (020004) Kingdom Animalia Phylum Coelenterata Class Anthozoa Subclass Zoantharia Order Scleractinia General (210001) Rhizopsammia arnoldi (211121) Phylum Ectoprocta General (310001) Cheilostome, encrusting (311111) Ctenostome?, branching (312111) Phylum Brachiopoda Class Inarticulata Order Acrotretida Suborder Acrotretidina Superfamily Discinacea Family Discinidae Subfamily Discininae Discinscia sp. (411111)

Discinscia cumingii (411112)

```
Class Articulata
          Order Terebratulida
                    General (420001)
            Suborder Terebratellidina
             Superfamily Terebratellacea
               Family Dallinidae
                 Subfamily Dallininae
                    Terebratalia sp. (421111)
                    Terebratalia arnoldi etchegoini
                                          (421112)
Phylum Mollusca
     Class Gastropoda
       Subclass Prosobranchia
          Order Archaeogastropoda
            Superfamily Trochacea
               Family Trochidae
                    Trochidae ? (511101)
                    Calliostoma sp. (511111)
                    Calliostoma sp. A (511112)
                    Calliostoma sp. B (511113)
                    Calliostoma coalingensis (511114)
                    C. coalingense privum (511115)
                    Calliostoma kerri (511116)
                    Margarites johnsoni (511121)
          Order Mesogastropoda
            Superfamily Turritellacea
               Family Turritellidae
                    Turritellid (512101)
                    Turritellid ? (512102)
                    Turrid sp. A (512103)
                    Turritella (512111)
                    Turritella ? (512112)
                    Turritella cooperi (512113)
               Family Caecidae
                    Micranellum sp. (512211)
             Superfamily Littorinacae
               Family Littorinidae
                    Littorina sp. (512311)
                    Littorina ? (512312)
                    Littorina mariana (512313)
             Superfamily Cerithiacae
               Family Cerithiidae
                    Bittium ? (512411)
                    Bittium aperum (512412)
                    Bittium lacteolum (512413)
```

```
Superfamily Calyptraeacea
     Famliy Calyptraeidea
           Calyptraea sp. (512511)
           Calyptraea ? (512512)
           Calyptraea filosa (512513)
          Calyptraea inorata (512514)
           Calyptraea cf. C. inorata (512515)
           Crepidula sp. (512521)
          Crepidula onyx (?) (512522)
           Crepidula cf. C. onyx (512524)
          Crepidula princeps (512523)
   Superfamily Naticacea
     Family Naticidae
          Naticid (512601)
          Naticid ? (512602)
          Natica sp. (512611)
          Natica (Cryptonatica) clausa
                                      (512612)
          <u>Natica</u> cf. <u>N</u>. (<u>C</u>.) clausa (512614)
          Polinices (512621)
          Polinices (Euspira) pallidus
                                      (512622)
          Lunatia sp. (512631)
          Lunatia ? (512632)
          Lunatia cf. L. lewissi (512633)
           Neverita sp. (512641)
          Neverita reclusiana (512642)
Order Neogastropoda
  Superfamily Muricacea
     Family Muricidae
          Muricid (513101)
          Jaton ? (513111)
          Trophonopsis (Nodulotrophon)
               dalli (513121)
          Trophonopsis (T.) fleenerensis
          Trophonopsis cf. T. (T.)
               fleenerensis (513123)
          Forreria magister (513131)
          Ocenebra praenominata (513141)
```

```
Superfamily Buccinacea
  Famliy Buccinidae
        Buccinid ? (513201)
        Buccinum saundersi (513211)
       Buccinum cf. B. alerticum
                                   (513212)
  Family Collumbellidae
       Columbellid ? (513301)
       <u>Mitrella</u> <u>gausapata</u> (513311)
<u>Mitrella</u> ? (513312)
  Famliy Nassariidae
       Nassarius sp. (513411)
       Nassarius ? (513412)
        Nassarius (Caesia) grammatus
                                   (513413)
       Nassarius (Caesia) coalingensis
                                   (513414)
       Nassarius cf. N. stocki (513415)
        Nassarius (Demondia) californianus
                                   (513418)
       Nassarius (Caesia) coalingensis
                                   (513419)
       Nassa ? (513421)
Superfamily Volutacea
  Family Olividae
       Olivid ? (513501)
       Olivella sp. (513511)
       Olivella pedroana (513512)
Olivella cf. O. pedroana (513513)
Superfamily Mitracea
  Family Cancellariidae
        Cancellariid (513601)
        Calcellariid ? (513602)
        Cancellaria sp. (513611)
```

```
Superfamily Conacea
  Family Turridae
       Oenopota harpularia (510015)
       "Pseudomelatoma" fleenerensis
                                 (510017)
       Propebela cf. P. fidicula (510018)
       Propebela sp. aff. fidicula (510019)
       Turrid (513701)
       Turrid sp. A (513702)
       Antiplanes (A.) major (513711)
       Antiplanes voyi (513713)
       Antiplanes cf. A. voyi (513714)
       Antiplanes peversa (513715)
       Antiplanes (Rectisulcus) strongi
                                (513716)
       Pseudomellatoma fleenerensis
                                (513727)
       Mangellia sp. (513731)
Superfamily Neptunacea
  Famliy Neptuneidae
      Neptuneid (513801)
       Neptuneid ? (513802)
      Neptunea sp. (513811)
       Neptunea smirna (513812)
      Neptunea smirna ? (513813)
      Neptunea tabulata (513814)
      Neptunea (N.) lyrata altispira
                                (513815)
      Neptunea (N.) pribiloffensis
                pribiloffensis
                                (513816)
      Neptunea cf. N. (Golikovia) smirna
                                (513817)
      Neptunea (Suclosipho) tabluata
                                (513818)
      Neptunea (Golikovia) smirnia
                                (513819)
```

```
Beringius arnoldi (513821)
                    Beringius ? (513822)
                    Clinopegma scotiaensis (513831)
                    Latisipho hallii (513841)
                    Colus cf. C. halibrectus (513851)
                    Siphonalia sp. (513861)
                    Siphonalia ? (513863)
                    Siphonalia kettlemanensis (513862)
       Subclass Opisthobranchia
          Order Cephalaspidea
             Superfamily Acteonacea
               Family Acteonidae
                    Rictaxis punctocaelatus (514111)
             Superfamily Bullacea
               Family Bullidae
                    Bulla ? (514211)
    Gastropod:
          General (510005, 510006, 510007)
          Freshwater (510004)
Phylum Mollusca
    Class Bivalvia
       Subclass Paleotaxodonta
          Order Nuculoida
            Superfamily Nuculacea
               Family Nuculidae
                    Nuculana sp. (521111)
                     Acila sp. (521121)
                    Acila ? (521122)
                    Acila castrensis (521123)
            Superfamily Nuculanacea
               Family Nuculanidae
                    Nuculanid (521201)
                    Nuculana (521210)
                    Nuculana ? (521211)
                     Nuculana sp. A (521212)
                     Nuculana fossa (521213)
                     Yoldia sp. (521221)
                     Yoldia ? (521222)
                     Yoldia cooperi (521223)
                     Yoldia cooperi (?) (521224)
                     Yoldia (Portlandella) karagensis
                                              (521225)
                     Yoldia scissurata (521226)
                     Yoldia seminuda (521227)
```

```
Subclass Pteromorpha
   Order Arcoida
     Superfamily Arcacae
        Family Arcidae
             Arcidae ? (522101)
             Anadara sp. (522111)
             Anadara ? (522112)
             Anadara sp. ? (522113)
             Anadara canalis (522114)
             Anadara trilineata (522115)
             Bathyarca ? (522121)
     Superfamily Limopsacea
        Family Glycymerididae
             Glycymeris sp. (522211)
             Glycymeris ? (522212)
             Glycymeris grewingki (522213)
   Order Mytiloida
     Superfamily Mytilacea
        Family Mytilidae
             Mytilus sp. (523111)
             Mytilus ? (523112)
             Mytilus coalingensis (523113)
             Mytilus edulis (523114)
             Mytilus cf. M. edulis (523115)
             Mytilus (Mytilis) (523116)
             Crenomytilus sp. (523121)
             Modiolus sp. (523131)
             Modiolus cf. M. capai (523132)
             Modiolus cf. V. recta (523133)
             Megacrenella cf. M. snarlyi
                                     (523151)
   Order Pteroida
     Superfamily Ostracea
        Family Ostreidae
             Ostreid (524101)
             Ostreid ? (524102)
             Ostrea sp. (524111)
             Ostrea ? (524112)
             Ostrea atwoodi (524113)
             Ostrea vespertina sequens (524114)
             Ostrea vespertina sequens (dwarf)
                                        (524116)
             Ostrea perversa (524117)
```

```
Superfamily Pectinacea
        Family Pectinidae
             Pectinid (524201)
             Pecten sp. (524211)
             Pecten ? (524212)
             Pecten (Pecten) sp. (524213)
             Patinopecten (P.) caurinus (524214)
             Pecten coalingensis (524215)
             Delectopecten randolphi (524221)
             Delectopecten pedroanus (524222)
             Lituyapecten dilleri (524231)
             Patinopecten sp. (524241)
             Patinopecten ? (524242)
             Patinopecten (P.) lohri (524244)
             Patinopecten cf. P. (L.) dilleri
                                       (524245)
             Patinopecten (L.) falorensis
                                        (524246)
             Flabellipecten coalingensis
                                       (524251)
             Aequipecten ? (524261)
             Aequipecten impostor (524262)
             Chlamys (S.) parmeleei privum
                                       \overline{(524271)}
             Hinnites sp. (524281)
             Hinnites multirugosus
                  crassiplicatus (524282)
     Superfamily Limacea
        Family Limidae
             Lima sp. (524311)
             Limatula aff. L. "subariculata
                  (montagu)" (524321)
Subclass Heterodonta
  Order Veneroida
     Superfamily Carditacea
        Family Carditidae
             Cyclocardia sp. (525111)
             Cyclocardia cf. C. (T.) ventricosa
                                       (525112)
             Cyclocardia ventricosa (525114)
     Superfamily Lucinacea
        Family Diplodontidae
             Thyasira flexiosa (525211)
             Thyasira disjuncta (525212)
             Anodonta sp. (525221)
             Anodonta ? (525222)
             Anodonta kettlemanensis (525223)
        Family Lucinidae
             Lucinid (525301)
             Lucina sp. (525311)
             Lucinoma annulata (525321)
```

```
Superfamily Chamacea
     Family Chamidae
          Chama sp. (525411)
          Chama ? (525412)
          Chama pellucida (525413)
  Superfamily Cardiacea
     Family Cardiidae
Cyclocardium (520008)
Lydocardium (520009)
          Cardiid (525501)
          Cardiid ? (525502)
          Cardium sp. (525511)
          Trachycardium sp. (525521)
          Trachycardium ? (525522)
          Laevicardium sp. (525531)
          Clinocardium sp. (525541)
          Clinocardium ? (525542)
          Clinocardium meekianum (525543)
          Clinocardium nuttallii (525544)
          Clinocardium ventricosa (525545)
  Superfamily Veneracea
     Family Veneridae
          Venerid (526101)
          Venerid ? (526102)
          Chione sp. (526111)
          Protothaca sp. (526121)
          Protothaca ? (526122)
          Protothaca grata tarda (526123)
          Protothaca lacineata hannibali
                                    (526124)
          Protothaca staleyi hannibali
                                    (526126)
          Protothaca cf. P. s. hannibali
                                    (526127)
          Protothaca staminea (526128)
          Compsomyax sp. (526131)
          Compsomyax subdiaphana (526132)
          Psephidea sp. (526141)
          Psephidea lordi ovalis (526142)
          Psephidea lordi (?) (526143)
          Transenella sp. (526151)
          Transenella tantilla (526152)
          Transenella californica (526153)
          Saxidomus sp. (526161)
          Saxidomus ? (526162)
          Saxidomus nuttali latus (526163)
```

```
Superfamily Tellinacea
   Family Tellinidae
        Tellinid (526201)
        Tellinid ? (526202)
        Tellina sp. (526211)
        Tellina ? (526212)
        Tellina oldryodi (526213)
        Tellina woodringi (526214)
        Tellina modesta (526215)
        Macoma sp. (526221)
        Macoma ? (526222)
        Macoma affinis (526223)
        Macoma affinis plena (526224)
        Macoma astori (526225)
        Macoma cf. M. astori (526226)
        Macoma cf. M. calcarea (526227)
        Macoma lipari (526228)
        Macoma sp. X (526230)
        Macoma elimata (526231)
        Macoma cf. M. elimata (526232)
        Macoma inquinata arnheimi (526233)
        Macoma aff. M. inquinata (526234)
        Macoma nasuta (526235)
        Macoma sp. aff. M. a. plena
                                  (526237)
        Macoma yoldiformis (526238)
        Macoma siligua (526239)
```

```
Family Semelidae
        Semele sp. (526311)
        Semele cf. S. rupropiota (526312)
   Family Psammobiidae
        Sanguinolaria sp. (526411)
        Sanguniolaria nuttalli (526412)
        Sanguinolaria cf S. nuttalli
                                  (526413)
Superfamily Mactracea
   Family Mactridae
        Mactrid (526501)
        Mactrid ? (526502)
        Mactra sp. (526511)
        Spisula sp. (526521)
        Spisula ? (526522)
        Spisula albaria coosensis (526523)
        Spisula hemphilli (526524)
        Spisula voyi (526525)
        Pseudocardium sp. (526531)
        Pseudocardium ? (526532)
        Pseudocardium densatum (526533)
        Pseudocardium densatum var. gabbi
                                  (526534)
        <u>Tresus</u> sp. (526541)
        Tresus ? (526542)
        Tresus nuttali (526543)
Superfamily Solenacea
   Family Solenidae
        Solen sp. (526611)
        Solen ? (526612)
        Solen perrini (526613)
        Solen perrini (?) (526614)
        Ensis sp. (526621)
        Siligua sp. (526631)
        <u>Siligua</u> <u>alta</u> (526632)
        Siligua alta = S. cf. S. oregonia
                                  (526633)
        Siligua oregonia (526634)
        Siligua cf. S. oregonia (526635)
```

```
Order Myoida
      Suborder Myina
       Superfamily Myacea
          Family Myidae
               Mya sp. (527111)
               Mya ? (527115)
               Mya arenaria (527112)
               Mya cf. M. arenaria (527113)
               Mya dickersoni (527114)
               Cryptomya sp. (527121)
               Cryptomya ? (527122)
               Cryptomya californica (527123)
               Cryptomya quadrata (527124)
          Family Corbultdae
               Corbula sp. (527211)
       Superfamily Hiatellacea
          Family Hitellidae
               Panomya sp. (527311)
               Panomya ? (527312)
               Panopea (527321)
               Panopea ? (527322)
               Panopea generosa (527323)
      Suborder Pholdaina
        Superfamily Pholadina
          Family Pholadidae
               Pholad (527401)
               Pholad ? (527402)
               Zirafaea gabbi (527411)
               Penitella (527421)
  Subclass Anomalodesmata
     Order Pholadomyoida
       Superfamily Pandoracea
          Family Pandoridae
               Pandora sp. (528110)
               Pandora grandis (528111)
          Family Thraciidae
               Thracia trapezoides (528211)
          Family Periplonatidae
               Periploma sp. (528311)
General:
     Bivalve (520001, 520002, 520003, 520004)
     Bivalve X (520005)
     Bivalve Y (520006)
     Bivalve AA (520007)
     Taxodont (520010)
```

```
Phylum Mollusca
     Class Scaphopoda
                    Scaphopod (531001, 531002)
               Family Dentaliidae
                    Cadulus sp. (531111)
                    Dentalium sp. (531121)
                    Dentalium n. sp. (531122)
                    Dentalia sp. (531131)
Phylum Arthropoda
  Superclass Crustacea
     Class Cirripedia
                    Barnacle (611111, 611112, 611113)
          Order Thoracica
            Suborder Balanomorpha
               Family Balanidae
                 Subfamily Balaninae
                    Balanid barnacle (611211)
                    Balanus sp. (611221)
                    Balanus (Tamiosoma) cf. B. (T.)
                               gregarius (611222)
                 Subfamily Coronulinae
                    Coronulid barnacle (611311)
     Class Malacostraca
       Subclass Eumalacostraca
         Superorder Eucarida
          Order Decopoda
            Suborder Pleocyemata
             Infraorder Brachyurra
                    Crab (621111)
                    Crab claw (621121)
                    Crab leg (621122)
                    Crab claw ? (621123)
                    Crab carapace ? (621124)
              Section Cancridea
               Family Cancridae
                 Subfamily Cancrinae
                    Cancer sp. (621131)
                    Cancer ? (621112)
```

```
Phylum Echinodermata
        Subphylum Echinozoa
          Class Echinoidea
            Subclass Euechinoidea
              Superorder Gnathostomata
                          General (700001, 700002, 700003,
                                                    700004)
               Order Holectypoida
                          General (711111)
               Order Clypeasteroida
                         General (712001, 712101)
                 Suborder Scutellina
                    Family Dendrasteridae
                          Merriamaster sp. (712111)
                          Merriamaster perrini (712112)
                          Merriamaster sp. aff M. perrini
                                                  (712113)
                          Merriamaster arnoldi (712114)
Merriamaster ? (712115)
                          Scutellaster sp. (712121)
                          Scutellaster major (712122)
                          Dendraster sp. (712131)
                          Dendraster ? (712132)
                          Dendraster coalingensis (712133)
                          Dendraster coalingensis ? (712134)
                          Dendraster gibbsii humilis (712135)
     Phylum Annelida
          Class Polychaetia
               Order Sedentaria
                    Family Serpulidae
                          Serpula (911111)
                          Serpulid (911112)
                          Tube worm (911113)
Fish Remains Classification
               Crushing tooth (810001)
               Tooth (810002)
               Tooth ? (810003)
               Dermal plate (821001)
               Scales (821002)
```

"Dog brains" tooth (822001) Skate teeth (822003) Shark teeth (822011) Shark teeth ? (822012) Bone (823001) Vertebra (823002) Otolith (824001)

Vertebrate Remains Classification Vertebra (830001) Bone (850001)

APPENDIX III

Kettleman Hills Sample Localities

Etchegoin Formation (Middle and South Domes) WSR# 369

Etchegoin Formation North Dome

Patinopecten Zone
WSR# 307
WSR# 309a

WSR# 323

WSR# 329

WSR# 335

Etchegoin Formation North Dome Macoma Zone

WSR# 300a WSR# 306 WSR# 306a

Etchegoin Formation North Dome

Siphonalia Zone WSR# 255 WSR# 256 WSR# 259 WSR# 262 WSR# 264 WSR# 270 WSR# 272 WSR# 274 WSR# 275 WSR# 279 WSR# 281 WSR# 282 WSR# 283 WSR# 286 WSR# 292 WSR# 294 WSR# 299


```
Etchegoin Formation North Dome
     Upper Pseudocardium Zone
          WSR# 239
          WSR# 240
          WSR# 242
          WSR# 243
          WSR# 245
          WSR# 249
          WSR# 250
          WSR# 251
          WSR# 252
          Non-WSR Localities:
               Los Junnetes Ridge, East
               El Rascador
               Arroyo Doblegado
               El Chicon
               Cuero Alto, South Flank
```


Etchegoin Formation North Dome Littornia Zone WSR# 217

San Joaquin Formation Cascajo Conglomerate WSR# 183 WSR# 202

San Joaquin Formation Neverita Zone

WSR# 145

WSR# 155

WSR# 159

WSR# 164

San Joaquin Formation	
Pecten/Trachycardium	Zone
WSR# 71	WSR#108
WSR# 73	WSR#110
WSR# 76	WSR#111
WSR# 79	WSR#112
WSR# 80	WSR#114
WSR# 82	WSR#117
WSR# 85	WSR#119
WSR# 87	WSR#126
WSR# 89	WSR#129
WSR# 92	WSR#130
WSR# 93	WSR#130a
WSR# 98	WSR#130c
WSR#100	WSR#132
WSR#102	WSR#134
WSR#103a	WSR#139
WSR#105a	WSR#140
WSR#106	WSR#140b
	WSR#140a

Non-WSR Localities:

Southeast of Hydrill La Caldera North of La Caldera 3rd ridge south of Hydrill Badger Hill El Prado, Southeast edge Arroyo Conchoso area Arroyo Recodo Ridge North of La Caldera Between Arroyo Delgado and Arroyo Ramosa El Prado


```
San Joaquin Formation

Acila Zone

WSR# 60

WSR# 63

WSR# 64

Non-WSR Localities:

El Dombo Area

Northwest corner Sec3, 23S, 18E

Between Arroyo Delgado and Arroyo Ramosa

El Prado

Arroyo Pino, northeast of WSR# 96

Arroyo Conchoso area

Hill South of Hydrill

La Caldera
```


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
San Joaquin Formation
Between Acila and Upper Mya Zone
WSR# 47
WSR# 54
WSR# 55
WSR# 56
```



```
San Joaquin Formation
Upper Mya Zone
WSR# 29
WSR# 35
WSR# 37
WSR# 39
WSR# 40
WSR# 41
WSR# 43
WSR# 43
```


Tulare Formation

WSR# 4

WSR# 11

WSR# 17

WSR# 21

WSR# 25

WSR# 27

APPENDIX IV

Humboldt Basin Sample Data

The following codes are necessary for use of this data:

- 1) Loc = Location number
 - (2) Eel River Section
 - (3) Centerville Beach Section
- 2) FM = Formation
 - a. For the Eel River Section
 - (10) Pullen
 - (20) Eel River
 - (45) Rio Dell
 - (55) Rio Dell/Scotia Bluffs (?)
 - (60) Scotia Bluffs
 - b. For the Centerville Beach Section
 - (10) Pullen
 - (20) Eel River
 - (30) Lower Rio Dell Member
 - (40) Middle Rio Dell Member
 - (50) Upper Rio Dell Member
- 3) SLOC = Sample Level Sample numbers refer to those found in Plates I and II.
- 4) OBS = Computer sort cards
- 5) HOST = Host organisms These numbers refer to the codes provided in Appendix II.
- 6) GUEST = Guest organisms
 - (23) Fungal boring?
 - (24) Fungal boring
 - (101) Clionid boring
 - (301) Encrusting Bryozoans
 - (513) Muricid boring
 - (514) Naticid boring
 - (515) Naticid boring ?
 - (516) Muricid boring ?
 - (517) Gastropod boring
 - (541) Teredo boring ?

```
(601) Crab breakage
         (603) Crab breakage ?
         (610) Barnacle
         (911) Very small polychaete boring
                 (-0.1mm)
         (912) Small polychaete boring
                 (.1-.5mm)
         (913) Medium polychaete boring
                 (.5-1mm)
         (914) Large polychaete boring
                 (+lmm)
         (922) Polychaete boring?
7) CNT = Count variable
     l = single report per shell or first
         report for a shell
     0 = multiple reports per shell
         ex.: If CNT = 1, 1, 0, 1, and 0,
              there were 3 shells.
```

	LOC=2 FM=20	SL0C=40			LOC=2 FM=20	SLOC=44	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5435	513802	0	1	5465	526221	0	1
		•		5466		ŏ	i
				5467	531001	ŏ	1
	LOC=2 FM=20	SI DC=41		5468	611211	ŏ	
	LUC-2 FM-20	3200-41				-	1
000	LIGGT	OUECT	CNIT	5469		0	1
OBS	HOST	GUEST	CNI	5470		0	• 1
		_	_	5471		0	1
5436	510005	0	1	5472	850001	0	1
5437	511113	O	1	5473	850001	Ō	1
5438	512112	0	1				
5439	512601	0	1				
5440	513814	٥	1		LOC-2 FM-20	SLOC~45	
5441	521123	0	1				
5442	521123	Ō	1	OBS	HOST	GUEST	CNT
5443	521213	ŏ	1		******		
5444	525111	ŏ	1	5474	20001	0	1
5445	525541	ŏ	1	5475	513415	ŏ	i
5446	526231	ŏ	i	5476	513801	_	
			i			0	1
5447	531122	0		5477	525541	0	1
5448	531131	0	1	5478	525541	610	1
5449	621111	0	1	5479	526231	0	1
				5480	611111	0	1
				5481	700001	0	1
	LOC=2 FM=20	SLOC=42		5482	711111	0	1
				5483	711111	0	1
OB\$	HOST	GUEST	CNT	5484	711111	0	1
				5485	711111	0	1
5450	521123	0	1	5486	712001	Ó	1
5451	521123	0	1	5487		Õ	1
				5488		ō	1
				5489		ŏ	1
	LOC=2 FM=20	SL0C=43		5490		ŏ	i
		3233 43		3430	000001	U	•
OBS	HOST	GUEST	CNT				
463	11031	act,	0.11		LOC=2 FM=20	SI DC=47	
5450	621121	0	•		LUC-2 FM-20	3200-47	
5452	621121	J	•	OBS	HOST	GUEST	CNT
	LOC=2 FM=20	SLDC=44		5491	520001	0	1
	LUC-2 1 M-20	3200-44		5492		-	
OBS	HOST	CHEST	CNT			0	1
065	MUST	GOE 31	CIVI	5493		914	1
5455	540004	_		5494		0	1
5453		0	1	5495		- 0	1
5454		0	1	5496	526231	514	1
5455		912	1				
5456		0	1			_	
5457		Ō	1		LDC=2 FM=20	SLOC=48	
5458	513813	0	1				
5459	513841	0	1	OBS	HOST	GUEST	CNT
5460	513841	0	1				
5461		0	1	5497	526231	0	1
5462		0	1	5498		514	1
5463		Õ	1	5499		Ö	1
5464		ŏ	ì	5500		ŏ	1
J-J-	520171	•	· ·	5500	02.002	•	•

	LOC=2 FM=10	SLOC=4			LOC=2 FM=10	SLOC=18	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5377	911112	0	1	5411	513312	0	1
				5412	521123	Ö	1
				5413		0	1
	LOC=2 FM=10	SLOC=6				0	1
					528311	0	1
OBS	HOST	GUEST	CNT				
5378	520001	0	1		LOC=2 FM=10	SLOC=19	
5379	520001	0	1				
5380	520001	0	. 1	OBS	HOST	GUEST	CNT
5381	520001	0	1				
5382	520004	0	1	5416	20004 500001	0	1
5383	520009	0	1	5417	500001	0	1
5384	521210	0	1	5418		0	1
5385	521210	0	1	5419	510005	0	1
5386	531001	0	1	5420	510005	0	1
				5421		0	1
				5422	512602	0	1
	LOC=2 FM=10	SLOC=7		5423		Ó	1
				5424		Ō	1
OBS	HOST	GUEST	CNT	5425		Ō	1
				5426		ō	1
5387		0	1	5427		ŏ	1
5388	520001	0	1	5428		ŏ	1
5389	521213	O	i	5429		ŏ	1
5390	521213	514	1	5430			1
5391	522115	0	1				
5392	525501	0	1				
5393	526521	0	1		LOC=2 FM=10	SLDC=20	
5394	526611	0	1				
5395	526614	0	1	DBS	HOST	GUEST	CNT
5396	531001	0	1	020			
5397	531121	0	1	5431	20002	0	1
	LOC=2 FM=10	SLOC=8			LOC=2 FM=10	SLOC=24	
	HOST		CNT	OBS	HOST	GUEST	CNT
5398	520001	0	1	5432	526222	0	1
5399	523151	Ō	1	3-32		-	•
5400	523151	0	1				
5401	526611	0	1		LOC=2 FM=20	SLOC=27	
	LOC=2 FM=10	SLOC=9		OBS	HOST	GUEST	CNT
OBS	HOST	GUEST	CNT	5433 5434	520001 526231	0 515	1 1
5402	512521	_					
5403	520001	0	1				
5404	525114	0	1				
3404	323114	U	1				
1	LOC=2 FM=10	SLOC=11					
OBS	HOST	GUEST	CNT				
5405	525114	0	1				
5406	525114	ō	1				

LOC=2	FM=20 SLDC=49			LOC=2 FM=45	SLOC= 101	
OBS H	OST GUEST	CNT	OBS	HOST	GUEST	CNT
5501 51:	2612 0	1	5527	527311	•	1
	1122 0	1	552.	327317	U	,
	1221 0	i				
5500 52		•		LOC=2 FM=45	SLOC=102	
LOC=2	FM=20 SLOC=50		OBS	HOST	GUEST	CNT
OBS H	OST GUEST	CNT	5528	531001	0	1
5504 51:	2111 0	1				
	2601 0	1		LOC=2 FM=45	SL00=103	
	2614 0	•		200 2 1 77 40	3200-105	
	2614 0	1	OBS	HOST	GUEST	CNT
5508 51	3601 0	1				•
	1111 0	1	5529	711111	0	1
	1121 0	1	*****		•	•
	1121 0	1				
	1213 0	1		LOC=2 FM=45	SL0C=105	
5513 52	2211 0	1			0220 .00	
5514 52	6143 0	1	08\$	HOST	GUEST	CNT
5515 52	6231 0	1				
5516 62	1121 0	1	5530	512612	0	1
			5531	513821	ŏ	1
			5532	513821	ŏ	1
LOC=2	FM=20 SLOC=51		5533	513821	101	1
			5534	520001	0	1
OBS H	OST GUEST	CNT			•	
5517 51	0005 0	1		LOC=2 FM=45	SLOC = 107	
5518 52	6231 0	1				
5519 53	11002 0	1	OBS	HOST	GUEST	CNT
			5535	10001	0	1
LOC=2	FM=45 SLOC=85		5536	20001	0	1
			5537	526231	0	1
OBS H	IOST GUEST	CNT				
5520 51	3818 912	1		LOC=2 FM=45	SI 00×108	
		•			5255 .00	
			OBS	HOST	GUEST	CNT
LOC=2	FM=45 SLOC=10	×				
			5538	531001	0	1
OBS H	OST GUEST	CNT				
5521 52	20002 0	1		LOC=2 FM=45	SI 00-400	
	21123 0	1		LUC-2 FM=45	3LUC = 109	
	26225 0	1	OBS	HOST	GUEST	CNIT
	26231 0	1	063	U031	G0521	CNI
	26231 0	1 1	5539	E 12024	•	
	31002 0	1	5540		0	1
5525 55		•	5541		0	1
			2341	J4 14 1 J		

	LOC=2 FM=45	SL0C=110			LOC=2 FM=45	SLOC=115	
OBS	HOST	GUEST			HOST	GUEST	CNT
5542	500001	0	1	5564	512601 521213 521221 526225	0	1
5543	512612	040		5565	524242		
		912	1	5565	521213	0	1
5544		0	1 1	5566	521221	0	1
5545		0	1	5567	526225	516	1
5546	526232	0	1	5568	527311	0	1
	LOC=2 FM=45	SLOC=111			LOC=2 FM=45	SLOC=116	
OBS	HOST			OBS	HOST	GUEST	CNT
5547	512524	0	1	5569	510005	0	1
5548	513821	ō	1 1	5570 5571	513821	ŏ	i
5549		0	•	5571	513821	ŏ	i
5550		ŏ		5572	513821		i
			1	5572	513621	0	
5551	526231	0	1	5573	513821	0	1
				5574	520001	0	1
				5575	520001 526222 526222	0	1
	LOC=2 FM=45	SL0C=112		5576	526222	912	1
				5577	526612	0	1
085	HOST	GUEST					
5552	510005	0	1		LOC=2 FM=45	SL0C=117	
5553		ŏ	i			3000	
5554		E 4 2		OPC	HOCT	CUECT	CNT
		513	1 1 1	085	HOST	GOE 21	CNI
5555		0 0	1				
5556		0	1	5578	513821	0	1
5557	526231	0	1	5579	513821 513821 521123 525501	0	1
5558	526231	517 913	0	5580	521123	0	1
5559	526231	913	1	5581	525501	0	1
				5582	526221	0	1
				5583	528311	ō	1
	LOC=2 FM=45	SL0C=113			3233	Ū	•
OBS	HOST	GUEST	CNT		LOC=2 FM=45	SLOC=118	
		-					
5560	512612	0	1	OBS	HOST	GUEST	CNT
				5584	513821	0	1
	LOC=2 FM=45	SL0C=114				ŏ	1
	200-£ FM-45	JEGC-114		5565	513821		
nec	HOST	CHECT	CNIT	5587	513821 513821 520001 520001	5 14	1
063	HU21	GOF 21	CNI	226/	520001	0	1
FF6:	·	_		5588 5589	520001	0	1
	520001	0	1	5589	524201	0	1
5562		0	1	5590	524201	912	1
5563	531001	0 0 0	1				
					LOC=2 FM=45	SLOC=119	
				OBS		GUEST	CNT
				5591	513821 521123	0	1
				5592	521123	912	1
				5593	531001	0	1
				2293	531001	U	1

	LOC=2 FM=45	SLOC=120			LOC=2 FM=45	SLOC=126	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5594	513819	0	1	5616	513821	0	1
5595	513819	ŏ	i	5617		ŏ	i
5596	513819	ŏ	1	3017	J2 1 123	U	•
		_					
5597	513819	912	1				
5598	513819	912	1		LOC=2 FM=45	SLOC= 127	
				OBS	HOST	GUEST	CNT
	LOC=2 FM=45	SLOC=121					
				56 18	523111	0	1
085	HOST	GUEST	CNT				
5599	513819	922	1		LOC=2 FM=45	SLOC=128	
				OBS	HOST	GUEST	CNT
	LOC=2 FM=45	SLOC=122					
		-		5619	524201	0	1
OBS	HOST	GUEST	CNT		52 (25)	•	•
			0.44				
5600	513821	0	1		LOC=2 FM=45	51.00=121	
5601	513831	ŏ	i	- -	LUC-2 FM-45	3606-137	
3601	313631	J	'	ODC	HOCT	OUECT	01/7
				OBS	MUSI	GUEST	CNI
	1 00-0 FM-4F	CI 00-400		5000	00004	_	
	LOC=2 FM=45	250C=123				o	1
				5621		0	1
OBS	HOST	GUEST	CNT	5622		0	1
				5623	5 10005	0	1
5602	20004	541	1	5624	512601	0	1
5603	513821	0	1	5625	512612	0	1
5604	513821	912	1	5626	521226	0	1
				5627	521226	Ō	1
				5628	522111	ō	1
	LOC=2 FM=45	SLDC=124		5629	525211	ŏ	1
	200 2 (1 10			5630		ŏ	1
OBS	LINST	GUEST	CNT	5631	526238	ŏ	
063	HO31	GUESI	CIVI			_	1
FCOF	5.4000E	•		5632	526611	o o	1
5605		0	1	5633		0	1
5606		0	1	5634		0	1
5607		912	1	5635		0	1
5608		0	1	5636	531001	0	1
5609		0	1				
56 10	520001	0	1				
5611	520001	0	1		LOC=2 FM=45	SL0C=132	
5612	520005	0	1				
5613	521123	0	1	OBS	HOST	GUEST	CNT
				5637	513812	0	1
	LOC=2 FM=45	SLOC=125					<u>i</u>
		/20		5500	0.002	J	•
OBS	HOST	GUEST	CNT				
		30231	0.4.				
5614	512601	0	1				
5615		912	1				
3013	324241	312	•				

	LOC=2 FM=45	SL0C=134			LOC=2 FM=45	SLOC=135	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5639	510005	0	1	5687	526152	514	1
5640	524201	ō	1	5688	526215	515	1
5641	524201	Ŏ	1	5689	531001	O	1
5642	524201	ō	1	5690	531111	ō	1
5643	524201	ŏ	i	5691	821002	ŏ	1
5644	524201	912	•	5692	823001	ŏ	1
5645	524201	913	i	5693		ŏ	ì
5646	524214	0	i	3030	02000.	Ū	•
5647		ő	•				
5648		ŏ	i		LOC=2 FM=45	SL00=137	
5649		ŏ			C00-2 1 M-40	3200-107	
5650		912	i	OBS	HOST	GUEST	CNT
3630	524214	312	•	063	nusi	GOLSI	Civi
	100-0 FM-45	CI 00-405		5694	526201	0	1
	LOC=2 FM=45	2500=135					
OBS	HOST	GUEST	CNT		LOC=2 FM=45	SLOC=138	
5651	20001	0	1	OBS	HOST	GUEST	CNT
5652	20001	0	1				
5653	20001	0	1	5695	521226	0	1
5654	5 10005	0	1				
5655	512601	0	1				
5656	512601	912	1		LOC=2 FM=45	SLOC=139	
5657	512612	0	1				
5658	512612	514	1	OBS	HOST	GUEST	CNT
5659	512612	912	1				
5660	513711	514	1	5696	526126	0	1
5661	513711	5 1 4	1	5697	526126	912	1
5662	513715	514	1	5698	526226	0	1
5663	513811	0	1				
5664	513817	301	0				
5665	513817	610	0		LOC=2 FM=45	SLOC=141	
5666	513817	912	1				
5667	513817	912	1	OBS	HOST	GUEST	CNT
5668	513818	0	1				
5669	513819	0	1	5699	510005	0	1
5670	513841	601	1	5700		912	1
5671	521221	0	1	5701	512621	0	1
5672	524214	0	1	5702	525501	515	1
5673	524214	0	1	5703	525543	0	1
5674	524214	912	1	5704	526101	0	1
5675	524231	0	1	5705	526126	0	1
5676	524231	0	1	5706		0	1
5677		911	1	5707		0	1
5678	524241	0	1	5708		0	1
5679		912	· 1	5709		0	1
5680		0	1	5710		0	1
5681	524246	0	1	5711	526126	0	1
5682		912	1	5712		0	1
5683	525114	0	1	5713	526126	912	1
5684	525212	0	1	5714	526131	0	1
5685	525311	0	1	5715	526162	101	1
5686	525311	0	1	5716	526163	0	1

	LOC=2 FM=45	SLOC=141			LOC=2 FM=45	SLOC=144	
OBS		GUEST	CNT	OBS	HOST	GUEST	CNT
5717	526235	0	1	5753	525543	610	1
5718	526235	0 514	4	5754	525543 525543	912	1
5719	526501	0.7	•	5755		0	1
5720	526521	0 0 0 0 0 610	•	5756		ŏ	•
		0					•
5721	526524	Ŏ	1		526126	0	
5722	526524	0	1	5758		o	1
5723		610	1	5759	526524	_ 0	1
5724	611311	0	1	5760	526524	514 610	1
				5761			
				5762	526525	0	1
	LOC=2 FM=45	SLOC=142		5763	526525	0	1
				5763 5764	526525	0	1
OBS	HOST	GUEST	CNT				
5725		912	1		LOC=2 FM=45	SLOC=145	
5726	526221	0	1		LOC=2 FM=45		
5727		ŏ	1	OBS	HOST		
0.2,	52525	•	•				
				5765	512612 512612	610	0
	LOC=2 FM=45	SLOC = 143		5766	512612		1
				5767		914	0
OBS	HOST	GUEST	CNT	57 6 8	513821	610	0
				5769	513821	912	1
5728	512612	912	1	5770	524214	0	1
5729	526126	0	1	57 7 1	526126	0	1
5730	526152	0	1	5772	526126	514	1
5731	526232	Ō	1				
5732	526523	ŏ	1				
5733		ŏ	1 1 1		LOC=2 FM=45	SL0C=146	
5734		610	1		200 £ 1111 40	3233	
5735		610	i	OBS	HOST	GUEST	CNT
				063	nu3 i	GOESI	CIVI
5736	611311	912	U		520001	^	
				5773 5774	520001	0	1
		01.00-444		5//4	520001		1
	LOC=2 FM=45	SLUC=144				0	1
				5776		0	1
OBS	HOST	GUEST	CNT	5777			1
				5778		0	1
5737		610	0	5779		o o	1
5738	512612	912	1	5780		0	1
5739	512612	912	1	5781	526126	0	1
5740	512612	912	1	5782	526126	0	1
5741	512614	0	1	5783	526126	0	1
5742		912	1	5784	526126	0	1
5743		610	0	5785			1
5744		912	1	5786		912	1
5745		0	1	5787		0	1
5746		912	1	5788			1
5747		912	1	5789		317	1
5748		913	Ó				1
				5790 5701	527322	<u> </u>	1
5749		913		5/9	52/322	U	1
5750		0	1				
5751		0	1				
5752	525543	0	1				

	LOC=2 FM=45	SLOC=148		*****	LOC=2 FM=45	SLOC=153	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5792	526233	0	1	5828	512612	514	1
5793	526233	911	1	5829		ō	i
5794	526523	Ö	i	5830		ŏ	1
3734	320323	U	•				
				5831		514	1
				5832	526221	0	1
	LOC=2 FM=45						
OBS	HOST	GUEST	CNT		LOC=2 FM=45	SLOC=154	
5795	510005	0	1	OBS	HOST	GUEST	CNT
5796	510006	0	1				
5797	512612	912	1	5833	510006	0	1
5798	520001	0	1	5834	512612	912	1
5799	520001	Ŏ	1	5835		301	0
5800	524214	ŏ	1	5836		912	1
5801	524214	ŏ	i	5837		0	i
5802	524214	912		5838		940	•
5803	526122		1	2030	621131	340	•
		0	1				
5804	526221	0	1			C1 00= 455	
5805	526222	0	1		LOC=2 FM=45	2000=100	
5806	526231	o	1				
5807	526231	o	1	OBS	HOST	GUEST	CNT
5808	526231	0	1				
5809		0	1	5839	512612	0	1
5810	526231	0	1	5840	512612	912	1
5811	526231	514	1	5841	520001	0	1
				5842	524201	0	1
				5843	525541	0	1
	LOC=2 FM=45	SL0C=151		5844	526126	0	1
		-		5845		Ó	1
OBS	HOST	GUEST	CNT	5846		ŏ	1
				5847		ŏ	1
5812	512612	0	1	5848		ŏ	i
5813	521226	0	1	5849		ŏ	1
5814	521226	912	i	5850		ŏ	i
5815	524214	0	i	3630	320012	Ū	•
5816	524214	ŏ	i				
5817	524214	911	1		LOC=2 FM=45	SI 00= 170	
5818	526126	911			LUC-2 FM-43	3600-170	 ·
5819	526126	_	1	OBS	MACT	GUEST	CNIT
5820	526126 526126	0	1	082	H021	GOE 31	CIAI
-		0	1	5054	540004	^	
5821	526126	0	1	5851		0	1
5822	526231	0	1	5852		0	1
5823	526233	0	1	5853		912	1
				5854		0	1
				5855		0	1
	LOC*2 FM*45	SLOC=152				_ 0	1
				5857	526126	514	1
OBS	HOST	GUEST	CNT	5858	526202	0	1
				5859	526221	0	1
5824	520001	0	1	5860	526222	0	1
5825	524214	0	1				
5826	524214	912	1				
5827	526121	0	1				
		=					

	LOC=2 FM=45	SLOC=171			LOC=2 FM=45	SLOC=175	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5861	512111	0	1	5897	526142	0	1
5862	524241	ŏ	i			•	•
5863	526221	ŏ	i				
5555	32022	Ü	•		LOC=2 FM-45	SLOC=176	
	LOC=2 FM=45	SLOC=172		085	HOST	GUEST	CNT
OBS	HOST	GUEST	CNT	5898 5899		0	1
5864	524201	0	1	5900	· · -	ŏ	i
5865	524201	912	i	5901	526142	ŏ	1
5866	524201	913	ö	5902	526142	ŏ	
5867	525541			5903			1
5868		0	1	5904		0	1
	526121	0	1		526142	0	1
5869	526221	o	1	5905	526142	o	1
5870	526222	0	1	5906	526142	0	1
				5907		0	1
				5908	526142	0	1
	LOC=2 FM=45	SLOC=173		5909	526142	0	1
				5910	526142	0	1
OBS	HOST	GUEST	CNT	5911	526142	0	1
				5912	526142	0	1
5871	525543	0	1	5913	526142	ŏ	1
5872	525543	ŏ	1	5914		ŏ	i
5873	526126	ŏ	1	5915		ŏ	i
5874	526126	ŏ	i	5916	526142	ŏ	4
5875	526126	ŏ	•	5917	526142	ŏ	i
5876	526234	ŏ	1	5918	526142	ŏ	
5877	526235			5919	526142		1
5878	526235	0	1	5920	526142	0	1
		0	1	5921		0	1
5879	526235	514	1		526142	0	1
5880		0	1	5922	526142	0	1
5881	526631	0	1	5923	526142	0	1
5882	526634	0	1	5924	526142	0	1
5883	621111	0	1	5925	526142	Õ	1
				5926	526142	0	1
	LOC=2 FM=45	SLOC = 174			LOC=2 FM=45	SLOC=177	
OBS	HOST	GUEST	CNT				
				OBS	HOST	GUEST	CNT
5884	525543	0	1				
5885	526122	0	1	5927	520001	0	1
5886	526122	912	1	5928	520001	ō	1
5887		0	1	5929	520001	912	1
5888		ŏ	i	5930	524201	0	i
5889		ŏ		5931	526121	ŏ	
5890		Ö	1	5932	526221	0	1
5891	526233	-		5933			1
		0	1	3333	526233	0	1
5892		0	1				
5893		514	1				
5894		514	1				
5895		912	1				
5896	526233	912	1				

	LOC=2 FM=45	SLOC= 178			LOC=2 FM=45	SLOC=179	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5934	512612	0	1	5982	525543	0	1
5935	512612	ŏ	i	5983	525543	ō	1
5936	512612	ŏ	i	5984	525543	ŏ	1
5937	512612	ŏ	i	5985	525543	ŏ	1
5938	512612	ŏ	i	5986	525543	ŏ	1
5939	513715	913	i	5987	525543	ŏ	1
5940	513841	0	1	5988	525543	ŏ	i
5941	520002	610	1	5989	525543	ŏ	i
5942	521226	0.0	i	5990	525543	ŏ	i
5943	521226	ŏ	1	5991	525543	ŏ	1
5944	524214	912	1	5992	525543	ō	1
5945	524214	913	Ö	5993	525543	ō	1
5946	526126	0	1	5994	525543	ō	1
5947	526126	ŏ	1	5995	525543	0	1
5948	526126	ō	1	5996	525543	0	1
5949	526126	514	1	5997	525543	0	1
5950	526126	514	1	5998	525543	0	1
5951	526126	912	0	5999	525543	0	1
5952	526142	0	1	6000	525543	0	1
5953	526233	0	1	6001	525543	0	1
5954	526233	0	1	6002	525543	0	1
5955	526233	0	1	6003	525543	0	1
5956	526233	0	1	6004	525543	0	1
5957	526233	514	1	6005	525543	o	1
5958	526412	0	1	6006	525543	0	1
5959	526632	0	1	6007	525543	o	1
5960	527311	0	1	6008	525543	0	1
5961	528211	0	1	6009	525543	912	1
5962 5062	528211	0	1	6010	525543	912	1
5963	611111	0	1	6011	526126	0	1
5964 5965	611111	610	1	6012 6013	526126 526126	ŏ	i
5966	611112 712121	610 0	1	5014	526126	ő	1
3366	712121	J	1	6015	526126	ŏ	i
				6016	526126	ŏ	i
	LOC=2 FM=45	SI 00=179		6017	526126	ŏ	•
	200 2 1 40	32303		6018	526126	ŏ	1
OBS	HOST	GUEST	CNT	6019	526126	ō	1
				6020		Ō	1
5967	512612	0	1	6021	526126	0	1
5968	525501	514	1	6022	526126	0	1
5969	525543	0	1	6023	526126	0	1
5970	525543	0	1	6024	526126	0	1
5971	525543	0	1	6025	526126	0	1
5972	525543	0	1	6026		0	1
5973	525543	0	1	6027		0	1
5974	525543	0	. 1	6028		o	1
5975	525543	0	1	6029		o	1
5976	525543	0	1	6030		0	1
5977	525543	0	1	6031		0	1
5978	525543	0	1	6032		0	1
5979	525543	0	1	6033		0	1
5980	525543	0	1	6034		0	1
5981	525543	0	1	6035	526126	0	1

OBS		LOC=2 FM=45	SLOC=179			LOC=2 FM=45	SLOC= 180	
6037 526126 0 1 6085 526132 0 1 6038 526126 0 1 6086 526132 0 1 6039 526126 0 1 6087 526132 514 1 6040 526126 0 1 6088 526132 911 1 6041 526126 0 1 6088 526202 517 1 6042 526126 0 1 6088 526202 517 1 6042 526126 514 1 6090 526231 0 1 6088 526132 911 1 6043 526126 514 1 6091 527122 516 1 6044 526126 912 1 6093 526211 0 1 6044 526126 912 1 6093 526211 0 1 6044 526126 912 1 6093 526211 0 1 6046 526126 912 1 6093 526211 0 1 6046 526126 912 1 6094 526211 0 1 6047 526126 912 1 6094 526211 0 1 6047 526126 912 1 6094 526211 0 1 6047 526126 912 1 6095 526211 0 1 6048 526126 912 1 6095 526211 0 1 6050 526126 912 1 6098 526211 0 1 6050 526126 912 1 6098 526211 0 1 6050 526126 912 1 6098 526211 0 1 6051 526126 912 1 6098 526211 0 1 6051 526126 912 1 6098 526211 0 1 6052 526126 912 1 6098 526211 0 1 6052 526126 912 1 6098 526211 0 1 6052 526126 912 1 6008 526211 0 1 6053 526126 912 1 6008 526211 0 1 6053 526126 912 1 6005 526211 0 1 6055 526126 912 1 6100 526211 0 1 6055 526126 912 1 6100 526211 0 1 6055 526126 912 1 6100 526211 0 1 6055 526126 913 0 6103 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526216 913 0 6060 526126 913 0 6060 526126 913 0 6060 526126 913 0 6065 526126 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121	OBS	HOST	GUEST	CNT	085	HOST	GUEST	CNT
6037 526126 0 1 6085 526132 0 1 6038 526126 0 1 6086 526132 0 1 6039 526126 0 1 6087 526132 514 1 6040 526126 0 1 6088 526132 911 1 6041 526126 0 1 6088 526202 517 1 6042 526126 0 1 6088 526202 517 1 6042 526126 514 1 6090 526231 0 1 6088 526132 911 1 6043 526126 514 1 6091 527122 516 1 6044 526126 912 1 6093 526211 0 1 6044 526126 912 1 6093 526211 0 1 6044 526126 912 1 6093 526211 0 1 6046 526126 912 1 6093 526211 0 1 6046 526126 912 1 6094 526211 0 1 6047 526126 912 1 6094 526211 0 1 6047 526126 912 1 6094 526211 0 1 6047 526126 912 1 6095 526211 0 1 6048 526126 912 1 6095 526211 0 1 6050 526126 912 1 6098 526211 0 1 6050 526126 912 1 6098 526211 0 1 6050 526126 912 1 6098 526211 0 1 6051 526126 912 1 6098 526211 0 1 6051 526126 912 1 6098 526211 0 1 6052 526126 912 1 6098 526211 0 1 6052 526126 912 1 6098 526211 0 1 6052 526126 912 1 6008 526211 0 1 6053 526126 912 1 6008 526211 0 1 6053 526126 912 1 6005 526211 0 1 6055 526126 912 1 6100 526211 0 1 6055 526126 912 1 6100 526211 0 1 6055 526126 912 1 6100 526211 0 1 6055 526126 913 0 6103 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526126 913 0 6105 526211 0 1 6055 526216 913 0 6060 526126 913 0 6060 526126 913 0 6060 526126 913 0 6065 526126 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121 0 1 6075 526121	6036	526126	0	1	6084	526132	٥	1
6038 526126 0 1 6087 526132 0 1 6040 526126 0 1 6087 526132 514 1 6040 526126 0 1 6088 526132 911 1 6041 526126 0 1 6088 526132 911 1 6041 526126 0 1 6088 526202 517 1 6042 526126 0 1 6089 526202 517 1 6043 526126 514 1 6091 527122 516 1 6043 526126 912 1 6092 528211 0 1 6045 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6048 526126 912 1 6093 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6095 528211 0 1 6055 526126 912 1 6005 528211 0 1 6055 526126 912 1 6005 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 525121 0 1 6055 526126 913 0 6105 525121 0 1 6055 526126 913 0 6105 525121 0 1 6055 526126 913 0 6105 525121 0 1 6055 526126 913 0 6105 525121 0 1 6055 526126 913 0 6105 525121 0 1 6055 526126 913 0 6105 526121 0 1 6055 526126 913 0 6105 526126 913 0 6105 526126 0 1 6115 525501 0 1 6055 526126 913 0 6055 526126 913 0 6105 52514 912 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6055 526124 0 1 6057 524124 912 1 6125 526142 0 1 6057 524124 913 0 6125 526124 0 1 6057 526124 0 1 6057 526124 0 1 6057 526124 0 1	6037				6085		-	
6039 526126 0 1 6088 526132 911 1 6041 526126 0 1 6088 526132 911 1 6041 526126 0 1 6089 526202 517 1 6042 526126 0 1 6089 526202 517 1 6043 526126 514 1 6090 526231 0 1 6044 526126 912 1 6093 528211 0 1 6045 526126 912 1 6093 528211 0 1 6046 526126 912 1 6094 528211 0 1 6047 526126 912 1 6094 528211 0 1 6048 526126 912 1 6094 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6096 528211 0 1 6049 526126 912 1 6096 528211 0 1 6050 526126 912 1 6096 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6098 528211 0 1 6053 526126 912 1 6098 528211 0 1 6053 526126 912 1 6098 528211 0 1 6053 526126 912 1 6099 528211 0 1 6053 526126 912 1 6090 528211 0 1 6054 526126 913 0 6100 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6056 526126 913 0 6103 528211 0 1 6057 526126 913 0 6104 528211 0 1 6058 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6068 526126 913 0 6105 528211 0 1 6068 526126 913 0 6105 528211 0 1 6068 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6069 526126 913 0 6105 528211 0 1 6070 526124 0 1 6115 528501 0 1 6070 524214 0 1 6115 528501 0 1 6070 524214 0 1 6115 528501 0 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6125 526501 0 1 6072 524214 913 0 6125 526231 514 1 6073 524214 913 0 6125 526231 514 1 6074 524214 913 0 6125 526231 514 1 6075 526214 913 0 6125 526231 514 1 6076 524214 913 0 6125 526231 514 1 6077 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6081 526126 912 1			-		-		•	
6040 526126 0 1 6088 526132 911 1 6041 526126 0 1 6089 526202 517 1 6042 526126 0 1 6089 526202 517 1 6043 526126 514 1 6091 527122 516 1 6044 526126 912 1 6093 528211 0 1 6045 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6047 526126 912 1 6094 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6096 528211 0 1 6049 526126 912 1 6096 528211 0 1 6049 526126 912 1 6098 528211 0 1 6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6099 528211 0 1 6053 526126 912 1 6099 528211 0 1 6053 526126 912 1 6099 528211 0 1 6054 526126 912 1 6099 528211 0 1 6055 526126 913 0 6100 528211 0 1 6055 526126 913 0 6100 528211 0 1 6055 526126 913 0 6102 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6104 528211 0 1 6058 526126 913 0 6104 528211 0 1 6058 526126 913 0 6104 528211 0 1 6058 526126 913 0 6104 528211 0 1 6058 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6061 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6065 526230 0 1 6107 20004 0 1 6061 526126 913 0 6105 525211 0 1 6065 526241 514 1 085 HOST GUEST CNT 6069 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6120 526142 0 1 6072 524214 912 1 6122 526142 0 1 6073 524214 912 1 6122 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6125 526231 514 1 6076 524214 913 0 6125 526231 514 1 6077 524214 912 1 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6081 526126 912 1								
6041 526126 0 1 6089 526202 517 1 6040 526231 0 1 6043 526126 514 1 6090 526231 0 1 6044 526126 912 1 6092 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6047 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6047 526126 912 1 6093 528211 0 1 6047 526126 912 1 6093 528211 0 1 6048 526126 912 1 6093 528211 0 1 6048 526126 912 1 6093 528211 0 1 6049 526126 912 1 6093 528211 0 1 6050 526126 912 1 6093 528211 0 1 6050 526126 912 1 6093 528211 0 1 6051 526126 912 1 6093 528211 0 1 6051 526126 912 1 6093 528211 0 1 6053 526126 912 1 6009 528211 0 1 6053 526126 912 1 6100 528211 0 1 6053 526126 913 0 6101 528211 0 1 6053 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6106 611111 0 1 6056 526126 913 0 6106 611111 0 1 6056 526126 913 0 6106 611111 0 1 6056 526126 913 0 6106 611111 0 1 6066 526126 913 0 6106 611111 0 1 6066 526126 913 0 6063 526126 913 0 6063 526126 913 0 6063 526126 913 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526121 0 6065 526								
6042 526126 0 1 6090 526231 0 1 6044 526126 514 1 6091 527122 516 1 6044 526126 912 1 6092 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6094 528211 0 1 6047 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6050 526126 912 1 6095 528211 0 1 6050 526126 912 1 6095 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6098 528211 0 1 6053 526126 912 1 6099 528211 0 1 6054 526126 912 1 6100 528211 0 1 6055 526126 912 1 6100 528211 0 1 6054 526126 912 1 6100 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6103 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 528211 0 1 6061 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 61111			_					
6043 526126 514 1 6091 527122 516 1 6045 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6047 526126 912 1 6094 528211 0 1 6047 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6096 528211 0 1 6049 526126 912 1 6096 528211 0 1 6050 526126 912 1 6097 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6099 528211 0 1 6053 526126 912 1 6099 528211 0 1 6053 526126 912 1 6090 528211 0 1 6053 526126 912 1 6000 528211 0 1 6054 526126 913 0 6100 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6104 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6061 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6066 526214 0 1 6115 52501 0 1 6066 526214 0 1 6115 52501 0 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6069 524214 0 1 6115 525501 0 1 6069 524214 0 1 6115 525501 0 1 6069 524214 0 1 6116 525501 0 1 6071 524214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 913 0 6125 526231 514 1 6076 524214 913 0 6125 526231 514 1 6077 526221 913 0 6125 526231 514 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1								
6044 526126 912 1 6093 528211 0 1 6046 526126 912 1 6093 528211 0 1 6046 526126 912 1 6094 528211 0 1 6047 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6049 526126 912 1 6097 528211 0 1 6050 526126 912 1 6098 528211 0 1 6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6098 528211 0 1 6053 526126 912 1 6100 528211 0 1 6053 526126 912 1 6100 528211 0 1 6054 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6104 528211 0 1 6058 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6060 526126 913 0 6107 20004 0 1 6060 526126 913 0 6107 20004 0 1 6060 526214 0 1 6117 526122 0 1 6060 526214 0 1 6114 525514 912 1 6060 526214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 912 1 6120 526142 0 1 6077 524214 913 0 6125 526231 514 1 6080 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1								
6045 526126 912 1 6094 528211 0 1 6047 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6049 526126 912 1 6096 528211 0 1 6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6098 528211 0 1 6053 526126 912 1 6100 528211 0 1 6053 526126 912 1 6100 528211 0 1 6054 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6103 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6104 528211 0 1 6058 526126 913 0 6104 528211 0 1 6059 526126 913 0 6104 528211 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6061 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6063 526221 514 1 085 HOST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6066 512601 0 1 6114 513816 0 1 6066 512601 0 1 6114 513816 0 1 6067 524214 0 1 6115 525543 514 1 6068 524214 0 1 6115 525543 514 1 6069 524214 0 1 6115 525543 514 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6073 524214 912 1 6129 526142 0 1 6074 524214 912 1 6119 526142 0 1 6075 524214 912 1 6129 526142 0 1 6076 524214 912 1 6129 526142 0 1 6077 524214 912 1 6129 526142 0 1 6078 524214 913 0 6125 526142 0 1 6076 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6126 526231 514 1 6081 526126 912 1								
6046 526126 912 1 6095 528211 0 1 6048 526126 912 1 6095 528211 0 1 6048 526126 912 1 6096 528211 0 1 6050 528211 0 1 6050 528211 0 1 6050 528211 0 1 6050 528211 0 1 6050 528211 0 1 6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6100 528211 0 1 6052 526126 912 1 6100 528211 0 1 6053 526126 912 1 6101 528211 0 1 6053 526126 912 1 6101 528211 0 1 6054 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6105 528211 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6066 526126 913 0 6106 61111 0 0 1 6060 526126 913 0 6106 61111 0 0 1 6060 526126 913 0 6063 52621 514 1 0 085 HOST GUEST CNT 6064 52620 0 1 6107 20004 0 1 6108 510007 514 1 6108 512612 0 1 6108 510007 514 1 6108 512612 0 1 6108 510007 514 1 6108 512612 0 1 6108 510007 514 1 6110 512612 0 1 6108 510007 514 1 6110 512612 0 1 6110 512	6045	526126		1	6093			1
6047 526126 912 1 6095 528211 0 1 6049 526126 912 1 6096 528211 0 1 6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6051 526126 912 1 6098 528211 0 1 6052 526126 912 1 6099 528211 0 1 6053 526126 912 1 6100 528211 0 1 6054 526126 913 1 6101 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6104 528211 0 1 6058 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6069 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6061 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6063 52621 514 1 085 HOST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6108 510007 514 1 6109 511112 0 1 6110 512612 0 1 6066 512601 0 1 6114 525114 912 1 6066 524214 0 1 6115 525543 514 1 6068 524214 0 1 6115 525543 514 1 6068 524214 0 1 6115 525543 514 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 912 1 6120 526142 0 1 6077 524214 912 1 6120 526142 0 1 6077 524214 912 1 6120 526142 0 1 6077 524214 912 1 6120 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6126 526231 514 1 6080 525543 0 1 6126 526231 514 1 6081 526126 912 1								
6048 526126 912 1 6096 528211 0 1 6048 526126 912 1 6097 528211 0 1 6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6099 528211 0 1 6052 526126 912 1 6190 528211 0 1 6053 526126 912 1 6190 528211 0 1 6053 526126 913 0 6102 528211 0 1 6054 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6104 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6104 528211 0 1 6058 526126 913 0 6104 528211 0 1 6059 526126 913 0 6104 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6050 526126 913 0 6106 611111 0 1 6060 526126 913 0 6106 611111 0 1 6061 526126 913 0 6106 611111 0 1 6062 526126 913 0 6106 611111 0 1 6063 526221 514 1 085 HOST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6108 510007 514 1 6065 526230 0 1 6107 20004 0 1 6108 510007 514 1 6065 526241 0 1 6110 512612 0 1 6066 512601 0 1 6111 513816 0 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6069 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6060 524214 912 1 6119 526142 0 1 6071 524214 912 1 6120 526142 0 1 6072 524214 912 1 6121 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6121 526142 0 1 6075 524214 912 1 6121 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6077 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6080 525543 0 1 6126 526231 514 1 6081 526126 912 1	6047	526126	912	1	6095	528211		1
6050 526126 912 1 6098 528211 0 1 6051 526126 912 1 6099 528211 0 1 6052 526126 912 1 6100 528211 0 1 6053 526126 912 1 6100 528211 0 1 6053 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6104 528211 0 1 6055 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6106 611111 0 1 6055 526126 913 0 6060 526126 913 0 6060 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6063 526221 514 1 0 085 H0ST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6108 510007 514 1 6108 510007 514 1 6108 510007 514 1 6108 510007 514 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6111 513811 922 1 6066 524214 0 1 61115 525501 0 1 6068 524214 0 1 61115 525501 0 1 6069 524214 0 1 61115 525501 0 1 6071 524214 912 1 6111 526142 0 1 6071 524214 912 1 6111 526142 0 1 6071 524214 912 1 6121 526142 0 1 6071 524214 912 1 6121 526142 0 1 6071 524214 912 1 6121 526142 0 1 6071 524214 912 1 6121 526142 0 1 6071 524214 912 1 6122 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6123 526120 0 1 6080 525543 0 1 6128 526231 0 1 6080 525543 0 1 6128 526231 0 1 6080 525543 0 1 6128 526231 0 1 6080 525543 0 1 6128 526120 0 1 6082 526126 912 1	6048	526126	912	1		528211	0	1
6051 526126 912 1 6099 528211 0 1 6052 526126 912 1 6100 528211 0 1 6053 526126 912 1 6101 528211 0 1 6053 526126 913 0 6102 528211 0 1 6055 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6104 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6060 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6062 526126 913 0 6064 526230 0 1 6107 20004 0 1 6107 6065 526221 514 1 6109 511112 0 1 6109 511111 0 1 6109 511111 0 1 6109 511111 0 1 6109 511111 0 1 6109 51111 0 6109 51111 0 6109 51111 0 6109 526142 0 1 6009 524214 0 1 6109 526142 0 1 6009 524214 0 1 6109 526142 0 1 6009 524214 912 1 6120 526142 0 1 6009 524214 912 1 6120 526142 0 1 6009 524214 912 1 6120 526142 0 1 6009 524214 912 1 6120 526142 0 1 6009 524214 912 1 6120 526142 0 1 6009 524214 912 1 6120 526142 0 1 6009 524214 913 0 6125 526231 0 1 6009 525543 0 1 6126 526231 0 1 6009 525543 0 1 6126 526231 0 1 6009 525543 0 1 6128 526142 0 1 6009 525543 0 1 6009 525543 0 1 6128 526142 0 1 6009 525543 0 1 6009 525543 0 1 6128 526231 0 1 6009 525543 0 1 6009 525543 0 1 6009 525543 0 1 6009 525543 0 1 6009 525543 0 1 6009 525543 0 1 6009 525543 0 1 6009 525543 0 1 6009	6049	526126	912	1	6097	528211	0	1
6052 526126 912 1 6100 528211 0 1 6053 526126 912 1 6101 528211 0 1 6054 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6060 526126 913 0 6060 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6063 526221 514 1 0 6064 526230 0 1 6107 20004 0 1 6108 510007 514 1 6108 510007 514 1 6108 510007 514 1 6109 511112 0 1 6107 6065 526230 0 1 6101 512612 0 1 6111 513816 0 1 6111 513816 0 1 6065 526230 0 1 6111 513816 0 1 6111 513816 0 1 6066 526230 0 1 6111 513816 0 1 6111 513816 0 1 6068 512601 0 1 6114 525114 912 1 6066 512601 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6124 526142 0 1 6075 524214 913 0 6125 526331 0 1 6076 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 526132 0 1 6078 524214 913 0 6126 526231 514 1 60079 525543 0 1 6127 526132 0 1 6008 525543 0 1 6127 526131 0 1 6088 526126 912 1	6050	526126	912	1	6098	528211	0	1
6053 526126 913 0 6101 528211 0 1 6054 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 528211 0 1 6059 526126 913 0 6105 61111 0 1 6059 526126 913 0 6106 611111 0 1 6060 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6061 526126 913 0 6063 526221 514 1 0 085 H0ST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6066 526230 0 1 6107 511112 0 1 6067 526230 0 1 6110 512612 0 1 6068 510007 514 1 6109 511112 0 1 6066 512601 0 1 6114 525114 912 1 6066 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6069 524214 0 1 6115 525501 0 1 6069 524214 0 1 6115 525501 0 1 6069 524214 0 1 6115 525501 0 1 6070 524214 610 1 6116 525543 514 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6119 526142 0 1 6073 524214 912 1 6129 526142 0 1 6074 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6078 524214 913 0 6123 526142 0 1 6079 525543 0 1 6127 528211 0 1 6081 526126 912 1	605 1	526126	912	1	6099	528211	0	1
6054 526126 913 0 6102 528211 0 1 6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6060 6105 528211 0 1 6060 526126 913 0 6060 611111 0 1 6061 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6062 526126 913 0 6062 526126 913 0 6063 526221 514 1 085 HOST GUEST CNT 6062 526220 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6066 512601 0 1 6112 513816 0 1 6066 512601 0 1 6112 513814 922 1 6066 512601 0 1 6114 525114 912 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6126 526231 514 1 6081 526126 912 1	6052	526126	912	1	6100	528211	0	1
6055 526126 913 0 6103 528211 0 1 6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6106 611111 0 1 6059 526126 913 0 6060 526126 913 0 6060 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6062 526126 913 0 6063 526221 514 1 085 HOST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6107 20004 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6111 513816 0 1 6069 524214 0 1 6111 513816 0 1 6111 525501 0 1 6070 524214 610 1 6111 5111 525501 0 1 6070 524214 610 1 6111 5125501 0 1 6071 524214 912 1 6111 526142 0 1 6071 524214 912 1 6111 526142 0 1 6071 524214 912 1 6111 526142 0 1 6071 524214 912 1 6111 526142 0 1 6071 524214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6122 526142 0 1 6071 524214 913 0 6125 526231 0 1 6081 526126 0 1 6081 526126 0 1 6082 526126 0 1 6082 526126 912 1	6053	526126	912	1	6101	528211	0	1
6056 526126 913 0 6104 528211 0 1 6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6063 526221 514 1 0BS HOST GUEST CNT 6064 526230 0 1 6065 526230 0 1 6065 526230 0 1 6065 526230 0 1 6070 526126 913 0 0 6088 510007 514 1 6109 511112 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6112 513841 922 1 6066 512601 0 1 6114 525114 912 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6069 524214 0 1 6116 525543 514 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6119 526142 0 1 6073 524214 912 1 6119 526142 0 1 6074 524214 912 1 6119 526142 0 1 6075 524214 912 1 6119 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6126 526231 514 1 6080 525543 0 1 6128 621131 0 1							_	
6057 526126 913 0 6105 528211 0 1 6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6060 526126 913 0 6061 526126 913 0 LOC=2 FM=45 SLOC=181 6062 526126 913 0 LOC=2 FM=45 SLOC=181 6062 526126 913 0 LOC=2 FM=45 SLOC=181 6063 526221 514 1 0BS HOST GUEST CNT 6064 526230 0 1 6065 526230 0 1 6108 510007 514 1 6109 511112 0 1 LOC=2 FM=45 SLOC=180 6110 512612 0 1 0BS HOST GUEST CNT 6112 513841 922 1 6066 512601 0 1 6114 525114 912 0 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6069 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6125 526231 514 1 6079 525543 0 1 6126 526231 514 1 6079 525543 0 1 6126 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 5256126 912 1							_	
6058 526126 913 0 6106 611111 0 1 6059 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6063 526226 913 0 6063 526221 514 1 0BS HOST GUEST CNT 6064 526230 0 1 6065 526230 0 1 6107 20004 0 1 6108 510007 514 1 6109 511112 0 1 6110 512612 0 1 6111 513816 0 1 6111 513816 0 1 6112 513841 922 1 6066 512601 0 1 6112 513841 922 1 6066 512601 0 1 6114 525114 912 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6070 524214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6070 524214 912 1 6120 526142 0 1 6071 524214 912 1 6120 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 913 0 6125 526142 0 1 6076 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6076 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 0 1								
6059 526126 913 0 6060 526126 913 0 6061 526126 913 0 6062 526126 913 0 6063 526221 514 1 08S HOST GUEST CNT 6064 526230 0 1 6065 526230 0 1 6108 510007 514 1 6109 511112 0 1 6110 512612 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6113 521212 0 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6073 524214 912 1 6129 526142 0 1 6074 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6074 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6070 524214 912 1 6129 526142 0 1 6071 524214 912 1 6129 526142 0 1 6072 524214 912 1 6129 526142 0 1 6073 524214 912 1 6129 526142 0 1 6074 524214 912 1 6129 526142 0 1 6075 524214 912 1 6129 526142 0 1 6076 524214 912 1 6129 526142 0 1 6077 524214 913 0 6129 526142 0 1 6076 524214 913 0 6129 526142 0 1 6077 524214 913 0 6129 526142 0 1 6076 524214 913 0 6129 526142 0 1 6077 524214 913 0 6129 526142 0 1 6077 524214 913 0 6129 526142 0 1 6077 524214 913 0 6129 526142 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1								
6060 526126 913 0 LOC=2 FM=45 SLOC=181 6061 526126 913 0 LOC=2 FM=45 SLOC=181 6062 526126 913 0 0 6063 526221 514 1 0BS HOST GUEST CNT 6064 526230 0 1 6107 20004 0 1 6065 526230 0 1 6108 510007 514 1 6109 511112 0 1 LOC=2 FM=45 SLOC=180 6110 512612 0 1 0BS HOST GUEST CNT 6112 513841 922 1 6066 512601 0 1 6114 525144 912 1 6068 524214 0 1 6115 525543 514 1 6069 524214 912 1 6116 525543 514 1 6070 524214 912 1 6118 526142 0 1 6071 524214 912 1 6120 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 912 1 6120 526142 0 1 6077 524214 912 1 6120 526142 0 1 6078 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6124 526142 0 1 6076 524214 913 0 6125 526231 0 1 6077 524214 913 0 6126 526231 514 1 6079 525543 0 1 6126 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6126 526231 514 1 6081 526126 0 1					6106	611111	0	1
6061 526126 913 0								
6062 526126 913 0 6063 526221 514 1 0BS HOST GUEST CNT 6064 526230 0 1 6065 526230 0 1 6107 20004 0 1 6108 510007 514 1 6109 511112 0 1 6110 512612 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 525114 912 1 6066 512601 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6119 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 514 1 6079 525543 0 1 6127 528211 0 1 6079 525543 0 1 6127 528211 0 1 6081 526126 912 1							0.00.404	
6063 526221 514 1 0BS HOST GUEST CNT 6064 526230 0 1 6065 526230 0 1 6108 510007 514 1 6109 511112 0 1 6109 511112 0 1 6110 512612 0 1 6111 513816 0 1 6113 521212 0 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525543 514 1 6069 524214 610 1 6116 525543 514 1 6070 524214 912 1 6119 526142 0 1 6071 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 912 1 6120 526142 0 1 6077 524214 912 1 6120 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6124 526142 0 1 6076 524214 913 0 6125 526231 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6126 526231 514 1 6080 525543 0 1 6126 62131 0 1 6081 526126 912 1								
6064 526230 0 1 6107 20004 0 1 6108 510007 514 1 6109 511112 0 1 6109 511112 0 1 6100 512612 0 1 6111 513816 0 1 6111 513816 0 1 6085 HOST GUEST CNT 6112 513841 922 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6078 524214 913 0 6127 528211 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1						LUC=2 FM=45	SLUC= 181	
6065 526230 0 1 6107 20004 0 1 6108 510007 514 1 6109 511112 0 1 6110 512612 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 513816 0 1 6111 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6070 524214 610 1 6117 526132 0 1 6071 524214 912 1 6119 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 913 0 6121 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6078 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6081 526126 0 1	6062	526126	913	0			_	CNIT
6108 510007 514 1 6109 511112 0 1 6109 511112 0 1 6109 511112 0 1 6110 512612 0 1 6111 513816 0 1 6113 521212 0 1 6113 521212 0 1 6113 521212 0 1 6114 525114 912 1 6066 512601 0 1 6115 525501 0 1 6068 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6116 525543 514 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6119 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6121 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 912 1	6062 6063	526126 526221	913 514	0			_	CNT
LOC=2 FM=45 SLOC=180 6110 512612 0 1 OBS HOST GUEST CNT 6112 513841 922 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 913 0 6120 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6078 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6081 526126 912 1	6062 6063 6064	526126 526221 526230	913 514 O	0 1 1	OBS	HOST	GUEST	
LOC=2 FM=45 SLOC=180 6110 512612 0 1 OBS HOST GUEST CNT 6112 513841 922 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6120 526142 0 1 6076 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6077 524214 913 0 6123 526142 0 1 6078 524214 913 0 6124 526142 0 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6127 528211 0 1 6081 526126 912 1	6062 6063 6064	526126 526221 526230	913 514 O	0 1 1	0BS 6107	H0ST 20004	GUEST O	1
OBS HOST GUEST CNT 6112 513841 922 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6115 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6120 526142 0 1 6075 524214 912 1 6121 526142 0 1 6076 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6124 526142 0 1 6078 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1	6062 6063 6064	526126 526221 526230	913 514 O	0 1 1	0BS 6107 6108	H0ST 20004 510007	GUEST O 514	1
6066 512601 0 1 6113 521212 0 1 6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6121 526142 0 1 6074 524214 912 1 6121 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1	6062 6063 6064	526126 526221 526230 526230	913 514 0 0	0 1 1 1	0BS 6107 6108 6109	HOST 20004 510007 511112	GUEST 0 514 0	1 1 1
6066 512601 0 1 6114 525114 912 1 6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6070 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6121 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6078 524214 913 0 6125 526231	6062 6063 6064	526126 526221 526230 526230	913 514 0 0	0 1 1 1	0BS 6107 6108 6109 6110	H0ST 20004 510007 511112 512612	GUEST 0 514 0	1 1 1
6067 524214 0 1 6115 525501 0 1 6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6073 524214 912 1 6121 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6121 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1	6062 6063 6064 6065	526126 526221 526230 526230 LOC=2 FM=45	913 514 0 0 SLOC=180	0 1 1 1 1	0BS 6107 6108 6109 6110 6111	H0ST 20004 510007 511112 512612 513816	GUEST 0 514 0 0	1 1 1 1
6068 524214 0 1 6116 525543 514 1 6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6120 526142 0 1 6074 524214 912 1 6121 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1	6062 6063 6064 6065	526126 526221 526230 526230 LOC=2 FM=45	913 514 0 0 SLOC=180	0 1 1 1 1	0BS 6107 6108 6109 6110 6111	HOST 20004 510007 5111112 512612 513816 513841	GUEST 0 514 0 0 0 922	1 1 1 1 1
6069 524214 0 1 6117 526132 0 1 6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6124 526123 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131	6062 6063 6064 6065	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST	913 514 0 0 SLOC=180 GUEST	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0BS 6107 6108 6109 6110 6111 6112 6113	HOST 20004 510007 511112 512612 513816 513841 521212	GUEST 0 514 0 0 0 922 0	1 1 1 1 1 1
6070 524214 610 1 6118 526142 0 1 6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6125 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 912 1	6062 6063 6064 6065 0BS 6066 6067	526126 526221 526230 526230 LOC=2 FM=45 HOST 512601 524214	913 514 0 0 SLOC=180 GUEST 0	O 1 1 1 1 1	0BS 6107 6108 6109 6110 6111 6112 6113 6114	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501	GUEST 0 514 0 0 0 922 0 912	1 1 1 1 1 1
6071 524214 912 1 6119 526142 0 1 6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 912 1 6128 621131 0 1	6062 6063 6064 6065 0BS 6066 6067 6068	526126 526221 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214	913 514 0 0 SLC=180 GUEST 0 0	O 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543	GUEST 0 514 0 0 922 0 912 0 514	1 1 1 1 1 1 1 1
6072 524214 912 1 6120 526142 0 1 6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6128 621131 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132	GUEST 0 514 0 0 0 922 0 912 0 514 0	1 1 1 1 1 1 1 1
6073 524214 912 1 6121 526142 0 1 6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6128 621131 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 0 610	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142	GUEST 0 514 0 0 0 922 0 912 0 514 0 0	1 1 1 1 1 1 1 1 1
6074 524214 912 1 6122 526142 0 1 6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6128 621131 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 0 610 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119	HOST 20004 510007 5111112 512612 513816 513841 521212 525114 5255501 5255543 526132 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6075 524214 913 0 6123 526142 0 1 6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 610 912 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6076 524214 913 0 6124 526142 0 1 6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 610 912 912 912 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142	GUEST 0 514 0 0 922 912 0 514 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6077 524214 913 0 6125 526231 0 1 6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073 6074	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 610 912 912 912 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6078 524214 913 0 6126 526231 514 1 6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 0 610 912 912 912 912 913	O 1 1 1 1 1 1 1 1 1 1 1 0 0	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6120 6121 6122	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6079 525543 0 1 6127 528211 0 1 6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 0 SLOC=180 GUEST 0 0 0 0 0 610 912 912 912 912 913 913	O 1 1 1 1 1 1 1 1 1 1 1 0 0 0	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124	HOST 20004 510007 5111112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6080 525543 0 1 6128 621131 0 1 6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6071 6072 6073 6074 6075 6076 6077	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 0 SLOC=180 GUEST 0 0 0 0 0 610 912 912 912 912 913 913 913	O 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125	HOST 20004 510007 5111112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6081 526126 0 1 6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 610 912 912 912 912 913 913 913	O 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 0 912 0 514 0 0 0 0 514	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6082 526126 912 1	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 0 610 912 912 912 913 913 913 913	O 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 912 0 514 0 0 0 514	
	6062 6063 6064 6065 0BS 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078	526126 526221 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524214 524213 524214	913 514 0 0 SLOC=180 GUEST 0 0 0 610 912 912 912 912 913 913 913 913 913	O 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 912 0 514 0 0 0 514	
	6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6073 6074 6075 6076 6077 6078 6079 6080 6080	526126 526221 526230 526230 526230 526230 LOC=2 FM=45 HOST 512601 524214	913 514 0 0 0 SLOC=180 GUEST 0 0 0 0 610 912 912 912 913 913 913 913 913 913	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126	HOST 20004 510007 511112 512612 513816 513841 521212 525114 525501 525543 526132 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142 526142	GUEST 0 514 0 0 922 912 0 514 0 0 0 514	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	LOC=2 FM=45	SLOC=182			LOC=2 FM=45	SLOC=187	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6129	512614	0	1	6165	526231	0	1
6130		Ö	1	6166		ŏ	•
6131		ŏ	i	6167		514	i
0131	712122	U	1			514	
				6168	526231	514	- 1
				6169		0	1
	LOC=2 FM=45	SLOC= 185		. 6170	527312	ŏ	1
OBS	HOST	GUEST	CNT				
		_	_		LOC=2 FM=45	\$LOC=188	
		0	1				
6133		0	1	OBS	HOST	GUEST	CNT
6134	526132	0	1				
6135	526231	0	1	6171	512612	514	0
6136	528211	0	1	6172	512612	912	1
6137	528211	0	1	6173	525543	0	1
6138		ŏ	1	6174		911	•
6139		ŏ	í	6175	526126	0	1
6140		ŏ	1	6176	526231	ŏ	1
6141		ŏ	1	6177			1
						-0	
6142		0	1	6178	526231	514	1
6143		o	1	6179		0	1
6144		0	1	6180		0	1
6145	528211	0	1	6181	526233	0	1
6146	528211	0	1	6182	526233	514	1
				6183	526238	0	1
	LOC=2 FM=45	SLOC = 186			LOC=2 FM=45	SI 00-180	
OBS	HOST	GUEST	CNT		HOST	•	
6147	526126	o	1	003	HU31	GOESI	CIVI
6147	526132	0		6404	524214	•	
6148			1	0104	324214	O	1
6149		0	1				
6150		0	1				
6151		0	1		LOC=2 FM=45	SLDC=190	
6152		0	1				
6153	526132	0	1				CNIT
6154		-		085	HOST	GUEST	CIAI
6155	526231	ŏ	1		_	GUEST	CIVI
	526231				HOST 20004	GUEST	1
6156	526231 528211	0	1		20004	_	
	526231 528211	0	1 1	6185	20004 512612	0	1
	526231 528211	0	1 1	6185 6186 6187	20004 512612 512612	0 0	1 1 1
6156	526231 528211 528211	0	1 1 1	6185 6186 6187 6188	20004 512612 512612 512612	0 0 0 912	1 1 1
6156	526231 528211	0	1 1 1	6185 6186 6187 6188 6189	20004 512612 512612 512612 520002	0 0 0 912 0	1 1 1 1
6156	526231 528211 528211 LOC=2 FM=45	0 0 0 SLOC=187	1 1 1	6185 6186 6187 6188 6189	20004 512612 512612 512612 520002 524214	0 0 0 912 0	1 1 1 1 1
6156	526231 528211 528211	0 0 0 SLOC=187	1 1 1	6185 6186 6187 6188 6189 6190	20004 512612 512612 512612 520002 524214 524214	0 0 0 912 0 0 912	1 1 1 1 1
6156 08S	526231 528211 528211 LOC=2 FM=45 HOST	O O O SLOC=187 GUEST	1 1 1	6185 6186 6187 6188 6199 6191 6192	20004 512612 512612 512612 520002 520002 524214 524214	0 0 912 0 912 912	1 1 1 1 1 1 1
6156 08S 6157	526231 528211 528211 LOC=2 FM=45 HDST 20001	O O O SLOC=187 GUEST O	1 1 1 1 CNT	6185 6186 6187 6188 6189 6190 6191 6192	20004 512612 512612 512612 520002 524214 524214 524214	0 0 912 0 912 912 913	1 1 1 1 1 1 1 1
08S 6157 6158	526231 528211 528211 LOC=2 FM=45 HOST 20001 512612	0 0 0 SLOC=187 GUEST 0 514	1 1 1 CNT 1	6185 6186 6187 6188 6189 6190 6191 6192 6193	20004 512612 512612 512612 520002 524214 524214 524214 524214	0 0 0 912 0 0 912 912 913 914	1 1 1 1 1 1 1 0
08S 6157 6158 6159	526231 528211 528211 LOC=2 FM=45 HOST 20001 512612 521227	O O O SLOC=187 GUEST O 514 514	1 1 1 CNT 1	6185 6186 6187 6188 6189 6190 6191 6192 6194 6195	20004 512612 512612 512612 520002 524214 524214 524214 524214 524214 524214	0 0 0 912 0 912 912 913 914	1 1 1 1 1 1 1 0 0
6156 OBS 6157 6158 6159 6160	526231 528211 528211 LOC=2 FM=45 HOST 20001 512612 521227 524214	O O O SLOC=187 GUEST O 514 514 O	1 1 1 CNT 1	6185 6186 6187 6188 6189 6190 6191 6192 6193 6195	20004 512612 512612 512612 520002 524214 524214 524214 524214 524214 524214 524214	912 912 912 913 914 0	1 1 1 1 1 1 1 0 0 1 1 1
6156 OBS 6157 6158 6159 6160 6161	526231 528211 528211 LOC=2 FM=45 HOST 20001 512612 521227 524214 524214	O O O SLOC = 187 GUEST O 514 514 O 913	1 1 1 1 CNT 1 1 1	6185 6186 6187 6188 6189 6190 6191 6193 6194 6196	20004 512612 512612 512612 520002 524214 524214 524214 524214 524214 525541 525543 525543	0 0 0 912 0 912 912 913 914	1 1 1 1 1 1 1 0 0
6156 OBS 6157 6158 6159 6160	526231 528211 528211 LOC=2 FM=45 HOST 20001 512612 521227 524214 524214	O O O SLOC = 187 GUEST O 514 514 O 913	1 1 1 CNT 1	6185 6186 6187 6188 6189 6190 6191 6192 6193 6195	20004 512612 512612 512612 520002 524214 524214 524214 524214 524214 525541 525543 525543	912 912 912 913 914 0	1 1 1 1 1 1 1 0 0
6156 OBS 6157 6158 6159 6160 6161	526231 528211 528211 528211 LOC=2 FM=45 HOST 20001 512612 521227 524214 524214 525543	O O O SLOC = 187 GUEST O 514 514 O 913	1 1 1 1 CNT 1 1 1	6185 6186 6187 6188 6189 6190 6191 6193 6194 6196	20004 512612 512612 512612 520002 524214 524214 524214 524214 524214 525541 525543 525543 525543	0 0 912 0 912 913 914 0	1 1 1 1 1 1 1 0 0
6156 DBS 6157 6158 6159 6160 6161 6162	526231 528211 528211 528211 LOC=2 FM=45 HOST 20001 512612 521227 524214 524214 525543 526132	O O O SLOC=187 GUEST O 514 514 O	1 1 1 1 CNT 1 1 1 1	6185 6186 6187 6188 6190 6191 6192 6193 6194 6195 6197 6198	20004 512612 512612 512612 520002 524214 524214 524214 524214 524214 525541 525543 525543 525543 525543	0 0 912 0 912 913 914 0 0	1 1 1 1 1 1 1 1 0 0

	LOC=2 FM=45	SLOC=190			LOC=2 FM=45	SL0C=192	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6201	525543	0	1	6243	525543	0	1
6202	525543	ō	1	6244		ŏ	i
6203	525543	ŏ	1	6245	525543	ŏ	i
6204	525543	ŏ	1	6246	525543	ŏ	i
6205	526142	514	i	6247	525543	ŏ	1
6206		514	1	6248	525543	ŏ	1
6207		514	•	6249	525543	Ö	
6208		0	1	6250	525543	Ö	1
6209		0	1	6251	525543	0	1
6210		0	<u>,</u>	6252	525543	ŏ	1
6211		ŏ	•	6253		ŏ	1
6212		912	1	6254	525543	ö	1
6213		913	Ö	6255	525543	ŏ	1
0213	320111	313	J	6256	525543	Ö	1
				6257	525543	Ö	1
	LOC=2 FM=45	SI 00=191		6258	525543	Ö	1
	E00-2 1 M-45	3000-131		6259	525543	ŏ	1
OBS	HOST	GUEST	CNT	6260	525543	912	1
44 5	1,051	4025	0.11	6261	525543	913	•
6214	524214	0	1	6262	526142	0	1
6215	_	912	į	6263	526142	Ö	1
6216		0	i	6264	526142	ŏ	1
6217		912	i	6265	526142	ŏ	•
6218		0	<u>.</u>	6266	526142	ŏ	1
6219		ŏ	i	6267	526142	ŏ	1
6220		-	i	6268		ŏ	1
6221		Ö	1	6269	526142	ŏ	1
6222		ŏ	i	6270	526142	ŏ	1
6223		ŏ	1	6271	526142	ŏ	, 1
6224		ŏ	1	6272	526142	ŏ	1
6225		ŏ	1	6273	526222	ŏ	1
		•		6274	526222	ŏ	•
				6275	526522	ŏ	i
	LOC=2 FM=45	SLOC=192		6276	526611	ŏ	1
				6277		ŏ	1
085	HOST	GUEST	CNT	6278		ō	1
		_		6279		ŏ	1
6226	5 12612	0	1	6280	527111	ŏ	1
6227	7 512612	0	1	6281	712001	Ó	1
6228	512612	0	1				
6229	512612	514	1				
6230	520001	0	1		LOC=2 FM=45	SL0C=193	
6231	520005	0	1				
6232	2 520006	0	1	OBS	HOST	GUEST	CNT
6233		0	1				
6234		0	1	6282	513795	0	1
6235		0	- 1	6283	525501	0	1
6236		0	1	6284	525501	610	1
6237		0	1	6285	525543	0	1
6238		0	1	6286	525543	610	1
6239		0	1	6287	526142	0	1
6240		0	1	6288	526142	0	1
624		0	1	6289	526142	0	1
624	2 525543	0	1	6290	526142	0	1

	LOC=2 FM=45	SLOC=193				LOC=2 FM=45	SLOC=193	
OBS	HOST	GUEST	CNT	OE	85	HOST	GUEST	CNT
6291	526142	0	1	63	345	526613	0	1
6292	526142	ŏ	i		346	526632	ō	1
6293	526142	ŏ	1		347	526632	ŏ	1
6294	526142		1		348	526635	ŏ	1
6295		0					ŏ	1
	526142	0	1		349	712001	_	1
6296	526142	0	1		350	712001	0	
6297	526142	o o	1		35 1	712122	0	1
6298	526142	o o	1		352	712122	0	1
6299	526142	٥	1	€:	353	7 12 122	0	1
6300	526142	0	1					
6301	526142	0	1					
6302	526142	0	1			LOC=2 FM=55	SLOC=146	
6303	526142	0	1					
6304	526142	0	1	01	35	HOST	GUEST	CNT
6305	526142	0	1					
6306	526142	0	1	6	354	526126	0	1
6307	526142	0	1					
6308	526142	Ö	1					
6309	526142	ō	1			LOC=2 FM=60	SLOC=200	
6310	526142	ŏ	1					
6311	526142	ŏ	i	Ω	BS	HOST	GUEST	CNT
6312	526142	ŏ	,	J	-			
6313	526142	ŏ	1	6	355	520001	0	1
6314	526142	ŏ	1		356	520001	ŏ	1
6315	526142	_			357	525541	ŏ	1
6316	526142	0	1			525541	ö	1
6317		0	1		358	525541	913	1
	526142	0	1		359	•		1
6318	526142	0	1		360	525543	0	
6319	526142	0	1		361	525543	0	1
6320	526142	0	1		362	525543	0	1
6321	526142	0	1	_	363	525543	0	1
6322	526142	O	1		364	525543	0	1
6323	526142	0	1	-	365	525543	0	1
6324	526142	0	1		366	525543	Ō	1
6325	526142	0	1	_	367	525543	o o	1
6326	526142	0	1	6	368	525543	0	1
6327	526142	0	1	6	369	525543	0	1
6328	526142	0	1	e	370	525543	0	1
6329	526142	0	1					
6330	526142	0	1					
6331	526142	0	1			LOC=2 FM=60	SLOC=201	
6332	526142	0	1					
6333	526142	0	1	C	BS	HOST	GUEST	CNT
6334	526142	0	1					
6335	526142	0	1	6	371	520001	0	1
6336	526142	Ó	1	6	372	526635	0	1
6337	526142	ŏ	1		373		0	1
6338	526142	ŏ	1	•		·	-	
6339	526142	ŏ	1					
6340	526142	Ö	1					
6341	526142	Ö	1					
6342	526142	514	1					
6343	526142	514	1					
6344	526502	0						
0044	320302	J	1					

	LOC=2 FM=60	SL0C=202			LOC=2 FM=60	SL0C=205	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6374	520001	0	1	6411	525541	0	1
6375	525543	Ö	1	6412	712001	0	1
6376	525543	Ö	1				
6377	525543	ō	1				
6378	525543	ŏ	1		LOC=2 FM=60	SL0C=207	
6379	525543	ŏ	1				
6380	525543	ŏ	1	OBS	HOST	GUEST	CNT
6381	525543	ŏ	1				
6382	525543	Õ	1	6413	526231	514	1
6383	525543	ŏ	1	6414	526611	0	1
6384	525543	ŏ	1	6415	526611	ŏ	1
6385	525543	912	1	6416	527312	ŏ	1
6386	525543	912	1			•	•
6387	526611	0	1				
0007	525511	•	•		LOC=2 FM=60	SL0C=220	
	LOC=2 FM=60	SL0C=203		OBS	HOST	GUEST	CNT
OBS	HOST	GUEST	CNT	6417	525543	0	1
000	1100			6418	525543	ŏ	1
6388	512612	0	1	6419	525543	ŏ	i
6389		ŏ	1	6420		ŏ	1
6390		ŏ	ĺ	6421	525543	ŏ	1
6391		ŏ	i	6422	525543	ŏ	1
6392		ŏ	1	6423		ŏ	1
6393		ŏ	•	6424		ŏ	i 1
6394		ŏ	1	6425		ŏ	1
6395		ŏ	1	6426		ŏ	1
6396		ŏ	1	6427		ŏ	1
0000	020012	•	·	6428		ŏ	1
				6429		ŏ	1
	LOC=2 FM=60	SLDC=204		6430		ŏ	1
	200 2 1 50	0100 10		6431		ŏ	1
OBS	HOST	GUEST	CNT	6432		ŏ	i
003				6433		912	1
6397	512612	0	1	5400			•
6398		ŏ	1				
6399		ŏ	i				
6400	7 7 7 7 7	ŏ	1				
6401		514	ò				
6402		515	1				
6403		912	1				
6404		912	i				
6409		0	1				
6406	•	912	1				
6407		912	1				
6408		0	1				
6409		ŏ	1				
6410		ŏ	1				
5-7-10		-					

	LOC=3 FM=10	SLOC=5			LOC=3 FM=20	SLOC=22	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6434	521123	0	1	6439	512111	0	1
6435	521123	ŏ	i	6440	512612	ŏ	i
6436	521123	ŏ	, 1				
				6441	521123	0	1
6437	521123	0	1	6442	526231	0	1
6438	521123	0	1	6443	526231	0	1
				6444	526231	0	1
				6445	526231	0	1
				6446	526231	0	1
				6447	526231	0	1
				6448	526231	0	1
					LOC=3 FM=20	SLOC=25	
				OBS	HOST	GUEST	CNT
				6449	10001	0	1
				6450	20001	ŏ	1
				6451	20001	ŏ	1
				6452	20001	ŏ	i
				6453	20003	ŏ	i
				6454	510001	ŏ	i
				6455	510001	ŏ	1
				6456	510005	ŏ	i
				6457		Ö	1
					511111		
				6458	512001	0	1
				6459	512111	0	1
				6460	512601	912	1
				6461	512611	0	1
				6462	514111	0	1
				6463	520001	0	1
				6464	520001	O	1
				6465	520010	0	1
				6466	521121	0	1
				6467	521211	0	1
				6468	531001	0	1
				6469	531001	0	1
				6470	700001	0	1
				6471	700001	0	1
				6472	700001	0	1
				6473	821002	0	1
				6474	821002	0	1
				6475	830001	0	1
					LOC=3 FM=20	SLOC=26	
				OBS	HOST	GUEST	CNT
				6476	512103	0	1
				6477		ŏ	i
				6478		ŏ	1
				6479		Ö	;
				6480		ŏ	<u> </u>
				5480	5263 I I	U	1

•••••	LOC=3 FM=20	SLOC=27			LOC=3 FM=30	SLOC=45	
085	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6481	512111	0	1	6505	521226	0	1
6482	513711	ŏ	1	6506		23	1
6483		ŏ	1	6507		-0	i
0.100		Ū	•	6508			1
	LOC=3 FM=20	SLOC=28			LOC=3 FM=30	S1.00=46	
OBS	HOST	GUEST	CNT		HOST		
6484	10001	0	1	003	11031	40231	Cigi
6485	510005	ŏ	1	6509	526231	0	4
5486	512614	ŏ			52525.	U	•
6487	513811	Ö	1				
6488	513821	Ö	1		LOC=3 FM=35	SI DC=92	
6489	513831	ŏ	i		200-0 114-05	3000-32	
6490	520001	ŏ	1	OBS	HOST	GUEST	CNT
6491	525501	ŏ	i		.,,,,,,	GOL J.	Citi
6492	526231	ŏ	1	6510	524214	0	1
6493	526231	ŏ	i			•	•
6494	531002	ŏ	i				
		· ·	•		LOC=3 FM=40	SLOC=61	
	LOC=3 FM=30	SLOC=40		OBS	HOST	GUEST	CNT
OBS	HOST		CNT	6511	520001	0	1
6495	526227	0	1				
6496	526227	ŏ	i		LOC=3 FM=40	SLDC=62	
6497		ŏ	1		_		
				OBS	HOST	GUEST	CNT
	LOC=3 FM=30	SLOC=41		6512	513795	0	1
				65 13	513818	Ŏ	1
OBS	HOST	GUEST	CNT	6514	513818	23	1
				6515	513818	912	1
6498	513713	0	1	6516	521221	0	1
6499	521111	0	1	65 17	524221	0	1
6500	521221	0	1	65 18	524222	0	1
6501	526231	0	1				
	LOC=3 FM=30	SIDCEAC			LOC=3 FM=40	SLOC=63	
	200-0 (M-30	3200-42		OBS	HOST	GUEST	CNT
OBS	HOST	GUEST	CNT			30231	C.41
		JULJI	CIAI	65 19	521212	0	1
6502	512601	0	1			•	•
6503	_	0	. 1				
6504		517	1				

	LOC=3 FM=50	SL0C=83			LOC=3 FM=50	SLOC=87	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6520	5 10005	0	1	6556	524214	610	1
6521		ŏ	1	6557	524214 524214	912	1
	513711 E42744	0		6558	524214	912	i i
6522	513711	= 14		6559		913	ò
6523	513041	040	0	6555	524214	913	ŏ
6524	513841	912	1	6561	524214	913	1
6525		Ö	1	CECO	545114	242	1
6526	520001	O	1	6562	525114	912	1
				6563	525501 525501	240	1
				6564	524214 525112 525114 525501 525501 526101 526142 526142 526142	912	1
	LOC=3 FM=50	SLOC=85		6565	526101 526142 526142	0	1
				6566	526142	0	1
085	HOST	GUEST	CNT	6567	525142	0	1
				6568 6569	526142	0	1
6527	510005 510005	0	1	6569	526142	514	1
6528	510005	0	1	6570	526221	0	1
6529	5 10005	912	1	6571	526231	514 0 0	1
6530	513819	912	1	6572	528111	0	1
6531	513819	913	1 1 1 1	6573	528111	U	1
				6574	528111	0	1
				6575	528111	0	1
	LOC=3 FM=50	SLOC=86		6576	528111	912	1
				6577	528111	913	0
	HOST			6578	526142 526221 526231 528111 528111 528111 528111 528111 528111	0	1
6532	510005 512111 512612	0	1				
6533	512111	0	1		LOC=3 FM=50	SLOC=88	
6534	512612	912	1				
6535	512612	912	1 1	OBS	HOST	GUEST	CNT
6536	513801	0	1				
6537	711111	0	1	6579	512111 512111	0	1
				6580	512111	0	1
				6581	512111	514	0
	LOC=3 FM=50	SLOC=87		6581	512111 512111	514 912	1
				6581 6582 6583	512111 512612	912 0	1
				6581 6582 6583	212012	912 0	1
	LOC=3 FM=50 HOST			6581 6582 6583	212012	912 0	1
OBS	HOST	GUEST	CNT	6581 6582 6583	212012	912 0	1
0BS 6538	HDST 510007	GUEST O	CNT 1	6581 6582 6583	212012	912 0	1
0BS 6538 6539	HDST 510007 512602	GUEST O	CNT 1	6581 6582 6583	212012	912 0	1
0BS 6538 6539 6540	HDST 510007 512602 512611	GUEST O	CNT 1	6581 6582 6583	212012	912 0	0 1 1 1 1
0BS 6538 6539 6540 6541	HDST 510007 512602 512611	GUEST 0 0 0 0	CNT 1	6581 6582 6583	212012	912 0	O 1 1 1 1 1 1 1 1
0BS 6538 6539 6540 6541 6542	HDST 510007 512602 512611 512611 513841	GUEST 0 0 0 0 24 0	CNT 1	6581 6582 6583 6584 6585 6586 6587 6588 6589	512612 512612 512612 512612 512612 513211 513212 513711	912 0	O 1 1 1 1 1 1 1 1 1
0BS 6538 6539 6540 6541 6542 6543	HDST 510007 512602 512611 512611 513841	GUEST 0 0 0 0 24 0	CNT 1	6581 6582 6583 6584 6585 6586 6587 6588 6589 6599	512612 512612 512612 512612 513211 513212 513711 513841	912 0 912 912 913 912 912 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6541 6542 6543 6544	HDST 510007 512602 512611 512611 513841	GUEST 0 0 0 0 24 0	CNT 1	6581 6582 6583 6584 6585 6586 6587 6588 6589 6599	512612 512612 512612 512612 512612 513211 513212 513711	912 0 912 912 913 912 912 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0BS 6538 6539 6540 6541 6542 6543	HDST 510007 512602 512611 512611 513841 520001 520001	GUEST 0 0 0 24 0 0 912	CNT 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6589 6599	512612 512612 512612 512612 513211 513212 513711 513841	912 0 912 912 913 912 912 912	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6542 6543 6544	HDST 510007 512602 512611 512611 513841 520001 520001 521111 524201	GUEST 0 0 0 24 0 0 912	CNT 1 1 1 1 1 1 1 1 1 1 1	6581 6583 6584 6585 6586 6587 6588 6589 6590 6591	512612 512612 512612 512612 513211 513212 513711 513841	912 912 912 912 913 912 912 914 0	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6542 6543 6545	HDST 510007 512602 512611 512611 513841 520001 520001 521111 524201	GUEST 0 0 0 24 0 0 912	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6583 6584 6585 6586 6587 6588 6589 6590 6591	512612 512612 512612 512612 513211 513212 513711 513841 513841	912 912 912 912 913 912 912 914 0	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6543 6544 6545 6547	HDST 510007 512602 512611 512611 513841 520001 520001 521111 524201	GUEST 0 0 0 24 0 0 912 0 0 0	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6589 6590	512612 512612 512612 512612 512612 513211 513212 513711 513841 513841	912 912 912 913 912 912 912 912 912 514 0 912	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6544 6544 6544 6548	HDST 510007 512602 512611 512611 513841 520001 520001 521111 524201 524201 524201	GUEST 0 0 0 24 0 0 912 0 0 610	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6589 6590	512612 512612 512612 512612 513211 513212 513711 513841 513841	912 912 912 913 912 912 912 912 912 514 0 912	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6543 6544 6545 6548 6548	HDST 510007 512602 512611 512611 513841 520001 520001 521111 524201 524201 524201 524201	GUEST 0 0 0 24 0 0 912 0 610 911	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6590 6591	512612 512612 512612 512612 513211 513211 513711 513841 513841 LOC*3 FM*50	912 912 912 913 912 913 912 514 0 912 SLOC=89	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6543 6544 6545 6545 6545 6551	H0ST 510007 512602 512611 512611 513841 520001 521111 524201 524201 524201 524201 524201 524201	GUEST 0 0 24 0 0 912 0 0 610 911 912	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6590 6591	512612 512612 512612 512612 513211 513211 513711 513841 513841 LOC*3 FM*50	912 912 912 913 912 913 912 514 0 912 SLOC=89	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6542 6544 6545 6546 6551 6551	H0ST 510007 512602 512611 512611 513841 520001 52001 521111 524201 524201 524201 524201 524201 524201 524201	GUEST 0 0 24 0 0 912 0 610 911 912 912	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6590 6591	512612 512612 512612 512612 512612 513211 513212 513711 513841 513841	912 912 912 913 912 913 912 514 0 912 SLOC=89	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OBS 6538 6539 6540 6541 6543 6544 6545 6545 6545 6551	H0ST 510007 512602 512611 512611 513841 520001 521111 524201 524201 524201 524201 524201 524201 524201 524201	GUEST 0 0 24 0 0 912 0 0 610 911 912	CNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6581 6582 6583 6584 6585 6586 6587 6588 6590 6591	512612 512612 512612 512612 513211 513211 513711 513841 513841 LOC*3 FM*50	912 912 912 913 912 913 912 514 0 912 SLOC=89	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	LOC*3 FM=50	SLOC=90			LOC=3 FM=50	SLOC=92	
OBS	HOST	GUEST	CNT	OBS		GUEST	CNT
6595	513801	0	1	6637	528111	912	1
6596	513841	0 912	1	6638	528111	912	1
6597	524214	0	i	6639		0	1
6598	524214	913	1	6640		610	1
6599	525112			0040	011211	0.0	•
	525112 525112	0	1				
6600					LOC=3 FM=50	SI 00=93	
6601 6602	525114 525114	0	1		FOC-2 FM-20	3500-30	
6603	525114	912 912	1	nne	HOST	GHEST	CNT
6604	525114	913	1	993	11001	~~~	
6605	525114	913	i	6641	513122	0	1
6606	525114 525114	913	;	6642		ŏ	•
6607	525114	913	1	6643		ŏ	1
6608	525114	914	Ö	6644		ŏ	ì
6609		0	1	6645		ŏ	1
6610		Ö		6646			1
8810	52/311	O	•	9040	021002	Ū	•
	LOC=3 FM=50	SLOC=91					
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6611	513211	0	1	6647	512111	0	1
6612		Ó	0	6648	512111	0	1
6613	525114	0	1	6649	512111	610	1
6614	525114	0	1	6650	512111	913	1
6615	525114	0	1	6651	512614	0	1
6616	525114	0	1	6652	512614	0	1
6617	525114	912	1	6653	512614	0	1
6618	525114	912	1	6654	512614	0	1
6619	525114	913	0	6655	513711	0	1
				6656	513711	0	1
				6657	513711	601	1
	LOC=3 FM=50	SL0C=92		- 6658	513795	0	1
				6659	513841	0	1
OBS	HOST	GUEST	CNT	6660	513841	601	0
				6661	513841	912	1
6620	513841	610	0	6662		0	1
6621	513841	610	0	6663		o	1
6622	513841	912	1	6664		0	1
6623	513841	912	1	6665			
6624	513841	913	0	6666		0	1
6625		0	1	6667	621121	0	1
6626		0	1				
6627		ŏ	1				_
6628		912	1		LOC=3 FM=50	5 SLOC*95	·
6629		912	1			0	C
6630		912	1	OBS	HOST	GUEST	CNI
6631		0	1			_	
6632		O	1	6668			1
6633		O	1	6669			1
6634		0		6670			
6635		0	1	667			1
6636	5 528111	0	1	6672	525114	0	1

	LDC=3 FM=50	SL0C=96			LOC=3 FM=50	SLOC=98	
OBS	HOST	GUEST	CNT	085	HOST	GUEST	CNT
6673	512612	0	1	6715	513121	512	1
6674	512612	Ö	i	6716	513122	0	1
6675	512612	912	1	6717	513122	601	1
			i	6718	513122	603	1
6676	512612	912	-	6719	513311	0	1
6677	513121	0	1	6720	513311	ŏ	•
6678	513121	0	1			ő	1
6679	513121	0	1	6721	513311	514	1
6680	513122	0	1	6722	513311		1
6681	513122	610	1	6723		912	
6682	513311	0	1	6724		912	i
6683	513312	0	1	6725		912	1
6684	513715	601	1	6726		. 0	1
6685	513715	912	0	6727	513711	514	1
6686	513796	516	1	6728	513713	912	1
6687	513851	0	1	6729	513731	0	1
6688	524214	С	1	6730	513795	912	1
6689	525544	Ö	1	6731	520001	101	1
6690	525544	ŏ	1	6732	524214	913	1
6691	526132	ŏ	1	6733		0	1
6692	526132	3	<u>i</u>	6734		0	1
6693	526132	610	1	6735		0	1
6694	526142	0.0	i	6736		516	0
6695	527311	ŏ	1	6737		912	1
6696	528111	ŏ	1	6738		0	1
6697	528111	913	1	6739		ŏ	1
			i	6740		ŏ	1
6698	611111	0		6741		ŏ	1
6699	611311	0	1	6742		ŏ	1
				6743		ŏ	i
						ŏ	1
	LOC=3 FM=50	SLOC#97		6744	_	ő	i
				6745		Ö	i
OBS	HOST	GUEST	CNT	6746		Ö	1
				6747		0	1
6700		912	1	6748		0	
6701		0	1	6749		-	1
6702		0	1	6750		0	1
6703	525541	0	1	675		0	1
6704	528111	0	1	675		0	1
				675		0	1
				675		0	1
	LOC=3 FM=50	SLOC=98		675		0	1
				675		0	1
OBS	HOST	GUEST	CNT	675	7 526142	0	1
				675	8 526142	0	1
6705	10001	0	1	675	9 526142	0	1
6706		0	1	676	0 526142	0	1
6707		ŏ	1	676	1 526142	0	1
6708		ŏ	1	676		0	1
6709		ŏ	i	676		0	1
6710		ŏ	i	676		Ō	1
6711		ŏ	i	676	_	Ō	1
6712		ŏ	1	676	-	ŏ	1
6712		0	1	676		ŏ	1
		_		676		ŏ	1
6714	513121	0	1	6/6	320142	5	•

	LDC=3 FM=50	SLOC=98			LOC=3 FM=50	SLOC=101	
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
6769	526142	0	1	6811	513841	0	1
6770	526142	Ō	1		010041	J	•
6771	526142	ō	1				
6772	526142	ō	1		LOC=3 FM=50	SL00=102	
6773	526142	Ō	1			300-102	
6774	526142	ō	1	OBS	HOST	GUEST	CNT
6775	526142	ō	1			4465.	O.T.
6776	526142	Ö	1	6812	521225	0	1
6777	526142	Ö	1			Ū	•
6778	526142	0	1				
6779	526142	912	1		LOC=3 FM=50	SL0C=103	
6780	526231	0	1				
6781	526525	0	1	OBS	HOST	GUEST	CNT
6782	526525	0	1				0.47
6783	526611	0	1	6813	5 138 15	912	1
6784	528110	0	1	6814	521226	ō	1
6785	611111	0	1	68 15	525114	Ŏ	1
6786	611113	0	1	6816	525114	Ō	1
6787	611211	0	1	6817	525114	913	1
				6818	611221	0	1
	LOC*3 FM=50	SLOC=99			100-0 54-50		
OBS	HOST	GHEST	CNT		LOC=3 FM=50	SLUC= 104	
000	11031	GOL 3	CITT	OBS	HOST	GUEST	CNT
6788	513711	0	1	003	HO31	GOE 31	CNI
6789	513841	ŏ	i	6819	512413	514	1
6790		ŏ	1	6820	512413	514	1
6791		912	1	6821	513122	514	1
6792		514	1	6822	513711	0	1
6793		516	1	6823	513711	514	i
6794	525114	0	1	6824	513711	514	<u> </u>
				6825	513795	0	1
				6826	513795	ŏ	1
	LOC=3 FM=50	SL0C=10	0	6827	513797	ŏ	1
				6828	513797	ō	1
OBS	HOST	GUEST	CNT	6829	513818	Ô	1
				6830	513841	0	1
6795		0	1	6831	513841	0	1
6796		0	1	6832	513841	0	1
6797		912	1	6833	513841	0	1
6798		0	1	6834	513841	515	0
6799		601	1	6835	513841	601	1
6800		912	1	6836	513841	912	0
6801		0	1	6837	513841	912	1
6802		912	1	6838	513841	912	1
6803		912	1	6839	513841	912	1
6804		913	0	6840	513841	912	1
6805		5.10	1	6841	513841	912	1
6806		516	1	6842	513841	912	1
6807		0	1	6843	525114	Ō	1
6808		0	1	6844	525114	Ō	1
6809 6810		0	1	6845	526132	0	1
66 10	528111	913	1	6846	526132	0	1

	LOC=3	FM=50	SLOC= 104			LOC=3 FM=50	SLDC=105	
OBS	но	ST	GUEST	CNT	OBS	HOST	GUEST	CNT
6847	611	221	0	1	6895	513841	0	1
					6896		514	1
					6897		514	1
	LOC=3	FM=50	SLOC= 105		6898		514	1
					6899		514	1
OBS	нс	ST	GUEST	CNT	6900		514	i
		_			6901		912	i
6848	510	0005	610	1	6902		912	1
6849	512	2413	Ō	1	6903		0.2	•
6850		2611	912	1	6904		ō	i
6851	512	2611	913	0	6905		ŏ	1
6852		2612	0	1	6906		610	į
6853		2612	514	1	6907		610	1
6854		2612	514	1	6908		912	i
6855		3121	0	1	6909		913	ò
6856	510	3121	Ö	1	6910		913	1
6857		3121	0	1	6911		Ö	1
6858		3121	Ö	1	6912		ŏ	1
6859		3121	Ö	1	6913		ŏ	1
6860	513	3121	Ö	1	6914		ŏ	i
6861		3121	514	1	6915		514	Ö
6862	513	3122	0	1	6916		514	1
6863		3122	Ö	1	6917		514	1
6864	513	3711	Ō	1	6918		912	1
6865	513	3711	0	1	6919		912	1
6866	513	3711	0	1	6920		913	ò
6867	513	3711	0	1	6921		913	ŏ
6868	513	3711	0	1	6922		913	1
6869	513	3711	0	1	6923	525114	913	1
6870	513	3711	0	1	6924	525114	914	0
6871	513	3711	0	1	6925	611111	0	1
6872	513	3711	0	1				
6873	513	3711	514	0				
6874	513	3711	514	1		LOC=3 FM=50	SLOC= 106	
6875	513	3711	912	1				
6876		3711	912	1	OBS	HOST	GUEST	CNT
6877	51	3711	912	1				
6878	5 1	3711	912	1	6926	5 12601	514	1
6879		3711	913	0	6927	512612	514	1
6880		3714	0	1	6928	513711	0	1
6881		3795	0	1	6929		513	0
6882		3795	0	1	6930		514	1
6883		3795	514	1	6931	513711	601	1
6884		3795	913	1	6932		0	1
6885		3796	0	1	6933		513	1
6886		3796	o	1	6934		514	1
6887		3796	0	1	6935	•	912	1
6888		3796	0	1	6936		912	1
6889		3796	0	1	6937		514	0
6890	_	3796	912	1	6938		912	1
6891		3841	0	1	6939		912	1
6892		3841	0	1	6940	513841	0	1
6893		3841	0	1	694		913	1
6894	5 1	3841	0	1	6942	525114	515	1

	LOC=3	FM=50	SLOC=106	
OBS	н	ost	GUEST	CNT
6943	526	5132	0	1
	LOC=3	FM=50	SLOC=107	
OBS	н	DST	GUEST	CNT
6944 6945 6946 6947 6948 6949 6950	51: 51: 51: 51: 51: 52:	3122 3122 3711 3711 3711 5114 6231	0 514 513 514 912 914 0	1 1 0 0 1 1 1 1 1
	LOC=3	FM=50	SLOC= 108	
OBS		HOST	GUEST	CNT
6952 6953 6954 6955 6956 6958 6961 6962 6963 6966 6966	51 51 51 52 52 52 52 52 52 52 52 52 52 52	0004 3841 3841 3841 3841 3841 0001 4201 4201 4214 4214 4214 25114 25114	0 514 514 514 0 0 0 912 912 912 913	1 1 1 1 1 1 1 1 1 1 1 0
	LOC=3	3 FM=50	SLOC=109	
obs	H	HOST	GUEST	CNT
6969 6970 6971 6972 6973 6974	5 1 5 2 5 3 5 4 5 5 5	12601 12611 12612 24214 24214 24214 24214 24214	0 603 0 0 0 912 913 514	1 1 1 1 1 1

VITA

NAME: William Maurice Harris, Jr.

PLACE OF BIRTH: San Antonio, Texas.

DATE OF BIRSH: October 26, 1958.

PARENTS: William M. Harris, Marilyn G. Harris

EDUCATIONAL BACKGROUND: B. S. degree in geology from

Baylor University (May 1980).

M. S. degree in geology from

Texas A&M University (December 1982).

FIELD OF SPECIALIZATION: Paleontology

PROFESSIONAL EXPERIENCE: Teaching and research

assistanships at Texas A&M

University

Consulting geologist, Becon Mining and Minerals group,

Christine, Texas

Project geologist, Sun Gas Company, Oklahoma City, OK

and Corpus Christi, TX

PERMANENT MAILING ADDRESS: 2811 Albin, San Antonio,

Texas 78209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Plate I.
Eel River Section

Plate I.
Eel River Section

ples	Formation	Lithology	Specimen	Ingle, 1976	Paleobati	nymetry
			10 20 30 40 60 80	Meters	Ingle	Stanton
		Sandstone		500 1500	Non-	Non
	Hookton	and			Marine	Marine `
		1				
		Conglomerate				
		1.	,			
		Shale				
0		with			Outer	
		Sand			Shelf	
5		Sandy			and	
		Shale			Shelf	
					Edge	
	Upper	Shale] ,			Shelf
0	Rio					
	Dell				<u> </u>	1
	Member					
	Member					
		Sandy] \		
	1	Shale			1	
5		Silale			Basin	•
			•	\	1	
			•		Slope	
i		· ·				
)		<u> </u>	4			
		Shale				
	Middle					
	Rio	Sandy				
	Dell	Shale				1
	Member			\		
0				\		Slope
]	1		
5			\			
	Lower	Sandy				
	Rio	to				
		V. Sandy			Deep	1
	Dell	Shale	ļ -		Sea	
	Member		•		Fan	
					' " '	
40	1	ı	l •	1	ł	l

Plate 11.
Centerville Beach Section

late II. e Beach Section

William M. Harris Jr., 1987

