ORGANISM INTERA

INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17^{\prime \prime} \times 23^{\prime \prime}$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Accessing the World's Information since 1938

Organism interactions and their environmental significance, as exemplified by the Pliocene-Pleistocene fauna of the Kettleman Hills and Humboldt Basin, California

Harris, William Maurice, Jr., Ph.D. Texas A\&M University, 1987

300 N. Zeeb Rd.
Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Pages)
author. \qquad lacking when material received, and not available from school or
12. Pages) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Dissertation contains pages with print at a slant, filmed as received

16. Other \qquad
\qquad
\qquad

University
 Microfilms International

ORGANISM INTERACTIONS AND THEIR ENVIRONMENTAL SIGNIFICANCE, AS EXEMPLIFIED BY THE PLIOCENEPLEISTOCENE FAUNA OF THE KETTLEMAN HILLS
 AND HUMBOLDT BASIN, CALIFORivi
 A Dissertation
 by
 WILLIAM MAURICE HARRIS, JR.
 Submitted to the Graduate College of
 Texas A\&M University
 In partial fulfillment of the requirement for the degree of
 DOCTOR OF PHILOSOPHY

August 1987

Major Subject: Geology

```
ORGANISM INTERACTIONS AND THEIR ENVIRONMENTAL
SIGNIFICANCE, AS EXEMPLIFIED BY THE PLIOCENE-
PLEISTOCENE FAUNA OF THE KETTLEMAN HILLS
    AND HUMBOLDT BASIN,
                                    CALIFORNIA
```

 A Dissertation
 by
 WILLIAM MAURICE HARRIS, JR.
 Approved as to style and content by:

August 1987

Abstract

Organism Interactions and Their Environmental Significance, as Exemplified by the Pliocene Pleistocene Fauna of the Kettleman Hills and Humboldt Basin, California. (August 1987)

William Maurice Harris, Jr., B.S., Baylor University; M.S., Texas A \& M University Chair. of Advisory Committee: Dr. Robert J. Stanton, Jr.

Evidence of organism interactions (predatory and non-predatory) in Recent samples from the Texas Gulf Coast and Pliocene - Pleistocene samples from the Humboldt Basin and Kettleman Hills of California were studied in order to determine their usefulness in interpreting the fossil record. The Recent samples were analyzed as potential fossil communities to determine the ecologic factors controlling the distribution of organism interactions. The Pliocene Pleistocene samples of California were analyzed to determine latitudinal and temporal distribution of interaction types and interaction pairs.

Seven types of interactions were identified from the Recent and fossil material. They included gastropod predation, algal/fungal borings, clionid sponge borings, polychaete borings, encrusting bryozoans, attached bivalves, and encrusting barnacles.

Abstract

The Texas Gulf Coast samples indicate that the distribution of interaction types was controlled by environmental stress at the sediment/water interface as it controls the availability of "host" shell materials (epifauna) and the viability of "guest" species. The intensity of interaction, with the exception of predation, was dependent on the presence of live epifauna and/or the presence of physical/biological processes which bring shell material to the surface and maintain it there.

The Humboldt Basin samples represented a depositional gradient from basin to shoreface. Predation by naticids occurred at all stratigraphic levels independent of water depth, with intensity increasing upwards as a function of available, preservable prey species. The other types of interactions did not appear until stable, shelfal conditions were established. The number of incidents of interaction increased upward in the section with an abrupt decline in the shoreface environments. The Kettleman Hills samples were from relatively stable environments. The interactions did not show changes through time, and host-guest preferences remained invariant. The Kettleman Hills data indicated that interaction relationships did not change within the time frame represented (approximately 4 million years)


```
and that the changes seen in the Humboldt Basin were
ecologically, not evolutionarily, produced.
    Organism interactions provide useful tools for
understanding shell accumulations and for making
paleoecological interpretations. Detailed study of
specific interaction pairs is needed to fully
understand the importance of these pairs in the
interpretation of the fossil record.
```


For the students...

TABLE OF CONTENTS

Page
INTRODUCTION 1
Objectives of the Study 2
The Community in Paleontology 4
Previous Studies in Organism Interactions 7
METHODS 9
Field Methods 9
Gulf Coast 9
California. 11
Laboratory Methods 13
Data Considerations 15
GULF COAST 18
Station Characteristics 22
Interactions by Station 35
Specific Interactions 50
Summary 63
HUMBOLDT BASIN 67
Stratigraphy and Sedimentology 72
Eel River Section 74
Centerville Beach Section 78
Depositional Setting 82
Paleontologic Analyses 86
Organism Interactions 94
Gastropod Predation 94
Borings (Non-predatory) 105
Host as a Substrate. 108
Summary 112
KETTLEMAN HILLS 115
Stratigraphy and Sedimentology 117
Page
Organism Interactions 125
Gastropod Predation 134
Micro-borings 141
Clionid Sponge Borings 145
Polychaete Borings 150
Bryozoa 156
Bivalves 160
Barnacles 165
Summary 170
CONCLUSIONS 173
REFERENCES CITED 177
APPENDIX I 184
APPENDIX II 188
APPENDIX III 203
APPENDIX IV 229
VITA 254

1. Texas Coast faunal distribution......... 23
2. Texas Coast shells with indication of utilization and interactions............
3. Fauna and interactions from the North Mustang Island, Gulf of Mexico beach
37
4. Fauna and interactions Erouthe Cotpus Christi Ship Channel location, North Mustang Island.39
5. Fauna and interactions from the Mustang
Island State Park, sandbar location..... 42
6. Fauna and interactions from the Mustang
Island State Park, beach location. 43
7. Fauna and interactions from the Bird Beach Boat Basin, sandbar location......46
8. Fauna and interactions from the Bird Beach Boat Basin, beach location........48
9. Fauna and interactions from the Steadman Island oyster bar location..........49
10. Fauna and interactions from the Gunder
son's Marine (Portland, Texas) oyster
bar location. 51
11. Fauna and interactions from the Copano
Bay location 52
12. Intensity of interactions found within the epifaunal and infaunal organisms (as defined in the introduction) from the localities on the Texas Coast.......
13. Bivalve species bored by gastropods at the Eel River section and number of incidents of predation.103
14. Gastropod species bored by polychaete worms at the Eel River section and number of incidents of utilization......

Table

Page
15. Epibiontic guest abundance in the samples from the Humboldt Basin 108
16. Stratigraphhic faunal distribution for the Kettleman Hills. 12817. Distribution of interactions withinmajor faunal divisions for the Kettle-man Hills samples13118. Stratigraphic distribution of inci-dents of gastropud predation for tineKettleman Hills samples135
19. Stratigraphic distribution of algal/fungal borings for the Kettleman Hillssamples142
20. Stratigraphic distribution of clionid sponge borings for the Kettleman Hills samples 146
21. Stratigraphic distribution of poly- chaete borings for the Kettleman Hills samples 151
22. Stratigraphic distribution of encrusta- tion by bryozoans for the Kettleman Hills samples. 157
23. Stratigraphic distribution of attached bivalve guests for the Kettleman Hills samples 161
24. Stratigraphic distribution of attached barnacle guests for the Kettleman Hills samples 166

LIST OF FIGURES

Figure Page

1. Map of Texas Coast showing the location of samples used in this study 10
2. Map of California. Insets show the loca-tion of the two regions from which fossilmaterial was collected for this study......12
3. Detailed map of the Texas Coast showing sampling staions 19
4. Classification of bay and lagoonal en- vironments of the Texas Coast from Parker (1959) 20
5a. Relationship of gastropod shell orienta- tion to inhabitant 55
5b. Distribution of epibiontic guest organisms on pagurized shells 556. Ternary diagram used for the display andcomparison of interactions found at the58
5. Percentasge interactions present in the samples from the Texas Coast stations 60
6. Index map showing geographic location ofHumboldt Basin (from Burkle, et al., 1980).68
7. Generalized geologic map of Neogene strataof the Humboldt Basin showing the locationof the text sections68
8. Stratigraphic section of the Wildcat Group at the Eel River section with map showing the collection zones by formational units.. 70
9. Stratigraphic section of the Wildcat Group at the Centerville Beach section with map showing the collection zones by formational units. Black dots represent sample sites.. 71
10. Comparison of the stratigraphic sections at the Centerville Beach and Eel River localit 73
Figure
11. Stratigraphic section at the Eel River locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV 75
12. Stratigraphic section at the Centerville Beach locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV 79
13. Benthic foraminiferal biofacies and esti- matcd palcobathymetry for the Centerville Beach location (from Ingle, 1980) 84
14. Estimated paleobathymetry of the Humboldt Basin sections as determined by Ingle (1976) and Stanton (unpublished) 85
15. Stratigraphic and paleobathymetric distri- bution of guest organisms at the A. Eel River section and B. Centerville Beach section 89
16. Lithologic groups as defined for the Eel River section 91
17. Lithologic groups as defined for the Centerville Beasch section 92
20a. Sample size (total shells) and number of interactions by lithologic group for the Eel River section. (Note different Y-axis scales.) 93
20b. Sample size (total shells) and number ofinteractions by lithologic group for theCenterville Beach section. (Note differentY-axis scales.)93
2la. Total shells vs. interaction intensity by lithologic group for the Eel River section. 95
2lb. Total shells vs. interaction intensity by lithologic group for the Centerville Beach section 95
18. A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Eel River section. B. Prey bivalve/gastropod dominance percentages within samples with boreholes97
19. A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Centerville Beach section. B. Prey bivalve/ gastropod dominance percentages within samples with boreholes98
20. Distribution of prey gastropods and bi- valves for the Eel River section 100
21. Distribution of prey gastropods and bi- vales for the Centerville Beach section. 102
22. Location of the Kettleman Hills region, California with reference to large-scale, nearby structure (from Stanton and Dodd, 1970) 116
23. Generalized geologic map of the Kettleman Hills (after Woodring, et al., l940) 118
24. Early Pliocene paleogeography of west central California (after Galehouse [1967], from Dodd and Stanton, 1981) 119
25. Late Pliocene paleogeography of west central California (after Galehouse [1967], from Dodd and Stanton, 1981.) 122
26. Stratigraphy, sedimentology, faunal zones, transgression/regression curves and oxygen isotope data for the Kettleman Hills from Stanton and Dodd, 1970 124
27. Stratigraphic section showing cyclic sedi- mentation and north-south environmental facies patterns, from Stanton and Dodd, 1970 127
LIST OF PLATES
Plate I. Eel River Section.. pocket
Plate II. Centerville Beach Section..........in pocket

INTRODUCTION

Key to the concept of modern marine community is that the members of that communty interact with each other. In the processes of living, the organisms will compete for resources such as space, nutrients, and sunlight. In modern communities it is possible to observe organism inceractions, detect the changes that a commuity undergoes as it matures, and note the roles which component species play within that community.

In the fossil record, however, it is possible to have an admixture of shells of organisms from several biological communities concentrated within a single stratum. Reconstruction of a single community out of the composite assemblage may be very difficult. Species may show conflicting environmental tolerances, share incompatible positions of dominance within the community, or appear to violate rules of competitive exclusion within the assemblage. Time resolution of geologic analyses is not precise enough to allow us to define a years standing crop, detect seasonal variations within an environment, or separate out biological responses to short-term environmental variability. It may be possible, however, to recognize

The format and style follows that of the United States Geological Survey Professional Paners.

```
contemporary components of an assemblage by the
interactions between individuals if the interaction
between the two organisms resulted in modification of
the shell or shells of the organisms involved.
    Some organisms, in the process of living, modify
the shells of the species with which they interact and
in doing so leave a preservable record of that
interaction. Some invertebrate species require a hard
substrate for attachment or for protection and will
utilize the shells of other organisms for that purpose.
By cementing themselves to the shell or boring into the
surface, they modify it. Each of these types of
interactions has the same chance of being preserved as
the shell ftself. Predatory species that attempt to
penetrate shells to get at the food inside leave a
record of the attack that can be identified. In the
process of breaking the shell, or boring into it, they
leave characteristic traces of the interaction.
Objectives of the Study
    The purpose of this study was to assess the
preservation and usefulness of organism interactions in
Interpreting the fossil record. To accomplish this
study, interactions were studied in Recent fauna from
the central Texas Coast and in Pliocene - Pleistocene
fauna of the Humboldt Basin and Kettleman Hills of
California. These data were Interpreted in terms of
```

```
host - prey selectivity, evolution cf interaction
pairs, and paleoenvironment.
    There were three major objectives of this
research. The first objective was to compile evidence
from the study areas (the Gulf Coast, Humboldt Basin,
and Kettleman Hills) of the presence of organisms which
had little potential for preservation as body fossils
(ie. those with chemically unstable shells or no shells
at all) but which are preservable if they interacted
with other organisms and modifled the shells of their
hosts/prey in a characteristic manner. The organisms
which modify the shells of host species are rarely
included in faunal lists of fossil communities. A
record of the types of interactions present at each of
the study areas was compiled with attention being paid
to the stratigraphic position and geographic
distribution of each of the types of interaction pairs.
    The second major objective was to evaluate the
environmental distribution of the organism interaction
pairs. The Gulf Coast of Texas provided a modern
analogue to study the distribution of interactions
within the shallow water depositional environments of
the California locations. Analytic tools for
#nterpretation of the fossil material were developed
and tested against the known depositional environments
of the Recent material. In the Humboldt Basin the
```

```
differences in the depositional environments occurred
both vertically within each of the sections which were
studied and laterally between each of those sections.
In the Kettleman Hills the lateral distribution of
depositional environments was of primary interest
although vertical differences through the sections were
also observed.
    The third objective was to look for possible
evolution of interaction within the time interval
represented by these strata. Because of the potential
for change in interaction character of a host or guest
species through time, the nature of these changes must
be recognized. The changes in distribution of
interactions within a stratigraphic section which are
attributable to evolution within each type of
Interacrions must not be confused with the changes in
interaction pairs resulting from changes in
depositional environment through that same time.
The Community in Paleontology
    The determination of depositional environments
using single genera and species is known as autecology
(Dodd and Stanton, l981). Most Individual organisms do
not live an isolated existence, but relate in one way
or another to other individuals of the same species and
of other species within the community. A community may
be defined as an assemblage of co-occurring and
```

```
interacting organisms that recurs in time and space and
that is a recogaizable unlt with biotic controls
(Schafer, l972). The study of fossil communities is
not without its problems. Some workers believe that
because no two environments are {dentlcal, there can be
no two communities that are the same (Raup and Stanley,
1978). While this premise may hold true between
different microenvironments, large scale community
structure can be recognized. Rollins and Donahue
(1975) indicate that several types of fossil
communities may be recognized using modern ecological
stability-time concepts. The stability-time concept is
based on the relationshlps between the environmental
stability and diversity (Sanders, 1968). The
paleocommunities defined by the methods previously
listed do recur and occur within a defined time and
space, and the assembages of fossils do represent the
biotic control of the environment. The nature of the
fossil record is such that these paleocommunities do
not necessarily represent the group of interacting
organisms.
    Taphonomy plays an important role in what is
perceived as the fossil community. Through taphonomic
processes, most soft-bodfed organisms are removed, and
the preservation of hard-shelled species is biased by
differences in shell mineralogy and shell structure
```

```
(Driscoll and Swanson, 1973). This bias may be
compounded by time averaging. Time averaging occurs
because of the nature of sediment accumulation.
Sedimentation rates, which average approximately 3
cm/1000 years (Kukal, 1971; Olsen, 1978; Schindel,
1980), potentially could concentrate shell material of
many generations within a single rock stratum ff actual
sedimentation rates approximate the average. Schindel
states "sedimentation in nearly all depositional
environments is either too slow or too intermittent to
permit resolution of short-term continuous biological
processes [such as interactions] in the fossil record."
In that way, shells of individuals from many temporally
distinct "communities" could be combined into an
apparent single community. If the composite nature of
the fossil assemblage is not recognized, it would be
misinterpreted as the representation of a single
community.
    An alternate view of the nature of the fossil
record is that very little of the living communlty has
a potential for being preserved. Physical shell
destruction and chemical dissolution in modern clastic
environments rapidly remove most shells within a short
time period. The fossil record, therefore, would
represent either the very slow accumulation of shell
material (having little relationship to the living
```

```
community) or the incorporation of shells into shell
layers through the óg event (storms, hurricanes, etc.)
(Cummins, et al., l986a). Until we understand the
nature of fossil accumulation, the relationship between
the fossil community and the living community is left
unresolved. For the interpretations of this study,
time averaging is assumed.
    Previous Studies in Organism Interactions
    Direct evidence of organism interactions and
community structure in the fossil record is best
preserved in the relationships of encrusting and boring
organisms to their host/prey. These hard-substrate
organisms constitute "assemblages in situ with tlme
averaging... reduced to a minimum due to the short
life-span of the hosts and zero net sediment
accumulation" (Bottjer, 1982). The literature on
encrusting and boring (predatory and nonpredatory)
organisms is extensive concerning both the activities
of indtvidual organisms (Boekschoten, l970; Bromley and
Surlyk, 1973; Kobluk and Risk, 1977; Brett, 1978;
McNamara, 1978; Ril11ngley and Lutcavage, 1983) and
their paleoecological and paleoenvironmental
reconstructions (Roughgarden, 1975; West, 1977;
Bottjer, 1982; Karlson and Shenk, 1983; Akapan and
Farrow, 1984). Organism interaction has been studied
In terms of predation (Caullery, 1952; Carriker, 1951;
```

```
Bishop, 1975; Virnstein, l977, 1979) and community
structure (Boekschoten, 1970; Stanton and Dodd, 1976b;
Scott, 1978; Levine, 1980; Stanton and Nelson, 1980;
Stanton, et a1., l981; Kitchell, et al., 1981; Boggs,
et al., 1984).
```


METHODS

Fleld Methods

Gulf Coast
Shallow marine benthic communities of the Texas Coast were studied at nine localities between Copano Bay and Laguna Madre at North Padre Island (fig. 1). These localities were selected tó provide a range of water depth, salinity, substrate, wave energy, and turbidity. Beach environments were studied at: station 1, on the gulf side of Mustang Island near Park Road 4 ; station 2 , along the Corpus Christi Ship Channel on the back side of North Mustang Island near the Unfversity of Texas Marine Food Research Lab; station 4 , in Redfish Bay at Mustang Island State Park; and station 6, at Bird Beach Boat Basin If Padre Island State Park. Sandbar environments were studied off two of the beach localities: station 3, in Mustang Island State Park and station 5, at the Bird Beach Boat Basin. Oyster Bar environments were studied at station 7 , off the south side of Steadman Island, and station 8 , in portland near Gunderson's Marine in Nueces Bay. The bay environment was studied at station 9 , at the mouth of the Aransas River in Copano Bay.

Several parameters of the physical environment were determined at each station. Water samples were collected for later determination of salinities.

Figure 1. Map of Texas Coast showing the location of samples used in this study.

```
Turbidity was measured by checking the visibil:ty of a
metal ruler as it was lowered Ento the water. The
depth at which the end of the ruler disappeared was
recorded. Sediment samples were collected, and grain
size analyses and organi: content were estimated
qualitatively from the sediment sample. At stations
where shells were sparse, an attempt was made co
collect all of the shells within the area, being
careful not to contaminate the sample with spoil
materials. At stations with abundant shell material
the samples were collected at random with care befng
taken not to bias the collection with shells having
interactions.
The shells were treated \(\because n\) a salt water and sodium hypochlorite bath for one hour to kill the living organisms and facilitate the removal of the hermit crabs from the gastropod shells. Next the samples were washed with no less than six fresh water baths to remove all traces of the sodium hypochlorite. The materials were transported to Texas A \& M University in plastic trash cans filled with enough water to completely cover the shells.
```


California

```
Pliocene - Ple1stocene fossils were collected from the Humboldt Basin and Kettleman Hills of California (fig.2) to augment specimens collected and archived at
```


Figure 2. Map of California. Insets show the location of the two regions from which fossil material was collected for this study.

```
Texas A & M University by Drs. R. J. Stanton and J. R.
Dodd. The samples from the Humboldt Basin were
collected from the Centerville Beach and Eel River
sections (Jennings, 1983). Stratigraphic samples of
the macrofaunal shell material were collected from each
of the sections. In the sparsely fossilmferous lower
units, all of the in-place shells were collected. In
richly fossiliferous units, a sample of thirty (or
more) shells of each species was collected at random in
order to not bias the sample towards shells with
interactions. If interaction types were present but
did not fall into the random sample, the sample size
was increased in increments of twenty shells until
representatives of all interaction types occurred
within the sample.
    Samples from the Kettleman Hills were collected
from more than l70 stations in order to cover the
complete range of stratigraphic horizons.
Laboratory Methods
The Gulf Coast material was rinsed four additional
times upon arrival at Texas \(A \& M\) University to
completely remove all traces of salt water and sodium hypochlorite to prevent shell destruction. The attached, but not cemented, epifauna (such as the gastropod Crepidula) by this time had fallen from their host shells. The shells were vigorously brushed with a
```

```
tooth brush to dislodge any loose epifauna which had
not fallen off previously. The samples were treated so
that the only interactions left on the shells were
those which could potentially be preserved in the
fossil record (i.e. cemented epifauna and endoliths).
The samples were dried and identified to the lowest
taxonomic level possible using Jean Andrews'(1971)
Seashells of the Texas Coast.
    The fossils from California were prepared
carefully to avoid destroying evidence of interactions.
Preservation of the fossils, particularly from lower
stratigraphic units in the Humboldt Basin, was
extremely poor. The condition of some of the fossils
resulted in the loss of data in transportation to the
lab. Fossils were identified by comparison with the
collection of Drs. Stanton and Dodd, and species names
were verified through the Information included in Myra
Keen and Herdis Bentson's (1944) Check List of
California Tertiary Marine Mollusca and Barry Roth's
(1979) Ph.D. dissertation from the University of
California, Berkeley.
    Each shell was studied at low magnification with a
Zeiss binocular microscope and host and guest
organisms, shell condition, articulation, and location
of interaction on the host shell were recorded.
Appendix I lists the organisms present at the Gulf
```

```
Coast localities. Appendix II lists the foss:l fauna of the California localities. The life habit for each species is included in this appendix. Organisms were classified as being infaunal if they are either completely or are periodically covered by sediment. The epifaunal organisms were defined as those which lie on, attach to, or move about on the sediment surface. The degree to which infaunal shells are utilizedis an Important factor in the analyses of the processes which make these shells available for interaction. Appendix III lists the localfties from the Kettleman Hills from which samples were used in this study. The data from the Humboldt Basin localities are summarizedin Appendix IV.
```


Data Considerations

The data presented in this study are composed of Individual specimens from localities of differing sample strategy within regions with different distributions of (depositional) environmental complexiry. The pertinent ecologic data fnclude: salinity, sediment type, water depth, ecologic stability, and faunal complexity. Each of these factors must be considered when comparing interaction information between samples and localities. Sample size and measurement of numerical significance presented a problem in the analyses. Individual

```
samples varied between one to five hundred or more
shells per localsty, with most samples containing fewer
than twenty specimens.
    The Humboldt Basin sections present the best
example of the problem of sample size. The problem was
not the result of insufficient collection of samples
but that the Pullen, Eel River, and lower Rio Dell were
only sparsely foss:liferous. Even when every ava&lable
shell was collected, the occurrence of one shell in a
hundred to a thousand feet of section was not uncommon.
Some of the strata in the upper portion of the Rio Dell
Formation contalned more shells than the entire lower
section collectively. The problem was in comparing
percentages of the interactions between the lower and
upper sections. With the nature of the samples and all
other problems ment{oned above, it was decided to make
qualitative observations from the quantitative data.
    Each type of Interaction is discussed in terms of
the major objectives of this study. The interpre-
tations presented within this section are based on the
lithology, inferred depositional environment, faunal
abundance and ratios, life habits, and the specific
nature of the interaction types. The amount of data
Inyolved In the Interpretation is too large to include
a discussion of each individual sample from every
location. Pertinent instances of individual
```

```
interactions are included when discussion requ: = =s
such. The data for the Texas Gulf Coast local:=:es are
provided In tables in that section. The data Erom
which the conclusions are derived for the Humboidt
Basin are presented in Appendix IV.
```

The Gulf Coast of Texas (fig. 3) is used as the modern analogue for development of the methodology to be used on the Pliocene - Pleistocene localities in California. The area covered in this portion of the study lies between San Antonio Bay in the north and Batfin Bay in the south. The environments within the study area represent a wide range of clastic depositional settings. The variability in salinity, substrate character, turbidity, current influence, and water depth present in this area allows for the analysis of the factors which may affect the distribution of organisminteractions.

The Gulf Coast of Texas has been extensively studied and characterized (for a comprehensive bibliography of studies on the Texas Gulf coast see Brown, et al., 1976). Parker (1959) studied the area around Rockport, Texas and Laguna Madre in order to determine the distribution of the macrofaunal assemblages of the bays and the lagoons of the south central Texas coast. He subdivided the environments of the Texas coast into eight types of environments (fig. 4); sampling for this study covers five of these. Copano Bay has been extensively studied by Calnan (1980), and the nature of shell accumulation has been studied in detail at sample location 9 (Cummins, et

Figure 3. Detailed map of the Texas Coast showing sampling stations. 1. Gulf of Mexico Beach, 2. Corpus Christi Ship Channel, 3 \& 4. Mustang Island State Park, 5 \& 6. Bird Beach Boat Basin, 7. Steadman Island oyster bar, 8. Gunderson's Marine oyster bar, 9. Copano Bay.

Figure 4. Classification of bay and lagoonal environments of the Texas Coast from Parker (1959).

```
al.: 1986a; Cummins, et al., 1986b; Staff, et al.,
1986).
```

The coastline of Texas has been actively building outward since the beginning of the Cenozoic era. The sediments of the Texas coastine were deposited in "fluvial-deltaic, barrier-strandplain-chenier ... bay-estuary-lagoon ... as well as eolian (wind) ... and well-developed marsh-swamp system(s)" (Brown, et al., 1976). As sea level fluctuated during the pleistocene, the shoreline migrated across the coastal plain and shallow shelf areas. These movements of the shoreline are marked in relict shoreline deposits along the shores of the Laguna Madre and the bays. Approximately 3,000 to 2,500 years ago sea level stabilized at its present position, and the features of the today's coastline began to form. Small barrier islands (what are now St. Joseph, Mustang, and Padre Islands) began forming and grew by spit accretion and agglomeration. As the barrier islands formed, the waters of the bays became separated from the conditions of the open Gulf. The processes which have shaped the Texas coast to its present configuration continue to operate and modify the existing enviromments (Brown, et al. 1976). The materials presented in this section are organized to provide the necessary information for the interpretation of organism interactions present at each

Abstract

of the locations. The physical and hydrological conditions at each of the localities are presented. A list of host organisms (and their distributions) is presented in Table 1 . Characteristic interactions are discussed in the light of the conditions present at each locality. This is followed by an interpretation of the distribution of each type of tnteraction (predation, non-predatory shell borings, and encrustations).

Station Characteristics

Station 1 , the only open gulf site, is on northern Mustang Island along a fifty foot section of beach immediately south of Beach Access Road 4. Shells were collected between the $h \neq g h$ tide mark and the first sandbar offshore (0 to 3 feet water depth). The salinity was $35^{\circ} / 00$ at the time of collection. The water was turbid, and visibility was limited to a depth of 1.5 feet. The area is subject to strong wave and current activities which suspend sediments to occlude visibility.

The substrate was composed of medium sand and shell material and was relatively low in organic content (dead ofl present in the sample from offshore dumping makes observation of the natural organic content difficult). The sediment in the swash zone was firm but liquified easily with minor vibration. The

еұеวоโstp（•S）exqajal
euthes（•I）enṭto x
¿ uooksng
snsobetd •s uovisng unṭIexquos uooksng
snticitaวues（•d）snseчzuej

еұвoт̣tduas •e sṭyoeut
 snzeoṭidnp（＊N）saכṭuṭiod ernpẹdas］ buetd（ $\cdot \mathrm{C}$ ）einpṭdas〕 （•כ）е ¿ snquosis sn7ete snquozis unuepțiot」（•1）unṭuł！
 ełesorst（・フ）euțjoz7！า

North Mustang Island－Beach
Corpus Christi Ship Channel

Mustapg Island State Park－
Sandbar

Mustang Island State Park－
Beach

Bird Beach Boat Basin－
Sandbar
Bird Beach Boat Basin－

Beach | Steadman Island Oyster Bar |
| :---: |
| Gunderson＇s Marine Oyster |
| Bar |

 $\overline{\text { วุешт!ueuI }}$
-ds aindzas \times
$\overline{\text { атәецэкгод }}$
auoq पST.. x

sacsed
ełeiojuadsanburnb equ!iaw \times
แтәроит̣чэる
snṭieqTiv snaeuaj $\quad \times$
meta qexj x
әтэeuseg pт̣ueโeg x
spodosif7
aโenbəuṬ ewoโdṬIad \times
¿ eynquos x
eโпqioj x

sțsuaṭqoadueo eṭIeuajiah $\times \times \times \times \times$

snosṭp (・ロ) euțsog
arth Mustang Island-Beach X
Corpus Christi Ship Channel X
ustang Island State Park- X
Sandbar
Mustang Island State Park-
Beach
Beach
Bird Beach Boat Basin-
Sandbar
Bird Beach Boat Basin-
Beach
Steadman Island Oyster B
Gunderson's Marine Oyster-
ar
Copano Bay

```
currents constantly move the sediments and preclude the
rooting of vegetation or establishment of sessile
epifauna.
    The shells of this station represent material in
SItu (collected live) and material carried northward
and shoreward by wave induced and prevalling longshore
currents.
    The gulf beach station represents an ecologically
complex area. Broad areas were alternately inundated
with water and exposed to the air. High wave and
current energies do not allow for a large epifaunal
component. The only live epifauna observed were highly
mobile and generally located near the first sandbar.
The most consplcuous Infaunal organism in the swash
zone was the bivalve Donax variabilis texasina Reeve.
Donax is brought to the surface by the surging water
and crashing waves and quickly reburies itself before
the next wave arrives. No other infaunal organisms
were collected alive.
    Station 2 is located along the shoreline of the
Corpus Christi Ship Channel, one-quarter mile southwest
of the University of Texas Marine Food Research
Laboratory on north Mustang Island. This location is a
"variable salinity sound environment" as defined by
Parker (1959). Shells were collected along a
sixty-five foot section of the beach, extending to one
```

```
foot of water depth. Care was taken to ensure that no
Pleistocene material, eroded out of the bank
immediately north of the station, was collected. The
older material was dredged out of the ship channel and
is not characteristic of the present fauna of this
environment. Inclusion of this older material in the
analyses would have invalidated the usefulness of this
station. The salinity was 33'%/oo at the time of
collection, and the bottom was visible to depths below
that which were sampled. Tidal currents moved shell
material along the shore, and wave activity was almost
non-existent.
The substrate was composed of fine sand and coarse silt-sized particles with locally abundant strands of shell material. The substrate was firm and relatively stable. Currents move the sediments along the beach to a lesser extent here than at the gulf beach station. There was no rooted vegetation, and the only plant material collected was derived from the nearby lagoon and floated \(1 n\).
No live bivalves were collected. With the exception of Cantharus ( \(\underline{P}\).) cancellarius, none of the gastropods were noted alive within the site. Numerous gastropod shelis were collected with pagurid crustaceans (hermit crabs) in them. The majority of the shells collected at this site have been either
```



```
observed at this station. The shells of this station
represent infaunal materlal and transported shells.
    Station 4 is located in Redfish Bay on the beach
across from station 3. Samples were collected from the
shoreline and adjacent water to a depth of 6 inches.
Salinity was 32%/0o, and the water was clear. Slow
water currents move across the collecting area with
minimai wave activicy.
    The beach has a fine sand, silt, and clay
substrate with low shell abundance, and the sediment
was organic rich. The surface was firm and was
relatively stable being bound by algae and the sea
grass Thalassia testudinum. Currents keep the shallow
water nearshore areas from becoming anoxic and allow
the lush growth of vegetation which would otherwise be
1mpossible. The rooted vegetation provides protection.
No shells were collected with live host organisms in
them. Shell material was brought up to the beach from
the channel/seagrass community by the hermit crabs, and
most of the gastropod shells were found to be housing
live hermit crabs.
The two Mustang Island State Park stations share similar water chemistry conditions but were physically different. The water from the Fish Pass inlet brings normal salinity organisms and shells to the back of the barifer island. These shells reach the beach but can
```


was $32^{\circ} / 00$ at the time of collection (it had rafned within the past 24 hours), and the water was clear. Moderate currents flow across the beach from north to south, and wave activity was minimal.

The beach has a medium sand, silt, and clay substrate with low shell abundance. The surface was firm, relatively stable, and organic rich. There was rooted vegetation nearby, and the seagrasses help to baffle the wave energy before it reaches the beach. No live host were collected. Hermit crabs were found in the occupied gastropod shells, having removed these shells from the seagrass areas of the nearby channel.

The two Bird Beach Boat Basin stations were chemically and physically very similar. The currents from the northern end of Laguna Madre bring high salinity organisms and shells to this back barifer island station. These shells were transported to the sandbar/spit but did not reach the protected beach area across the shallow channel.

Station 7 is an oyster bank at the northern end of Redfish Bay on Steadman Island. Steadman Island is joined partially to Harbor Island (a predominantyy man-made island) (Brown, et al, 1976). The closest Parker term for this location would be "shallow grassy bay." Samples were collected from an oyster bar (reef core) and surrounding areas. Water depth ranged from

2.5 to 3.5 feet. The salinity at the time of	
	llection was $33^{\circ} / 00$, and the bottom was visible
hroughout the total depth range. The area may be	
subjected to strong wave and current activity but is	
usually quiet.	
The substrate was silty clay (around the reefs)	
and shell to shelly clay (in the reefs proper) and has	
a high organic content. The substrate was relatively	
soupy except where stabilized by the seagrass Thalassia	
testudinum or in the reef-proper.	
	The shells of this station represent material in
Situ (collected live), material caried out from	
Steadman Island during storms, and material carried in	
by hermit crabs. The reefs off Steadman Is land were	
located adjacent to a wind-tidal flat (Brown, et al,	
1976). This area is protected by Harbor Is land from	
the inlet influence of Aransas Pass and the open gulf.	
The construction of the causeway between Port Aransas	
and Aransas Pass isolates this station from	
environmental fnfluences to the north (separating	
Redfish Bay from Aransas Bay). This station was the	
only one in which live naticids (Polinices) were	
	served preying on bivalve hosts. There were spoil
	les throughout the area, and care was taken to avold
	ing reworked Pleistocene m

Station 8 is located west of Gunderson's Marine Boat Shop in Portland, within Nueces Bay. The oyster bar is separated from the shore by a dredged channel, approximately 6 to 7 feet deep. This location is that of a "bay margin" as defined by Parker. Shells were collected from the reef and the shallow water areas around it. Care was taken when sampling not to collect material dumped when the channel was dredged. Salinity was $28^{\circ} / 00$ at the time of collection, and high water turbidity restricted visibility to less than one foot. There were moderate currents passing over the sampling location, and wave activity is at times strong enough to break shells off of the buildup, as evidenced by the amount of rubble in the sediments around the reef proper.

The reef and surrounding area has a clayey shell to clayey medium sand substrate with locally high shell abundance. The surface was unstable except in reefal areas. There was rooted vegetation (Diplanthera [Halodule] wrightii), which acts to stabilize the substrate and provide protection in areas around the reef. Several organisms were collected live. Live host organisms include both gastropods and bivalves. The reefs at this station are in a protected part of Nueces Bay at the north end of the Highway 181 bridge. Low salinity water from the Nueces River mixes

Abstract

with the more saline waters of Corpus Christi Bay. Damage done to the reefs by dredging has had detrimental effect on the biota. Relatively few live oysters were observed on the reef proper, and most of the reef served as refuge for the moblle epibionts of the area.

Station 9 is situated at Black Point at the southern end of Copano Bay and is located at the point where the Aransas River and Chiltipin Creek empty into the bay. This site represents Parker's "river influenced low salinity estuary." Shells were taken from a zone within approximately 200 feet of the bridge. Water depths ranged between one to 2.5 feet. The salinity at the time of collection was $5^{\circ} / 00$, and the water was turbid. The water's turbidity at this location is the result of sediment being brought into Copano Bay by the Aransas River. The area was occasionally subjected to strong current activity. The substrate was composed of medium sand, silt, and clay and has a relatively high organic content. The sediment was soupy except for patches which have been stabilized by the bivalve Rangia cuneata Gray. The margins of the area were sparsely vegetated with seagrass.

The shells of Rangia at this station were removed from within the sediment. The live organisms were
largely infaunal, and the shells of the dead organisms were lying at the sediment surface.

Interactions by Station
Each station is characterized by different and distinctive interactions. Table 2 shows the number of shells present at each of the localities. The degree of utilization of host shells and the relative percentages of the different types of non-predatory interactions are also indicated. These percentages are the result of the combined influence of water chemistry, substrate ava£lab£1£1ty, currents, nutrients, and the compatibility of the organisms. In cases where the hosts were alfve when the interaction takes place, the combined requirements of both organisms are important. The distribution of predation, especially of the gastropods, is controlled by the availability of suitable prey. Epibiontic and endolithic organisms utilize the shells of live and dead hosts. The physical character of the shell becomes more important than the ecology of the host organism when these guests use the shells after the death of the host.

The interactions from the beach of the Gulf of Mexico are presented in Table 3. Most of the shells from the beach were not involved in interactions. The shells which show the most intensive interaction, the
Table 2 . Texas Coast shells with indication of utilieation
and interaction

and interaction

$$
\begin{array}{lr}
\text { Station } & \text { Total Shells } \\
\hline \text { Gulf of Mexico Beach } & 231 \\
\text { Corpus Christi Ship Channel } & 141 \\
\text { Mustang Island State Park, Sandbar } & 105 \\
\text { Mustang Island State Park, Beach } & 249 \\
\text { Bird Beach Boat Basin, Sandbar } & 51 \\
\text { Bird Beach Boat Basin, Beach } & 41 \\
\text { Steadman Island Oyster Bar } & 131 \\
\text { Gunderson's Marine Oyster Bar } & 87 \\
\text { Copano Bay }
\end{array}
$$

Total Shells = 1106

Ostreidae with greater that 72% of the shells showing some type of interaction, are not typical of the beach and were shells that have been brought in by currents and wave action. The most active guest organisms were the polydoran worms and the encrusting bryozoans. The gastropod oliva (I.) sayana showed a tendency to be bored by the all sizes of the worm Polydora commensalis. The shells of 0liva did not possess hermit crabs when collected and were found in the deepest water of the collecting zone.

The interactions from the beach of the Corpus Christi ship channel at the Marine Food Research Lab are presented in Table 4. Most of the shells from the beach were involved in extensive interactions. Aequipecten (P. $^{\text {. }) ~ a m p l i c o s t a t u s, ~ p l i c a t u l a ~ g i b b o s a, ~ a n d ~}$ Mercenaria campechiensis contained the highest numbers of interactions of the bivalves found. Aequipecten and Plicatula were dominated by the activities of epibiontic organisms while Mercenaria was dominated by the borings of Polydora; the difference can be related to life habit of the host organism, Mercenaria being infaunal. Strombus(?) and Thais (Stramonita) haemastoma floridana were involved in the most Interactions involving the gastropods. Thais was the most selected host species of this location. Guests of Thais include equal numbers of epibiontic and

sโ̣I7sanba eajfso
วอрт̣uŤโコ1
－$=$
F
\rightarrow n $0 \rightarrow r \rightarrow 0$
N オ \rightarrow かN N
－
750H

$$
\begin{aligned}
& \text { None } \\
& \text { Cliona } \\
& \text { Cheilostome bryozoans } \\
& \text { Naticid boring } \\
& \text { Oysters } \\
& \text { Barnacle } \\
& \text { Polydora-sinall (.1-.5mm) } \\
& \text { Polydora-medium (.5-1mm) } \\
& \text { Polydora-large (1+min) } \\
& \text { Serpulid worm }
\end{aligned}
$$

```
endolithic guests. The most active guest organisms at
this station were the chellostome bryozoans, oyster
spats, barnacles, all sizes of Polydora, and the
serpulid worms.
    The interactions from the sandbar at Mustang
Island State Park are presented in Table 5. Most of
the shells from the sandbar were not involved in any
interactions. The bivalve Aequipecten (P.)
amplicostatus was the most utilized bivalve host with
only epibiontic interactions. Polinices (Neverita)
duplicatus and Busycon contrarium were the most active
of the gastropod hosts. Polinices shows a tendency
towards Polydora borings over other interactions.
Busycon had a more even mix of interactions with
endolithic and epibiontic organisms. The most numerous
interactions were with the barnacles, small polydorans,
and crabs. Slightly less than three- quarters of the
barnacles were found on gastropod shells with almost
half of those on the shells of Busycon. The
occurrences of the small polydorans and the signs of
crab predation were concentrated on the shells of
Polinices.
```

The interactions from the beach at Mustang Island State Park are presented in Table ó. Less than inafof the shells from the beach were involved in Interactions. Chione cancellata was the most selected

cotruṛaut corzoossexy		\checkmark			-		-	-		-	
sșu7sanba eajzso		\sim			~	n	~	m	-	-	
วep!̣əコ7s0		\checkmark			-						
esorapuod (•3) etzaon		-			-	-	\sim	-			
eтt\%qлeg	-										
stipeno (\dagger) esepeuy				-			\checkmark				
			-			-	-	-			
aepțoxy		\checkmark					-				
โeJauab-anโentg	\checkmark						~	N			
	-	a	F		\sim	~	$\stackrel{\square}{\square}$	-		$\stackrel{\square}{\square}$	m
¿ uooksng							-	-			
			-	-			\sim	N			
unnuod (${ }^{\text {d }}$) xainl		-	N			~	\checkmark	-			-
euepțjord emozsemaey (*s) sṭeyl	-	\sim	n		\checkmark	m	\bigcirc	\sim	m	\bigcirc	
eұeวotsṭp (*S) exqaraj	\sim							-			
sņeortidnp (${ }^{\text {N }}$) sasṭuṛtod	\sim	-		\checkmark		\checkmark	n	m	\checkmark	-	-
buetd ($\cdot \mathrm{C}$) etnptadax	\bigcirc				-					-	
-ds ($\cdot \mathrm{J}$) eโnpịdaj	\pm	-								n	
-ds etnpitdas	N										
eqejoust ($\cdot 7$) eutiozfin	N										
$7{ }^{\text {5 O }} \mathrm{H}$											
		$\stackrel{y}{\square}$			$\begin{aligned} & \mathscr{0} \\ & \stackrel{4}{む} \\ & \stackrel{\omega}{n} \\ & \vdots \end{aligned}$						

Aequipecten (P.) amplicostatus to Crab claw.
me[o qeaj
Bynquoj

 snṭaqaโd ('W) sntabel N euepțiot. (・コ) ełțpaej -
xatduṬs ețuouy ∞

75 OH
bivalve host organism at this site. Slightly less than half of the Chione were involved in interactions, most of them involved with polydoran guests. The gastropods Polinices (N.) duplicatus, Thais (S.) haemastoma floridana, and Busycon contrarium were the dominant gastropod hosts. Polinices shows a similar relationship with endolithic polydorans on the beach as they have on the adjacent sandbar. Busycon interactions were almost evenly weighted between endolithic (oyster spats and barnacles being the dominant epibionts) and epibiontlc organisms. Thais occurred almost exclusively as a host organism with few unutilized shells. The most active guest organisms were the oyster spats, barnacles, and smaller polydorans.

The interactions present on the sandbar at the Bird Beach Boat Basin station on northern Padre Island are presented in Table 7. Shells without interactions predominate in this environment where most of the hosts were infaunal, and the shells of the dead organisms were partially or wholly buried. The most active host was Tagelus (M.) plebeius with slightly less than a third of the shells showing an interaction. The most prevalent guest gas the sandtube worm with all of its activity on Tagelus.

The interactions present at the beach at the Bitd Beach Boat Basin station on northern Padre Island are presented in Table 8. With the exception of Crepidula (epibionts themselves), the only host shells present were those of dead gastropods, and they were utilized by hermit crabs. Over sixty percent of the shells present had some type of interaction with serpulid worms and Crepidula being the most active guests. The interactions present on the reef near the Steadman Island station in northern Redfish Bay are presented in Table 9. Most of the shells were involved in interactions. The bivalve Crassostrea virginica was the most interactive host. Crassostrea, making up the reef structure, was affected by all of the present guest organisms. Thais (S.) haemastoma floridana and Busycon contrarium were the most interactive gastropod hosts. Thais was affected by an equal number of epibiontic and endolithic organisms; there were no unaffected shells present in the sample. The guest organisms on Busycon were predominantly eplbiontic with cheilostome bryozoans and balanid barnacles present. The most active guest organisms were Cliona and
oysters. Live Cliona were collected in Crassostrea shells only at this site. This station was the only one in which a live gastropod was found boring into the shell of a bivalve (a Mercenaria fragment).
Table 8. Fauna and interactions from the Bird Beach Boat Basin, beach location.

-ds (•כ) etnpṭdaxj ${ }^{75} \mathrm{SOH}$
Table 9. Fauna and interactions from the Steadman Island oyster bar location.

The interactions present on the reef near Gunderson's Marine station in northern Nueces Bay are presented in Table lo. Most of the shells at this
 oysters, Crassostrea virginica, ostrea equestris, and Plicatulata gibbosa were the most interactive hosts. The epibionts on the oyster shells were the cheilostome bryozoans, oysters (adult and spat), and barnacles. This was not unexpected because the oysters make up the frame of the reef and were present for attachment by other organisms.

Few interactions were present at the mouth of the Aransas River station in southern Copano Bay (Table 11). Rangia cuneata dominated this environment and its interactions. Cheilostome bryozoans and barnacles were the dominant guests found on Rangia. These guest organisms were primarily concentrated on the anterior tip of the infaunal shell where the siphons are extruded. Guest organisms on other portions of the Rangia shell were found on the shells of dead Rangia lying on the sediment surface.

Specific Interactions
Throughout the stations sampled in this study, with the exception of the Copano Bay location, the guest organisms on bivalve hosts show no preference for attachment location which can be attributed to the life

esoqqụ exnzeoṭld	∞	\sim	$\stackrel{\sim}{n}$		$\stackrel{m}{ }$	
	N	∞	\cdots	a	N	-
ețI7sanba earzso	r	呙	앙	m	$\bar{\sim}$	$\stackrel{n}{n}$
-ds efndsas						-
snzeortidnp (${ }^{\text {a }}$) sastụtad		-				
euetd (-C) etnprotaj			-	N	-	N
unțjesquos uovksng	-					
sņsnxa (•8) saquopțy	\sim	-		-		
$7{ }^{\text {SOH }}$						
		哥				
	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$$			

Table ll. Fauna and interactions from the Copano Bay location.

$7{ }^{\mathbf{5 S O H}}$
None
Cheilostome bryozoan
Oyster
Barnacle
Polydora-medium (.5-1mm)
Crepidula sp.
Brachidontes (I.) recurvus
Sand Tube worm
habit of the live host. The orientation of the epibiontic guest organisms was a function of the attitude of the shell on the substrate. The infaunal Rangia cuneata at Copano Bay had epifuanal guests located on the exposed portion of their shells. These surfaces provide some of the only substrate in this environment and were utilized by all avaflable guest organisms.

In interactions between live gastropods and epibiontic guest organisms, no preference for attachment location was noted. Some of the gastropod shells were covered from the apex to the bot om of the body whorl by cheilostome bryozoans and/or were bored completely by the sponge Cliona. The distribution of the bryozoans on the conch and presence of the bryozoans and clionid borings inside of the body whorl indicate that the guest organisms interacted with the shell after the gastropod host had died.

The only clear evidence for crab predation was present at the beach station on the Gulf of Mexico side of Mustang Island. The shell material of the body whorl of the gastropod oliva (I.) sayana has been peeled off in a pattern characteristic of crab predation (Schafer, 1980). Potential crab predation evidence exists in the shells of the gastropod Polinices (N.) duplicatus from the sandbar at the

```
Mustang Island State Park station. The body whorls of
the Polinices were almost entirely removed. The poor
condition of these shells and the degree of
encrustation preclude labeling this as crab predation.
    Some gastropod shells, especially those of
Polinices (N.) duplicatus and Busycon contrarium,
possess a unique distribution of epibiontic and
endolithic organisms. The distribution of the guest
organisms was not controlled by a live gastropod host
but by the activities of the pagurid crustaceans
(hermit crabs) which use their shells as homes.
Gastropods hold their shells with the aperture downward
or only slightly elevated to the front. The pagurids
orient the aperture much higher (fig. 5a), relative to
the substrate, and the way that they move the shell
concentrates the guest organisms onto an area on the
body whorl, one-quarter to one-half revolution behind
the aperture (fig. 5b). The shell surface in contact
with the sediment is uniformly clear of eplbionts and
endolithic organisms and shows slgns of abrasion. This
distribution of organisms was noted by Walker (1986) in
samples from the modern shells of Bodega Bay,
California and fossil shells from the California
pleistocene. She termed this activity'pagurization'.
    A single pagurid will use a wide range of shell
sizes as it grows. Pagurids were observed in shells of
```


Figure 5a. Relationship of gastropod shell orientation to inhabitant: 1. gastropod, 2 . hermit crab.

4

2

Figure 5b. Distribution of epibiontic guest organisms on pagurized shells. I. Apical view, 2. Apertural view.

	Cantharus (Polifa) cancellarius at station 6. These
	shells were less than 1 cm in length. Pagurids were
	observed in all of the sizes of the shells of Polinices
	(N.) duplicatus at the same station; some of these
	shells reached a length in excess of 20 cm .
	Utilization of all shell sizes, as observed in this
	study, would lead to the conclusion that the pagurids
	do not affect the shell size distribution of the
	gastropods as previously proposed (Walker, 1986).
	The pagurids removed shells of gastropods from the
	seagrass and oyster reef environments, where live
	gastropods are found, and moved them into the shallow
	beach environments. To attempt to reconstruct the
	ecological structure of the beach community using the
	ecology of the live gastropod species, and not the
	pagurids ecology, would lead to erroneous conclusions.
	In the act of moving the shells, the pagurids were
	homogenizing the faunal component of laterally distinct
	environments. This biotransportation of shell material
	does not yield distinctive shell deposits. Unlike
	shells which have been transported by currents, the
	shells transported by the pagurids do not show any
	signs of being concentrated, oriented in the sediment,
	or size selected by the activities of the pagurids.
	Without the distribution of the epibiontic and
	endolithic organisms, the detection and proper

```
utilization of pagurized shells' ecological information
are extremely difficult.
Shells of the live gastropods and unoccupied shells of the dead gastropods did not display any preferred orientation of guest organisms. Most live gastropods had shells which were clear of endoliths, and a large number of these shells had no epizoans. The shells of the infaunal gastropods show an eptzoan encrustation characteristic of epifauna if they are "pagurized." In the fossil record the presence of epibiontic guest organisms could indicate incorrect life habit information for the host species. Station Relationships
A method for visually displaying the interaction character of the localities was developed for use in this study (fig. 6). The diagram uses the percentages of shells with epibiontic guests, endolithic guests, and the percentage of shells which were free of guests as apices. In this way, the diagram describes both the abundance of utilized shells and the types of organisms that use them. With this diagram, the general character of each locality is readily comparable to that at other locations. By presenting the data in this manner, it is possibie to distinguish between stations with similar host fauna from different environments, if the environmental factors affect the
```


[^0]```
availability of guest organisms, and between widely
different environments, regardless of host
distributions.
 Figure 7 displays the positions of the interaction
composition at each of the stations. The Gulf of
Mexico beach, Bird Beach Boat Basin sandbar, and Copano
Bay stations have the fewest shells involved in
interactions. Each of these stations was populated by
Infaunal (or shallowly infaunal) organisms as the
result of adverse conditions present at the
sediment/water interface. The high-energy environment
of the shoreface at the gulf beach location precludes
Inhabitance by most epifaunal molluscan species. The
epifaunal gastropod shells found here were empty at the
time of collection. The presence of large numbers of
the sand dollar Melita quinquesperforata contributed to
the low overall interaction intensity at the station.
Live Melita were found on the second sandbar offshore
(where the waves begin to break). When they die,
their shells are brought to the shore by wave generated
currents, and most are rapidly disarticulated by the
crashing waves. This activity happens rapidly after
death, and there is not enough time to develop
Interactions before these shells are destroyed. The
presence of warm, stagnant, shallow water over the BIrd
Beach Boat Basin sandbar location precludes the
```



Figure 7. Percentage interactions present in the samples from the Texas Coast stations. l. Gulf of Mexico beach, 2. Corpus Christi Ship Channel, 3. Mustang Island State Park sandbar, 4. Mustang Island State Park beach, 5. Bird Beach Boat Basin sandbar, 6. Bird Beach Boat Basin beach, 7. Steadman Island oyster bar, 8. Gunderson's Marine oyster bar, 9. Copano Bay.

| formation of large epifaunal host populations, and all |
| :---: |
| live host organisms collected there were infaunal. The |
| shells that were exposed on the surface were those of |
| thin-shelled bivalves (Tagelus and some tellinids) and |
| some small gastropods. The shells are toothin to be |
| bored by polydorans, and clionids are fragmented |
| rapidly after exposure. The Copano Bay station has an |
| exclusively infaunal host species component, and, |
| although what was brought to the surface was utilized, |
| this percentage was low relative to the standing host |
| crop at any one time because of shell destruction |
| (Cummins, et al., 1986a). As indicated by these three |
| stations, the presence of a figh percentage of |
| unutilized shells in a fossil community may represent |
| stressed environments. In the fossil record, rapld |
| burial also may lead to underutilization of shells by |
| interactants. The type of environmental pressures <br> which result in low utilization can be varied, and the |
|  |  |
|  |
| station on the diagram. |
| Both of the Mustang Island State Park stations |
| group close together. The similarity of the two |
| stations is related to the overriding control of the |
| waters of Fish Pass. Water depths were greater at this |
| sandbar than at Bird Beach. The Mustang Island Stare |
| Park sandbar station also differs in that it is |

continuously bathed by waters flowing in through fish Pass. The water conditions allowed for a greater epifaunal host component on the sandbar. The water conditions on the sandbar did not differ from those of the shoreline, and, therefore, both stations from this location possess close interaction relationships.

The Bird Beach Boat Basin locations, sandbar and beach, were dissimilar. The sandbar at Bird Beach is a relatively stagnant water environment with no epifauna. Pagurid crabs, found in the channel separating the sandbar from the beach, take the gastropod shells out of the seagrass beds into the less harsh beach environment and not onto the sandbar. The only shells collected from the beach were pagurized gastropod shells. Lack of an infaunal component at the beach gives it a lower percentage of unutilized shells. Both of the oyster bank stations, Steadman Island and Gunderson's Marine show extensive utilization of shell material by both epizofc and endolithic organisms. The substrate conditions relegate most epifaunal organisms to atrachment on the reef mass. These stations have the largest percentage of host organisms present as epibiontic guest organisms. The degree of interaction at these locations shows a high degree of interdependence. Reduced salinity at the Gunderson's Marine station appears to adversely affect
endolithic organisms (Cliona was not present here). More work needs to be done to establish the use of relative endolith/epizoan percentages to distinguish between inner bay and lagoonal oyster reefs.
The Marine Science Food Research Lab beach location has the highest percentage of utilized shells of the localities in the study. Most shells were utilized by more than one type of guest organism with both epizoans and endoliths present. The large number of interactions is explained tn the nature of the shell accumulation at this beach. Shell material is moved along the beach by currents in the Corpus Christi ship channel. Shells are moved up into shallow water and are continuously maintained at the sediment surface by the same currents. Hermit crabs also carry the shells Into this area of beach from the channel and were noted moving against the currents at ebbtide. Shell accumulation at this station is the result of physical and biological transportation. The high degree of shell utilization is a function of the amount of time that these shells are maintained on the surface.

## Summary

The physical environment (substrate, salinity, water depth, turbidity, and wave activity) is the primary control of the distribution of the hosts and guests. The relationship between the cypes of


#### Abstract

interacting organisms and the environments that characteristic interaction pairs are found in is a complex one. The physiological requirements of both the host organism and the guest organism must have been relatively similar, if interaction occurred when both were alive. If the shell has been colonized after death of the host, only the requirements of the guest will lead to the correct interpretation of the depositional environment. The identification of transported shells in a fossil assemblage is important when using interaction pairs to determine paleoenvironment. Differences in the mechanisms of mechanical and biological transportation can yield differences in the amount and types of interactions. The differences in the intensities of interactions between epifaunal and infaunal host species from the Gulf Coast stations are displayed in Table l2. With the exception of the Copano Bay locality, $18 \%$ or more of the shells of infaunal organisms were involved in interactions at each of the stations. The degree of shell utilization within the Texas coast areas studied is a function of the residence time of the shell on the sediment surface. Epifauna are subject to the activities of epibionts and endoliths throughout their lives. If the shell is maintained on the surface after death, by physical or biological means, a diverse set


> Table 12 . Intensity of interactions found within the epifaunal and infaunal organisms (as defined in the introduction) from the localities on the Texas Coast.

|  | Interaction Intensity Epifauna Infauna |
| :---: | :---: |
| Gulf of Mexico Beach | $90.7 \quad 48.8$ |
| Corpus Christi Ship Channel | 88.261 .9 |
| Mustang isjand State Park: Sandbar | 26.153 .7 |
| Beach | 38.3 46.1 |
| Padre Island State Park: Sandbar | 11.118 .4 |
| Beach | 25.078 .6 |
| Steadman Island Oyster Bar | 68.9 92.3 |
| Gunderson's Marine Oyster Bar | 75.60 .0 |
| Copano Bay | 0.025 .4 |

```
of lnteractions can develop on the shell. Infaunal
organisms that are brought to the surface have only the
time until reburial to be involved in interactions.
Depending on the time of their exposure, diverse and
intricate interactions can develop on the shells.
 It is possible that the mechanisms that maintain
shells on the surface, and are engaged in interactions,
keep the shells from being incorporated into the
sediment and preserved. The data from the Humboldt
Basin and the Kettleman Hills indicate that
preservation of intensely utilized shells is the
exception and not the rule in fossil accumulations.
```

The Gulf Coast data has shown that there are diverse ecological elements that control the distribution and degree of organisminteractions. Each of the stations represents the variations within an overall depositional setting. Differences from station to station were the result of faunal variations brought on by environmental differences. In time, these environments will migrate as the Texas coast builds outward, and the potential fossil record would include a mixture of shells from several adjacent environments.

In order to study interactions across a large environmental gradient, an area with directed changes in the depositional settings was chosen. The Neogene Wildcat Group of the Humboldt Basin, northern California (fig. 8) contains a continuous section of basinal to littoral sediments. The Humboldt Basin formed rapidly during Late Mlocene. Through the Pliocene and into the Pleistocene, the basin was filed with sediments and became progressively shallower (Jennings, l983). The changes in environments in the shoaling basin provide the setting for this portion of the study. Two sections in the onshore portion of the Humboldt Basin were sampled for macrofauna, one at Centerville Beach and the other along the Eel River by Scotia (fig. 9). The geology of the area and the


Figure 8. Index map showing geographic location of the Humboldt Basin (from Burckle, et al., 1980).


Figure 9. Generalized geologic map of Neogene strata of the Humboldt Basin showing the location of the text sections.
A. Centerville Beach, B. Eel River (from Burkle, et al., 1980).

```
stratigraphy was first described in detail by ogle
(1953).
The Eel River section is located along the banks of the Eel River by the towns of Rio Dell and Scotia (fig. l0). The Lower portion of the Wildcat Group (Pullen, Eel River, and lower portion of the Rio Dell Formations) is exposed on the west bank of the river, upstream from the town of Rio Dell. The upper portion of the Wildcat Group (the middle and upper portions of the Rio Dell, Scotia Bluffs, and Carlotta Formations) is exposed along the railroad tracks on the east bank of the river, downstream from the town of Scotia. The Centerville Beach section is located north of False Cape and Cape Mendocino (fig. ll). The rocks of the Wildcat Group are exposed in the seacliffs at this section. The northward dip of the beds provides easy access to the complete section along the coastifne.
These sections have been sampled by other workers, and studies have been published on the diatom
biostratigraphy (Burkle, et al., l980), foraminiferal
biostratigraphy (Haller, l967), megafaunal
biostratigraphy (Ogle, 1953, and Faustman, 1964),
sedimentology (PIper, et al., 1976), carbon and oxygen
Isotopes (Kammer, 1979; and Dodd, et al., 1984), trace fossils (Jennings, 1983) and magnetostratigraphy (Dodd, et al., 1977). Many of the conclusions in this study
```



Figure 10. Stratigraphic section of the Wildcat Group at the Eel River section with map showing the collection zones by formational units.


Figure ll. Stratigraphic section of the wildcat Group at Centerville Beach section with map showing the collection zones by formational units. Black dots represent sample sites.
are based on the strong biostratigraphic and paleoecologic framework prepared by these previous studies.

The sediments of the Centerville Beach section represent the open marine, deep-water portion of the onshore Humboldt Basin whereas those of the Eel River section represent more basin-margin conditions. The samples used in this study were collected in situ. Precautions were taken to avold the collection of "float" material. These precautions were taken to avoid mixing samples of stratigraphically distinct faunas.

Stratigraphy and Sedimentology
The Humboldt Basin formed at the site of convergence between the margin of the American plate and the margin of the Gorda plate (Dodd, et al., i984). The initial transgressive phase of basin formation is represented by the Late Miocene to Early Pliocene shallow water deposits of the lower Pullen formation (fig. l2). The upper Pullen, Eel Rtver, and lower Rio ne:l Formations represent deep water basinal sedimentation. As subsidence slowed and the basin filled, sedimentation graded upward into slope (middle Rio Dell Formation), shelf (upper Rio Dell Formation and Scotia Bluffs Sandstone), and continental deposits (Carlotta Formation) (Jennings, l983). The Rio Dell


Figure 12. Comparison of the stratigraphic sections at the Centerville Beach and Eel River localities (after Burkle, et al., 1980).

Formation, undifferentiated at the Eel River section, can be subdivided at the Centerville Beach section based on lithology.

Eel River Section
With a total stratigraphic thickness in excess of 6000 feet, the Eel River section is one of the thickest continuous exposures of the $W \pm 1 d c a t$ Group in the Humboldt Basin (fig. 13). The dominant lithology of the Eel River section is massive clayey siltstone. The distinction between the Pullen, Eel River, and Rio Dell Formations is based on the presence or absence of the mineral glauconite.

The basal portion of the Pullen formation contains conglomeratic lenses of matrix-supported pebble and clay clasts. These lenses are developed on an unconformity surface between the Pullen Formation and the underlying Yager Formation. The lithology of the lower Pullen is indicative of deposition by debris flows. The Pullen Formation, about 400 feet above the base, grades into a fine-grained, conchotdally weathered, extensively fractured clay siltstone. The stratigraphic thicknesses of the Pullen at the Eel River and Centerville Beach sections are nearly equal.

The contact between the Eel River and Pullen Formations at the Eel River section is placed at the occurrence of a thin, pebbly interval and accompany-


[^1]

```
clayey siltstones grade into alternating beds of thick
(10 to 20 feet), massive, fine-grained sandstones and
massive, conchoidally fractured, weathered clay
siltstones which grade back into clayey siltstones.
 The "phantom-banded" sequence of the R!o Dell
Formation appears at the boundary between the middle
and upper portions of the Rlo Dell. Texturally, the
"phantom-banded" sequence is a cleaner, fine-grained
sandstone. The typical sequence within the bands is
that of a scoured basal contact with a basal shell lag,
changing to a laminated sandstone, and finally to a
homogenized (bioturbated) zone. The upper portion of
the Rio Dell contains three "phantom-banded" sequences.
Clayey siltstones, characteristic of the entire upper
portion of the section, exist between these sequences.
Six hundred feet below the top of the R士o Dell, the
bands become less distinct, and the unit becomes finer
grained.
The contact between the Scotia Bluffs and the Rio
Dell Formations is gradational and is characterized by
a change in lithology to massive, tan, medium-grained
sandstones. The sandstones of the Scotia Bluffs are
fine-grained at the base and grade into medium-grained
sandstones and conglomerates near the top.
BI-directional crossbedding and bar-shaped sand and
conglomerate deposits of the Scotia Bluffs Formation
```

reflect the influence of wave and tidally dominated processes. Macrofaunal remains are found in the lower portion of this formation in the conglomeratic channel deposits (Jennings, 1983).

## Centerville Beach Section

At the Centerville Beach section approximately
5600 feet of Wildcat Group sediments are exposed. The Centerville Beach section (fig. l4) begins at the base of the lower Pullen north of False Cape and is underlain by the mudstones and siltstones of the upper Jurassic/ Lower Cretaceous Yager Formation. The contact between the Upper Rio Dell and the overlying Hookton Formation is unconformable. The dominant lithology at this section is a very fine-grained, massive, clayey siltstone with occasional fine-scale planar laminations.

The lower pullen Formation at this section is a blocky, fractured siltstone and Is characterized by the occurrence of glauconitic, sandy and conglomeratic lenses. The fauna found within this portion of the Pullen indicate shallow-water deposition. The middle Pullen is composed of mudstones with cream-colored concretions. These concretions have been interpreted as mudballs which may represent debris transported downslope into the basin along with some glauconitic material (Jennings, 1983). The upper portion of the


Figure 14. Stratigraphic section at the Centerville Beach locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV.

continues throughout the upper portion of the Eel River Formation and extends into the Lower and Middle Rio Dell Formation. The contact between the Eel River and the Rio Dell Formations is gradational and is marked by a reduction in glauconite content.

The Centerville Beach section of the Rio Dell Formation can be subdivided into the Lower, Middle, and Upper Members based on lithologic differences. The Lower Rio Dell Member consists of 1000 feet of thin-bedded, interbedded ripple-dominated sandstones and siltstones which are overlain by clay siltstone and claystone seams. The base of the Middle Rio Dell Member is marked by a change to rhythmically bedded, ripple-dominated sandstones. This sequence of rippledominated sandstones continues throughout the Middle R1o Dell.

The presence of several glauconitic lenses marks the transition between the Middle and Upper Rio Dell Members. Interbedded with these glauconitic lenses are lenses of thin sandstone, seams of thinly-laminated claystones, massive clay siltstone, and thin ash beds. Tan sandy concretions are also found at this level. Higher up in the section, clay siltstone with abundant bivalve and gastropod fragments, fron-stained concretions, and wood chip layers becomes the predominant lithology. Four hundred feet into the

Upper Rio Dell Member, the clay siltstone grades into layers of alternating sandstones and siltstones that are analagous to the "phantom-banded" sequences of the Eel River section. The banding is not as developed at this section. The Upper Rio Dell Member is characterized by the occurrence of alternating sequences of clay siltstones, claystone seams, and "phantom-banded" sediments. Some of the "phantom-banded" sandstones are characterized by the presence of basal shell lags overlying massive sandstones and planar laminated siltstones. These sequences are suggestive of either turbidite or storm generated deposition. Some of the exposures of the Upper Rio Dell Member are obscured by creek drainage, faulting, and landslides. The Upper Rio Dell is overlain unconformably by the Hookton formation. The uppermost Rio Dell, Scotia Bluffs, and Carlotta Formations are missing in this section. The Hookton Formation is composed of medium-to-coarse-grained cross-bedded sandstones and conglomerates suggestive of continental deposition.

## Depositional Setting

The depositional setting of the Humboldt Basin provides the framework for this paleontologic analysis. Ingle (1976), in his study of diatoms and foraminifera in the Humboldt Basin, proposed water depths and basin

```
settings for the Centerville Beach section (fig. l5).
Ingle places the Pullen Formation below water depths of
1900 meters on the basin plain. The Eel River
Formation, Lower Rio Dell Member, and the lower half of
the Middle Rio Dell Member were grouped into a deep sea
fan classification with water depths starting at l750+
meters and shallowing to l200 meters. The upper
portion of the Middle Rio Dell Member and the lower
third of the Upper Rio Dell Member are basin slope
deposits. The water depths rapidly decrease from 1200
meters to 200 meters. Ingle proposed that the upper
two-thirds of the Upper Rio Dell Member were
representative of outer shelf and shelf edge depostion.
with water depths no shallower than 100 meters at the
upper boundary unconformity. Jay Philips (oral comm.)
belleves that the water depths of Ingle's studies did
not take into account the possibility of upwelling
currents and that deeper water fauna could have lived
at shallower depths. This would mean that Ingle's
figures could be taken as lower limits to water depths.
 Stanton (oral comm.) also feels that the
depositional classifications of Ingle were too extreme
and proposes that the Pullen and Eel River Formations
at the Centerville Beach section represent basinal
conditions (fig. 16). He feels that the Lower, Middle,
and lower third of the Upper Rio Dell Members were
```



Figure 15. Benthic foraminiferal biofacies and estimated paleobathymetry for the Centerville Beach location (from Ingle, 1980).

Figure 16 . Estimated paleobathymetry of the Humboldt Basin sections as determined by Ingle (1976) and Stanton (unpublished).

```
deposited basin slope environments and the upper
two-thirds of the Upper Rio Dell Member was deposited
in shelfal conditions. The unconformity at the top of
the RIo Dell Formation removes the shoreface
environments, and the sediments of the Hookton are
non-marine.
 At the Eel River section, Stanton's interpretation
of che environments of the Pullen and Eel River
Formations is the same as at Centerville Beach, that of
basinal sedimentation. The lower fourth of the
undifferentiared Rio Dell Formation represents basin
slope, and the remainder of the Rlo Dell was deposited
in a shelf setting. The shelf/shoreface boundary
occurs around the contact between the Rio Dell and
Scotia Bluffs Formations. After inspection of the
samples, the author feels that the interpretations of
Stanton are probably the most correct and that his
environmental interpretations will be used in the
formulation of the conclusions of this study.
Paleontologic Analyses
 With the exception of bivalve epibionts, examples
of each of the major types of Interactions identified
in the Gulf Coast study were observed in the samples
from the Humboldt Basin. These types of Interactions
include gastropod predation, algal/fungal borings,
clionid borings, polychaete borings, encrusting
```



Figure 17. Stratigraphic and paleobathymetric distribution of guest organisms at the A. Eel River section and $B$. Centerville Beach section.

Formation


3

```
treated as being representative of an original
depauperate fauna and analyzed as such. The
conclusions reached in this section are those justified
by the sample and do not include conjectural species
compositions.
 Relative to the number of shells in the
collection, the percentage which contains interactions
is small. The numbers of interactions in individual
samples range from 5 % to 20+ % of the shells present.
In samples of fewer than ten specimens, the percentages
of each type of interaction appear to be arbitrarily
high. As sample size increases upwards in the section,
the percentage of the total that each type of
Interaction comprises becomes less. These
relationships indicate that the percentage of each
interaction type in the small samples should be viewed
as being the upper limit for that type of interaction
within that sample. The extreme variability in sample
size, from one to more than }100\mathrm{ per sample, caused
concern about the relationship between the interaction
Intensities and sample size. The samples from the
Centerville Beach and Eel River sections were placed
into groups based on stratigraphic position and
IIthologic character to allow for the comparison of
Interaction intensity trends and sample size (figs. 18
and 19). As figures 20a and 20b show, the number of
```



Figure i8. Lithologic groups as defined for the Eel River section.


Figure 19. Lithologic groups as defined for the Centerville Beach section.


Figure 20a. Sample size (total shells) and number of interactions by lithologic groups for the Eel River section. (Note different Y-axis scales.)


Figure 20b. Sample size (total shells) and number of interactions by lithologic group for the Centerville Beach section. (Note different $Y$-axis scales.)
shells with interactions varies with the total number of shells within each lithologic group.

The distribution of samples within the section and the low total number of shells within some of the units do not allow for normal statistical comparison. Figures 2la and 2lb display the relationship between the total numbers of shells and the interaction intensities. It is clear from these figures that the interaction intensity is not simply a function of sample size. The similarity of patterns within the two sections indicates that common ecologic controls on interactions play a part in the distribution of guests.

## Organism Interactions

## Gastropod Predation

The gastropod predators are represented in the Humboldt Basin section by the borings of members of the families Naticidae and Muricidae. The bivalve Macoma elimata was the first utilized prey of naticids at both sections. The first naticid boring, at the Eel River section, occurs 700 feet below the first appearance of naticids. The lowest occurrence of a naticid boring was at the top of the Pullen. The first naticid, Natica (Cryptonatica) clausa, appears at the top of the Eel River Formation. The first naticids of the Centerville Beach section appear at the base of the Eel River Formation, while the first naticid boring was not

Eel River Section


Figure 2la. Total shells vs. interaction intensity by lithologic group for tine Eel River section.


Figure $2 l \mathrm{~b}$. Total shells vs. interaction intensity by lithologic group for the Centerville Beach section.

```
found until l100 feet higher in the section, in the
Lower Rio Dell Member. At both sections, muricids and
muricid borings occur higher in the section.
 To determine general prey preference, the
dominance ratio of bored bivalves to bored gastropods
in each section was computed. Figures 22 and 23 show
the dominance ratio of prey selected between bivalves
and gastropods. This dominance ratio is presented
along with the dominance ratio of potential bivalve to
gastropod prey. To determine values for total shell
and prey dominance, the following formulas were used:
if bivalves were dominant,
 Dominance Ratio = - - Bivalves
if gastropods were dominant,
 Dominance Ratio = + % Gastropods
(The dominance ratio was developed solely for the
display of data, and no inherent significance of the
values should be assumed.) The pattern of prey
preference of the gastropods is different between the
two sections. The Eel River and lower portion of the
Rio Dell Formations at the Eel River section (fig. 22),
have a dominance ratio of bivalve to gastropod prey of
-l. This ratio begins to change at the shelf slope
break. From one-quarter of the way into the Rio Dell
```



Figure 22. A. Total shell bivalve/gastropod dominance for samples with gastropod boreholes at the Eel River section. B. Prey bivalve/gastropod dominance percentages within samples with boreholes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


#### Abstract

to the top, the bivalves were utilized to the exclusion of all gastropod prey species except for instances of continued predation on Natica (Cryptonatica) clausa (fig. 24). Predation incidents increase upward in the section with naticids being the dominant borer throughout. The total number of specimens increases upward in the section but is not paralleled by an increase in the number of incidents of predation. The increase in number of bored individuals is a reflection of the appearance of key bivalve prey srecies. Near the Rio Dell and Scotia Bluffs contact the number of specimen and borings decrease. The shells collected from the Scotia Bluffs Formation were found in lag deposits. Because the materlal was brought into the area from elsewhere, no environmental interpretation can be presented.

The character of the dominance ratio of bivalve to gastropod prey at the Centerville Beach section was different (fig. 23). Throughout the section the dominance ratio fluctuates as the number of incidents of predation increases upward throughout the Rio Dell. Although the dominance ratios vary widely throughout the section, the gastropod borers show no change in overall preference as the inferred water depths decrease. The deeper water prey species (gastropod) continue their range into shallower waters and continue




Figure 24. Distribution of prey gastropods and bivalves for the Eel River section. The numbers represent bored shells. The black lines show the range of the prey within the section.
to be preferred over bivalves (which become more abundant upward). The amount of gastropod predation does not diminish upwards in the Rio Dell, and the record was abruptly terminated at the contact between the Rio Dell Formation and the non-fossilfferous, continental, Hookton Formation(fig. 25).

The prefereed gastiopod as gastiopud piey at the Eel River section was the naticid Natica (C.) clausa. Predation on N. (C.) clausa begins at the shelf/slope break and continues into the Scotia Bluffs, shoreface portion of the section. Other gastropods found bored at the Eel River section are Antiplanes (A.) major, Antiplanes perversa, and Beringius (?), each of which have only one specimen with a borehole within the section. As with Polinices at the Texas Gulf Coast, the naticids appear to have been a preferred prey of themselves. At the Centerville Beach section, the number of specimen with boreholes was greater. The majority of the gastropods as their own prey are found within the naticids, muricids, and turrids with a slight preference towards the muricids and turrids in the upper portion of the section. Latisipho hallif was the only neptuneid species preyed upon within the section. Other members of the family are present throughout the section but were not attacked.


Figure 25. Distribution of prey gastropods and bivalves for the Centerville Beach section. The numbers represent bored shells. The black lines show the range of the prey within the section.

A disproportionally larger number of reports of gastropod borings in the shells of the bivalves was found at the Eel River section. The preferred bivalves as gastropod prey at the Eel River section are from the order Veneroida and are concentrated in the families Veneridae and Tellinidae. Table 13 lists the bivalve prey.

> Table l3. Bivalve species bored by gastropods at the Eel River section and number of incidents of predation.
> Bivalve Prey $\quad$ \# of shells attacked

Protothaca staylei hannibali 7
Psephidea lordi ovalis 5
Macoma elimata 5
Macoma inquinata arnheimi 4
Macoma nasuta 2
Clinocardium meekianum $\quad 1$
Nuculana fossa $\quad 1$
Cryptomya (?) 1

At the Centerville Beach section the reverse condition
is true; the number of bivalves with gastropod
boreholes is much fewer than those in gastropods. The bivalve most commonly preyed upon was the carditid Cyclocardia ventricosa. Predation on this Cartididae did not occur below the base of the Upper Rio Dell Member even though specimen of $C$. ventricosa were abundant below this horizon. The primary predatory gastropod on $C$. ventricosa was of the naticid type and
the onset of boring occurs at the same level as the first appearance of the naticid species polinices (Euspira) pallidus. The only other bivalves with boreholes were a sample of Macoma elimata in the Lower Rio Dell Member and a sample of Macoma aff. M. inquinata arnheimi in the middle of the Upper Rio Dell Member.

Otiner types of interactions are more abundant when compared to the number of incidents of gastropod predation. This finding was especially true at the Eel River section. The control mechanism determining the preference between bivalves and gastropods as gastropod prey is complex. A possible control on the preference is the species composition as controlled by the location of each of the sections with reference to their place in the depositional settings of the basin itself. The sediments at the Eel River section are more varied than at the Centerville Beach section. The Rio Dell sediment types at the Eel River section fluctuate rapidly as would be expected under shallower water, more terrestrially controlled conditions. The sediments in the Centerville Beach section reflect the stabllity of deeper-water conditions, separated from fluctuating terrestrial conditions. The differences in the stability of the environments and the conditions of the substrate (firmness, organic content, etc.) would

```
produce different faunas and potentlally different prey
availabil1ty.
Borings (Non-predatory)
 In the Humboldt Basin there were few occurrences
of borings of algae, fungi, and clionid sponges.
Because of the few reports of these types of borings,
few conclusions can be made about these types of inter-
actions for this area. The following material briefly
summarizes their occurrence:
Algal:
 Centerville Beach
 Compsomyax subdiaphana -middle of the Upper
 Rio Dell Member.
Fungal:
 Centerville Beach
 Yoldia scissurata -Lower Rio Dell Member
 Neptunea (Sulcosipho) tabulata
 -in lowermost Middle
 Rio Dell Member
 Natica sp.
 -lowermost portion of
 the Upper Rio Dell
 Member
Clionld:
 Eel River
 Beringius arnoldi -lowermost Rio Dell
 Formation
 Protothaca staleyi hann&bali
 -in middle portion of
 the Rio Dell Formation
 Centerville Beach
 bivalve fragment -middle portion of
 the Upper Rio Dell
 Member
```

Polychaete borings were abundant in the shells
from the upper portion of the Eel River section. There were few occurrences below the lower portion of the Rio Dell Formation. This level is interpreted as being on the middle of the basin slope. At the Centerville Beach section the polychaete borings were sparse below the Upper Rio Dell Member, again located on the middle of the basin slope region as defined by Stanton.

Table 14 lists the gastropod species from the Eel River section which were preferentially bored by worms. These gastropods have relatively thick shells in which the worms could bore without penetrating the inner shell surface. Other than the general lack of worm borings in the deeper water deposits, there are no depth related trends for these borings in the gastropods at the Eel River section. The bivalve/worm interactions were concentrated within the Pectinidae,

Table 14. Gastropod species bored by polychaete worms at the Eel River section and number of incidents of utilization.

Gastropod Hosts \# of shells utilized

| Natica (C.) clausa | 14 |
| :--- | ---: |
| Neptunea (S.) tabulata | 1 |
| Neptunea (G.) Smirna | 3 |
| Beringius | 3 |

```
Veneridae, and Tellinidae. The most utilized bivalves
were Pecten sp., Patinopecten (P.) caurinus,
Clinocardium meekianum, and Protothaca staleyf
hann1balli.
Polychaete worm borings do not appear until the
lower Middle RIo Dell Member at the Centerville Beach
section and were widespread to the upper boundary
unconformity. The pateerñ of the borings shows no
preference between gastropod or bivalve shells for
boring with deeper water host shells continuing to be
bored, even after new, shallower water forms become
abundant. At the Centerville Beach section the
gastropod species which were the most consistently
bored are Natica (C.) clausa, Antiplanes (A.) major,
and Latisipho hallif. The bivalve species which was
the most consistently bored was Patinopecten (P.)
caurinus, Cyclocardia ventricosa, and Pandora grandis.
 The increase in the number of specimen and
species with epibiontic and endolithic interactions at
the mid-slope level of both sections indicates that
there was some common control over the intensity of
these borings. There were an adequate number of shells
in the lower section for the lack of borings to be
merely a function of shell availability. The mid-slope
level may represent the first level of substantial food
supply to support a diverse interactive fauna. At the
```

```
Eel River section the number of non-predatory borings
is reduced as the transition between the Rio Dell and
the Scotia Bluffs Formations is reached as are the
number of other types of interactions. The higher
energy nature of the shoreface environments with their
periods of potential exposure could prohibit the
settlement of some larvae or the development of an
epifaunal community (such as at the Gulf of Mexico
beach locality from the Texas Gulf Coast).
Host as a Substrate
```

    Several types of encrusting organisms were found
    on the shells from the Humboldt Basin (Table l5).
Table 15. Epibiontic guest abundance in the samples from the Humboldt Basin.
Guest $\#$ of incidents

|  | 30 |
| :--- | ---: |
| barnacles | 2 |
| bryozoans | 1 |
| serpulid worms |  |
|  |  |
|  |  |

The number of incidents of encrustation was few in comparison to the total number of shells. The lithology of the lower units of the Wildcat Group would indicate that the substrate was not firm and that there were no natural surfaces present which would have supported the epibiontic guests. The encrusting

```
organisms which were present would have been relegated
to locations on shells of organfsins specifically
adapted for the environment.
 To interpret the epibiontic interactions in the
Humboldt basin, the controls on distribution of this
type of interaction must be addressed. For recruttment
to be successful, there must be surfaces on whfch the
larvae of the epibionts may land. If shell material is
lacking or spread out over a broad area, species with
short planktic larval stages will not remain viable.
For this reason, even if shallow water forms were
introduced downslope by turbidity or grain-flow
mechanisms, these forms would not be able to populate
deeper water environments and would appear as single
(or low) report occurrences. These occurrences would
not be indicative of the presence of characteristic
epibiontic associations wfthin the particular
environment. Another control on the distribution of
epibiontic organisms would be the availability of
non-living surfaces to populate. Modern ep{biontic
Invertebrates will grow on most smooth surfaces, even
man-made ones. The growths of barnacles on the hulls
of ships would be of prime example. If there were
other surfaces for the epiblonts to colonize, such as
rocks or firm sedimentary substrates (firm sand or
gravel), the epibionts which did not derive vital
```

```
benefits from the interactions with the host could
exist on these surfaces in times when living substrates
were uncommon. A third factor controlling the presence
of epibiontic organisms would be the stability of the
environment. Environments with periods of rapid
sedimentation or sediment bypass would experience a
periodic killoff of the standing crop of epibionts and
possibiy nosts. The need for continuous repopulation
wouid keep the communities present within these
environments from reaching stability and organism
integration.
 Very few incidents of epibiontic interaction occur
within the samples from the Eel River section. W&th
the exception of one sample from the Eel River
Formation, there were no basin or slope epibiontic
interactions at the this section. This sample contains
a fragment of Clinocardium encrusted by barnacles. The
fragment of Clinocardium was transported into the
deeper water environment, as attested to by abrasion of
the shell. One-third of the way into the Rio Dell
Formation two neptuneid gastropod species, Neptunea cf.
N. (Golikovia) smirna and Latisipho hallif, have
epibiontic interactions. The epibionts are barnacles
and encrusting bryozoans. The majority of the
interactions with epibionts occur in the middle and
upper Rio Dell Formation and within the shelfal
```

```
environment as defined by Stanton. The mactrid bivalve
Spisula hemphilii was the only blvalve species (of
note) with epiblontic interactions. At each level
(between samples 141 and 144) S. hemphilif has at least
one report with barnacles attached.
 At che Centerville Beach location there were no
epibiontic interactions below the Upper Rio Dell
Member, and barnacles uere the only encrusting guest
organism present at this locality. Barnacles first
appear on shells in sample 87 (coincident with the
first appearance of barnacles, attached or not).
Barnacles as epizoans extend almost up to the top of
the R{o Dell Formation. The barnacles show no
preference, at any level, to any one specific host.
The barnacles appear to show a concentration within
members of the families Pectinidae, Cardifdae, and
Veneridae. The infaunal bivalves, such as the
Tellinidae, show no encrustation within a rich record
of individuals. This absence could be attributed, in
the deeper water horizons, to the lack of a mechanism
for working these shells to the surface.
 There are no relationships between lithology and
occurrence of epibionts at either location. The
epibionts occur on shells in shales, silty shales, and
sandstones. The basinal environments in the Humboldt
Basin with a sparse fauna, few non-living surfaces for
```

```
colonization, and periods of rapid sedimentation have
few epibiontic interactions. The slope environments
with an even sparser fauna, no surfaces to colonize
(non-living), and depositional instablility have even
fewer epibiontic interactions. The shelf environments
have the most varied and abundant fauna and were also
the most stable, and it is in the shelf area that the
most epibioncic inceractions take place. Some of the
reports of interaction in deeper waters were
transported from shelfal environments. At each
section, the first reliable occurrences of epibiontic
interactions occur in shelf environments. The shelf
conditions would be conducive to keeping a shell
exposed long enough to become encrusted.
```


## Summary

The Centerville Beach section presented the broadest range of environments with which to interpret the distribution of specific interactions. The predatory borings first appeared in the slope deposits of the lower Rio Dell Formation and continued to the top of the section. Increasing numbers of bored shells represent the increased faunal abundance and diversity of the shallower water, upper shelf, and slope environments. Prey selection was influenced by the availability of prey species (again a function of water depth). As shallow water species became avallable, the

```
gastropods added these species to their "menu," but did
not remove orher species in turn. The termination of
gastropod/deep water prey interactions occurred at the
stratigraphic termination of the prey organism.
 The endolithic and epibiontic interactions of the
Centerville Beach section first appeared at the
shelf/slope break (low in the Rio Dell) and continued
co tine upper boundary unconformity with the Hookton.
Polychaete borings were the most abundant and pervasive
evidence of interactions in the section. The intensity
of interaction continued up to the top of the Upper Rio
Dell Member without reduction. This would indicate
that the shallowest water environments, present at the
Eel River section, were lost in the formation of the
unconformity at the top of this section.
 The Eel River section provided the most complete
range of environments, basin to shoreface, of the
sections. This section allows us to look at
Interactions in the shallowest water environments,
missing at the Centerville Beach section. Predatory
gastropod borings showed the same depth distributions
and prey selection here as they did at the beach
locality. The larger number of gastropod borings at
this section are attributable to the abundant and
diverse fauna developed on the shelf.
```

```
 Endolithic and epibiontic interactions first occur
on the slope and increase at the shelf/slope break.
There was a sharp decline in the number and types of
interactions at the shelf/shoreface transition. Most of
the shoreface samples were collected from channel lag
deposits and more clearly transported materlals.
```

```
 If the sediments of the Humboldt Basin were
deposited in constantly shallow water depths, would we
have seen the same relationships of intensity and types
of interactions that were attributed to water depth?
How much of the trend was actually attributable to the
evolution of interaction relationships through time?
It is possible that the appearance of the first
Interactions at the Humboldt Basin sections corresponds
to the time of development of each of the interaction
types for the entire California coast.
 To test these possibilities, one must study the
fossils from deposits reflecting an environment which
was relatively constant through time. To test the rate
of change in the interactions, if any prove to be
present, the deposits of this area should be
approximately the same age as the Humboldt Basin
material and contain some related genera. If the
changes in the interactions were solely related to
evolution of interaction sets, the changes seen at the
Humboldt Basin would be visible in this setting also.
The area of constant environments chosen to test this
against was the Kettleman Hills of central California
(fig. 26).
```

The Kettleman Hills are doubly plunging anticifnal hills formed as a portion of the Coastal Ranges. These


Figure 26. Location of the Kettleman Hills region, California with reference to largescale nearby structure (from $S t a n t o n$ and Dodd, 1970).

```
hills extend into, and disappear below, the sediments
of the San Joaquin Valley (fig. 27). The Pliocene and
Pleistocene strata exposed in the core and flanks of
the Kettleman Hills have been subdivided into three
formations; Etchegoin, San Joaquin, and Tulare, oldest
to youngest respectively (Woodring, Stewart, and
RIchards, 1940).
```

Stratigraphy and Sedimentology
The sediments of the Kettleman Hills region were deposited in an embayment which extended to the north as far as San Francisco, to the east into the San Joaquin Valley, westward Into the Coastal Ranges, and southward (at least inftially) as far as Santa Maria (fig. 28). The control on distribution of sediment types and ecological habitats was primarily tectonic. Formation of the Sierra Nevada mountain range and the Coastal Ranges, along with movement along the San Andreas fault, influenced sediment supply and connection of the embayment with normal marine conditions (Stanton and Dodd, 1970).

The Kettleman Hills and surrounding areas fall within the Coalinga district (Woodring, et. al., 1940), an important petroleum region (now approaching abandonment in the Kettleman Hills proper). Interest In the oil and gas potential of the sediments in the Kettleman Hills structure provided the impetus for the


Figure 27. Generalized geologic map of the Kettleman Hills (after Woodring, et al, 1940).


Figure 28. Early Pliocine paleogeography of west central California (after Galehouse [1967], from Dodd and Stanton, 1981).

```
publication of many stratigraphic (Watts, 1894;
Andreson, 1905; Arnold and Anderson, 1910; Musser,
1929; Gestner, 1933; and Kle{npell, 1938) and
paleontologic (Cooper, 1894; Arnold, l910; Hannibal,
1912; Kew, 1920; and P11sbry, 1934) papers. In 1940,
W. P. Woodring, R. Stewart, and R. W. Richards
described the detalled stratlgraphy, paleontology, and
structure of the Kettleman Hills in the United States
Geological Survey Professional Paper #l95. This work
continues to be used as the primary reference for the
area. Some of the localities listed in the back of the
work are used in this study and are referenced in
Appendix III .
 Some o:: the more recent publications on the
paleontology of the Kettleman Hills region have looked
at paleoecology (Stanton and Dodd, 1970), depositional
environments (Stanton and Dodd, 1972, 1976a),
paleosalinities (Dodd and Stanton, 1975, 1976a), and
trophic structure (Stanton and Dodd, 1976b). It is
within the framework established by these previous
studies that the question of organism interactions is
considered.
 Exposed in the eroded crests and flanks of the
North, MIddle, and South Domes of the Kettleman Hills
are the Etchegoin, San Joaquin, and Tulare Formations.
During the lower Pliocene, marine waters transgressed
```




[^2]```
characteristic fossil of the unit (fig. 30) (Woodring,
et al., 1940).
```

 The middle Pliocene Etchegoin Formation is
 composed of thin sand stringers, silty sandstones, and
sandy siltstones. It is subdivided into five fossil
zones; Patinopecten, Macoma, Siphonalia, Upper
Pseudocardium, and Littorina. The San Joaquin
Fómatioun, late rijuceñe, is cumpused of sañustoñes añ d
mudstones and is generally composed of finer sediments
than the Etchegoin. Two distinctive conglomeratic
units occur within the San Joaquin, one at the base of
the unit and is termed the Cascajo Conglomerate and the
other (approximately one-half way up the section) is at
the base of the Pecten Zone. The six zones of the San
Joaquin of the Kettleman Hills are the Cascajo
Conglomerate, the Neverita zone, the Pecten zone, the
Trachycardium zone, the Acila zone, and the Upper Mya
zone. The Tulare Formation, Pleistocene in age, was
deposited in essentially non-marine settings and
contains the coarsest average grain size. The basic
Tulare sediment type is that of a buff sandstone which
is frequently interrupted by thin conglomeratic units
(Stanton and Dodd, 1970). This unit contains
relatively few fossils and will not be analyzed in any
great detail in this work.

Figure 30. Stratigraphy, sedimentology, faunal zones, transgression/regression curves and oxygen isotope data for the Kettleman Hills from Stanton and Dodd, 1970.

Abstract

Each of the transgressive/regressive packages represents fluctuations in rates of subsidence of the embayment or changes in the sediment supply with probably no exposure of the units. The depositional environments of the Etchegoin and San Joaquin Formations fluctuated throughout the time of the deposition with minor transgressions and regressions. Most of the fossil zones were deposited in similar conditions, those of the initial transgressive lithology. The samples were treated as representing an essentially stable depositional environment, and the trends of organism interaction found within this area are attributable to changes through time, not changes throught varied environments.

\section*{Organism Interactions}

Shell dissolution influenced the preservation of Interaction evidence $\ddagger n$ the shells from the Kettleman Hills. Commonly, the shells had signs of point dissolution caused by the pressure of the matrix grains against the shell, making the detection of microborers difficult or impossible. The outer shell layers, where most of the interactions would have occurred, were missing in some genera. Chama and Mytilus, were consistently missing their outer shell layers. In order to be consistent throughout the study, questionable traces of interaction were not noted and

will not enter into the formulation of the conclusions for this section. Even with all of the difficulties in the identification of potential interaction traces, clearly over one-third of the shells collected from the Kettleman Hills contaln some sign of organism interaction.
The localities sampled in the Kettleman Hills are 1isted in Appendix III by zone. Data obtained from the fauna recovered from the Kettleman Hills is presented in tabular form in this section and is available from the author by request. The interpretation of depositional environments for the strata of the Kettleman Hills that was used in this study is that of Stanton and Dodd (1970) and is summarized in figure 31 . The analysis of Kettleman Hills organism interactions was performed primarily on the host gastropod and bivalve components of the fauna. Corals, barnacles, and echinoderms are mentioned as hosts where important. Gastropod predation of the fauna is considered separately from the other types of shell penetrants because of the inherent differences in primary motive. Table 16 provides a display of the major fossil groups found in this study with their number of occurrences listed by zone. Table 17 provides, by host group, a display of the distribution of the seven types of recognized interactions; predation by gastropods,

Figure 3l. Stratigraphic section showing
cyclic sedimentation and north-south environmental facies patcerns, from Stanton and Dodd, 1970 .

47 тT070 45 T
e.qqałjan 4sty
auOq 4ST」
∞
Pholadidae to Serpula.

sazetd pue sateos ysti eo

 aeutrouej KTruey $_{\boldsymbol{y}} \mathrm{m}$ の
\dot{j} abpțuerpg KTtues

Tulare Formation
Upper Mya Zone
Acila Zone
Pecten/Trachycardium Zone
Neverita Zone
Cabcajo Conglomerate
Littorina Zone
Upper Pseudocardium Zone
Siphonalia Zone
Macoma Zone
Patinopecten Zone

eโndias KโTMe」
auoq ：әұелqəəコəก
$47!1070$ ע
езqағлал 4sт̣」 auoq 4sty
 sałerd pue soteos 45 ¢
47 2a1 45 ¢
 ерт̣oлazseadktJ Japı0
（TEIauag）wdapouťy aeuṭivuej KTȚWe」 әepțueteg （โexəuəg）aโコeuleg

Algal／Fungal Borings
Clionid Borings
Encrusting Bryozoa
Castropod Predation
Attached Bivalves
Barnacles
Polydoran Borings
Total Samples：

```
algal/fungal borings, clionid sponge borings,
encrusting bryozoans, encrusting bivalves, and
encrusting barnacles. The total number of specimens of
each type that was studied is also presented.
Twenty-six of the fifty-five "host" categories have
fewer than ten specimens each, six of the categories
are affected by all of the interaction types, two
additional categories have all types of interaction
except for predation by gastropods, and two of the
categories have all types of interaction except for
attached bivalves. The importance of each of these
observations will be discussed in the following
sections. The interactions will be studied with regard
to: 1) the types of host organisms involved, 2) types
of interaction related to the life habit of the hosts
(1e. epifaunal/ infaunal), and 3) types of interactions
which show a change in preference relative to
stratigraphic level. The life habits and the
environmental ranges used for the host species are
those of the closest modern analogues (Keen, 1971, Keen
and Coan, 1974, and Ricketts and Calvin, 1968).
Gastropod Predation
```

```
    As evidenced by the data, gastropod predation
```

 As evidenced by the data, gastropod predation
 pressure was relatively mild in the Kettleman Hills
pressure was relatively mild in the Kettleman Hills
(Table 18). With one notable exception, there are no
(Table 18). With one notable exception, there are no
more than six instances of gastropod predation per prey

```
more than six instances of gastropod predation per prey
```

$$
\stackrel{\text { د1 }}{\stackrel{1}{\nu}}=
$$

aepт̣aunzdan Kโب̣шe

aeptnito K！tures

aepritaquntioj $イ$ 亿Tue」
aeptorfin Kโtcey

appritazrisnı KTtue，

（Tejauag）podoxaseg
әeuṭuttibo KTtue」

subozoksg 6u！̣ qJuesg e．
subozoksa Guţanjouz
（［8jauag）surozisg

Abstract

 wi
 ter
 पว
 uә
音
jo
number

lower (in parenthesis) is the
\circ

s) is the cell percent.
N
L
L
L

(Tejauag) podoxiseg
əセuṭurtieg Kโtue」
aepṭuṛosto
subozoksg 6uṭч位s
subozoksa Guţansous
$-E$
$(z l)$
$\sim \stackrel{o}{0}$

$\checkmark ミ$
([8javag) subozkig
~E
E
$(z l)$

- aepration stimen
1
析
正
$+$
(
act
".
*"
E_{-}^{*}
ate
the
h t

aepretueitaכue] रโ!
aeprtusessen Kโtue」
E
E

a. Coelenterates
Tulare Formation
Upper Mya Zone
Acila Zone
Pecten/Trachycardium Zone
Neverita Zone
Cascajo Conglomerate
Littorina Zone
Upper Pseudocardium Zone
Siphonalia Zone
Macoma Zone
Patinopecten Zone

```
        قер!шеч] ^[тwe」
        aep!!!a7!H K\TMed
        aeprrnquau KTrwe_d
            aepr!KW K\tue」
        วepruaros Kโ!we〕
```



```
    aepryqounesd K[!̣e]
        аер!!\mp@code{was KTT%e」}
```



```
        วeprsauan íโrme」
        aepr!pje〕 KโTwe,
        arpṭuTonר 人[ṭue\
```



```
    aepturquad KTtwe」
        aeproszs\ <TrTme」
        aepr!TzKW {[tume]
```



```
    (T8.jouag) anโ&n!g
            Tulare Formation 
            -2
            ~ ล
                            -\widehat{N}~E-E
                            - 
                        #
                        -こ
                                N
            ~\overparen{M}
            ~\overparen{M}
            ~\overparen{M}
            ~\overparen{M}
            ~\overparen{M}
            ~\overparen{M}
                    Upper Mya Zone
```



```
                    Upper Mya Zone
                    Pecten/Trachycardium Zone
                    Cascajo Conglomerate 
```

1
(25)

Chamidae.
$\stackrel{O}{+}$

م
Table 18. Continued.
efndsas KTrue〕
auoq :əұеıqəךлan
esqałدan : afesqazsan
47Tโ070 4ST」

anoq $45 \mathrm{~T}_{1}$
47aat yıeys pue a7exs
sozerd pue safeas 4sty
47ショ! 4s!」

epṭoja7seadK[J] 1əpJo

a8u!souej Kโtur 〕
aeprueTeg रโTwe $\}$
～
$-E$

$-E$
（1）

Pholadidae to Serpula.

Esqałコan	1an ：37eJqa7san

47！โ070 4ST」
eaqałJan
anoq 4st
47 аa7 yıeys pue a7exs


```
epifaunal, attached and mobile, shallow and deeper
water gastropod families. The percentage of bored
shells, when related to the total numbers of shells in
each zone, show no overall stratigraphic trend. Within
the Etchegoin Formation, samples with borings were
distributed across the faunal zones. The concentration
of the borings around the Pecten/Trachycardium zone in
the San Joaquin Formation is an artifact of sampling.
The largest number of specimen and sample localities
for this portion of the study were from this zone.
    The total number of all bivalve specimen with
gastropod borings is less than one percent of the total
number of bivalve shells studied from the Kettleman
Hills. None of the families in the superfamily
Carditacea (Diplodontidae, Lucinidae, Chamidae, and
Cardildae) were found with gastropod borings. The
diplodontids, lucinids, and cardi&ds were Infaunal,
although this could have made them harder for the
naticids to find; other infaunal bivalves such as the
mactrids were preyed upon. With the exception of the
Tulare samples, species from these families occurred in
large samples. At some of these localities, naticids
were relatively abundant, yet no carditacean was bored.
Members of the family Chami{dae were epifaunal, yet no
genus from the family was preyed upon.
```

All but three occurrences of gastropod borings occurred in what were considered to be localities with normal salinity. With the exception of the Chamildae, all of the bivalve families without gastropod borings were infaunal (most were only shallow burrowing). The presence of large numbers of gastropods and eptfaunal bivalve species (in great abundance in some zones) and che iack of iarge numbers of borings is another indication that predation pressure on the preservable fauna was low. Some of these samples included a large naticid component in the fauna, yet borings were rare or absent.

The number of instances of predation was low, without regard to the total number of shells (with the exception of the borings in the shells of the Olivella). If the number of predatory borings found in a rare species was one specimen of a total of ten specimens per sample or stratigraphic level, it was one in one hundred specimens $£ n$ an abundant species per sample or stratigraphic unit. The fact that the number of borings does not vary with sample size indicates that predation pressure was low. Unless the chances for preservation of shells with gastropod borings was low, the naticid gastropods collected from the Kettleman Hills must have utilized soft-bodied and nonpreservable food resources, such as worms. This same

```
situation, too many predatory gastropods for the amount
of preserved food resource, has been noted in the
Eocene Stone City Formation (Clairborne Group, Middle
Eocene, Central Texas; Stanton, et al., 1981). Studies
by Stanton, et al.,(1981) have come to a similar
conclusion that the missing food resource must be
soft-bodied organisms.
Micro-borings
```

Shell corrosion made the detection of microborings difficult. Pressure dissolution pitting from the matrix grains and groundwater destroyed most of the smaller borings from this area. The activities of algal and fungal microborers (seen in Table 17) was pervasive and affected members of almost half of the host categories present. Table 19 shows the occurrences of microborers by stratigraphic zone. The one algal/fungal interaction with gastropods in the Littorina zone was in a normal marine, inner bay environment. The Neverita, Pecten/Trachycardium, and Acila zone interactions all occurred within the outer bay localities, and none were within brackish or restricted environments. Host selection by the algal/fungal guests differed between the Etchegoin and San Joaquin Formations. In the Etchegoin Formation, the venerids, tellinids, and mactrids (all infaunal) were preferentially bored. In

Table 19．Stratigraphic distribution of algal／fungal borings for the Kettleman Hills
samples．
aeprounqdan KTr̦es aeptrjettamej אโtwey

aeprtuessen K〔tue」

aeptorfen KTtue」

aepryJoد」 КโTwe 」
（Ielzuag）podolzseg

surozokig fuṛujueig
sueozofig buţsnsכu〕
（［8jayag）subozkig

－N
$-\Xi$

งEm ล
-2
\bullet－

- こ
$-\Xi$
$\stackrel{N}{N}$
aepṭшeц〕 イโTue」
 aeprinqiog KTtues
aeptik KTrue」 \quad こ
aeptuatos イ「rшe」 \quad -
arpțjuaew K[rue 〕
aepṛtqounres. Kโtue」
aepr!awas Kโtwe」
aepṭurtro] Kโture」

aepṭtpse〕 кโțue」
aepṭutonา रโṭes

aep!̣コン丬 Kโ!̣e」

(TBJavaŋ) anโ日^!̣
Table 19. Continued.
Chamidae.
-

erndas KTrue」

esqałлan ：ałesqaz」an
 esqazaan 4sty avaq पs！」 47207 yseus pue a7exs

sałetd pue sateos usty 47a01 पรโ」
aepṭsałse．jpuã Kโtwe」
 （โesauaj）wJapoutyว
 aepțueโ8日 Kโṭe \downarrow （Tejouaj）atjeuleg $\dot{0}$ aepṭparayd Kโtue］
Continued．c．Pholadidae to Serpula．

Abstract

the San Joaquin Formation, the nuculanids, mytilids, ostreids, pectenids, and solenids were bored by these microborers. With the exception of the solenids, all of the San Joaquin host species were epifaunal. With the exception of the difference in life habit between the Etchegoin and San Joaquin hosts, this type of interaction does not follow any trend in salinity, sediment type, or station potential host composition. Clionid Sponge Borings

The clionid sponge borings (Entobia) are intermediate in abundance between the algal/fungal and polychaete types of borings. The clionid borings occur in the shells of gastropods, bivalves, and barnacles (Table 20). Only four species of gastropods possess clionid borings; Calyptraea filiosa, Crepidula princeps, Neverita reclusiana, and Nassarius sp. Calyptraea filiosa and Crepidula princeps are epifaunal attached gastropods whose shell surfaces were avallable for colonization throughout the life of the individual. Specimen of Crepldula princeps, from the Macoma zone of the North Dome (a middle bay locality), and of Calyptraea filiosa, from an outer bay locality in the Aclia zone, were bored. This difference in concentration of interactions is the result of the lower numbers of Crepidula in the San Joaquin Formation, not a change in actual preference. Neverita
 cell percent. (TBIauag) 8878รa7uarao3
Tulare Formation
Upper Mya Zone
Acila Zone
Pecten/Irachycardium Zone
Neverita Zone
Cascajo Conglomerate
Littorina Zone
Upper Pseudocardium Zone
Maphonalia Zone
Patinopecten Zone
аертฺецц і̆โฺ世е」

aeprtnqua〕 Kโṭe」
2eptî́W イโtue」
aepțuaros $イ$ โTue」 aepṭıプル
aepṛqourves． \mathcal{K}［rue」 aep！！awas Kโṭ｜〕

aepṭtpaej रโtue」

aeprquopotora रโtue」

aepṛaュ7s0 KTrue」

aeprinonn κ โTue」
（Irjauag）anโenโ̣
Table 20．Continued．

eqnojas Kørue」
 esqazлan ：aұелqazлan
47！rozo ysif esqałJan 4sty avoq पs？
 Serpula．
sazerd pue sareos ust」
प7aว1 पsty

eptojąseadKโJ sapı0
(โesauag) wiapoutuว
aBuṭıve〕 Kโṭe」
a8pт̣ueโeg Kโṛe」
(โejauaj) aโjeujeg

$\sim \stackrel{N}{E}$
2
(22)
\sim N

Tulare Formation
Upper Mya Zone
Acila Zone
Pecten/Trachycardium Zone
Neverita Zone
Cascajo Conglomerate
Littorina Zone
Upper Pgeudocardium Zone
Siphonalia Zone
Macoma Zone
Patinopecten Zone

```
reclusiana and Nassarius sp. are infaunal gastropods
whose shells contain borings of clionid sponges. Basic
sponge ecology indicates that boring into the shells of
these genera would not have occurred while the shells
were buried in the mud (ie. alive host), but while the
shell was exposed at the surface (after or near death).
Specimen of bored Neverita were found in both the
Neverita and Pecten/Trachycardium zones. The clionid
bored, infaunal Nassarius shell was found in the
Neverita zone in a normal salinity, outer bay locality.
    The clionid-bivalve interactions greatly outnumber
those with gastropods. The interactions found within
the Etchegoin Formation occur evenly between and
including the Patinopecten and Upper Pseudocardium
zones. The number of clionid interactions was greater
In the Etchegoin Formation with a peak in the Upper
Pseudocardium zone in the species Ostrea atwoodi and
Pseudocardium densatum at localities throughout middle
bay environments. The interactions found in the San
Joaquin Formation are withln the zones between and
including the Neverita and Upper Mya zones. The
greatest number of different types of bivalves involved
in clionid-bivalve interactions occurs in the
Pecten/Trachycard&um zone. Most of the bivalves
involved in this type of interaction were either
epifaunal or shallowly infaunal. Almost all of the
```

```
clionid-bivalve interactions are in normal salinfty,
middle to outer bay environments. The only two
exceptions are the occurrence of clionid borings in the
shells of Ostrea vespertina sequens from brackish water
localities in the Upper Mya zone. These occurrences
are like those found between Crassostrea virginica and
clionid sponges as noted earlier in Nueces Bay, Texas.
    The barnacies with cilonid borings show a slmilar
distribution to that between the clionids and the
bivalves (most of the barnacles were located on bivalve
shells). The exception to this is the appearance of
two bored barnacles in the Tulare Formation. The
ecologic implications of these and other interactions
in the Tulare Formation are discussed in the section
summary.
Polychaete Borings
The borings produced by the polychaetes are
pervasive throughout the formations in the Kettleman
H&lls, and these are the most abundant type of
interaction present (Table 2l). Polychaete
interactions occur throughout the sectlon. The
polychaete borings occur within each of the affected
families with equal likelihood in each zone and
formation, and no change in preference was noted in the
samples.
```

Table 2l. Stratigraphic distribution of polychaete worm borings for the Kettleman H ills
samples. The upper number is the number of specimen with the interaction, the lower (in
rarenthesis) is the cell percent. a. Coelenterates to Neptuneidae.

- aeprytaquntroj र́rṭue」
aeprotien KTrue」
aeproeszdKโe〕 Kโṭe」

oepryoonı
([elauag) podoriseg
anuturteg KTtue,

sueozohig butujuejg

aepṭtuessen íturud
sueozokig Gurfsnavuz
([8xauaj) subozKig

aepṭaunzàn Kโ!̣e」
$-\underset{\sim}{\text { ® }}$
- \widehat{i}
o Neptuneidae

Tulare Formation
Upper Mya Zone
Acila Zone
Pecten/Trachycardium Zone (12)
Neverita Zone
Cascajo Conglomerate
Littorina Zone
Upper Pseudocardium Zone
Siphonalia Zone
Macoma Zone
Patinopecten Zone

Table 21. Continu		C.	Ph	1 a	id		S	erp	a.							
	Family Pholadidae	ت	Family Balanidae	Family Cancrinae	(โesauag) แエapouţ̣コ	Order Clypeasteroida		$\begin{aligned} & \stackrel{5}{\omega} \\ & \stackrel{0}{0} \\ & \sim \\ & \stackrel{\Gamma}{0} \\ & i \sim \end{aligned}$	sałeโd pue satejs usty	पłaaz yjeus pue afers	$\begin{aligned} & 0 \\ & \stackrel{0}{c} \\ & 0 \\ & \stackrel{\Gamma}{5} \\ & i \end{aligned}$					
Tulare Formation		$\begin{gathered} 3 \\ (33) \end{gathered}$														
Upper Mys Zone																
Acila Zone		$\begin{gathered} 1 \\ (16) \end{gathered}$	$\begin{gathered} 4 \\ (26) \end{gathered}$													
Pecten/Trachycardium Zone		$\begin{gathered} 29 \\ (23) \end{gathered}$		$\begin{gathered} 2 \\ (10) \end{gathered}$	$\begin{gathered} 1 \\ (6) \end{gathered}$		$\begin{gathered} 4 \\ (2) \end{gathered}$	$\begin{gathered} 1 \\ (10) \end{gathered}$	$\begin{gathered} 2 \\ (33) \end{gathered}$	$\begin{gathered} 2 \\ (16) \end{gathered}$					$\begin{gathered} 3 \\ (10) \end{gathered}$	
Neverita Zone												$\begin{array}{r} 1 \\ (100 \end{array}$				
Cescajo Conglomerate																
Littorina Zone																
Upper Pseudocardium Zone		$\begin{gathered} 1 \\ (33) \end{gathered}$	$\begin{gathered} 1 \\ (50) \end{gathered}$													
Siphonalia Zone		$\begin{gathered} 7 \\ (26) \end{gathered}$	$\begin{gathered} 3 \\ (42) \end{gathered}$													
Macoma Zone	1						$\begin{gathered} 2 \\ (6) \end{gathered}$									
Patinopecten Zone			$\begin{gathered} 7 \\ (63) \end{gathered}$				$\begin{gathered} 4 \\ (6) \end{gathered}$									

```
The majority of the gastropod families were involved in interactions with the boring polychaetes. Three of the four families without interactions, Turiftellidae, Cerithidae, and Collumbellidae, are represented by fewer than 10 specimens. The fourth family, the 011 vidae, has 473 specimen present, 466 of them at one locality in the Neverita zone. Very few specimen from this locality were involved in interactions. The polychaete borings present at this locality were widely distributed among gastropod and bivalve hosts. Of the four families, the Olividae species were the only ones which could be considered infaunal.
The Siphonalia zone had the highest number of polychaete interactions in the Etchegion Formation with the highest number interacting with the cancellarifds. The cancellarids with borings were widespread throughout the localities within outer bay enfronments. The Pecten/Trachycardium zone had the highest number of polychaete interactions in the San Joaquin Formation with six of the gastropod families with borings (three or fewer families were represented in any of the other zones). The naticids have the highest number of interactions with the boring polychaetes within the Pecten/Trachycardium zone. These interactions occur along the Kettleman \(H\{l l s\) at localities from the North,
```

```
Middle, and South Domes. These environments include
inner to outer bay, normal salinity conditions.
    The polychaete/bivalve interactions are numerous
and widespread in families with many specimen. The
bivalve families with few or no polychaete borings are
infaunal. At least one specimen of every epifaunal
species of bivalve was affected to at least some
extent. The only infaunal bivalve family with a
significant number of polychaete borings was the
mactrids with most of the Interactions (=75%) occurring
within the Etchegoin Formation where the mactrids are
the most abundant. The most frequently bored host
bivalve species are: Anadara trilineata with 123
interactions, Ostrea atwoodi with l70 interactions,
Ostrea vespertina sequens with 126 interactions, and
Pseudocardium densatum with 92 interactions.
    There are no readily visible trends to the bivalve
interactions with the polychaetes. This finding
lncludes the number of Interactions as well as the
dIstribution of their occurrences. With most of the
other types of interactions, there were many fewer
interactions of that type in the Etchegoin Formation
than there were in the San Joaquin Formation. This was
not true of the polychaeta borings. The boring
polychaetes extend throughout the range of
environmental conditions whtle interactions of the
```

other types of boring organisms (the algal/fungal group and the clionids) tended toward the open marine conditions. The polychaete borings were found in environments with normal salinities, "fresh" and brackish waters, and occurred within a range of substrate types.

The borings of the polycheates were so pervasive In the Pecten/Trachycardium zone that their borings are found in the shells of barnacles and echinoderms as well as shark and ray teeth (the enamel bases), fish bones, and animal bones.

Bryozoa

Encrusting, cheilostome bryozoans occur on slightly less than 0.1% of the shells from the Kettleman Hills. The largest percentage of shells encrusted by bryozoans ($=70 \%$) belonged to bivalves (Table 22).

The bryozoans were found on both infaunal and eplfaunal gastropod shells, possibly indicating that the bryozoans had encrusted the shells after the host organisms had died, and not before. The bivalve shells with bryozoan encrustations were scattered throughout the section with no visible trends. The arcids and ostreids were the only families which were consistently encrusted, and these occurrences were !n low numbers. Nearly eighty percent of the encrusted bivalves were

aepṛaunzden Kโtue」
aeprtyetrajue］Kโṭe」

aepţ̣uessen イโrme」

aeptoţon Kโtwe \ddagger
aep！̣әeлдdKโe］イโtue」
aeptru7rsaj KTtwe」
aep！̣uta
aepṭโTafuIIn」 Kโtue」

（TBjauag）podosfsey
aeuṭutico Ktrwe」

sueozohig buịuJuedg
surozokig Gurfsnzous

（โ8Jauaj）seł8コวาuəโว0］
$-\underset{m}{n}$
$-\Xi$
$-\underset{J}{-}$

$$
-\mathbb{N}
$$

$-\underset{ \pm}{ \pm}$

aEptito ITH KTTTWE」

aep！̣uatos KTțue」

aepitqounves KTTue」

aepṭuTtTal КโṬ世」 aеp！ıauan íTrue」
aepṭtpse〕 Кโtwe」
aeptuton ๆ
aepṛuoporoto Kโtwe」

aeproazso र́rutey
aepr！！

aaptue tnonn Kโxuly
aept！nonn KTụzed
（T8Iəuวŋ）anโb＾rg
\checkmark J
$-\underset{\sim}{N}$
－
ω ล -
$-\pi$
$m \geqq$
$\sim \stackrel{0}{6}$

๓
－J $m=m \underset{N}{\text { I }} \quad-\underset{\Im}{N}$
$m \cong$
N ミ ニ き $-\cong$
－ミーヨ
nọ̣zвuso』 e．18【n
Neverita Zone
Cascajo Conglomerate Upper Pseudocardium Zone

Siphonalia Zone
Macoma Zone
Patinopecten Zone

Reproduced with permission of the copyright owner．Further reproduction prohibited without permission．
eqndsas रituwe,
аиоя : аұезqаұлал

$47!507045!〕$
esqazaan 4ST」
auoq पs!
ч7аад улецs pue ajexs
saje[d pue sajeos usif
47 ªa

ер!̣osə7seadkiz sapı0

aeuṭivuej रftur,
aepțueโeg KTrwe」
(IBJauag) a toruseg

Iulare Formation
Upper Mya Zone
Acila Zone
Pecten/Trachycardium Zone
Neverita Zone
Cascajo Conglomerate
Littorina Zone
Upper Pseudocardium Zone
Siphonalia Zone
Macoma Zone
Patinopecten Zone

```
infaunal, and their shells had to have been exposed at
the surface at the time of interaction. Chama pellucida
might have been more extensively encrusted than the
four times recorded for the species. Most of the
shells of this species were found without the outer
shell layer attached. The intensity of bryozoan
encrustation found in the Pecten/Trachycardium zone
Indlcates that the shells had remained at the surface,
or were brought up to and maintained at the surface,
for a longer period of time in this zone than in the
other zones.
Bivalves
The epifaunal attached bivalves made up the least abundant type of interaction (Table 23). They occurred on shells of few hosts, most of which were within bivalve families. Three genera of attached bivalves occurred within the Kettleman Hills area. They are Ostrea, Chama, and Mytilus (in decreasing order of abundance).
There were no instances of gastropod shells being encrusted with bivalves. This differs from the results of the Gulf Coast study where the shells of Polinices and Busycon were often covered with small oyster spats. Comparatively speaking, the gastropod shells from the Kettleman Hills were relatively small. The only Kettleman Hills species to grow to a fatrly large size
```

Table 23. Stratigraphic distribution of attached bivalve guests for the Kettleman H ills
samples. The upper number is the number of specimen with the interaction, the lower (in
parenthesis) is the cell percent. a. Coelenterates to Neptuneidae.
samples. The upper number is the number of specimen with the interaction, the lower (in
parenthesis) is the cell percent. a. Coelenterates to Neptuneidae.

हт̣யयesdozTपप्व
(โвjauag) seqвiazuaтaoj

Tulare Formation
Upper Mya Zone
Acila Zone
Pecten/Trachycardium Zone $3, ~ 4$
Neverita Zone
Cascajo Conglomerate
Littorina Zone
Upper Paeudocardium Zone
Siphonalia Zone
Macoma Zone
Patinopecten Zone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


```
        amptTTO马TH KTTUE&」
        aept![nqJoJ KTṛwe」
            aept!KWKTruey
        aeptuatos KโTwe_
```



```
    aeptrqounresd Kโ!we\
```



```
        aepruton` 人`ṛued
aep!̣zuapordtog 人\rwe」
    aepruTqJad К`Twe\
        aeprom750 人1Twe]
```



```
        ソーご心
                            -EN太 
    әepṭue\nכnN 人!t!mey
        aept!nonN K[T!ub]
        ([8Iכuวэ) а^โ8^Tg
                            = I
        -\Xi
        ` N
```



```
        aeproI\forall 人\True_\
                    \begin{array} { l } { \text { Yulare Formation } } \\ { \text { Upper Mya Zone } } \\ { \text { Acila Zone } } \\ { \text { Pecten/Yrachycardium Zone} } \\ { \text { Neverita Zone } } \\ { \text { Cascajo Conglomerate} } \\ { \text { Littorina Zone } } \\ { \text { Upper Pseudocardium Zone} } \\ { \text { Siphonalia Zone} } \\ { \text { Macoma Zone } } \\ { \text { Patinopecten Zone} } \end{array}
        ~E}-\hat{#
        -5
```

Bivalve to Chamidae.
efndjas Kโ!
auoq :ałe」qałコan

प7!โO70 45T?
esqałJan 4s?」
aUOQ 4ST」
प72a7 xiveus pue a7exs
sałe!d pue salejs usty
47วaュ 4sty
aeptiafseıpuag 人tume」
eptosałseadKโ〕 zapı0

aeuṭivue] Kโṭuey

(「8.auag) arpauseg

- $\underset{\sim}{\square}$ apptperoud KTTures

```
were Neverita reclusiana and Siphonalia kettlemanensis.
The use of bivalve shells, to the exclusion of the
shells of gastropod shells (at locatsons where there
were abundant), indicates that the epibiontic bivalves
either could not get to, or could not set on, the
gastropod shells.
The number of bivalve families acting as hosts to the encrusting bivalves was relatively few in number with four of the seven families (Arcidae, Mytilidae, Ostreidae, and Chamidae) possessing almost all of the recorded interactions, most of them on the shells of Ostrea. The bivalve eplbionts occurred on either epifaunal or shallowly infaunal bivalves with no preference to location on the shell. The ostreid epibionts have a tendency to set on shells of their own species even when they co-occur within a locality.
Ostrea atwoodi and ostrea vespertina sequens co-occur at five localities within the section in the North Dome. There are no localities where both ostrea species co-occurred in abundance. Biological differences between these two species may have allowed them to competitively exclude each other within their respective environments.
Chama pellucida never occurred attached to other members of its own species. This absence might be related to the roughened texture of the outside of the
```

```
right (upper) valve. Chama is only found encrusting
host bivalves in the deposits of the
Pecten/Trachycardium zone in outer bay localities.
Mytilus occurred encrusted on only three shells, and no
conclusions could be derlved from this data.
Barnacles
    The barnacles were second only to the boring
polychaetes in the number of zones affected in the
Kettleman Hills (Table 24). The identification of
barnacles as guest organisms was often made from their
fragmentary remains or base plates which were found
attached to shells. Identification of the guest
barnacles, either balanid or coronulid, was not
possible on this basis. The coronulid barnacles have
been recorded only as host organisms. Their presence
Indicated that there were attached coronulid barnacles
present at the Kettleman Hills localities, but that no
identifiable pieces were found on any of the host
shells. This absence may indicate some type of bias
toward preservation of the balanid barnacle
interactions over those of the coronulid. The
coronulid host shells are listed in Appendix IV.
    The occurrence of barnacles on gastropod hosts is
relatively rare with four or fewer occurrences £n only
f:ve of eleven families with an even ratio of epifaunal
to infaunal gastropod species. Of the total of eleven
```

Table 24. Stratigraphic distribution of attached barnacle guests for the Kettleman Hills
samples. The upper number is the number of specimen with the interactions, the lower (in

$\sim \stackrel{N}{\Xi}$
$\sim \widehat{\vartheta}$
- -
M
$-\stackrel{\cong}{-}$
m ล
$-\underset{\text { - }}{-}$
gṬumesdoztyy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 24. Continu		c.	P	1	id	t	S	rpu								
	Family Pholadidae		Family Balanidae	Family Cancrinae		Order Clypeasteroida	aepṛ_a7seipuag אโțe」		$\text { saze[d pue sateos } 4 s!\text { ل }$	ч7วaz xjeys pue afexs			$$	esqazıan :ałesqałjan		
Iulare Formation		$\begin{gathered} 1 \\ (11) \end{gathered}$		$\begin{gathered} 1 \\ (33) \end{gathered}$												
Upper Mya Zone																
Acila Zone		$\begin{gathered} 2 \\ (33) \end{gathered}$	$\begin{gathered} 6 \\ (40) \end{gathered}$													
Pecten/Trachycardium Zone		$\begin{gathered} 27 \\ (21) \end{gathered}$	$\begin{gathered} 2 \\ (40) \end{gathered}$					$\begin{gathered} 1 \\ (10) \end{gathered}$		$\begin{gathered} 1 \\ (B) \end{gathered}$	$\begin{gathered} 1 \\ (11) \end{gathered}$				$\begin{gathered} 1 \\ (3) \end{gathered}$	
Neverita Zone																
Cascajo Conglomerate																
Littorina Zone																
Upper Pseudocardiuin Zone			$\begin{gathered} 1 \\ (50) \end{gathered}$													
Siphonalia Zone		$\begin{gathered} 6 \\ (23) \end{gathered}$	$\begin{gathered} 2 \\ (28) \end{gathered}$													
Macoma Zone	$\begin{gathered} 1 \\ (25) \end{gathered}$	$\begin{gathered} 1 \\ (50)(\end{gathered}$	$\begin{gathered} 1 \\ 100 \end{gathered}$													
Patinopecten Zone		$\begin{gathered} 3 \\ (75) \end{gathered}$	$\begin{gathered} 1 \\ (9) \end{gathered}$													

```
recordings of barnacles attached to gastropods, only
four occur outside of the Pecten/Trachycardium zone.
There does not appear to be any preference to any one
gastropod host by the barnacles, but the number of
samples was too small to be certain.
    Most of the barnacle interactions occur with
bivalves and with other barnacles. Over half of the
bivalve families have recordings of barnacle
interactions; the ones with few occurrences are
infaunal bivalves which would only be encrusted when
brought to the surface after or near death. The
"usual" bivalve host species, the arcids, mytilids,
ostreids, and pectenids are the most heavily utilized
hosts for the barnacles with stratigraphic
concentrations of the interactions between the
Littorina and Upper Pseudocardium zones of the
Etchegoin Formation and between the Pecten/
Trachycardium and Acila zones of the San Joaquin
Formation. Barnacles found attached to other barnacles
show the same general relationships as to stratigraphic
location as the ostreids and pectinids. Several
barnacles within the Pecten/Trachycardium zone were
found attached to fish and vertebrate remains (along
with some of the polychaete borings noted earlier).
    There were several occurrences of barnacles on
shells in the Tulare Formation, a supposedly fresh to
```


Abstract

brackish water unit. Most of the barnacles from the brackish water localities from the Gulf Coast study were small and thin shelled. The barnacles on the shells from the Tulare of the Kettleman Hills were not thin shelled or small (relative to the size of the shells that they were on).

Summary

The most abundant guest types (polychaete borers, and barnacles) were found on shells of many different animate and inanimate (fish teeth and bones) objects. This would indicate that in their interactions with the "host" shells, the boring polychaetes and encrusting barnacles of the Kettleman Hills were not using the attributes of the live hosts. The host shell provided substrate, and the conditions of the host, alive or dead, may not have had any effect on the guest.

Although epifauna are normally selected by guest organisms as attachment sites or as substrate to bore into, shallow infauna were made avallable (on the surface) at many of the Kettleman Hills localities. The Siphonalia zone of the Etchegoin Formation and the Pecten/Trachycardium zone of the San Joaquin formation are similar in that interactions seem to have been unusually abundant at these horizons. Both were relatively open marine times with open bay conditions In the North Dome and fresh water conditions in the

the exception of attached bivalves (the naticids of the Gulf Coast study includes bivalves as guest organisms). The calyptraeids were affected by a wide variety of guest organisms, but not to the same numerical extent as the naticids.

Five of the bivalve families have records of interaction with every type of guest organism present. They are the Arcidae, Ostrefdae, fectenidae, \quad veneridae, and Mactridae. Instances of interaction with the arcids, ostreids, and pectinids were the most numerous of all host organisms studied from the Kettleman Hills. The barnacles showed similar trends of interactions and numbers of instances of interaction as did the ostereids and pectinids, the shells to which they were commonly attached.

1. The sites of interaction of epibiontic and endolithic guests with the gastropod shells from beach and nearshore localities in the Laguna Madre and Redfish Bay exhibit shell surface distributions which do not relate to the life position of the gastropod hosts. The shells of dead gastropods have been removed from the shallow nearshore and sea grass areas and are brought to the beach by the hermit crabs (pagurid crustaceans). The distributions of the host-guest interactions are related to the way that hermit crabs orient and move the shells (see fig.5). The epibionts (barnacles, bryozoans, and serpulid worms) colonize the highest shell surface (that provided while the shells are being used by the hermit crab) to stay above the sediment-water interface and utilize water currents at that level above the sediment. No interactions exist, including those of boring guests, at the site where the shell is in contact with the sediment surface.
2. The guest organisms at the Texas Gulf Coast localities show no preference interactions on host shells which could be related to the life habit of a live host Samples with similar location of interactions on the shells of epifuanal and infaunal organisms are indicative of environments where shells
```
are brought to, and ma{ntained, at the surface after or
near the death of the host.
    3. The fewest interactions occurred at the Gulf
Coast localities in which the environmental conditions
at the sediment-water interface are the most severe.
All of the live host organisms at these locations were
infaunal and not Involved in fnteractions until the
shells were brought to the surface at or near death of
the host. The highest numbers of interactions occurred
at the oyster bank localities, each of which exhibit
well integrated systems of organism interactions. The
epibiontic and endolithic interactions were complex and
varied, representing the degree of Interdependence
developed within the fauna which form the banks.
    4. Patterns of predation selection in the
Humboldt Basin do not show depth dependence. Samples
from the Humboldt Basin indicate that new species are
added (as they appear) to the types of prey as water
depths decrease while deeper water prey are retalned
(throughout their depth ranges). It appears that some
species are preferentlally preyed upon (although this
can not be statistically proven).
    5. The Pullen, Eel River and lower portion of the
Rio Dell Formations in the Humboldt Basin contain few
epibiontic interactions. These basin and slope
environments have an extremely sparse fauna and were
```

```
sedimentologically unstable. Transport of sediment {n
turbidity and grain flow movements prevented the
establishment of integrated pairs of host and guest
organisms and lack of available shell surfaces keep
shallow water guests from populating the deeper waters
that they may be carried down into.
    6. The enyfronmental dependence of interactions
and interaction pairs is evident at the Humboldt Basin
sections. The interactions of the Eel River section
show an increase in intensity with decreasing water
depth. The number of interactions with epibiontic and
endolithic guests increase upwards from the base of the
Pullen to the middle of the Rio Del Formation (slope to
shelf break) at the Eel River section. The number of
these interactions, particularly with the polychaete
worms, decreases from this level upwards to the
boundary between the Rio Dell and the Scotia Bluffs
where the depositional environment changes from shelf
to shoreface. Fallure of the Interactions to decrease
in the Upper Rio Dell at the Centerville Beach locality
Indicates that shoreface conditions are absent at that
section and as much as 1500 feet of the Rto Dell may
potentially be missing at the upper boundary
unconformity.
    7. At the Kettleman Hills, with the exception of
the fntense predation on Olivella cf. O. pedroana by a
```

```
naticid predator in the Neverita zone of the Etchegoin
Formation, no particular type of interaction
(epibiontic, endolithic, or predatory) becomes favored
within a zone as the number of potential host shells
increases. This indicates that the intensity of
Interactions must reflect a quality of the environment,
independent of the host fauna. Most interactions occur
at open outer bay or unrestricted inner bay localities.
Host specificity, when it does occur, is a function of
avallable host shells as controlled by the processes
which bring shells to the surface and maintain them
there.
    8. The molluscan families Naticidae, Ostreidae,
and Pectinidae are heavily utilized at the Texas Gulf
Coast, Humboldt Basin, and Kettleman Hills localities.
The intensity of interactions is lower in the fossil
material but the predelection of these famplies to be
involved in interactions of all types is maintained.
    9. Barnacles, as hosts, show the same types and
stratigraphic distributions of interactions as did
their bivalve hosts. In the bivalve host shells with
barnacles and other endolithic guests, the shells of
the barnacles were bored as a continuation of the host
shell. The barnacle's ecologic characteristics were
not being utilized by the individual guest organism
types.
```


REFERENCES CITED

Akapan, E. B. and Farrow, G. E., 1984 , Depth of deposition of early Holocene raised sediments at Irvine deduced from algal borings in mollusc shells: Scottish Journal of Geology, v. 20 , p. 237-247.

Anderson, F. M., 1905 , A stratigraphic study in the Mount Diablo Range of California: California Academy of Science Proceedings, 3rd series, v. 2 , p. 155-248.

Andrews, J., 1971 , Sea shells of the Texas coast: Austin and London, University of Texas press, 298 p.

Arnold, R., 1910 , Paleontology of the Coalinga district, Fresno and Kings Counties, Calif.: U. S. Geololgical Survey Bulletin, v. 396 , 173 p.

Arnold, R., and Anderson, R., 1910 , Geology and oil resources of the Coalinga district, Calif.: U.S. Geological Survey Bulletin 3981 , 354 p.

Bishop, G. A., 1975 , Traces of predation: in Frey, R. W., ed., The Study of Trace Fossils: New York, Springer-Verlag, p. 261-282.

Boekschoten, G. J., 1970 , On bryozoan borings from the Danian at Faske, Denmark: in Crimes, T. P. and Harper, J. C. eds., Trace Fossils: Liverpool, Seel House Press, p. 43-48.

Boggs, C. H., Kitchell, J. F., Kitchell, J. A., and Rice, J. A., 1984 , Predation at a snail's pace: what s time to a gastropod: Oecologia, v. 62, p. 13-17.

Bottjer, D. J., 1982, Paleoecology of epizoans and borings on some Upper Cretaceous chalk oysters from the Gulf Coast: Lethaia, v. 17, p. 75-84.

Brett, C. E., 1978, Host-specific pit-forming epizoans on Silurian crinoids: Lethaia, v. 11, p. 217-223.

```
Bromley, R. G., and Surlyk, F., l973, Borings produced
    by brachiopod pedicle, fossil and Recent: Lethaia,
    v. 6, p. 349-365.
Brown, L. F. Jr., Brewton, J. L., McGowen, J. H.,
    Evans, T. J., Fisher, W. L. and Groat, C. G.,
    1976, Environmental Geologic Atlas of the Texas
    Coastal Zone-Corpus Christi area: Austin, Texas,
    Bureau of Economic Geology, 123 p.
Burckle, L. H., Dodd, J. R., and Stanton, R. J. Jr.,
    1980, Diatom Biostratigraphy and its relationship
    to paleomagnetic stratigraphy and molluscan
    diseritutioñ in the neogene Centerville beaci
    section, California: Journal of Paleontology, v.
    54, p. 664-674.
Calnan, T. Re, 1980 , Molluscan distribution in Copano Bay, Texas: Austin, Texas, Bureau of Economic Geology, 76 p.
Carriker, M. R., 1951 , Observation on the penetration of tightly closing bivalves by Busycon and other predators: Ecology, v. 32, p. 73-83.
Caullery, M., 1952, Parasitism and Symbiosis: translated by A. M. Lysaght: London, Sidgwick and Jackson Ltd., 340 p.
Cooper, J. G., 1894, On some Pliocene fresh-water fossils of California; California Academy of Science Proceedings, 2d series, v. 4, p. 166-172.
Cummins, H., Powell, E. N., Stanton, R. J. Jr., and Staff, George, l986a, The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 52, p. 291-320.
-----, l986b, Assessing transportation by the covariance of species with comments on contagious and random distributions: Lethaia, v. 19, p. 1-22.
Dodd, J. R., and Stanton, R. J. Jr., 1975, Paleosalinities within a Pliocene Bay, Kettleman Hills, California: A study of the revolving power of isotopic and faunal techniques: Geological Society of America Bulletin, v. 86, p. 51-64.
```

```
-----, 1976, Paleosalinities within a Pliocene Bay,
    Kettleman Hills, California: A study of the
    resolving power of isotopic and faunal techniques
    (reply to discussion): Geological Society of
    America Bulletin, v. 87, p. 160.
-----, l981, Paleoecology, Concepts and Applications:
    New York, John Wiley and Sons, 559 p.
Dodd, J. R., Mead, J., and Stanton, R. J. Jr., 1977,
    Paleomagnetic stratigraphy of Pliocene Centerville
    Beach Section, Northern California,: Earth and
    Planetary Science Letters, v. 34, p. 381-386.
Dodd, J. R., Stanton, R. J. Jr., and Johnson, M., 1984,
        Oxygen isotopic composition of Neogene molluscan
        fossils from the Eel River Basin of California:
        Geological Society of America Bulletin, v. 95,
        p. 1253-1258.
Driscoll, E. G., and Swanson, R. A., l973, Diversity
        and structure of epifaunal communities on mollusc
        valves, Buzzard Bay, Massachusetts: Palaeo-
        geography, Palaeoclimatology, Palaeoecology,
        v. 14, P.229-247.
Faustman, W. F., 1964, Paleontology of the Wildcat
        Group at Scotia and Centerville Beach, California:
        California University Publications of Geological
        Science, v. 47, p. 97-160.
Galehouse, J. S., 1967, Provenance and paleocurrents of
        the Paso Robles Formation, California: Geological
        Society of America Bulletin, v. 78, p. 951-978.
Gestner, G. C., and Galloway, J., 1933, Geology of
    Kettleman Hills oil field, Calif.: American
    Association of Petroleum Geologists Bulletin,
    v. 18, p. 435-475.
Haller, C. F., 1967, Neogene foraminiferal faunas of
    the Humboldt Basin, California: Unpublished Ph. D.
    Dissertation, University of California, Berkeley,
    204 p.
Hannibal, H., l912, A synopsis of the Recent and
    Tertiary fresh-water Mollusca of the Californian
    Province: Malacological Society of London
    Proceedings, v. 10, P. 112-211.
```

Ingle, J, C:, 1976, Late Neogene paleobathymetry and paleoenvironments of the Humboldt Basin, northern California, in Fritsche, H. Terbest, Jr. and W. W. Wornardt, eds., The Neogene Symposium: Society of Economic Paleontologists and Mineralogists, Pacific Section, San Francisco, p. 53-61.

Jennings, R. H., 1983, Trace Fossils and Environments of Deposition, Humboldt Basin, California: Unpublished Master's Thesis, Texas A \& M University, 207 p.

Kammer, T. W., 1979, Oxygen and carbon isotope variation in the Neogene foraminifera Globigerina and Uvigerina from DSDP Site 173 and the Centerville Beach section, California: Marine Micropaleontology, v. 4, p. 45-60.

Karlson, R. H., and Shenk, M. A., 1983, Epifaunal abundance, association, and overgrowth patterns on large hermit crab shells: Journal of Experimental Marine Biology and Ecology, v. 70, p. 55-64.

Keen, A. M., 1971, Sea shells of tropical west America: Stanford, California, Stanford University Press, 1064 p.

Keen, A. M., and Bentson, H, , 1944, Check list of California Tertiary Marine Mollusca: Geological Society of America, Special Papers, no. 56, 280 p.

Keen, A. M. and Coan, E., 1974, Marine molluscan genera of western North America, an illustrated key (2nd ed.) : Stanford, California, Stanford University Press, 208 p.

Kew, W. S. W., l920, Cretaceous and Cenozoic Echinoidea of the Pacific coast of North America: California University, Berkeley, Department of Geology, Bulletin, v. 12, p. 23-236.

Killingley, J. S., and Lutcavage, M., 1983, Loggerhead turtle movements reconstructed from 180 and $13 C$ profiles from commensal barnacle shells: Estuarine, Coastal and Shelf Sciences, v. 16 , p. 345-349.

Kitchell, J. A., Boggs, C. H., Kitchell, J. F., and Rice, J. A., 1981, Prey selection by naticid gastropods: experimental tests and application to the fossil record: Paleobiology, v. 7, p. 533-552.

Kleinpell, R. M., 1938 , Miocene stratigraphy of California: Tulsa, American Association of Petroleum Geologists, 450 p.

Kobluk, D. R., and Risk, M. J., 1977, Algal borings and framboidal pyrite in Upper Ordovician brachiopods: Lethaia, v. 10, p. 135-143.

Kukal, Z., $1971, G e o l o g y ~ o f ~ R e c e n t ~ S e d i m e n t s: ~ N e w ~ Y o r k, ~$ Academic Press (in Czechoslovakia: Prague, Czechslovak Academy Science), 490 p.

Levine, S., 1980 , Several measures of trophic structure applicable to complex food webs: Journal of Theoretical Biology, v. 83, p. 195-207.

McNamara, K. J., 1978 , Symbiosis between gastropods and bryozoans in the late Ordovician of Cumbria, England: Lethaia, v. 11, p. 25-40.

Musser, E. H., 1929, Preliminary report on the Kettleman Hills oil field: California oil Fields (California Division Mines and Mining), v. 14, p. 5-17.

Ogle, B. A., 1953 , Geology of the Eel River Valley Area, Humboldt County, California: California Division Mines Bulletin, v. 164,128 p.

Olsen, Curtis, R., 1978, Sedimentation rates: in Fairbridge, Rhodes W., and Bourgeois, Joanne, eds., The Encyclopedia of Sedimentology, v. 6, The Encyclopedia of Earth Scieces: Stroudsburg, Pennsylvania, Dowden, Hutchinson, and Ross, p. 687-692.

Parker, R. H., 1959, Macro-invertebrate assemblages of central Texas coastal bays and Laguna Madre: American Association of Petroleum Geologists Bulletin, v. 43, p. 2100-2166.

Pilsbry, H. A., 1934 , Pliocene fresh-water fossils of the Kettleman Middle Dome fields, progress in development: California Oil Fields (California Division Oil and Gas), v. 18, p. 5-20.

Piper, D. J. W., Normark, W. R., and Ingle, J. C., 1976, The Rio Dell Formation: A Plio-pleistocene basin slope deposit in northern California: Sedimentology, v. 23, p. 309-328.

```
Raup, D. M., and Stanley, S. M., l978, Principles of
    Paleoecology: San Francisco,W. M. Freeman and
    Co., 481 P.
Ricketts, E. F. and Calvin, J., 1968, Between Pacific
    Tides (4th ed. rev.): Stanford, California,
    Stanford University Press, 6l4 p.
Rollins, H. B., and Donahue, J., 1975, Towards a theoretical basis of paleoecology: concepts of community dynamics: Lethaia, v. 8, p. 255-270.
Roth, B., 1979 , Late Cenozoic Marine Invertebrates from inorthwest Caiifornia and Southwest oregon: Unpublished Ph. D. dissertation, Berkeley, University of Caififornia, 830 p .
Roughgarden, J., 1975 , Evolution of marine symbiosis A simple cost-benefit model: Ecology, v. 56, p. 1201-1208.
Sanders, H. L., l968, Marine benthic diversity: a comparative study: American Naturalist, v. 102, p. 243-282.
Schafer, W., 1972 , Ecology and Palaeoecology of Marine Environments: Chicago, University of Chicago Press, 568 p.
Schindel, D. E., 1980, Microstratigraphic sampling and the limits of paleontologic resolution: Paleobiology, v. 6, p. 408-426.
Scott, R. W., 1978, Approaches to trophic analysis of paleocommunities: Lethaia, v. ll, p. 1-14.
Staff, G. M. and Stanton, R. J. Jr., Powel1, E. N. and Cummins, H., 1986 , Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: Death assemblages in Texas bays: Geological Society of America Bulletin, v. 97, p. 428-443.
Stanton, R. J. Jr., and Dodd, J. R., 1970, Paleotechniques - Comparison of faunal and geochemical analyses of Pliocene paleoenvironments, Kettleman Hills, California: Journal of paleontology, v. 44, p. 1092-1121.
----- 1972 ; Pliocene cyclic sedimentation in the Kettleman Hills, California: in Rennie, E. W., Jr. (ed.), Geology and oil fields, west side central San Joaquin Valley: Pacific Section American
```

Association of Petroleum Geologists, Guidebook 1972, P. 50-58.

```
-----, 1976a, Pliocene biostratigraphy and depositional
    environment of the Jacalitos Canyon area,
    California: in Fritsche, A. E., Terbest, H. Jr.,
    and Wornardt, W. W., eds., The Neogene Symposium:
    Society of Economic Paleontologists and
    Mineralogists, Pacific section, p. 84-85.
-----, 1976b, The application of trophic structure of
    fossil communities in paleoenvironmental
    reconstruction: Lethaia, v. 9, p. 327-342.
Stanton, R. J. Jr., and Nelson, P.C., 1980, Reconstruc-
    tion of the trophic web in paleontology: Community
    structure in the Stone City Formation (Middle
    Eocene, Texas) : Journal of Paleontology, v. 54,
    p. 118-135.
Stanton, R. J. Jr., and Powell, E. N., and Nelson, P.
    C., 1981, The role of carnivorous gastropods in
    the trophic analysis of a fossil community:
    Malacologia, v. 20, p. 451-469.
Virnstein, R.W., l977, The importance of predation by
    crabs and fishes on benthic infauna in Chesapeake
    Bay: Ecology, v. 58, p. 1199-1217.
-----, 1979, Predation on estuarine infauna: response
    patterns of component species: Estuaries, v. 2,
    p. 69-86.
Walker, Sally E., 1986 , Influence of hermit crabs on gastropod taphonomy: Fourth North American Paleontological Convention, Boulder, Colorado, Abstracts with Programs, p. A48.
Watts, W. L., 1894, The gas and petroleum yielding formations of the central valley of California: California Mines Bureau Bulletin, v. 3, 100 p.
West, R. R., 1977 , Organism-substrate relations: Terminology for ecology and paleoecology: Lethaia, v. 10, p. 71-82.
Woodring, W. I., Stewart, R., and Richards, R. W., 1940, Geology of the Kettleman Hills oil field, California: U. S. Geological Survey Professional Paper 197, 170 p.
```

APPENDIX I

Gulf Coast Taxonomy

Life habit, as defined in the Introduction, for the fauna
is provided (in parenthesis).

E-Epifaunal
I - Infaunal

Phylum Mollusca
Class Gastropoda
Order Mesogastropoda
Family Littorinidae
Genus Littorina
Species L. (Littoraria)
irrorata (E)
Family Turritellidae
Genus Vermicularia
Species V. fargoi
Family Cerithiidae
Genus Cerithium
Species C. (Thericium)
floridanum (E)
Family Strombidae
Genus Strombus
Species S. alatus
Family Calyptraeidae
Genus Crepidula
Species C. (Janacus)
plana (E)
Family Naticidae
Genus Polinices
Species P. (Neverita)
duplicatus
Order Neogastropoda
Family Muricidae
Genus Thais (E)
Species T. (Stramonita)
haemastoma floridana
Species T. (Stramonita)
haemastoma haysae
Genus Murex
Species M. (Phyllonotus)
pomum (E)

Family Columbellidae Genus Anachis
species A. avara
semiplicata
Family Buccinidae Genus Cantharus

Species C. (Pollia)
cancellarius
Family Melongenidae
Genus Busycon
Species B. contrarium
Species B. spiratum
plagosus
Pamily Olividae
Genus Oliva
species 0. (ispidula)
sayana (I)
Family Terebridae
Genus Terebra
Species T. (Strioterebaum)
dislocata
Class Bivalvia
Order Arcoida
Family Arcidae (E)
Genus Barbatıa
Genus Anadara
Species A. (Cunearca)
brasiliana
Spec£es A. (Lunarca)
ovalis
Family Noetifdae (I)
Genus Noetia
Species N. (Eontia)
ponderosa
Order Mytiloidae
Family Mytilidae (E)
Genus Brachidontes
Species B. (Brachidontes)
exustus
Spectes B. (Ischadium)
recurvus
Family Pfnnidae (E)
Genus Atrina
Species A. serrata
Order Pterioida
Family Pectinidae (E)
Genus Aequipecten
Species A. (Plagioctenium)
amplicostatus

```
    Family Plicatulidae
        Genus Plicatula
        Species P. gibbosa
    Family Anomildae (E)
        Genus Anomia
        Species A. simplex
    Family Ostreidae (E)
        Genus Crassostrea
        Species C. Virginica
        Genus Ostrea
        Species 0. equestris
Order Veneroida
    Family Ungulinidae (E)
        Genus Diplodonta
        Species D. (Phlyctiderma)
                            semiaspera
    Family Carditidae
        Genus Cardita (E)
        Species C. (Carditamera)
            floridana
    Family Mactridae (I)
        Genus Rangia
        Species R. cuneata
    Family Donacidae (I)
        Genus Donax
        Species D. variabilis
                            texasiana
    Family Tellinidae
    Family Solecurtidae
        Genus Tagelus
        Species T. (Mesopleura)
            plebeius (I)
        Family Veneridae (I)
        Genus Dosinia
        Species D. (Dosinidia)
                        discus
        Genus Chione
            Species C. cancellata
        Genus Mercenaria
        Species M. campechiens_s
        Species M
                        texana
Order Myofda (I)
    Family Corbulidae
        Genus Corbula
Order PholadomyoIda
    Family Periplomatidae (I)
        Genus Periploma
            Species P. Inequale
```

```
Phylum Arthropoda
    Class Cirripedia
        Order Thoracła
            Family Balanidae (E)
    Class Malacostraca
        Order Decopoda
            Infraorder Brachyurra
                        Crab claw
                        Family Cancridae (E)
                Genus Arenaeus
                            Species A. cribarius
Phylum Echinodermata
    Class Ech{nofdea
        Order Clypeasteroidea
            Genus Mellita (I)
                Species M. quinquiesperforata
Phylum Annelida
    Class Polychaetミa
        Order Sedentaria
        Family Serpulidae
                Genus Serpula (E)
```

```
    APPENDIX IT
    California Taxonomy
    The specimens from the California locations were coded
for computer analysis. The coding folows each species name or
pertinent classification level (in parenthesis.)
Kingdom Protista
    Phylum Protozoa
        Class Sarcodina
                Order Foraminifera
                        (010001)
Kingdom Plantae
    General (020001,020002)
    Coal (020003)
    Wood (020004)
Kingdom Animalia
    Phylum Coelenterata
        Class Anthozoa
            Subclass Zoantharia
                Order Scleractinia
                    General (210001)
                Rhizopsammia arnoldi (211121)
    Phylum Ectoprocta
        General (310001)
        Cheilostome, encrusting (311111)
        Ctenostome?, branching (312111)
    Phylum Brachfopoda
        Class Inarticulata
            Order Acrotretida
                Suborder Acrotretidina
                    Superfamily Discinacea
                        Family Discinidae
                        Subfamily Discininae
                            Discinscia sp. (4111111)
                            Discinscia cumingif (411112)
```

```
Class Articulata
    Order Terebratulida
                                    General (420001)
            Suborder Terebratellidina
                Superfamily Terebratellacea
                    Family Dallinidae
                    Subfamily Dallininae
                    Terebratalia sp. (421111)
                        Terebratalla arnoldi etchegoini
                                    (421112)
Phylum Mollusca
    Class Gastropoda
        Subclass Prosobranchia
        Order Archaeogastropoda
            Superfamily Trochacea
                Family Trochidae
                    Trochidae ? (511101)
                    Cal11ostoma sp. (5111111)
                        Calliostoma sp. A (5111112)
                        Calliostoma sp. B (5111113)
                            Calliostoma coalingensis (511114)
                            C. coallngense privum (511115)
                    Calilostoma kerri (511116)
                            Margarites johnsoni (511121)
        Order Mesogastropoda
                Superfamily Turritellacea
                Family Turritellidae
                    Turritellid (512101)
                    Turritellid ? (512102)
                            Turrid sp. A (512103)
                            Turritella (512111)
                            Turritella ? (512112)
                            Turritella cooperi (512113)
                        Family Caecidae
                            Micranellum sp. (512211)
                Superfamily Littorinacae
                        Family Littorinidae
                            Littorfna sp. (512311)
                            Littorina ? (512312)
                            Littorina mariana (512313)
                Superfamily Cerithlacae
                    Family Cerithifdae
                        B1tt£um ? (512411)
                            Bittium aperum (512412)
                            Bictium lacteolum (512413)
```

```
    Superfamfly Calyptraeacea
    Famliy Calyptraeidea
        Calyptraea sp. (512511)
        Calyptraea ? (512512)
        Calyptraea filosa (512513)
        Calyptraea inorata (512514)
        Calyptraea cf. C. inorata (512515)
        Crepidula sp. (512521)
        Crepidula onyx (?) (512522)
        Crepidula cf. C. onyx (512524)
        Crepidula princeps (512523)
    Superfamily Naticacea
    Family Naticidae
            Naticid (512601)
            Nat1cid ? (512602)
            Natica sp. (512611)
            Natica (Cryptonatica) clausa
                                    (512612)
            Natica cf. N. (C.) clausa (512614)
            Polinices (51262%1)
            Polinices (Euspira) pallidus
                                    (512622)
            Lunatia sp. (512631)
            Lunatla ? (512632)
            Lunatia cf. L. lewissi (512633)
            Neverita sp.-(5%2641)
            Neverita reclusiana (512642)
Order Neogastropoda
    Superfamily Muricacea
        Family Muricidae
            Muricid (513101)
            Jaton ? (513111)
            Trophonopsis (Nodulotrophon)
            da111 (513121)
            Trophonopsis (T.) fleenerensis
                                    (513122)
            Trophonopsis cf. T. (T.)
            fleenerensis (51\overline{3}123)
            Forreria magister (513131)
            Ocenebra praenominata (513141)
```

```
Superfamily Euccinacea
    Famliy Buccinidae
            Buccinid ? (513201)
            Buccinum saundersi (513211)
            Buccinum cf. B. alerticum
                                    (513212)
    Family Collumbellidae
            Columbellid ? (513301)
            Mitrella gausapata (513311)
            M1trella ? (513312)
    Famliy Nassarifdae
            Nassarius sp. (513411)
            Nassarius ? (513412)
            Nassarius (Caesia) grammatus
                                    (513413)
            Nassarius (Caesia) coalingensis
                                    (513414)
            Nassarius cf. N. stocki (513415)
            Nassarius (Demondia) californianus
                                    (513418)
            Nassarius (Caesia) coalingensis
                                    (513419)
            Nassa ? (513421)
Superfamily Volutacea
    Family Olividae
            Olivid ? (513501)
            Olivella sp. (513511)
            Olivella pedroana (513512)
            Olivella cf. O. pedroana (513513)
Superfamily Mitracea
    Fambly Cancellarisdae
            Cancellarifd (513601)
            Calcellarifd ? (513602)
            Cancellarta sp. (513611)
```

```
Superfamuly Conacea
    Family Turridae
            Oenopota harpularła (510015)
            "Pseudomelatoma" fleenerensis
                                    (510017)
            Propebela cf. P. fidicula (510018)
            Propebela sp. aff. fidicula (510019)
            Turrid (513701)
            Turrid sp. A (513702)
            Antiplanes (A.) major (513711)
            Antiplanes voyi (513713)
            Antiplanes cf. A. voyi (513714)
            Antiplanes peversa (513715)
            Antiplanes (Rectisulcus) strongi
                                    (513716)
            Pseudomellatoma fleenerensis
                                    (513727)
            Mangellia sp. (513731)
Superfamily Neptunacea
    Famliy Neptuneidae
            Neptuneid (513801)
            Neptune1d ? (513802)
            Neptunea sp. (513811)
            Neptunea smírna (513812)
            Neptunea Smirna ? (513813)
            Neptunea tabulata (513814)
            Neptunea (N.) lyrata altispira
                                    (513815)
            Neptunea (N.) pribiloffensis
            pribiloffensis (513816)
            Neptunea cf. N. (Golikovia) smirna
                                    (513817)
            Neptunea (Suclosipho) tabluata
                                    (513818)
            Neptunea (Golikovia) smirnia
                                    (513819)
```

```
    Beringius arnoldi (513821)
    Beringius ? (513822)
    Clinopegma scotiaensis (513831)
    Latisipho hallii (513841)
    Colus cf. C. halibrectus (513851)
    S1phonalia-sp.(513861)
    Siphonalia ? (513863)
    Siphonalia kettlemanensis (513862)
    Subclass Opisthobranchia
    Order Cephalaspidea
        Superfamily Acteonacea
            Family Acteonidae
                    R1ctaxis punctocaelatus (514111)
        Superfamily Bullacea
            Family Bullidae
                Bulla ?(514211)
Gastropod:
    General (510005, 510006, 510007)
    Freshwater (510004)
Phylum Mollusca
    Class Bivalvia
        Subclass Paleotaxodonta
            Order Nuculotda
            Superfamily Nuculacea
                Family Nuculidae
                    Nuculana sp. (521111)
                    Acila sp. (521121)
                        Acila ? (521122)
                            Acila castrensis (521123)
        Superfam\ly Nuculanacea
            Family Nuculanidae
                    Nuculanid (521201)
                    Nuculana (521210)
                    Nuculana ? (521211)
                    Nuculana sp. A (521212)
                    Nuculana fossa (521213)
                    Yoldia sp. (521221)
                    Yoldia ? (521222)
                    Yoldia cooper: (521223)
                    Yoldia cooperi (?) (521224)
                    Yoldia (Portlandella) karagensis
                                    (521225)
                    Yoldia scissurata (521226)
                    Yoldia seminuda (521227)
```

```
Subclass Pteromorpha
    Order Arcolda
        Superfamilly Arcacae
            Family Arcidae
                Arcidae ? (522101)
                    Anadara sp. (522111)
                        Anadara ? (522112)
                            Anadara sp. ? (522113)
                            Anadara canalis (522114)
                            Anadara trilineata (522115)
                            Bathyarca ? (522121)
        Superfamily Limopsacea
            Family Glycymerididae
                        Glycymeris sp. (522211)
            Glycymeris ? (522212)
            Glycymeris grewingki (522213)
    Order Myt£loida
        Superfamily Mytilacea
            Family Mytilidae
                Mytilus sp. (523111)
                    Mytilus ? (523112)
                    Mytilus coalingensis (523113)
                    Mytilus edulis (523114)
                    Mytilus cf. M. edulis (523115)
                    Myrilus (Mytilis) (523116)
                    Crenomytilus sp. (523121)
                        Modiolus sp. (523131)
                            Modiolus cf. M. capai (523132)
                            Modiolus cf. V. recta (523133)
                            Megacrenella cf. M. Snarlyi
                                    (523151)
    Order Pterolda
        Superfamily Ostracea
            Family Ostreidae
                Ostreid (524101)
                    Ostre1d ? (524102)
                    Ostrea sp. (524111)
                    Ostrea ? (524112)
                    Ostrea atwood& (524113)
                    Ostrea vespertina sequens (524114)
                    Ostrea vespertina sequens (dwarf)
                                    (524116)
                    Ostrea perversa (524117)
```

```
    Superfamily pectinacea
        Family Pectinidae
            Pectinid (524201)
            Pecten sp. (524211)
            Pecten ? (524212)
            Pecten (Pecten) sp. (524213)
            Patinopecten (P.) caurinus (524214)
            Pecten coalingensis (524215)
            Delectopecten randolphi (524221)
            Delectopecten pedroanus (524222)
            Lituyapecten diller1 (524231)
            Patinopecten sp. (524241)
            Patinopecten ? (524242)
            Patinopecten (P.) lohri (524244)
            Patinopecten c\overline{f}. P. (L.) dilleri
                                    (524245)
            Patinopecten (L.) falorensis
                                    (524246)
            Flabellipecten coalingensis
                                    (524251)
            Aequipecten ? (524261)
            Aequipecten impostor (524262)
            Chlamys (S.) parmeleei privum
                                    (524271)
            H1nnites sp. (524281)
            Hinnites multirugosus
            crassiplicatus (524282)
    Superfamily Limacea
            Family Limidae
            Lima sp. (524311)
            Limatula aff. L. "subariculata
            (montagu)"
Subclass Heterodonta
Order Venerolda
Superfamily Carditacea
            Family Carditidae
            Cyclocardia sp. (525111)
            Cyclocardia cf. C. (T.) ventricosa
                                    (525112)
            Cyclocardia ventricosa (525114)
Superfamily Lucinacea
            Family Diplodontidae
                    Thyasira flexiosa (525211)
                    Thyasira disjuncta (525212)
                    Anodonta sp. (525221)
                    Anodonta ? (525222)
                            Anodonta kettlemanens&s (525223)
            Family Lucinidae
                    Lucinid (525301)
                    Lucina sp. (525311)
                    Lucinoma annulata (525321)
```

```
    Superfamily Chamacea
    Fam:ly Chamidae
            Chama sp. (525411)
            Chama ? (525412)
            Chama pellucida (525413)
    Superfamily Cardiacea
    Family Cardildae
Cyclocardium (520008)
Lydocardium (520009)
    Cardild (525501)
    Cardiid ? (525502)
    Cardium sp. (525511)
    Trachycardium sp. (525521)
    Trachycardium ? (525522)
    Laevicardium sp. (525531)
    Clinocardlum sp. (525541)
    Clinocardium ? (525542)
    Clinocardium meekianum (525543)
    Clinocardium nuttallif (525544)
    Clinocardium ventricosa (525545)
Superfamfly Veneracea
    Fam_ly Veneridae
            Venerid (526101)
            Venerid ? (526102)
            Chione sp. (526111)
            Protothaca sp. (526121)
            Protothaca ? (526122)
            Protothaca grata tarda (526123)
            Protothaca lacineata hannibali
                                    (526124)
            Protothaca staleyi hannibali
                                    (526126)
            Protothaca cf. P. S. hannibali
                                    (526127)
            Protothaca staminea (526128)
            Compsomyax sp. (526131)
            Compsomyax subd&aphana (526132)
            Psephidea sp. (526141)
            Psephidea lordi ovalis (526142)
            Psephidea lordf (?) (526143)
            Transenel1a sp. (526151)
            Transenella tant1lla (526152)
            Transenella californica (526153)
            Saxidomus sp. (526161)
            Saxidomus ? (526162)
            Saxidomus nuttal1 latus (526163)
```

```
Superfamily Tellinacea
    Family Tellinidae
        Tellinid (526201)
        Tellinid ? (526202)
        Tellina sp. (526211)
        Tellina ? (526212)
        Tellina oldryodi (526213)
        Tellina woodringi (526214)
        Tellina modesta (526215)
        Macoma sp. (526221)
        Macoma ? (526222)
        Macoma affinis (526223)
        Macoma affinis plena (526224)
        Miacoma astori (526225)
        Macoma cf. M. astori (526226)
        Macoma cf. M. \overline{calcarea (526227)}
        Macoma 11pari (526228)
        Macoma sp. X (526230)
        Macoma elimata (526231)
        Macoma cf. M. ellmata (526232)
        Macoma inquinata arnheimi (526233)
        Macoma aff. M. inquinata (526234)
        Macoma nasut\overline{a}(526235)
        Macoma sp. aff. M. a. plena
        (526237)
            Macoma yoldiformis (526238)
            Macoma siligua (526239)
```

```
    Family Semelidae
    Semele sp. (526311)
    Semele cf. S. rupropiota (526312)
    Family Psammobildae
        Sanguinolaria sp. (526411)
        Sanguniolaria nuttalli (526412)
        Sanguinolaria cf S. nuttalli
        (526413)
Superfamily Mactracea
    Family Mactridae
            Mactrid (526501)
            Mactrid ? (526502)
            Mactra sp. (526511)
            Spisula sp. (526521)
            Spisula ? (526522)
            Spisula alóaria coosensis (526523)
            Spisula hemphil1i (526524)
            Spisula voy{ (526525)
            Pseudocard{um sp. (526531)
            Pseudocardium ? (526532)
            Pseudocardium densatum (526533)
            Pseudocardium densatum var. gabbi
                                    (526534)
            Tresus sp. (526541)
            Tresus ? (526542)
            Tresus nuttali (526543)
Superfamily Solenacea
    Family Solenidae
            Solen sp. (526611)
            Solen ? (526612)
            Solen perrinf (526613)
            Solen perrini (?) (526614)
            Ensis sp. (526621)
            Siligua sp. (526631)
            S111gua alta (526632)
            S1ligua alta}=\mathrm{ S. CF. S. oregonia
            Siligua oregonfa (526634)
            Siligua cf. S. oregon^a (526635)
```

```
        Order Myoida
        Suborder Myina
        Superfamily Myacea
            Family Myidae
                        Mya sp. (527111)
                            Mya ? (527115)
                            Mya arenaria (527112)
                            Mya cf. M. arenaria (527113)
                            Mya dickérsoni (527114)
                            Cryptomya sp. (527121)
                            Cryptomya ? (527122)
                            Cryptomya californica (527123)
                            Cryptomya quadrata (527124)
            Family Cortulidae
                            Corbula sp. (5272l1)
        Superfamily Hfatellacea
            Fam&ly H1tellidae
                        Panomya sp. (527311)
                            Panomya ? (527312)
                            Panopea (527321)
                            Panopea ? (527322)
                            Panopea generosa (527323)
    Suborder Pholda1na
        Superfamily Pholadina
            Family Pholadidae
                            Pholad (527401)
                            Pholad ? (527402)
                            Zirafaea gabbi (527411)
                            Penftella (527421)
    Subclass Anomalodesmata
        Order Pholadomyoida
            Superfamily Pandoracea
            Family Pandoridae
                    Pandora sp. (528110)
                    Pandora grandis (528111)
            Family Thracifdae
                    Thracia trapezoldes (528211)
            Family Periplonatidae
                        Periploma sp. (528311)
General:
    Bivalve (520001, 520002, 520003, 520004)
    Bivalve X (520005)
    BIvalve Y (520006)
    Bivalve AA (520007)
    Taxodont (520010)
```

```
Phylum Mollusca
    Class Scaphopoda
                Scaphopod (531001, 531002)
                Family Dentaliidae
                    Cadulus sp. (531111)
                Dentalium sp.(531121)
                Dentalium n. sp. (531122)
                Dentalia sp. (531131)
Phylum Arthropoda
    Superclass Crustacea
        Class Cirripedia
                            Barnacle (611111, 611112, 6111113)
            Order Thoracica
                Suborder Balanomorpha
                    Fam1ly Balanidae
                            Subfamily Balaninae
                            Balanid barnacle (611211)
                            Balanus sp. (611221)
                            Balanus (Tamiosoma) cf. B. (T.)
                                    gregarius (611\overline{222)}
                            Subfamily Coronulinae
                            Coronul&d barnacle (611311)
        Class Malacostraca
            Subclass Eumalacostraca
            Superorder Eucarida
                    Order Decopoda
                    Suborder Pleocyemata
                    Infraorder Brachyurra
                            Crab (621111)
                            Crab claw (621121)
                            Crab leg (621122)
                            Crab claw ? (621123)
                            Grab carapace ? (621124)
                        Section Cancridea
                        Family Cancridae
                        Subfamily Cancrinae
                            Cancer sp. (621131)
                            Cancer ? (621112)
```

```
    Phylum Echinodermata
        Subphylum Echinozoa
        Class Echinoidea
            Subclass Euech_noidea
                Superorder Gnathostomata
                            General (700001, 700002, 700003,
                                    700004)
            Order Holectypoida
                                    General (711111)
            Order Clypeasteroida
                                    General (712001, 712101)
                        Suborder Scutellina
                        Fam{ly Dendrasteridae
                            Merriamaster sp. (71211i)
                            Merriamaster perrini (712112)
                                    Merriamaster sp. aff M. perrini
                                    Merriamaster arnoldi (712114)
                                    Merriamaster ? (712115)
                                    Scutellaster sp. (712121)
                                    Scutellaster major (712122)
                                    Dendraster sp. (712131)
                                    Dendraster ? (712132)
                                    Dendraster coalingensis (712133)
                                    Dendraster coalingensis ? (712134)
                                    Dendraster gibbsi1 humilis (712135)
Phylum Annelida
    Class Polychaetia
        Order Sedentaria
            Family Serpulidae
                Serpula (911111)
                    Serpulid (9111112)
                    Tube worm (911113)
Fish Remains Classification
    Crushing tooth (810001)
    Tooth (810002)
    Tooth ? (810003)
    Dermal plate (821001)
    Scales (821002)
```

```
    "Dog brains" tooth (822001)
    Skate teeth (822003)
    Shark teeth (822011)
    Shark teeth ? (822012)
    Bone (823001)
    Vertebra (823002)
    Otolith (824001)
Vertebrate Remains Classification
    Vertebra (830001)
    Bone (850001)
```

APPENDIX III
Kettleman Hills Sample Localities
Etchegoin Formation (Middle and South Domes)WSR\# 369


```
Etchegoin Formation North Dome
    patinopacten Zone
        WSR非 307
        WSR# 309a
        WSR非 323
        WSR# 329
        WSR## 335
```


[^3]
Etchegoin Formation North Dome
Siphonalía Zone
WSRJ 255
WSR非 256
WSR非 259
WSR\# 262
WSR\# 264
WSR\# 270
WSRF 272
WSR\# 274
WSRA 275
WSR\# 279
WSR非 281
WSR\# 282
WSR\# 283
WSR\# 286
WSR\# 292
WSR\# 294
WSR\# 299


```
Etchegoin Formation North Dome
    Upper Oseudocard{ui# Zone
        WSR#}23
        WSR# 240
        WSR# 242
        WSR# 243
        WSR# 245
        WSR# }24
        WSR/# 250
        WSR# 251
        WSR# 252
        Non-WSR Localities:
            Los Junnetes Ridge, East
            El Rascador
            Arroyo Doblegado
            El Chicon
            Cuero Alto, South Flank
```


Etchegoin Formation North Dome Littornia Zone
 WSR/F 217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

San Joaquin Formation
Cascajo Congiomerate WSR\# 183 WSR\# 202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

San Joaquin Formation Neverita Zone WSRR 145 WSR\# 155 WSR\# 159 WSR\# 164


```
San Joaquin Formation
    Pecten/Trachycardium Zone
        WSR# 71 WSR#108
        WSR# 73 WSR#110
        WSR# 76 WSR#111
        WSR# 79 WSR#112
        WSR# 80 WSR#114
        WSR# 82 WSR#117
        WSR# 85 WSR#119
        WSR# 87 WSR#126
        WSR# 89 WSR#129
        WSR# 92 WSR#130
        WSR# 93 WSR#130a
        WSR# 98 WSR#1300
        WSR#100 WSR#132
        WSR#102 WSR#134
        WSR#103a WSR#139
        WSR#105a WSR#140
        WSR#106 WSR#140b
        WSR#140a
        Non-WSR Localities:
        Southeast of Hydrill
        La Caldera
        North of La Caldera
        3rd ridge south of Hydrill
        Badger Hfll
        El Prado, Southeast edge
        Arroyo Conchoso area
        Arroyo Recodo
        Ridge North of La Caldera
        Between Arroyo Delgado and Arroyo Ramosa
        El Prado
```



```
San Joaquin Formation
        Acila Zone
            WSR非60
            WSR# 63
            WSR# 64
            Non-WSR Localities:
            El Dombo Area
            Northwest corner Sec3, 23S, 18E
            Between Arroyo Delgado and Arroyo Ramosa
            El Prado
            Arroyo Pino, northeast of WSR# $96
            Arroyo Conchoso area
            Hill South of Hydrill
            La Caldera
```


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


```
San Joaquin Formation
    Upper Mya Zone
        WSR##}2
        WSR*$ 35
        WSR# 37
        WSR# }3
        WSR# 40
        WSR| 41
        WSR# }4
        WSR#46
```



```
Tulare Formation
    WSR#4
    WSR# 11
    WSR*; 17
    WSR# 21
    WSR| 25
    WSR# 27
```


APPENDIX IV
 Humboldt Basin Sample Data

The following codes are necessary for use of this data:

1) Loc $=$ Location number
(2) Eel River Section
(3) Centerville Beach Section
2) $\mathrm{FM}=$ Formation
a. For the Eel River Section
(10) Pullen
(20) Eel Rtyer
(45) Rio Dell
(55) Rlo Dell/Scotia Bluffs (?)
(60) Scotia Bluffs
b. For the Centerville Beach Section
(10) Pullen
(20) Eel River
(30) Lower R1o De11 Member
(40) Middle Rio Dell Member
(50) Upper Rio Dell Member
3) SLOC = Sample Level

Sample numbers refer to those found in Plates I and II.
4) OBS = Computer sort cards
5) HOST = Host organisms

These numbers refer to the codes provided in Appendix II.
6) GUEST $=$ Guest organisms
(23) Fungal boring?
(24) Fungal boring
(101) Clionid boring
(301) Encrusting Bryozoans
(513) Muricid boring
(514) Naticid boring
(515) Naticid boring ?
(516) Muricid boring ?
(517) Gastropod boring
(541) Teredo boring ?

```
    (601) Crab breakage
    (ó03) Crad breakage ?
    (610) Barnacle
    (911) Very small polychaete boring
                (-0.1mm)
    (912) Smal1 polychaete boring
        (.1-.5mm)
    (913) Medium polychaete boring
        (.5-1mm)
    (914) Large polychaete boring
        (+lmm)
    (922) Polychaete borlng?
7) CNT = Count variable
    l = single report per shell or first
    report for a shell
    0 = multiple reports per shell
        ex.: If CNT = 1, 1, 0, 1, and 0,
                there were 3 shells.
```

OBS	HOST	GUEST	CNT	085	HOST	GUEST	CNT
5435	513802	0	1	5465	526221	0	1
				5466	526231	0	1
				5467	531001	0	1
-----	LOC=2 FM= 20	SLOC=41	-----	5468	611211	0	1
				5469	621141	0	1
OBS	HOST	GUEST	CNT	5470	821002	0	1
				5471	821002	0	1
5436	510005	0	1	5472	850001	0	1
54.37	511113	0	1	5473	85000!	0	1
5438	512112	0	1				
5439	512601	0	1				
5440	313814	0	1	----*	LOC.2 FMa 20	SLJCa45	
5441	521123	0	1				
5442	521123	0	1	085	HOST	GUEST	CNT
5443	521213	0	1				
5444	525111	0	1	5474	20001	0	1
5445	525541	0	1	5475	513415	0	1
5446	526231	0	1	5476	513801	0	1
5447	531122	0	1	5477	525541	0	1
5448	531131	0	1	5478	525541	610	1
5449	621111	0	1	5479	526231	0	1
				5480	611111	0	1
				5481	700001	0	1
----	$L O C=2 \quad F M=20$	SLOC $=42$	----	5482	711111	0	1
				5483	711111	0	1
OBS	HOST	GUEST	CNT	5484	711111	0	1
				5485	711111	0	1
5450	521123	0	1	5486	712001	0	1
5451	521123	0	1	5487	$7: 2001$	0	1
				5488	812001	0	1
				5489		0	1
----	$L O C=2$ FM=20	$S L O C=43$	-----	5490	830001	0	1
OBS	HOST	GUEST	CNT				
				------	LOC=2 FM= 20	SLOC=47	
5452	621121	0	1				
				OBS	HOST	GUEST	CNT
----	LOC=2 FM=20	SLOC= 44	------*	$\begin{aligned} & 5491 \\ & 5492 \end{aligned}$	520001	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1
OBS	HOST	GUEST	CNT	5493	526221	914	1
				5494	526231	0	1
5453	512601	0	1	5495	526231	0	1
5454	513201	0	1	5496	526239	514	1
5455	513201	912	1				
5456	513713	0	1				
5457	513801	0	- 1	----.--	$L O C=2 \quad F M=20$	$S L O C=48$	- -
5458	513813	0	1				
5459	- 513841	0	1	OBS	HOST	GUEST	CNT
5460	- 513841	0	1				
5461	1520001	0	1	5497	526231	0	1
5462	2 521121	0	1	5498	526231	514	1
5463	523111	0	1	5453	531001	0	1
5464	4526141	0	1	5500	821002	0	1

OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5542	500001	0	1	5564	512601	0	1
5543	512612	912	1	5565	521213	0	1
5544	520001	0	1	5566	521221	0	1
5545	521122	0	1	5567	526225	516	1
5546	526232	0	1	5568	527314	0	1
LOC=2 FM=45 SLOC=111				------ LOC=2 FM=45 SLOC=116			-
OBS	HOST	GUEST	CNT	O8S	HOST	GUEST	CNT
5547	512524	0	1	5569	510005	0	1
5548	513821	0	1	5570	513821	0	1
5549	521123	0	1	5571	513821	0	1
5550	526225	0	1	5572	513821	0	1
5551	526231	0	1	5573	513821	0	1
				5574	520001	0	1
				5575	526222	0	1
----	LOC=2 FM=45	SLOC= 112		5576	526222	912	1
				5577	526612	0	1
085	HOST	GUEST	CNT				
5552	510005	0	1	------ LOC=2 FM=45		SLOC = 117	
5553	513822	0	1				
5554	520001	513	1	OBS	HOST	GUEST	
5555	526222	0	1				
5556	526231	0	1	5578	513821	0	1
5557	526231	0	1	5579	513821	0	1
5558	526231	517	0	5580	521123	0	1
5559	526231	913	1	5581	525501	0	1
				5582	526221	0	1
				5583	528311	0	1
----	LOC=2 FM=45	SLOC = 113	-------				
OBS	HOST	GUEST	CNT	-....- LOC=2 FM= 45		SLOC $=118$	--------
5560	512612	0	1	OBS	HOST	GUEST	CNT
				5584	513821	0	1
	$L O C=2 \quad F M=45$	SLOC $=114$	-------	5585	513821	0	1
OBS	HOST		CNT	5586	513821	914	1
		GUEST		5587	520001	0	1
				5588	520001	0	1
5561 5562 5563				5589	524201	0	1
	526226	0	1	5590	524201	912	1
	531001	0	1				
				----- LOC= 2 FM=45		SLOC= 119	
				OBS	HOST	GUEST	CNT
				5591	513821	0	1
				5592	521123	912	1
				5593	531001	0	1

OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5594	513819	0	1	5616	513821	0	1
5595	513819	0	1	5617	521123	0	1
5596	513819	0	4				
5597	513819	912	1				
5598	513819	912	1	----	LOC=2 FM=45	SLOC= 127	-
				085	HOST	GUEST	CNT
				5519	523:1:	\bigcirc	1
O8S	HOST	GUEST	CNT				
5599	513819	322	1	------ LOC=2 Fin=45		SLOC= 128	------
				OBS	HOST	GUEST	CNT
				5619	524201	0	1
08S	HOST	GUEST	CNT				
5600	513821	0	1	------ LOC=2 FM=45		SLOC = 139	CNT
5601	513831	0	1				
				OBS	HOST	GUEST	
---	$L O C=2 \quad F M=45$	SLOC= 123		5620	20001	0	1
				5621	20001	0	1
OBS	HOST	GUEST	CNT	5622	20003	0	1
				5623	510005	0	1
5602	20004	541	1	5624	512601	0	1
5603	513821	0	1	5625	512612	0	1
5604	513821	912	1	5626	521226	0	1
				5627	521226	0	1
				5628	522111	0	1
	$L O C=2 F M=45$	SLOC $=124$	------	5629	525211	0	1
	HOST			5630	526221	0	1
0BS		GUESt	CNT	5631	526238	0	1
				5632	526611	0	1
5605	510005	0	1	5633	526621	0	1
5606	512611	0	1	5634	526634	0	1
5607	512611	912	1	5635	526635	0	1
5608	512612	0	1	5636	531001	0	1
5609	513821	0	1				
5610	520001	0	1				
5611	520001	0	1	----	LOC=2 FM=45	$S L O C=132$	
5612	520005	0	1				
5613	521123	0	1	OBS	HOST	GUEST	CNT
				5637	513812	0	1
	$L O C=2 \quad F M=45$	SLOC= 125	-	5638	513821	0	1
OBS	HDST	GUEST	CNT				
5614	512601	0	1				
5615	524241	912	1				

OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5861	512111	0	1	5897	526142	0	1
5862	524241	0	1				
5863	526221	0	1				
				-------	LOC=2 FM=45	SLOC= 176	
---	LOC*2 FM=45	SLDC-172	---	08S	HOST	GUEST	CNT
OBS	HOST	GUEST	CNT	5898		0	1
				5999	526142	\cong	4
5864	524201	0	1	5900	526142	0	1
5865	524201	912	1	5901	526142	0	1
5866	524201	913	0	5902	526142	0	1
5867	525541	0	1	5903	526142	0	1
5868	526121	0	1	5904	526142	0	1
5869	526221	0	1	5905	526142	0	1
5870	526222	0	1	5906	526142	0	1
				5907	526142	0	1
				5908	526142	0	1
----	LOC=2 FM=45	SLOC $=173$	-	5909	526142	0	1
					526142	0	1
OBS	HOST	GUEST	CNT	5911	526142	0	1
				5912	526142	0	1
5871	525543	0	1	5913	526142	0	1
5872	525543	0	1	5914	526142	0	1
5873	526126	0	1	5915	526142	0	1
5874	526126	0	1	5916	526142	0	1
5875	526126	0	1	5917	526142	0	1
5876	526234	0	1	5918	526142	0	1
5877	526235	0	1	5919	526142	0	1
5878	526235	0	1	5920	526142	0	1
5879	526235	514	1	5921	526142	0	1
5880	526525	0	1	5922	526142	0	1
5881	526631	0	1	5923	526142	0	1
5882	526634	0	1	5924	526142	0	1
5883	621111	0	1	5925	526142	0	1
				5926	526142	0	1
---	LOC=2 FM=45	SLOC $=174$	-				
				-	LOC=2 FM=45	$S L O C=177$	
OBS	HOST	guest	CNT				
				OBS	HOST	GUEST	CNT
5884	525543	0	1				
5885	526122	0	1	5927	520001	0	1
5886	526122	912	1	5928	520001	0	1
5887	526233	0	1	5929	520001	912	1
5888	526233	0	1	5930	524201	0	1
5889	526233	0	1	5931	526121	0	1
5890	526233	0	9	5932	526221	0	1
5891	526233	0	1	5933	526233	0	1
5892	526233	0	1				
5893	526233	514	1				
5894	526233	514	1				
5395	526233	912	1				
5896	526233	912	1				

OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT
5934	512612	0	1	5982	525543	0	1
5935	512612	0	1	5983	525543	0	1
5936	512612	0	1	5984	525543	0	1
5937	512612	0	1	5985	525543	0	1
5938	512612	0	1	5986	525543	0	1
5939	513715	913	1	5987	525543	0	1
5940	513841	0	1	5988	525543	0	1
5941	520002	610	1	5989	525543	0	1
5942	521226	0	1	5990	525543	0	1
5943	521226	0	1	5991	525543	0	1
5944	524214	912	1	5992	525543	0	1
5945	524214	913	0	5993	525543	0	1
5946	526126	0	1	5994	525543	0	1
5947	526126	0	1	5995	525543	0	1
5948	526126	0	1	5996	525543	0	1
5949	526126	514	1	5997	525543	0	1
5950	526126	514	1	5998	525543	0	1
5951	526126	912	0	5999	525543	0	1
5952	526142	0	1	6000	525543	0	4
5953	526233	0	1	6001	525543	0	1
5954	526233	0	1	6002	525543	0	1
5955	526233	0	1	6003	525543	0	1
5956	526233	0	1	6004	525543	0	1
5957	526233	514	1	6005	525543	0	1
5958	526412	0	1	6006	525543	0	1
5959	526632	0	1	6007	525543	0	1
5960	527311	0	1	6008	525543	0	1
5961	528211	0	1	6009	525543	912	1
5962	528211	0	1	6010	525543	912	1
5963	611111	0	1	6011	526126	0	1
5964	611111	610	1	6012	526126	0	1
5965	611112	610	1	6013	526126	0	1
5956	712121	0	1	5014	525125	0	1
				6015	526126	0	1
				6016	526126	0	1
-	$L O C=2 F M=45$	$S L O C=179$		6017	526126	0	1
				6018	526126	0	1
OBS	HOST	GUESt	CNT	6019	526126	0	1
				6020	526126	0	1
5967	512612	0	1	6021	526126	0	1
5968	525501	514	4	6022	526126	0	1
5969	525543	0	1	6023	526126	0	1
5970	525543	0	1	6024	526126	0	1
5971	525543	0	1	6025	526126	0	1
5972	525543	0	1	6026	526126	0	1
5973	525543	0	1	6027	526126	0	1
5974	525543	0	1	6028	526126	0	1
5975	525543	0	1	6029	526126	0	1
5976	525543	0	1	6030	526126	0	1
5977	525543	0	1	6031	526126	0	1
5978	525543	0	1	6032	526126	0	1
5979	525543	0	1	6033	526126	0	1
5980	525543	0	1	6034	526126	0	1
5981	525543	0	1	6035	526126	0	1

OBS	HOST	GUEST	CNT	085	HOST	GUEST	CNT
6291	526142	0	1	6345	526613	0	1
6292	526142	0	1	6346	526632	0	1
6293	526142	0	1	6347	526632	0	1
6294	526142	0	1	6348	526635	0	1
6295	526142	0	1	6349	712001	0	1
6296	525142	0	1	6350	712001	0	1
6297	526142	0	1	6351	712122	0	1
6298	526142	0	1	6352	712122	0	1
¢290	525:42	0	;	¢353	712:22	0	$!$
6300	526142	0	1				
6301	526142	0	1				
6302	526142	0	1	-----	LOC=2 FM=55	$S L O C=146$	-
6303	526142	0	1				
6304	526142	0	1	085	HOST	GUEST	CNT
6305	526142	0	1				
6306	526142	0	1	6354	526126	0	1
6307	526142	0	1				
6308	526142	0	1				
6309	526142	0	1	------	$L D C=2 \quad F M=60$	$S L O C=200$	
6310	526142	0	1				
6311	526142	0	1	OBS	HOST	GUEST	CNT
6312	526142	0	1				
6313	526142	0	1	6355	520001	0	1
6314	526142	0	1	6356	520001	0	1
6315	526142	0	1	6357	525544	0	1
6316	526142	0	1	6358	525541	0	1
6317	526142	0	1	6359	525541	913	1
6318	526142	0	1	6360	525543	0	1
6319	526142	0	1	6361	525543	0	1
6320	526142	0	1	6362	525543	0	1
6321	526142	0	1	6363	525543	0	1
6322	526142	0	1	6364	525543	0	1
6323	526142	0	1	6365	525543	0	1
6324	526142	0	1	6366	525543	0	1
6325	526142	0	1	6367	525543	0	1
6326	526142	0	1	6368	525543	0	1
6327	526142	0	1	6369	525543	0	1
6328	526142	0	1	6370	525543	0	1
6329	526142	0	1				
6330	526142	0	1				
6331	526142	0	1	-----	LOC=2 FM=60	SLOC $=201$	
6332	526142	0	1				
6333	526142	0	1	OBS	HOST	GUEST	CNT
6334	526142	0	1				
6335	526142	0	1	6371	520001	0	1
6336	526142	0	1	6372	526635	0	1
6337	526142	0	1	6373	712122	0	1
6338	526142	0	1				
6339	526142	0	1				
6340	526142	0	1				
6341	526142	0	1				
6342	526142	514	1				
6343	526142	514	1				
6344	526502	0	1				

OBS	HOST	GUEST	CNT	085	HOST	GUEST	CNT
6374	520001	0	1	6411	525541	0	1
6375	525543	0	1	6412	712001	0	1
6376	525543	0	1				
6377	525543	0	1				
6378	525543	0	1	------	LOC-2 FM-60	SLOC-207	
6379	525543	0	1				
6380	525543	0	1	OBS	HOST	GUEST	CNT
6381	525543	0	1				
¢382	525543	0	1	5413	525231	514	1
6383	525543	0	1	6414	526611	0	1
6384	525543	0	1	6415	526614	0	1
6385	525543	312	1	6416	527312	0	1
6386	525543	912	1				
6387	526611	0	1				
				------	LOC=2 FM=60	SLOC=220	
	LOC=2 FM-60	SLOC= 203	------	O8S	HOST	GUEST	CNT
OBS	HOST	GUEST	CNT	6417	525543	0	1
				6418	525543	0	1
6388	512612	0	1	6419	525543	0	1
6389	520001	0	1	6420	525543	0	1
6390	525543	0	1	6421	525543	0	1
6391	525543	0	1	6422	525543	0	1
6392	525543	0	1	6423	525543	0	1
6393	525543	0	9	6424	525543	0	1
6394	525543	0	1	6425	525543	0	1
6395	525543	0	1	6426	525543	0	1
6396	526612	0	1	6427	525543	0	1
				6428	525543	0	1
				6429	525543	0	1
-----	LOC= 2 FM=60	SLOC $=204$	------*	6430	525543	0	1
				6431	525543	0	1
OBS	HOST	GUEST	CNT	6432	525543	0	1
				6433	525543	912	1
6397	512612	0	1				
6398	512612	0	1				
6399	512612	0	1				
6400	512612	0	1				
6401	512612	544	0				
6402	512612	515	1				
6403	512612	912	1				
6404	512612	912	1				
6405	513121	0	1				
6406	- 513811	912	1				
6407	7 513816	912	1				
6408	525541	0	1				
6409	712001	0	1				
6410	-712122	0	1				

FM=10 SLOC=5 -----...				-.-.-- LOC=3 FM=20 SLOC=22			
085	HOST	GUEST	CNT	OBS	HDST	GUEST	CNT
6434	521123	0	1	6439	512119	0	1
6435	521123	0	1	6440	512612	0	1
6436	521123	0	1	6441	521123	0	1
6437	521123	0	1	6442	526231	0	1
6438	521123	0	1	6443	526231	0	1
				6444	526231	0	1
				6445	526231	0	1
				6446	526231	0	1
				6447	526231	0	1
				6448		0	1
				LOC=3 FM=20 SLOC=25			
				OBS	HOST	GUEST	CNT
.				6449	10001	0	1
				6450	20001	0	1
				6451	20001	0	
				6452	20001	0	1
				6453	20003	0	1
				6454	510001	0	1
				6455	510005	0	1
				6456	510005	0	1
				6457	511111	0	1
				6458	512001	0	1
				6459	512111	0	1
				6460	512601	912	1
				6461	512611	0	1
				6462	514111	0	1
				6463	520001	0	1
				6464	520001	0	1
				6465	520010	0	1
				6466	521121	0	1
				6467	521211	0	1
				6468	531001	0	1
				6469	531001	0	1
				6470	700001	0	1
				6471	700001	0	1
				6472	700001	0	1
				6473	821002	0	1
				6474	821002	0	1
				6475	830001	0	1
				----- LOC=3 FM=20 SLOC=26			
				OBS	HOST	GUEST	CNT
				6476	512103	0	1
				6477	512612	0	1
				6478	513711	0	1
				6479	526231	0	1
				6480	528311	0	1

O8S	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT	
6484	512111	0	1	6505	521226	0	1	
6482	513711	0	1	6506	521226	23	1	
6483	711111	0	1	6507	526231	0	1	
				6508	526231	0	1	
$L O C=3 \quad f M=20 \quad S L O C=28 \quad \ldots .$$L O C=3 \text { FM=3O SLOC=46 }$								
OBS	HOST	GUEST	CNT	OBS	HOST	GUEST	CNT	
6484	10001	0	1	6509	526231	0	1	
6485	510005	0	1					
6486	512614	0	1					
6487	513811	0	1	------	LOC=3 FM=35			
6488	513821	0	1			SLOC-92	CNT	
6489	513831	0	1					
6490	520001	0	1	OBS	HOST	GUEST		
6491	525501	0	1	6510	524214	0		
6492	526231	0	1				1	
6493	526231	0	1					
6494	531002	0	1		LOC=3 FM=40	SLOC=61		
				--			CNT	
	$L O C=3 \quad F M=30$	$S L O C=40$	----	OBS	HOST	GUEST		
OBS	HOST	GUEST	CNT	6511	520001	0	1	
6495	526227	0	1					
6496	526227	0	1	----	$L O C=3 \quad F M=40$	SLOC $=62$		
6497	526231	0	1			GUEST	CNT	
				OBS	HOST			
OBS	$L O C=3 \quad F M=30$	SLOC=41	CNT	6512	513795	\bigcirc	1	
	HOST	GUEST		6513	513818	0	1	
				6514	513818	23	1	
				6515	513818	912	1	
6498	513713	0	1	6516	521221	0	1	
6499	521111	0	1	6517		0	1	
6500	521221	0	1	6518	524222		1	
6501	526231	0	1					
				----- LOC=3 FM=40		SLOC=63		
--	LOC=3 FM=30	$S L O C=42$	----					
				OBS	HOST		GUEST	CNT
OBS	HOST	GUEST	CNT					
				6519	521212	0	1	
6502	512601	0	1					
6503	526231	0	1					
6504	526231	517	1					

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OBS	HOST	GUEST	CNT	O8S	HOST	GUEST	CNT
6673	512612	0	1	6715	513121	512	1
6674	512612	0	1	6716	513122	0	1
6675	512612	912	1	6717	513122	601	1
6676	512612	912	1	6718	513122	603	1
6677	513121	0	1	6719	513311	0	1
6678	513121	0	1	6720	513311	0	1
6679	513121	0	1	6721	513311	0	1
6680	513122	0	1	6722	513311	514	1
6681	513122	610	1	6723	513311	912	4
6682	513311	0	1	6724	513311	912	i
6683	513312	0	1	6725	513311	912	1
6684	513715	601	1	6726	513711	0	1
6685	513715	912	0	6727	513711	514	1
6686	513796	516	1	6728	513713	912	1
6687	513851	0	1	6729	513731	0	1
6688	524214	C	1	6730	543795	912	1
6689	525544	0	1	6731	520001	101	1
6690	525544	0	1	6732	524214	913	1
6691	526132	0	1	6733	525114	0	1
6692	526132	3	1	6734	525114	0	1
6693	526132	610	1	6735	525114	0	1
6694	526142	0	1	6736	525114	516	0
6695	527311	0	1	6737	525114	912	1
6696	528111	0	1	6738	526141	0	1
6697	528111	913	1	6739	526142	0	1
6698	611111	0	1	6740	526142	0	1
6699	611311	0	1	6741	526142	0	1
				6742	526142	0	1
				6743	526142	0	1
---	LOC=3 FM=50	$S L O C=97$		6744	526142	0	1
				6745	526142	0	1
OBS	HOST	GUEST	CNT	6746	526142	0	1
				6747	526142	0	1
6700	512312	912	1	6748	526142	0	1
6701	525114	0	1	6749	526142	0	1
6702	525114	0	1	6750	526142	0	1
6703	525541	0	1	6751	526142	0	1
6704	528111	0	1	6752	526142	0	1
				6753	526142	0	1
				6754	526142	0	1
	LOC=3 FM=50	SLOC=98	-	6755	526142	0	1
				6756	526142	0	1
O8S	HOST	GUEST	CNT	6757	526142	0	1
				6758	526142	0	1
6705	10001	0	1	6759	526142	0	1
6706	512111	0	1	6760	526142	0	1
6707	512622	0	1	6761	526142	0	1
6708	512622	0	1	6762	526142	0	1
6709	512622	0	1	6763	526142	0	1
6710	512622	0	1	6764	526142	0	1
6711	513121	0	1	6765	526142	0	1
6712	513121	0	1	6766	526142	0	1
6713	513121	0	1	6767	526142	0	1
6714	593121	0	1	6768	526142	0	1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

NAME: William Maurice Ha	rris, Jr.
PLACE OF BIRTH: San Anto	nio, Texas.
DATE OF BIRIH: October 2	6,1958.
PARENTS: William M. Harr	is, Marilyn G. Harris
EDUCATIONAL BACKGROUND:	B. S. degree in geology from Baylor University (May 1980).
	M. S. degree in geology from Texas A\&M University (December 1982).
FIELD OF SPECIALIZATION:	Paleontology
PROFESSIONAL EXPERIENCE:	Teaching and research assistanships at Texas A\&M University
	Consulting geologist, Becon Mining and Minerals group, Christine, Texas
	Project geologist, Sun Gas Company, Oklahoma City, OK and Corpus Christi, TX
PERMANENT MAILING ADDRESS:	2811 Albin, San Antonio, Texas 78209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Plate 1.
Eel River Section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

William M. Harris Jr., 1987
late II.

e Beach Section

[^0]: Figure 6. Ternary diagram used for the display and comparison of interactions found at the Texas Coast location. Points located at apices represent 100% of the sample.

[^1]: Figure 13. Stratigraphic section at the Eel River locality indicating lithologies and sample horizons. Sample numbers refer to the listing in Appendix IV.

[^2]: Figure 29. Late Pliocene paleogeography os west central California (after Galehouse [1967], from Dodd and Stanton, 1981.)

[^3]: Etchegoin Formation North Dome
 Macoma Zone WSR\# 300a WSR\# 306 WSR\# 306a

