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Executive Summary 
 

The Texas Water Resources Institute (TWRI), Texas AgriLife Research, the Texas AgriLife 

Extension Service, and Texas A&M University-Kingsville conducted an Arroyo Colorado 

nonpoint source assessment of agricultural sources. Since the Arroyo Colorado Watershed 

Protection Plan has been completed, the Arroyo Colorado Watershed Partnership has 

worked to implement best management practices on cropland to reduce the amount of 

nutrients entering the Arroyo Colorado.  

 

This program focused primarily on evaluating the effectiveness of best management 

practices on row crop fields, evaluating nutrient removal in vegetated drainage ditches, and 

determining which management practice scenarios would be most effective in keeping 

nutrients from entering the Arroyo. The program team found that two management 

practices, nutrient management and irrigation management, were the most effective 

practices in keeping nutrients from running off cropland and into drainage ditches. 

Drainage ditches were monitored, and it was determined that they could act as constructed 

wetlands by removing nutrients through natural processes if properly maintained. If not 

properly maintained, drainage ditches could release nutrients, previously absorbed, back 

into the water that eventually makes its way into the Arroyo. Scenarios were modeled 

using the Soil and Water Assessment Tool (SWAT) that demonstrated which suite of 

practices through 2025 need to be adopted to provide necessary loading reductions. Lastly, 

the land use data for the Arroyo Colorado Watershed was updated and used as an input file 

to the SWAT model and can be used in a variety of other methods. 

 

Future steps for the Arroyo Colorado Watershed include further assessment of using 

cropland as an actual source of pollution reduction. Observing some already elevated levels 

of nutrients in irrigation water, proper management of nutrient and irrigation, and 

installation of management practices play vital roles in keeping nutrients from entering the 

water body. Money for incentive programs is a huge need as producers continue to adopt 

management practices with the help of cost share. Additionally, educational programs will 

continue to be in high demand as best management practice demonstrations are important 

to show producers the benefits of adoption. Finally, further assessment of what the local 

needs are should be conducted to identify what the most effective approach to reaching 

local stakeholders, as they are the population that will make the difference.  
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Introduction 
 

The Arroyo Colorado flows through Hidalgo, Cameron, and Willacy counties in the Lower 

Rio Grande Valley of Texas into the Laguna Madre. Flow in the Arroyo Colorado is 

sustained by wastewater discharges, agricultural irrigation return flows, urban runoff, and 

base flows from shallow groundwater. The Arroyo Colorado is the major source of fresh 

water to the lower Laguna Madre, an economically and ecologically important resource to 

the region. The Laguna Atascosa National Wildlife Refuge and several county and city parks 

are located within the Arroyo Colorado watershed. The mild climate, semi-tropical plants 

and animals, and many recreational opportunities draw large numbers of people to the 

Arroyo Colorado Watershed. One third of the water body is also used for shipping from the 

Gulf Intracoastal Waterway to the Port of Harlingen.  

 

As a result of low dissolved oxygen levels, the tidal segment of the Arroyo Colorado 

(Segment 2201), does not currently meet the aquatic life use designated by the State of 

Texas and described in the Texas Water Quality Standards. This has been the case for every 

303(d) list prepared by the State since 1986. There have also been concerns for high 

nutrient levels in this water body as documented on every 305(b) assessment prepared by 

the State since 1988. To meet the dissolved oxygen criteria (24-hour average of 4.0 mg/L 

and minimum of 3.0 mg/L) at least 90% of the time between the critical period of March 

through October, Texas Commission on Environmental Quality (TCEQ) (2003) estimates a 

90% reduction in nitrogen, phosphorous, oxygen-demanding substances and sediment will 

be necessary. 

 

In response to this impairment, a local effort was initiated to develop a watershed 

protection plant (WPP) to improve conditions in the Arroyo Colorado. Working with the 

TCEQ, the Texas State Soil and Water Conservation Board (TSSWCB) and other agencies, a 

local steering committee has and will continue devise and implement strategies to increase 

dissolved oxygen in the Arroyo Colorado and improve its environmental conditions. 

 

The Arroyo Colorado Watershed Steering Committee has established several work groups 

to address the six major components of the WPP: wastewater infrastructure; agricultural 

issues; habitat restoration; refinement of the Total Maximum Daily Load analysis; land use; 

and public education. The project has significant financial support from federal nonpoint 

source grants under CWA §319(h). Already, the stakeholders have made great progress. 

The Education and Outreach Work Group has developed an outstanding multimedia 

presentation about pollution problems in the Arroyo Colorado and how to get involved in 

addressing them. In May 2004, the TCEQ and the Habitat Restoration Work Group 

established contracts with Texas A&M University’s Sea Grant Program and the Texas Parks 

and Wildlife Department (TPWD) to provide an independent watershed coordinator and a 
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habitat restoration specialist to assist in the development of the WPP. TPWD has 

contracted with Alan Plummer Associates, Inc. to develop a habitat restoration feasibility 

study. Funding for this study was obtained from the National Oceanic and Atmospheric 

Administration through the Texas General Land Office A draft Wastewater Infrastructure 

plan has been developed. In September 2005, the TSSWCB and the Agricultural Issues 

Work Group established contracts with (1) Hidalgo and Southmost Soil and Water 

Conservation Districts (SWCDs) to provide technical and financial assistance to landowners 

to aid in the development and implementation of Water Quality Management Plans 

(WQMPs) and (2) TWRI and AgriLife Extension to provide education on best management 

practices (BMPs). Since this project began, the Arroyo Colorado WPP was published in 

January 2007 and implementation efforts have been ongoing since. 

Project Overview 
 

The primary focus of this project was to better characterize agricultural runoff in the 

Arroyo Colorado, assess and demonstrate the effects of BMP implementation at the field 

and sub-watershed level, and measure progress towards meeting WPP goals. A second 

focus was to evaluate the natural phosphorus reduction capabilities of drainage ditches on 

runoff from irrigated cropland in the Arroyo Colorado watershed.  

 

This project also provided storm and routine monitoring of drainage ditches that 

contribute nonpoint source (NPS) loading to the Arroyo Colorado in order to better assess 

agricultural NPS loadings and reductions resulting from BMP implementation. Monitoring 

was primarily directed at evaluating areas with significant irrigated cropland acreage. 

 

This project was consistent with the WPP and highly coordinated with the Arroyo Colorado 

Watershed Partnership and Arroyo Colorado Agricultural Issues Workgroup as well as the 

educational and implementation projects already in the watershed.  

 

Monitoring efforts have used numerous automated sampling systems that Texas A&M 

University- Kingsville (TAMU-K) possessed. Historical and non-direct data obtained from 

other projects have also been used to supplement this project when needed. Data collected 

for this project was and will be used to determine the reduction of NPS pollution associated 

with implementation efforts and inform TSSWCB of areas where reduction efforts are most 

needed. This project also supported additional educational efforts in the watershed. 

 

The four subwatersheds for this study represented predominately irrigated cropland 

within the Arroyo Colorado watershed with two sites being located in Cameron County and 

two sites in Hidalgo County.  
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Subwatershed monitoring activities of this project consisted of automated stormwater 

sampling, monthly ambient grab sampling, and instantaneous streamflow measurements. 

Field measurements of dissolved oxygen, water temperature, specific conductance, and pH 

were collected with each grab sample. All water samples were analyzed for various 

nutrient forms (e.g., total phosphorus, dissolved orthophosphate phosphorus [frequently 

referred to as soluble reactive phosphorus] total Kjeldahl nitrogen, dissolved ammonia, 

dissolved nitrite plus nitrate), and total suspended solids. In addition, monthly grab 

samples were analyzed for biochemical oxygen demand (BOD). Nitrogen forms were 

included in the laboratory analyses to provide a more complete indication of macronutrient 

conditions in the watershed, evaluate whether agricultural BMPs are reducing nutrients, 

and ensure that efforts to reduce one nutrient is not inadvertently increasing another.  

 

This project provided result-oriented demonstrations to landowners in the Arroyo 

Colorado watershed. The edge-of-field monitoring represented both tiled and non-tiled 

irrigation cropland fields that drain to both drainage ditches and directly into the Arroyo 

Colorado. Surface runoff, along with outflow from the tile drainage system, was retrieved 

on a storm-event basis and flow composited into a single sample. All water samples were 

analyzed for various nutrient forms. 

 

Throughout the project, staff has maintained equipment to record instantaneous water 

level information and gather the required physical measurements and flow data needed to 

develop, maintain and update, as it was needed, the stage-discharge relationships (rating 

curves) at all stations. 

 

The results of this study are being used to support ongoing educational and 

implementation efforts and future modeling efforts planned for the watershed. 

 

A final component of this project includes the completion of the recalibrated Arroyo 

Colorado SWAT model. The model, funded under TSSWCB project 02-21 SWAT Model 

Simulation of the Arroyo Colorado Watershed, completed and delivered a 

calibrated/validated SWAT model for the Arroyo Colorado based on a variety of newly 

collected data sources; however, the project was not able to run various BMP scenarios due 

to the project grant period ending in April 2009. This model uses information gathered in 

the TSSWCB project 06-10 as inputs to the SWAT model, as well as finish some remaining 

tasks from the 02-21 project, which includes simulating load reduction scenarios for a suite 

of management measures and providing flow and watershed loadings to the Arroyo 

Colorado, as determined by SWAT, for future input by TCEQ into the Environmental Flow 

Dynamic Code (EFDC) model.  
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Project Coordination and Administration 
 

TWRI facilitated this project through continued communication, consistent and timely 

reporting, fiscal oversight, and active involvement in the WPP implementation process. 

TWRI organized an Agricultural Monitoring Oversight Committee that coordinated project 

efforts with all project participants, including AgriLife Research, TAMU-K, AgriLife 

Extension, TCEQ, Texas Department of Agriculture, Texas Sea Grant, TSSWCB, Nueces River 

Authority, producer groups, irrigation districts, and drainage districts. In 2007, a draft list 

of members to include in this committee was developed, and the first meeting was held in 

conjunction with the Arroyo Colorado Watershed Partnership Agricultural Issues 

Workgroup on July 24, 2007. During that meeting, it was determined that for efficiency 

sake, the Agricultural Monitoring Oversight Committee would meet in conjunction with the 

Agricultural Issues Workgroup. From then on, the Agricultural Monitoring Oversight 

Committee (Agricultural Issues Workgroup) continued to meet on a biannual basis. 

Meeting minutes for these meetings can be found at: 

http://arroyocolorado.org/partnership/agriculture-workgroup/.  

 

TWRI drafted and submitted reports each quarter to TSSWCB that provided summaries of 

related activities during the previous 3 months. Those reports can be found at 

http://www.arroyocolorado.org/projects/agricultural-nps-assessment/. Additionally, 

TWRI hosted a project meeting with the TSSWCB project manager, as needed, to review 

project status, deliverables and discuss other issues. During quarters when no Agricultural 

Monitoring Oversight Committee meetings were scheduled, meetings were held with 

project participants to discuss project activities, project schedule, lines of responsibility, 

etc. 

 

Through this project, monitoring results have been transferred to AgriLife Extension and 

AgriLife Research for development of educational materials and presentation to 

stakeholders. Based on the results of the monitoring, AgriLife Extension has and will 

continue to hold workshops demonstrating the impacts of implementing BMPs in the 

watershed. It will also coordinate periodic meetings of agricultural producers to bring 

awareness concerning the impact of the drainage ditches on the mitigation of pollution 

from the Arroyo Colorado. Specific educational activities have occurred through TSSWCB-

funded project 05-10 and will continue through TSSWCB-funded project 10-11. 

 

Finally, TWRI has developed, hosted and maintained a website for dissemination of 

information on educational, monitoring and demonstration activities taking place across 

the Arroyo Colorado Watershed. The Arroyo Colorado website includes: 
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 PDF versions of all reports, journal articles, faculty papers and presentations 

generated from the project, as well as those from other Arroyo Colorado projects 

 Links to all cooperating and/or participating agencies 

 Links to all project primary investigators 

 Links to university academic departments that are involved in the project 

 Links to other related websites: 

o Texas State Soil and Water Conservation Board 

o Texas Water Resources Institute 

o U.S. Environmental Protection Agency, Office of Water, CWA §319 

o Soil and Water Conservation Districts 

 Schedule of upcoming meetings/programs dealing with this project 

 

The project website came online in December 2007, but analytics have only been collected 

since April 2009. Between April 2009 and February 2012, there have been 8,577 visits to 

the webpage. As projects came online and materials became available, they were added to 

the website. The website address is http://arroyocolorado.org/. Figure 1, shown below, is a 

visual of the number of website visitors during the duration of the project.  

 

 
Figure 1: Website Visitors from March 2009 through February 2012 
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Compilation and Evaluation of Historical Data and Prior Studies 
 

TWRI, along with the assistance from members of the Agricultural Monitoring Oversight 

Committee, compiled historical water quality data and information from previous studies 

and conducted an analysis of the most significant water quality parameters to investigate 

trends and different biological and physical processes taking place in the watershed that 

contribute to the changes in water quality. Graphs were developed for various parameters 

collected at various sites along the Arroyo Colorado. Those graphs can be found at 

http://arroyocolorado.org/data/.  

 

TWRI, with the assistance from members of the Agricultural Monitoring Oversight 

Committee, has organized the results from the earlier NPS pollution projects conducted in 

the Arroyo Colorado Watershed and summarized the results and conclusions of these 

studies within the historic data report. Additionally, through the development of this 

report, data gaps were identified that need to be filled. This report can be found at 

http://twri.tamu.edu/reports/2012/tr421.pdf.  

Inventory of Conservation Practice Implementation  
 

AgriLife Research in Temple, along with the assistance from AgriLife Extension, USDA-

Natural Resources Conservation Service (NRCS), USDA-Farm Service Agency the TSSWCB 

Harlingen Regional Office and the SWCDs have identified agricultural producers in the 

watershed and compiled information on the location and types of conservation practices 

implemented in the watershed since 1995 in the form of GIS shapefiles. This included 

practices implemented through the USDA-NRCS Environmental Quality Incentives Program 

(EQIP) and the TSSWCB WQMP Program. An example of a map created with these GIS 

shapefiles can be seen below.  
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Figure 2: Sample Map of Irrigation Land Leveling Practice Implementation Sites  

 

AgriLife Research in Temple transferred the assembled geo-referenced database and 

developed maps to be given to AgriLife Extension for use in prioritizing educational 

activities, which so far, have been in the form of field days at BMP sites demonstrating the 

importance of adoption. Various management practices are adopted annually and with an 

ever-changing land use, other practices are lost. Because of the dynamic nature of BMPs, 

there was and still is a need to update the database periodically.  

Update of Land Use/Land Cover Data 
 

Updating the Land use/Land Cover (LULC) categories for the Arroyo Colorado Watershed 

was done by first obtaining the 1998 LULC and all the data used to produce it. Working 

with TPWD and the Arroyo Colorado Watershed Partnership Habitat Workgroup to obtain 

other relevant data, major changes from 1998–2005 were identified. Further, the Spatial 

Sciences Laboratory at Texas A&M University worked to add available cropland, citrus 

production, sugarcane, irrigation districts, tile drained areas, colonia’s, non-colonia areas, 

land applications from wastewater, and updates from the Lower Rio Grande Valley 

Development Council to the LULC map.  

 

Similar to the dynamic nature of BMPs, LULC is continuously changing in the Lower Rio 

Grande Valley as the population is growing very rapidly. Cities and local officials need to 

continually update maps to increase management efficiency; however, they typically do not 
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update them at the watershed scale. Updating is needed periodically so that trends can be 

identified, regional managers can plan appropriately within the watershed, and modelers 

can develop tools for those managers to use.  

Subwatershed Monitoring and Measuring Pollutant Attenuation in 

Drainage Ditches 
 

An important component to the project was to perform routine grab and storm event 

samples to assess water quality assimilation that occurs in drainage ditches in the 

watershed. Four drainage ditch sites were chosen and water quality samples were 

collected when water was flowing. When water was not flowing during the monthly 

sampling water as not collected, but it was documented that the water body was pooled or 

dry. Routine grab samples were analyzed for nutrients, Total Suspended Solids (TSS), and 

BOD. Additionally, field constituents including dissolved oxygen, pH, conductivity, and 

water temperature were recorded.  

 

TAMU-K also periodically operated automated samplers and water-level recorders at the 

different sites to characterize the runoff generated by high stormflow pulses. In doing so, 

an existing rain gauge was used along with remotely sensed NEXRAD data to identify 

optimal periods for carrying out such sampling. Given the variable nature of the rainfall 

process, it was difficult to estimate the exact number of samples that were going to be 

obtained. However, attempts were made to carry out at least one sampling campaign 

quarterly during each sampling period. At each drainage site, individual runoff and flow 

samples were collected daily during storm events, then composited into one sample that 

was analyzed for nutrients, BOD, and TSS. Care was taken to ensure that the data loggers 

were programmed to capture the effects of rainfall pulses and not respond to minor water 

level fluctuations caused due to irrigation flooding. The monthly water level was collected 

as part of this task and hydrograph techniques were used to identify optimal response 

frequencies to capture high-intensity rainfall pulses. 

 

Also within this task, nitrogen and phosphorus mitigation processes in drainage ditches at 

the sites were assessed, and a suite of BMPs was developed that incorporate the 

information from the above mentioned monitoring. Furthermore, specific activities that 

occurred for this task and results from analysis can be found in Appendix A. 
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Evaluation of BMPs to Reduce NPS Pollution at the Farm Level 
 

AgriLife Research at Weslaco worked with AgriLife Extension to select suitable 

demonstrations sites to assess loadings from agricultural runoff and leachate produced by 

different BMPs. These loadings were then compared to traditional practices with 

innovative BMPs for the three most representative crops in the watershed. Six 

representative sites were selected and characterized for their physical characteristics such 

as topography, soil texture, salinity and fertility levels, water quality and crops.  

 

At each site, AgriLife Research at Weslaco installed sensors, flow meters, rain gauges, 

piezometers, and soil water sensors. By using this equipment, samples were collected and 

analyzed from runoff and leachate samples for the different practices. A laboratory analysis 

was performed to determine agricultural loadings such as nutrients and solutes. BMPs and 

traditional practices were compared economically, and their relationship with nutrient 

loadings was established.  

 

Finally, at least one field day and one result demonstration per year were held to 

demonstrate and transfer the results to producers and interested persons. These results 

can be found in Appendix B. 

SWAT Model Simulation of the Arroyo Colorado Watershed  
 

AgriLife Research at Temple used the SWAT model to simulate load reduction scenarios for 

a suite of management measures based on the Arroyo Colorado WPP for a period after the 

calibration and validation periods. Results from scenarios were provided to TSSWCB with 

the flow and watershed loadings to the Arroyo Colorado for input into the EFDC model. 

Outputs include a time series of daily flow and sediment, nutrients and other loadings at 

the Port of Harlingen and for each sub-basin downstream of the Port of Harlingen. Specific 

results for these simulations can be found in Appendix C.  

Conclusions 
 

Overall, this project is one of high interest to local stakeholders. Providing high quality 

localized data and demonstrations allows for a large impact on the community, as they gain 

a better understanding of the factors that affect water quality in the Arroyo Colorado. 

Additionally, demonstrating the effectiveness of tools, such as irrigation and nutrient 

management, is necessary for them to make informed decisions, leading to the success of 

the Arroyo Colorado Watershed Protection Plan.  
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Monitoring and modeling scenarios for the Arroyo Colorado Watershed proved to be a 

project that many stakeholders had a high interest in. These types of projects continue to 

not only advance what it known about BMP implementation, but they also help target 

implementation dollars so that the biggest impacts can be seen in water quality.  

 

This project supported implementation of BMPs though monitoring of nutrients and other 

parameters at different sites containing BMPs. With the results, personnel showed 

producers how to not only minimize their impact to water quality, but minimize their input 

while still maximizing crop yields. Results from this component of the project showed that 

proper nutrient management and irrigation management had the largest reduction of 

nutrients leaving the field in irrigation water.  

 

Additionally, drainage ditch monitoring demonstrated the potential for these ditches to 

remove nutrients before entering the water body, if properly maintained. The natural 

functions of wetlands can be duplicated in drainage ditches in each drainage district, and 

they will thus mitigate agricultural impacts to water quality. If drainage ditches are not 

properly maintained though, nutrients absorbed by vegetation can be released back into 

the water, which eventually makes it to the Arroyo Colorado.  

 

Finally, through modeling various BMP scenarios, AgriLife Research at Temple has 

developed recommendations on the most effective suite of BMPs that will help achieve 

Arroyo Colorado Watershed Protection Plan goals. The suite of BMPs will help decision 

makers implement practices that will remove the most nutrients with the least investment.  

 

The need to continue these projects is important as we can localize BMP implementation to 

have the greatest impact on water quality and more accurately predict management 

measures that need to take place. Investing in cost share opportunities would allow 

managers to properly maintain nutrient input to crops, irrigation runoff from cropland, and 

drainage ditches, all keeping elevated levels of nutrients from entering the Arroyo 

Colorado. Further, educational programs are and will continue to be needed so that 

decision makers can learn about the various methods for removing nutrient inputs to 

waterbodies. Finally, further assessment is needed to learn about the local needs and find 

the most effective approach to reach local stakeholders, who are the ultimate audience that 

make the difference.  

 

Lastly, the agricultural community is making progress to meeting its goals and such 

projects provide the concepts and cost savings necessary to do so.  
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List of Symbols and Abbreviations 

Symbol Description Symbol Description 

TMDL Total Maximum Daily Load WPP Water Protection Plan 

CC1 
Cameron County Site 1 
(Harding Ranch Road 

3 mi N. of 508 and 1420) 
CC2 

Cameron Count Site 2 
(ABD Rd & FM 1479 
4 mi S. of Hwy 83) 

HC1 
Hidalgo County Site 1 
(Mile 4 North FM 491) 

HC2 
Hidalgo County Site 2 
(3 mi. N of US Military 

Hwy 281 & 493) 

DO Dissolved Oxygen CBOD 
Carbonaceous Biochemical 

Oxygen Demand 

TSS Total Suspended Solids OP Orthophosphate Phosphorous 

TP Total Phosphorous TKN Total Kjeldahl Nitrogen 

ANOVA Analysis of Variance KW Kruskal Wallis 

FDC Flow Duration Curves LDC Load Duration Curves 

ACF Auto Correlation Function TSSWCB 
Texas State Soil and Water 

Conservation Board 

TCEQ 
Texas Commission on 
Environmental Quality 

USEPA 
United States Environmental 

Protection Agency 

QAPP 
Quality Assurance 

Protection Plan 
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Introduction 

Drainage ditches are widely used for agricultural water management to help remove excess water from 

fields, which mitigates the effects of water logging and salinization. These ditches act as a direct 

hydraulic link between the agricultural field and streams and rivers. As such, there is an increasing 

concern that drainage ditches can act as conduits for nutrient transport and, in conjunction with other 

point and nonpoint sources, can contribute to eutrophication and decreased dissolved oxygen levels in 

receiving water bodies. Studies have linked drainage ditches to hypoxia in the Gulf of Mexico and 

eutrophication of the Great Lakes (Dagg and Breed, 2003; Moore et al., 2010). However, there is also 

evidence suggesting that drainage ditches can help attenuate the loadings of phosphorus and 

suspended sediments (R. Kröger et al., 2008) and thus foster water quality improvements at a 

watershed scale. There is a growing interest in understanding the nutrient behavior in drainage ditches 

both in the United States (Bhattarai et al. 2009; Moore, et al. 2010; Ahiablame et al. 2011) as well as 

other parts of the world (Nguyen and Sukias 2002; Leone et al. 2008; Bonaiti and Borin 2010). 

 

The Arroyo Colorado River is a distributary of the Rio Grande River whose flows are sustained primarily 

by discharges from wastewater treatment plants and nonpoint source loadings from urban and 

agricultural sources. The Arroyo Colorado River watershed along the US-Mexico border region is not 

only one of the fast-growing urban areas in the United States, but it also has a strong agricultural base.  

Nearly 80% of the approximately 700 sq. mile watershed is designated as cropland (Figure 1). Being in a 

semi-arid region, rainfall is highly erratic and often occurs as high intensity, short duration storms 

(Norwine et al. 2007).  As such, farmers rely on irrigation to grow cotton, grain (corn and sorghum), 

sugar cane, citrus and vegetables. Figure 1 also depicts the labyrinth of drainage ditches within the 

watershed that transport water, sediment, and nutrients away from the farmlands. The tidal segment of 

the Arroyo Colorado River is listed as impaired for low dissolved oxygen on the State of Texas 303(d) list. 

The low dissolved oxygen in the tidal segment is primarily linked to high loadings of nutrients and 

oxygen demanding substances in the upland (non-tidal) areas of the watershed (Raines and Miranda 

2002). Watershed modeling studies conducted to estimate TMDLs in the region have indicated that over 

90% pollutant load reductions are necessary to improve dissolved oxygen conditions in the tidal 

segment (Raines and Miranda 2002; Hernandez 2007).  Given the impracticality of such drastic 

reductions, a multistakeholder watershed planning group was designated to develop a watershed 
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protection plan (WPP) that seeks to improve water quality through better land and wastewater 

management in the watershed (ACWPP 2007). 

 

 

Figure 1: Land use and Land cover view of the Arroyo Colorado River Watershed, Lower Rio Grande Valley, Texas 

An important component of the Arroyo Colorado WPP is to evaluate and quantify the nature and extent 

of nutrient loadings from agricultural activities in the region. This information is fundamental to 

promote best management practices and foster sustainable agricultural activities (Hernandez and 

Uddameri 2010).  As most agricultural runoff is carried to the Arroyo Colorado River through the 

drainage ditches, quantifying nutrient dynamics in the drainage ditches is of paramount importance. 

Previous efforts aimed at quantifying nutrient loadings from drainage ditches have been limited to a few 

synoptic measurements and as such provide limited information. Therefore, a long-term (multiyear), 

multisite, multivariate water quality sampling campaign was undertaken through this study with the 

broad goal of understanding the spatio-temporal variability of nitrogen species (Total Kjeldahl Nitrogen 

(TKN), ammonia-nitrogen (NH3-N), nitrite + nitrate-nitrogen), phosphorus compounds (total and 

dissolved phosphorus) and other water quality parameters. More specifically, the focus of the study was 
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to develop fundamental insights about the role of hydraulic controls (flows) on nutrient concentrations. 

An edge-of-field water quality monitoring program was also carried out in conjunction with the drainage 

ditch monitoring to evaluate whether drainage ditches attenuated or exacerbated nutrient loadings 

from croplands.   

Field Sites and Sampling Design 

Four representative drainage ditches were selected for extensive monitoring based on 

recommendations from the Texas State Soil Water Conservation Board (TSSWCB). Two of these sites 

were located in Cameron County and two were in Hidalgo County (Figure 1). Approximate contributing 

drainage areas (sub-watersheds) corresponding to these monitoring locations were delineated using 

ArcGIS V 9.3 (ESRI Inc., Redlands, CA) and integrated with recent land use land cover (LULC) data to 

obtain sub-watershed characteristics (Figure 2). The contributing sub-watersheds were predominantly 

agricultural, varied in size, and provided a representative sample of different drainage ditches in the 

area.   

 

Figure 2: Contributing sub-watershed characteristics for the monitored drainage ditches 

A modified, stratified, random sampling approach was adopted to collect data over time. According to 

this approach, sampling was carried out monthly (stratified design), but the sampling date within the 
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month was selected at random to avoid any sampling bias (randomized design). However, the sampling 

dates were spaced sufficiently far apart (at least two weeks) to minimize auto-correlation effects and 

ensure independence among sampling events. A total of 37 sampling events were carried out during 

August 2008 – November 2011. The sampling was carried out on the same day at all sites to facilitate 

paired comparisons. While the number of locations sampled and the frequency of sampling were clearly 

limited by fiscal and logistic constraints, the design captured variability over a 2-year period, which 

included a protracted period of drought and two major storm events (Hurricane Dolly in 2008 and 

Tropical Storm Ike in 2010).   

 

In addition to monthly grab sampling, the project also evaluated the water quality characteristics of 

time-averaged composite samples on select dates and locations. The composite sample was obtained 

using a field autosampler, which took samples from the ditch every 30 minutes over a 24-hour period. 

The autosampler and the collection set up are presented in Figure 3. The sample was filtered at the end 

of the collection period and analyzed for nutrients using the same analytical methods listed in Table 2. 

Every attempt was made to obtain these composite samples around a major rainfall event. However, 

the erratic characteristics of the rainfall events (i.e., either large tropical storms that prevented access to 

sites) or very low intensity events that did not yield considerable runoff added difficulties to the 

collection process. A total of eight sampling events were carried out in all and are summarized in Table 

1. However, the data from two of these events were not used in the analysis due to instrument failures 

in the field. A grab sample was also collected at the end of the composite sampling period to facilitate 

pairwise comparisons between the two sampling methods. 
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Figure 3: Composite sample collection set up at one of the sites (HC1) 

Table 1: Summary of Composite samples collected to account for storm water events 

Date Site Last Rainfall Event (in) Remarks 

19 September, 2009 CC1 0.06 Instrument Failure 

23 January, 2011 CC1 1.22  

27 February, 2011 CC1 & HC1 0.02  

27 March, 2011 CC2 & HC1 0.01  

28 August, 2011 CC2* & HC1 0.04 
*Instrument Failure at 

CC2; HC1 successful 
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Table 2: Field and laboratory protocols used to measure water quality parameters 

 

 

A suite of 13 water quality parameters, as listed in Table 2, were measured at each site using approved 

field and laboratory protocols. All measurements were made in duplicate both in the field and at the lab. 

Three sets of grab samples (one unfiltered, one unfiltered but preserved at pH < 2 and one field filtered 

using 0.45 m filters) were collected in the field for laboratory analysis of nutrients, total suspended 

solids (TSS) and carbonaceous-biological oxygen demand (CBOD). Instantaneous velocity measurements 

were also made in duplicate using the Marsh McBirney FloMate instrument and used to compute flow 

Component Units
Analysis 

Method
Equipment Used

pH Standard Units
EPA 150.1 TCEQ 

SOP
YSI 556 MPS

DO mg/L
EPA 150.1 TCEQ 

SOP
YSI 556 MPS

Conductivity μS/cm SM 2520B YSI 556 MPS

Turbidity NTU HACH 2100P

Temperature C
EPA 170.1 TCEQ 

SOP
YSI 556 MPS

Flow cfs TCEQ SOP
Marsh McBirney 

Flowmate

CBOD, 5-day mg/L
5210B Standard 

Method
YSI 5100

TSS mg/L EPA 160.2
Hot oven, glass fibre 

filters

Ortho 

Phosphate
mg/L

4110 B Std. 

Methods

Spectrophotometer 

(Ascorbic Acid 

Method)

Total 

Phosphorous
mg/L

4110 B Std. 

Methods

Spectrophotometer 

(Ascorbic Acid 

Method)

Total Nitrite + 

Nitrate 

Nitrogen

mg/L
4110 B Standard 

Methods

Spectrophotometer 

and Nitrate 

Electrode method

Ammonia 

Nitrogen
mg/L EPA 350.3 Ammonia Electrode

Total Kjehdahl 

Nitrogen
mg/L EPA 351.3

Labconco Rapid Still 

II and 

Spectrophotometer
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via the area-velocity method. All field probes were routinely calibrated and maintained per 

manufacturer’s specifications. Laboratory analysis used approved standard methods for water and 

wastewater analysis (AHPA, 2010) and adhered to USEPA approved QA/QC protocols as stated in the 

QAPP (QAPP, 2008). Consistency checks such as total phosphorus (TP) being greater than or equal to 

orthophosphate phosphorus (OP) and NH3-N being less than or equal to the TKN were also used as 

appropriate. Other relevant hydro-meteorological data such as rainfall, relative humidity and 

temperature were compiled from a nearest weather station located within the watershed (Agrilife 

Extension 2011).  The edge-of-field sampling was carried out by personnel from Texas AgriLife Extension 

Service as part of another task in the 06-10 Arroyo Colorado Agricultural Nonpoint Source Assessment 

project.   

Conceptual Model and Hypotheses Development 

Three of the four drainage ditches (CC1, CC2, and HC1) exhibited perennial flow throughout the period 

of study even when significant drought conditions persisted in the area. One site, HC2, had a stagnant 

water column during the study period, but had no measurable flow. The depth of the water column and 

the flow rates were noted to vary considerably throughout the sampling period. The flows in the 

drainage ditch could therefore be conceptualized to include relatively short flow paths, comprised of 

overland flow near the sampling points, long flow paths, which brought water from farther portions of 

the contributing drainage area, and deeper flow paths. The longer flow paths (particularly the 

subsurface components) can be viewed as the cause for persistent flow in the ditches during dry periods 

while shorter flow paths (overland flow) can be envisioned to mostly control flow under wet weather 

conditions.   

 

Based on the flow regime conceptualization, the concentration of pollutants between high and low flow 

regimes are hypothesized to be different particularly for TSS, which either are filtered out in the 

subsurface or settled out in the ditch under low flow conditions. Phosphorus compounds are known to 

undergo a variety of reactions including sorption and co-precipitation with calcite (CaCO3) and are 

generally strongly correlated with suspended solids (Kadlec and Wallace 2009).  Therefore, it is expected 

that phosphorus concentrations are also likely to exhibit differences with flow regimes. However, unlike 

TSS, the uptake of phosphorus by plants and subsequent release during senescence are likely to have 

some impacts in masking flow-related differences as periods of senescence will likely occur during 

months when the flows are going to be low (i.e., moisture stresses on the vegetation). Furthermore, if 

28



3/11/2012 Page 8 
 

the soils in the contributing drainage area are low in phosphorus, then high flow events will have a 

dilution effect and lead to smaller concentrations.   

 

 As drainage ditches are open to atmosphere and biologically active systems, they are generally known 

to contain relatively greater amounts of oxidized forms of nitrogen (nitrite+nitrate) than reduced forms 

(TKN). Agricultural streams in many parts of the United States are reported to be major contributors of 

nitrates (NO3-N) to rivers and lakes (David et al. 1997; Goolsby et al. 1997; Goolsby et al. 2001; Mitsch et 

al. 2001; Royer et al. 2006). However, drainage ditches under investigation exhibit density-driven 

stratification due to the presence of salts and sediments. Therefore, the upper portions of the ditch are 

hypothesized to be under oxidizing conditions conducive to nitrification reactions, while the deeper 

sections may be under reduced conditions facilitating denitrification reactions (Jetten et al. 1997).  The 

denitrification process in natural waters is known to occur even before all the oxygen in the water 

column is completely depleted (Kuenen and Robertson 1988).  However, the extent of denitrification is 

also critically controlled by the availability of organic carbon source (Kadlec and Wallace 2009). 

 

Based on the above discussion, it is clear that certain conditions found in the drainage ditches, such as 

deeper flow channels, lower flow rates (lesser oxygenation) and higher organic matter due to detritus, 

can facilitate removal of nitrates via the process of denitrification, particularly in comparison with direct 

runoff from agricultural fields where nitrate attenuation is less favorable. Therefore, it is hypothesized 

that nitrate concentrations in the drainage ditches are likely to be lower than those collected at the 

edge-of-field. The amount of dissolved oxygen in the stream is inversely correlated to temperature. 

Furthermore, nitrate concentrations in the stream are likely going to be lower in summer months than 

in winter months (if all other factors stay the same). However, the nature and extent of nitrate (oxidized 

nitrogen) removal in drainage ditches can be subject to several confounding factors. While deeper 

channels are likely to facilitate nitrate reductions, they are likely to have higher flow rates (Chapra, 

1996). These higher flow rates can increase the re-aeration rate and facilitate deeper penetration of 

oxygen molecules, which in turn can limit the amount of denitrification. Higher flow rates can also 

induce rate limitations on the conversion of TKN to nitrate (nitrification step) as TKN molecules spend 

less time in the ditch for the reaction to go to completion. As denitrification depends upon the amount 

of nitrate produced, higher flow rates can also lead to limited denitrification. Considering all these 

factors it is hypothesized that nitrate concentrations are inversely proportional to the ratio of depth to 
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flow rate, which is referred to as nitrate reduction index in this study and represents the hydraulic 

residence time per unit area of the channel.   

Statistical Analysis               

Exploratory data analyses (EDA), which employs a suite of visualization tools such as box plots,  quartile 

(Q-Q) plots, factor separated scatter plots, and autocorrelation functions (ACF) (Cleveland 1993; Qian 

2010), were utilized to understand variability in the observed data. In particular, EDA techniques were 

used to evaluate the reasonableness of data to normality (using Q-Q plots), independence (ACF plots) 

and homoskedasticity, which form the underlying basis of parametric hypothesis tests (Hamilton 1994).  

Parametric statistical procedures including t-tests, one-way and two-way analysis of variance (ANOVA) 

have been commonly used to evaluate water quality data in drainage ditches (Smith et al. 2005; R. 

Kröger et al., 2008; Rocha et al. 2008; Bhattarai et al., 2009; Moore et al., 2010; Ahiablame et al., 2011). 

 

The selection of statistical parametric methods over non-parametric methods is generally based on that 

they typically exhibit greater power to discern true changes (i.e., lower type-II errors) when the 

underlying assumptions are true (Hamilton 1994). While parametric methods are generally noted to be 

robust to deviations from normality, outliers or extreme values can still significantly impact the results 

of these tests (Hamilton 1994).  Non-parametric counterparts to t-test (Mann-Whitney test), one-way 

ANOVA (Kruskall-Wallis test) and two-way ANOVA (Friedman’s test) have been proposed in the 

literature and are useful when the dataset has considerable variability and does not fully satisfy the 

parametric assumptions (Conover 1980).  The study area in semi-arid South Texas is known to exhibit 

considerable climatic variability (Norwine et al., 2007). Therefore, the flow, vegetation and water quality 

characteristics in the drainage ditches exhibit significant fluctuations. As such, non-parametric tests 

were primarily employed in this study. The statistical analyses were performed using R statistical 

language version 2.14.1 due to easy access to various EDA and hypothesis testing tools (Hornik 2011). 

The statistical data analyses were used to evaluate various hypotheses related to water quality in the 

ditches, the results of which are discussed next.   

Results and Discussion 

Exploratory Data Analysis and Evaluation of Parametric Assumptions 

A comprehensive exploratory data analysis was performed to obtain initial insights into the observed 

dataset and evaluate the assumptions of normality, independence and homoskedasticity. Comparison of 
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parametric and non-parametric summary statistical measures indicated that the data are not normally 

distributed and typically skewed (Table 3). Chemical concentrations are known to manifest as a 

multiplicative effect of several random processes and as such are likely to follow log-normal distribution 

(Ott, 1995). Q-Q plots were therefore generated using log-transformed data and compared to 

theoretical normal distribution function. An illustrative Q-Q plot is presented in Figures 4-6 for one site 

(Q-Q plots for other sites can be seen in Appendix A, Figures AF 1 - AF 9).  

 

The departures from normality at upper and lower quartiles is evident for most water quality 

parameters in Figures 4-6, and these are indicative of heavy tails and presence of extreme values in the 

dataset. This behavior is reflective of the climatic variability in the region, which can be gleaned from 

deviations in flows and temperature. Behavior such as this suggests that water quality is greatly 

influenced by hydro-climatic conditions, particularly flows. Also, data pertaining to concentrations of 

Orthophosphate-Phosphorous and NH3-N in the drainage ditches indicate several non-detects at the 

sites and as such the distributions show negative skewness. Except in the case of CBOD, log-

transformation of the data is not likely to be sufficient to make the water quality parameters be 

represented using the normal distribution. 
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Table 3: Descriptive statistics for the monitored water quality parameters for the drainage ditches 

 

Mean Median Std. Dev IQR Kurtosis Skewness

Temperature (oC) 22.549 23.760 5.350 8.490 -0.714 -0.573

Turbidity (NTU) 65.678 62.267 44.488 39.407 3.415 1.496

Dissolved Oxygen (mg/L) 4.748 4.520 1.832 2.006 0.159 0.018

Specific Conductance (µS/cm) 5418.024 4178.000 2659.216 4960.000 -1.237 0.582

pH 7.582 7.760 0.666 0.432 4.858 -1.701

 Flow (cfs) 4.572 3.759 4.022 2.260 8.409 2.611

CBOD (mg/L) 70.579 48.880 57.064 55.746 -0.034 1.107

TSS (mg/L) 80.161 80.000 40.855 45.000 1.103 0.900

OP (mg/L) 0.045 0.010 0.065 0.053 13.288 3.276

TP (mg/L) 0.551 0.249 0.606 0.643 3.598 1.879

Total Kjeldahl Nitrogen (mg/L) 0.445 0.431 0.131 0.104 1.965 0.191

Ammonia Nitrogen (mg/L) 0.038 0.010 0.045 0.039 2.455 1.775

Nitrite + Nitrate Nitrogen (mg/L) 1.138 0.400 1.298 1.273 1.249 1.440

Temperature (oC) 24.063 24.900 5.265 9.305 -0.792 -0.360

Turbidity (NTU) 111.043 69.500 109.370 87.699 2.643 1.757

Dissolved Oxygen (mg/L) 4.999 5.020 2.225 2.230 0.248 -0.387

Specific Conductance (µS/cm) 5310.565 4921.000 2174.413 3733.000 -0.822 0.284

pH 7.205 7.260 0.515 0.577 2.760 -1.523

 Flow (cfs) 2.619 2.001 2.441 1.996 10.240 2.742

CBOD (mg/L) 69.077 64.965 40.745 62.481 -0.856 0.441

TSS (mg/L) 113.629 85.000 84.137 105.000 1.195 1.331

OP (mg/L) 0.122 0.088 0.093 0.139 0.041 0.833

TP (mg/L) 0.881 0.622 0.777 0.861 1.473 1.412

Total Kjeldahl Nitrogen (mg/L) 0.418 0.410 0.141 0.121 1.543 0.604

Ammonia Nitrogen (mg/L) 0.118 0.010 0.425 0.055 29.883 5.426

Nitrite + Nitrate Nitrogen (mg/L) 1.331 0.632 2.205 1.053 19.561 4.116

Temperature (oC) 25.601 25.510 5.580 8.940 -0.698 -0.413

Turbidity (NTU) 154.909 149.000 73.148 103.834 -0.539 0.091

Dissolved Oxygen (mg/L) 4.521 4.790 2.067 2.645 -0.523 -0.763

Specific Conductance (µS/cm) 2785.113 2401.000 1005.133 818.000 0.761 1.236

pH 7.183 7.300 0.536 0.600 0.267 -0.561

 Flow (cfs) 11.119 9.497 9.307 10.671 6.181 2.114

CBOD (mg/L) 65.502 60.281 37.625 43.235 0.984 0.848

TSS (mg/L) 118.952 115.000 55.407 67.500 0.616 0.543

OP (mg/L) 0.157 0.165 0.093 0.165 -0.633 0.103

TP (mg/L) 1.344 0.734 1.172 1.547 1.368 1.307

Total Kjeldahl Nitrogen (mg/L) 0.441 0.429 0.148 0.150 0.387 0.260

Ammonia Nitrogen (mg/L) 0.044 0.010 0.064 0.034 6.783 2.513

Nitrite + Nitrate Nitrogen (mg/L) 0.978 0.661 1.082 0.922 2.003 1.653

Temperature (oC) 27.298 27.660 6.644 22.826 -0.547 -0.387

Turbidity (NTU) 194.929 166.000 156.738 140.365 7.500 2.390

Dissolved Oxygen (mg/L) 4.909 4.920 2.519 2.785 -0.317 -0.264

Specific Conductance (µS/cm) 4597.194 3182.000 3750.590 4383.500 3.646 1.861

pH 7.325 7.310 0.728 0.715 0.547 -0.385

 Flow (cfs)

CBOD (mg/L) 65.850 49.167 45.429 65.677 -0.555 0.690

TSS (mg/L) 181.528 135.000 137.266 117.500 0.867 1.326

OP (mg/L) 0.198 0.119 0.166 0.219 0.764 1.150

TP (mg/L) 1.810 1.360 2.133 1.594 17.034 3.715

Total Kjeldahl Nitrogen (mg/L) 0.422 0.400 0.174 0.225 0.326 0.465

Ammonia Nitrogen (mg/L) 0.034 0.010 0.037 0.039 1.138 1.506

Nitrite + Nitrate Nitrogen (mg/L) 1.431 0.686 1.511 2.053 -0.006 1.156

CC1

CC2

HC1

HC2

No Measurable flow
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Figure 4: Q-Q plots for measured field parameters at CC1 

 

Figure 5: Q-Q plots for measured nutrients at CC1 
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Figure 6: Q-Q plots for measured water quality indicators at site CC1 

ACF plots depict how data collected at a certain time are correlated to values observed at previous times 

(lags). As data were collected on a monthly scale, each lag in Figures 7–9 correspond to a specified 

number of months (e.g., lag 1 previous month, lag 2 two previous months). ACF plots are useful to 

detect the presence of seasonality and independence of sampling events. The ACF plots for one site are 

presented in Figures 5 and 6 and the autocorrelation functions for other plots are summarized in 

Appendix A, figures AF 10-AF 18.     
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Figure 7: ACF plots for measured field parameters at site CC1 

 

Figure 8: ACF plots for measured nutrients at site CC1 
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Figure 9: ACF plots for measured water quality indicators at CC1 

The results presented in Figures 8 and 9 indicate that statistically significant lag-1 correlations are noted 

only for CBOD and TKN. This result points towards the increased persistence of physicochemical 

processes in the deeper (reductive) sections of the drainage ditch. In particular, sample collection at the 

CC1 site were carried out at a retaining wall, which led to settling and persistence of detritus and other 

organic matter that contribute to CBOD and TKN production. The persistence of CBOD, ammonia and 

TKN was also evident at HC2 site. There were no appreciable flows at the HC2 site, which also leads to 

persistence of detritus within the ditch. The pH data at CC2, HC1 and HC2 sites show consistent values. 

This result is to be expected given the buffering action of alkaline soils and sediments commonly found 

in South Texas. Overall results from the ACF analysis indicated that the collected samples were either 

minimally correlated or generally not correlated to each other and can therefore be considered 

independent measurements. This result validates the adopted sampling strategy as the assumption of 

independence is critical for both parametric and non-parametric statistical tests (Dudewicz and Lin 

1981). Box-Plots were developed for all salient water quality parameters to visualize central tendencies 

and obtain preliminary insights with respect to inter-site and intra-site variability and are presented in 

Figures 10 and 11.   
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Figure 10: Inter and intra site variability of salient water quality parameters 

 

Figure 11: Inter and intra site variability for measured nutrient concentrations 
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A common characteristic evident in all plots presented in the Figures 10 and 11 is the high degree of 

variability noted at each site. Clearly, the temporal variability at each site is significantly greater than 

spatial variability across the sampled drainage ditches. The TSS, TP and NO2+NO3 were somewhat higher 

in the drainage ditches in Hidalgo County than those in Cameron County were. More intense agricultural 

activities were noted near the Hidalgo County sites during the sampling period, which partly explains the 

observed spatial differences. The variability of measurements at the HC2 site was generally higher than 

the other sites and was partly caused from measurement difficulties emanating from limited water in 

the ditch, which sometimes resulted in having to grab samples from near the sediment bed. As can be 

seen from the first box plot, the flows at the HC1 site were significantly higher than the other two 

flowing ditches (CC1 and CC2) and also more variable. The bottom of the drainage ditches (HC1 and 

HC2) were comprised of fine-grained sediments that are more amenable to settling and re-suspension 

and thus partially contributed to observed variability in TSS at these sites. The lower Rio Grande Valley 

region of South Texas experienced the effects of several major storms including Hurricane Dolly and 

Tropical Storm Ike and was also subject to one of the most severe droughts in recent history during the 

study period that spanned from 2009–2011. These meteorological events contributed to extreme values 

in the box plots that extend beyond the 5th and 95th percentile whiskers. The high degree of variability in 

the observed flow and water quality data are indicative of hetroskedasticity (non-homogeneous 

variances) across different flow regimes.   
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Flow Duration Curves (FDC) Analysis to Identify Major Flow Regimes      

The pollutant loads to a receiving water body are directly related to flow patterns. Flow duration curves 

(FDC) plot the magnitude of flow against the frequency of its exceedance. As such, their use is 

recommended in total maximum daily load (TMDL) assessment studies (USEPA 2007).  Figure 12 depicts 

the FDCs developed for the three flowing drainage ditches (CC1, CC2 and HC1) of this study.   

 

Figure 12: Flow Duration Curves and Flow Variability at CC1, CC2 and HC1 sites 

The 25th and the 75th percentile exceedances were used as cut-offs to delineate high, medium and low 

flows. The box-plots presented in Figure 12 demonstrate that the variability in flows associated with 

different flow regimes (USEPA 2007). The low flows exhibit the least amount of variability, which 

indicates that they are controlled by sustained sources such as subsurface (shallow groundwater) 

discharges or unregulated peri-urban sources (colonias). On the other hand, the high flows exhibit the 

greatest variability and are likely controlled by intermittent rainfall and irrigation events. The variability 

in high flows is largest at the CC1 site, which has the largest contributing drainage area. The variability is 

clearly controlled by the extent of runoff generated due to rainfall variability and different irrigation 

events corresponding to various crops grown within the drainage area.   
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Role of Flow Characteristics in Defining Drainage Ditch Water Quality Behavior 

As discussed earlier, higher flows correspond to direct surface runoff from contributing drainage area 

and lower flows are characteristic of longer subsurface flow paths. Box-Plots of various water quality 

parameters were constructed at each site using the flow classification developed using FDCs (Figures 13 

and 14) to visually evaluate the effects of flows. From the figures, the median values of various water 

quality parameters, most notably–CBOD, TSS, TP, OP and NO2+NO3–are higher for high flow conditions. 

These results provide preliminary evidence that runoff from contributing drainage areas can enhance 

loadings of nutrients and oxygen demanding substances in the drainage ditches. However, the box plots 

also suggest that there is no appreciable difference among various flow regimes with regards to reduced 

forms of nitrogen (i.e. TKN, NH3-N), again highlighting the importance of in-stream processes (e.g. decay 

of organic matter) in controlling the reduced forms nitrogen.   

 

The non-parametric Kruskall-Wallis (KW) multiple comparison tests was used to formally evaluate the 

null hypothesis. There is no difference in water quality parameters across different flow regimes against 

the alternative than there are differences between various flow regimes. The KW multiple comparison 

tests was then used to compare pair-wise differences (Table 4) among different flow regimes and is 

based on Siegel and Castellan (Siegel and Castellan 1988). 
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Figure 13: Water quality characteristics pertaining to different flow regimes at Site CC1 

 

Figure 14: Nutrient characteristics pertaining to different flow regimes at Site CC1 
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Table 4: Results of the Kruskall-Wallis and Pairwise Comparison Tests 

 

The highlighted boxes indicate a significance level of less than 0.1 

 

The hypothesis testing results in Table 4 essentially corroborate the visual analysis and particularly 

highlight that the loadings of TP and TSS could be controlled by runoff from surrounding agricultural 

areas. The visual differences noted in nitrogen compounds could not be statistically confirmed via 

hypothesis testing due to large observed variability. The results presented in Table 4 highlight significant 

temperature differences between high flow and low flow events. The statistical difference noted in 

temperature stems from the fact that low flows are generally observed during winter months while high 

flows correspond to runoff from high intensity convective storms and larger irrigation activities that 

mostly occur during summer months. The difference in timing between high and low flow events help 

explain the significant differences noted in DO at CC2 and HC1 sites using the KW test. Even though the 

pair-wise comparison test lacked sufficient statistical power to discern the differences, the median DO 

concentrations were noted to be higher for low flows than high flows at these sites (see Figures AF 19 

and AF 21 in Appendix A). This result also implies that dissolved oxygen in the ditches is controlled by 

climate (temperature) and any additional mixing associated with increased flows are unlikely to enhance 

re-aeration in the ditches.   

 

To summarize, direct runoff from contributing drainage areas generally have a significant impact on TSS 

and phosphorus compounds in the drainage ditch. On the other hand, the concentrations of nitrogen 

compounds are affected by both processes operating at both watershed and drainage-ditch scales. In 

particular, drainage ditch processes, such as detritus decay, could play a major role in defining the 

concentrations of reduced nitrogen compounds (TKN). The DO concentrations in the ditches are largely 
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Temperature (oC) 6.300 0.043 F F T 5.314 0.070 T F F 7.138 0.028 T T F

Turbidity (NTU) 2.968 0.227 F F F 7.988 0.018 T F F 2.857 0.240 F F F

DO (mg/L) 1.921 0.383 F F F 4.744 0.093 F F F 4.730 0.094 F F F

Specific 

Conductance 

(µS/cm)

2.877 0.237 F F F 1.770 0.413 F F F 1.490 0.475 F F F

pH 4.149 0.126 F F F 0.333 0.846 F F F 1.117 0.572 F F F

CBOD (mg/L) 2.714 0.258 F F F 1.161 0.560 F F F 0.196 0.907 F F F

TSS (mg/L) 2.079 0.354 F F F 7.043 0.030 T F F 5.748 0.056 F T F

OP (mg/L) 2.830 0.243 F F F 11.312 0.003 T T F 1.966 0.374 F F F

TP (mg/L) 1.393 0.498 F F F 10.070 0.007 T T F 5.422 0.066 T F F

Total Kjeldahl 

Nitrogen (mg/L)
1.568 0.457 F F F 2.494 0.287 F F F 2.155 0.341 F F F

NH3 - N (mg/L) 2.118 0.347 F F F 0.829 0.661 F F F 2.413 0.299 F F F

NO2+NO3 as N 

(mg/L)
1.886 0.389 F F F 4.178 0.124 F F F 2.048 0.359 F F F

Site CC1 Site CC2 Site HC1
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controlled by temperature and enhanced mixing associated with higher flows are unlikely to overcome 

the higher de-oxygenation rates during summer months.   

 

Evaluation of Differences between Edge-of-Field and Drainage Ditch Nutrient Water Quality         

An independent field study to assess water quality characteristics of irrigation runoff from six different 

fields primarily growing four different crops (cotton, sugarcane, corn and vegetables) and employing 

different irrigation technologies commonly used in the Lower Rio Grande Valley region was carried out 

during the same period (2009-2010). Further details of the irrigation field sampling campaign can be 

found in (Ensico et al. 2011).  Most importantly, water quality characteristics of the irrigation runoff at 

the edge-of-field were collected and analyzed using the same sampling and analytical methods used in 

this investigation and by the same personnel. Therefore, an evaluation of the differences in water 

quality observed in agricultural farm runoff and drainage ditches was carried out again using 

visualization and statistical hypothesis testing tools. The box-plots presented in Figure 15 clearly 

demonstrate that the concentration of both phosphorus and nitrogen compounds are higher in the 

runoff water leaving the edge of field than what is observed in the drainage ditch flows.   
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Figure 15: Comparison of Observed Nutrient Water Quality at Edge of Field Agricultural Sites and Drainage Ditches 

 
A two-sided Mann-Whitney U test was also carried out to test the null hypothesis that the nutrient 

water quality leaving the agricultural farms was no different from the nutrient water quality measured 

in drainage ditches against the alternative hypothesis of significant differences between the two sets. 

The results indicated that the drainage ditch concentrations are significantly different for OP (W = 150, p 

< 0.001), TP (W=1012, p < 0.001) and oxidized nitrogen compounds (W = 1688, p = 0.044) than those 

measured in agricultural runoff leaving the farmlands. The alternative hypothesis could not be rejected 

for TKN (W = 2375, p = 0.235). These results once again reiterate the previous findings that the loadings 

of phosphorus compounds are more controlled by watershed scale processes while the reduced forms 

of nitrogen in the drainage ditches are influenced to a greater extent by in-channel processes. 

Furthermore, the large differences in phosphorus concentrations between the edge-of-field and 

drainage ditch measurements is consistent with reports from other studies elsewhere which indicate the 

ability of drainage ditches to remove phosphorus compounds (Smith et al. 2005; Bhattarai et al., 2009; 

Ahiablame et al. 2011).  
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The result that the nutrient water quality in drainage ditches is generally less than those measured at 

the edge-of-field is certainly promising and points towards the attenuation capabilities of these ditches. 

However, it is important to remember that fiscal and logistic constraints precluded a paired 

experimental design. The data collection in the drainage ditches was systematic and occurred over a 

larger period while the edge-of-field monitoring was limited to specific events spanning few days each 

time. Even during the periods when the sampling campaigns were coordinated, logistic constraints 

precluded the isolation and tracking of flows emanating from the edge-of-field study sites in the 

drainage ditches. Generally speaking, the flows in the drainage ditches can be viewed as an 

agglomeration from several agricultural sites and other sources (e.g., urban runoff) within the 

contributing drainage area. Given these sampling limitations, it is important to not construe the 

magnitude of observed differences in nutrient levels as a measure of the degree of nutrient attenuation 

occurring within the ditches. Nonetheless, the results presented here highlight that drainage ditches 

play an influential role in altering the timing and extent of nutrient releases from agricultural practices 

to receiving water bodies. In particular, they help transform high intensity, highly variable intermittent 

loadings arising during rainfall and irrigation activities to a more sustained lower-intensity slow release 

pattern and help increase the time the nutrients spend in the watershed before being discharged into 

the receiving water body.         

 

Factors Affecting Phosphorus Concentrations in Drainage Ditches 

The results presented in this study indicate that drainage ditches can receive significant phosphorus 

loadings during irrigation and high intensity rainfall activities. The TP concentration is positively and 

significantly correlated to the concentration of TSS for high flow regimes. The ability of drainage ditches 

to settle out TSS is therefore an important phosphorus removal mechanism and this result is consistent 

with the findings from other studies reported in the literature (Smith et al. 2005; Leone et al. 2008; 

Robert Kröger and Moore 2011). However, the drainage ditches can also act as a phosphorus source 

when particles become re-suspended or diffuse from the sediments into base flows (i.e. groundwater 

discharges) that generally have lower concentrations of phosphorus.   

 

Phosphorus is an essential but often limiting nutrient for plant growth. As such, the uptake of 

phosphorus by plants is another major attenuating mechanism in drainage ditches. The extent of uptake 

is largely controlled by the amount of dissolved phosphorus or the OP. One of the monitored drainage 

ditches, HC2, had no appreciable flows, but a significant amount of biomass in the form of standing 
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emergent vegetation (grasses). The observations at the site provided a unique opportunity to evaluate 

the role of vegetation in the ditches on nutrient uptake and removal without having to deal with the 

confounding effects of flows.   

 

 

Figure 16: Temporal Behavior of Average OP at Site HC2 
 (Season1 corresponds to September-March and Season2 from April-October) 

 

Figure 16 represents the average temporal behavior observed during each month of sampling. The OP 

concentrations in each month were normalized with respect to the TP concentrations to block the 

effects of differences in TP between different months. The seasonal variation in phosphorus 

concentrations is evident from the Figure 17. The concentrations are lower in season 1, which 

corresponds to the relatively colder months of September–February. On the other hand, the 

concentrations are higher during the relatively hot months of March–August. The Mann-Whitney test 

for differences in concentrations between the two seasons was statistically significant (U = 5, p = 0.041) 

and corroborates the box plot observations in Figure 17. Visual observations at the site indicated a 

larger and healthy biomass (green grass) during season 1 (cooler period) than during dry summer 

months where the amount of biomass in the ditch was significantly lower and unhealthy (yellow and 
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brown grass stalks). Therefore, it is likely that uptake of phosphorus by emergent vegetation is a 

significant mechanism for phosphorus removal during cooler periods. However, these plants are likely to 

act as sources of phosphorus (release due to biomass decay) during hot summer months. Emergent 

vegetation in the drainage ditches can therefore play a major role in attenuating phosphorus 

concentrations, but can also act as source of phosphorus.  

 

The in-channel biomass was noted to be low in flowing drainage ditches (CC1, CC2, and HC1), and as 

such the relative importance of vegetation is likely to be not as prominent. Literature on constructed 

wetlands indicates that plant uptake accounts for about 10% of the overall phosphorus removal and can 

serve as an important tertiary treatment mechanism (Vyzamal 2005). As the primary purpose of 

drainage ditches is to reduce flooding, irrigation and drainage districts engage in periodic biomass 

harvesting as part of channel maintenance activities. It is recommended here that such maintenance 

schedules be coordinated in a manner that maximizes the plant uptake but also minimizes their ability 

to act as sources. This coordination should not be too difficult, as high intensity convective storms and 

large irrigation events are more likely to occur in the summer months, which also corresponds to lower 

biomass uptake. Also allowing smaller sections of healthy biomass to occur intermittently in the 

drainage ditches, where possible, could potentially be beneficial.   

 

Factors Affecting Nitrogen Concentrations in Drainage Ditches 

The concentrations of reduced forms of nitrogen (TKN and NH3-N) were generally low in drainage 

ditches relative to the oxidized forms (nitrite+nitrate-nitrogen), and drainage ditches provide suitable 

conditions for the oxidation to take place. This result is again consistent with findings reported in the 

literature (Goolsby et al. 2001; Jarvie et al. 2010) where drainage ditches, as being potential sources of 

nitrate, have been highlighted. The comparison of edge-of-field and drainage ditch concentrations 

provide some evidence of nitrate reduction capabilities of the drainage ditches. Furthermore, 

statistically significant differences in nitrogen concentrations were noted between different flows 

regimes, indicating that under suitable conditions there is a potential for nitrate removal by drainage 

ditches. As discussed earlier, nitrate reduction occurs in the deeper sections of the ditch in the presence 

of sufficient organic carbon and limited oxygen conditions. Also, lower flow rates limit the amount of re-

aeration and reduce the amount of oxygen in the ditch. Therefore, the average water column depth in 

the channel to flow ratio (d/Q) was used as a hydraulic reduction index (HRI) for assessing nitrate 

reduction capabilities of the ditch. The HRI represents the hydraulic residence time per unit plan-view 
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area of the watershed. Spearman rank correlations were established between the hydraulic reduction 

index (HRI) and deficit dissolved oxygen (Deficit DO) and the observed correlations  = 0.341, (p = 0.061) 

at CC1;  = 0.263, (p = 0.152) at CC2 and  = 0.0.294 (p = 0.105) corroborated the utility of the 

developed index to characterize reduced conditions in the ditch.   

 

Figure 17: Correlation between Deficit Dissolved Oxygen and Normalized Nitrate Concentration (NNC) 

 

Clearly, larger depths and/or lower flow rates result in a higher value of the hydraulic nitrate reduction 

index and must depict an inverse correlation to nitrate concentrations. Figure 17 plots the nitrate 

reduction index against the ratio of total oxidized nitrogen concentration (NO3+NO2) to TKN. The rank 

transformation was used to mask the effects of outliers and highlight the correlation between the 

hydraulic characteristics of the ditch and the nitrogen concentrations. Again, the ratio of oxidized to 

reduced nitrogen forms (i.e., normalized nitrate concentrations (NNC)) were used to block for the 

variability in nitrate sources in the ditches. The inverse relationship between the index and oxidized 

nitrate concentrations is evident from Figure 18. The spearman rank correlation coefficients, , between 

the two parameters was equal to  = -0.18 (p=0.33) for CC1;  = -0.54 (p = 0.002) and = -0.35 (p = 0.05) 

and confirm the statistical significance of the observed correlations. The presence of internal sources 

(decay of detritus) at CC1 site appears to have an impact on the observed correlation.          
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Based on the above results, it is clear that the nitrate reduction efficiency can be enhanced by making 

certain structural modifications to the drainage ditches. It is therefore recommended that periodic 

deepening or widening of the drainage ditch channels along the length of the drainage ditch when and 

where possible would be beneficial as it leads to slowing of flows and creation of deeper (anoxic) zones. 

However, as flood control is the primary function of the drainage ditches, a detailed hydraulic evaluation 

of the impacts of periodic deepening (e.g., (Rodriguez et al. 2008)) is necessary to fully evaluate the 

feasibility of this recommendation.       

 

Nitrogen is also an essential nutrient for plants, and therefore the uptake of nitrogen could be an 

important attenuation mechanism within the drainage ditches as well. Plants are known to use both 

ammonium and nitrate with the former being generally preferred than latter (Kadlec and Wallace 2009).  

However, the uptake by plants is not a sustainable removal process as decay of biomass leads to the 

release of nitrogen into the ditch. The role of vegetation on nitrogen compounds was studied at HC2 

site, which had no confounding effects of flows. The results presented in Figure 14 demonstrate the 

seasonal influence of the biomass on nitrogen concentrations. As shown similarly with phosphorus, 

lower nitrate concentrations were noted when the standing biomass was healthy (uptake). However, 

the nitrogen cycle is not congruous with the phosphorus cycle possibly due to heterogeneities in the 

biomass types within the ditch. The Mann-Whitney U test (U = 0, p = 0.002) confirmed the differences in 

concentrations between the two seasons.   

 

The results of the analysis again point towards the important role of vegetation in controlling nitrogen 

concentrations in the ditch. However, vegetation can also serve as a nitrogen sink and as such must be 

properly managed. Based on the data presented in Figure 16 and Figure 18, both phosphorus and 

nitrogen concentrations are simultaneously higher during the months of June–October and therefore 

represent the best months for biomass harvesting in drainage ditches.       
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Figure 18: Cyclical Behavior of Nitrate Concentrations and Visualization of Seasonal Differences  
(Season1: December–May; Season2: June–November) 

Comparison between Grab and Composite Sampling 

The summary characteristics of the collected data are visualized in Figures 19–21. The variability in the 

composite samples were higher for temperature, turbidity, TSS, NH3-N, OP and pH while the variability 

was either higher or similar for the grab samples for other compounds. This result is to be expected 

because temperature and TSS can exhibit diurnal fluctuations. Also, the plant metabolism varies 

diurnally which in turn controls the oxygen levels in the ditch and affects the uptake by the plants. This 

diurnal variability in uptake in turn affects ammonia and orthophosphate levels in the ditch over the 

short-term. The DO variability in the grab samples was noted to be somewhat higher than the composite 

samples and this result arises because the paired grab samples were obtained at different times at each 

site.   
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Figure 19: Measured field water quality comparison between grab and composite sampling events 

 

Figure 20: Measured water quality parameter comparison between grab and composite sampling events for Oxygen 
dependent parameters and suspended solids 
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Figure 21: Comparison of measured nutrient concentration between grab and composite sampling events 

The Wilcoxson Paired Rank Sum Test was used to formally evaluate the observed differences between 

grab and composite samples. The null hypotheses that there is no appreciable difference in the 

observed median values of grab and composite samples could only be rejected for turbidity at 0.05 

significance levels and for temperature, OP and pH at 0.1 significance levels (see Table 5). This result 

again corroborates that the adopted sampling strategy is reasonable to make inferences about most 

water quality parameters. However, a 24-hour averaged sampling of DO and temperature is 

recommended for future studies. 
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Table 5: Mann-Whitney test results comparing corresponding grab and composite events 

Wilcoxson Rank Sum Test Results 

Parameter U p-value 

Temperature (oC) 1 0.063 

Turbidity (NTU) 21 0.031 

Dissolved Oxygen (DO) (mg/L) 18 0.156 

Specific Conductance (μS/cm) 9 0.844 

pH 19 0.094 

Carbonaceous Biochemical 
Oxygen Demand (CBOD) (mg/L) 

7 0.563 

Total Suspended Solids  
(TSS )(mg/L) 

12 0.834 

Orthophosphate Phosphorous 
(mg/L) 

0 0.059 

Total Phosphorous (mg/L) 12 0.281 

Total Kjeldahl Nitrogen (mg/L) 16 0.313 

Ammonia Nitrogen (mg/L) 5 0.590 

Total Nitrite and Nitrate  
(NO2 + NO3) as N (mg/L) 

11 > 0.999 

 

The highlighted boxes indicate a significance level of less than 0.1.  

 

Summary and Conclusions 

The broad goal of this study was to conduct a comprehensive multiyear, multivariate, multisite field 

investigation to evaluate the behavior of nutrients in the Lower Rio Grande valley region of Texas. The 

study used a modified, stratified random sampling design to collect flow and 11 water quality 

parameters including TP, OP, TKN, NH3-N, and nitrite+nitrate-nitrogen. Three ditches (CC1, CC2, and 

HC1) had perennial flows, while one ditch (HC2) had no observable flows and was therefore used to 

evaluate the effects of vegetation on nutrient dynamics. The results from the drainage ditch monitoring 

program were also compared to an overlapping edge-of-field investigation focusing on characterizing 

water quality in runoff leaving different agricultural farm lands. A suite of statistical methods including 

flow duration curves, box-plots and non-parametric hypothesis testing (including Kruskall-Wallis, 

ANOVA, and Spearman Rank Correlation Significance tests) were used to evaluate non-random 

differences. 

 

The results of the study indicate that the loadings of phosphorus and suspended solids are controlled by 

runoff from the contributing drainage areas. Both contributing drainage areas and in-channel processes 
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impact the concentrations of nitrogen compounds. The comparison of concentrations observed in 

agricultural runoff leaving the farms and those in the drainage ditches highlight the attenuation 

capabilities of the drainage ditches particularly about phosphorus compounds. The drainage ditches also 

effectively assimilate reduced forms of nitrogen (i.e., TKN and NH3-N). The removal of oxidized forms of 

nitrogen (nitrate-nitrogen) is linked to the hydraulic characteristics of the ditches. Nitrate reduction is 

enhanced under lower flows and deeper water columns, which lead to lower dissolved oxygen and thus 

improved reducing conditions in the ditches. In addition to hydraulic characteristics, standing vegetation 

(macrophytes) can also have a significant influence on nutrient concentrations. The presence of in-

channel vegetation introduces seasonality in observed nutrient concentrations. While in-channel 

vegetation acts as a sink during relatively cooler periods, they act as sources during hot, dry summer 

months. While both nitrogen and phosphorus concentration exhibit cyclic behavior, a phase-lag 

between phosphorus and nitrogen cycles was also noted and could possibly be due to heterogeneous 

biomass in the ditches.   

 

From an operational standpoint, drainage ditches alter the flow and chemical transport characteristics 

of runoff emanating from agricultural fields. They help attenuate shock loadings of direct runoff from 

the fields and lead to a more uniform nutrient loadings that is spread out over a larger period. 

Therefore, drainage ditches can act as both nutrient sources and sinks. Proper maintenance and 

management of drainage ditches is an important regional-scale best management practice strategy for 

reducing nutrient loadings due to agricultural activities. Deepening certain sections of the ditch (where 

possible and feasible) can help improve nitrogen removal capabilities. Harvesting of biomass in the 

drainage ditches is routinely carried out by irrigation and drainage districts for flood control purposes. It 

is beneficial if these harvesting activities are optimized to minimize nutrient sources within the ditch. 

Biomass removal during the months of June–October could be beneficial for mitigating both nitrogen 

and phosphorus loadings. It is recommended that harvesting activities focus on the removal of 

necrophytes (dead biomass) to reduce nutrient sources within the ditches and the necrophytes be 

segmented to exploit the removal capabilities of plants. 
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Appendix A 

 

AF 1: Q-Q plots for the measured field parameters at Site CC2 
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AF 2: Q-Q plots for measured nutrients at Site CC2 

 

AF 3: Q-Q plots for the measured water quality indicators at Site CC2 
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AF 4: Q-Q plots for the measured field parameters at Site HC1 

 

AF 5: Q-Q plots for the measured nutrients at Site HC1 
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AF 6: Q-Q plots for the measured water quality indicators at Site HC1 

 

AF 7: Q-Q plots for the measured field parameters at Site HC2 
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AF 8: Q-Q plots for the measured nutrients at Site HC2 

 

AF 9: Q-Q plots for measured water quality indicators at Site HC2 
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AF 10: ACF for measured field parameters at Site CC2 

 

AF 11: ACF for the measured nutrients at Site CC2 
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AF 12: ACF for measured water quality indicators at Site CC2 

 

AF 13: ACF plots for measured field parameters at Site HC1 
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AF 14: ACF for measured nutrients at Site HC1 

 

AF 15: ACF for the measured water quality indicators at Site HC1 
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AF 16: ACF for measured field parameters at Site HC2 

 

AF 17: ACF for measured nutrients at Site HC2 
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AF 18: ACF plots for the measured water quality indicators at Site HC2 

 

AF 19: Water quality characteristics pertaining to different flow regimes at Site CC2 
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AF 20: Nutrient characteristics pertaining to different flow regimes at Site CC2 

 

AF 21: Water quality characteristics pertaining to different flow regimes at Site HC1 
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AF 22: Nutrient characteristics pertaining to different flow regimes at Site HC1 

 

AF 23: Correlation between Normalized Nitrate Concentration and Hydraulic Nitrate Reduction Index 
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AF 24: Correlation between Nitrate Concentration and Hydraulic Nitrate Reduction Index (HRI) 
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INTRODUCTION 

 

The Arroyo Colorado flows through Hidalgo, Cameron and Willacy Counties in the Lower Rio 

Grande Valley of Texas into the Laguna Madre and is the major source of fresh water to the 

lower Laguna Madre. The Arroyo Colorado is an economically and ecologically important 

resource to the region, having water exchange with the Gulf of Mexico. One third of the stream 

is also used for shipping from the Gulf Intracoastal Waterway to the Port of Harlingen. Most of 

the flow water in the Arroyo Colorado is also sustained by wastewater discharges, agricultural 

irrigation return flows, urban runoff, and base flows from shallow groundwater (Webster et al. 

2000; Filteau 1995; Charbonnet et al. 2006; Rosenthal and Garza 2006). The Arroyo Colorado 

watershed has been on the state's list of impaired water bodies for low dissolved oxygen since 

the state began assessing water bodies in 1974. Moreover, the Laguna Atascosa National 

Wildlife Refuge and several county and city parks are located within the Arroyo watershed; its 

mild climate, semi-tropical plants and animals, and many recreational opportunities draw large 

numbers of people. 

 

The Arroyo Colorado contributes significant amounts of agricultural, municipal, and industrial 

contaminants to the Laguna Madre (Custer and Mitchell 1991). Some efforts to implement best 

management practices (BMPs) have been taken to reduce nonpoint source (NPS) pollution in the 

region (Rosenthal and Garza 2007). In 1998, the Texas Commission on Environmental Quality 

(TCEQ) initiated an effort to develop total maximum daily load (TMDL) to address low 

dissolved oxygen (DO) levels in the tidal segment of the Arroyo (Rosenthal, et al. 2001, Matlock 

et al. 2003).  

 

The TCEQ presented water quality data that indicated high levels of nutrients in the tidal 

segment (2201) and the above tidal segment (2202) (Figure 1), which exceeded the state's 

screening criteria, resulting in high chlorophyll-a and low levels of DO (TCEQ 2003). These 

high levels of nutrients are results of runoff from agricultural farms and urban areas. The impact 

of BMPs could be assessed indirectly with water savings between the water applied and the 

water used for beneficial purposes such as crop evapo-transpiration and salinity leaching. Excess 

water is lost through deep percolation, which eventually may carry nutrient loadings to the 

aquifer and runoff to the drainage, carrying loadings to ditches and to the Arroyo Colorado 

(TCEQ 2006). 

Segments 2201 and 2202 have not met water quality standards in several years because of the 

presence of E. coli bacteria and low levels of DO. To meet the DO criteria (24-hour average of 

4.0 mg/L and minimum of 3.0 mg/L) at least 90% of the time between the critical period of 

March through October, TCEQ (2003) estimated that a 90% reduction in nitrogen, phosphorous, 

oxygen demanding substances, and sediment would be necessary. The adoption of agricultural 

BMPs would help contribute to the reduction coming from agricultural areas.  

 

This project monitored the water quality of irrigation, runoff, and percolation water of six 

irrigated farms that have adopted different combinations of BMPs. The main objective of this 

study was to assess the impact of these BMPs on water quality at these selected agricultural 

fields located in the Arroyo Colorado watershed during two irrigation events in 2009 and 2010. 
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Figure 1.  Location map of the Arroyo Colorado 

 

 

MATERIAL AND METHODS 

 

In addition to providing loading reductions resulting from BMPs, this project also provided result 

demonstrations to landowners in the Arroyo Colorado watershed. This data collection effort 

involves monitoring irrigation water inflow and outflow (via either tile drains or shallow 

groundwater) from agricultural fields to aid in evaluating BMP effectiveness and assessing 

agricultural loadings. Monitoring was conducted to represent both tiled and non-tiled irrigated 

cropland fields that drain to both drainage ditches and directly into the Arroyo. General 

guidelines followed in selection of the six fields are as follows: 

 

 Sites are irrigated; 

 Sites represent the primary production crops raised in the Lower Rio Grande Valley 

(LRGV), i.e., grain/sorghum, cotton, corn, and sugar cane; 

 Sites represent both conventional and innovative irrigation BMPs in the LRGV; 

 Sites are farmed by willing participants in the study; and 

 Sites are within the Arroyo Colorado Watershed. 

 

Texas AgriLife Extension Service (Extension), Texas AgriLife Research -Weslaco (AgriLife 

Research-Weslaco), and Texas A&M University-Kingsville (TAMUK) selected six suitable 

2202 

Figure 1: Project Location Map 
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demonstration sites to assess loadings from agricultural runoff and leachate produced by 

different BMPs and to compare them with traditional practices. Six sites were selected by Texas 

State Soil and Water Conservation Board (TSSWCB), Texas Sea Grant, AgriLife Research and 

Extension, Harlingen Irrigation District, and Texas A&M Kingsville. The BMPs for the three 

most representative crops of the watershed were selected on March 30, 2007. Six representative 

sites were characterized and physical characteristics such as topography (slopes, coordinates and 

distances), soil texture, salinity and fertility levels, water quality and crops were obtained and 

evaluated. The six fields that were selected for the evaluation of agricultural BMPs are shown in 

Table 1 and Figure 2. Cultural practices such as irrigation timing, crop fertilization, and pest 

management used by the cooperating farmers in the recent past were documented. The layout 

and slopes of the sites with sampling points are shown in Figures 3 through 7. The BMPs for 

each site are shown in Table 2. Information regarding the type of BMPs adopted by the farmers 

were provided by the farmers and then corroborated with the Harlingen office of the TSSWCB. 

 

Table 1.  Site identification and description for BMP demonstration/evaluation. 

Site ID Location Management Practices 

FA Rangerville: FM 800 Land leveled, IPM, poly-pipe, 

furrow irrigation 

FB Rangerville: FM 800 Land leveled, poly-pipe, furrow 

irrigation 

FC Simmons Rd/ FM 

1479  

Reduced till, poly-pipe, furrow 

irrigation, irrigation scheduling, 

Doppler meter 

FD South of San Juan. 

Hwy 281 

Poly-pipe, furrow irrigation, drain 

tile 

FE South of Weslaco (FM 

1015) 

Poly-pipe, furrow irrigation 

FF N. of Harlingen (FM 

508 & FM 507 N) 

Poly-pipe, furrow irrigation, tile 

drained 
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Figure 2.  Cooperators sites in the Arroyo Colorado located in the Lower Rio Grande Valley, 

TX. 

 

  

80



 

 

7 

 

Table 2. Survey of BMPs practices at the six demonstration sites during 2009 and 2010. 

BMPs in place FA FB FC FD FE FF 

 2009 

Conservation Crop Rotation 

Residue Management 

Nutrient Management 

Pest Management 

Irrigation Land Leveling 

Irrigation Water Management 

Irrigation with Poly-pipe 

Subsurface Drain 

Filter Strip 

X 

 

 

X 

X 

X 

X 

X 

X 

 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

X 

 

X 

X 

 

X 

X 

X 

 

 

X 

X 

 

 

 

X 

 

X 

X 

X 

X 

 

X 

 

X 

X 

 2010 

Conservation Crop Rotation X X X X X X 

Residue Management  X X   X 

Nutrient Management X X X X X X 

Pest Management X X X X X X 

Irrigation Land Leveling X X X X X X 

Irrigation Water Management X X X X X X 

Irrigation with Poly-pipe X X X  X X 

Subsurface Drain    X  X 

Filter Strip   X    
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Furrow Irrigated 

Soybean  39.5 ac.  

2202-FA

Harlingen Clay

Furrow Irrigated 

Sugarcane 42 ac. 

2202-FB

Harlingen Clay

Poly-Pipe

Poly-Pipe

Alfalfa Valve (Water Source)

Sugarcane Sampling #1

Alfalfa Valve 1/3 (Water Source) 

Corn Sampling #1

Tail Water Runoff Ditch

Tail Water Runoff Ditches

Drain Ditch

Runoff Collector Ditch

Flume Placement for Sugarcane Block / Sampling #3

Flume Placement for Corn Block / Sampling #3

Access Tube for GW

Sampling #2

Access Tube for GW

Sampling #2

Location N.W. corner, by drop structure

N 26 07.806’ / W 097 44.403’ / Elev. 38 ft.

Location S.E. corner stand pipe (1/3)

N 26 07.611’ / W 097 44.144’ / Elev. 38 ft.

Location N.W. corner, 50’ from drop-off

N 26 07.716’ / W 097 44.162’ / Elev. 34 ft.

Location S.W. corner, by drop structure

N 26 07.306’ / W 097 44.538’ / Elev. 38 ft.

Location N.E. corner stand pipe (1/2)

N 26 07.588’ / W 097 44.389’ / Elev. 35 ft.

Location central East, 10th row

N 26 07.560’ / W 097 44.615’ / Elev. 33 ft.

2202-FA

2202-FB

 
Figure 3.  Sites FA and FB selected for the Agricultural Nonpoint Source Assessment Project. 

 

 

Poly-Pipe

Flume Placement

Sampling #3

Pump Station, Valve 

& Filtration System

Tail Water Runoff Ditch 

for the Furrow Block

Drain Ditch

Canal (Water Source)

Sampling #1

Location S.E. corner, by drop structure

N 26 07.684’ / W 097 42.795’ / Elev. 44 ft.

Location gate above canal

N 26 07.867’ / W 097 42.965’ / Elev. 50 ft.

Location 20th row from N.W corner, 20 steps in

N 26 08.039’ / W 097 42.847’ / Elev. 46 ft.
2202-FC

Furrow Irrigated 

Corn  54 ac. 2202-

FC

Harlingen Clay

Access Tube for GW

Sampling #2

 
Figure 4.  Site FC selected for the Agricultural Nonpoint Source Assessment Project. 
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Location N.W. Corner Location: 2 valves on South Side, along canal Location N.W. Corner

2202-FD

Flume Placement

Sampling #3

Drain Ditch

Poly-Pipe

Stand pipe (Water Source)

Sampling #1

Flow Direction

Drain Tile Outlet

Sampling #2 Furrow Irrigated Sorghum 

35.5 ac. 2202-FD

Reynosa Silty C.Lm. / Runn

Silty C.

 
Figure 5.  Site FD selected for the Agricultural Nonpoint Source Assessment Project. 

Location S. side

N 26 07.023’ / W 097 57.332’ / Elev. 40 ft.

Location N. side, by drop structure

N 26 07.123’ / W 097 57.430’ / Elev. 36 ft.

Location N.W. corner, by drop structure

N 26 07.084’ / W 097 57.605’ / Elev. 41 ft.

Arroyo Colorado

FM 1015

Access Tube for GW

Sampling #2

Tail Water Runoff Ditch

Poly-Pipe

Flume Placement

Sampling #3

Alfalfa Valve (Water Source)

Sampling #1

Furrow Irrigated 

Sorghum 34 ac. 

2202-FE

Harlingen Clay & 

Runn Silty Clay

2202-FE

 
Figure 6.  Sites FE selected for the Agricultural Nonpoint Source Assessment Project. 
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Location S.E. corner

N 26 05.104’ / W 097 34.963’ / Elev. 14 ft.

Location N.W. corner, by drop structure

N 26 05.072’ / W 097 35.341’ / Elev. 10 ft.

Location N.W. corner, by drop structure

N 26°05.072’ / W 097°35.341’ / Elev. 10 ft.

Flume Placement

Sampling #3

FM 100

2202-FF

Furrow Irrigated 

Sugarcane 140 ac. 2202-FF

Harlingen Clay / 

Laredo Silty C. Lm

Poly-Pipe

Drain Tile Outlet

Sampling #2

Drain Ditch

Flow Direction

Alfalfa Valve (Water Source)

Sampling #1

 
Figure 7.  Site FF selected for the Agricultural Nonpoint Source Assessment Project. 

 

 

Installation of Sensors 

 

Flow meters, rain gauges, piezometers, soil water sensors were installed by Research-Weslaco 

on the demonstration sites. 

 

Additionally the following actions were conducted: 

 

a. Site FA (site with no drain tiles): a 2-inch PVC access tube was installed to a depth of 

10 feet to collect samples from the groundwater. Watermark sensors were installed on 

one location at 6 and 12 inches deep to monitor soil moisture along the season. The 

topography of the 40-acre site was measured. 

b. Site FB (site with no drain tiles): a 2-inch PVC access tube was installed to a depth of 

10 feet to collect samples from the groundwater. Watermark sensors were already 

installed on one location at 6 and 12 inches deep to monitor soil moisture along the 

season.  

c. Site FC (site with no drain tiles): a 2-inch PVC access tube was installed to a depth of 

10 feet to collect samples from the groundwater. Corn was planted and Watermark 

sensors were installed on one location at 6 and 12 inches deep to monitor soil moisture 

along the season.  

d. Site FD (site with no drain tiles): The previous crop was harvested and disked in mid-

March. A pre-irrigation occurred afterwards to ensure a good germination of sorghum 

when it was planted. After planting, a 2-inch PVC access tube was installed to a depth of 
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10 feet to collect groundwater samples. Watermark sensors were installed on one 

location at 6 and 12 inches deep to monitor soil moisture along the season.   

e. Site FE (site with drain tiles). Sorghum was planted and Watermark sensors were 

installed on one location at 6 and 12 inches deep to monitor soil moisture along the 

season.   

f. Site FF (site with drain tiles): The outlet was under water most of the time.  

g. AgriLife Research installed signs at all of the participating producer sites (in English 

and Spanish) to notify the producers to contact AgriLife Research before irrigating 

(Figure 8).  

 

 

This irrigation demonstration site is sponsored by 
Texas State Soil & Water Conservation Board

“to evaluate BMP’s to reduce NPS pollution at the farm level”

Contact Xavier (772) 538-7334 or Dr. Enciso (956) 969-5635
at least 24 hours before irrigation occurs

Antes de regar por avise 24 hrs antes a las personas y 

telefonos indicados arriba

 
 

Figure 8.  English Sign used during the result demonstration reports 

 

 

 

Collection and Analysis of Data 

  

Irrigation water inflow, surface runoff and outflow from the tile drainage system or through 

shallow groundwater, were monitored by AgriLife Research-Weslaco on selected irrigation 

events. The crops were monitored continuously to determine the optimum time for irrigation and 

for water sampling. The irrigation dates were not previously known because (1) fields have 

different crops with different water requirements, (2) fields were operated under different water 

management schemes, and (3) irrigation dates were highly dependent on climate, growth stage, 

and the operation of the irrigation district. Two irrigation events were selected for sampling each 

year. Sample numbers and frequency for the BMP demonstration are shown in Table 3.   
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Table 3.  Sample type & frequency for demonstration and evaluation of BMPs. 

Sample Type 
Number 

of Sites 
Sampling Frequency 

Total # 

Samples 

(2 years) 

Surface water runoff into 

Drainage Ditch for specific 

crops 

6 2 samples per event, 2 

different irrigation events 

per year 

48 

Subsurface drainage from 

different crops (tile drain 

outlet) 

2 2 per year 8 

Irrigation water 6 2 per year 24 

Shallow groundwater (access 

tube) 

4 2 per year 16 

 

 

All water samples were analyzed for various nutrient forms (i.e., total phosphorus, dissolved 

orthophosphate phosphorus [frequently referred to as soluble reactive phosphorus], total Kjeldahl 

nitrogen, dissolved ammonia, dissolved nitrite plus nitrate), and total suspended sediments 

(TSS). In addition, monthly grab samples were analyzed for Biochemical Oxygen Demand 

(BOD), dissolved oxygen, water temperature, specific conductance, and pH. The nitrogen forms 

were included in the laboratory analyses to provide a more complete indication of macronutrient 

conditions in the watershed, evaluate whether agricultural BMPs were reducing both nutrients 

(nitrogen and phosphorus), and ensure that efforts to reduce one nutrient is not inadvertently 

increasing another. 

 

A water sample was collected in a clean LDPE bottle and rinsed to measure temperature, 

conductivity, DO, and salinity on the field. Field parameters were measured in-situ using a 

portable hand-held YSI 85 meter for temperature, conductivity, DO, and salinity; and a YSI 60 

meter for pH (Figure 9). Duplicate field measurements were taken and recorded. This is done to 

monitor potential water and meter variability. Additionally, water samples were collected 

immediately after recording those measurements and shipped to TAMU-K for analysis of total 

phosphorus, dissolved orthophosphate phosphorus, total Kjeldahl nitrogen, dissolved ammonia, 

dissolved nitrite plus nitrate, TSS and BOD5 (Table 4). 
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Figure 9.  Left: Apparatus used to measure electrical conductivity of the water table. Right: 

apparatus used to monitor pH and BOD. 

 

 

Table 4.  Monitoring frequency for BMP demonstration/evaluation. 

Station ID 
Nutrients Sediment Flow Measurement 

FA-I 2 per year 2 per year Continuous 2 per year 

FA-S 4 per year 4 per year Continuous 2 per year 

FA-GW 2 per year 2 per year NA (well sample) 

FB-I 2 per year 2 per year Continuous 2 per year 

FB-S 4 per year 4 per year Continuous 2 per year 

FB-GW 2 per year 2 per year NA (well sample) 

FC-I 2 per year 2 per year Continuous 2 per year 

FC-S 4 per year 4 per year Continuous 2 per year 

FC-GW 2 per year 2 per year NA (well sample) 

FD-I 2 per year 2 per year Continuous 2 per year 

FD-S 4 per year 4 per year Continuous 2 per year 

FD-TD 2 per year 2 per year NA (well sample) 

FE-I 2 per year 2 per year Continuous 2 per year 

FE-S 4 per year 4 per year Continuous 2 per year 
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Station ID 
Nutrients Sediment Flow Measurement 

FE-GW 2 per year 2 per year Instantaneous 2 per year depending on conditions 

(submerged or not) 

FF-I 2 per year 2 per year Continuous 2 per year 

FF-S 4 per year 4 per year Continuous 2 per year 

FF-TD 2 per year 2 per year Instantaneous 2 per year depending on conditions 

(submerged or not) 

Nutrients = NO2+NO3, TKN, NH3, PO4, TP 

Sediment = TSS 

Field = dissolved oxygen, pH, conductivity, temperature, turbidity 

 

Irrigation Water 

 

The volume of water used during each irrigation event was measured using propeller flow meters 

(McCrometer) such as the ones shown in Figure 10. The volumes were then converted to 

irrigation depth. The quality of irrigation water was measured directly from the irrigation pipe 

(Figure 11). In case the farmer was applying fertilizer with the irrigation water, the sample was 

taken before it was mixed with fertilizer. 

 

  

Figure 10.  Propeller flow meters used to measure irrigation depth. 
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Figure 11.  Collection of a water sample from irrigation. 

 

Surface Runoff 

 

Runoff was collected at the end of the surface drain before flow reached the Arroyo Colorado. A 

PVC mobile circular flume placed at the drainage ditch was used to measure runoff flow-rate 

using a data logger and a pressure transducer. This flume presented a discharge-head relationship 

for critical flow conditions by reducing the flow cross section (Hager 1988; Samani et al. 1991). 

Samani et al. 1991 described the construction and testing of these devices for different nominal 

sizes with different column pipes of external diameters. The flume measured water depth passing 

through and the water depth readings were recorded and directly related with the runoff flow 

rate. Two water samples were collected per irrigation event: a first sample collected during the 

early stage of the runoff event and a second sample at the peak runoff flow. Only the peak runoff 

was reported in this study. Peak runoff was taken from the drainage stream ditch where furrow 

discharge was in excess of irrigation water. See Figure 12 for schematic of the flume that was 

used to measure irrigation return flows. To assure that the circular flume measured accurately 

and with less than 10% error, the flow meter was calibrated in the Harlingen Irrigation District 

(Figure 13). The runoff depth was recorded with a data logger that was installed on the flume 

(Figure 14). The runoff volume was calculated from the hydrograph. Two water samples were 

collected per irrigation event: the first sample collected during the early stage of the runoff event 

and the second sample at the peak runoff flow (Figure 13). This is done because of the variability 

in runoff due to changing soil moisture conditions. 
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Figure 12.  Circular Flume used to measure runoff.   

 

 

   
Figure 13.  Calibration of the circular flow meter in the Harlingen Irrigation District. 

 

90



 

 

17 

 

 

Measurement of Tail Water (Run-off) with a Flume

3rd Step: Field application & results: 2 samples/event, 2 irrigation events/year
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Figure 14.  Left: Circular flume measuring runoff with a data logger. Right: Hydrograph 

obtained during the irrigation event.  

 

Water samples were collected during initial runoff from one furrow. It was generally the faster 

row to reach the lower end of the field first (Figure 15). The peak runoff was taken from the 

earthen ditch that collected the runoff from all the rows that were being irrigated at the 

approximate time when the peak runoff was achieved (Figure 16).  

 

 
Figure 15.  Collecting a water sample from initial runoff with a syringe at the end of the furrow. 
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Figure 16.  Collecting a water sample to determine peak runoff. 

 

 

Subsurface Drainage 

 

Field sites with tile drains installed were sampled during selected irrigation events at the main 

outlet of the tile drains (Figure 17). In the fields that did not have tile drains, groundwater 

samples were collected from a 2-inch well that was dug in the field to a depth of 6 feet. The well 

was cased with a perforated PVC access tube. The groundwater sampling and monitoring method 

was done using the method described by Harter (2003). The installation of the piezometer to 

monitor the shallow ground is shown in Figure 18. Shallow groundwater was sampled from the 

project fields with no tile drains using EPA standard methods (Figure 19). 
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Figure 17.  Outlet that received the water drain from the field during the irrigation event. 

 

 

   
Figure 18.  Left: Installing a piezometer to obtain groundwater samples. Right: Probe to measure 

the depth of the water table. 

 

 

 

93



 

 

20 

 

 
Figure 19. Collecting a groundwater sample with a variable flow pump from a 2-inch well. 
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RESULTS 

 

The irrigation dates and the crops grown in the six sites during the 2009 and 2010 growing 

seasons are shown in Table 5. Some pictures taken during the evaluations of the six sites are 

shown in Figures 20 to 26. 

 

Table 5.  Timing of irrigation and crops irrigated for each BPM demonstration site. 

Site First 

irrigation 

Second 

irrigation 

Crop 

2009 

Fertilizer First 

irrigation 

Second 

irrigation 

Crop 

2010 

Fertilizer 

FA/ 39.5 acres 

Clay texture 

01/13/09 04/16/09 Corn  3/27/10 

Post 

germination 

6/03/10 

1st 

bloom 

Cotton Injection of 

N32 during 

the second 

irrigation (8 

gallons/acre 

equivalent to 

29 lbs of 

nitrogen/acre) 

FB/ 43 acres 

Clay texture 

03/15/09 04/29/09 Sugarcane  7/26/10 8/17/10 Sugarcane  

FC/54 acres 

Clay soil 01/13/09 03/18/09 Sorghum  04/05/10 

Post-plant 

5/06/10 

 

Corn  

FD/35 acre 
Silty clay loam 

soil 

10/27/09  Onions  3/24/10  Onions  

FE/34 acres 

Clay soil 

 

01/09/09 04/09/09 Collar green  5/02/10 

Post-

planted 

5/31/10 

bloom 

Sorghum  

FF/ 140 acres 

Clay soil 02/04/09 03/23/09 Sugarcane N32 was 

knifed prior 

to first 

irrigation 

50 gal/ac 

(Feb 2009) 

8/06/10 

2nd 

irrigation 

6/15/10 

Post 

harvest 

Sugarcane N32 - 60 

gal/ac (May 

2010) 
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Figure 20. Site FA fertigating during the first irrigation. Right: Shows the flume to measure 

runoff volume at the corner of the field. 

 

  
 

  
Figure 21. Upper Left: Site FB Irrigating with poly-pipe; Upper Right: Showing how water is 

pumped from the groundwater to collect samples for analysis. Lower Left: The lower left picture 

shows the installation of a flume to measure runoff volume. Lower Right: The lower right shows 

a vegetation strip where runoff is discharged. 
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Figure 22.  Upper Left: Site FC irrigation with poly-pipe; Upper Right: Showing the downstream 

end of the field where runoff was collected.   

 

  

 

Figure 23.  Upper Left and Right: Site FD Irrigation with earth ditches and siphon tubes. Bottom 

Left: The bottom left shows an irrigation starting a siphon tube; Bottom Right: The right picture 

shows a pressure transducer used to measure drainage water from an outlet of a drain tile. 
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Figure 24.  Site FE irrigated with poly-pipe and right picture showing the runoff from the field. 

 

  
Figure 25.  Site FF irrigated with poly-pipe and right picture showing the place where runoff was 

going to be measured. 
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Irrigation and Runoff Water Amounts 

 

The highest irrigation depths were observed in site FA during the first and second irrigations and 

in site FE during the second irrigation in 2009 (Figure 26). Irrigation depths higher than 10 

inches were observed in these two sites. Site FA has a clay texture that has a potential capacity of 

about 2.2 inch per foot depth. If we consider a root depth of 3 feet, this soil can hold up to 6.6 

inches of water. Site FE also has a clay soil and it can also hold up to 6.6 inches of water in the 3 

feet root zone. Therefore, the irrigation application of over 10 inches of water is excessive 

considering that the runoff amounts of sites FA and FE were very small. Most of the water at 

these sites was probably lost through deep percolation. In site FA, the rows were 1,305 feet long 

(Table 6) and it took 15 hours and 15 minutes for the water to reach the lower end of the row. 

The long irrigation time produced deeper water percolation. In 2009, it was also observed that 

the runoff amount was higher for site FF-2 during the second irrigation (Figure 27). The reason 

for this higher volume of runoff could be that the irrigator applied more water per row (25 gpm 

in one site and 16.7 gpm at another site) and the length of the rows were much less. The irrigator 

also left this site unattended, thus impacting the amount of runoff. 

 

Most of the farmers applied small irrigation depths and the runoff amounts were also small in 

2010 (Figure 27). This improved management was likely influenced as farmers received written 

reports regarding the amount of water that needs to be applied from AgriLife Research-Weslaco 

during the 2009 growing season. The data is not reported for sites FB during first and second 

irrigation and site FF during the second irrigation because the water meters and water level 

sensors did not work properly. 
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Figure 26.  Irrigation depth versus surface runoff recorded on the six demonstration sites during 

two irrigation events in 2009. 
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Table 6.  Flow-rates applied per row and run lengths for the furrows for 2009. Some fields are 

not square and the lengths of both sides are reported. 

Site Flow (gpm) Rows Flow-rate per 

row (gpm) 

Maximum 

length (ft) 

Minimum 

length (ft) 

FA-1 1100 60 18.3 1305 1305 

FA-2 1000-1200 54-63 20.4-17.5   

FB-1 N/A 77 ---------- 1589 1396 

FB-2 N/A N/A    

FC-1 1100 63 17.4 1290 1290 

FC-2 1100 74-80-97 14.9   

FD-1 2100 160-270 13.1-7.7 1426 1305 

FD-2 No irrigation No irrigation No irrigation   

FE-1 1200 101 11.8 817 210 

FE-2 1600-1900 151 11.6   

FF-1 600 to 1000 66-122 12.1-6.5 755 743 

FF-2 1300 to 2000 66-102 25-16.7   
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Figure 27.  Irrigation depth versus surface runoff recorded on the six demonstration sites during 

two irrigation events in 2010. 
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Irrigation and Runoff Water Quality Parameters 

 

Biochemical Oxygen Demand 

 

Biochemical oxygen demand is a chemical procedure for determining the amount of  dissolved 

oxygen needed by aerobic biological organisms in a body of water to break down organic 

material present in a given water sample at certain temperature over a specific time period. This 

parameter is used as an indication of the organic quality of water. It is commonly expressed in 

milligrams of oxygen consumed per liter of sample during 5 days of incubation at 20 °C and is 

often used to determine the degree of organic pollution in water. The BOD of all the sites was 

less than 100 mg/l in 2009. Few exceptions were sites FA for irrigation water during the first 

irrigation, site FC for runoff water during the second irrigation, and site FE for irrigation and 

runoff during the first irrigation due to already high levels in water supplied for irrigation. When 

the irrigation water entered the field, the BOD only increased in sites FB during the second 

irrigation, site FC during the second irrigation and site FE during the first irrigation. In the rest of 

the sites, BOD was almost the same or decreased with runoff. Most rivers with good water 

quality will have a BOD below 1 mg/L. Moderately polluted rivers may have a BOD value in the 

range of 2 to 8 mg/L. Untreated sewage can have BOD that varies around 600 mg/L in Europe 

and as low as 200 mg/L in the U.S. (Sawyer et al., 2003). The water used for irrigation in this 

study comes from the Rio Grande where it is pumped and then distributed through a network of 

canals. It is possible that the Rio Grande had already high levels of BOD or it increased within 

the irrigation canals. Mostly it can be said that the BOD decreased in the sites during 2009 

(Figure 28); however, BOD increased in most of the sites in 2010 (Figure 29). The most 

noticeable were sites FB and FE. 
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Figure 28.  Biochemical oxygen demand of irrigation water and of peak runoff for six sites and 

two irrigation events in 2009. 
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Figure 29.  Biochemical oxygen demand of irrigation water and of peak runoff for six sites and 

two irrigation events in 2009. 
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Total Suspended Solids (TSS) 

 

Total suspended solid is a parameter used to measure water quality and includes all the particles 

suspended in water retained by a filter per unit volume of water. In surface irrigation, water flow 

detaches particles of soil, which are transported downstream changing the cross section area of 

the furrow. This process is called erosion. One of the main contributors to erosion in surface 

irrigated systems is the stream size; treatment typically consists of settling prior to discharge the 

water through runoff (Strelkoff and Bjorneberg, 1999).   

 

Water, as it advances down the furrows, detaches soil particles from sides causing the particles to 

settle in the bottom of the row or be transported elsewhere. This happens because the rapid 

wetting of the soil, as irrigation water travels down the furrow, traps air inside the clods making 

them explode (especially during the first irrigation). The transport process is called erosion. One 

of the main contributors to erosion in surface irrigated systems is the stream size. Farming 

practices such as no-till, minimize soil erosion and practices such as improved irrigation 

management using non-erosive stream sizes (smaller stream sizes), could reduce TSS and protect 

water quality. Most people consider water with a TSS concentration less than 20 mg/l to be clear. 

Water with TSS levels between 40 and 80 mg/l tends to appear cloudy, while water with 

concentrations over 150 mg/l usually appears dirty. The nature of the particles that comprise the 

suspended solids may cause these numbers to vary. In general, the TSS numbers of the runoff 

water were smaller than the ones of the supply water in 2009 (Figure 30). However there were 

some exceptions; most notably were sites FA for the first irrigation event and site FE for the 

second irrigation event, which increased from 130 to 330 mg/l and from 80 to 230 mg/l, 

respectively. In 2010, only two sites appeared to have high TSS in runoff; these were sites FA 

for the first irrigation and site FC during the second irrigation (Figure 31). The reason could be 

that the first and second irrigation of the season generally produce more erosion. Site FD also 

added some TSS in the runoff water. It is likely that this site increased its TSS value in runoff 

water compared to the supply water. This can be attributed to using earth ditches and siphon 

tubes instead of the poly-pipe and erosion at the upstream side increased. 
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Figure 30.  Total suspended solids of irrigation water and of peak runoff for six sites and two 

irrigation events in 2009. 

 

 

 
Figure 31.  Total suspended solids of irrigation water and of peak runoff for six sites and two 

irrigation events in 2010. 
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Nitrates and Nitrites  

 

Nitrate (NO3-) and nitrite (NO2-) are naturally occurring inorganic ions that are part of the 

nitrogen cycle. Microbial action in soil or water decomposes waste containing organic nitrogen 

into ammonia, which is then oxidized to nitrite and nitrate. Because nitrite is easily oxidized to 

nitrate, nitrate is the compound predominantly found in groundwater and surface waters.  

The U.S. Environmental Protection Agency (EPA) drinking water standard for nitrates is 10 

parts per million (ppm). The concentration of nitrate in the water can be increased by 

contamination with nitrogen‑containing fertilizers, human organic wastes, organic animal wastes 

and contamination from septic sewer systems. Nitrate containing compounds in the soil are 

generally soluble and readily leach with infiltration. 

 

For 2009, the sum of nitrates and nitrites for all the sites were lower than 6 mg/l (Figure 32). The 

highest was in site FB in which the irrigation and peak runoff water collected was 5.5 and 6.0 

mg/l respectively. The nitrates and nitrites of the supply water and peak runoff were about the 

same for most sites. Even if nitrates and nitrites were high for site FB-1, the impact on nutrient 

loadings were low (0.6 lbs/ac), because the runoff volume was low (0.5 in). The highest nitrate 

and nitrite loadings were observed for site FE for the second irrigation with a loading of 4 

lbs/acre due to high volumes of runoff (6.43 in). It is important to mention that the nitrates and 

nitrites of the irrigation water were already high and little loadings were added on the farm 

during irrigation. The net additions at site FE were just 1.3 lbs/ac of nitrates and nitrites. The 

second highest nitrates loading was site FE-1 with 1.6 lbs/ac in the runoff water; however, the 

nitrates and nitrites of the irrigation water were 5.3 lbs/ac. The rest of the sites presented nitrate 

and nitrite loadings of the runoff water of less than 0.3 lbs/ac.  

 

The same trend was observed in 2010 (Figure 33) with the exception of site FA for the first 

irrigation event. At this site, the nitrates and nitrites increased from 6.45 mg/l for the irrigation 

water to 13.72 mg/l in the runoff water. However, at site the nutrient loadings were low (0.5 lbs 

of nitrates and nitrites per acre) because of the low runoff produced (0.15 in). At site FD, the 

nitrate and nitrite loadings were 1.8 and 2.4 lbs/acre for the runoff water of the first and second 

irrigation respectively due to high volumes of runoff produced (1.2 and 1.6 inches). Nutrients 

were previously high on the irrigation water and the field helped to filter some of these high 

contents of nitrates and nitrites. The results indicate that the irrigation water already had high 

contents of nitrates and nitrites and this was variable from irrigation to irrigation. The gains of 

nitrates and nitrites loadings on the farm were small and the management practice that could 

impact nutrient loadings the most is the volume of runoff reduced. If irrigation is well attended, 

runoff can be reduced considerably. 
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Figure 32.  Nitrates and nitrites of irrigation water and of peak runoff for six sites and two 

irrigation events in 2009. 
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Figure 33.  Nitrates and nitrites of irrigation water and of peak runoff for six sites and two 

irrigation events in 2010. 
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Orthophosphate 

 

Orthophosphate ion (PO4)
-3

 is the simplest of a series of phosphates. In 2009, the 

orthophosphates were less than 0.8 mg/l and peak runoff contained almost the same or less 

orthophosphates than the irrigation water (Figure 34). The only exceptions were sites FA for the 

first irrigation event, and site FF for the second irrigation event in which orthophosphates 

increased from 0.71 to 0.79 mg/l and from 0.24 to 0.64 mg/l, respectively. The nutrient loadings 

due to orthophosphates were extremely low for all sites. The highest concentration was 1.2 lbs/ac 

for site FF during the second irrigation, which was impacted by the highest runoff volume 

collected at this site. However, if the orthophosphates that irrigation water had already contained 

were subtracted, the orthophosphates loadings were just 0.4 lbs/ac. Similar to 2009, the nutrient 

loadings due to orthophosphates were extremely low in 2010. The orthophosphates increased in 

the peak runoff in sites FA and FD in 2010 (Figure 35). Excluding these two sites, the 

orthophosphates were also lower than 0.8 mg/l. Site FA produced more erosion and TSS, 

probably because of higher furrow stream size, which resulted in higher orthophosphates carried 

by sediments. Site FD also produced the highest runoff of all sites in 2010. This impacted the 

orthophosphate loadings, which were highest of all sites at 0.2 and 0.3 lbs/ac for the first and 

second irrigation. Like the nitrate and nitrites loadings, the orthophosphates loading is highly 

influenced by the amount of runoff. 

 

 
Figure 34.  Orthophosphates of irrigation water and of peak runoff for six sites and two irrigation 

events in 2009. 
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Figure 35.  Orthophosphates of irrigation water and of peak runoff for six sites and two irrigation 

events in 2010. 
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Total Phosphorus 

 

The total phosphorus in water was less than 6 mg/l in 2009 and less than 4 mg/l in 2010 (Figures 

36 and 37). The highest increases from peak runoff occurred at site FA for the first irrigation 

event and at site FE for the second irrigation event in 2009. At most of the sites, the total 

phosphorus of the irrigation water and runoff were very similar. The total phosphorus of the peak 

runoff only increased significantly at sites FA-1 and FE-2. There is a relation between total 

suspended solids and total phosphorus. It may be possible to reduce the total phosphorus by 

decreasing the stream size in rows, especially during the first two irrigations. The highest 

nutrient loadings were observed at Site FA during the first irrigation, followed by site FF during 

the first and second irrigation and FE-1 with 3.1, 2.7, 1.3 and 1.16 lbs of total phosphorus per 

acre, respectively. This site also produced the highest runoff (1.2, 6.4, 2.3, 2.1 inches). In 2010, 

the sites that produced the higher total phosphorus levels were sites FA and FD. However, the 

highest total phosphorus loadings were for site FD during the first and second irrigation with 0.3 

and 0.6 lbs/ac and this site also produced the largest runoff volumes. A similar trend was 

observed with orthophosphates and TSS.   
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Figure 36.  Total phosphorus of irrigation water and of peak runoff for six sites and two 

irrigation events in 2009. 
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Figure 37.  Total phosphorus of irrigation water and of peak runoff for six sites and two 

irrigation events in 2010. 
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Total Kjeldahl Nitrogen 

 

Total Kjeldahl Nitrogen (TKN) analysis is the total of the organic nitrogen plus any ammonia-

nitrogen in a sample. The ammonia-nitrogen samples were practically zero for all the sites and 

the values are not shown. Therefore, very small TKN values were observed during 2009 and 

2010 (Figures 38 and 39). The values were less than 1.4 mg/l in 2009 and less than 0.6 mg/l in 

2010. The TKN nutrient loadings of runoff water in 2009 were highest for site FF during the 

second irrigation with 0.7 lbs/ac. In 2010, the TKN nutrient loadings of the runoff water were 

less than 0.6 kg/ac for all sites and were influenced by low runoff amounts due to improved 

irrigation management. Most of the irrigation and runoff values were almost similar or the 

irrigation had higher TKN values than the runoff water with a few exceptions. 
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Figure 38.  Total Kjeldahl nitrogen of irrigation water and of peak runoff for six sites and two 

irrigation events in 2009. 
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Figure 39.  Total Kjedahl nitrogen of irrigation water and of peak runoff for six sites and two 

irrigation events in 2010. 
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Groundwater Quality (Water table and tile drains) 
 

Water that percolates from the irrigation system reaches the water table. Groundwater samples 

were collected from the groundwater table in sites FA, FB, FC and FE. An observation well was 

drilled in these sites and the water samples were taken from the groundwater table by pumping. 

Sites FD and FF had drain tiles and the water sample was taken from the drain outlet that 

discharged to the drainage ditches. 

 

Biochemical Oxygen Demand in Groundwater 

 

The laboratory could not determine the values for all the samples. This is the reason that some 

values are not shown on the following figures. It can be observed that the values fluctuate year to 

year (Figure 40). The highest values were observed in 2009 for site FB with 124 mg/l and site FE 

with 223 mg/l. 
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Figure 40.  Biochemical oxygen demand of groundwater for six sites and two irrigation events 

during 2009 and 2010. GW samples were taken from the water table and the TD samples from 

the tile drain. 
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Total Suspended Solids in Groundwater 

 

The total suspended solids of groundwater were relatively small for all the sites (Figure 41). A 

few exceptions were sites FE and FE in 2009 and site FC in 2010. 

 

 
 

 
 

Figure 41.  Total suspended solids of groundwater for six sites and two irrigation events during 

2009 and 2010. Some values are not shown because the samples could not be analyzed. GW 

samples were taken from the water table and the TD samples from the tile drain. 
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Nitrates and Nitrites in Groundwater 

 

The nitrates and nitrites of groundwater were less than 9 mg/l for most of the sites (Figure 42). 

The exception was site FA during the second irrigation in 2009. The increase in nitrates could be 

that this field may be over-fertilized over several years. 

 

 

 

FA-1-
GW

FA-2-
GW

FB-1-
GW

FB - 2-
GW

FC-2-
GW

FC-1-
GW

FD-1-
TD

FD-2-
TD

FE-1-
GW

FE-2-
GW

FF-1-
TD

FF-2-
TD

2009 8.95 14.85 2.85 0.02 0.87 8.51 6.25 3.61 0.61 3.09

2010 2.77 0.69 0.69 2.37 2.50 1.08 1.02 0.92 0.22

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

N
O

2
 a

n
d

 N
O

3
 (

m
g/

l)
 

FA-1-
GW

FA-2-
GW

FB-1-
GW

FB - 2-
GW

FC-2-
GW

FC-1-
GW

FD-1-
TD

FD-2-
TD

FE-1-
GW

FE-2-
GW

FF-1-
TD

FF-2-
TD

2009 8.95 14.85 2.85 0.02 0.87 8.51 6.25 3.61 0.61 3.09

2010 2.77 0.69 0.69 2.37 2.50 1.08 1.02 0.92 0.22

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

N
O

2
 a

n
d

 N
O

3
 (

m
g/

l)
 

123



 

 

50 

 

Figure 42.  Nitrates and nitrites of groundwater for six sites and two irrigation events during 

2009 and 2010. Some values are not shown because the samples could not be analyzed. GW 

samples were taken from the water table and the TD samples from the tile drain. 

Total Kjedahl Nitrogen in Groundwater 

 

Total Kjedahl nitrogen values were low and less than 1.1 mg/l for most of the soils (Figure 43). 

The only exception was site FB, which presented a high value during 2010. During this year, the 

TKN value of irrigation water was 0.37 mg/l during the first irrigation.
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Figure 43.  Total Kjedahl nitrogen of groundwater for six sites and two irrigation events during 

2009 and 2010. Some values are not shown because the samples could not be analyzed. GW 

samples were taken from the water table and the TD samples from the tile drain. 

 

Orthophosphate in Groundwater 

 

The total orthophosphates values were low and less than 0.43 mg/l for most of the soils. The only 

exception was site FB, which presented a high value during 2009 (Figure 44). During this year, 

the TKN value of irrigation water was 1.21 and 2.42 mg/l during the first and second irrigation. 

In the rest of the sites, orthophosphates in groundwater were lower than levels of irrigation and 

peak runoff.   
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Figure 44.  Orthophosphates of groundwater for six sites and two irrigation events during 2009 

and 2010. Some values are not shown because the samples could not be analyzed. GW samples 

were taken from the water table and the TD samples from the tile drain. 

 

Total Phosphorus in Groundwater. 

 

Higher total phosphorus values were observed in 2009 (Figure 45). The highest values were 

observed in sites FA, FB, and FE. Site FB has sugarcane and also presented high values of 

orthophosphates and TSS. 

 

Figure 45.  Total phosphorus of groundwater for six sites and two irrigation events during 2009 
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and 2010. Some values are not shown because the samples could not be analyzed. GW samples 

were taken from the water table and the TD samples from the tile drain. 
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Field Days and Result Demonstrations 

 

The following actions were completed: 

 

A 30-minute presentation was conducted on irrigation management and best management 

practices for sugarcane at the Sugarcane Field Day in Weslaco, Texas on September 24, 2010. 

Seventy people attended the conference.   

 

Dr. Juan Enciso presented a 30-minute presentation on best management practices and irrigation 

management during the Irrigation Expo on October 20-22, 2010. About 70 people attended the 

conference. Dr. Enciso provided an update on the progress of the project and discussed the 

impact of best irrigation management practices on water conservation and on the reduction of 

nutrient loadings to the Arroyo Colorado. He also explained how to improve surface irrigation 

management to reduce deep percolation and runoff water losses. A field day was also conducted 

at the Irrigation Expo to demonstrate best irrigation management practices. Thirty-five people 

attended this field day. Among the practices were the use of poly-pipe compared to earth ditches 

and siphon tubes, the use of metering devices, drip and sprinkler irrigation. Dr. Enciso also 

provided a demonstration on how to manage fertilizers with irrigation to avoid leaching and 

transport of fertilizer with runoff water. The tour lasted three hours. 
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DISCUSSION AND CONCLUSIONS  

 

The predominant irrigation system in the Lower Rio Grande Valley is surface irrigation. The 

main BMPs adopted by the farmers in the Arroyo Colorado with this irrigation method are 

conservation crop rotation, irrigation land leveling, the use of poly-pipe and nutrient 

management. Only one farmer had filter strips at the lower end of the rows, which received 

irrigation runoff, and the same farmer had residue management including all the BMPs 

mentioned before. The main conclusions of this study are: 

 

1.  Of the six sites, only one farm had excessive runoff (site FF), and this site practically 

impacted the nutrients loadings of all the nutrients measured in the runoff water. The 

amount of runoff for this site was (6.4 inches) during the second irrigation in 2009. The 

same site also had high runoff during the first irrigation (2.4 inches) of the same year.    

2. Four out of ten irrigation events evaluated in 2009 applied a depth greater than 9 inches. 

Considering that those soils cannot hold more than 6.6 inches of water for a soil depth of 

3 feet, water only could leave the soil storage capacity through either deep percolation or 

runoff. Farmer’s reports were given to producers in 2009, and this could have influenced 

the results of the 2010 growing season. All of the irrigation depths applied in 2010 were 

lower than 8.5 inches and the runoff amounts were lower than 1.6 inches. The highest 

runoff amount in 2010 was from one of the sites in which irrigation was monitored only 

for one irrigation event during 2009.   

3. The results indicated that the irrigation water had already high contents of nitrates and 

nitrites, and this was variable from irrigation to irrigation. The gains of nitrates and 

nitrites loadings on the farm were small and the management practice that could have the 

highest impact on nutrient loadings is the amount of runoff. If irrigation is well attended, 

runoff can be reduced considerably. The total concentration of NO3- and NO2- in the 

irrigation and runoff water for all sites were lower than 6 mg/l in 2009 and lower than 10 

mg/l in 2010 (with the exception of site FA in which the runoff concentration during the 

first irrigation was 13.7 mg/l). In 2009, the runoff water with the highest NO3- and NO2- 

loadings was site FF during the second irrigation with a concentration of 4.0 lbs/ac 

because of the large volume of runoff. In 2010, the sites that produced the highest NO3- 

and NO2- loadings was site FD with 1.8 and 2.4 lbs/ac during the first and second 

irrigation, and this site produced the largest runoff volume. 

4. Most of the TKN values of irrigation and runoff were either similar, or irrigation had 

slightly higher TKN values than the runoff water, with a few exceptions. The TKN values 

were less than 1.4 mg/l in 2009 and less than 0.6 mg/l in 2010, and they were primarily 

influenced by the amount of runoff produced on the farms. The TKN loadings were lower 

than 0.3 lbs/ac for all sites during both years, with exception of site FF’s second 

irrigation, which produced 0.7 lbs/ac. 

5. TSS was higher for sites FA and FD during 2009 and 2010. At site FA, the high stream 

sizes per furrow (17.5 to 20.4 gpm/row) could have produced erosion and higher TSS that 

could also resulted in higher orthophosphates and total phosphorus in the runoff water 

than most other sites. In site FD, the high TSS could be caused by erosion on the 

upstream side of the farm because it was the only site that did not use poly-pipe, making 

it difficult to control irrigation and producing the highest runoff in 2010. The water flow 

detached some of the soil particles from the earth ditches.   
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6. In general, the nutrient loadings due to orthophosphates were extremely low for all sites 

during both years. The highest concentration was 1.2 lbs/ac of orthophosphates for site 

FF during the second irrigation of 2009, and it was impacted by the high runoff on this 

site (6.4 in). Site FF also produced the highest amount of total phosphorus loadings (2.7 

lbs/ac) during the second irrigation. 

7. The nutrient values of groundwater fluctuated from year to year and from irrigation to 

irrigation, but they were generally low. Groundwater had values of less than 9 mg/l of 

nitrates and nitrites (with the exception of site FA-second irrigation), lower than 1.1 mg/l 

of TKN (with exception of site FB-second irrigation-2010), lower than 0.49 mg/l of 

orthophosphates (with exception of site FB-first and second irrigation-2009), and lower 

than 7.28 mg/l of total phosphorus (with exception of site FB-first and second irrigation 

and site FE-first irrigation on 2009). The only sites that had nutrient management as 

BMPs were sites FC and FD, and these sites had one of the lowest nutrient values on the 

groundwater. 

8. All of the evaluated sites had irrigation land leveling and crop rotation as best 

management practices. Future recommendation for best management practices should 

include nutrient management programs, which means to apply the fertilizer according to 

a soil analysis, and the improvement of irrigation management, which implies reducing 

runoff and using nonerosive stream sizes. 
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Summary 

 

A model setup of the Soil and Water Assessment Tool (SWAT) watershed model was developed to 

simulate flow and selected water quality parameters for the Arroyo Colorado watershed in South Texas. 

The model simulates flow, transport of sediment and nutrients, water temperature, dissolved oxygen, and 

biochemical oxygen demand. The model can also be used to estimate a total maximum daily load for the 

selected water quality parameters in the Arroyo Colorado. The model was calibrated and tested for flow 

with data measured during 2000–2009 at two streamflow-gaging stations. The flow was calibrated 

satisfactorily at monthly and daily intervals. In addition, the model was calibrated and tested sequentially 

for suspended sediment, orthophosphate, total phosphorus, nitrate nitrogen, ammonia nitrogen, total 

nitrogen, and dissolved oxygen, using data from 2000–2009. The simulated loads or concentrations of the 

selected water quality constituents generally matched the measured counterparts available for the 

calibration and validation periods. Two watershed scenarios were simulated for the years 2015 and 2025 

after estimation of land cover maps for those years. The scenarios were intended to identify a suite of best 

management practices (BMPs) to address the depressed dissolved oxygen problem in the watershed. 
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Purpose and Scope 

 

This report describes the setup, calibration, validation, and scenario analysis using the SWAT model to 

simulate the flow and water quality of the Arroyo Colorado watershed. The basin was subdivided into 17 

subbasins—six in Segment 2201 and eleven in Segment 2202. The basin was characterized by a set of 

475 hydrologic response units (HRUs) that are unique combinations of land cover, soil, and slope. For 

flow, 8 hydrologic process-related parameters were calibrated. A total of 26 process-related parameters 

were calibrated for water quality. Eleven years (1999–2009) of precipitation, air temperature, streamflow, 

and water-quality data were used for model calibration and validation. We used precipitation data from 

three stations; air temperature data from two stations; and streamflow data from two stations. Most of the 

water quality data used for model calibration and testing came from the station near Harlingen, Texas. 

Some water quality data available near Mercedes, Texas were also used in the study. Status of water 

quality in the river at present and for years 2015 and 2025 were projected using estimated land cover 

maps. Suggested solutions to bring dissolved oxygen in compliance for the stream were also discussed.  

 

Introduction 

 

The Arroyo Colorado watershed, a subwatershed of the Nueces-Rio Grande Coastal Basin, is located in 

the Lower Rio Grande Valley of South Texas and extends from near Mission, Texas, eastward to the 

Laguna Madre (fig. 1). Streamflow in the Arroyo Colorado primarily is sustained by municipal and 

industrial effluents. Additional streamflow results from irrigation return flow, rainfall runoff, and other 

point-source discharges. The Arroyo Colorado is used as a floodway, an inland waterway, and a 

recreational area for swimming, boating, and fishing, and is an important nursery and foraging area for 

shrimp, crab, and several types of marine fish. 

 

The Texas Commission on Environmental Quality (TCEQ) has classified two reaches of the Arroyo 

Colorado based on the physical characteristics of the stream. Segment 2201, from the Port of Harlingen to 

the confluence with the Laguna Madre, is tidally influenced and has designated uses of contact recreation 

and high aquatic life. The nontidal segment of the Arroyo Colorado, Segment 
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                                                                     Figure 1. Location of Arroyo Colorado watershed
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2202, has designated uses of contact recreation and intermediate aquatic life. The tidal segment of the 

Arroyo Colorado, Segment 2201, has failed to meet the water quality criteria required for its designated 

uses and is included on the State 303(d) list of impaired water bodies for dissolved oxygen (DO) levels 

below the criteria specified in the Texas Surface Water Quality Standards (Texas Natural Resource 

Conservation Commission, 1997). 

 

Simulation models typically are used to estimate load reductions because the models are developed to 

represent the cause-and-effect relations between natural inputs to an aquatic ecosystem and the resulting 

water quality. Several BMP alternatives can be evaluated objectively using simulation models to 

determine what changes will be needed to meet the water quality standards. 

 

Texas AgriLife Research, in cooperation with Texas State Soil and Water Conservation Board 

(TSSWCB) and TCEQ, began a study in 2008 to simulate the flow and the water quality of selected 

constituents in the Arroyo Colorado. The specific objectives of the study were to (1) develop a computer-

based watershed model setup of the Arroyo Colorado that would allow representation of different BMPs 

adopted by growers in the watershed; (2) calibrate and validate a set of process-related model parameters 

with available streamflow and water quality data for the watershed; and (3) develop a suite of BMPs for 

changing land cover conditions predicted for 2015 and 2025, which, when progressively implemented in 

the watershed, would bring the water quality to compliance with current standards.  

 

Study Area 

 

The study area, the Arroyo Colorado watershed, is located in the Lower Rio Grande Valley of South 

Texas in parts of Hidalgo, Cameron, and Willacy counties (Fig. 1). It is a subwatershed of the Nueces-Rio 

Grande Coastal Basin, also known as the South (Lower) Laguna Madre Watershed (Hydrologic Unit 

Code 12110208). It is a 1,692 km
2
 agricultural watershed with intensive cultivation. Most of the 

cultivated area receives irrigation from Rio Grande River through a network of canals, ditches, and pipes 

under a system of irrigation districts (Fig. 2). Irrigation practices consist of flooding fields with a 

specified depth of water during periods of insufficient precipitation to produce desired crop yields. 

Perennial stream flow in the Arroyo Colorado is primarily sustained by effluent from municipal 

wastewater treatment plants.
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Figure 2. Irrigation districts in the watershed

108.18 km (64.5 miles) 
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Irrigation return flow and point source discharges supplement the flow on a seasonal basis. The Arroyo 

Colorado is used as a floodway, an inland waterway, and a recreational area for swimming, boating, and 

fishing, and is an important nursery and foraging area for numerous marine species. Urbanization is 

extensive in the areas directly adjacent to the main stem of the Arroyo Colorado, particularly in the 

western and central parts of the basin. Principal urban areas include the cities of Mission, McAllen, Pharr, 

Donna, Weslaco, Mercedes, Harlingen, and San Benito (Rains and Miranda, 2002; Rosenthal and Garza, 

2007). 

 

The most dominant land cover category in the watershed is agriculture (54 %) and the main crops 

cultivated are grain sorghum, cotton, sugar cane, and citrus, although some vegetable and fruit crops are 

also raised. Most of the cultivated area (including citrus and sugarcane) is irrigated. The watershed soils 

are clays, clay loams, and sandy loams. The major soil series comprise the Harlingen, Hidalgo, Mercedes, 

Raymondville, Rio Grande, and Willacy (U.S. Department of Agriculture, Soil Conservation Service, 

1977, 1981–82). Most soil depths range from about 1,600 to 2,000 mm.  

 

The mean annual temperature of the watershed is 22.7 degrees Celcius ( C) with mean monthly 

temperatures ranging from 14.5 C in January to 28.9 C in July. Mean annual precipitation ranges from 

about 530 to 680 mm, generally from west to east, in the basin (National Oceanic and Atmospheric 

Administration, 1996). Most of the annual precipitation results from frontal storms and tropical storms.  

 

Observations used 

 

Twelve years of weather data and flow, beginning in 1999 to 2010, were used for modeling. We used 

precipitation data from three and temperature data from two stations (Fig. 1). The weather data was 

obtained from Texas State Climatologist Office located at Texas A&M University in College Station. 

Stream flow data for two stations were obtained from International Boundary and Water Commission; 

one near Llano Grande at FM 1015 south of Weslaco (G1) and the other near US 77 in South West 

Harlingen (G2) (Table 1). There are 21 permitted dischargers in the Arroyo Colorado Basin, 16 are 

municipal, three are industrial, and two are shrimp farms. The discharge permit limits of the municipal 

plants range from 0.4 to 10 million gallons per day. The shrimp farms discharge infrequently (Rains and 

Miranda, 2002). 
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Water quality data from limited grab samples were obtained for suspended sediment (SS), nitrogen 

(ammonia nitrogen (amm N), nitrate-nitrogen (NO3-N), and total nitrogen (TN)), phosphorus 

(orthophosphate (OP) and total phosphorus (TP)), water temperature (WT), and dissolved oxygen (DO). 

Data were available from three stations: the first near Weslaco, the second near Harlingen and the third 

near Port of Harlingen (Table 1). Out of the three stations, only the station near Harlingen had data for all 

the water quality variables. The gauge near Weslaco had flow, SS and, amm N only. However, the gauge 

near Port of Harlingen had very limited data (<10--20 observations) for SS, amm N, and WT, and 

therefore was not used for the analysis (Table 1).  

 

The observations were available in the form of concentrations (except water temperature). The monitored 

observations (concentrations) were converted to time series of loads using a continuous time series of 

flow (typically daily stream flow). There are computer programs to accomplish this that convert flow and 

concentrations using regression and statistical techniques. They also estimate uncertainties of estimates. 

One such program is LOAD ESTimator (LOADEST) developed by United States Geological Survey 

(USGS) (Runkel et al. 2004). In LOADEST, data variables such as various functions of flow, time, and 

some other user-specified variables can be included. The program develops a regression model for 

estimation of load after calibration. Once formulated, the regression model is then used to estimate loads 

for a user-specified time frame. The LOADEST program estimates mean loads, standard errors, and 95 % 

confidence intervals developed on a monthly or seasonal basis. LOADEST output includes diagnostic 

tests and warnings to the user in determining correct estimation procedure and ways to interpret the 

information obtained. The time series of pollutants estimated this way using LOADEST based on grab 

sample pollutant concentrations and flow is referred to as “observations” throughout this report. 
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Description of simulation model 

 

The Soil and Water Assessment Tool (SWAT) (Arnold et al. 1993) is a conceptual continuous simulation 

model developed to quantify the impact of land management practices on surface water quality in large 

watersheds (Gassman et al. 2007; Neitsch et al. 2004; http://www.brc.tamus.edu/swat). 

 

Table 1. Selected physical and hydrological characteristics of Arroyo Colorado subbasins 

SubBasin Reach 

length 

(km) 

Drainage 

area  

(Km
2
) 

Name of 

precipitation 

station 

Streamflow 

gauging station 

number 

Water quality 

sampling site 

number 

(Segment 2202 non-tidal) 

      

2 11.5 50.3    

3 11.5 73.8 Mc Allen   

4 16.7 157.4    

5 9.0 57.7    

6 10.0 82.6 Mercedes 08-4703.00 13081 

7 10.8 100.3    

8 19.6 143.3    

9 10.1 47.5 Harlingen   

10 12.7 104.9  08-4704.00 13074 

11 20.3 96.9    

12 10.6 155.8    

(Segment 2201 tidal) 

13 10.0 59.4    

14 8.8 59.2    

15 53.4 249.0    

16 7.4 54.3    

17 25.6 110.2    

1 8.5 89.8    
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Figure 3. Land cover map of Arroyo Colorado 

108.18 km (64.5 miles)  
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Figure 4. Soil map of the watershed 

108.18 km (64.5 miles) 
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Table 2. Land cover map legend descriptions 

Land Cover Code Description 

 

AGRL 

AGRR 

FRST 

ORCD 

PAST 

RNGB 

RNGE 

SUGC 

UCOM 

UIDU 

UINS 

URHD 

URLD 

URML 

UTRN 

WATR 

WETF 

WETN 

 

 

Generic Agricultural Land 

Agricultural Land-Row Crops 

Mixed Forest 

Orchard (Citrus for Arroyo Colorado watershed) 

Pasture 

Range-Brush 

Range-Grasses 

Sugarcane 

Urban-Commercial facility 

Urban-Industry 

Urban-Institution 

Urban-High Density Residential 

Urban-Low Density Residential 

Urban-Residential Medium/Low density 

Urban-Transportation 

Water 

Wetland-Forested 

Wetland-Non-forested 

 

 

SWAT also provides a continuous simulation of processes such as evapotranspiration, surface runoff, 

percolation, return transport flow, groundwater flow, channel transmission losses, pond and reservoir 

storage, channel routing, field drainage, crop growth, and material transfers (soil erosion, nutrient and 

organic chemical and fate). The model can be run with a daily time step, although subdaily model run is 

possible with Green and Ampt infiltration method. It incorporates the combined and interacting effects of 

weather and land management (e.g. irrigation, planting and harvesting operations, and the application of 

fertilizers, pesticides or other inputs). SWAT divides the watershed into subwatersheds using topography. 

Each subwatershed is divided into HRUs, which are unique combinations of soil, land cover and slope. 

Although individual HRU’s are simulated independently from one another, predicted water and material 

flows are routed within the channel network, which allows for large watersheds with hundreds or even 

thousands of HRUs to be simulated.  
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SWAT model setup of Arroyo Colorado watershed 

 

Input data used 

 
We used ArcSWAT interface to prepare the SWAT model setup of Arroyo Colorado. For delineation of 

watershed boundary, we used 30-m USGS Digital Elevation Model (DEM). A digitized stream network 

and a watershed boundary from the previous HSPF modeling study (Rains and Miranda, 2002) were used 

as supporting information for the delineation of watershed and stream network for the present study. The 

watershed was eventually discretized into 17 subwatersheds. 

 

Spatial Sciences Lab of Texas A&M University at College Station prepared the land cover map based on 

satellite data and a field survey. The map incorporates the present land cover conditions (2004–2007) in 

the watershed. Crop rotation, irrigation, and dates of planting are also available with the land use map on 

a farm/field basis. The dominant land cover categories in the watershed are agriculture (54 %), range 

(18.5 %), urban (12.5 %), water bodies (6 %) and sugarcane (4 %) although some vegetable and fruit 

crops are also raised (Fig. 3, Table 2). The soil survey geographic database (SSURGO) soil map was 

downloaded from USDA-NRCS for Cameron, Willacy and Hidalgo counties (Fig. 4). The soil properties 

associated with a particular soil type are derived using the SSURGO soil database tool. 475 HRUs were 

delineated based on a combination of land cover and soil. In the present delineation, areas as small as 9.1 

ha (22.5 acres) are represented as HRUs. 

  

Dates of planting were obtained from the land cover map. The durations of crops were obtained from crop 

fact sheets from Texas AgriLife Extension Service publications based on the tentative harvest dates as 

identified for each crop (Stichler and McFarland, 2001; Trostle and Porter, 2001; Stichler et al. 2008; 

Vegetable Team Production, 2008; Wiedenfeld and Enciso, 2008; Wiedenfeld and Sauls, 2008). Dates of 

harvest collected during our visits to the watershed were used along with the above information. 

Typically, there are two tillage operations (in conventional tillage) for each crop, one soon after the 

harvest of the previous crop and the other midway between the harvest of the previous crop and the 

planting of the present crop. In conservation tillage, one tillage operation (mostly soon after harvest of the 

previous crop) or no tillage operation is performed (Andy Garza, Texas State Soil and Water 

Conservation Board, Harlingen, personal communication).  
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Modeling Irrigation of crops  

 
Tentative quantity, timing, and frequency of irrigation required for major crops (such as sorghum, cotton 

and sugar cane) were obtained from NRCS and TSSWCB staff in the watershed. Crop fact sheets 

published by Texas AgriLife Extension Service were also collected to estimate the irrigation information 

for the crops (Table 3; Stichler and McFarland, 2001; Trostle and Porter, 2001; Cruces, 2003; Fipps, 

2005; Stichler et al. 2008; Vegetable Team Production, 2008; Wiedenfeld and Enciso, 2008; Wiedenfeld 

and Sauls, 2008). To model canal irrigation, the following procedure is used. We prepared a 

comprehensive map using the HRU information from the overlaid land cover map, soil map and subbasin 

map using GIS. An HRU under agriculture land cover can be either irrigated or not irrigated. If irrigated, 

the model will follow the canal irrigation procedure. Information on irrigation districts for the study area 

is available in the form of a map from the Irrigation Technology Center, Texas A&M University. In 

addition, the average water conveyance efficiency for each irrigation district is available separately. This 

information was combined and merged with the HRU map to identify the irrigation district that comes 

under each HRU. This has conveyance efficiency information for each HRU. For this study, conveyance 

efficiency includes all loses in the irrigation distribution system from water diversion river to field. 

Conveyance efficiency combined with depth of water application for each irrigation event for each crop 

allowed us to estimate the tentative quantity of water that could have been diverted from the source for 

irrigating the crop (Fig. A1). We consulted several publications/reports estimating depth, duration, and 

frequency of irrigation, and estimated the critical crop growth stages at which irrigation is essential. We 

also estimated the timings based on the probable days of irrigation (identified by looking at the daily 

water stress values reported by the model for the simulation that involves no irrigation event for any crop 

in any HRU) to schedule irrigation in the model set up, and the critical crop growth stages requiring 

irrigation were used as reported in the literature/field data.  
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Representing Best Management Practices (BMPs) in the  model  

 

Irrigation land leveling (NRCS practice code 464) 

Irrigation land leveling represents the reshaping of the irrigated land to a planned grade to permit uniform 

and efficient application of water. It is typically used in mildly sloping land. Primarily it is carried out by 

agricultural producers who follow surface methods to irrigate their fields. Land leveling is generally 

designed within slope limits of water irrigation methods used, provide removal of excess surface water 

and control erosion caused by rainfall. This BMP is modeled in SWAT by reducing the HRU slope (by 8–

12.5 % depending on the initial value) and slope length (one tenth of the default value) parameter. In 

reality, a leveled field infiltrates more water, reduces surface runoff, and therefore decreases soil erosion. 

When adjusted (reduced), slope and slope length parameters of the watershed model setup will bring 

similar effects in the predicted model results. 

 

Irrigation Water Conveyance, Pipeline (NRCS practice code 430) 

Irrigation water conveyance in pipeline form is installation of underground thermoplastic pipeline (and 

appurtenances) as a part of an irrigation system to replace canal lining. The decision to line a canal or 

replace the canal using a pipeline is often made based on how much water is conveyed in the canal. In 

practice, small district irrigation canals or lateral canals with capacity less than 100 cubic feet per second 

will be replaced with pipeline. This BMP reduces water conveyance losses and prevents soil erosion or 

loss of water quality. Some of the design and planning considerations include working pressure, friction 

losses, flow velocities, and flow capacity. On average, this BMP can save water up to 11 % (Texas Water 

Development Board, report 362). In a hydrologic modeling study involving a relatively large watershed, it 

is not possible to practically  consider all the pipe network, irrigation appurtenances, and the associated 

pressure, friction losses, flow velocity, capacity etc. Therefore, irrigation water conveyance in pipeline 

form is modeled by increasing the conveyance efficiency of an HRU. In other words, the amount of water 

diverted to the field from the source is decreased. 

 

Irrigation System-Surface Surge Valves 

This BMP is often implemented to replace an on-farm ditch with a gated pipeline to distribute water to 

furrow irrigated fields. A surge irrigation system applies water intermittently to furrows to create a series 

of on-off periods of either constant or variable time intervals. The system includes butterfly valves or 

similar equipment that will provide equivalent alternating flows with adjustable time periods. Surge flow 

reduces runoff by increasing uniformity of infiltration and by reducing the duration of flow as the water 

reaches the end of the field. It also increases the amount of water delivered to each row and reduces deep 
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percolation of irrigation water near the head of the field. The amount of water saved by switching to surge 

flow is estimated to be between 10 and 40 % (Texas Water Development Board, report 362) and is 

dependent upon soil type and timing of operations. Physical representation and modeling the operation of 

butterfly values for each field in a large watershed system was tedious. Also, methods do not exist to 

model them from a hydrologic perspective. Therefore, irrigation system-surface surge valves is simulated 

by increasing the conveyance efficiency while calculating the water diverted for irrigation.  

 

Irrigation Water Management (NRCS practice code 449)  

Under this BMP, the landowner will manage the volume, frequency, and application rate of irrigation in a 

planned, efficient manner as determined from the crop’s water requirements complying with federal, 

state, and local laws and regulations. This BMP is modeled by varying several parameters. The volume of 

water required for irrigation is adjusted based on the seasonal total rainfall received (total rainfall from 

planting to harvest date).. If there is considerable rainfall around a scheduled irrigation period, that 

particular irrigation is skipped. This reduces the frequency of irrigation. Based on the quantity of rainfall 

and timing, the rate of water application is also adjusted, although this is less frequent. 
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Table 3. Frequency, timing and amount of irrigation for different crops in the watershed 

 

 

Table 4. Water Diverted for Irrigation with and without BMPs 

 

Subbasin Year Crop 
Water diverted 

without BMPs mm (in.) 

Water diverted 

with BMPs mm (in.) 

3 

3 

8 

8 

8 

2002 

2004 

2000 

2001 

2002 

Sugarcane 

Sugarcane 

Cotton 

Corn 

Cotton 

1,524 (60) 

1,052 (41) 

677 (27) 

677 (27) 

677 (27) 

1,160 (46) 

801 (32) 

552 (22) 

552 (22) 

552 (22) 

 

 

 

 

Crop 

 

Total water 

requirement, 

mm (inches) 

 

 

Number of 

irrigations 

 

 

Critical crop growth stages needing irrigation 

 

Irrigation requirement (Days 

after planting) 

Sorghum 

Cotton 

Sugarcane 

Corn 

Citrus 

Sunflower 

Onion 

458 (18) 

508 (20) 

1270 (50) 

508 (20) 

1143 (45) 

304 (12) 

635 (25) 

3 

3 

7 

3 

6 

2 

5 

One week before booting, two weeks past flowering 

Stand establishment, prebloom, shortly after boll set 

Establishment, grand growth, ripening 

Tasseling, silking, kernel fill 

Pre-bloom, flower bud induction, fruit set, cell expansion, ripening 

20 days before flowering, 20 days after flowering 

stand establishment, bulb initiation, maturity 

30, 60, 84 

25, 56, 94 

75, 105, 145, 190, 235, 275, 305 

48, 70, 95 

65, 100, 135, 195, 250, 320 

45, 85 

15, 60 (if dry), 90, 115, 135 
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Conservation Crop Rotation (NRCS practice code 328) 

This BMP implies growing high-residue-producing crops that produce a minimum of 2800 kg/ha/year 

(2500 lbs/ac/year) of residue for a minimum of 1 year within a given two year period. Corn and grain 

sorghum are examples for high-residue-producing crops. Sorghum is the dominant crop in cultivated 

areas of the watershed. Corn is also cultivated in some areas. The crop rotation in the watershed has 

sorghum, or corn as per the above-mentioned conditions prescribed for conservation crop rotation. 

Therefore, no changes were made in the watershed model set up to represent this BMP. 

 

Nutrient Management (NRCS practice code 590) 

Nutrient management means managing fertilizer quantity, placement, and timing based on realistic yield 

goals and moisture prospects. Under this BMP, fertilizer should be applied in split applications 

throughout the year (early March, late May, late August, and mid October) prior to irrigation or 

forecasted rain to maximize the use of the fertilizer and minimize the leaching potential. Nitrogen 

applications will not exceed 112 kg/ha (100 lb/ac) of total nitrogen per application. Specific nutrient 

recommendations will be given by NRCS when a soil analysis report is provided. A soil analysis is taken 

a minimum of once every third year by the land owner/renter beginning with the year that the plan or 

contract is signed. Nutrient management is mimicked in the model as given below. 

 

The fertilizer applications for cultivated fields were already modeled in terms of two or three split 

applications. For the HRUs that come under this BMP, the split applications were strictly followed 

according to  the guidelines suggested in the BMP practice code. In addition, the initial amount of N and 

P present in the soil were deducted from the recommended regular fertilizer application rates for different 

crops (to mimic soil-survey based N and P recommendations). Realistic initial N and P rates were 

obtained by using the final amount of N and P remaining in the soil (as reported by the model) after 

several years of model runs. With respect to recommended regular rates of N and P, under this 

management scenario, less proportion of P than N is applied  .. This is because phosphorus is less likely 

to leach from the soil and more available. A comparison of N and P rates for different crops with and 

without nutrient management is given in Table 5. 
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Table 5. Fertilizer rates for different crops under nutrient management and non-nutrient management 

 

 

Crop 

Nitrogen (kg/ha) Phosphorus (kg/ha) 

Regular Nutrient 

management 

Regular Nutrient 

management 

Sorghum 

Cotton 

Sugarcane 

160 

150 

224 

152 

125 

216 

69 

68 

0 

55 

34 

0 

 

Residue Management (NRCS practice code 329b) 

Residue management-mulch-till is managing the amount, orientation, and distribution of crop and other 

plant residue on the soil surface year-round while growing crops. The entire field surface is tilled prior to 

the planting operation. Sometimes the residue is partially incorporated using chisels, sweeps, field 

cultivators, or similar implements. This BMP is practiced as part of a conservation management strategy 

to achieve some/all of the following: reduce sheet and rill erosion, reduce wind erosion, maintain or 

improve soil organic matter content, conserve soil moisture, and provide food and escape cover for 

wildlife (USDA-NRCS, 2001). This BMP was modeled by harvesting only the crop (no killing of crop; 

harvesting only the useful yield), and leaving the residue (non-yield portion of crop) until the planting of 

next crop.  

 

Seasonal Residue Management (NRCS practice code 344) 

Seasonal residue management is very similar to residue management. This BMP implies leaving 

protective amounts of crop residue (30 % ground cover/1,360 kg (3,000 lbs) minimum) on the soil surface 

through the critical eroding period (Dec. 15 to Jan. 1 or six weeks prior to planting) to reduce wind and 

water erosion during the raising of a high-residue crop. In the event that a low residue crop is being 

produced, the residue requirements are not met and soil begins to blow, emergency tillage operations will 

be performed. Similar to residue management, this BMP was modeled by harvesting only the crop (no 

killing of crop; harvesting only the useful yield) and leaving the residue (non-yield portion of crop). 

However, this can happen only during critical eroding period or six weeks prior to the planting of next 

crop.  

 

Terrace (NRCS Practice Code 600) 

Terraces are broad earthen embankments constructed across a slope to intercept runoff and control water 

erosion. They are intended for both erosion control and water management. Terraces decrease hill slope 

length, prevent formation of gullies, and intercept, retain, and conduct runoff to a safe outlet, and 

therefore reduce the concentration of sediment in water. Terraces increase the amount of water available 
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for recharging the shallow aquifers by retaining runoff (Schwab et al., 1995). In this study, terraces are 

represented in the model by decreasing curve number (CN), reducing Universal Soil Loss Equation 

(USLE) conservation support practice factor (P factor) and decreasing slope length. Terraces are not one 

of the common BMPs in the watershed.  

 

Constructed wetlands 

Constructed wetlands are of two types: (1) free water surface systems (FWS) with shallow water depth 

and (2) subsurface flow systems with water flowing laterally through the sand or gravel. In general, 

constructed wetlands are very effective in removing suspended solids. Nitrogen removal occurs mostly in 

the form of NH3 with dominating nitrification/denitrification process. Because of the shallow depth and 

access to soil, the phosphorus removal is relatively higher for constructed wetlands than natural wetlands. 

The bacteria attached to plant stems and humic deposits help in considerable removal of BOD5. Typical 

pollutant-removal ability of wetlands is available in a report published by USEPA (USEPA, 1988 report 

EPA/625/1-88/022). For the study area, the probable pollutant removal efficiencies are obtained from the 

USEPA report based on wastewater inflow to the wetland. For representing the existing constructed 

wetlands in the watershed, the pollutants discharge from wastewater treatment plants (point source 

discharge data in the model setup) is discounted based on the typical pollutant removal efficiency 

estimated from the EPA report. The typical pollutant removal efficiencies used in the model setup to 

represent constructed wetlands are shown in Table 6. The constructed wetlands in the Arroyo Colorado 

watershed are assumed to be of FWS type. Effluent polishing ponds were aggregated at subbasin level, 

and pollutants from point source data were discounted using typical values shown in Arroyo Colorado 

Watershed Protection Plan report (2007). The total area of each BMP present in the watershed and that 

represented in the model are shown in Table 7. 
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Table 6. Typical pollutant removal efficiencies used for representing constructed wetlands 

 

 

Location of wetland 

Effluent 

inflow 

(m
3
/day) 

% removal of 

SS NH3 N NO3 N TDP BOD 

La Feria (Subbasin 8) 

San Benito (Subbasin 10) 

972.7 

9,621.5 

86 

28 

64.5 

64.5 

20 

20 

71 

71 

64 

64 

 

 

 

 
Table 7. Representation of different BMPs in the watershed model setup 

 

Best Management Practice Actual area 

(acres) 

Represented in 

the model 

(acres) 

% error 

(watershed level) 

Conservation crop rotation 

Irrigation land leveling 

Irrigation System - Sprinkler - New  

Irrigation System - Surge valves 

Irrigation Water Conveyance, Pipeline 

Irrigation Water Management 

Nutrient Management 

Pasture and Hay Planting 

Prescribed Grazing 

Residue Management 

Residue Management, Seasonal 

Subsurface Drain 

Terrace 
 

20,910.8 

12,185.3 

396.4 

22,931.6 

10,470.3 

23,724.3 

12,053.8 

952.3 

961.0 

1,417.1 

19,357.2 

4,327.6 

130.7 

 
 

21,627.3 

12,455.8 

417.9 

22,636.2 

10,750.6 

24,132.3 

11,838.9 

805.1 

955.2 

1,313.9 

20,654.0 

4,232.3 

116.5 
 

3.4 

2.2 

5.4 

-1.3 

2.7 

1.7 

-1.8 

-15.5 

-0.6 

-7.3 

6.7 

-2.2 

-10.8 
 

 

Wastewater reuse 

This BMP implies using wastewater for irrigation with the goal of reducing point source nutrient loads to 

the river. To represent wastewater reuse in the model, we needed to know the quantity of wastewater used 

and the location from which the wastewater is taken. This information is available for the Arroyo 

Colorado from the Arroyo Colorado Watershed Protection Plan. In the model, point source flow is 

discounted in proportion to the wastewater reuse intended from the effluent discharge facilities. The 

discounted water is then added to the irrigation water in the subbasin. The quantity of nutrients associated 

with the quantity of reuse is estimated and applied as fertilizer in the same HRU where the irrigation 

operation was defined. Any sediment associated with the wastewater was not accounted/discounted 

because the quantity was negligible. 
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Calibration and validation of model 

 

Calibration of the chosen model and a subsequent validation are necessary to have confidence that the 

model gives reliable and useful results, and it is worthy to use it to do scenario trials. For the Arroyo 

Colorado watershed modeling study, the SWAT model was calibrated and validated for flow, sediment, 

nitrogen (nitrate, ammonia and total nitrogen), phosphorus (total phosphorus and orthophosphate), water 

temperature, and dissolved oxygen. The model was run at a daily time step from 1999–2010, and the 

results were aggregated at monthly time steps for the purpose of calibration. Flow calibration was carried 

out at both monthly and daily time steps. Data from 1999 is used for model warm-up to make state 

variables assume realistic initial values. Data from 2000–2003 is used for calibration and 2004–2006 for 

validation. However, the model was run until 2010. From this point onwards, this model setup will be 

referred to as baseline. The availability of water quality observations was not as good as flow. Therefore, 

a separate split sample calibration and validation was not carried out. Instead, the observations available 

(from 2000–2009) were used to verify whether the model gives reasonable results in terms of magnitude, 

pattern and timing.  

 

Flow calibration and validation was carried out for two gauges: one near Weslaco/Mercedes and the other 

near Harlingen. The model is able to reproduce the flow observations very well in both gauges during 

calibration and validation periods (Tables A2 and A3). Similar results were obtained for flow at a daily 

time step. For sediment, the model-predicted values were good when compared to observations except for 

a couple of over-estimated peaks. Orthophosphate was predicted well by the model. However, total 

phosphorus was over-estimated. Also, for nitrogen, the model-predicted values were good enough to use 

for scenario trials. We did not carry out calibrations for water temperature and dissolved oxygen. SWAT 

estimates water temperature as an empirical function of air temperature and therefore, no parameter is 

available for calibration. For dissolved oxygen, the model gave better results without any requirement for 

calibration. All the calibration and validation results are provided in Figures A2-A14 and tables A1-A7 in 

Appendix A.  
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Watershed scenarios for 2015 and 2025 

Estimation of future land cover maps 

 
Data used 

The data used includes city limits, census data, population projections, and land use/land cover maps from 

multiple years. City limit information was produced by the Texas Department of Transportation 

(TxDOT). The Census data was from the 1990 and 2000 census. The population projections were 

produced by the Texas Water Development Board based on the 2000 census. Projections from 2010, 

2020, and 2030 were averaged to create projections for 2015 and 2025. Three different land use maps 

from 1992, 1998, and 2007 were used. The 1992 map was a subset of the National Land Cover Dataset 

(NLCD). The 1998 classification was produced by the Texas Commission on Environmental Quality 

(TCEQ) and the 2007 Classification was produced by the Spatial Sciences Lab at Texas A&M University 

in College Station (SSL).  

 
Method 

To quantify land cover change, the three available land cover maps (for years 1992, 1998 and 2007) 

needed to be in one format and reclassified into a common scheme. The two vector classifications were 

converted to raster using the extent and cell size of the 1998 classification, which had the same extent as 

the watershed boundary. After reclassification, pixel counts were exported and converted to acres. The 

results were observed in a table with both area and % of watershed values (% of watershed occupied by a 

certain land use).  

 

The amount of residential land use areas within each city was extracted using the city limits and each of 

the reclassified maps. Cities with populations greater than 500 as of 2000 were identified and extracted. 

This was necessary because population projections were not available for cities with populations less than 

500. Some did not have a population of 500 in 1990, but did in 2000, so they were included. The trend 

would simply include one less value. In some cases the population values did not steadily increase and 

there were some slight declines or no growth. This was because the values were extracted from different 

sources that were not consistent. If the population declined, it was averaged with the value before and 

after the decline to achieve steady growth. Each of the city limits was then given a unique identification 

number of 1000 through 21000. This ID number was then used to convert the city limits to raster. It was 

necessary to use values of 1000 or greater since the highest class values were three digits long, although 

the highest observed in the land use maps were two digits. Additional overlay was then used to extract the 

land uses within the city limits. The residential and nonresidential developed land uses were extracted and 

the total area of each was calculated individually. These values were then analyzed and used to compute 

future residential land use acreage.   
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In order to map probable locations of development or land use change, previous land use change was 

mapped using combination overlays of classifications with the classification from the previous time 

period. An overlay was also created using the oldest and most recent classifications. Using combinations 

makes it possible to identify areas that have changed from or to a specific land use. In this case, areas that 

changed to residential were extracted from combinations of 1992 and 1998, 1998 and 2007, and 1992 and 

2007. Using each of the combinations accounted somewhat for the differences in extent between 1998 

and 2007, although not entirely. The combinations identified what land uses were most frequently being 

developed into residential. Areas where the land use changed to residential as well as potential areas for 

residential development would both be used in the production of the final future land cover maps (Table 

8).  

 

The results show that rapid urban growth is likely to continue in the watershed through 2015 and 2025. 

Each city will experience growth in residential, infrastructure, and industrial land uses. This growth will 

require that other land uses decline to accommodate the increase. It also appears that many of the larger 

urban areas have little available land within their city limits for further development. To accommodate 

further growth, city limits will need to expand into the rural areas. Agricultural and industrial land uses 

provide work for the population living in the area so they will likely limit growth to some extent. 

However, residential expansion is currently occurring in agricultural lands as well as pastures. 

 

Several assumptions were made about residential and urban expansion. Water and wetlands are unlikely 

to be developed although wetlands may expand in some areas due to the expansion of existing wetlands 

or the creation of wetlands to help improve water quality near wastewater treatment facilities. 

Transportation and infrastructure will expand as structures are built and neighborhoods expand, but this 

cannot be predicted with any confidence. Industry and agribusiness were expanded as part of the 

infrastructure.  
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Table 8. Present and estimated future land cover in the watershed 

  

 

Land Cover 

Area in acres 

 

Present 2015 2025 

Cultivated (CULT) 

Range-Brush (RNGB) 

Range-Grasses (RNGE)  

Urban-Commercial (UCOM) 

Urban-Industrial (UIDU) 

Urban-High density residential (URHD) 

Urban-Low density residential (URLD) 

Urban-Transportation (UTRN) 

Open water (WATR) 

Wetland-Forested (WETF) 

Wetland-Non-forested (WETN) 

244,436.3 

67,090.0 

11,104.9 

7,598.1 

2,219.4 

0.0 

37,753.0 

5,269.5 

25,406.3 

14,716.1 

2,350.8 
 

228,231.6 

63,067.4 

10,439.1 

12,071.1 

4,781.6 

707.5 

41,743.0 

12,576.8 

25,386.1 

16,589.1 

2,350.8 
 

215,670.7 

58,040.6 

9,615.5 

15,008.1 

10,567.4 

1,061.2 

45,870.7 

17,681.6 

25,465.3 

16,612.4 

2,350.8 
 

 

 

Development of model input files for future scenarios 

 

In this study we attempted to predict land cover conditions of the Arroyo Colorado watershed for 2015 

and 2025. Estimated land cover maps were the starting point for future scenario files. Soon after 

estimating future land cover, the input file generation for a future scenario goes as follows. The watershed 

and subwatershed boundaries are the same as base line. Soil map and slope information are also the same. 

However, the land cover map will be different (e.g. for scenario-2015 the land cover map to be used is the 

one that is estimated). The procedure used before for discretizing the subwatersheds to HRUs was also 

used here. The thresholds used for land cover, soil and slope are kept the same for scenarios as well to 

prevent any uncertainties arising from spatial discretization of subwatersheds in the scenarios, which 

might interfere the analysis of water quality results. Once the HRUs are delineated for each scenario, the 

required input files to run SWAT model are generated this way: 

 

Soon after generating HRUs of scenarios, the procedure starts with base line HRUs that are calibrated for 

flow and selected water quality constituents. The HRUs of a scenario (say 2015) is compared with the 

HRUs of base line by matching the land cover, soil and slope. This will identify three sets of information. 

The HRUs of base line is to be a) kept b) removed and c)  created new to represent the scenario 

conditions. For those HRUs to be kept, it involves changing the HRU area only. For those HRUs to be 

removed either we can fully delete them from the input files or make the HRU area zero. The later is 

followed for convenience and automation. The new HRUs to be created can be copied from existing 

baseline HRUs by carefully looking for land cover, soil and slope combinations. If a similar HRU does 

not exist in a subbasin, then HRUs can be copied from neighboring subbasins. By generating the model 
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input files this way, we can avoid calibration of scenario files and proceed straight away to analysis of 

results.  

 

Analysis of present and future water quality trends 

 

Implementation of BMPs in the watershed, improvement in wastewater treatment, access of wastewater 

treatment to more colonia residents, strict effluent standards, treatment of effluent using polishing ponds 

and wetlands have improved the quality of water in the Arroyo Colorado over a period of few years. This 

is evident from the later part of dissolved oxygen trends (consistently close to 7) observed near Harlingen 

(Fig. A14). The improvements in water quality are also visible from the dissolved oxygen trends 

estimated from the model and analyzed using binomial method (Table 9). From the table we can see that 

most sections of tidal Arroyo Colorado are having DO compliance except at reach 13 and 14. These 

reaches are not on the main Arroyo Colorado, but they drain to reach 15 of the Arroyo Colorado. 

Nonpoint source transport of nutrients from cultivated fields can be attributed to the DO problem of 

reaches 13 and 14. The model estimates a threat to DO in some reaches of nontidal portion of the Arroyo 

Colorado (Table 9). Point source discharge (especially from subbasins 2 and 3) can be attributed to the 

problem in the nontidal portion of the Arroyo Colorado. It should be noted that any problem in DO due to 

point source is long lasting and spreads to other reaches downstream. On the other hand, DO problem 

from nonpoint source nutrient pollution is highly seasonal and mostly localized.  
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Table 9. Modeled dissolved oxygen compliance in various reaches-Binomial Analysis results 

  (with existing BMPs in the watershed model setup) 

 

 

Reach 

 

Location 

Confidence of Dissolved Oxygen Compliance (%) 

[Average number of days/year when DO < 4 mg/L] 

Baseline (present) 2015 2025 

 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

Non-tidal 

 

0.0    [316]
# 

0.0    [237]
# 

0.0    [106]
# 

100.0  [34] 

100.0  [34] 

100.0  [24] 

100.0  [27] 

0.0      [45] 

100.0  [27] 

0.0    [226]
# 

100.0  [24] 

 

0.0     [342]
# 

0.0     [273]
# 

0.0     [145]
# 

0.0       [56] 

96.7     [34] 

100.0   [24] 

100.0   [27] 

 0.0      [46] 

100.0   [29] 

0.0     [250]
# 

100.0   [26] 

 

0.0    [334]
# 

0.0    [274]
# 

0.0    [161]
# 

0.0      [62] 

0.03    [40] 

100.0  [28] 

100.0  [29] 

0.0      [46] 

99.9    [33] 

0.0    [171]
# 

100.0  [29] 

we 

13 

14 

15 

16 

17 

1 

 

Tidal 

Tidal 

Tidal 

Tidal 

Tidal 

Tidal 

 

 

93.0   [37] 

85.0   [38] 

100.0 [22] 

100.0 [31] 

100.0 [17] 

100.0 [16] 

 

19.0    [38] 

0.5      [40] 

100.0  [23] 

97.8    [34] 

100.0  [19] 

100.0  [14] 

 

0.0     [44] 

0.0     [43] 

100.0 [25] 

100.0 [32] 

100.0 [16] 

100.0 [15] 

 
#
 Model over reacted to point source loads. Therefore, care was taken while interpreting the results and 

translating to recommendations 

 

In 2015, because of land cover change and population increase, the water quality is expected to be worse, 

which is correctly estimated by the model. Although the trends in DO for 2015 are similar to base line, 

the average number of days per year during which DO concentration is less than 4 mg/L is more for 2015 

than base line for most reaches (Table 9). It should be noted that the proposed wastewater polishing 

ponds, regional wetlands and better emission standards for effluents to the Arroyo Colorado watershed as 

described by the watershed protection plan are going to be very helpful to protect the water quality of the 

Arroyo Colorado. As a part of this study, we carried out the suite of BMPs required to bring the DO in 

compliance . The subbasins of the Arroyo Colorado were prioritized for implementation of BMPs based 

on model-predicted average number of days when DO is less than 4 mg/L (Table 10) in the reach. The 

BMPs to be implemented in the cultivated area were also prioritized based on the extent of load 

reductions they can bring to the Arroyo Colorado (Table 11). 
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Table 10. Prioritized implementation of BMPs by subbasin in the watershed 

 

Prioritization of BMPs based on 

Dissolved Oxygen Total Nitrogen Total Phosphorus 

2 

3 

11 

4 

9 

14 

13 

5 

6 

16 

10 

8 

12 

7 

15 

17 

1 

8 

7 

5 

4 

10 

12 

11 

15 

6 

3 

2 

9 

13 

14 

16 

17 

1 

8 

5 

7 

6 

10 

4 

11 

15 

2 

9 

3 

16 

13 

14 

12 

17 

1 

 

 

 

Table 11. Possible load reductions from different BMPs and their prioritization for implementation 

 

Best Management Practice % of load reductions obtained from BMPs in 

Total Nitrogen  Total Phosphorus Sediment 

Residue management 

Irrigation BMPs 

Nutrient management 

Seasonal residue management 

Land leveling 

Tile drains* 

22.05 

11.85 

4.1 

3.25 

34.75 

6.6 

45.1 

4.25 

19.85 

24.15 

* 

1.7 

20.2 

3.00 

0.25 

4.75 

42.4 

0.8 
*
 Negative results (increase in nutrient loads) possible sometimes. Therefore, care should be taken while 

choosing these BMPs. 

 

Not all BMPs are fully effective in controlling nutrient loads or dissolved oxygen in the Arroyo Colorado. 

For example, tile drains, when implemented for reducing water table, will transport more soluble nitrogen 

to the river than when there are no drains. Also, residue management is much more effective than 

seasonal residue management. Therefore, care should be taken while choosing BMPs for implementation 

in a subbasin. 
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Discussion of mitigation of dissolved oxygen problems 

 

Table 12 shows the suite of BMPs required by 2015 to bring DO compliance for the Arroyo Colorado. 

The study identified a set of BMPs for different subbasins where they can work better. Irrigation BMPs in 

Table 12 is a collection of three different BMPs, namely irrigation water management, irrigation water 

conveyance (in the form of) pipeline, and irrigation system-surface surge valves.  

 

Table 12. Suite of additional BMPs needed by 2015 to meet dissolved oxygen criteria 

 

Subbasin 

Scenario 2015-Area of different BMPs (acres) 

Land leveling Residue 

management 

Irrigation 

BMPs 

Nutrient 

management 

2 

3 

4 

5 

9 

11 

13 

14 

 

Total 

1,902 

682 

16,119 

8,107 

1,757 

1,632 

489 

7,003 

 

37,691 

1,902 

---- 

---- 

9,238 

509 

7,463 

4,374 

2,452 

 

25,938 

---- 

---- 

16,715 

---- 

---- 

---- 

489 

51 

 

17,254 

---- 

1,460 

---- 

9,315 

633 

6,099 

4,373 

1,667 

 

23,549 

 

Implementation of additional BMPs can take care of the DO problem in the tidal portion of the Arroyo 

Colorado. However, for the nontidal portion of the Arroyo Colorado, implementation of BMPs alone is 

insufficient to address the DO problem. An integrated approach of reducing/reusing/better treating of 

point source discharge along with implementation of BMPs is needed to address the nontidal DO 

problem. This study recommends reducing/reusing/treating at least 40% of pollutants from point sources 

associated with subbasins 2, 3, 9, and 11. The same recommendations are suggested for scenario 2025 as 

well. However, it is recommended to implement additional BMPs (in addition to whatever suggested for 

2015 (see Table 12) in the watershed to take care of nonpoint source transport of nutrients and sediments 

from cultivated areas (Table 13). 
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Table 13. BMPs needed by 2025 to meet DO criteria (in addition to those of 2015) 

 

Subbasin Scenario 2025-Area of different BMPs (acres) 

Land leveling Residue 

management 

Irrigation BMPs Nutrient 

management 

2 

3 

4 

5 

6 

7 

8 

11 

13 

 

Total 

1,415 

1,282 

5,289 

1,098 

9,464 

11,101 

3,019 

24 

3,772 

 

36,464 

1,415 

---- 

16,729 

---- 

7,462 

---- 

16,849 

---- 

---- 

 

42,455 

---- 

---- 

1,593 

---- 

---- 

---- 

---- 

---- 

---- 

 

1,593 

---- 

105 

---- 

81 

---- 

11,029 

14,750 

1,484 

---- 

 

27,450 
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Appendix A 

Figure A1. Modeling canal irrigation  
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Figure A2. Monthly flow for Arroyo near Mercedes-Calibration period 

 

 

 

 

 

 

Figure A3. Monthly flow for Arroyo near Harlingen-Calibration period 
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Figure A4. Monthly flow for Arroyo near Mercedes-Validation period 

 

 

 

 

 

Figure A5. Monthly flow for Arroyo near Harlingen-Validation period 
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Figure A6. Monthly sediment load for Arroyo near Mercedes 

 

 

 

 

 

 

Figure A7. Monthly sediment load for Arroyo near Harlingen  
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Figure A8. Monthly Orthophosphate load for Arroyo near Harlingen 

 

 

 

 

 

Figure A9. Monthly total phosphorus load for Arroyo near Harlingen 
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Figure A10. Monthly ammonia nitrogen load for Arroyo near Mercedes 

 

 

 

 

 

 

Figure A11. Monthly nitrate nitrogen load for Arroyo near Harlingen 
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Figure A12. Monthly total nitrogen load for Arroyo near Harlingen 

 

 

 

 

 

 

Figure A13. Mean Daily water temperature for Arroyo near Harlingen 
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Figure A14. Mean daily dissolved oxygen for Arroyo near Harlingen 
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Figure A15. Pollutant load from different sources in the watershed model setup 
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Table A1. Model parameters and their range considered for flow calibration 

 

Parameter Definition 
 

Units 
Spatial 

scale 

Range of values 

Min. Max. 

SURLAG 

AWC 

CN2 

EPCO 

ESCO 

GW_DELAY 

GW_REVAP 

GWQMN 

Surface runoff lag coefficient  

Available water capacity 

SCS runoff curve number for moisture condition II 

Plant uptake compensation factor 

Soil evaporation compensation factor 

Delay time for aquifer recharge  

Groundwater revap coefficient 

Threshold water level in shallow aquifer for base flow  

days 

-- 

-- 

-- 

-- 

days 

-- 

mm 

watershed 

HRU 

HRU 

HRU 

HRU 

HRU 

HRU 

HRU 

0.001 

-0.04
 

-4.0
 

0.001 

0.001 

0.001 

0.02 

0.01 

15 

+0.04 

+4.0 

1 

1 

100 

0.2 

100 

 

 

 

Table A2. Mean monthly flow results for Arroyo Colorado  

 

Monitoring station Calibration period (2000-2003) Validation Period (2004-2006) 

 Predicted (m
3
/sec) Observed (m

3
/sec) Predicted  (m

3
/sec) Observed (m

3
/sec) 

Near Mercedes 

Near Harlingen 

3.47 

5.24 

3.76 

6.89 

3.79 

5.81 

5.08 

8.20 

 

 

 

Table A3. Model performance evaluation for flow calibration 

 

 

Monitoring station 

Calibration period (2000-2003) Validation Period (2004-2006) 

R
2
 Nash and Sutcliffe Efficiency (%) R

2
 Nash and Sutcliffe Efficiency (%) 

Near Mercedes 

Near Harlingen 

0.83 

0.59 

78.6 

43.1 

0.47 

0.41 

19.5 

1.82 
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Table A4. Water quality data availability for Arroyo Colorado watershed 

 

 

Parameter 

Data Availability 

Near Llano Grande 

at FM 1015 south of Weslaco 

Near US 77 in South West Harlingen Port of Harlingen 

Stream flow 

Suspended Sediment 

Total Nitrogen 

Nitrate Nitrogen 

Ammonia Nitrogen 

Total Phosphorus 

Ortho phosphate 

Dissolved Oxygen 

Water temperature 

Available 

Available 

 

 

Available 

 

 

 

Available 

Available 

Available 

Available 

Available 

Available 

Available 

Available 

Available 

 

Available
*
 

 

 

Available
*
 

 

 

 

Available
* 

 

* Very few samples; not considered for calibration 
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Table A5. Model parameters and their range considered for sediment calibration 

 

Parameter Definition 
 

Units 
Spatial 

scale 

Range of values 

Min. Max. 

ADJ_PKR 

PRF 

SPCON 

SPEXP 

CH_N2 

CH_COV1 

CH_COV2 

CH_N1 

Erosion K 

LAT_SED 

Flow peak rate adjustment factor for sediment routing in tributaries 

Flow peak rate adjustment factor for sediment routing in main channel 

Linear parameter controlling sediment re-entrained in channels 

An exponent controlling sediment re-entrained in channels 

Manning's n value for the main channel 

Channel erodibility factor 

Channel cover factor 

Manning's n value for the tributary channels 

Soil erodibility factor  

Sediment concentration in lateral flow 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

mg/L 

watershed 

watershed 

watershed 

watershed 

reach 

reach 

reach 

subbasin 

HRU 

HRU 

0.0 

0.0 

0.0001
 

1.0 

0.016 

0.0
 

0.0 

0.025 

0.0 

0.0 

1.0 

1.0 

0.01 

2.0 

0.15 

1.0 

1.0 

0.15 

1.0 

-- 
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Table A6. Model parameters and their range considered for nutrient calibration  

 

Parameter Definition 
 

Units 
Spatial 

scale 

Range of values 

Min. Max. 

N_UPDIS 

P_UPDIS 

NPERCO 

PPERCO 

PHOSKD 

PSP 

RS2 

RS3 

RS4 

RS5 

BC1 

BC2 

BC3 

BC4 

GWSOLP 

HLIFE_NGW 

Nitrogen uptake distribution parameter 

Phosphorus uptake distribution parameter 

Nitrogen percolation coefficient 

Phosphorus percolation coefficient 

Phosphorus soil partitioning coefficient 

Phosphorous sorption coefficient 

Benthic source rate for dissolved phosphorus 

Benthic source rate for ammonia nitrogen 

Rate coefficient for organic nitrogen settling  

Rate coefficient for organic phosphorus settling 

Rate constant for biological oxidation of ammonia to nitrite 

Rate constant for biological oxidation of nitrite to nitrate 

Rate constant for hydrolysis of organic nitrogen to ammonia 

Rate constant for mineralization of organic phosphorus 

Concentration of soluble phosphorus in groundwater 

Half life of nitrate in the shallow aquifer 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

mg/L 

days 

watershed 

watershed 

watershed 

watershed 

watershed 

watershed 

reach 

reach 

reach 

reach 

reach 

reach 

reach 

reach 

HRU 

HRU 

0.0 

0.0 

0.01
 

10.0 

0.01 

0.0
 

0.001 

0.001 

0.001 

0.001 

0.1 

0.2 

0.2 

0.01 

0.01 

30.0 

40 

40 

1.0 

17.5 

300 

1.0 

0.1 

0.1 

0.1 

0.1 

1.0 

2.0 

0.4 

0.7 

1.0 

200 
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Table A7. Comparison of predicted and observed mean of various water quality parameters 

 

 

 

Average parameter values  

Near Llano Grande 

at FM 1015 south of Weslaco 

Near US 77 in South West Harlingen 

Predictions Observations Predictions Observations 

Suspended sediment load (tons/year) 

Ammonia Nitrogen (tons/year) 

Nitrate Nitrogen (kg/day) 

Total Nitrogen (kg/day) 

Ortho Phosphorus (kg/day) 

Total Phosphorus (kg/day) 

Water temperature ( C) 

Dissolved Oxygen (mg/L) 

           2,634.1  

                  1.3 

1,795.0 

                 4.2 

 

8,434.0 

 -- 

            116.0 

            107.0 

              19.8 

              21.4 

              24.6 

                7.2 

5,956.0 

-- 

              69.0 

              89.0 

              21.8 

              13.5 

              25.3 

                7.5 
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