

Two Similarity Measure Approaches to Whole Building Fault Diagnosis

12th International Conference for Enhanced Building Operations 23rd - 26th October 2012 Manchester, England

Guanjing Lin and David E. Claridge, Ph.D. P.E. Energy Systems Laboratory, MEEN Texas A&M University

Introduction

- Whole building fault diagnosis
 - A process of identifying possible causes of detected abnormal energy consumption faults
 - Based on energy consumption and weather data
- Most of the previous whole building fault detection and diagnosis research focused on fault detection
- A general scheme to diagnose fault at whole building level is seldom mentioned

Typical HVAC FDD Process

3

(Rossi and Braun 1997, Friedman and Piette 2001)

Similarity Measures

- Widely used in pattern recognition
- Quantitatively represent the degree of compliance within vectors
- Cosine similarity
 - Direction-based measure
 - Range: [-1,1]
 - 1 exactly the same
 - 0 Independence
 - -1 exactly opposite

- Euclidean distance similarity
 - Distance-based measure
 - Range:(0,1]
 - 1 exactly the same

$$S_d(X,Y) = e^{-d(X,Y)}$$

$$d(X,Y) = \sqrt{\sum_{i=1}^n (X_i - Y_i)^2}$$

(Candan and Sapino 2010)

Application of Similarity Measures

- Application in fault diagnosis
 - Fault isolation in the chemical industry(Yoon and MacGregor, 2001)
 - Oil-immersed transformer fault diagnosis(Li and Dai, 2005)
 - Fault diagnosis of a turbine(Lee et al. 2009)
 - Fault diagnosis in an automotive infotainment application (Kabir, 2009)
- Application in HVAC
 - Use Euclidean distance similarity for determining days with similar energy consumption profiles (Seem, 2004)
 - Use cosine similarity to locate historical data having similar operating conditions as the investigated data (Li, 2009)

New Whole Building Fault Diagnosis Methods

6

- Target
 - Limit the possible fault causes to several options
 - Rank the options according to their probability
- Similarity methods
 - Cosine similarity
 - Euclidean distance similarity

Calibrated Simulation Model

7

- Use calibrated simulation model in ABCAT (Curtin 2007)to predict energy consumption
 - Normal energy consumption
 - Energy consumption under different operational changes
- Inputs
 - Building and HVAC system info
 - Weather
- Baseline period
 - From a post-commissioning period
 - No faults
 - Cover wide range of Toa and RH fluctuation

ABCAT: Automated Building Commissioning Analysis Tool

Methodology

- Step 1: Reference control change library determination
 - Whole building level control changes
 - Multiple levels of severity for a control change

Reference	Reference Magnitude					
Control Change	I	II	Ш	IV	V	Units
Xoa decrease	-10%	-20%				
X _{oa} increase	10%	20%	30%	40%	50%	
T _{prec} decrease	-2	-4	-6	-8	-10	$^{\circ}\mathrm{F}$
T _{prec} increase	2	4	6	8	10	°F
T _{cl} decrease	-2	-4	-6	-8	-10	°F
T _{cl} increase	2	4	6	8	10	°F
X _{max} decrease	-10%	-20%	-30%	-40%	-50%	
X _{max} increase	10%	20%	30%	40%	50%	
Trc decrease	-2	-4	-6	-8	-10	°F
T _{rc} increase	2	4	6	8	10	$^{\circ}\mathrm{F}$
T _{rh} decrease	-2	-4	-6	-8	-10	°F
T _{rh} increase	2	4	6	8	10	°F

Methodology

Step 2: Feature extraction

 Generate observed fault symptom and reference fault symptoms in fault period using calibrated simulation model

$$V = [fs_{CHW}, fs_{HW}]$$

Observed fault vector

$$fs_{CHW} = \frac{CHW_{mea} - CHW_{sim_faultfree}}{E_{AveBaseline}}$$

$$fs_{HW} = \frac{HW_{mea} - HW_{sim_faultfree}}{E_{AveBaseline}}$$

Reference control change signature vectors

$$fs_{CHW} = \frac{CHW_{sim_refc} - CHW_{sim_faultfree}}{E_{AveBaseline}}$$

$$fs_{HW} = \frac{HW_{sim_refc} - HW_{sim_faultfree}}{E_{AveBaseline}}$$

Reference control change signature vectors

Observed fault vector

Methodology

- Step 3: Similarities calculation
 - Calculate the similarities between $V_{observe}$ and each of the V_{refc}
 - Choose representative similarity of each reference control change
- Step 4: Similarities ranking
 - Sort reference control changes by representative similarities in descending order
 - Larger similarity value
 - = Higher probability

Cosine Similarities Ranking

□ Diagnostic result: T_{cl} decrease

 T_{cl} : Cooling coil discharge temperature

X_{max}: Maximum designed airflow volume

Field Test Building

- Sbisa Dining Hall
 - SDCV system
 - Fault period:1/1-6/4/2006
 - Exceptionally low precooling outside air temperature

14

	Defense of Control Change	Magnitude					
ID	Reference Control Change		II	III	IV	V	Units
1	Outside airflow ratio (Xoa) decrease	-10%	-20%				_
2	Outside airflow ratio increase	10%	20%	30%	40%	50%	
3	Outside air precool temperature (Tprec) decrease	-2	-4	-6	-8	-10	$^{\circ}\mathrm{F}$
4	Outside air precool temperature increase		4	6	8	10	$^{\circ}\mathrm{F}$
5	Cooling coil leaving temperature (Tcl) decrease		-4	-6	-8	-10	$^{\circ}\mathrm{F}$
6	Cooling coil leaving temperature increase		4	6	8	10	$^{\circ}\mathrm{F}$
7	Maximum airflow ratio (Xmax) decrease		-20%	-30%	-40%	-50%	
8	Maximum airflow ratio increase	10%	20%	30%	40%	50%	
9	Room cooling set-point temperature (Trc) decrease	-2	-4	-6	-8	-10	$^{\circ}\mathrm{F}$
10	Room cooling set-point temperature increase	2	4	6	8	10	$^{\circ}\mathrm{F}$
11	Room heating set-point temperature (Trh) decrease		-4	-6	-8	-10	$^{\circ} F$
12	Room heating set-point temperature increase		4	6	8	10	$^{\circ}F$

Reference Control Change Library

Diagnosis Results

A decrease in precooling outside air temperature

- 3: Precooling outside air temperature decreases
- 2: Outside airflow ratio increases

Field Test Building

- Bush Academic Building
 - DDVAV system
 - Fault period:11/1/2008-6/30/2009
 - A preheat valve leaking

Reference Control Change Library

ID	Reference Control Change -	Magnitude					
ID		Ι	II	Ш	IV	V	Units
1	Xoa decrease	-2%	-4%	-6%	-8%	-10%	
2	X _{oa} increase	2%	4%	6%	8%	10%	
3	Tpreh decrease	-3	-6	-9	-12	-15	$^{\circ}\mathrm{F}$
4	T _{preh} increase	3	6	9	12	15	$^{\circ}\mathrm{F}$
5	PreHL increase	10	20	30	40	50	kBtu/hr
6	T _{cl} decrease	-2	-4	-6	-8	-10	$^{\circ}\mathrm{F}$
7	T _{cl} increase	2	4	6	8	10	$^{\circ}\mathrm{F}$
8	The decrease	-2	-4	-6	-8	-10	$^{\circ}\mathrm{F}$
9	The increase	2	4	6	8	10	$^{\circ}\mathrm{F}$
10	HL increase	10	20	30	40	50	kBtu/hr
11	X _{min} decrease	-2%	-4%	-6%	-8%	-10%	
12	X _{min} increase	2%	4%	6%	8%	10%	
13	Trc decrease	-1	-2	-3	-4	-5	$^{\circ}\mathrm{F}$
14	Trc increase	1	2	3	4	5	$^{\circ}\mathrm{F}$
15	T _{rh} decrease	-1	-2	-3	-4	-5	$^{\circ}\mathrm{F}$
16	T _{rh} increase	1	2	3	4	5	°F
17	TDL increase	2%	4%	6%	8%	10%	

Diagnosis Results

Preheating valve leaking

- 5: Preheating valve leaking
- 10: Heating coil valve leaking
- 13: Room cooling set-point temperature decrease

Conclusions

- Developed new whole building fault diagnosis methods using cosine similarity and Euclidean distance similarity to identify the possible causes
 - Rank the possible fault causes according to their probability
- Both methods were used to investigate the reasons for two abnormal energy consumption faults in two real buildings
- Field test results suggest that the cosine similarity method and the Euclidean distance similarity method are promising techniques for whole building fault diagnosis

Questions?

