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Abstract:  
This paper introduces two methods based on cosine similarity and Euclidean distance 
similarity respectively to diagnose possible causes of abnormal whole building energy 
consumption. The concepts of cosine similarity and Euclidean distance similarity are defined 
and the methodology for implementing the proposed whole building fault diagnosis 
approaches is presented. Cosine similarity and Euclidean distance similarity are applied to 
two field observed fault test cases, and both the cosine similarity and Euclidean distance 
similarity methods indicated that the most probable fault was the fault observed in the field 
survey. 
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1. Introduction 

In the U.S., faults in HVAC systems can increase HVAC energy consumption by 30% 
(Brambley et al. 1998). Hence Fault Detection and Diagnosis (FDD) in building HVAC 
systems is of significant interest. There are two fundamental approaches to FDD in buildings: 
a component level (bottom-up) approach and a whole building (top-down) approach (Seem 
2007). The component level approach focuses on faults in individual systems such as air-
handling units, variable-air-volume boxes, meters, chillers, or boilers. The whole-building 
approach specializes in abnormal behavior in global-level measurements such as the whole 
building cooling, heating or electrical consumption. Most HVAC FDD studies focus on 
components, but several whole-building FDD studies are summarized below. 

Haberl et al. (1989) introduced a three-parameter, steady–state model to predict the energy 
consumption. A fault is identified when the absolute residual between the actual and 
predicted consumption exceeds a specified deviation. Friedman and Piette (2001) illustrated a 
whole building FDD tool, which uses a daily energy consumption index to show if the actual 
energy consumption was higher than normal, normal or lower than normal. Seem (2007) 
described a method for detecting abnormal energy consumption in buildings. The method 
uses outlier detection to determine if the energy consumption for a particular day is 
significantly different than previous energy consumption.  

Lee and Claridge (2007) examined the use of the ASHRAE Simplified Energy Analysis 
Procedure (SEAP) for fault detection at the whole-building level.  The calibrated SEAP 
model is used to predict the cooling and heating consumption during a post-commissioning 
period. The model is established and calibrated based on the building chilled water (CHW) 
and hot water (HW) consumption in the baseline period chosen from a post-commissioning 
time period when the building’s operation is considered to be optimal. Curtin (2007) 
developed a prototype of the Automated Building Commissioning Analysis Tool (ABCAT) 
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following the system of Lee and Claridge (2007). The “Cumulative Cost Difference” plot is 
applied as the primary fault detection metric. A SDVAV w/Economizer Rules for Diagnostic 
Clarifier was proposed in the thesis for fault diagnosis. 

The papers reviewed above show that most whole building FDD research or tools developed 
have focused on fault detection. They identified abnormal consumption and may estimate the 
cost of any abnormality identified. A general scheme to diagnose fault is seldom mentioned 
in the studies reviewed. In practice, it is meaningful to find a diagnostic method to indicate 
the possible cause(s) for the detected abnormal energy consumption. Narrowly classifying a 
fault into a subset of possible causes would help the operator or technician find the specific 
cause of a fault and correct it more quickly and efficiently. 

Similarity measures are widely used in pattern matching. They quantitatively represent the 
degree of compliance within vectors. Similarity measures have shown effectiveness in FDD 
in many industries (Yoon and MacGregor 2001, Li and Dai 2005, Huang et al. 2007, Kabir 
2009, Lee et al. 2009). According to McGill et al. (1979), there are more than 60 different 
similarity measures. Among them, the most popular are cosine similarity and Euclidean 
distance similarity. 

Two approaches for whole building fault diagnosis based on cosine similarity and Euclidean 
distance similarity respectively are presented in this paper. The level of diagnostics proposed 
emphasizes limiting the possible causes to several options and ranking the options according 
to their probabilities. It will not attempt to “find a needle in a haystack”, but instead will 
attempt to effectively reduce the size of the haystack in which the operator must look. This 
paper first introduces the concepts of cosine similarity and Euclidean distance similarity, next 
presents the methodology of the proposed whole building fault diagnosis approaches, and 
then demonstrates the results of two field test cases.  

2. Similarity Measures 

2.1. Cosine Similarity 

Cosine similarity is a fundamental angle-based measure of similarity between two vectors of 
n dimensions using the cosine of the angle between them (Candan and Sapino 2010). It 
measures the similarity between two vectors based only on the direction, ignoring the impact 
of the distance between them.  Given two vectors of attributes, X = (x1, x2,  … , xn) and Y= 
(y1, y2,  … , yn), the cosine similarity, cosθ, is represented using a dot product and magnitude 
as 

 cosθ ൌ ଡ଼∙ଢ଼

‖ଡ଼‖‖ଢ଼‖
ൌ

∑ ୶౟୷౟
౤
౟సభ

ට∑ ୶౟
మ౤

౟సభ ට∑ ୷౟
మ౤

౟సభ   (1)  
The resulting similarity ranges from -1 meaning exactly opposite in direction, to 1 meaning 
exactly the same, with 0 indicating independence, and intermediate values indicating 
intermediate similarity or dissimilarity. 

2.2. Euclidean Distance Similarity 

Euclidean distance similarity is a common distance-based measure of similarity between two 
vectors of n dimensions using the distance between the vectors (Candan and Sapino 2010). 
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The distance-based similarity measure considers only the impact of the distance between 
vectors, regardless of the direction of the vectors. Given two vectors of attributes, X = (x1, x2, 
… , xn) and Y= (y1, y2,  … , yn),  the Euclidean distance d from vector X to Vector Y is  

  dሺX, Yሻ ൌ ඥሺxଵ െ yଵሻଶ ൅ ሺxଶ െ yଶሻଶ ൅ ⋯൅ ሺx୬ െ y୬ሻଶ ൌ ඥ∑ ሺx୧ െ y୧ሻଶ୬
୧ୀଵ    (2)  

Shepard (1987) proposed as a universal law that Euclidean distance d and perceived 
Euclidean distance similarity s are related via an exponential function 

 sሺX, Yሻ ൌ eିୢሺଡ଼,ଢ଼ሻ (3) 

The resulting similarity ranges from 0 to 1 with 1 meaning the two vectors are identical. 

3. Methodology 

Fig.1 displays the major steps required to diagnose abnormal cooling and heating 
consumption in buildings using similarity measures. The method is referred to as the cosine 
similarity method if cosine similarity is adopted and is referred to as the Euclidean distance 
similarity method if Euclidean distance similarity is implemented. 

 

Fig. 1 Block diagram for diagnosing abnormal energy consumption 

Step 1: Reference Control Change Library Determination 

Whole building fault diagnosis is different from component level fault diagnosis. It can only 
give a general clue, for example, that there is excess outside air flow in the building, but can’t 
tell which specific component, e.g. the fully closed outside air damper of AHU 3-1, is 
causing the problem. A technician still needs to investigate in the field to determine and 
correct the specific cause. The reference control change library collecting known whole 
building level faults is pre-determined initially. Table 1 gives ten whole building level fault 
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examples. Each fault listed in Table 1 will be called a reference control change in the 
subsequent discussion. 

Table 1: Whole building level fault examples 

Outside air flow volume increase/decrease 
Preheat/precool temperature increase/decrease 
Preheat/precool coil valve leakage 
Cooling coil (SD)/cold deck (DD) leaving temperature increase/decrease 
Hot deck (DD) leaving temperature increase/decrease 
Heating coil valve leakage (DD) 
Minimum airflow volume increase/decrease 
Maximum airflow volume (CV) increase/decrease 
Room set-point temperature increase/decrease 
Terminal box damper leakage (DD) 

Note: SD – Single Duct System; DD – Dual Duct System; CV – Constant Volume System 
 
The signatures of the reference control changes are used as the reference symptoms in fault 
diagnosis. The energy pattern may be different when the control change severity is different, 
so the number of levels of severity for a control change will be defined in advance in the 
library. 

Step 2: Feature Extraction 

The feature extraction block generates the observed fault signature vector and a number of 
reference control change signature vectors, each corresponding to a known control change in 
the reference control change library. 

It is assumed some fault detection mechanism has already determined that an abnormal 
consumption fault is present and has persisted for a certain time.  This period is referred as 
the fault period. In this block, first, the calibrated simulation model in ABCAT is used to 
produce the fault-free cooling and heating consumption in the fault period. Second, the 
calibrated simulation model in ABCAT is used to predict the cooling and heating 
consumption when there is a known control change from the reference library persisting 
during the fault period.  For a specified control change, a specific input parameter of the 
calibrated simulation model will be changed. Since there are several levels of severity for a 
control change, the corresponding input parameter will be changed several times to simulate 
various fault sizes.  Finally, the observed fault signature vector and reference control change 
signature vectors are generated using the following expression: 

V ൌ ൤
fsେୌ୛
fsୌ୛

൨
  (4) 

where fsେୌ୛,୧ ൌ
େୌ୛ౣ౛౗,౟ିେୌ୛౩౟ౣ,౟

୉ఽ౬౛ా౗౩౛ౢ౟౤౛
 , fsୌ୛,୧ ൌ

ୌ୛ౣ౛౗,౟ିୌ୛౩౟ౣ,౟

୉ఽ౬౛ా౗౩౛ౢ౟౤౛
  (Observed fault) 

fsେୌ୛,୧,୨ ൌ
େୌ୛౨౛౜	ి,౟,ౠିେୌ୛౩౟ౣ,౟

୉ఽ౬౛ా౗౩౛ౢ౟౤౛
 , fsୌ୛,୧,୨ ൌ

ୌ୛౨౛౜	ి,౟,ౠିୌ୛౩౟ౣ,౟

୉ఽ౬౛ా౗౩౛ౢ౟౤౛
  (Reference control change) 

A signature vector includes two parts: the CHW signature fsCHW and the HW signature fsHW. 
In this way, the similarity of both CHW and HW features can be considered. CHWmea,i and 
HWmea,i are the daily measured cooling and heating energy consumption values respectively 
on the ith day of the fault period; CHWsim,i and HWsim,i are the daily fault-free cooling and 
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heating energy consumption values respectively predicted by the calibrated simulation model 
on the ith day of the fault period. CHWref C,i,j and HWref C,i,j are the daily cooling and heating 
energy consumption values respectively on the ith day of the fault period when there is the jth 
control change from the reference library persisting during the fault period. EAveBaseline is the 
average cooling plus heating energy consumption values in the baseline period.  Assuming 
the fault severity has five levels in the reference library, there would be five reference control 
change signature vectors for a single reference control change. 

Step 3: Similarities Calculation 

In this block, cosine similarity and Euclidean distance similarity between the observed fault 
signature vector and each of the reference control change signature vectors are calculated. X 
in expressions (1-3) is the observed fault signature vector and Y is the reference control 
change signature vector. Substituting the expressions of observed and reference signatures, 
the expressions for cosine similarity cosθ and Euclidean distance similarity S (X, Y) become 

cosθ ൌ
∑ ሾሺେୌ୛ౣ౛౗ିେୌ୛౩౟ౣሻ౟ሺେୌ୛౨౛౜	ిିେୌ୛౩౟ౣሻ౟ାሺୌ୛ౣ౛౗ିେୌ୛౩౟ౣሻ౟ሺୌ୛౨౛౜	ిିୌ୛౩౟ౣሻ౟ሿ
౤
౟సభ

ටሾ∑ ሾሺେୌ୛ౣ౛౗ିେୌ୛౩౟ౣሻ౟
మାሺୌ୛ౣ౛౗ିୌ୛౩౟ౣሻ౟

మ౤
౟సభ ሿටሾ∑ ሾሺେୌ୛౨౛౜	ిିେୌ୛౩౟ౣሻ౟

మାሺୌ୛౨౛౜	ిିୌ୛౩౟ౣሻ౟
మ౤

౟సభ ሿ
 (5) 

SሺX, Yሻ ൌ e
ିඨ∑

ሺిౄ౓ౣ౛౗షిౄ౓౨౛౜	ిሻ౟
మ

ుఽ౬౛ా౗౩౛ౢ౟౤౛
ା∑

ሺౄ౓ౣ౛౗షౄ౓౨౛౜	ిሻ౟
మ

ుఽ౬౛ా౗౩౛ౢ౟౤౛
౤
౟సభ

౤
౟సభ

(6) 

where i is the ith day in the fault period and n is the number of days in the fault period. If the 
reference control change doesn’t cause any energy shift over the fault period, CHWref C and 
HWref C would be the same as CHWsim and HWsim respectively. In this context, the cosine 
similarity is defined as zero. 

Step 4: Similarities Ranking 

Similarities ranking block would sort different types of reference control changes by the 
similarity in descending order. As mentioned above, a reference control change would have 
more than one fault signature vector. Thus, two steps will be taken when ranking the 
similarities. First, choose the largest cosine similarity/Euclidean distance similarity from the 
cases with the same reference control change to be representative of that control change. 
Next, compare the representative similarities of all the reference control changes and sort 
them by descending order to create a rank-ordered list of control changes.  

 Step 5: Present Results 

The rank-ordered list of control changes basically ranks the probability that the reference 
control change is the cause of the observed fault. The similarity measures compare the 
symptoms of the current fault against the symptoms of the reference control changes. A 
larger similarity corresponds to a higher probability that the known control change is the 
cause of the observed abnormal consumption.  
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4. Field Test Case 1 – Sbisa Dining Hall 

4.1. Building Information and Field Data Sets 

Sbisa Dining Hall is an 82,000 ft2 single story building with a partial basement on the campus 
of Texas A&M University in College Station, TX. Its primary function is as a dining facility. 
The main AHUs are single duct constant volume (SDCV) AHUs with terminal reheat boxes. 
Three constant volume dedicated outside air handling units (OAHUs) provide pretreated 
makeup air for the majority of the AHUs. The ABCAT simulation was calibrated to the 
baseline consumption period of February 2, 2004 to December 31, 2004.  

The field investigation discovered exceptionally low discharge air temperature in two of the 
three OAHUs in the building in 2006 (Curtin 2007). The investigated fault period is January 
1-June 4, 2006. The maximum monthly average cooling and heating consumption increase in 
the fault period is 15% of the average energy consumption in the baseline period 
(76.8MMBtu/day) (Fig.2). 

Monthly average energy (cooling and heating) use change index in Fig.2 is defined as 

Monthly	average	energy	use	change	index ൌ ୑୭୬୲୦୪୷	ୟ୴ୣ୰ୟ୥ୣ	ୣ୬ୣ୰୥୷	୳ୱୣ	ୡ୦ୟ୬୥ୣ

ୈୟ୧୪୷	ୟ୴ୣ୰ୟ୥ୣ	ୣ୬ୣ୰୥୷	୳ୱୣ	୧୬	୲୦ୣ	ୠୟୱୣ୪୧୬ୣ	୮ୣ୰୧୭ୢ
  (7) 

 

Fig.2 Monthly average energy (cooling plus heating) consumption changes in the period of 
1/1/2006-6/4/2006 for the Sbisa Dining Hall 

Reference Control Change LibraryError! Reference source not found.Table 2 defines 12 
different types of reference control change and there are five levels (I - VI) of fault severity 
for each control change. Each row shows a type of reference control change.  Column one 
indicates the ID of the reference control change. Column two provides the key words 
describing the control change. The remaining columns present the different magnitudes of the 
control change. For example, “-10%” in the first row means outside airflow ratio decreased 
10% and “10%” in the second row means outside airflow ratio increased 10%.  The 
magnitudes III, IV, and V of control change “Xoa decrease” are blank; they would have 
negative values since the original input parameter was 28% in the calibrated simulation 
model. 

 

Table 2: Reference control change library for the Sbisa Dining Hall 
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ID Reference Control Change Magnitude Units 
I II III IV V 

1 Xoa decrease -10% -20%     
2 Xoa increase 10% 20% 30% 40% 50%  
3 Tprec decrease -2 -4 -6 -8 -10 °F 
4 Tprec increase 2 4 6 8 10 °F 
5 Tcl decrease -2 -4 -6 -8 -10 °F 
6 Tcl increase 2 4 6 8 10 °F 
7 Xmax decrease -10% -20% -30% -40% -50%  
8 Xmax increase 10% 20% 30% 40% 50%  
9 Trc decrease -2 -4 -6 -8 -10 °F 

10 Trc increase 2 4 6 8 10 °F 
11 Trh decrease -2 -4 -6 -8 -10 °F 
12 Trh increase 2 4 6 8 10 °F 

Note: Xoa – Outside airflow ratio; Tprec – Outside air precooling temperature; Tcl  – Cooling coil air leaving 
temperature; Xmax –  Maximum airflow ratio; Trc –  Room cooling set-point temperature; Trh –  Room heating set-point 
temperature. 

4.2. Diagnostic Results with Field Test Data 

The proposed cosine similarity and Euclidean distance similarity methods were applied in the 
fault period. The observed fault signature vector components are plotted versus outside air 
temperature in Fig.3. 

 

Fig.3 The observed fault signature vector components plotted as a function of outside air 
temperature in the period of 1/1/2006-6/4/2006 for the Sbisa Dining Hall 

Fig.4 shows control changes ordered in descending order of the representative cosine 
similarity of the type of reference control change. In Fig.4, the first bar on the left has the 
highest cosine similarity, and the last bar on the right has the lowest cosine similarity. The 
reference control change IDs on the X axis correspond to the IDs in Table 2. Fig.4 shows that 
the control changes “Tprec decrease” and “Xoa decrease” have the largest and smallest cosine 
similarity respectively among the 12 kinds of reference control change. Therefore, the energy 
pattern of the control change “Tprec decrease” is most similar to the energy pattern of the 
observed fault. The observed abnormal consumption is most likely due to a decrease of the 
outside air precool temperature and is least likely to be caused by a decrease of outside 
airflow ratio. Similarly, the ranking of reference control changes based on the results of 
Euclidean distance similarity concludes that the decrease of outside air precool temperature is 
the most probable reason for the observed fault (Fig.5). 
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Curtin (2007) reported that investigation into trended control data points had led to the 
discovery of exceptionally low discharge air temperature in two of the three OAHUs in the 
building. It is obvious that the diagnosis result with either the cosine similarity or Euclidean 
distance similarity method is consistent with the field investigation conclusion. 

 

 

Fig.4 Representative cosine similarity for different reference control changes sorted in 
descending order for the Sbisa Dining Hall 

 

Fig.5 Representative Euclidean distance similarity for different reference control changes sorted 
in descending order for the Sbisa Dining Hall 

5. Field Test Case 2 – Bush Academic Building 

5.1. Building Information and Field Data Sets 

Bush Academic Building is located on the west campus of Texas A&M University in College 
Station, TX.  It consists primarily of offices and classrooms.  The building has three floors for 
a total area of 133,326 ft2.  It is generally occupied on weekdays during the day.  The HVAC 
system in the building is a DDVAV system. The ABCAT simulation was calibrated to the 
baseline consumption period of weekdays from June 01, 2007 to April 20, 2008. 

The targeted fault period is weekdays from November 1, 2008 to June 30, 2009. The field 
inquiry indicates that there was a preheat valve leaking by on a pre-treat unit during the fault 
period (Claridge et al. 2009). The maximum monthly average cooling and heating 
consumption increase in the fault period is 30% of the average energy consumption in the 
baseline period (21.7MMBtu/day) (Fig.6). 
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Fig.6 Monthly average energy (cooling plus heating) consumption changes for the weekday 
period of 11/1/2008-6/30/2009 for the Bush Academic Building 

5.2. Reference Control Change Library 

Seventeen different types of reference control change with five levels of magnitude are 
presented in Table 3. 

Table 3: Reference control change library for the Bush Academic Building 

ID Reference Control Change Magnitude Units 
I II III IV V 

1 Xoa decrease -2% -4% -6% -8% -10%  
2 Xoa increase 2% 4% 6% 8% 10%  
3 Tpreh decrease -3 -6 -9 -12 -15 °F 
4 Tpreh increase 3 6 9 12 15 °F 
5 PreHL increase 10 20 30 40 50 kBtu/hr 
6 Tcl decrease -2 -4 -6 -8 -10 °F 
7 Tcl increase 2 4 6 8 10 °F 
8 Thl decrease -2 -4 -6 -8 -10 °F 
9 Thl increase 2 4 6 8 10 °F 

10 HL increase 10 20 30 40 50 kBtu/hr 
11 Xmin decrease -2% -4% -6% -8% -10%  
12 Xmin increase 2% 4% 6% 8% 10%  
13 Trc decrease -2 -4 -6 -8 -10 °F 
14 Trc increase 2 4 6 8 10 °F 
15 Trh decrease -2 -4 -6 -8 -10 °F 
16 Trh increase 2 4 6 8 10 °F 
17 TDL increase 2% 4% 6% 8% 10%  

Note: Xoa – Outside airflow ratio; Tpreh – Outside air preheating temperature; PreHL – Heat leakage of preheat coil; 
Tcl  – Cold deck air leaving temperature; Thl – Hot deck air leaving temperature; HL – Heat leakage of heating coil; 
Xmin –  Minimum airflow ratio; Trc –  Room cooling set-point temperature; Trh –  Room heating set-point temperature;  
TDL – Terminal box damper leakage.  
 

5.3. Diagnostic Results with Field Test Data 

The proposed cosine similarity and Euclidean distance similarity methods are implemented in 
the fault period. The observed fault signature vector components are plotted versus outside air 
temperature in Fig.7. 
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Fig. 7 The observed fault signature vector components plotted as a function of outside air 
temperature in the weekday period of 11/1/2008-6/30/2009 for the Bush Academic Building 

Fig.8 indicates that the cosine similarity values for the observed fault and reference control 
changes “Heat leakage of preheat coil increase” (ID 5) and “Heat leakage of heating coil 
increase” (ID 10) are almost identical and rank in the top two places among the 17 reference 
control changes. This suggests that control changes “Heat leakage of preheat coil increase” 
and “Heat leakage of heating coil increase” are the two most similar energy change patterns 
to the energy change pattern of the observed fault. They are the two most probable causes of 
the observed abnormal energy consumption. 

 
Fig.8 Representative cosine similarity for different reference control changes sorted in 

descending order for the Bush Academic Building 

The difference between the Euclidean distance similarity values of the different reference 
control changes range from 3% to 7% (Fig.9). The control change “Heat leakage of preheat 
coil increase” (ID 5) has the largest Euclidean distance similarity value. The small value of 
Euclidean distance similarity is rooted in its definition. Fig.10 demonstrates that the 
Euclidean distance similarity exponentially falls with the increase of Euclidean distance. 
When Euclidean distance is 0.1, Euclidean distance similarity is 90%, and when Euclidean 
distance is 3, the similarity drops to only 5%.  The Euclidean distance among the observed 
fault vector and all pre-determined reference control change vectors are above 2; thus the 
corresponding Euclidean distance similarities based on expression (3) are all below 10%. 

Both the cosine similarity and Euclidean distance similarity methods indicate the control 
change “Heat leakage of preheat coil increase” has the highest similarity and thus is 
considered to be the most probable reason for the observed abnormal energy consumption. 
The field inquiry indicates that there was a preheat valve leaking by on a pre-treat unit during 
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the fault period (Claridge et al. 2009). The fault diagnosis results are consistent with the field 
inspection conclusion. 

 
Fig.9 Representative Euclidean distance similarity for different reference control changes sorted 

in descending order for the Bush Academic Building 

 

Fig.10 Euclidean distance similarity versus Euclidean distance 

6. CONCLUSIONS 

Two approaches called the cosine similarity method and the Euclidean distance similarity 
method proposed to diagnose abnormal whole building cooling or heating energy 
consumption faults are described in this paper. In these two approaches, a reference control 
change library collection of known whole building faults is determined in advance. The 
cosine similarity/Euclidean distance similarity within the observed fault signature vectors and 
reference control change signature vectors are calculated. Larger similarity values suggest a 
higher probability that the corresponding reference control change is the cause of the 
observed fault. 

The proposed approaches were used to investigate the reasons for two abnormal energy 
consumption faults in two real buildings. In the two field test cases, the fault diagnosis results 
for both the cosine similarity and the Euclidean distance similarity method match the field 
survey results. This suggests that the cosine similarity method and the Euclidean distance 
similarity method are promising techniques for whole building fault diagnosis. 
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