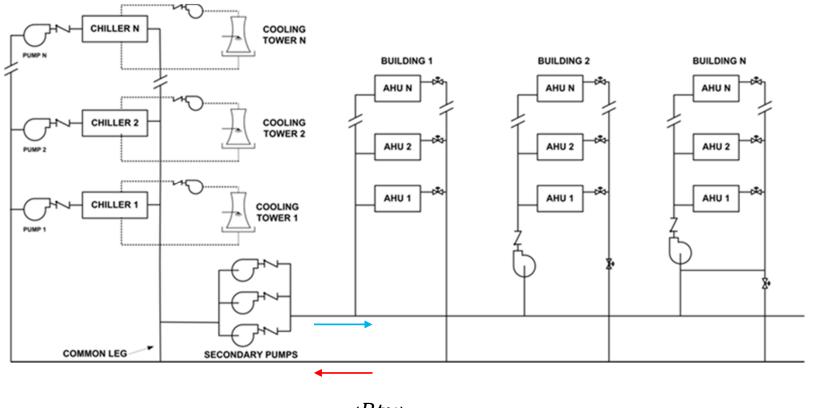
Model Based Building Chilled Water Loop Delta-T Fault Diagnosis

Presented by: Lei Wang PhD. PE. Energy Systems Laboratory Texas A&M University System


Outline

- Introduction
- Energy Impact of Degrading Delta-T
- Cooling Coil Model
- Case Study Building Description
- Model Calibration
- Fault Diagnosis
- Summary

Introduction

- Low chilled Water (CHW) delta-T is not only a waste of distribution pump power but the impact on the central plant even greater
- Many factors contribute to low CHW delta-T
- Avoidable causes and Non-avoidable causes
- CC engineers need to evaluate the chilled water loop delta-T performance and identify avoidable causes

Energy impact of degrading Delta-T

 $Q\left(\frac{Btu}{h}\right) = 500 \ GPM \ \Delta T$

Cooling coil Model

• Effectiveness-NTU model (Braun,1989)

$$\dot{Q}_{dry} = \epsilon_{dry,a} \dot{m}_a C_{pm} (T_{a,i} - T_{w,i})$$

$$\varepsilon_{dry,a} = \frac{1 - \exp(-\operatorname{Ntu}_{dry}(1 - C^*))}{1 - C^* \exp(-\operatorname{Ntu}_{dry}(1 - C^*))}$$

$$C^* = \frac{\dot{m}_a C_{pm}}{\dot{m}_w C_{pw}}$$

$$Ntu_{dry} = \frac{UA_{dry}}{\dot{m}_a C_{pm}}$$

Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012

Cooling coil Model (Cont.)

 $\dot{Q}_{wet} = \epsilon_{wet,a} \dot{m}_a (h_{a,i} - h_{s,w,i})$

$$\varepsilon_{\text{wet,a}} = \frac{1 - \exp(-\text{Ntu}_{\text{wet}}(1 - m^*))}{1 - m^* \exp(-\text{Ntu}_{\text{wet}}(1 - m^*))}$$

$$\mathbf{m}^* = \frac{\dot{\mathbf{m}}_{\mathbf{a}} \mathbf{C}_{\mathbf{s}}}{\dot{\mathbf{m}}_{\mathbf{w},i} \mathbf{C}_{\mathbf{pw}}}$$

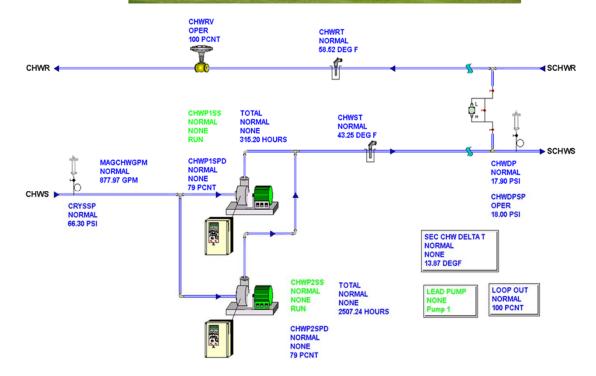
$$Ntu_{wet} = \frac{UA_{wet}}{\dot{m}_a}$$

$$f_{dry} = \frac{-1}{K} \ln \left[\frac{(T_{dp} - T_{w,o}) + C^* (T_{a,i} - T_{dp})}{\left(1 - \frac{K}{Ntu_0}\right) (T_{a,i} - T_{w,o})} \right] \qquad K = Ntu_{dry} (1 - C^*)$$
Braup 1989)

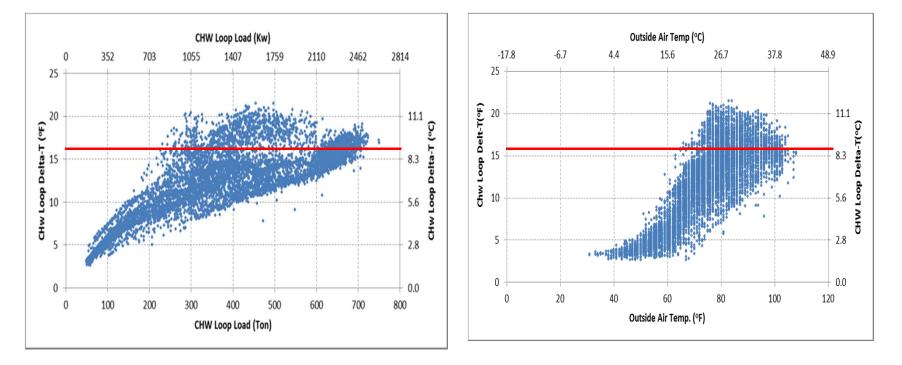
(Braun, 1989)

$$\varepsilon_{\text{wet},a} = \frac{1 - \exp(-(1 - f_{dry})\text{Ntu}_{wet}(1 - m^*))}{1 - m^* \exp(-(1 - f_{dry})\text{Ntu}_{wet}(1 - m^*))} \qquad \varepsilon_{dry,a} = \frac{1 - \exp(-f_{dry}\text{Ntu}_{dry}(1 - C^*))}{1 - C^* \exp(-f_{dry}\text{Ntu}_{dry}(1 - C^*))}$$

$$T_{w,x} = \frac{T_{w,i} + \frac{C^* \epsilon_{wet,a} \left(h_{a,i} - h_{s,w,i}\right)}{C_{pm}} - C^* \epsilon_{wet,a} \epsilon_{dry,a} T_{a,i}}{(1 - C^* \epsilon_{wet,a} \epsilon_{dry,a})}$$


$$T_{w,o} = C^* \varepsilon_{dry,a} T_{a,i} + (1 - C^* \varepsilon_{dry,a}) T_{w,x}$$

$$L^{\varepsilon} \varepsilon_{dry,a} I_{a,i} + (1 - L^{\varepsilon} \varepsilon_{dry,a}) I_{W,x}$$

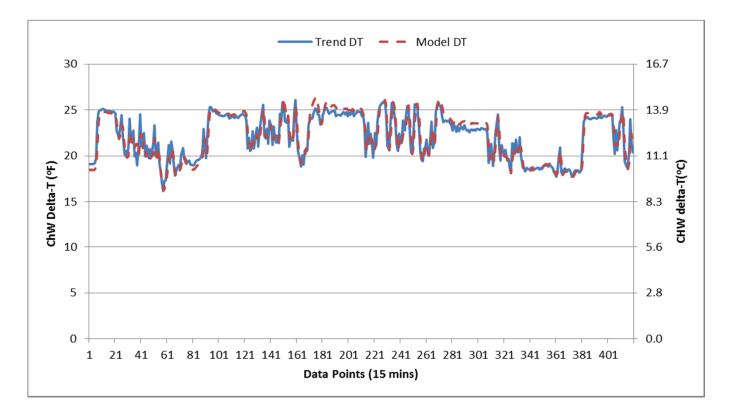

Case study building

- 166,079 ft²
- Two 20 HP, 840GPM
- 201,670CFM
- OA 161,400CFM

Case study building chilled water loop delta-T

CHW Delta-T Vs. Load

CHW Delta-T Vs. OAT

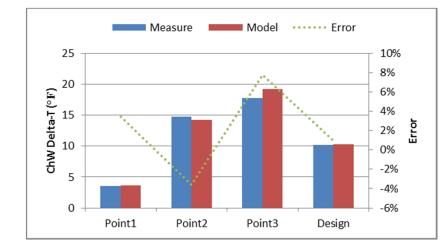

Case study building—AHUs

Unit	Service	Suppl y cfm	Min Outside Air cfm	Max Outside Air cfm	Design Area SQFT	ENT. Air		LVG. Air		EINI
						D.B °F	W.B °F	D.B °F	W.B° F	FIN /IN
AHU L1	LABS	44,500	44,500	44,500	90	96	76	50.7	50.7	14
AHU L2	LABS	45,000	45,000	45,000	90	96	76	50.9	50.9	14
AHU L3	LABS	45,000	45,000	45,000	90	96	76	50.7	50.7	14
AHU L4	ANIMAL ROOM	11,760	11,760	11,760	29.4	96	76	50.4	50.4	14
AHU LS	SEMINAR	4,500	1,310	4,500	11.5	83.8	69	50.7	50.7	8
AHU LB	BOOKSTORE	4,650	460	4,650	11.5	79.8	63.8	50.8	50.5	8
AHU LC	COPYSTORE	4,300	430	4,300	11.5	79.8	63.8	50.7	50.5	8
AHU LD	DINING	14,160	7,840	14,160	29.4	89.4	71.5	50.5	50.5	14
AHU LO	OFFICES	19,000	5,600	19,000	42.8	83.3	66.8	51.8	51.5	10
AHU SG	SWITCHGEAR	8,800	0	8,800	20.4	90	72	52.5	52.5	14

Case study building—AHUs(Cont.)

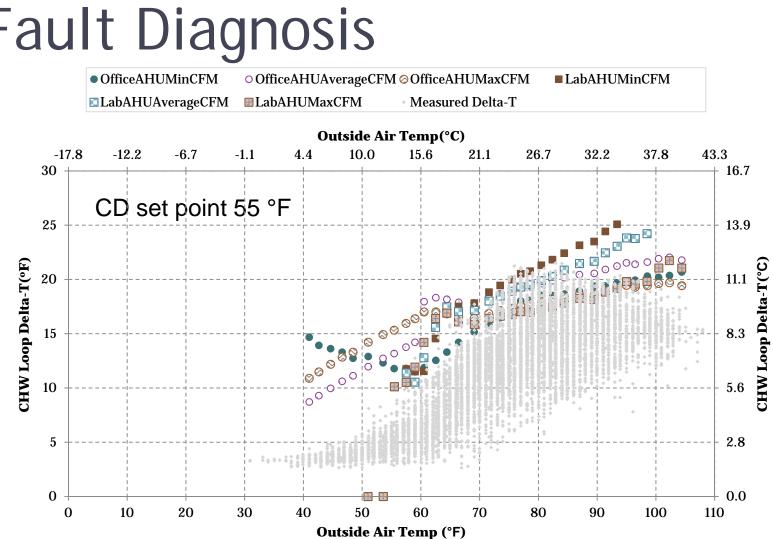
No	Parameters	AHU L2	AHU O	
1	Width (inch)	130	102	
2	Height (inch)	90	55	
3	Number of rows	8	6	
4	Tube outside diameter (inch)	0.5	0.5	
5	Tube inside diameter (inch)	0.45	0.45	
6	Tube material	copper	copper	
7	Fin/Inch	14	10	
			10	
8	Fin thickness (inch)	0.008	0.008	
8 9	Fin thickness (inch) Fin material			
	· · ·	0.008	0.008	

Model Calibration



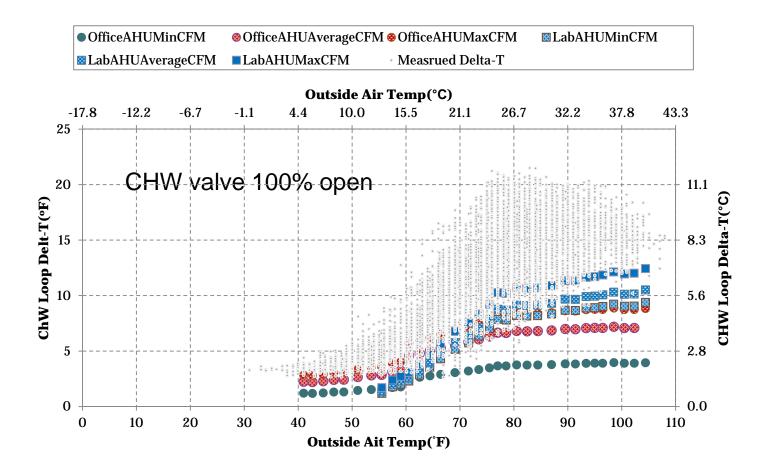
AHU L2 chilled water delta-T(Model Vs. Trending)

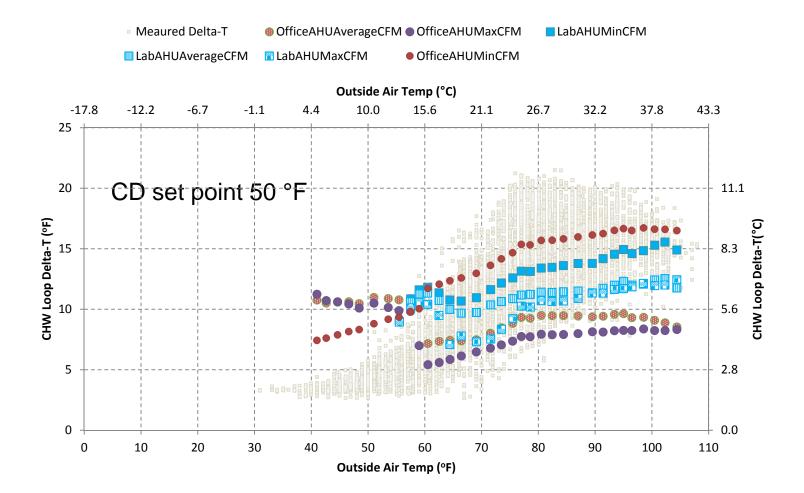
CV(RMSE) error is 2.9%


Model Calibration (Cont.)

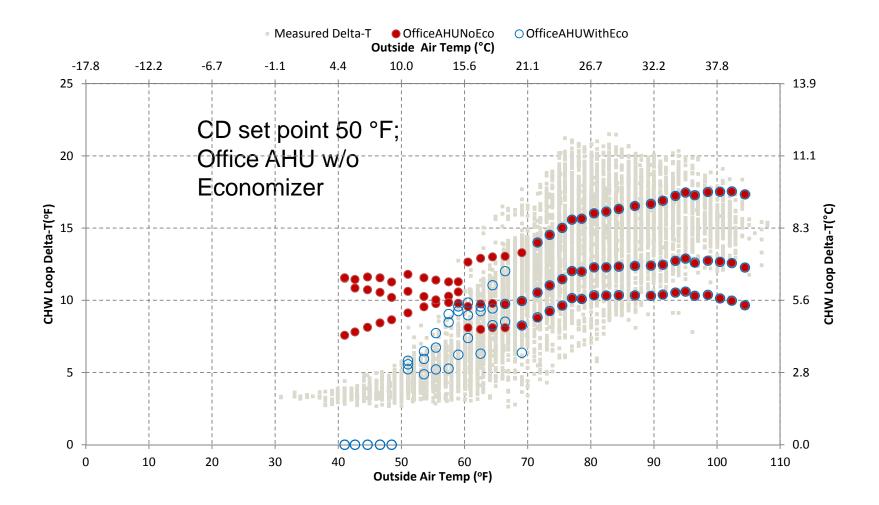
	Air Side					Waterside			
AHU O	flow	Before		After coil		Supply	Return	flow	
No	CFM	T (°F)	RH (%)	T (°F)	RH (%)	T (°F)	T (°F)	GPM	
1	6,450	74.9	61.6%	45.6	89 %	42.8	46.3	224	
2	6,450	97.1	26%	50.8	95%	42.8	57.6	55	
3	6,450	97.9	25%	55.5	97%	42.8	60.6	35	
Design	19,000	83.3	42%	51.7	94%	44	54.2	177	

AHU O Model:


CV(RMSE) is 6%


Fault Diagnosis

Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012


Fault Diagnosis (Cont.)

Fault Diagnosis (Cont.)

Fault Diagnosis (Cont.)

Summary

- Based on simulation results, there is a good potential to improve the case study building's chilled water delta-T.
- The lower discharge air temperature set point is the main avoidable cause of low chilled water delta-T for the case study building
- Economizer contributes to low chilled water delta-T during cool season.
- The chilled water laminar flow in the cooling coil is not a major cause for cooling coil lower delta-T

Summary (Cont.)

• A few of the chilled water valves may be leaking by or the coil control valves may not precisely modulate the chilled water flow, although the chilled water valves are overall under fairly good controlling.

Thanks

Proceedings of the Twelfth International Conference for Enhanced Building Operations, Manchester, UK, October 23-26, 2012