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ABSTRACT 
 
 
 

Exploring Hormone Crosstalk in Fusarium verticillioides Infection of Maize.  
 

(April 2013) 
 

Dillon Arnold Drab 
Department of Plant Pathology 

Bio-Environmental Science 
Texas A&M University 

 
 

Research Advisor: Dr. Michael Kolomiets 
Faculty of Molecular and Environmental Plant Sciences  

Department of   
Plant Pathology and Microbiology 

 
 
 
 
 

Fusarium verticillioides is a major pathogen of a broad range of field crops.  Seeds infections 

lead to contamination by hazardous mycotoxins, such as fumonisin. Fumonisin is known to 

cause developmental defects in humans and animal when consumed. Previously, acs2 acs6, an 

ethylene biosynthetic mutant of maize has been found to be more resistant to Fusarium infection, 

colonization, and mycotoxin production. However, the molecular mechanism behind this 

phenomenon is poorly understood. Hormones, such as ethylene, regulate diverse processes 

during plant development and defenses against biotic and abiotic stresses. These potent signals 

have complex crosstalk among each other with positive and negative interactions occurring. A 

metabolomic analysis comparing acs2 acs6 double mutant and wild type revealed several 

metabolites to be differentially produced between mutant and wild type. Metabolites of interest 

were further explored by pharmacological and genetic approaches.  Addition of exogenous auxin 

showed a direct effect on in vitro fungal growth.  Available auxin deficient mutants of maize 
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were exploited in a kernel bioassay and colonization was assessed through ergosterol  

quantification by high-performance liquid chromatography. Collectively, our results suggest that 

auxin plays a role ethylene-induced susceptibility. 
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NOMENCLATURE 

 
 

ACS   1-aminocyclopropane-1-carboxylate synthase 
 
ET   Ethylene 
 
IAA   Indole-3-Acetic Acid 
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CHAPTER 1 
 

INTRODUCTION 
 

Field crops, like Zea mays are under constant threat by a multitude of biological pathogens. 

Every year nearly 125 million tons of major crops are lost to fungal infections (MC Fisher et al. 

2012).  One of the major players behind  this crop loss is the ear- and stalk-rotting  fungus 

Fusarium verticillioides. 

 

Fusarium verticillioides (teleomorph Gibberella fujikuroi) is an endophytic fungus that belongs 

to the phylum Ascomycota. The fungus parasites a diverse variety of host plants, including corn 

(Estrada 578). The effects of Fusarium infection are seedling blight, root rot, stalk rot and kernel 

rot. Kernel rot is especially important because this results in yield loss and lower kernel quality. 

Mycotoxins, mainly fumonisins, produced by Fusarium are the main contributors to these 

problems (Kende 1993). The effects of fumonisins are far reaching and have been linked to 

illnesses in a variety of mammals including humans (Ali et al. 1998).  

 

However plants possess various responses to defend against biotic stress. An early response 

against microbial threat is known as the innate immune system. In this system host encoded 

pattern recognition receptors (PRRs) perceive microbial / pathogen molecular patterns (MAMPs 

or PAMPs) resulting in PAMP triggered immunity (PTI). Pathogens have evolved methods of 

circumventing their recognition. These pathogens secrete virulence factors which suppress the 

PTI and allow successful infection to occur. However, resistant plants have a second layer of 

defense that overcomes this pathogenic strategy.  This defense is known as effector-triggered 

immunity (ETI). ETI induces appropriate counter-measures to the microbial infection (Chisholm 
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et al. 2006). Some of these defensive responses alter secondary metabolism which can enhance 

growth and reduce susceptibility. Based on similar functionality, secondary metabolites can be 

categorized.  

 

Phytohormones constitute one group that plays an integral role in regulation of diverse processes 

and are highly interconnected in signaling networks (Nernhauser et al. 2006).  These compounds 

are involved in responses to both biotic and abiotic stresses (Bari and Jones 2009).  The extent of 

this study focused primarily on the biotic stresses experienced by corn. Previous work has 

focused on salicylic acid, jasmonic acid and ethylene and revealed complex cross-talk among the 

phytohormone signaling pathways during pathogenic threat (Bari and Jones 2009). Recently, it 

has also been found that other hormones such as abscisic acid, auxin, gibberellic acid and 

cytokinins also contribute to successful defense (Bari and Jones 2009). However, in these plant-

pathogen interactions, hormones can act both in a positive manner as resistance factors, but also 

negatively as susceptibility factors (Bari and Jones 2009). These molecular mechanisms are not 

well understood and in this study, the role of an auxin derivative known as indole-3-acetic acid 

(IAA) was explored to better understand how this hormone affects the outcome of infection in 

the maize-Fusarium pathosystem.  

 

Collectively auxins are well studied for their roles in plant growth and cell elongation and are 

vital for early plant development (Staswick et al. 2005). IAA is the most biologically active 

isoform and kernels are known to accumulate 308 pmols of IAA (Staswick et al. 2005; Epstein et 

al. 1980). The high level correlates with the relatively quick growth of the kernel, however, 

previous research suggests auxin induces susceptibility to diverse pathogens. During rice blight 
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caused by Xanthomonas oryzae pv. oryzae IAA activates expression of expansins that loosen the 

cell wall, allowing the bacteria to penetrate host cells easier. When GH3-8, a protein involved in 

reducing these expansins, is overexpressed, the rice was much more resistant. Therefore 

lowering expansin expression by reduction of IAA caused higher resistance (Ding et al. 2008).  

IAA-mediated processes also promote Fusarium wilt. Exogenous IAA enhanced Fusarium 

oxysporum colonization of Arabidopsis (Brenden 2011). 

 

Previous work in our laboratory has shown that ethylene biosynthetic double mutant acs 2 acs 6 

is more resistant to Fusarium verticllioides compared with wild-type (Park et al. in preparation). 

ACS is involved in the biosynthetic pathway of ethylene (ET) where it catalyzes methionine into 

1-aminocyclopropane-1-carboxylate (Kende 1993). Literature describes ET signaling as 

responsible for the expression of many defense-related genes for resistance to biotic stress. It is 

usually associated with defense against nectrotrophic pathogens and herbivorous insects (Bari 

and Jones, 2009). In a previous experiment, liquid chromatography-mass spectrometry revealed 

lowered IAA levels in acs 2 acs6 mutant kernels prompting the hypothesis that disruption of  ET 

production reduces IAA accumulation which contributes to a reduction of susceptibility to 

Fusarium verticillioides infection. 
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CHAPTER II 

METHODS 

Plant material 

The B73 genetic background was used for the exogenous IAA experiment. Seeds were harvested 

in College Station, TX, USA in 2012 and kept at 7 ºC for preservation. Auxin biosynthetic 

mutant, de18, and near-isogenic wild-type seeds were obtained from Dr. Prem Chourey at 

University of Florida (Bernardi et al. 2012).  

 

In vitro fungal growth  

Potato dextrose agar (PDA) culture tubes were prepared to concentrations of 0.6 nM and 28 nM 

of IAA (Research Products International Co., Prospect, IL, USA cat # 87-51-4). Concentrations 

were chosen based on previously described levels of endogenous kernel IAA and total auxin 

derivatives, respectively (Epstein et al. 1980). Tubes were inoculated with 10 µl of Fusarium 

verticllioidies conidia (106 spores/ml) suspended in 0.01% Tween-20. The tubes were kept in a 

humidity chamber at  27ºC with 12 hour light and dark cycles. Pictures were taken after 24 

hours.  

 

Kernel assays 

For kernel bioassays with Fusarium verticllioidies, methods were followed as described by 

Christensen and Borrego et al.(2012).   For this study two kernel assays were performed and 

briefly described hereafter. In the first assay, wild-type kernels were surface sterilized and 

wounded with a scalpel to produce a 0.5mm slit to facilitate infection. Kernels were placed in 20-

ml glass vials and inoculated with 200 µl of 106 conidia/ml suspended in 0.01% Tween-20. The 
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vials were kept in a humidity chamber at 27ºC with 12 hour light and dark cycles. Each day the 

treated group received the equivalent of 308 pmols of indole-3-acetic acid per kernel, and the 

control group received 0.16% ethanol solution per kernel. Kernels were harvested at 2 and 4 days 

for later analysis. 

 

In the second experiment, auxin biosynthetic mutant, de18 (Bernardi et al. 2012) and wild-type 

kernels were prepared and inoculated as described above with the exclusion of exogenous IAA 

application. The vials were kept in a humidity chamber at 27ºC with 12 hour light and dark 

cycles. Kernels were harvested at 2 and 4 days. 

 

Fungal quantification 

Two different analyses were used to assess fungal colonization and sporulation. After each 

harvested day, 2.5 ml methanol was added to each kernel vial, vortexed and 150 ul from each 

sample was withdrawn and used for spore enumeration. 5 ml chloroform was then added to the 

kernel vials were incubated in the 2:1 chloroform: methanol solution for roughly twelve hours 

under dark. Spore enumeration was accomplished with the use of a hemacytometer with each 

sample measured twice. The remaining solution was then prepared for ergosterol quantification 

by filtering supernatant from each sample through a 0.45 um nylon membrane. Ergosterol 

quantification was done via High Performance Liquid Chromatography. Samples were directly 

injected into a Shimadzu HPLC LC-20AT system equipped with a 4.6 U ODS-C18 column (200 

Å, 250 ± 4.6 mm) and a Shimadzu SPD-20A UV/VIS detector set to monitor at 282 nm. 

Methanol (100%) was used as the mobile phase at a flow rate of 1.5 mL/min. Ergosterol was 
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quantified by comparing peak areas of samples to a standard curve generated from HPLC-grade 

ergosterol.  
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CHAPTER III 

RESULTS 

Effect of IAA incorporated potato dextrose agar(PDA) on in vitro growth 

Figure 1 shows F. verticillioides growth with two levels of IAA. In the presence of IAA, there 

was enhanced fungal growth (b and c). IAA concentrations explored were 0.6 nM and 28 nM (b 

and c).   

    

A)    

 

 

 

B) 

 

 

 

C) 

 

 

 

Figure 1: Fusarium growth on IAA incorporated PDA, at concentrations of 0.0 nM (a), 0.6nM 

(b), and 28 nM (c).  
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Effect of exogenous IAA application on colonization and sporulation on maize kernels 

Treatment of wild-type kernels with 308 pmols of IAA had an effect on F. verticillioides (fig. 2). 

Sporulation of the fungus was relatively unaffected by the addition of IAA (a). However, 

application of exogenous IAA did cause enhanced fungal colonization (b). At day 1 and 2 post 

inoculation there was no difference in fungal biomass between treated and control. After day 4 

post inoculation, there was a statistically significant (p<0.01) increase in fungal biomass on 

treated kernels compared with untreated kernels.  

 

A) 

 

 

 

 

 

 

B) 

 

 

 

 

 

Figure 2: (a) Spore enumeration following Fusarium verticillioides infection and IAA 

application. (b)  HPLC analysis of ergosterol on day 1, 2 and 4 after inoculation 
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Response of auxin deficient mutant de18 on colonization and sporulation following F. 

verticillioides infection 

Auxin biosynthetic mutant did have some effect on F. verticilliodies (fig. 3).  Infection of auxin 

biosynthetic mutant with F. verticillioides did showed decreased fungal sporulation (a). On day 2 

after inoculation sporulation of wild-type and mutant kernels was relatively equal. At day 4 after 

inoculation sporulation of the mutant kernels was nearly half that of the wild-type kernels. 

Fungal colonization was not significantly affected in this kernel assay (b).  

 

A) 

 

 

 

 

 

 

B) 

 

 

 

 

 

Figure 3(a) Spore enumeration following F. verticillioides infection on auxin biosynthetic 

mutants kernels. (b) HPLC analysis of ergosterol on day 2 and  4 of infection. 
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CHAPTER IV 

CONCLUSION 

 

Results from the IAA incorporated PDA confirmed that in the presence of IAA, F. verticillioides 

does show enhanced colonization. IAA promoted in vitro fungal growth in a dose-dependent 

manner. This suggests that IAA directly acts on Fusarium perhaps in analogous fashion to 

perception and response activity in plants (Woodward et al. 2005). Furthermore, it suggest that 

during ear-rotting of maize kernels by Fusarium, auxin may indeed be a susceptibility factor 

prompting fungal invasion and colonization.  

 

Application of exogenous IAA reinforced the role of this IAA in disease development. The 

exogenous IAA stimulated F. verticllioides growth on wild-type maize kernels. No effect was 

observed on sporulation suggesting IAA has a specific role on fungal colonization during disease 

development and not fungal reproduction. It can be concluded from this experiment that IAA 

does play a significant role in increased fungal colonization.  

 

Colonization of de18 mutant and wild-type kernels were similar. It is currently unknown if this 

mutant is defective in auxin accumulation following infection by Fusarium. Alternative auxin 

biosynthetic pathways may be up-regulated following infection (Llorente et al. 2008). However, 

sporulation was significantly different between wild-type and mutant kernels suggesting 

additional metabolites may be perturbed in this background contributing towards fungal 

reproduction. Further analysis is warranted on this mutant.  
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