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ABSTRACT

On the Application of Sudoku to Error Correction in Communications. (May 2012)

Andrew John Young
Department of Electrical and Computer Engineering
Department of Mathematics
Texas A&M University

Research Advisor: Dr. Costas N. Georghiades
Department of Electrical and Computer Engineering

This work provides a detailed analysis of the general Sudoku problem with partic-
ular attention given to the first nontrivial case. A formal mathematical model is
developed and used to determine several important parameters; including error up-
per bound, equivalence class decomposition, and entropy optimal path. The implicit
communication problem is established and exhaustive simulation provides an explicit
expression for the probability of error. Using an ordered transmission sequence or
path the model is extended to rateless communication. These analyses show that a
channel code using the Sudoku constraint is strictly suboptimal, but concatenation

with a rateless framework shows promise.
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CHAPTER I

INTRODUCTION

The primary medium for storage, transfer, and conveyance of information has tran-
sitioned from physical to digital. New techniques have been developed to ensure
reliability and security of this information. Coding is one such safeguard that has
been widely adopted for a variety of important applications. Some of the more com-

mon uses of coding include error correction, compression, and encryption.

Error-correcting codes use redundant information to alleviate the affects of noise and
interference. An assortment of coding schemes exists and their respective performance
is highly dependent on the desired application. This performance dependence is so

profound that some codes were developed for use with only one particular application.

A more recent example of this is product codes. Recent advances in optical com-
munication, particularly in the form of fiberoptic transmission cables, provide com-
munication systems with very high data rates, on the order of 10 Gbps. To code at
these extremely high rates requires very low decoding complexity, and product codes
provide this. A product code imposes two-dimensional code constraints on an array of
information bits. The simplest case is where every row and column must sum to zero
modulo two. While there are other codes that provide superior error correction with
higher decoding complexity, product codes have found their niche and are a common

tool in optical communication.

"This thesis follows the style of IEEE Transactions on Communications.



At the most basic level digital information is a sequence of 1’s and 0’s. For example,
each of the letters in this text is represented by an 8 bit binary ASCII code, i.e.
A = 01000001. While this representation may seem convoluted, its overall function
is rather simple, to convey information, and binary encoding provides a practically
implementable map. Storage of information is important, but communication of that

information is of equal if not greater value.

Consider the simple task of transmitting one bit of information, either yes repre-
sented by 1, or no represented by 0. In a perfect digital world either a 1 or a 0
would be transmitted from an antenna and then received. However, the world is not
digital it is analog thus 1’s and 0’s must be converted into waveforms. During their
journey these waveforms will experience distortion from noise, attenuation, etc, and
who is to say whether a no is received as a yes or vice versa. In most cases inaccurate

information is useless information, thus steps must be taken to insure reliability.

One popular method to increase the accuracy of information transfer is the addition
of redundant information. The simplest coding scheme involves sending the same
message multiple times. For example 111 will denote yes and 000 will denote no, and
the ”correct” message will be determined by whether more 0’s or 1’s are received, i.e.
101 is a yes and 001 is a no. Using this scheme all single bit errors can be corrected.
However, the trade of comes in the fact that a three bit message is used to transmit
a single bit of information. Herein lies the fundamental trade off in coding between
accuracy and rate. The content of the information being sent will determine whether
one is to be favored over the other, i.e. financial data will probably favor accuracy

whereas streaming music would favor rate.



This work concentrates on an unconventional channel coding technique utilizing the
underlying constraint equations of the sudoku puzzle. Sudoku is a popular numer-
ically based puzzle found in newspapers and magazines. The typical game involves
placement of the numbers {1, ..,9} in 9 different 3 x 3 sub blocks forming a 9 x 9 block
under the constraint that each row, column, and 3 x 3 sub block may contain only one
instance of each number. It has been shown through exhaustive simulation that there
are 6,670,903, 752,021,072,936,960 possible valid puzzles, but only 5,472,730, 538

of these are unique up to isomorphism [1].

The common everyday Sudoku puzzle is a specific example in a more general group of
constraint problems. The general model involves a collection of n? unique elements; a
common construct is the first n? natural numers, 1,...,n%. A selection of n* of these
elements are chosen to comprise the entries of an n? x n? block array. This block
is partitioned into n? subblocks, rows, and columns; with the added constraint that

each element is uniquely present within one of these subpartitions.

Sudoku’s popularity in Western Europe and the Americas was minimal until the mid
2000’s, but its origins date back much further. Leonard Euler introduced a similar
notion, the latin square, in the 1740’s. The latin square is an m x m array filled with
m different latin letters under the constraint that each row and column may contain
only one instance of each of the m letters, sound familiar. Creation of the modern day
sudoku is credited to Howard Garns, a retired architect and avid puzzle designer. His
puzzle model was published in a 1979 issue of Dell Magazine under the name Number
Place but was given little interest. It wasn’t until 1984, when the puzzle emerged in
Japan, that its popularity began to grow. The puzzle was introduced by the Japanese

puzzle company Nikoli in the April issue of Monthly Nikolist under the name Stji wa



dokushin ni kagiru, “the digits must be single”, later abreviated to sudoku. In fall
2004 The Times, a London Newspaper, began publishing sudoku puzzles daily, and

soon after the puzzles spread throughout Western Europe and across the Atlantic [2].

Sudoku puzzles come in varying difficulties, ranging from very easy to very hard.
The metric for determining the difficulty of a particular puzzle is highly correlated
with the percentage of squares initially filled in. Given a 9 x 9 sudoku puzzle there are
81 possible entries, and a particular puzzle will be labeled according to the number of
entry values given and denoted a k-clue puzzle. In general for k£ < j a k-clue puzzle
is more difficult to solve then a j-clue puzzle, i.e. a 20-clue puzzle is much more
difficult then a 70-clue. Much work has gone into determining the minimum solvable,
to a unique final set, puzzle. So far several 17-clue puzzles have been found, but it is

unsure as to whether or not a 16-clue exists.

The sudoku puzzle belongs to the broad class of constraint satisfaction problems,
and furthermore finding a solution is an NP-complete problem. This class of prob-
lems has extensive applications in the field of computational computer science, and
is a millennium prize problem, sometimes abbreviated P = NP. The question of
whether P = NP involves the computational time required to solve a problem. NP
denotes nondeterministic polynomial time, meaning the computational time for the
algorithm cannot be upper-bounded by a polynomial equation. The P = NP ques-
tion seeks to determine whether a problem, like the sudoku puzzle, for which a valid

solution can be checked in polynomial time can be solved in polynomial time.

From a coding perspective, the sudoku puzzle provides error robustness in its ability

to reconstruct the entirety of information from a limited data set. The error suscepti-



bility of a sequence of information bits can be alleviated by mapping data to a sudoku
puzzle prior to transmission. The unique structure of the sudoku puzzles should pro-
vide increased reliability in difficult coding environments; such as deep fading where

transmissions are prone to large blocks of erasures and errors.

Communication of information is a fundamental need that crosses all boundaries
of time and civilization. While the medium and content may change, the basic prin-
ciple and underlying objectives are the same. Today the primary medium is digital
information, and much work has gone into developing efficient methods of communica-
tion. This work seeks to develop such a communication scheme using the constraining

equations of the sudoku puzzle.



CHAPTER II

METHODS
The proceeding analysis requires a sufficient background in mathematics and com-
munication theory. Using these techniques the Sudoku constraint is formalized and a
variety of important parameters are developed. For brevity, a list of important topics

is provided

Set Theory - Sets, subsets, and equivalence classes [3]

Abstract Algebra - Groups and subgroups [3]

Probability Theory - Discrete random variables [4]

Digital Communication - Channel coding and communication channels [5, 6]

Information Theory - Entropy [7]

Set theoretic and algebraic ideas are used to classify the set of Sudoku constrained
arrays. ldeas from probability and coding theory are used to analyze the viability
of an error correcting code using Sudoku. A variety of computer simulations are
performed, and thusly, appropriate computational software is required. Matlab is

used but any equivalent computational software will suffice.



CHAPTER III

THE SUDOKU PROBLEM

A. General n Sudoku constraint

Consider an n? dimensional discrete alphabet X'(n). Without loss of generality assume
X (n) is the first n? integers, X (n) = N,z = {1,2,...,n%*}. Let X € N:;X”Z, an n? by
n? array drawn entry wise from the collection N,2. The elements of X are given the

canonical enumeration

T T e Ip2
Tp241 Tp249 . Tp4

X = (1)
x(n271)n2+1 x(nQ—l)n2+2 e Ipa

Partition X into n? blocks, rows, and columns,

by (X) by (X) ... bu(X) r(X)
P bn+1(X) bn+2(X> RN bgn(X) _ I'Q(X) (2)
_b(n,l)n+1 (X) b(n,l)nJrg(X) c. an (X)_ _I‘n2 (X)_
= _cl(X) co(X) ... cp2(X)]-

Let Br(X), Rr(X), and Ck(X) be the unordered sets of elements for partitions by (X),

ri(X), and ci(X), respectively,

P(X)={re X |xzepi(X)}. (3)



Let f, : N2 — {0, 1} be the canonical set indicator function where

1 P=N,:
fa(P) = : (4)
0 else
Let P(X) = {B1(X),...,Bp2(X),Ri(X),..., Rp2(X),C1(X),...,Cp2(X)}, and F, :
N:;X"Q — {0, 1}, where

FuX)= [I £u(P). (5)
)

PEP(X

Definition: An element X € N::; *n” is Sudoku constrained if F,(X)=1.

Definition: The nth order Sudoku collection, S, is the set of Sudoku constrained

2 2
elements of N, """,

Sp=F;1(1) = {X € Nu* | F,(X) = 1}. (6)

n

These functional constraints are graphical depicted in Figure 1 as a generalized tanner

graph where the squares represent a particular f,.
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B. The n = 2 Sudoku constraint

10

Let n = 2, hence X(2) = Ny = {1,2,3,4}. Consider the construction of a Sudoku

constrained array X. Begin with the first block, bq(X).

The only constraint is

By (X) = N4, where | Ny| = 4 and hence there are 4! possible arrangements for by (X).

Without loss of generality assume

which induces the following constraint on the entries of X

12 34 (3.4 ]
3 4 (1,2} 1,2}
(2,4} {1,3} {1,2,3,4} {1,2,3,4)

{24} {13} {1.2,3,4} {1,2,3,4}]

Next consider rq(X) and ry(X), there are 2 possibilities for each of the remaining

entries and therefore 2! x 2! = 4 total combinations. Similarly for ¢;(X) and co(X)

there are 2 possibilities for each of the remaining entries and therefore 2! x 2! = 4

total combinations. Figure 2 enumerates these possibles. It should be noted that

while all 16 of these combinations are theoretically possible they may not result in

a Sudoku constrained array. In such a case an x will represent violated constraints

and ?’s for the resulting undetermined entries.
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1| 2 [3/4]4/3 1| 2 [3/4]4/3 1| 2 |3/4]4/3 1| 2 [3/4]4/3

2 1 4 /3 3 /4 2 3 4 /1 1/4 2 1 4/3 | 3/4 2 3 ? ?
4 3 27/1 1/2 4 1 2/3 3 /2 4 3 1/2 271 4 1 712
2 1 Z/E 5/74 2 3 Z/T /1 2 1 74/5 3/1 2 3 /5 |x/7

Fig. 2. Enumerated Cases

The combinations are enumerated in order of decreasing symmetry. Symmetry is
defined in terms of the sub columns of by(X) with respect to by(X) and the sub rows

of b3(X) with respect to by (X). by(X) is said to exhibit symmetry with by (X) if

or BQ(X) N C4(X) == Bl(X) N Cl(X) and BQ(X) N Cg(X) == Bl(X) N CQ(X),
similarly bs(X) is said to exhibit symmetry with by (X) if

B3(X) N R3(X) = Bi(X) N Ri(X) and Bs(X) N Ry(X) = Bi(X) N Ry(X) (10)

Under this definition the first set is bo(X) and b3(X) symmetric, the second set is
by (X) symmetric, the third set is bs(X) symmetric, and the fourth set is neither. It
should be noted that this asymmetry is translated to the fourth block through the

other two.

Observing Figure 2, of the original 16 possible combinations only 12 admit valid
Sudoku constrained configurations. These 4 problem configurations result from those
cases with neither by(X) or by(X) symmetry. Figure 3 fully enumerates the twelve

valid configurations.
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1 2 3 4 1 2 3 4 1 2 4 3 1 2 4 3
3 4 1 2 3 4 1 2 3 4 2 1 3 4 2 1
2 1 4 3 4 3 2 1 2 1 3 4 4 3 1 2
4 3 2 1 2 1 4 3 4 3 1 2 2 1 3 4
1 2 3 4 1 2 3 4 1 2 4 3 1 2 4 3
3 4 1 2 3 4 1 2 3 4 2 1 3 4 2 1
2 3 4 1 4 1 2 3 2 3 1 4 4 1 3 2
4 1 2 3 2 3 4 1 4 1 3 2 2 3 1 4
1 2 3 4 1 2 3 4 1 2 4 3 1 2 4 3
3 4 2 1 3 4 2 1 3 4 1 2 3 4 1 2
2 1 4 3 4 3 1 2 2 1 3 4 4 3 2 1
4 3 1 2 2 1 4 3 4 3 2 1 2 1 3 4

Fig. 3. Fully Enumerated Cases

This provides a total of 4!-12 = 288 2nd order constrained elements, S, = 288. These
twelve arrays will be denoted by symmetry class 1-12, respectively, following a row
column labeling convention beginning with the upper left corner. Let P, denote the
set of permutations of n, where |P,| = n!. Consider the canonical ordering of these
n! elements. An element p, € P, is assigned a number between 1 and n! based on its

relative ordering as a number given by the order of elements in the set. The case for

Py is depicted in Table I
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Table I. Permutation Ordering
1234 12134 7 | 3124 13 | 4123 19

1243 2| 2143 8 | 3142 14| 4132 20
1324 32314 9 | 3214 15 |4213 21
1342 4] 2341 10 | 3241 16 | 4231 22
1423 512413 11 | 3412 17 | 4312 23

1432 6 | 2431 12 | 3421 18 | 4321 24

Hence a particular Sudoku constrained element will be denoted by a tuple (i, j) where
i € {1,2,...,24} denotes the permutation of the first block and j € {1,2,...,12}

denotes the corresponding symmetry class.

C. Equivalence classes

The algebraic and combinatorical nature of the Sudoku constraint arrays leads one to
define a set of equivalence classes on a Sudoku collection. Two Sudoku constrained

arrays X, X' € S,, are said to be equivalent, X ~ X', if they are connected by a finite

collection of Sudoku constrained operations, {dy | k = 1,...,m}, where
X' = (6no...00)(X), (11)
and
(0po0...060)(X) €S, fork=1,...,m. (12)

In other words, two arrays are equivalent if they are connected by a set of transfor-

mations within the set of Sudoku constrained arrays.

The following operators will be used to construct these equivalence classes.
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Permutation mappings, {0} | K = 1,...,n?!}, labeled according to the permutation
ordering described above mapped with respect to the identity element (1,2,...,n?),
ie.

o1((1,2,...,n%) = (1,2,...,n%) (13)

o ((1,2,...,n%) = (n*,n* —1,...,1).

The next two set of operators result from the conditions for a Sudoku constrained

array.

Reordering rows and columns of blocks. The n? block equations can be further
partitioned into n block row equations and n block column equations. Reordering
and relabeling these block and row columns preserves a Sudoku constrained array.
There are n rows and columns and thusly n! possible orientations for these rows and
columns. The possible transformations will be given by the following set of operators
{52@) |i=1,...,nl k = 1,2}, where k denotes row or column, 1 or 2, respectively,

and ¢ denotes the corresponding permutation mapping.

Reordering row or column equations within row or column block equations. Within
a collection of block row equations or block columns equations, reordering the row
and column equations, respectively, preserves Sudoku constraint. Within each row or
column of blocks there are n row or block equations, providing n! possible combina-
tions. These possible transformations will be given by the following set of operator
{pgf;) |i=1,...,n7=1,....,nl k = 1,2}, where k denotes row or column, 1 or 2,

respectively, ¢ denotes the particular number of the row or column, and 7 denotes the
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corresponding permutation mapping.

The final operator, pu, is a rotation, or rotating the array clockwise, i.e.
— : (14)

This is the only operator that effects the blocks, rows, and columns in unison and
together. This operator relabels the block equations, and interchanges sets of row

and column equations in such a way that preserves Sudoku constraint.

The corresponding equivalence class decomposition for S, is enumerated. For n = 2

the following collection of operators is provided

{0’1 0'24} {5%1) 5%1) (5%2) 5;2)} (15)

In this case concatenation of the § and u operators induces transformations equivalent
to the Dy group. Combining these operations is also somewhat natural since they
deal with with large scale transformations of an array as opposed to the small scale

transformations of the p’s.

Using all four of these operations partitions the total collection of Sudoku constrained
arrays into two groups, the symmetric and the asymmetric group. Within these
groups there are distinct subgroups based on a further restriction of the operations.
In particular two sets of subgroups are considered, namely those generated by the

concatenation of the ¢’s and i denoted Flip Rotate, and those generated by the p’s
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denoted Row Column Interchange.

This decomposition provides some interesting results in regards to the size of these

subgroups and the associated elements. Table II captures those results.

Table II. Subgroup Decomposition

size of subgroup | number of subgroup | symmetry classes

S-FR-1 4 6 1

S-FR-2 8 6 2,3
S-FR-3 8 3 4

S-RCI 16 6 1,2,3,4
A-FR-1 8 12 5,6,9,11
A-FR-2 8 12 7,8,10,12
A-RCI-1 16 6 5,6,7,8
A-RCI-2 16 6 9,10,11,12

Appendix A enumerates these subgroup partitions in their entirety. Interestingly
enough, these equivalence classes partition the space into two distinct groups, the
symmetric and asymmetric. Figure 4 depicts the two arrays to be used as represen-

tatives for this decomposition.

1 2 3 4 1 2 4 3
3 4 1 2 3 4 1 2
2 1 4 3 2 1 3 4
4 3 2 1 4 3 2 1

(a) Symmetric (b) Asymmetric

Fig. 4. Equivalence Class Matrices
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CHAPTER IV

THE COMMUNICATION PROBLEM
A. Encoding

Consider the transmission of a k bit information sequence over a noisy channel. Chan-
nel coding is often used to alleviate these noise effects. A codeword alphabet C is
mapping from the original £ bit information sequence to a collection of symbols or
sequences, usually providing additional redundancy. One common example are block
codes which map k bits sequences to n bit sequences for n > k, providing n — k bits
of redundancy. These codes are often described by a n — k x n parity check matrix

H, where the set of codewords corresponds to the nullspace of H”'.

We consider a codeword alphabet C equal to the set of Sudoku constrained arrays, S,,.
That is, our information sequence will be mapped to a particular Sudoku constrained
array. The benefit of this arises from the conditions for an array to be Sudoku con-
strained. In particular, knowledge of a subset of the array provides a great deal of
information about the remaining unknown entries. Every entry has three constraint
equations or f,’s, and thus knowledge of a single entry has a first order effect on
3n? — 2n other entries, and an additional second order effect on another 2n(n — 1)?

entries.

Any mapping from information sequences to codewords must be injective and there-
fore an upper bound on the number of possible information sequences is the cardinality
of the Sudoku constrained arrays or |S,|. To send a particular array over a channel,

each symbol must be mapped into a corresponding bit sequences. This provides an
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information rate of

1

ntlogn?
However, in practice there is an intrinsic integer constraint on these information

sequences providing an actual rate of

[log | Sn|]

R = .
[n4logn?|

(17)

B. Channel model

Each entry in an array is assumed to be erased i.i.d. with probability €. This mem-
oryless symbol erasure channel is described by the collection (X (n),p(y|z),Y(n)),
where

p(ylz) = , (18)

€ y =7

X(n) ={1,...,n?}, and Y(n) = {X(n),?}. Hence, there is no ambiguity and each
entry is either known completely or unknown. This model provides a binomial random
variable for the total number of erasures. Let £ be a random variable representing

the number of erased entries, then

Pr(E =e) = (”4> (1 — )i, (19)

with E[€] = nle.

Consider a Sudoku constrained array X. After transmission over the channel X — Y

the received array Y may have some erased entries. In particular let X be the (1,1)
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array

While this channel model is limited in its practical applications, it has been shown
to provide a lot of insight into more complex channels, such as the binary symmetric

channel or additive white Gaussian noise channel.

C. Decoding

A lot of work has gone into developing efficient solvers for Sudoku [8, 9, 10]. While
most of this work does not consider possible communications applications, these
solvers can just as easily function as decoders. Therefore, little attention is given

to the decoding process, and a brute force maximum-likelihood decoder is used.



The decoder enumerates all feasible Sudoku constrained arrays. Let
L={ie{l,2,...n* |Y;i=?} L ={ic{1,2,....n*"}|Y; #7},

be the ordered sets of erased and received entries where

ij € I, with i; < iy for j < j,

Y(l)=1v, Y, ... Y

[al

is the corresponding erased or receive vector.

Definition: The decoding function D : C — C is

D<Y) = {X € S | X(Ir) = Y<[r>}

20

(20)

(21)

(22)

That is, given a particular erasure pattern the decoder will determine all possible

Sudoku constrained arrays that coincide with the non erased entries. For example

consider the following received array
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This array is not uniquely decodable since there are multiple combinations for the

erased entries, in particular the following two arrays are valid.

D. Error patterns and simulations

Using the two arrays designated to represent the equivalence classes all 2!6 possible
erasure paterns are enumerated, the Matlab code is provided in Appendix B. Tables
IIT and IV present the results of this enumeration. The primary concern for an
effective channel coding scheme is unique decodability. Since the encoder and decoder
operate within the collection of Sudoku constrained arrays, decoder failure will occur
if there is more than one feasible Sudoku constrained array. That is, |[D(Y)| > 1, or
more explicitly if the erasure pattern is such that there are multiple valid symbols for

a particular entry.



Table III. Symmetric Error Matrix
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Number of Erasures
D)4 |5 |6 |7 8 9 10 |11 |12 |13 |14 |15 |16 | sum
2 8 96 528 | 1728 | 3650 | 5008 | 4200 | 1792 | 268 17278
3 16 144 576 1248 | 1424 | 608 | 48 4064
4 12 96 288 | 384 | 176 956
5 32 128 | 64 224
6 32 240 | 624 | 240 1136
7 12 12
8 16 16
9 48 48
10 16 16
12 20 208 | 16 244
18 4 16 | 32 52
24 56 56
36 16 16
72 16 16
288 1 11
sum 8 96 528 | 1744 | 3806 | 5680 | 5800 | 3968 | 1808 | 560 | 120 | 16 | 1 | 24135
total 1820 | 4368 | 8008 | 11440 | 12870 | 11440 | 8008 | 4368 | 1820 | 560 | 120 | 16 | 1 | 65536




Table IV. Asymmetric Error Matrix
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Number of Erasures
DY) | 4 5 6 7 8 9 10 [11 |12 |13 |14 |15 |16 | sum
2 4 48 264 | 864 1830 | 2544 | 2240 | 1136 | 232 9162
3 16 144 576 1248 | 1424 | 608 | 48 4064
4 6 48 144 192 | 128 518
5 24 96 48 168
6 32 240 | 624 | 240 1136
7 8 8
8 8 8
9 48 48
10 12 12
12 20 208 | 16 244
18 4 16 | 32 52
24 56 56
36 16 16
72 16 16
288 1 11
sum 4 48 264 | 880 1980 | 3168 | 3688 | 3088 | 1692 | 560 | 120 | 16 | 1 | 15509
total 1820 | 4368 | 8008 | 11440 | 12870 | 11440 | 8008 | 4368 | 1820 | 560 | 120 | 16 | 1 | 65536

These tables provide a lot of insight into the error correcting capability of Sudoku

constrained arrays. In particular, all errors less than or equal to 3 are correctable and

no errors greater than 12 are correctable. Additionally, examination of the bottom

row provides an explicit representation for the probability of failure as a function of

epsilon. Let {egj) |i=1,...,16 j = 1,2} denote the number of size ¢ error patterns

that result in error for symmetric and asymmetric arrays, 1 and 2 respectively. Then
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the total probability of error as a function of epsilon is

ZOEDY (‘f—g)giu — )l (23)

This error probability has an intrinsic dependence on the symmetry of the array,
denoted by j, and examining the error enumeration of these two types shows that the
asymmetric arrays perform significantly better against erasures. Since there are 288
total elements in Sy, we can hope to encode at most |log 288] = 8 bits. Hence there
are 288 — 256 = 32 unused arrays, and therefore not all of the symmetric arrays need

to be used.

Referencing Table II there are 192 asymmetric and 96 symmetric arrays, hence the

total probability of error is

16

1 . )
P.(¢) = Z ™ (Shel 4 19262) ci(] — g)167, (24)

=1 7

Figure 5 plots this function for 1000 values of ¢ in [g;, 5.
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Fig. 5. Explicit Error Probability

This figure exhibits the error correcting capability of the the n = 2 Sudoku code.
One major drawback of this encoding scheme is the low rate }1. Part of this is the
result of integer truncation, but in general the Sudoku constraints are very limiting.
There is little practicality in an error correcting code based on Sudoku, and there
are several codes with better performance. For example, a similar simulation was

performed using a rate % random linear code and their was a significant improvement

in the probability of error.
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CHAPTER V

PATHS
We now consider the problem of the optimal order to place entries into a Sudoku
constrained array. That is, given we know an array is Sudoku constrained what is

the minimal number of entries required to obtain complete knowledge of the array.

Consider the canonical labeling described in Section 1,

T i) o Ip2
C(]n2+1 In2+2 e Tpa

X = (25)
x(n2_1)n2+1 T(n2-1)n242 .- Tpt

Definition: A path, v, is a permutation map v : (1,...,n%) = (y1,...,7n)

Definition: A fixed path, 7, is the concatenation of a path v with an alphabet vector,

a e A", where A = {1,...,n%}, 7 = (7;0).

Definition: A length k£ segmented fixed path is the restriction of a fixed path to

the first k entries 7(k) = (v, .+, Yk 00, -+, Q)

Given a fixed path, entries are placed into an array using the following algorithm. An

empty array is first initialized,

Xr0) = { 1 : (26)
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Entries are then placed into the array along v by the following recursion
Xem(y(k+1)) = a(k+1) (27)
X1y = Xo()s (28)
the final step or X, (,4) will simply be denoted X.

Definition: A fixed path is valid if X, € S,,.

Definition: The kth order Sudoku constrained collection for a fixed path 7 is

C(Xrm)) ={X € S, | X = X, for some 7" = (7(k), 7" (n — k)) valid}. (29)

Definition: The length of a fixed path is the minimum number of steps to achieve a
unique array

((1) == min{k € N | [C(X;4))| = 1}. (30)

The definition of length is extended to a general path in an expected sense.

Definition: The length of a path is the expected length of all valid fixed path

() =E[t(r)] = Y Pr(r)i(r). (31)

T valid



28

All alphabet vectors are assumed equiprobable and thusly, this reduces to

i(y) = ﬁ NG! (32)

7 valid

Definition: A path, v, is optimal if £(y) < £(') for all other ~'.

Since each v is a permutation mapping, the total number of possible paths grows

very quickly with n. In fact the total number of possible paths for a given n is n?*!.
For each of these possible paths there an are additional |S,| valid paths. Hence the

41, Even for n = 2 this number is

total number of valid paths for a given n is |S,|n
very large, 288 - 16! ~ 10'°. Figure 6 plots the empirical probability mass function
(PMF) of the path length for n = 2 for 10* randomly drawn permutation paths, the

Matlab code is provided in Appendix C.
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Fig. 6. Path Length Empirical PMF

The mean for this distribution is approximately 7 and the absolute minimum achiev-
able length was found to be 5. This deviation shows that there is something to be
gained by picking a nice path as opposed to choosing a path at random. A common
theme of these optimal paths is sending diagonal entries. In particular, a path will
have length 5 if the first four entries are sublock diagonals in two diagonal sublocks

and the fifth is any other entry in one of those sublocks
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These are just a few examples and there are many more possible combinations. In fact,
if you take the first example of the main diagonal and apply any of the equivalence
class operators discussed in section C it will maintain this property. An example of

a length 5 path is provided in Figure 7, corresponding to

v =(1,11,6,16,2,12,5,15,4,10,7,13,3,9,8, 14) (33)

14110 | 2 6

12 | 16 | 8 4

Fig. 7. An Optimal Path

The preceding analysis focused on the deterministic case, but a more important ques-
tion is which path performs best under channel erasures. We now consider the case
when erasures are possible, hence A = {1,...,n? ?}. This additional symbol provides
an additional 2" fixed paths, and thusly there are at most \Sn|2”4n4! possible valid

paths.

One consideration of this extension is that the definition for path length requires

a valid path, and since its unclear which of the new paths are valid, this definition
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must be altered. One possibility is conditioning on the set of valid paths. However,
this gives an unfair advantage to those paths with invalid fixed paths, since these

paths are essentially weighted with zero.

Therefore, we shall use a different metric for path efficiancy.

Definition: The entropy of a length k segmented fixed path is
H(Xrry) == log| D(Xr))], (34)

where D is the decoding function given in 22.

Let A, () denote the set of Sudoku constrained arrays, S, interleaved with all pos-
sible 27" erasure patterns projected along . The probability of a particular element

of this set, «, is a function of the number of erasures, e(«a),

1 ela 7L47601
Pr(a) = |S_|€( (1 — )™ @), (35)

Definition: The entropy of a path is

Definition: A path, v, is optimal if H(v) < H(v') for all other paths +'.



32

CHAPTER VI

CONCLUSIONS
The Sudoku puzzle is a particular example in the broad class of constraint satisfaction
problems. A mathematical formalization was provided to classify the set of Sudoku
constrained arrays and, this collection was decomposed based on its intrinsic algebraic
structure. Using this decomposition an explicit analysis was performed on the error
correcting capability of Sudoku constrained arrays for the n = 2 case. The results
of this analysis were less than ideal, as they provided little merit for the practical
viability of an error correcting code using the Sudoku constraint. However, extending
these ideas to a rateless framework and considering the optimal transmission path
has provided some interesting results. Further analysis is required, but concatena-
tion of the Sudoku constraint with rateless transmission may yield an effective error

correcting code.
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APPENDIX A

1.1 Symmetric group
1.1 Flip rotate subgroups

1.1 Flip rotate subgroup 1

35

2 3 1 4 3 2
1 4 2 2 1 4
4 1 3 3 4 1
3 2 4 1 2 3

2 4 1 3 4 2
1 3 2 2 1 3
3 1 4 4 3 1
4 2 3 1 2 4

Fig. 9. 1-2 1-16 1-18 1-5
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3 4 1 2 4 3
1 2 3 3 1 2
2 1 4 4 2 1
4 3 2 1 3 4

1 3 2 4 3 1
2 4 1 1 2 4
4 2 3 3 4 2
3 1 4 2 1 3

1 4 2 3 4 1
2 3 1 1 2 3
3 2 4 4 3 2
4 1 3 2 1 4

Fig. 12. 1-8 1-14 1-17 1-11

1 2 3 4 2 1
3 4 1 3 1 4
4 3 2 2 4 3
2 1 4 3 1 2

Fig. 13. 1-13 1-19 1-20 1-15
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1.2 Flip rotate subgroup 2

2 4 3 1 3 4 1 2 4 2 1 3
1 3 4 2 1 2 3 4 3 1 2 4
4 2 1 3 2 1 4 3 2 4 3 1
3 1 2 4 4 3 2 1 1 3 4 2
2 1 4 3 1 3 4 2 3 1 2 4
4 3 2 1 2 4 3 1 4 2 1 3
3 4 1 2 3 1 2 4 1 3 4 2
1 2 3 4 4 2 1 3 2 4 3 1

2 3 4 1 4 3 1 2 3 2 1 4
1 4 3 2 1 2 4 3 4 1 2 3
3 2 1 4 2 1 3 4 2 3 4 1
4 1 2 3 3 4 2 1 1 4 3 2
2 1 3 4 1 4 3 2 4 1 2 3
3 4 2 1 2 3 4 1 3 2 1 4
4 3 1 2 4 1 2 3 1 4 3 2
1 2 4 3 3 2 1 4 2 3 4 1

Fig. 15. 2-2 3-9 2-23 3-16 2-18 2-7 3-5 3-20
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3 2 4 1 4 2 1 3
1 4 2 3 1 3 4 2
2 3 1 4 3 1 2 4
4 1 3 2 2 4 3 1
3 1 2 4 1 4 2 3
2 4 3 1 3 2 4 1
4 2 1 3 4 1 3 2
1 3 4 2 2 3 1 4

Fig. 16. 2-4 3-15 2-21 3-10 2-12 2-13 3-6 3-19

4 2 3 1 2 1 3 4
3 1 4 2 4 3 1 2
1 3 2 4 1 2 4 3
2 4 1 3 3 4 2 1
4 3 1 2 1 3 2 4
2 1 3 4 2 4 1 3
3 4 2 1 4 2 3 1
1 2 4 3 3 1 4 2

Fig. 17. 3-1 2-22 3-8 2-14 3-17 3-24 2-3 2-11
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3 2 4 1 2 1 4 3
4 1 3 2 3 4 1 2
1 4 2 3 1 2 3 4
2 3 1 4 4 3 2 1
3 4 1 2 1 4 2 3
2 1 4 3 2 3 1 4
4 3 2 1 3 2 4 1
1 2 3 4 4 1 3 2

Fig. 18. 3-2 2-16 3-7 2-20 3-23 3-18 2-5 2-9

2 3 4 1 3 1 4 2
4 1 2 3 2 4 1 3
1 4 3 2 1 3 2 4
3 2 1 4 4 2 3 1
2 4 1 3 1 4 3 2
3 1 4 2 3 2 1 4
4 2 3 1 2 3 4 1
1 3 2 4 4 1 2 3

Fig. 19. 3-4 2-10 3-13 2-19 3-21 3-12 2-6 2-15
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1.3 Flip rotate subgroup 3

2 4 3 1 4 3 1 2 3 1 2 4
1 3 4 2 2 1 3 4 4 2 1 3
3 1 2 4 1 2 4 3 2 4 3 1
4 2 1 3 3 4 2 1 1 3 4 2
2 1 3 4 1 3 4 2 4 2 1 3
4 3 1 2 2 4 3 1 3 1 2 4
3 4 2 1 4 2 1 3 1 3 4 2
1 2 4 3 3 1 2 4 2 4 3 1

2 3 4 1 3 4 1 2 4 1 2 3
1 4 3 2 2 1 4 3 3 2 1 4
4 1 2 3 1 2 3 4 2 3 4 1
3 2 1 4 4 3 2 1 1 4 3 2
2 1 4 3 1 4 3 2 3 2 1 4
3 4 1 2 2 3 4 1 4 1 2 3
4 3 2 1 3 2 1 4 1 4 3 2
1 2 3 4 4 1 2 3 2 3 4 1

Fig. 21. 4-2 4-9 4-18 4-20 4-23 4-7 4-5 4-16
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3 2 4 1 2 4 1 3
1 4 2 3 3 1 4 2
4 1 3 2 1 3 2 4
2 3 1 4 4 2 3 1
3 1 4 2 1 4 2 3
2 4 1 3 3 2 4 1
4 2 3 1 2 3 1 4
1 3 2 4 4 1 3 2

Fig. 22. 4-4 4-15 4-12 4-19 4-21 4-13 4-6 4-10



1.2 Row column interchange subgroup
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1 2 3 4 3 4 1 2 1 2 4 3 1 2 3 4
3 4 1 2 1 2 3 4 3 4 2 1 3 4 1 2
2 1 4 3 2 1 4 3 2 1 3 4 4 3 2 1
4 3 2 1 4 3 2 1 4 3 1 2 2 1 4 3
2 1 3 4 3 4 2 1 3 4 1 2 4 3 1 2
4 3 1 2 1 2 4 3 1 2 3 4 2 1 3 4
1 2 4 3 2 1 3 4 4 3 2 1 1 2 4 3
3 4 2 1 4 3 1 2 2 1 4 3 3 4 2 1
1 2 4 3 2 1 4 3 2 1 3 4 3 4 2 1
3 4 2 1 4 3 2 1 4 3 1 2 1 2 4 3
4 3 1 2 1 2 3 4 3 4 2 1 4 3 1 2
2 1 3 4 3 4 1 2 1 2 4 3 2 1 3 4
4 3 2 1 4 3 1 2 2 1 4 3 4 3 2 1
2 1 4 3 2 1 3 4 4 3 2 1 2 1 4 3
1 2 3 4 3 4 2 1 3 4 1 2 3 4 1 2
3 4 1 2 1 2 4 3 1 2 3 4 1 2 3 4

Fig. 23. 1-1 2-17 3-1 2-1 3-8 4-17 1-17 4-24 4-1 1-8 4-8 3-17 2-24 3-24 2-8 1-24
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1 2 4 3 4 3 1 2 1 2 3 4 1 2 4 3
4 3 1 2 1 2 4 3 4 3 2 1 4 3 1 2
2 1 3 4 2 1 3 4 2 1 4 3 3 4 2 1
3 4 2 1 3 4 2 1 3 4 1 2 2 1 3 4
2 1 4 3 4 3 2 1 4 3 1 2 3 4 1 2
3 4 1 2 1 2 3 4 1 2 4 3 2 1 4 3
1 2 3 4 2 1 4 3 3 4 2 1 1 2 3 4
4 3 2 1 3 4 1 2 2 1 3 4 4 3 2 1
1 2 3 4 2 1 3 4 2 1 4 3 4 3 2 1
4 3 2 1 3 4 2 1 3 4 1 2 1 2 3 4
3 4 1 2 1 2 4 3 4 3 2 1 3 4 1 2
2 1 4 3 4 3 1 2 1 2 3 4 2 1 4 3
3 4 2 1 3 4 1 2 2 1 3 4 3 4 2 1
2 1 3 4 2 1 4 3 3 4 2 1 2 1 3 4
1 2 4 3 4 3 2 1 4 3 1 2 4 3 1 2
4 3 1 2 1 2 3 4 1 2 4 3 1 2 4 3

Fig. 24. 1-2 2-23 3-2 2-2 3-7 4-23 1-23 4-18 4-1 1-7 4-7 3-23 2-18 3-18 2-7 1-18
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1 3 2 4 2 4 1 3 1 3 4 2 1 3 2 4
2 4 1 3 1 3 2 4 2 4 3 1 2 4 1 3
3 1 4 2 3 1 4 2 3 1 2 4 4 2 3 1
4 2 3 1 4 2 3 1 4 2 1 3 3 1 4 2
3 1 2 4 2 4 3 1 2 4 1 3 4 2 1 3
4 2 1 3 1 3 4 2 1 3 2 4 3 1 2 4
1 3 4 2 3 1 2 4 4 2 3 1 1 3 4 2
2 4 3 1 4 2 1 3 3 1 4 2 2 4 3 1
1 3 4 2 3 1 4 2 3 1 2 4 2 4 3 1
2 4 3 1 4 2 3 1 4 2 1 3 1 3 4 2
4 2 1 3 1 3 2 4 2 4 3 1 4 2 1 3
3 1 2 4 2 4 1 3 1 3 4 2 3 1 2 4
4 2 3 1 4 2 1 3 3 1 4 2 4 2 3 1
3 1 4 2 3 1 2 4 4 2 3 1 3 1 4 2
1 3 2 4 2 4 3 1 2 4 1 3 2 4 1 3
2 4 1 3 1 3 4 2 1 3 2 4 1 3 2 4

Fig. 25. 1-3 2-11 3-3 2-3 3-14 4-11 1-11 4-22 4-3 1-14 4-14 3-11 2-22 3-22 2-14 1-22
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1 3 4 2 4 2 1 3 1 3 2 4 1 3 4 2
4 2 1 3 1 3 4 2 4 2 3 1 4 2 1 3
3 1 2 4 3 1 2 4 3 1 4 2 2 4 3 1
2 4 3 1 2 4 3 1 2 4 1 3 3 1 2 4
3 1 4 2 4 2 3 1 4 2 1 3 2 4 1 3
2 4 1 3 1 3 2 4 1 3 4 2 3 1 4 2
1 3 2 4 3 1 4 2 2 4 3 1 1 3 2 4
4 2 3 1 2 4 1 3 3 1 2 4 4 2 3 1
1 3 2 4 3 1 2 4 3 1 4 2 4 2 3 1
4 2 3 1 2 4 3 1 2 4 1 3 1 3 2 4
2 4 1 3 1 3 4 2 4 2 3 1 2 4 1 3
3 1 4 2 4 2 1 3 1 3 2 4 3 1 4 2
2 4 3 1 2 4 1 3 3 1 2 4 2 4 3 1
3 1 2 4 3 1 4 2 2 4 3 1 3 1 2 4
1 3 4 2 4 2 3 1 4 2 1 3 4 2 1 3
4 2 1 3 1 3 2 4 1 3 4 2 1 3 4 2

Fig. 26. 1-4 2-21 3-4 2-4 3-13 4-21 1-21 4-12 4-4 1-13 4-13 3-21 2-12 3-12 2-13 1-12
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1 4 2 3 2 3 1 4 1 4 3 2 1 4 2 3
2 3 1 4 1 4 2 3 2 3 4 1 2 3 1 4
4 1 3 2 4 1 3 2 4 1 2 3 3 2 4 1
3 2 4 1 3 2 4 1 3 2 1 4 4 1 3 2
4 1 2 3 2 3 4 1 2 3 1 4 3 2 1 4
3 2 1 4 1 4 3 2 1 4 2 3 4 1 2 3
1 4 3 2 4 1 2 3 3 2 4 1 1 4 3 2
2 3 4 1 3 2 1 4 4 1 3 2 2 3 4 1
1 4 3 2 4 1 3 2 4 1 2 3 2 3 4 1
2 3 4 1 3 2 4 1 3 2 1 4 1 4 3 2
3 2 1 4 1 4 2 3 2 3 4 1 3 2 1 4
4 1 2 3 2 3 1 4 1 4 3 2 4 1 2 3
3 2 4 1 3 2 1 4 4 1 3 2 3 2 4 1
4 1 3 2 4 1 2 3 3 2 4 1 4 1 3 2
1 4 2 3 2 3 4 1 2 3 1 4 2 3 1 4
2 3 1 4 1 4 3 2 1 4 2 3 1 4 2 3

Fig. 27. 1-5 2-9 3-5 2-5 3-20 4-9 1-9 4-16 4-5 1-20 4-20 3-9 2-16 3-16 2-20 1-16
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1 4 3 2 3 2 1 4 1 4 2 3 1 4 3 2
3 2 1 4 1 4 3 2 3 2 4 1 3 2 1 4
4 1 2 3 4 1 2 3 4 1 3 2 2 3 4 1
2 3 4 1 2 3 4 1 2 3 1 4 4 1 2 3
4 1 3 2 3 2 4 1 3 2 1 4 2 3 1 4
2 3 1 4 1 4 2 3 1 4 3 2 4 1 3 2
1 4 2 3 4 1 3 2 2 3 4 1 1 4 2 3
3 2 4 1 2 3 1 4 4 1 2 3 3 2 4 1
1 4 2 3 4 1 2 3 4 1 3 2 3 2 4 1
3 2 4 1 2 3 4 1 2 3 1 4 1 4 2 3
2 3 1 4 1 4 3 2 3 2 4 1 2 3 1 4
4 1 3 2 3 2 1 4 1 4 2 3 4 1 3 2
2 3 4 1 2 3 1 4 4 1 2 3 2 3 4 1
4 1 2 3 4 1 3 2 2 3 4 1 4 1 2 3
1 4 3 2 3 2 4 1 3 2 1 4 3 2 1 4
3 2 1 4 1 4 2 3 1 4 3 2 1 4 3 2

Fig. 28. 1-6 2-15 3-6 2-6 3-19 4-15 1-15 4-10 4-6 1-19 4-19 3-15 2-10 3-10 2-19 1-10



2.2 Asymmetric group
2.1 Flip rotate subgroups

2.1 Flip rotate subgroup 1

48

4 4 2 3 1 3 2 1 4 4
2 1 3 4 2 1 4 3 2 3
1 2 4 1 3 2 1 4 3 2
3 3 1 2 4 4 3 2 1 1
1 4 1 2 3 1 3 2 4 3
3 2 3 4 1 2 4 3 1 2
2 3 4 1 2 3 1 4 2 1
4 1 2 3 4 4 2 1 3 4

3 3 2 4 1 4 2 1 3 3
2 1 4 3 2 1 3 4 2 4
1 2 3 1 4 2 1 3 4 2
4 4 1 2 3 3 4 2 1 1
1 3 1 2 4 1 4 2 3 4
4 2 4 3 1 2 3 4 1 2
2 4 3 1 2 4 1 3 2 1
3 1 2 4 3 3 2 1 4 3

Fig. 30. 5-2 11-15 5-21 11-16 6-18 6-13 9-5 9-19
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2 3 4 1 4 3 1 2
1 4 2 3 1 2 4 3
3 2 1 4 3 1 2 4
4 1 3 2 2 4 3 1
2 1 3 4 1 4 3 2
3 4 2 1 3 2 4 1
4 2 1 3 4 1 2 3
1 3 4 2 2 3 1 4

Fig. 31. 5-4 11-9 5-23 11-10 6-12 6-7 9-6 9-20

2 4 3 1 1 4 3 2
3 1 4 2 3 2 1 4
4 2 1 3 2 1 4 3
1 3 2 4 4 3 2 1
2 3 4 1 1 3 4 2
4 1 2 3 2 4 1 3
3 4 1 2 3 1 2 4
1 2 3 4 4 2 3 1

Fig. 32. 6-1 9-12 6-6 9-22 5-24 5-10 11-3 11-4
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2 3 4 1 1 3 4 2
4 1 3 2 4 2 1 3
3 2 1 4 2 1 3 4
1 4 2 3 3 4 2 1
2 4 3 1 1 4 3 2
3 1 2 4 2 3 1 4
4 3 1 2 4 1 2 3
1 2 4 3 3 2 4 1

Fig. 33. 6-2 9-10 6-4 9-16 5-18 5-12 11-5 11-6

1 3 4 2 2 3 4 1
4 2 3 1 4 1 2 3
3 1 2 4 1 2 3 4
2 4 1 3 3 4 1 2
1 4 3 2 2 4 3 1
3 2 1 4 1 3 2 4
4 3 2 1 4 2 1 3
2 1 4 3 3 1 4 2

Fig. 34. 6-8 9-4 6-10 9-14 5-17 5-6 11-11 11-12
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4 2 3 1 2 1 3 4
3 1 4 2 3 4 1 2
1 4 2 3 1 2 4 3
2 3 1 4 4 3 2 1
4 3 1 2 1 3 2 4
2 1 4 3 2 4 1 3
3 4 2 1 3 2 4 1
1 2 3 4 4 1 3 2

Fig. 35. 9-1 6-22 9-7 6-20 11-23 11-24 5-3 5-9

3 2 4 1 2 1 4 3
4 1 3 2 4 3 1 2
1 3 2 4 1 2 3 4
2 4 1 3 3 4 2 1
3 4 1 2 1 4 2 3
2 1 3 4 2 3 1 4
4 3 2 1 4 2 3 1
1 2 4 3 3 1 4 2

Fig. 36. 9-2 6-16 9-8 6-14 11-17 11-18 5-5 5-11
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4 4 3 1 2 3 2 1 4
2 1 2 4 3 1 4 2 3
1 2 4 3 1 2 3 4 1
3 3 1 2 4 4 1 3 2
2 4 1 2 3 2 1 3 4
1 3 2 4 1 3 4 2 1
3 1 4 3 2 1 3 4 2
4 2 3 1 4 4 2 1 3

3 4 2 3 1 1 2 3 4
2 3 1 4 2 4 3 1 2
4 2 3 1 4 2 1 4 3
1 1 4 2 3 3 4 2 1
1 4 3 2 1 1 3 2 4
3 2 1 3 4 2 4 1 3
2 3 4 1 2 4 1 3 2
4 1 2 4 3 3 2 4 1

Fig. 38. 11-1 5-22 11-2 5-16 9-18 9-24 6-3 6-5
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3 4 1 3 2 2 1 3 4 3
1 3 2 4 1 4 3 2 1 4
4 1 3 2 4 1 2 4 3 1
2 2 4 1 3 3 4 1 2 2
2 4 3 1 2 2 3 1 4 2
3 1 2 3 4 1 4 2 3 1
1 3 4 2 1 4 2 3 1 3
4 2 1 4 3 3 1 4 2 4

2 4 1 2 3 3 1 2 4 2
1 2 3 4 1 4 2 3 1 4
4 1 2 3 4 1 3 4 2 1
3 3 4 1 2 2 4 1 3 3
3 4 2 1 3 3 2 1 4 3
2 1 3 2 4 1 4 3 2 1
1 2 4 3 1 4 3 2 1 2
4 3 1 4 2 2 1 4 3 4

Fig. 40. 11-13 5-19 11-14 5-8 9-11 9-21 6-15 6-17
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2.2 Flip rotate subgroup 2

3 4 2 3 1 2 3 1 4 3 1 4 2
1 1 3 4 2 4 1 3 2 4 2 1 3
4 3 1 2 4 1 2 4 3 2 4 3 1
2 2 4 1 3 3 4 2 1 1 3 2 4
1 4 1 3 2 1 3 2 4 2 4 1 3
3 2 3 1 4 2 4 3 1 3 1 2 4
2 3 4 2 1 4 2 1 3 1 3 4 2
4 1 2 4 3 3 1 4 2 4 2 3 1

4 3 2 4 1 2 4 1 3 4 1 3 2
1 1 4 3 2 3 1 4 2 3 2 1 4
3 4 1 2 3 1 2 3 4 2 3 4 1
2 2 3 1 4 4 3 2 1 1 4 2 3
1 3 1 4 2 1 4 2 3 2 3 1 4
4 2 4 1 3 2 3 4 1 4 1 2 3
2 4 3 2 1 3 2 1 4 1 4 3 2
3 1 2 3 4 4 1 3 2 3 2 4 1

Fig. 42. 7-2 12-15 8-12 10-20 7-23 8-13 10-5 12-10
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4 2 3 4 1 3 4 1 2 4
1 1 4 2 3 2 1 4 3 2
2 4 1 3 2 1 3 2 4 3
3 3 2 1 4 4 2 3 1 1
1 2 1 4 3 1 4 3 2 3
4 3 4 1 2 3 2 4 1 4
3 4 2 3 1 2 3 1 4 1
2 1 3 2 4 4 1 2 3 2

3 2 4 3 1 4 1 3 2 3
1 3 1 4 2 2 3 1 4 4
2 1 3 2 4 1 2 4 3 2
4 4 2 1 3 3 4 2 1 1
1 2 3 1 4 1 3 4 2 4
3 4 1 3 2 2 4 1 3 1
4 3 4 2 1 4 2 3 1 3
2 1 2 4 3 3 1 2 4 2

Fig. 44. 8-1 10-12 7-19 12-14 8-17 7-10 12-4 10-21
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4 2 3 4 1 3 1 4 2 4
1 4 1 3 2 2 4 1 3 3
2 1 4 2 3 1 2 3 4 2
3 3 2 1 4 4 3 2 1 1
1 2 4 1 3 1 4 3 2 3
4 3 1 4 2 2 3 1 4 1
3 4 3 2 1 3 2 4 1 4
2 1 2 3 4 4 1 2 3 2

4 3 2 4 1 2 1 4 3 4
1 4 1 2 3 3 4 1 2 2
3 1 4 3 2 1 3 2 4 3
2 2 3 1 4 4 2 3 1 1
1 3 4 1 2 1 4 2 3 2
4 2 1 4 3 3 2 1 4 1
2 4 2 3 1 2 3 4 1 4
3 1 3 2 4 4 1 3 2 3

Fig. 46. 8-4 10-16 7-7 12-19 8-21 7-18 12-6 10-9
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4 2 4 3 1 3 4 1 2 4
1 1 3 4 2 2 1 3 4 3
2 4 1 2 3 1 2 4 3 2
3 3 2 1 4 4 3 2 1 1
1 2 1 4 3 1 3 4 2 3
3 4 3 1 2 2 4 3 1 4
4 3 4 2 1 3 2 1 4 1
2 1 2 3 4 4 1 2 3 2
Fig. 47. 10-1 7-11 12-18 8-20 12-23 10-8 7-3 8-16
3 2 3 4 1 4 3 1 2 3
1 1 4 3 2 2 1 4 3 4
2 3 1 2 4 1 2 3 4 2
4 4 2 1 3 3 4 2 1 1
1 2 1 3 4 1 4 3 2 4
4 3 4 1 2 2 3 4 1 3
3 4 3 2 1 4 2 1 3 1
2 1 2 4 3 3 1 2 4 2

Fig. 48. 10-2 7-9 12-24 8-14 12-17 10-7 7-5 8-22



o8

2 3 2 4 1 4 2 1 3 2
1 1 4 2 3 3 1 4 2 4
3 2 1 3 4 1 3 2 4 3
4 4 3 1 2 2 4 3 1 1
1 3 1 2 4 1 4 2 3 4
4 2 4 1 3 3 2 4 1 2
2 4 2 3 1 4 3 1 2 1
3 1 3 4 2 2 1 3 4 3
Fig. 49. 10-4 7-15 12-22 8-8 12-11 10-13 7-6 8-24
3 2 4 3 1 4 3 1 2 3
2 1 3 4 2 1 2 3 4 4
1 3 2 1 4 2 1 4 3 2
4 4 1 2 3 3 4 2 1 1
1 2 1 3 4 1 3 4 2 4
3 4 3 2 1 2 4 3 1 3
4 3 4 1 2 4 1 2 3 1
2 1 2 4 3 3 2 1 4 2

Fig. 50. 12-1 8-11 10-23 7-16 10-18 12-8 8-3 7-20
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4 2 3 4 1 3 4 1 2 4
2 1 4 3 2 1 2 4 3 3
1 4 2 1 3 2 1 3 4 2
3 3 1 2 4 4 3 2 1 1
1 2 1 4 3 1 4 3 2 3
4 3 4 2 1 2 3 4 1 4
3 4 3 1 2 3 1 2 4 1
2 1 2 3 4 4 2 1 3 2

4 3 2 4 1 2 4 1 3 4
3 1 4 2 3 1 3 4 2 2
1 4 3 1 2 3 1 2 4 3
2 2 1 3 4 4 2 3 1 1
1 3 1 4 2 1 4 2 3 2
4 2 4 3 1 3 2 4 1 4
2 4 2 1 3 2 1 3 4 1
3 1 3 2 4 4 3 1 2 3

Fig. 52. 12-4 8-15 10-11 7-24 10-22 12-13 8-6 7-8



2.2 Row column interchange subgroups

2.1 Row column interchange subgroup 1

60

1 2 3 4 3 4 1 2 1 2 4 3 1 2 3 4
3 4 1 2 1 2 3 4 3 4 2 1 3 4 1 2
2 3 4 1 2 3 4 1 2 3 1 4 4 1 2 3
4 1 2 3 4 1 2 3 4 1 3 2 2 3 4 1
2 1 3 4 3 4 2 1 3 4 1 2 4 3 1 2
4 3 1 2 1 2 4 3 1 2 3 4 2 1 3 4
3 2 4 1 2 3 1 4 4 1 2 3 3 2 4 1
1 4 2 3 4 1 3 2 2 3 4 1 1 4 2 3
1 2 4 3 2 1 4 3 2 1 3 4 3 4 2 1
3 4 2 1 4 3 2 1 4 3 1 2 1 2 4 3
4 1 3 2 3 2 1 4 1 4 2 3 4 1 3 2
2 3 1 4 1 4 3 2 3 2 4 1 2 3 1 4
4 3 2 1 4 3 1 2 2 1 4 3 4 3 2 1
2 1 4 3 2 1 3 4 4 3 2 1 2 1 4 3
3 2 1 4 1 4 2 3 1 4 3 2 1 4 3 2
1 4 3 2 3 2 4 1 3 2 1 4 3 2 1 4

Fig. 53. 5-1 6-17 7-1 6-1 8-8 8-17 5-17 7-24 8-1 6-8 7-8 7-17 5-24 8-24 5-8 6-24
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1 2 4 3 4 3 1 2 1 2 3 4 1 2 4 3
4 3 1 2 1 2 4 3 4 3 2 1 4 3 1 2
2 4 3 1 2 4 3 1 2 4 1 3 3 1 2 4
3 1 2 4 3 1 2 4 3 1 4 2 2 4 3 1
2 1 4 3 4 3 2 1 4 3 1 2 3 4 1 2
3 4 1 2 1 2 3 4 1 2 4 3 2 1 4 3
4 2 3 1 2 4 1 3 3 1 2 4 4 2 3 1
1 3 2 4 3 1 4 2 2 4 3 1 1 3 2 4
1 2 3 4 2 1 3 4 2 1 4 3 4 3 2 1
4 3 2 1 3 4 2 1 3 4 1 2 1 2 3 4
3 1 4 2 4 2 1 3 1 3 2 4 3 1 4 2
2 4 1 3 1 3 4 2 4 2 3 1 2 4 1 3
3 4 2 1 3 4 1 2 2 1 3 4 3 4 2 1
2 1 3 4 2 1 4 3 3 4 2 1 2 1 3 4
4 2 1 3 1 3 2 4 1 3 4 2 1 3 4 2
1 3 4 2 4 2 3 1 4 2 1 3 4 2 1 3

Fig. 54. 5-2 6-23 7-2 6-2 8-7 8-23 5-23 7-18 8-2 6-7 7-7 7-23 5-18 8-18 5-7 6-18
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1 3 2 4 2 4 1 3 1 3 4 2 1 3 2 4
2 4 1 3 1 3 2 4 2 4 3 1 2 4 1 3
3 2 4 1 3 2 4 1 3 2 1 4 4 1 3 2
4 1 3 2 4 1 3 2 4 1 2 3 3 2 4 1
3 1 2 4 2 4 3 1 2 4 1 3 4 2 1 3
4 2 1 3 1 3 4 2 1 3 2 4 3 1 2 4
2 3 4 1 3 2 1 4 4 1 3 2 2 3 4 1
1 4 3 2 4 1 2 3 3 2 4 1 1 4 3 2
1 3 4 2 3 1 4 2 3 1 2 4 2 4 3 1
2 4 3 1 4 2 3 1 4 2 1 3 1 3 4 2
4 1 2 3 2 3 1 4 1 4 3 2 4 1 2 3
3 2 1 4 1 4 2 3 2 3 4 1 3 2 1 4
4 2 3 1 4 2 1 3 3 1 4 2 4 2 3 1
3 1 4 2 3 1 2 4 4 2 3 1 3 1 4 2
2 3 1 4 1 4 3 2 1 4 2 3 1 4 2 3
1 4 2 3 2 3 4 1 2 3 1 4 2 3 1 4

Fig. 55. 5-3 6-11 7-3 6-3 8-14 8-11 5-11 7-22 8-3 6-14 7-14 7-11 5-22 8-22 5-14 6-22
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1 3 4 2 4 2 1 3 1 3 2 4 1 3 4 2
4 2 1 3 1 3 4 2 4 2 3 1 4 2 1 3
3 4 2 1 3 4 2 1 3 4 1 2 2 1 3 4
2 1 3 4 2 1 3 4 2 1 4 3 3 4 2 1
3 1 4 2 4 2 3 1 4 2 1 3 2 4 1 3
2 4 1 3 1 3 2 4 1 3 4 2 3 1 4 2
4 3 2 1 3 4 1 2 2 1 3 4 4 3 2 1
1 2 3 4 2 1 4 3 3 4 2 1 1 2 3 4
1 3 2 4 3 1 2 4 3 1 4 2 4 2 3 1
4 2 3 1 2 4 3 1 2 4 1 3 1 3 2 4
2 1 4 3 4 3 1 2 1 2 3 4 2 1 4 3
3 4 1 2 1 2 4 3 4 3 2 1 3 4 1 2
2 4 3 1 2 4 1 3 3 1 2 4 2 4 3 1
3 1 2 4 3 1 4 2 2 4 3 1 3 1 2 4
4 3 1 2 1 2 3 4 1 2 4 3 1 2 4 3
1 2 4 3 4 3 2 1 4 3 1 2 4 3 1 2

Fig. 56. 5-4 6-21 7-4 6-4 8-13 8-21 5-21 7-12 84 6-13 7-13 7-21 5-12 8-12 5-13 6-12
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1 4 2 3 2 3 1 4 1 4 3 2 1 4 2 3
2 3 1 4 1 4 2 3 2 3 4 1 2 3 1 4
4 2 3 1 4 2 3 1 4 2 1 3 3 1 4 2
3 1 4 2 3 1 4 2 3 1 2 4 4 2 3 1
4 1 2 3 2 3 4 1 2 3 1 4 3 2 1 4
3 2 1 4 1 4 3 2 1 4 2 3 4 1 2 3
2 4 3 1 4 2 1 3 3 1 4 2 2 4 3 1
1 3 4 2 3 1 2 4 4 2 3 1 1 3 4 2
1 4 3 2 4 1 3 2 4 1 2 3 2 3 4 1
2 3 4 1 3 2 4 1 3 2 1 4 1 4 3 2
3 1 2 4 2 4 1 3 1 3 4 2 3 1 2 4
4 2 1 3 1 3 2 4 2 4 3 1 4 2 1 3
3 2 4 1 3 2 1 4 4 1 3 2 3 2 4 1
4 1 3 2 4 1 2 3 3 2 4 1 4 1 3 2
2 4 1 3 1 3 4 2 1 3 2 4 1 3 2 4
1 3 2 4 2 4 3 1 2 4 1 3 2 4 1 3

Fig. 57. 5-5 6-9 7-5 6-5 8-20 8-9 5-9 7-16 8-5 6-20 7-20 7-9 5-16 8-16 5-20 6-16
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1 4 3 2 3 2 1 4 1 4 2 3 1 4 3 2
3 2 1 4 1 4 3 2 3 2 4 1 3 2 1 4
4 3 2 1 4 3 2 1 4 3 1 2 2 1 4 3
2 1 4 3 2 1 4 3 2 1 3 4 4 3 2 1
4 1 3 2 3 2 4 1 3 2 1 4 2 3 1 4
2 3 1 4 1 4 2 3 1 4 3 2 4 1 3 2
3 4 2 1 4 3 1 2 2 1 4 3 3 4 2 1
1 2 4 3 2 1 3 4 4 3 2 1 1 2 4 3
1 4 2 3 4 1 2 3 4 1 3 2 3 2 4 1
3 2 4 1 2 3 4 1 2 3 1 4 1 4 2 3
2 1 3 4 3 4 1 2 1 2 4 3 2 1 3 4
4 3 1 2 1 2 3 4 3 4 2 1 4 3 1 2
2 3 4 1 2 3 1 4 4 1 2 3 2 3 4 1
4 1 2 3 4 1 3 2 2 3 4 1 4 1 2 3
3 4 1 2 1 2 4 3 1 2 3 4 1 2 3 4
1 2 3 4 3 4 2 1 3 4 1 2 3 4 1 2

Fig. 58. 5-6 6-15 7-6 6-6 8-19 8-15 5-15 7-10 8-6 6-19 7-19 7-15 5-10 8-10 5-19 6-10
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2.2 Row column interchange subgroup 2

1 2 3 4 3 4 2 1 1 2 4 3 1 2 3 4
3 4 2 1 1 2 3 4 3 4 1 2 3 4 2 1
2 1 4 3 2 1 4 3 2 1 3 4 4 3 1 2
4 3 1 2 4 3 1 2 4 3 2 1 2 1 4 3
2 1 3 4 3 4 1 2 3 4 2 1 4 3 2 1
4 3 2 1 1 2 4 3 1 2 3 4 2 1 3 4
1 2 4 3 2 1 3 4 4 3 1 2 1 2 4 3
4 3 1 2 4 3 2 1 2 1 4 3 3 4 1 2
1 2 4 3 2 1 4 3 2 1 3 4 3 4 1 2
3 4 1 2 4 3 1 2 4 3 2 1 1 2 4 3
4 3 2 1 1 2 3 4 3 4 1 2 4 3 2 1
2 1 3 4 3 4 2 1 1 2 4 3 2 1 3 4
4 3 1 2 4 3 2 1 2 1 4 3 4 3 1 2
2 1 4 3 2 1 3 4 4 3 1 2 2 1 4 3
1 2 3 4 3 4 1 2 3 4 2 1 3 4 2 1
3 4 2 1 1 2 4 3 1 2 3 4 1 2 3 4

Fig. 59. 9-1 12-17 11-1 10-1 9-8 10-17 11-17 10-24 12-1 10-8 12-8 9-17 12-24 9-24 11-8
11-24
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Fig.

1 2 4 3 4 3 2 1 1 2 3 4 1 2 4 3
4 3 2 1 1 2 4 3 4 3 1 2 4 3 2 1
2 1 3 4 2 1 3 4 2 1 4 3 3 4 1 2
3 4 1 2 3 4 1 2 3 4 2 1 2 1 3 4
2 1 4 3 4 3 1 2 4 3 2 1 3 4 2 1
3 4 2 1 1 2 3 4 1 2 4 3 2 1 4 3
1 2 3 4 2 1 4 3 3 4 1 2 1 2 3 4
3 4 1 2 3 4 2 1 2 1 3 4 4 3 1 2
1 2 3 4 2 1 3 4 2 1 4 3 4 3 1 2
4 3 1 2 3 4 1 2 3 4 2 1 1 2 3 4
3 4 2 1 1 2 4 3 4 3 1 2 3 4 2 1
2 1 4 3 4 3 2 1 1 2 3 4 2 1 4 3
3 4 1 2 3 4 2 1 2 1 3 4 3 4 1 2
2 1 3 4 2 1 4 3 3 4 1 2 2 1 3 4
1 2 4 3 4 3 1 2 4 3 2 1 4 3 2 1
4 3 2 1 1 2 3 4 1 2 4 3 1 2 4 3
60. 9-2 12-23 11-2 10-2 9-7 10-23 11-23 10-18 12-2 10-7 12-7 9-23 12-18 9-18 11-7

11-18
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1 3 2 4 2 4 3 1 1 3 4 2 1 3 2 4
2 4 3 1 1 3 2 4 2 4 1 3 2 4 3 1
3 1 4 2 3 1 4 2 3 1 2 4 4 2 1 3
4 2 1 3 4 2 1 3 4 2 3 1 3 1 4 2
3 1 2 4 2 4 1 3 2 4 3 1 4 2 3 1
4 2 3 1 1 3 4 2 1 3 2 4 3 1 2 4
1 3 4 2 3 1 2 4 4 2 1 3 1 3 4 2
4 2 1 3 4 2 3 1 3 1 4 2 2 4 1 3
1 3 4 2 3 1 4 2 3 1 2 4 2 4 1 3
2 4 1 3 4 2 1 3 4 2 3 1 1 3 4 2
4 2 3 1 1 3 2 4 2 4 1 3 4 2 3 1
3 1 2 4 2 4 3 1 1 3 4 2 3 1 2 4
4 2 1 3 4 2 3 1 3 1 4 2 4 2 1 3
3 1 4 2 3 1 2 4 4 2 1 3 3 1 4 2
1 3 2 4 2 4 1 3 2 4 3 1 2 4 3 1
2 4 3 1 1 3 4 2 1 3 2 4 1 3 2 4

Fig. 61. 9-3 12-11 11-3 10-3 9-14 10-11 11-11 10-22 12-3 10-14 12-14 9-11 12-22 9-22
11-14 11-22
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Fig.

1 3 4 2 4 2 3 1 1 3 2 4 1 3 4 2
4 2 3 1 1 3 4 2 4 2 1 3 4 2 3 1
3 1 2 4 3 1 2 4 3 1 4 2 2 4 1 3
2 4 1 3 2 4 1 3 2 4 3 1 3 1 2 4
3 1 4 2 4 2 1 3 4 2 3 1 2 4 3 1
2 4 3 1 1 3 2 4 1 3 4 2 3 1 4 2
1 3 2 4 3 1 4 2 2 4 1 3 1 3 2 4
2 4 1 3 2 4 3 1 3 1 2 4 4 2 1 3
1 3 2 4 3 1 2 4 3 1 4 2 4 2 1 3
4 2 1 3 2 4 1 3 2 4 3 1 1 3 2 4
2 4 3 1 1 3 4 2 4 2 1 3 2 4 3 1
3 1 4 2 4 2 3 1 1 3 2 4 3 1 4 2
2 4 1 3 2 4 3 1 3 1 2 4 2 4 1 3
3 1 2 4 3 1 4 2 2 4 1 3 3 1 2 4
1 3 4 2 4 2 1 3 4 2 3 1 4 2 3 1
4 2 3 1 1 3 2 4 1 3 4 2 1 3 4 2
62. 9-4 12-21 11-4 10-4 9-13 10-21 11-21 10-12 12-4 10-13 12-13 9-21 12-12 9-12

11-13 11-12
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1 4 2 3 2 3 4 1 1 4 3 2 1 4 2 3
2 3 4 1 1 4 2 3 2 3 1 4 2 3 4 1
4 1 3 2 4 1 3 2 4 1 2 3 3 2 1 4
3 2 1 4 3 2 1 4 3 2 4 1 4 1 3 2
4 1 2 3 2 3 1 4 2 3 4 1 3 2 4 1
3 2 4 1 1 4 3 2 1 4 2 3 4 1 2 3
1 4 3 2 4 1 2 3 3 2 1 4 1 4 3 2
3 2 1 4 3 2 4 1 4 1 3 2 2 3 1 4
1 4 3 2 4 1 3 2 4 1 2 3 2 3 1 4
2 3 1 4 3 2 1 4 3 2 4 1 1 4 3 2
3 2 4 1 1 4 2 3 2 3 1 4 3 2 4 1
4 1 2 3 2 3 4 1 1 4 3 2 4 1 2 3
3 2 1 4 3 2 4 1 4 1 3 2 3 2 1 4
4 1 3 2 4 1 2 3 3 2 1 4 4 1 3 2
1 4 2 3 2 3 1 4 2 3 4 1 2 3 4 1
2 3 4 1 1 4 3 2 1 4 2 3 1 4 2 3

Fig. 63. 9-5 12-9 11-5 10-5 9-20 10-9 11-9 10-16 12-5 10-20 12-20 9-9 12-16 9-16 11-20
11-16
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1 4 3 2 3 2 4 1 1 4 2 3 1 4 3 2
3 2 4 1 1 4 3 2 3 2 1 4 3 2 4 1
4 1 2 3 4 1 2 3 4 1 3 2 2 3 1 4
2 3 1 4 2 3 1 4 2 3 4 1 4 1 2 3
4 1 3 2 3 2 1 4 3 2 4 1 2 3 4 1
2 3 4 1 1 4 2 3 1 4 3 2 4 1 3 2
1 4 2 3 4 1 3 2 2 3 1 4 1 4 2 3
2 3 1 4 2 3 4 1 4 1 2 3 3 2 1 4
1 4 2 3 4 1 2 3 4 1 3 2 3 2 1 4
3 2 1 4 2 3 1 4 2 3 4 1 1 4 2 3
2 3 4 1 1 4 3 2 3 2 1 4 2 3 4 1
4 1 3 2 3 2 4 1 1 4 2 3 4 1 3 2
2 3 1 4 2 3 4 1 4 1 2 3 2 3 1 4
4 1 2 3 4 1 3 2 2 3 1 4 4 1 2 3
1 4 3 2 3 2 1 4 3 2 4 1 3 2 4 1
3 2 4 1 1 4 2 3 1 4 3 2 1 4 3 2

Fig. 64. 9-6 12-15 11-6 10-6 9-19 10-15 11-15 10-10 12-6 10-19 12-19 9-15 12-10 9-10
11-19 11-10



APPENDIX B

1 %Matlab code to enumerate all possible error patterns

2 %for the symmetric and assymetric arrays

3

4n = 2;

5 num_error_patterns = 2" (n"4);

6
TMI=1[1234;3412;,2143;4321 ];
SM2=]1243, 3412 2134;4321 ],
9

10 errors = zeros(num_error_patterns ,2,2);

11

12 for i = l:num_error_patterns

13

14 error_pattern = ones(1,n"4);

15 error_pattern (find (de2bi(i—1)==1)) = 0;

16 error_pattern = vec2mat (error_pattern ,4);

17

18 S1 = solver(n,Ml.xerror_pattern);

19 S2 = solver (n,M2.xerror_pattern);

20

21 size_S1 = size(S1);

22 size_S2 = size(S2);



23

24 if (length(size_S1) = 3)

25

26 errors(i,l,1) = 1;

27 errors(i,1,2) = size_S1(3);
28

29 end

30

31 if (length(size_S2) = 3)

32

33 errors(i,2,1) = 1;

34 errors (i,2,2) = size_S2(3);
35

36 end

37

38 end

39

40 save(’error_enumeration_data’, errors’)

73



APPENDIX C

1 %Matlab Code to determine the distribution of path lengths
2 %for N randomly drawn permutations

3

4N = 10"4;

5

6 path_length = zeros(1,N);

7 Sigma = cell (1,N);

8

9 for i = 1:N

10

11 sigma = randperm(16) ;

12 Sigma (i) = {sigma };

13

14 index = 1;

15 tau = [];

16 alphabet = cell (1,16);

17 alphabet (1) = {1};

18

19 path_length(i) = 1/72xavg_path_search (sigma ,tau,
alphabet ,index ,0) ;

20

21 end



22
23 mu = sum(path_length)/length(path_length);
24

25 save('avg_path_data’,’Sigma’, ’path_length’ 'mu’)

1 function path_length = avg_path_search (sigma,tau,alphabet,

index , path_length)

2

3 current_alphabet = cell2mat (alphabet (index));
4

5 if length(current_alphabet) = 0
6

7 if index = 1,

8

9 return

10

11 else

12

13 tau(index) = [];

14 index = index —1;

15

16 end

17 else

18

19 tau(index) = current_alphabet (1);

20 M = sudoku_matrix_generator (2,sigma ,tau);

5



21 C = solver (2,M);
22 [N ¢] = entry_density (C);

23

24 if c =1

25

26 path_length = path_length + length(tau);

27 current_alphabet (1) = [];

28 alphabet (index) = {current_alphabet };

29

30 else

31

32 current_alphabet (1) = [];

33 alphabet (index) = {current_alphabet };

34 index = index + 1;

35 alphabet (index) = {find( N(sigma(index) + [0 16 32
48])) };

36

37 end

38 end

39

40 path_length = avg_path_search (sigma,tau,alphabet index,
path_length);
41

42 end
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