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ABSTRACT 
 

Testing Linear Diagnostics of Ensemble Performance on a Simplified Global Circulation 
Model. (April 2011) 

 
 

Ethan Lane Nelson 
Department of Atmospheric Science 

Texas A&M University 
 
 

Research Advisor: Dr. Istvan Szunyogh 
Department of Atmospheric Science 

 
 
 

Ensemble weather forecast systems are used to account for the uncertainty in the initial 

conditions of the atmosphere and the chaotic dynamics of the models. It has been 

previously found that forecast performance of an ensemble forecast system is inherently 

flow dependent and that the ensemble predicts potential patterns of forecast errors more 

reliably than the magnitudes of the errors. A low-resolution global circulation model is 

implemented to calculate linear diagnostics in the vector space of the ensemble 

perturbations. It is confirmed that the ensemble provides a good representation of the 

pattern of forecast uncertainties, but the magnitude of the error projected onto the space 

of ensemble perturbations is underestimated for the 6 to 120 hour forecast times.   
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NOMENCLATURE 

 

δxt Ensemble Mean Error 

EnKF Ensemble-based Kalman Filter 

GFS Global Forecast System 

K Ensemble Member Size 

LETKF Local Ensemble Transform Kalman Filter 

NCEP National Centers for Environmental Prediction 

NWP Numerical Weather Prediction 

NWS National Weather Service 

  . Linear Space Spanned by the Ensemble Perturbations 

SPEEDY Simplified Parameterizations privitivE-Equation Dynamics  
  Model, a Low Resolution Weather Model 

UTC Coordinated Universal Time 

V A Measure of the Ensemble Spread, or Variance 

TV A Measure of the Difference in the Ensemble Mean and the 
 True Atmosphere; the Skill of the Ensemble 

TVS The Projection of δxt onto the Linear Space   . 
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CHAPTER I 

INTRODUCTION 

 

Weather is an important part of daily life; it affects every human activity from traveling 

to crop yields to electrical demands. The accurate prediction of weather can save both 

money and lives. We examine the ability of an ensemble weather forecast system, using 

linear diagnostics, in predicting the forecast uncertainty. 

 

An overview of numerical weather prediction 

Numerical weather prediction is the science of forecasting weather by integrating a 

mathematical model to simulate the future evolution of the atmosphere over a time 

period. The skillfulness of these predictions is affected by the accuracy of the 

observations of the past and present states of the atmosphere; the analysis, which is the 

model representation of the present atmospheric state based on the past and present 

observation; and the model representation of the true atmosphere. 

 

The concept of weather prediction over an extended time period was first hypothesized 

by Cleveland Abbe (Abbe 1901). He realized that the tools needed to estimate the true 

state of the atmosphere did not yet exist, but knew that physical laws could be used to 

build a mathematical model to predict the evolution of the atmosphere. Abbe proposed a 

________________ 
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methodology, with many of the governing equations we use in today’s models, on how 

to approach the general topic of weather modeling. Jule Charney, Ragnar Fjörtoft, and 

John von Neumann created the first numerical prediction of weather in 1950 (Charney, 

et al. 1950). The first operational model run in real-time took place in Sweden during 

September 1954 (Kalnay 2007). Nowadays, numerical models of the atmosphere are 

widely used for operational weather forecasting and research 

 

A numerical weather prediction system consists of three basic components: data 

assimilation, where weather observations are assimilated through different methods to 

create an analysis of the atmosphere; the dynamical model composed of the governing 

equations of the atmosphere to simulate the evolution of the atmospheric state; and a 

post-processing system, which converts the raw model output into useful forms and 

variables. 

 

Currently, the Earth has a large global observing network composed of a large variety of 

instruments. Weather observations inputted into NWP forecast systems are taken by 

satellites, upper-air balloon radiosondes, automatic sensors at the surface, and other 

observing platforms. Operational models running on a loop every 6 to 24 hours use 

present and past observations to predict the future atmospheric state. 

 

NWP forecast systems predict the hydrodynamical and thermodynamical state of the 

atmosphere. A raw output of the model variables has limited usefulness for weather 
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forecasters. During post-processing, these variables are converted into parameters that 

can assist the human forecasters to prepare a weather prediction, such as mean wind. 

 

The atmosphere is a chaotic system of infinite dimension; the use of numerical models 

and noisy observations inevitably introduces error into the prediction, which grows 

exponentially with forecast time until predictability is completely lost. Numerical 

weather prediction models are overlaid onto the planet by introducing a gridding system. 

Depending on the model type and function, the resolution can range anywhere from a 

hundred of kilometers to hundredths of meters. Models that are used to simulate 

microphysical processes are required to be of very high resolution to accurately model 

on that scale. Levels of resolution for different types of models are based on the amount 

of computational power available and the time allowed to run the model; for example, by 

the time a global circulation model completed a run at a resolution equal to that of 

microphysical models, it would be completely useless. 

 

The concept of ensemble modeling 

Ensemble forecast systems generate probabilistic estimates of the present and future 

states of the atmosphere based on the model equations. The model dynamics of the 

ensemble members is the same as in the single deterministic model forecast systems. 

However, the difference is that the ensemble of forecasts is started from an ensemble of 

analyses. The initial conditions are different for each ensemble member and the 

distribution of the analysis uncertainties they represent is assumed to be normal. Each 
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ensemble member is integrated with the model separately. The mean and the standard 

deviation of the ensemble members are usually calculated in the post-processing step.  

 

Ensemble predictability 

Satterfield and Szunyogh (2010 a and b), collectively hereafter SS10, demonstrated that 

the forecast performance of an ensemble is inherently flow dependent. The authors 

performed experiments to determine the predictability of ensemble uncertainty. The key 

finding was that the ensemble tested provided a more reliable prediction of the space of 

uncertainties, or the potential forecast error patterns, than the magnitude of the forecast 

errors and the relative importance of the different error patterns. Most importantly, they 

found that the ensemble grossly underestimated the total forecast uncertainty associated 

with the correctly predicted forecast error patterns. 

 

The previous study used the National Center for Environmental Prediction (NCEP) 

Global Forecast System (GFS), currently the global operational model run in the United 

States by the National Weather Service (NWS). Being an operational mode, the NCEP 

GFS is computationally very expensive. The number of members in an ensemble 

configuration of this model is strongly limited by the amount of available computational 

power. SS10 used 40 ensemble members, which is about the same as that currently used 

in the operational prediction centers. 
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Forecast system 

Our hypothesis is that some result of SS10 was strongly affected by the number of 

ensemble members used in the experiment. To test this hypothesis, we replace the state-

of-the-art operational global circulation model of NCEP used in SS10 with a simplified 

global circulation model called SPEEDY (e.g. Molteni 2003 and Kucharski, et al. 2006). 

The computational cost of running the SPEEDY model is significantly lower than that of 

the NCEP GFS, but it is still sufficiently realistic to expect that our findings will be 

applicable to a state-of-the-art ensemble forecast system. SS10 laid the foundation for 

techniques in predicting and analyzing the ensemble’s skill in the prediction of forecast 

uncertainties; we use these mathematical tools to evaluate the ensemble model runs in 

our experiment. 

 

The SPEEDY model 

The Simplified Parameterizations privitivE-Equation Dynamics (SPEEDY) model is 

developed and maintained by a group of researchers through the Abdus Salam 

International Centre for Theoretical Physics, Trieste, Italy. It is a low resolution model 

with some simplifying assumptions, compared to a state-of-the-art operational NWP 

model. The model used in SS10 had a horizontal resolution of about 200 kilometers with 

28 vertical levels, while SPEEDY model used for this experiment has a resolution of 

about 400 kilometers with 8 vertical levels.  
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Local ensemble transform Kalman filter 

To obtain an initial condition on the model grid based on the randomly distributed 

observations, the data are assimilated into a short-term (six-hour in our case) model 

forecast called the background. In the assimilation process, observations are weighted 

based on their distance from the grid point and their assumed accuracy. Different data 

assimilation schemes are used for a variety of applications; one method is the Local 

Ensemble Transform Kalman Filter (LETKF), which was introduced by Hunt et al. 

2007. The LETKF is a relatively new, computationally efficient data assimilation 

scheme. 

 

Generally, a Kalman Filter is a mathematical technique to estimate the state of a time 

evolving system by minimizing a cost function that measures the distance of the state 

estimate from the observations and the background (short term forecast from the analysis 

at the previous time) (Kalman 1960). A Kalman Filter provides, in addition to the state 

estimates, an estimate of the uncertainty in the state estimate. To be precise, it provides 

an estimate of the covariance matrix of the normal distribution that describes the analysis 

uncertainty. This matrix is called the analysis error covariance matrix. An Ensemble-

based Kalman Filter (EnKF) generates an analysis ensemble, which is consistent with 

the analysis error covariance matrix.  
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CHAPTER II 

METHODS 

 

Linear diagnostics 

For this experiment, we test a set of local diagnostics used to assess the performance of 

the ensemble described by SS10. We follow the derivation of  the ensemble variance. 

The ensemble mean is given as 

    
 

 
      

 

   

 

where K is the number of ensemble members { x(k) : k = 1…K }, and the ensemble 

perturbations are defined as the difference 

   
                                         

 

The evolution of the “true” state of the atmosphere xt is simulated by an integration of 

the NCEP GFS model started from an operational analysis valid at 00 UTC 1 January 

2004 to 12 UTC 29 February 2004; the model has a resolution of 144 x 73 x 28 grid 

points (notated T62L28) but is truncated to the same resolution of the SPEEDY model. 

Additionally, the difference between the “true” state and the ensemble mean is 

          . 

This quantity is often referred to as the ensemble mean forecast error. We also define    

as the linear space spanned by the ensemble perturbations. 

 

 

(1) 

 

(2) 

 

 

(3) 
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At each grid point of the SPEEDY model configuration, a state vector is defined that 

describes the model representation of the state variables in a cube centered around the 

location extending to the top layer of the model. Variables used to define the state vector 

for this experiment are temperature (K), surface pressure (Pa), meridional wind velocity 

(m∙s
-1), and zonal wind velocity (m∙s

-1). A prediction in the ensemble uncertainty of a 

local state is an estimate of the local error covariance matrix     

     
 

   
              

 
 

   

  

where T is the matrix transpose. 

 

Ensemble variance—the spread—can be calculated in two ways: either by 

               

or by an eigendecomposition of     leading to 

       

   

   

 

where λk is the k-th nonnegative eigenvalue in descending order. Additionally, the total 

forecast error variance, is defined as  

               

The forecast error variance, commonly referred to as the skill of the forecast, can be 

decomposed into two components: one that projects onto the space of ensemble 

perturbations    and another that projects onto the null space of the locally estimated 

covariance matrix    . The component projected onto the null space of     is not fully 

 

 

(4) 

 

(5) 

 

 

(6) 

 

(7) 
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discussed in this paper; simply, it is the linear space orthogonal to the space of ensemble 

perturbations. Eigendecomposition of the local estimated covariance matrix yields K 

eigenvalues of which the first K - 1 are normalized by 
 

         
 

   

   
 
    

  

The component of     projected onto the linear space of perturbations is computed by  

                  

   

   

    

Diagnostically, this projection is defined as 

              
 
 . 

TVS = V is optimal, in which the ensemble perturbations capture the magnitude of 

uncertainty explained by   . Moreover, TVS = TV occurs when the forecast error space 

is predicted by the ensemble perturbation space   , or when     projects completely 

onto   . An overestimation or underestimation in the magnitude of uncertainty explained 

by the space    occurs when V > TVS or V < TVS, respectively. Thus, the ultimately 

desired case of a fully predicted error in both pattern and magnitude is indicated by V = 

TVS. 

 

State variables like wind velocities and surface pressure cannot simply be added in 

calculating total errors because of inconsistent units; as such, the diagnostics are 

calculated by transforming the state variables into a term with which the Euclidian norm 

 

(9) 

 

 

(10) 

 

(8) 
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squared has unit energy (J∙kg-1). Transformation weights in the rescaling are those 

derived by Oczkowski, et al. 2005 as 
 

     

      
        

      
  

  
  

                  

 

  

where Ul, Vl, and Tl are the perturbations from the truth or ensemble mean of the zonal 

and meridional wind velocities and temperatures at level l; Pl is the pressure at level l; Ps 

is the surface pressure; Dl =              ; Cp = 1004 J∙kg-1
∙K-1; Tr the reference 

temperature, chosen as 273 K; and Rd = 287 J∙mol-1∙K-1. 

 

The LETKF contains a multiplicative covariance inflation factor for analyses to handle 

some inherent errors, preventing an uncontrolled divergence of the Kalman filter. 

Covariance inflation is used to increase analysis uncertainty as a result of the model and 

sampling errors. Our implementation contains a consistent covariance inflation factor ρ 

for every point at each vertical level in the model. This is applied at all analysis times to 

each ensemble member by 

              

 

Methods of experimentation 

We use the SPEEDY model with 96 x 48 x 7 grid point resolution to perform all the 

experiments, with an implementation of the LETKF for analysis and ensemble creation. 

The number of ensemble members used in the experiment is 40, which was found to be a 

sufficient number by Kuhl, et. al. (2007) and was also used in SS10. A 

 

(11) 

 

(12) 
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deterministic forecast is generated every 6 hours from 00 UTC 01 January 2004 to 12 

UTC 29 February 2004. Ensemble analyses are created at every 6 hour interval with the 

deterministic forecast serving as the state estimate. Each analysis is used as the 

background for a 120-hour forward integration of the SPEEDY model. Figure 1 depicts 

our method of experimentation for the first four forecast cycles. 

 

Observations of virtual temperature and both components of the wind are generated and 

assimilated at every grid point at the seven pressure levels (100, 200, 300, 500, 700, 850, 

and 925 hPa). Additionally, surface pressure observations are simulated at each surface 

grid point. These observations are perturbed from the generated values with zero mean 

and standard deviation 1 unit for each state variable to form a normal distribution of 

Forecast 

January 01, 2004 
00 UTC 

January 01, 2004 
06 UTC 

January 01, 2004 
12 UTC 

January 01, 2004 
18 UTC 

Forecast 

Analysis 

Forecast 

Analysis 

Forecast 

Analysis 

Forecast 

Analysis 

Forecast 

Forecast 

Forecast 

Forecast Forecast 

FIG 1. Depiction of the experiment forecast cycle. Five day forecast cycles are started from an analysis every six 
hours which serves as the initial background. 
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ensemble member perturbations. Experiments using an observation at every grid point 

are the equivalent of having a sounding of the vertical profile of the atmosphere for over 

4600 points inputted to the model, which is much greater than the number used in 

operational weather models. 

 

Diagnostics are computed for both the analyses and the deterministic forecasts for all 

forecasts started between 00 UTC 11 January 2004 and 12 UTC 15 February 2004. 

Local state vectors and diagnostics are computed in 5 x 5 grid point cubes extending 

upward through all seven levels.  
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FIG 2. Graph showing the evolution of V (diamonds), TV (squares), and TVS (triangles). The diagnostics are 
calculated for all cycles initiated between 00 UTC 11 January 2004 and 12 UTC 15 February 2004. 

CHAPTER III 

RESULTS 

 

We tune the covariance inflation factor to satisfy the condition V ≈ TV at analysis times. 

We find that this condition is satisfied when the inflation factor is 130%. In our 

calculations, V, TV, and TVS are averaged over the northern extratropics (30°N - 90ºN) 

for each time. Forecasts with common lead times are then temporally averaged. 

 

Figure 2 shows the evolution of V, TV, and TVS. For forecasts with lead times of 6 to 24 

hours, TVS accelerates towards TV and away from V, signifying that the space    
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provides a good representation of the error space, while the ensemble further 

underestimates the variance in   . For forecasts past 24 hour lead times, TVS mimics 

behavior of TV and indicates that the ensemble represents the general pattern of forecast 

uncertainty. TV and TVS increase linearly through the whole forecast cycle, while V 

increases exponentially (                provides the best fit). The difference 

between V and TVS greatly decreases past the 84 hour lead time; this means that the 

ensemble better predicts the total variance in    and the magnitude of the forecast errors 

for longer lead times. 

 

Figure 3 shows the differences between TV and TVS for the time period of calculated 

diagnostics and Figure 4 the differences between TVS and V. For earlier lead times, the 

differences between all the diagnostics are increasing; however, TVS slows its rate of 

growth after 84 hours, decreasing the difference between TVS and V. Largest rates of  

 

 

 

 

 

 

 

 

 

FIG 3. Differences between TV and TVS. FIG 4. Differences between TVS and V. 
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change in Figure 4 occur between 6 to 30 and 102 to 120 hour lead times. It is of 

particular interest to note that the difference in TV and TVS begins to maintain a constant 

value past the 108 hour forecast time. 

 

Configuring the energy rescaling to omit certain state variables at different times (e.g. 

only upper level winds, surface pressure and temperatures at all levels, low level winds 

and high level temperatures, etc.) showed trends similar to what was found when 

including all state variables at all levels, though with lower values because of a smaller 

total error. As a result, it is demonstrated that these diagnostics are not strongly 

dominated by one state variable but are rather an accurate portrayal of the general of all 

state variables. 

 

A large obstacle encountered over the course of this project was the compatibility of the 

SPEEDY model (a simplified model used mostly in a testing environment) with 

diagnostics applied to state-of-the-art weather models. It took a considerable amount of 

time to code and debug the programs; inevitably, this is one of the consequences of 

computer-based programming. Additionally, some of the simplifications used in the 

SPEEDY model could be influencing a higher overall forecast error.  
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CHAPTER IV 

CONCLUSIONS 

 

We have shown that the linear diagnostics of SS10 are applicable to the simplified 

global circulation model used in this study. These diagnostics indicated a good 

representation of the pattern of uncertainties by the ensemble forecasts; however, for the 

lead time period used in this study (6 hours up to 120 hours), the magnitude of the 

uncertainties projected onto the linear space    was underestimated. One cause for this 

could be the large area over which the diagnostics are spatially averaged. A closer 

examination in the areas of error could lead to places with consistently underestimated 

forecast uncertainties, which often appear as a result of incorrect resolution of 

orography. In these cases, a bias correction factor would be implemented in these areas. 

 

Analysis schemes have the ability to tune forecast uncertainties; for this study, a 

multiplicative covariance inflation factor was used to analyses so that the initial forecasts 

would provide an accurate estimate of the magnitude of forecast uncertainty projected 

onto the linear space   . But, the estimated magnitude of this uncertainty is largely 

underestimated for longer lead times from 6 to 114 hours, yet it decreases with time. The 

trend present in our experiments suggests a possibility that the ensemble may estimate 

the magnitude of the forecast space better for forecasts further out than 120 hours. 
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We propose that further investigation of the linear diagnostics’ behaviors at these longer 

forecast lead times is required to determine whether the diagnostics remain a valid 

predictor of ensemble performance at these times. If validity is confirmed, a post process 

could be implemented to enhance ensemble forecasts leading to an improved 

interpretation of the forecasts. 
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