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ABSTRACT 
 

Response of Wetland Soils to Flow Alterations in the Sabine River below Toledo Bend 
Dam for the Texas Instream Flows Program. (April 2011) 

 

Deseri Dawn Nally 
Department of Ecosystem Science and Management 

Texas A&M University 
 

Research Advisor: Dr. Georgianne Moore 
Department of Ecosystem Science and Management 

 

 Hydric soils are a key component to the development of wetland ecosystems. It is well 

documented that dams change the hydrology and sediment deposition of regulated rivers 

which can alter hydric soil properties on the riparian wetlands. This research looks at 

four different techniques to establish if hydric conditions have changed below the 

Toledo Bend Dam: pH, redoximorphic features (“redox”), presence of Ferrous Iron (Fe 

+2), and the chroma of soil colors. Three riparian wetland sampling sites were identified 

below the dam using high radar LIDAR digital elevation modeling. Soils were collected 

from each stratum to a depth of 50 cm using a stratified random approach. Distinct 

patterns were observed in regards to the pH, redox, Ferrous Iron, and color of soils at the 

three research sites. In general, soils had a lower pH and more redox potential with 

decreasing elevation and with increasing distance from Toledo Bend Dam suggesting 

only the lowest elevations were hydric soils. Reduced conditions detected by ferrous iron 

also indicated that sites farthest from the dam were retaining hydric properties. Chroma 

color, although less consistent, also supported the reduced effect on sites downstream. 
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The results are to be presented to the Texas Instream Flow program to help assess the 

conditions of the Lower Sabine River.  
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CHAPTER I 

INTRODUCTION 

 

Since the earliest human records, people have depended on river ecosystems. Rivers not 

only supply food and water, they also supply many other ecosystem services such as 

water regulation, purification, nutrient cycling, and pollution sinks. For instance, nutrient 

rich sediment deposited by rivers creates bottomland hardwood forest valuable to the 

lumber industry. Services such as spiritual and aesthetic are harder to put a value on, but 

are still deeply ingrained into our culture.  Even with all the services offered by these 

systems, their unpredictable hydrological patterns have led to cost of property and life. 

 

Rivers are subject to flood pulses that keep them healthy by causing disturbances that 

help with succession processes that promote species diversity and flush out pollutants 

(William and Haeuber, 1998; Bolze et al., 2010; Johansson and Nilsson, 2002). This 

frequent saturation of floodplain soils creates anaerobic soil conditions that support 

vegetation communities such as bottomland hardwood forest.  With the introduction of 

dams to these systems, flood pulses, as well as other hydrological processes have been 

greatly altered (Friedman et al., 1998; Baldwin and Mitchell, 2000; Gregory et al., 

1991).  Generally, dams reduce the flood frequency and time of inundation or saturation. 

In cases where it is evaluated that dam removal is beneficial to an ecosystem, the public 

_______________ 
This thesis follows the style of River Research and Application. 
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and local governments may be opposed due to unknown consequences of the removal  

(Graber and Johnson, 2002). This leads to the need to understand what type of 

hydrological processes are needed in each system, and how we can repair them with 

present restraints. With the knowledge of the importance of free-flowing rivers, states 

have developed new tools based on sound research, to assess the conditions of their 

rivers with the ultimate goal of regulating instream flow. Instream flows are considered 

the amount of water that should be present in a river or stream for it to perform its 

function (Rushton, 2000). Washington and Oregon State were one of the first to initiate 

an instream flow program (Rushton, 2000; Pilz, 2006).  Soon other states formed 

programs such as the Tennessee Wildlife Resource Agency Instream Flow Program 

(TWRA, 2010; Foster 2010) and Policy for Maintaining Instream Flows in Northern 

California Coastal Streams (Water Resources Control Board, 2010) to assess their own 

rivers. There are currently organizations such as the Instream Flow Council (Annear et 

al., 2009), that are attempting to help and encourage states to create national and 

international assessment tools and standards for monitoring instream flows and river 

health. Creating these assessment tools requires in-depth knowledge of past and present 

conditions of rivers. This newest knowledge of assessing instream flows is currently 

being used by Texas agencies to evaluate stream conditions. In 2001 the 77th Texas 

legislature Senate Bill 2 created the Texas Instream Flow Program (Mallard et al., 2005). 

The focus of the Texas program is to apply in-depth and research based techniques to the 

field of instream assessment. Senate bill 2 focuses on three Texas Rivers: Sabine, 

Brazos, and San Antonio. 
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 The Sabine River’s largest dam is the Toledo Bend Dam. Built in 1967, it is unknown 

how much this dam has affected the ecosystem services provided by Sabine River 

wetlands.  Immediately downstream of the dam, the channel has become sediment 

starved, although the sediment regime appears to return to historic levels by several 

kilometers downstream (Phillips, 2003). Sediment deposits are evident downstream, but 

potential changes in the hydrology and resulting changes in the wetland status have not 

been thoroughly evaluated. Frequency, timing, and duration of flooding are all factors 

that develop hydric soils. Since hydric soils require being inundated with water until 

they form an anoxic state, they are useful indicators of wetland health. Hydric soils and 

vegetation associated with them are essential for ecosystem services (Mooney et al., 

2005).  When these natural flows are interrupted, it can change the natural cycles and 

cause drying and oxidation (Baldwin and Mitchell, 2000). This makes evaluation of 

hydric soils a possible tool to help Texas Instream Flow program determine the health of 

the Sabine River.   

 For instance, soil redox can be observed to determine the state of oxidized and anoxic 

conditions. Likewise, soil pH might indicate changes in wet and dry cycles in the soil. 

Though it has not been used much, it is known that acidic hydric soils tend towards 

circumneutral during saturation periods (Wharton et al., 1982; Cook et al., 2009; 

Gosselink and Mitsch, 1986). It is possible that pH may vary across gradients of soil 

saturation that develop in floodplains subject to more flooding in low-lying areas and 
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less flooding at higher elevations. It follows that soil pH may provide evidence of 

changing flooding conditions (e.g. soils that were frequently saturated in the past and 

less saturation at the current time).  Since this property of soil is an uncommon wetland 

indicator, it must first be determined if pH can serve as an adequate test for determining 

the condition of hydric soils.  Observing colors of hydric soils is another simple way to 

discover its anoxic state (Hurt et al., 2003). Hydric soils have a Munsell chroma color of 

≤ 2 with redox and ≤ 1 without redox, while soils that are aerobic have a lighter color 

(Environmental Laboratory, 1987). Soil pH, redox, ferrous iron test, and chroma colors 

together are powerful tools to detect current and changing soil properties. Titus (1990) 

and Collins et al (1982) found that minor elevation changes can have major impacts on 

vegetation such as seedling growth and safe sights for invasive species. If altered 

hydrology has changed sediment delivery, and the length of time soils are saturated, then 

it would be expected for zones of the wetlands to transition from hydric to non-wetland 

soils, especially in locations that are topographically high. Focusing on soils in sloughs 

(lowlands), levees (uplands), and midlands helps interpret how soils vary along elevation 

gradients. The objective of this study was to evaluate if the Sabine River is retaining its 

hydric soils south of Toledo Bend Dam. If the hydrology has changed after the dam was 

constructed, we expect hydric to non-hydric soil transitions will be evident in specific 

zones adjacent to the river (e.g. higher elevation sites) and in sites located upstream 

closer to Toledo Bend dam. Since soil pH has not been fully established as a wetland 

indicator, the second objective of this study is to look at soil pH along with the combined 

measurements of soil redox to develop a robust indicator of hydric soils on the Sabine 
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River floodplain. The analysis of the Sabine River’s hydric soils will be reported to the 

Instream Flow Program in order to help determine the health of the Sabine River 

wetlands downstream of Toledo Bend Dam.   
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CHAPTER II 

METHODS 

 

Study site 

The Sabine River, that forms most of the Texas-Louisiana boarder, is over 483 km long 

with a total drainage basin of approximately 25,270 km2. The subtropical climate 

produces an annual precipitation of 1100 mm to 1200 mm that falls throughout the year. 

During mid-summer, drought can occur followed by tropical storms that can cause 

flooding of lowlands for days to weeks (Cushing, 2005). Common vegetation found in 

this bottomland hardwood forest is Sweetgum (Liquidambar styraciflua), Water Tupelo 

(Nyssa aquatica), Bald cypress (Taxodium distichum), poison ivy (Toxicodendron 

radicans), green briar (Smilax bona-nox), and Graybark Grape (Vitis cinerea). In 1969 

the Toledo Bend Dam was completed and separated the river into upper and lower 

sections. In order to determine the effect of the dam, this research focuses on the lower 

Sabine River.  

 

Three sites were chosen: Anococo Bayou, Big Cow Creek, and Sabine Island. Details of 

how these sites were selected are provided in the section below.  According to the NRCS 

Soil Survey classification (Soil Survey Staff, 2011) the Sabine Island site has a 70% 

dominance of Guyton and Bienville soils with a pH that averages 4.8 while 22% of the 

site has Barbery mucky clay that averages a 7.5 pH. The Big Cow Creek site is 53% 

Urbo and Matachie soils of pH 5.0, 9% Bernaldo-Besner soil of pH 5.6, and a small 
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percentage of other soils that occured in our sampling area. The Anacoco Bayou site had 

the least soil-type diversity with the entire site being classified as Urbo-Matachie soils.   

 

Sample collection 

Three qualified sites for this research were selected within 500 m of the river based on 

topography, time since logging of at least 60 years, and accessibility. The site closest to 

the Toledo Bend dam is Anacoco Bayou located 79 km downstream (N300 48’ 14.3” 

W930
34’08.6”). Big Cow Creek site is located downriver of the Anacoco Bayou site, 

103 km from the dam (N300
40’11.9” W93

0
39’26.7”), while Sabine Island is farthest 

from the dam, 204 km downstream (N300
10’50.9” W93

0
42’33.8).  Each site was 

separated into nine plots based on topography, with three plots each in lowlands, 

uplands, and midlands, respectively. Five potential sampling plots were selected using a 

digital elevation model from Louisiana atlas statewide GIS converted to ESRI ArcMap. 

Of the five sample sites, three were sampled while two sites remained available as 

alternates.   
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             Figure 1.  Anacoco Bayou elevation map of Lowlands  

             (S1,S2,S3), Midlands(M1,M2,M3), and Uplands  

             (L1,L2,L3). Elevation units are in feet above sea level 

 
 

 
            Figure 2.  Big Cow Creek elevation map of Lowlands  

            (S1,S2,S3), Midlands (M1,M2,M3), and Uplands  

            (L1,L2,L3). Elevation units are in feet above sea level 
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                  Figure 3.  Sabine Island elevation map of Lowlands 

                  (S1,S2,S3), Midlands (M1,M2,M3), and Uplands  

                  (L1,L2,L3). Elevation units are in feet above sea level 

 
 
 
Upon locating the plot GPS coordinates, the stratified random sampling method was 

used to locate and mark 10 m × 10 m plots. For each plot, four points were selected for 

sampling (Figures 1, 2, and 3). The first point was determined by random selection, 

while points 1-m North, South, and East of the central location were measured. I 

extracted 100−300 g soil samples from each stratum to a depth of 50 cm.  

 

Soil analysis 

For pH testing, samples were air dried, sifted with a 2 mm sieve, and major roots and 

debris removed. From this process 10 g of soil and 25 mL of deionized water was added. 

The suspension was then stirred for one minute and allowed to rest for one hour (Carter, 

1993).  A model Ecosense pH10 (YSI, inc., Yellow Springs, Ohio) was placed into the 

supernatant that was gently stirred prior to measurement and allowed to settle briefly 

before pH was recorded.  
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 I observed redoximorphic features two ways: ferrous iron test and presence of mottles. 

One droplet of alpha-alpha-Dipyridyl solution was applied in the field to each identified 

stratum of freshly excavated soil to test for ferrous iron (Fe 2+). Soils that test positive 

for ferrous iron indicated they were currently in a reduced hydric state associated with 

wetland conditions. A negative test indicated that oxidation is occurring and anaerobic 

conditions of hydric soils are not present at the time (Environmental Laboratory, 1987) 

associated with temporary or seasonal drying of soil. Soil mottles were also observed to 

determine if reducing and oxidation cycles were occurring in the system. The appearance 

of reddish and dark colored patches along oxidized root channels were indicative of 

mottles formed when the soil is saturated long enough for ferrous iron to move through 

the system and then become oxidized during the dry season when oxygen can move 

through the soil. The oxidization of ferrous iron looks orange or red in the soil matrix 

and indicates hydric properties. 

 

Each sample was examined in the lab for hydric color properties by using Munsell 

coloring of the matrix in moist to air-dried conditions. For soils to be classified as hydric 

soils they must have a Munsell chroma color of ≤ 2 with mottles or a chroma of ≤ 1 with 

no mottles (Environmental Laboratory, 1987).  

 

  We analyzed the results of pH by site and elevation by comparing mean differences 

using analysis of variance followed by post-hoc Fisher’s LSD multiple comparisons 

procedure (JMP v8, SAS, Inc., Cary, NC). 
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CHAPTER III 

RESULTS 

 

Elevation effects on pH 

Distinct soil pH patterns were observed in the research sites. Soil pH averaged 4.93 ± 

0.04 in the lowlands, 5.30 ± 0.05 in the midlands, and increased to an average of 5.75 ± 

0.05 in the uplands (figure 4). Patterns of pH were normally distributed (Figure 5).  

 

 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Average pH recorded at elevation of Lowland 

(L), Midland (M), and Upland (U) of each plot using a total 

of 272 soil samples 

Average pH of Elevation 
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A similar pattern was observed in the elevations of each site. The Anacoco Bayou had 

the greatest elevation difference of 2.8m between the lowland and upland plot. The soil 

pH of this plot also had the greatest difference of 1.3 units from the lowland reading of 

4.7 to the upland at 6.0. Big Cow Creek sites had a slightly smaller evaluation change of 

2.6m, and a pH difference of 0.8. At the Sabine Island site there was only a 0.6m 

elevation variance and lower elevation of all the sites, but the same pattern of lower pH 

increasing to higher pH with a 0.3 difference was observed (Figure 6).  

 
 
 

Figure 5.  Frequency of pH and pH recorded at the Lowland (L), Midland (M), 

and Upland (U) of each plot using 272 soil samples 
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Figure 6  Average pH of Anacoco Bayou (AB), Big Cow Creek (BBC), and Sabine Island (SI)  

  sites and plot elevation of Lowland (L), Midland (M), and Upland (U). Means with different  

  letters are significantly different (Fisher’s LSD test).  

 

 

 

Redox and pH 

Redox (mottles) was observed by site and elevation to determine any trends that would 

correlate to the hydric conditions of the sites (Figure 7). Each site had a large percentage 

of mottles present. Anacoco Bayou had 56% of the samples taken present redox. Big 

Cow Creek had 71% and Sabine Island 74% of observed soil samples with redox. This 

could be due to Sabine Island retaining acidic hydric soils that reduce the saturation time 

required for redox features to develop (Brookins, 1988). Mottles were more frequent in 

the lower elevations and less frequent in the upper elevations at Anacoco Bayou and Big 
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Cow Creek. However, at Sabine Island, this trend reversed. Sabine Island had more 

mottles at midland and upland elevations. This may be associated with continuous 

anaerobic saturated conditions in the lowest elevations at that site. 

  
 
 
 

 
Figure 7.  Percentage of redox features (mottles) found in the Lowlands (L), 

 Midlands (M), and Uplands (U) at Sabine Island (SI), Anacoco Bayou (AB),  

and Big Cow Creek  
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Ferrous iron test 

The ferrous iron test using alpha-alpha Dipyridyl showed that few soil samples where in 

a reduced state. A large number of soil samples from Sabine Island tested positive 

compared to the Anacoco Bayou site, while no samples showed reduced conditions at 

the Big Cow Creek site (Table 1). 

 
 
 
Table 1  Samples that tested positive for ferrous iron that indicate hydric soils compared to total 

samples taken at Anacoco Bayou (n = 106), Big Cow Creek (n = 84) and Sabine Island (n = 79). 

 Anacoco Bayou Big Cow Creek Sabine Island 

Positive for Ferrous Iron 6 0 26 

Negative for Ferrous Iron 100 84 53 

Total Test 106 84 79 

Percent Positive 6% 0 21% 

 
 
 
Chroma indicators of hydric soils  

A distinct pattern in wetland colors (i.e. chromas of 2 and lower) was seen as the sites 

moved farther away from Toledo Bend Dam. In the high elevation sites, Anacoco Bayou 

and Big Cow Creek, the uplands had an equivocal percentage of hydric and non-hydric 

coloring.  Anacoco Bayou had 58% of the soil samples indicating hydric colors while 

Big Cow Creek had 56%. This is expected due to the higher elevation. The Sabine site 

had 91% of its soil samples indicate hydric colors (Table 2). This is expected since the 
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lower elevations should have more water saturation that causes the distinct chroma 

colors of hydric soils.  

 

 

 

Table 2.  Samples with Positive Munsell chroma colors that indicate hydric soils compared to total 

samples taken at Anacoco Bayou (n = 106), Big Cow Creek (n = 84), and Sabine Island (n = 79) 

 Anacoco Bayou Big Cow Creek Sabine Island 

Chroma ≤ 2 with mottles 51 43 58 

Chroma ≤ 1 w/o mottles 10 4 14 

Total Positive Chroma 61 47 72 

Percent of Hydric Chroma 58% 56% 91% 
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CHAPTER IV 

SUMMARY AND CONCLUSION  

 
The properties of soils recorded during this research strongly suggest that hydric 

properties are not being maintained at sites closest to the dam. At distances farther from 

the dam, results indicate that hydric properties increase and little influence of the dam 

was observed. The pH at Anacoco Bayou was not as consistent as it was at Sabine Island 

and Big Cow Creek sites. The expected pH of this Urbo soil should be around 5.0. Most 

plots showed the expected pH, but in the lowland plots a lower pH of 3.8 and 3.9 was 

observed. Since this site shows some lower than expected pH, this could indicate that 

flooding is no longer having an effect on the system. Processes such as rain leaching can 

often influence soil by reducing its pH (Helyar et al., 1999). Anacoco Bayou also had a 

low percentage of mottles and only 6% of samples tested positive for ferrous iron. All 

together, these results suggest this site is not being saturated for adequate periods of time 

(He, 2003). 

 

Hydric properties of the Big Cow Creek site indicated that this location is in transition to 

more non-hydric properties. The pH and mottles observed at this site suggests that this 

site experiences periods of saturation, but not as long as observed at the Sabine Island 

site. The fact that this site had no samples test positive for ferrous iron and had the 

lowest percent of hydric chroma colors both provided evidence that it is not currently 

receiving long saturation periods. As with the Anacoco Bayou site, pH of soils and redox 
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responded sharply to changes in elevation. The upland plots were in Bernardo-Besner 

soils with pH of 5.6 while the lowland and midland plots were located in Urbo and 

Matachie soils of pH 5.0. 

 

 Sabine Island soils more commonly exhibited hydric properties, no matter the elevation, 

compared to the other two sites. Soil pH was generally low and only increased slightly in 

the upland elevations. If acidic soils are saturated for long enough periods of time, I 

would expect to see increases in pH toward circumneutral and regular movement of 

ferrous iron through the system. Instead, the consistently low pH and high percentage of 

mottles demonstrates that this site is not only currently saturated, but it also receives 

regular wet/dry cycles. In addition, chroma colors and ferrous iron tests support the other 

indicators of saturated soils. All of the soils sampled at Sabine Island were classified as 

Guyton and Bienville which typically have a pH of 4.8 compared with my observed 

average of 5.1. 

 

Due to the dynamic nature of this ecosystem, it is necessary to observe many properties 

to assess the overall condition of an area to determine whether it meets wetland 

qualifications. Munsell colors are best identified when soil samples are being collected 

and still field moist. While color results were fairly consistent with the other types of 

tests and with expected soil series classifications, one third of the soil samples were 

identified in the field while the rest were stored for up to a month before testing.  
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The objective of establishing pH as a good field indicator is still uncertain. One obstacle 

to overcome is the correct identification of the soil being tested. The NRCS soil survey 

can give a general classification of soils in the area, but it is not designed to catch small 

areas of soil variability that could greatly influence pH results and interpretation. In 

conclusion, the use of four combined soil test provided more detailed and comprehensive 

information while pH could be used as a first indicator that the system needs further 

evaluation. 
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APPENDIX 

 

 

Site UML Depth Redox Redox (+) Matrix Color Chroma pH Fe+ 

BCC U 2   0 10 6 3 6.1 N 

BCC U 4   0 10 5 1 5.7 N 

BCC U 20 7.5 6/8  1 10 6 4 6.3 N 

BCC U 7   0 10 7 4 5.6 N 

BCC U 12   0 10 5 4 6.2 N 

BCC U 20 5 4/6 1 10 6 4 6.5 N 

BCC U 2   0 10 8 3 5.8 N 

BCC U 12   0 10 5 4 5.8 N 

BCC U 20 7.5 6/8  1 10 6 1 6.4 N 

BCC U 1 7.5 6/8  1 10 8 3 6.3 N 

BCC U 3   0 10 5 1 6 N 

BCC U 12   0 10 5 4 6.5 N 

BCC U 20   0 10 6 1 6.5 N 

BCC U 3   0 10 6 2 5.8 N 

BCC U 20 5 5/8 1 10 6 4 6.1 N 

BCC U 2   0 10 5 2 6.1 N 

BCC U 20 5 5/8 1 10 6 3 5.7 N 

BCC U 2   0 10 4 2 6 N 

BCC U 20 5 5/8 1 10 5 4 5.3 N 

BCC U 2   0 10 4 2 5.5 N 

BCC U 20 5 5/8 1 10 6 3 5.9 N 

BCC U 2   0 10 5 2 5.8 N 

BCC U 20   0 10 6 4 6 N 

BCC U 2   0 10 5 2 5.7 N 

BCC U 20 7.5 6/8 1 10 6 3 6 N 

BCC U 3   0 10 7 3 5.8 N 

BCC U 20 7.5 5/8 1 10 6 3 5.8 N 

BCC U 2   0 10 5 2 5.9 N 

BCC U 20 7.5 6/8 1 10 6 3 6.1 N 

BCC M 2 7.5 6/6 1 10 6 2 4.9 N 

BCC M 20 5 5/8 1 10 5 3 5.3 N 

BCC M 2   0 10 5 2 5.4 N 
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BCC M 20 7.5 6/8 1 10 6 2 5.1 N 

BCC M 2   0 10 5 2 5.1 N 

BCC M 20 5 5/8 1 10 5 2 5.4 N 

BCC M 2 5 6/6 1 10 6 3 5 N 

BCC M 20 5 5/8 1 10 5 3 5.7 N 

BCC M 1   0 10 5 2 5.1 N 

BCC M 20 5 5/8 1 10 6 3 5.2 N 

BCC M 1   0 10 5 2 5.1 N 

BCC M 20 5 5/8 1 10 6 4 5.2 N 

BCC M 1   0 10 5 2 4.6 N 

BCC M 20 5 5/8 1 10 6 2 5.2 N 

BCC M 1   0 10 6 2 4.7 N 

BCC M 20 5 5/8 1 10 5 4 5.1 N 

BCC L 3 5 4/6 1 10 4 2 4.8 N 

BCC L 20 10 5/8 1 10 7 2 5.5 N 

BCC L 4 10 7/6 1 10 4 1 5 N 

BCC L 20 7.5 6/8 1 10 7 1 5.5 N 

BCC L 8 7.5 4/6 1 10 4 2 5 N 

BCC L 20 7.5 6/8 1 10 7 2 5.5 N 

BCC L 6 7.5 4/6 1 10 5 1 5.1 N 

BCC L 20 7.5 6/6 1 10 6 2 5.7 N 

BCC M 2 7.5 6/8 1 10 4 2 5 N 

BCC M 20 5 5/8 1 10 6 2 5.3 N 

BCC M 3 5 6/8 1 10 4 2 5 N 

BCC M 20 5 5/8 1 10 5 2 5.4 N 

BCC M 5 5 5/6 1 10 4 2 4.9 N 

BCC M 20 5 5/6 1 10 5 2 5.1 N 

BCC M 3 5 6/8 1 10 4 2 4.8 N 

BCC M 10 5 5/6 1 10 5 2 5.7 N 

BCC M 20 5 5/6 1 10 5 2 5.2 N 

BCC L 6 5 5/6 1 10 5 2 5.1 N 

BCC L 12 7.5 5/8 1 10 5 2 5.3 N 

BCC L 20 5 5/8 1 10 5 2 5.5 N 

BCC L 2 5 6/8 1 10 4 2 4.9 N 

BCC L 11 5 5/8 1 10 4 2 5 N 

BCC L 20 5 4/6 1 10 4 2 5.2 N 

BCC L 3 5 5/8 1 10 4 2 5.1 N 

BCC L 11 5 6/8 1 10 5 2 5.3 N 

BCC L 20 5 6/8 1 10 5 2 5.5 N 
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BCC L 3 7.5 6/8 1 10 4 2 4.7 N 

BCC L 12 5 5/8 1 10 4 2 5.1 N 

BCC L 20 5 4/6 1 10 4 2 5.1 N 

BCC L 3 7.5 6/8 1 10 4 2 4.6 N 

BCC L 12 5 4/6 1 10 4 2 5.2 N 

BCC L 20 5 6/8 1 10 5 2 5.3 N 

BCC L 3 7.5 6/8 1 10 4 2 4.5 N 

BCC L 12 5 5/8 1 10 4 2 4.9 N 

BCC L 20 5 6/8 1 10 5 2 5.3 N 

BCC L 12 7.5 4/6 1 10 4 1 4.8 N 

BCC L 3 7.5 4/6 1 10 4 1 4.8 N 

BCC L 20 7.5 5/8 1 2.5 5 2 5.1 N 

BCC L 3   0 10 3 1 4.8 N 

BCC L 15 7.5 5/8 1 10 5 1 5.3 N 

SI U 2   0 10 5 2 5.5 N 

SI U 8 7.5 5/8 1 10 5 2 5.8 N 

SI U 20 7.5 5/8 1 2.5 5 2 4.4 N 

SI U 2 7.5 5/8 1 10 5 1 5 N 

SI U 8 7.5 5/8 1 10 5 2 5.8 N 

SI U 20 7.5 5/8 1 2.5 5 2 4.6 N 

SI U 2   0 10 4 1 5.5 N 

SI U 8 7.5 5/8 1 10 5 2 5.7 N 

SI U 20 7.5 5/8 1 2.5 5 2 4.7 N 

SI U 2   0 10 5 2 5.8 N 

SI U 8   0 10 5 2 6 N 

SI U 20   0 2.5 5 2 4.7 N 

SI U 1 7.5 5/8 1 10 7 2 5.4 N 

SI U 8 7.5 5/8 1 10 7 2 5.3 N 

SI U 20 7.5 5/8 1 2.5 5 2 4.9 N 

SI U 2   0 10 5 2 5.1 N 

SI U 8 7.5 5/8 1 10 7 2 5.6 N 

SI U 20 7.5 5/8 1 2.5 5 2 5.4 N 

SI U 6 7.5 5/8 1 10 7 2 5.5 N 

SI U 20 7.5 5/8 1 2.5 5 2 5.5 N 

SI U 2 7.5 6/8 1 7.5 6 2 5.3 N 

SI U 20 5 5/8 1 10 5 2 5.2 N 

SI M 6 5 4/6 1 10 4 2 5.2 N 

SI M 20 7.5 5/6 1 2.5 5 2 5.1 N 

SI M 6 7.5 5/8 1 10 4 2 4.9 N 



  26 

SI M 20 5 4/6 1 10 4 2 4.6 N 

SI M 6 7.5 5/8 1 10 4 2 5.3 N 

SI M 20 7.5 5/6 1 2.5 5 2 5 N 

SI M 6 7.5 5/8 1 10 4 2 5.4 N 

SI M 20 7.5 5/6 1 2.5 5 2 4.6 N 

SI U 5 10 6/8 1 10 6 2 5.6 N 

SI U 20 7.5 5/6  1 2.5 5 2 5 N 

SI U 6 10 6/8 1 10 6 2 5.5 N 

SI U 20 7.5 5/6 1 2.5 5 2 4.8 N 

SI U 6 10 6/8 1 10 6 2 5.6 N 

SI U 20 7.5 5/6 1 10 5 2 4.9 N 

SI U 6 10 6/2 1 10 6 2 5.4 N 

SI U 20 7.5 5/6 1 2.5 5 2 4.5 N 

SI L 9 7.5 6/2 1 2.5 5 2 5.2 N 

SI L 8 7.5 5/6 1 2.5 5 2 5.3 N 

SI L 10 7.5 5/6  1 2.5 5 2 5 N 

SI L 8 7.5 5/6  1 2.5 5 2 5.2 N 

SI M 6 7.5 5/8 1 10 5 2 5.6 N 

SI M 9 5 5/6 1 10 5 2 5 N 

SI M 20 7.5 6/8 1 10 5 2 4.9 N 

SI M 6 7.5 6/6 1 10 5 2 5.1 N 

SI M 20 7.5 5/8 1 2.5 5 2 4.7 N 

SI M 6 7.5 5/8 1 10 5 2 5.4 N 

SI M 20 5 5/8 1 2.5 5 2 5.1 N 

SI M 6 7.5 5/8 1 10 5 2 5.3 N 

SI M 20 5 5/8 1 10 5 2 4.8 N 

SI L 6   0 10 5 1 5.4 Y 

SI L 6   0 10 5 1 4.9 y 

SI L 20   0 2.5 5 2 4.8 N 

SI L 6   0 2.5 5 1 5 Y 

SI L 20 7.5 6/8 1 10 6 2 4.8 Y 

SI L 6   0 10 5 1 5.3 Y 

SI L 20 5 5/8 1 2.5 5 2 4.8 Y 

SI L 6   0 10 4 1 4.6 Y 

SI L 6   0 2.5 4 2 4.9 Y 

SI L 20   0 10 5 1 4.6 Y 

SI L 6   0 10 5 1 4.9 Y 

SI L 12   0 10 5 1 5.4 Y 

SI L 20   0 2.5 4 1 4.8 Y 
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SI L 8   0 10 5 1 5.3 Y 

SI L 15   0 10 4 1 4.5 Y 

SI L 20   0 10 4 1 5.3 Y 

SI M 3 5 5/8 1 10 5 1 4.7 Y 

SI M 10 5.625 1 10 5 1 4.9 Y 

SI M 20 5.77 1 10 6 1 4.6 Y 

SI M 3 7.5 8/8 1 10 5 1 5.2 Y 

SI M 10 7.5 5/8 1 10 6 1 4.6 Y 

SI M 20 5 5/8 1 10 6 1 4.7 Y 

SI M 3   0 2.5 5 2 5.1 Y 

SI M 10 5 6/8 1 10 5 1 4.9 Y 

SI M 20 5 6/8 1 10 6 1 4.3 Y 

SI M 3 5 6/8 1 10 5 2 5 Y 

SI M 10 7.5 5/8 1 10 6 1 5 Y 

SI M 20 5 5/8 1 10 5 1 4.9 Y 

AB U 2   0 10 3 1 6 N 

AB U 8 7.5 6/8 1 10 5 2 5.7 N 

AB U 20 5 5/8 1 2.5 5 2 5.6 N 

AB U 2   0 10 3 1 6 N 

AB U 8 5 5/8 1 2.5 5 2 5.8 N 

AB U 20 5 5/8 1 2.5 5 2 5.5 N 

AB U 2   0 10 4 2 5.9 N 

AB U 8 7.5 6/8 1 2.5 5 2 5.8 N 

AB U 20   0 2.5 5 2 5.9 N 

AB U 2   0 10 3 1 5.6 N 

AB U 8 5 5/8 1 2.5 5 2 5.8 N 

AB U 20 5 5/8 1 2.5 5 2 5.3 N 

AB U 2   0 10 3 2 6.6 N 

AB U 5   0 10 6 3 5.9 N 

AB U 20 7.5 6/8 1 10 6 3 5.6 N 

AB U 2   0 10 3 2 6.5 N 

AB U 5   0 10 6 3 6.6 N 

AB U 20 7.5 6/8 1 10 6 3 5.3 N 

AB U 2   0 10 3 2 6.2 N 

AB U 5   0 10 6 3 6.8 N 

AB U 20 7.5 6/8 1 10 6 3 6.5 N 

AB U 2   0 10 3 2 6.4 N 

AB U 5   0 10 6 3 5.4 N 

AB U 20 7.5 6/8 1 10 6 3 5.7 N 
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AB U 1   0 10 3 2 6.4 N 

AB U 4   0 10 5 3 6.2 N 

AB U 20 7.5 6/8 1 10 6 3 5.8 N 

AB U 2   0 10 3 2 6.1 N 

AB U 5   0 10 6 3 6.2 N 

AB U 20 7.5 6/8 1 10 6 3 6 N 

AB U 2   0 10 3 2 6 N 

AB U 5   0 10 6 3 5.8 N 

AB U 20   0 10 6 3 5.9 N 

AB U 2   0 10 3 2 6 N 

AB U 5   0 10 5 3 6 N 

AB U 20 7.5 6/8 1 10 6 3 6.5 N 

AB L .5   0 7.5 3 2 4.6 N 

AB L 4 5 5/8 1 10 5 1 5.1 N 

AB L 20 5 5/8 1 10 5 1 5.4 N 

AB L .5   0 7.5 3 2 4.7 N 

AB L 4 5 5/8 1 10 5 1 5 N 

AB L 20 5 5/8 1 10 5 1 5.4 N 

AB L .5   0 7.5 3 2 4.5 N 

AB L 4 5 5/8 1 10 5 1 5.1 N 

AB L 20 5 5/8 1 10 5 1 5.3 N 

AB L .5   0 7.5 3 2 4.7 N 

AB L 4 5 5/8 1 10 5 1 5 N 

AB L 20 5 5/8 1 10 5 1 5.1 N 

AB L 1 5 5/8 1 10 4 1 3.9 N 

AB L 15 5 4/6 1 10 5 1 4.5 N 

AB L 20 5 4/6 1 10 4 2 4.2 Y 

AB L 1   0 10 3 2 3.8 N 

AB L 15 5 5/6 1 10 5 2 4.8 N 

AB L 20 5 4/6 1 10 4 2 4.5 Y 

AB L 1   0 10 3 2 4.1 N 

AB L 15 5 5/8 1 10 6 1 4.6 N 

AB L 20 5 4/6 1 10 4 1 4.3 Y 

AB L 1 5 5/8 1 10 4 2 4.2 N 

AB L 15 5 5/8 1 7.5 5 1 4.7 N 

AB L 20 5 5/8 1 10 4 2 4.4 Y 

AB L 2   0 10 5 1 4.2 N 

AB L 8 5 4/6 1 10 4 2 5.6 N 

AB L 20 5 4/6 1 10 4 2 5.1 N 
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AB L 2   0 10 5 1 4.4 N 

AB L 20 7.5 5/8 1 10 5 1 5.2 Y 

AB L 2   0 10 5 1 4.5 N 

AB L 8 7.5 5/8 1 10 5 1 5 N 

AB L 20 7.5 5/8 1 10 5 1 5.3 N 

AB L 2   0 10 5 1 4.4 N 

AB L 8 7.5 5/8 1 10 5 1 4.9 N 

AB L 20 7.5 5/8 1 10 5 1 4.8 Y 

AB M 4   0 10 4 2 6.1 N 

AB M 15 5 4/6 1 10 6 2 5.3 N 

AB M 20 10 5/8 1 10 6 2 5.5 N 

AB M 3   0 10 4 2 5.8 N 

AB M 15 7.5 5/8 1 10 5 1 5.6 N 

AB M 20 7.5 5/8 1 10 5 1 5.7 N 

AB M 3   0 10 4 2 5.5 N 

AB M 15 5 4/6 1 10 6 2 5.4 N 

AB M 20 10 5/8 1 10 6 2 5.6 N 

AB M 2   0 10 4 2 5.8 N 

AB M 12 10 5/8 1 10 5 3 5.5 N 

AB M 20 7.5 5/8 1 10 6 2 6 N 

AB M 3   0 10 5 2 5.5 N 

AB M 6 7.5 5/8 1 10 6 2 5.5 N 

AB M 20 7.5 5/8 1 10 6 2 5.5 N 

AB M 3   0 10 5 2 5.6 N 

AB M 6   0 10 6 2 5.4 N 

AB M 20 7.5 5/8 1 10 6 2 5.4 N 

AB M 3   0 10 5 2 5.4 N 

AB M 6   0 10 6 2 5.2 N 

AB M 20 7.5 5/8 1 10 6 2 5.3 N 

AB M 3   0 10 6 2 5.3 N 

AB M 6 7.5 5/8 1 10 6 2 5.4 N 

AB M 20 7.5 5/8 1 10 6 2 5.6 N 

AB M 6   0 10 4 2 5.9 N 

AB M 6   0 10 4 2 6.2 N 
AB M 20 7.5 6/8 1 2.5 7 2 5.6 N 
AB M 1   0 7.5 3 1 6 N 
AB M 5 5 5/8 1 10 4 2 5.8 N 
AB M 20 7.5 6/8 1 2.5 7 2 6.3 N 
AB M 2   0 7.5 3 1 6.2 N 
AB M 5 7.5 6/8 1 10 5 2 5.8 N 
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AB M 20 7.5 6/8 1 2.5 7 2 5.6 N 
AB M 2   0 7.5 3 1 6.4 N 

AB M 5   0 10 4 2 6.2 N 

AB M 20 7.5 6/8 1 2.5 7 2 5.3 N 
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