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ABSTRACT 

 

History Matching Pressure 

Response Functions from Production Data. (December 2004) 

Mazher Hassan Ibrahim, B.S., Suez Canal University, Egypt; 

M.S., Suez Canal University, Egypt 

Chair of Advisory Committee: Dr. Robert A. Wattenbarger 

 

This dissertation presents several new techniques for the analysis of the long-

term production performance of tight gas wells. The main objectives of this work are to 

determine pressure response function for long-term production for a the slightly 

compressible liquid case, to determine the original gas in place (OGIP) during 

pseudosteady state (PSS), to determine OGIP in the transient period, and to determine 

the effects of these parameters on linear flow in gas wells. 

Several methods are available in the industry to analyze the production 

performance of gas wells. One common method is superposition time. This method has 

the advantage of being able to analyze variable-rate and variable-pressure data, which is 

usually the nature of field data. However, this method has its shortcomings. 

In this work, simulation and field cases illustrate the shortcomings of 

superposition. I present a new normalized pseudotime plotting function for use in the 

superposition method to smooth field data and more accurately calculate OGIP. The use 

of this normalized pseudotime is particularly important in the analysis of highly depleted 

reservoirs with large change in total compressibility where the superposition errors are 

largest. 

The new tangent method presented here can calculate the OGIP with current 

reservoir properties for both constant rate and bottomhole flowing pressure (pwf) 

production. 
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In this approach pressure-dependent permeability data can be integrated into a 

modified real gas pseudopressure, )(~ pm , which linearizes the reservoir flow equations 

and provides correct values for permeability and skin factor. But if the customary real-

gas pseudopressure, m(p) is used instead, erroneous values for permeability and skin 

factor will be calculated. This method uses an exponential equation form for 

permeability vs. pressure drop.  

Simulation and field examples confirm that the new correction factor for the rate 

dependent problem improves the linear model for both PSS and transient period, whether 

plotted on square-root of time or superposition plots.  
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CHAPTER I 

INTRODUCTION 

Problem Description 

Tight gas reservoirs are those with permeability less than 0.1 md. Tight gas 

reservoirs are usually found in deeper formations with high initial reservoir pressure, 

which assists gas production through the low permeability reservoir. Higher initial 

reservoir pressure gives lower values of Bg, which translates into a large quantity of gas 

at surface conditions. The low viscosity of gas ( gµ ) leads to high mobility ratio (k / gµ ), 

which also helps the gas flow easily through the reservoir. Economic exploitation of 

tight gas reservoirs requires large amounts of original gas in place, which requires large 

areal expanse of reservoir and thick net pays. The most common method to determine 

these reservoir parameters is from long-term production data. 

Pressure transient testing is an excellent method for determining reservoir 

characteristics under normal in-situ conditions. However, in tight gas reservoirs pressure 

transient testing can be unreliable and impractical. These gas reservoirs frequently 

require months or years to reach the middle, late-transient, or boundary-dominated flow 

periods. 

Instead long-term production data can be used to analyze tight gas reservoirs. 

Production analysis in tight gas reservoirs allows an estimation of the following 

information: formation conductivity, kh, formation damage; earlier flow effect; 

permeability-thickness CAk  product, permeability of the formation, k, cross-sectional 

area to flow, Ac, drainage distance investigated, yinv, drainage area, A; formation volume, 

FV; pore volume, Vp; original gas in place, and OGIP. 

 

 

 

___________ 
This dissertation follows the style of SPE Reservoir Evaluation & Engineering. 
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An accurate and dependable method used to analyze production performance of 

gas wells is superposition time. This method has the advantage of being able to analyze 

variable-rate and variable-pressure data, which is usually the nature of field data. 

However, this method has its shortcomings. Simulation and field cases used to illustrate 

the shortcomings of the superposition method to analyze long-term production data in 

transient linear flow and the pseudosteady state (PSS) period to calculate accurate 

reservoir parameters.  

The linear flow regime generally associated with tight gas reservoirs is defined as 

flow for which the cross-sectional area to flow is perpendicular to the flow paths and has 

a constant area. Linear flow in tight gas reservoirs may be occur under conditions of, 

anisotropy, linear or elongated reservoirs (channel sands, bar sands), high-permeability 

streaks, hydraulic fractures, and natural fractures, therefore linear flow analysis is 

important in determining reservoir parameters like CAk , k, Ac, yinv, A, Vp, OGIP, and 

reserves. 

Arévalo1-3 modified the constant-rate and pwf equations to match the actual value 

of OGIP in simulation models but he did not mention the reason for the error in these 

equations. To identify the source of error, we investigated the effect of different values 

of drawdown pressures on linearity of the plot of the square root of time t ; and 

superposition time for long-term production. Our equation will correct the plot for each 

method. 

Objectives and Procedures 

The objectives of this research are: 

(1) To present a new method for determing the pressure response function for long-

term oil production by using superposition. 

(2) To use simulation and field cases to review and compare the application of the 

superposition method and illustrate its shortcomings. 
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(3) To present a new normalized pseudotime to smooth field data and more 

accurately calculate OGIP. 

(4) To present a new normalized pseudotime and superposition to calculate OGIP for 

variable rate and pressures for gas wells. 

(5) To present a new tangent method to calculate the OGIP with current reservoir 

properties for both constant-rate and bottomhole flowing pressure production. 

(6) To present the parameters affecting on the non linearity of rectilinear flow in gas 

wells. 

(7) To present a new correction factor equation to correct the effect of drawdown on 

the accuarcy of the slope in plot of t  and superposition time. 

Reservoir simulation techniques are used in combination with analytical and field 

data to achieve our objectives. 

Organization of This Dissertation 

The outline and organization of this dissertation are as follows: 

I begin my work in the introductory Chapter I, in which I present the objectives 

and deliverables of this research.  

In Chapter II, I present a comprehensive literature review describing the 

technology of determining OGIP, decline-curve, linear-flow and superposition methods. 

In Chapter III, I present the shortcomings of the superposition method through 

analysis of simulation cases for oil wells. 

In Chapter IV, I discuss the determining of OGIP at PSS. We present new 

equation for determining OGIP with current properties for constant-rate and pressure 

production. Also, we present a new normalized pseudotime and superposition equation 

use in calculating OGIP accurately. 

In Chapter V, I discuss ways to determine OGIP at PSS including permeability-

dependent pressure. We update the pseudotime equation for determining OGIP with 

current properties for constant-rate and pressure production.  
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In Chapter VI, I discuss the parameters affecting the non linearity problem in 

constant-pwf production for the t  plot and superposition time plot. A correction factor 

will adjust for the two plots at each drawdown value, which will correct the effect of non 

linearity.  

In Chapter VII, I use the methods developed in Chapter III, Chapter IV, and V to 

analyze and interpret production data from field data in producing gas wells. I estimate 

the accurate reservoir properties and show validation of our by using numerical 

simulation. 

In Chapter VIII, I present summary, conclusions, and some recommendations for 

future research work. 

Finally, I present the nomenclature, references, and some appendixes developed 

in this research. 
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CHAPTER II 

LITERATURE REVIEW 

Determination of OGIP  

 If the average reservoir pressure is known from field measurements, a plot of p/z 

versus cumulative gas production (Gp) is the commonly accepted method used to obtain 

OGIP in closed gas reservoirs.4, 5 A straight line is fitted to the data, and OGIP is 

determined from the material balance equation: 

 )1(]
)1(

)(
1[

OGIP
G

z
p

S
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z
p p

i

i
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wiwf −=
−

+∆
− ........................................................ (2.1) 

 But we do not usually know the average reservoir pressure in tight gas reservoirs 

because of the long transient periods. So we try to estimate OGIP from long-term 

production data (flow rates, and wellbore flowing pressure). 

 The superposition time function has been used as a tool to analyze variable flow 

rate6 without knowing the average reservoir pressure. The superposition time is given by 
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The slope ( PSSm~ ) from plotting 
g
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pmpm )]()([ −

 vs. Superposition time is used to 

determine the OGIP by 
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Where ∫=
p

p go

dp
z

ppm
µ

2)( is the real gas pseudopressure defined by Al-Hussainy and 

Ramey.7 

Note that initial properties are used in Eq. 2.3. 

 Blasingame and Lee8 introduced a plotting variable called material balance time 

to account for variation in rate: 
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 This is exactly the same as the superposition time as shown in Appendix C. 

Agarwal9 and Lee and Holditch10 used pseudotime to linearize the transient analysis of 

gas wells with massive hydraulic fracture. They considered variations of gas viscosity 

and compressibility as functions of pwf. Their pseudotime was defined as 

 ∫=
t

wftwf
a dt

pcp
t

0 )()(
1

µ
.................................................................................. (2.5) 

 Fraim and Wattenbarger11 proposed an iterative procedure using the OGIP to 

predict average reservoir-pressure. They used a normalized pseudotime function to take 

into account the variation of gas properties and provide an exponential decline behavior 

for gas wells produced at a constant-pwf production. Their normalized pseudotime was 

defined as 

 ∫=
t

t
itn dt

pcp
ct

0 )()(
1)(

µ
µ ............................................................................. (2.6) 

 Palacio and Blasingame12 developed normalized pseudotime to account for rate 

change and calculate OGIP from the decline-curve match, which is based on Eq. 2.6 as 

follows: 

 ∫=
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 In the present work, we examine the shortcoming of using superposition time and 

Eq. 2.3 with initial properties to calculate the OGIP. It appears that, regardless of the 

flow regimes exhibited by the well/reservoir system, the reservoir properties change with 

pressure. If the cumulative production increased by more than 10%, the superposition 

time plot becomes non linear, and OGIP from Eq. 2.3 can have error more than 300%. 

To correct this error, we include the change in reservoir properties. We also will include 

the change in porosity with average reservoir pressure. The change in porosity as the 

pressure changes can be significant especially in high-pressure gas reservoirs with high 

compressibility. These changes can cause error in calculating OGIP. 



 7

Decline Type Curve Analysis 

 Decline-curve analysis is frequently used to predict future performance when 

minimal data are available to analyze rate/time performance of oil and gas wells. The 

most popular method for this analysis is the empirical Arps13 decline curve, which fits 

production rate decline when boundary effects dominate, primarily in high permeability 

oil and gas wells. 

 Fetkovich14 presented a log-log type curve for decline-curve analysis of wells in 

a closed radial reservoir. He combined the analytical solution for transient radial flow 

(for early times) with the Arps boundary-dominated decline curves (for later times). The 

Fetkovich type curve includes curves for values of b from 0 to 1, corresponding the 

Arps’ b parameter (b = 0 is exponential decline, b> 0 is hyperbolic decline). He showed 

that type curve analysis can be used very effectively when both transient and boundary-

dominated effects are present in the rate/time data.  

 Slider15 published a new type-curve-matching procedure based on a semi-log 

analysis approach to extrapolate production rate. He used a practical curve-fitting 

process based on Arp’s equations. Slider’s approach is more direct and uniform than 

Arp’s expressions as regression relations. A disadvantage is that Slide’s procedure needs 

a significant amount data preparation.  

 Gentry16 developed a new set of type curves that simplify the solution and give a 

confident extrapolation of production decline. This approach gave us an effective 

graphical method for solving all types of production decline curves (harmonic, 

hyperbolic, and exponential).  

 Nind17 presented graphical plotting functions that allowed unique straight-line 

relations for the hyperbolic decline-curve family (with the exception of the exponential 

case). Nind's approach is essentially a graphical regression of the Arps equations. 
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 Maley18 presented decline-curve equations that can be used to give accurate and 

theoretically valid projections for tight gas reservoirs. He used a hyperbolic equation 

with b value higher than one to study gas production data. He concluded that in the 

standard decline equations the hyperbolic equation is a better estimator that t plots in 

the cases he analyzed. He explained that a b value of two and decline factor of 0.5/month 

give approximately a linear flow decline. 

 Fetkovich et al.19 presented field data from oil and gas wells to illustrate the use 

of the decline type curve analysis technique. This procedure has become a classic 

mechanism for the analysis of production data to estimate reservoir properties and to 

forecast rate. The authors concluded that the analysis of transient-flow production data is 

not possible using the Arps hyperbolic equations, since the Arps equations imply that the 

system is in depletion and that transient flow data should never be used to estimate 

reservoir volumes (as this practice generally gives optimistic forecasts). They suggested 

that reservoir volume in relation to related flow characteristics should not be estimated 

using decline curve-type-analysis techniques prior to the development of boundary-

dominated flow.  

 Fraim and Wattenbarger11 proposed an iterative procedure using the OGIP to 

predict average reservoir pressure calculations. They used a pseudotime function to take 

into account the variation of gas properties and provide an exponential decline behavior 

for gas wells produced at a constant pwf .The normalized pseudopressure and pseudotime 

functions linearize the gas diffusivity equation, which then yields liquid flow behavior 

(i.e., an exponential decline during boundary-dominated flow). These pseudofunctions of 

pressure and time provide a procedure to analyze gas production data. The pseudotime 

function for this case is based on average reservoir pressure. Then an initial estimation of 

OGIP is required to initiate the pseudotime calculation.  Refinement of the OGIP 

estimation occurs in the matching of production data onto the liquid type curve. After, 

we estimate the best OGIP, we calculate the correct pseudotime function, and hence the 

gas flow problem is treated like the liquid case. 
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 Blasingame and Lee20 developed a new theoretical approach for predicting 

reservoir drainage area size and shape from a well producing a single-phase liquid of 

small and constant compressibility at any flow rate condition.  The approach uses a 

Cartesian plot of pressure drop/rate versus a material balance-time function (cumulative 

production/flow rate) where these functions yield a straight-line trend in which the slope 

and intercept would be used to calculate the pore volume of the reservoir and the shape 

factor. The model can be used for analyzing field production data that are influenced by 

arbitrary changes in pwf and flow rate. The model is valid for boundary-dominated flow 

as long as changes in flow rates are relatively continuous. The authors showed the 

practical application of this new method to a wide range of variable-rate scenarios for 

wells in bounded reservoirs. 

 Blasingame and Lee21 adapted their reservoir limits testing technique20 to the 

general case of variable-rate/variable-pressure data from gas wells. In this case, they 

linearized the gas diffusivity equation using adequate pseudotime and pseudopressure 

functions. The procedure is similar to the material-balance time function in the liquid 

case where the pseudotime function also included a variable-rate term. Similar to Fraim 

and Wattenbarger8 work, Blasingame and Lee’s method requires the estimation of 

average reservoir pressure to calculate the pseudotime function. This average reservoir 

pressure is evaluated using an iterative procedure in which the OGIP is estimated and the 

pseudotime function is verified using an average reservoir pressure computed from the 

new estimate of OGIP. Theoretically, this method is only applicable after the initial 

pressure transient has reached the outer boundary of the reservoir. However, they 

suggested that the calculated average pressure profile may also be valid for analyzing 

transient gas flow data when numerical simulation is used. 

 Blasingame, McCray, and Lee22 developed an approach for the analysis of 

production decline data where the pwf varies significantly as a function of time. They 

tried to create an equivalent constant pressure analysis formulation (a constant pressure 

analog time function that could be used for the analysis of variable rate/variable pressure 
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drop production data). Their work used recursion-type formulas to transform variable-

rate data into the constant pressure solution profile for the boundary-dominated flow 

condition. However, they found that these recursion formulas tend to break down when 

significant data noise is present. 

Linear Flow Regime 

 Long-term linear behavior has been detected in almost all tight basins that 

produce gas in low permeability reservoirs.23-35 Causes of linear flow in tight gas 

reservoirs are numerous: linear reservoirs; high-permeability streaks; wells between two 

no-flow boundaries; transient dual-porosity behavior for radial reservoirs; wells 

intercepted by vertical, horizontal, or diagonal fractures; horizontal wells; and horizontal 

wells with fractures. 

 Muskat36 discussed steady-state single-phase and multiphase linear flow systems 

and their pressure distribution. He also showed linear flow geometries in terms of core 

analysis and line derive networks applied to secondary recovery.  

 Miller37 gave solutions for linear flow in infinite-acting and bounded aquifers for 

both the constant-rate and constant-pressure solutions.  

 Nabor and Barham38 generalized Miller’s solutions using dimensionless variables 

and derived solutions for the constant-pressure outer-boundary case. In linear heat 

conduction, Carslaw and Jaeger39 presented the mathematics for these solutions. 

 El-Banbi23 investigated the literature and found that some authors did not use 

correct equations in analyzing data under constant flowing bottomhole pressure. He 

observed that analytical solutions for constant bottomhole flowing pressure production 

and constant-rate production are not the same. They mentioned that only a constant-rate 

production equation in gas well is well known. Then, they adapted the linear solutions of 

Miller37 and Nabor and Barham38 for fractured wells in a rectangular geometry for both 

the constant-rate and constant-pressure cases for linear flow in a rectangle. The authors 
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developed correct transient and stabilized linear equations plus infinite series solution 

and a methodology for estimating cAk  product and original gas in place, OGIP, for 

tight gas reservoirs.  

 El-Banbi and Wattenbarger26 presented a practical approach to analyze both 

pressure (well-testing) and production (decline-curve-analysis) data, which are 

influenced by linear flow. They pointed out that constant-rate solutions are different 

from the constant-pressure solution and the use of wrong equations in the analysis of 

tight gas wells may result in errors as high as 60%. They also showed the application of 

techniques in analyzing field production data.  

 Helmy40, 41 developed different methods for analyzing the performance of wells 

producing at constant flowing bottomhole pressure from tight gas reservoirs exhibiting 

linear flow and subjected to periodic shut-ins. 

 Hale and Evers42 used numerical simulation to achieve type curves for vertically 

fractured wells producing at constant rate or constant flowing bottomhole pressure. The 

fracture was considered elliptical in shape. They used elliptical flow equations to study 

the production data. They concluded that a single group of elliptical equations properly 

models tight-gas wells when flow is linear, radial, or transitional between those two 

systems. They also showed that the group of constant-pressure equations is different 

from the group of constant-rate equations. The authors also showed two field cases 

where linear flow occurred for 3 and 5 years respectively; commenting that several tight 

gas wells in Wyoming exhibited linear flow for years. 

 Kohlhaas and Abbott24 explained that linear flow conditions develop early in the 

life of a well that has been hydraulically fractured. This early linear-flow regime is 

followed by early radial flow. Then, late-linear flow may develop depending upon 

configurations of reservoir geometry. They developed techniques for analyzing spherical 

and linear flow and suggested that the pressure data should be graphed in different plots 

to help identify and recognize the different flow regimes.  
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 Stright and Gordon25 described long-term linear performance on tight gas wells 

in the Picenace basin, which did not have particularly large fracture treatments. They 

observed that this linear flow behavior for many years indicates that fracture lengths are 

much longer than would be expected from hydraulic fracturing treatments. They 

determined that if a log-log diagnostic plot of gas production, qg versus t for the first one 

or two years of production has a half slope, then an t extrapolating technique would be 

used for qg forecasting. They suggested that boundary-dominated effects can be 

represented by an exponential decline curve. 

 Hale30 used different decline equations to analyze the production data of more 

than 6,000 gas wells in tight formations. The wells studied are in the Rocky Mountains, 

ranging from the Green River Basin of Wyoming to the San Juan Basin of New Mexico. 

Most of these wells are in tight gas reservoirs that have been hydraulically fractured and 

many exhibited long-term linear flow. He concluded that linear flow decline analysis is 

the best technique for reserves forecasting before the reservoir boundary is detected, 

which would normally be detected after 4 years of production. Exponential decline 

forecasts would be used after this time.  

 Ammer et al.31 used log-log plots of cumulative gas produced versus time to 

analyze the production mechanisms of 284 producing wells in the Clinton formation of 

eastern Ohio. The production characteristics signified that the sandstone exhibits linear 

flow (1/2 slope) in 48% of the wells, intermediate slopes (0.5 to 0.9) in 45% of the wells, 

and radial flow slope (0.9) in 7% of the wells. Nearly all of the intermediate slopes were 

close to linear slopes. The authors established a correlation of slope with the 

environment of deposition. They mentioned that intermediate flow is may indicate of a 

well draining multiple layers with different flow characteristics.  

 Nott and Hara43 analyzed production data from 17 oil wells in a low-

permeability, high-porosity, and hydraulically fractured reservoir. They explained that 

refracturing treatments in these wells successfully extended the existent fractures and the 

productivity increased 17% for 18 months after treatment. They used Miller’s linear flow 
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model to analyze these wells using the half-slope straight line detected on plots of 

cumulative oil produced, Np, versus t to determine the fracture half-length, xf.  

 Bagnall and Ryan44 described cases that present linear flow behavior in Devonian 

shale filed production data. They concluded that the gas rate from such wells is a 

function of the density and width of natural fractures largely controlling Devonian shale 

gas production.  

 Stuart et al.45 presented reserves estimation techniques for tight gas reservoirs. 

Both decline curves and material balance methods were found to have serious drawbacks 

when applied to tight gas reservoirs that had not established a constant drainage area. 

Gas production analysis (GPA) using a combination of decline curves and material 

balance in conjunction with classical pressure-transient analysis was more accurate in 

determining reserves.  

 Rahman et al46 presented an analytical method that analysis flow conditions and 

accounts for the effect of hydraulic fractures and non-Darcy components resulting in 

computationally efficient estimation of production from tight gas reservoirs. Their 

algorithm couples these two different models by matching production rate, establishing a 

hybridized transient-pseudo-steady-state (TPSS) model to predict the production profile 

during the whole production life. 

 Ibrahim et al47 presented a simple and accurate method to determine all the 

reservoir parameters for transient constant-pressure drawdown data of gas wells 

influenced by wellbore storage, formation damage, and high-velocity flow effects. This 

work systematically illustrates the applicability of the derived equations using several 

simulated examples. The final working equations are written in various forms, which 

allow the well-test analyst to select the form that is most convenient for his application.  

Superposition Time Function 

 Superposition (or convolution) is a method whereby constant-rate solutions can 

be combined to create a variable-rate pressure profile. Van Everdingen and Hurst48  
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introduced the use of Duhamel’s principle to model a variable rate history with the 

summation of simpler constant rate solutions. 

 Helmy and Wattenbarger41 presented a novel application of the principle of 

superposition to filter out the scatter in production rate data and establish the production 

trend for cases with shut-ins established an analytical reservoir model that matches the 

production and pressure history of the well. 

 In 1965, Odeh and Jones49 presented a second-order approximation to the exact 

solution of the diffusivity equation. Corresponding to the pressure buildup of a well 

producing at a variable rate, this approximation is applicable when the well's shut-in 

time is larger than the total time elapsed since the well was first produced. The resulting 

equations are compact and easy to use.  

 Odeh and Jones50 also provided a theoretical method of handling drawdown 

analysis for both oil and gas wells flowing at variable rates. This method is still used in 

well test analysis. 

 Cinco-Ley and Samaniego51 analyzed use and misuse of the superposition time 

function. This function usually assumed that radial flow equations are valid, although in 

practice reservoirs may exhibit several flow regimes, especially near fractured or 

partially penetrating wells. 

 Samaniego and Cinco-Ley52 also considered the effect of damage and high-

velocity flow in analysis of variable-rate tests in gas wells. Their direct method allows an 

estimation of the turbulent term coefficient D and the skin factor without using a trial 

and error procedure. The method which is applicable to infinite-acting radial flow, 

considers a step-function approximation of the flow rate. It can be applied to 

continuously varying rate flow tests 

 Craven53 used superposition to define transient-rate behavior from the constant 

terminal pressure. The standard methods available to determine reservoir pressure from 

pressure buildup observations rely on the assumption of flow geometry in the reservoir. 

Craven method of calculating reservoir pressure does not require a specified reservoir 

flow pattern; instead, it uses the principle of superposition to develop a single pressure-
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drawdown curve for each well. The method has the advantage of requiring only a short 

shut-in period.  

 Zheng and Stewart54 presented a method for analyzing buildup tests by the 

principal of superposition. This method uses the constant-rate drawdown solution of an 

"infinite" reservoir with uniform properties.  

 Tiab at el55 presented a technique based on the pressure derivative for 

interpreting a multi-rate flow test. A Cartesian plot of the pressure-derivative data versus 

a time group is a straight line from which the reservoir permeability can be estimated. 

The technique includes a step-by-step procedure for interpreting a multirate test using 

pressure and pressure-derivative data.  

 Whitson and Sognesand56 applied superposition to pressure-transient analysis 

when rate varies significantly before and during pressure measurements. To apply 

rigorous superposition, they recommended use of conventional pressure-transient and 

rate-time methods to estimate permeability, skin, and in some cases, drainage area. They 

address problems in choosing the dimensionless pressure solution, estimating initial 

pressure by extrapolation of the superposition plot, and analyzing rate-dependent effects 

 This work presents a new method of using superposition time to analyze long-

term production data for tight-gas wells. The work included derivation of the pressure-

response function with the superposition time function for different flow types, 

derivation of the tangent slope for OGIP calculation with current properties, derivation 

of the pseudotime equation, combination of the pseudotime and superposition equation 

into one equation, and development of software to handle all these equations for the 

pressure-response function and pseudotime. The resulting method can determine the 

correct value of OGIP with any change of rate and reservoir properties. The method can 

determine the type of pressure response function, flow type, and initial oil or gas in place 

using only flow rate, with or without shut-in periods.  
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CHAPTER III 

EFFECT OF VARIABLE RATES ON ANALYZING PRODUCTION DATA- 

LIQUID CASE 

Introduction 

 Conventional well tests can be used to estimate reservoir properties if the test 

well produces at a constant flow rate or constant bottomhole flowing pressure (pwf) 

during the test. But wells with long-term production data may have considerable 

variation in rates and pressures. For these wells, it may be possible to use a superposition 

time to estimate reservoir properties.  

 The main problem in analyzing long-term production data is the difficulty in 

determining the actual flow regime following extreme changes in flow rate, including 

possible shut-in periods. So, our approach to analyze these wells is to find the pressure-

response function (radial, linear, bilinear, and PSS). Then, apply the superposition time 

function for all flow regimes until the pressure response function matches the observed 

flow rate. The slope and intercept of the final pressure response function can be used to 

determine the reservoir properties (permeability, skin, and reservoir size). 

Superposition Time Plots 

 If both pwf and flow rate are changing with time the superposition time can be 

used to plot production data. This technique assumes that production time in each term 

of the mathematical series behaves as a function of the flow regime analyzed. This 

technique has three disadvantages: 

1) It assumes one flow regime (radial, linear, bilinear or PSS). 

2)  The points go backward and forward with the rate change. 

3)  The properties of the reservoir and fluid are functions of pressure. 
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 This means for example, that in radial flow that all production times are log(  

and in linear flow all production times are

)t

t . However, for practical uses this technique 

gives us acceptable results in analyzing production data for oil and gas wells when both 

pwf and flow rate are varying slowly and smoothly with time. Appendix A develops the 

superposition equation for radial, linear, bilinear and PSS flow periods. The 

superposition equation for different flow regimes is given in Table 3-1. 
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In these equations, m is the slope used to calculate the permeability for transient radial, 

linear, and bilinear flow and to determine OOIP for the PSS period. B is the intercept 

used to calculate the skin factor during transient or OOIP during PSS. Table 3-2 gives 

the different parameters that can be calculated from each flow regime plot. 
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TABLE 3-2––PARAMETERS CALCULATED FROM SUPERPOSITION PLOT FOR OIL 
WELLS PRODUCTION 
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Pressure Response Function  

 The pressure response function, F(t), is defined as the reservoir pressure response 

to a unit rate change.57-65 For constant oil rate, the relationship between pressure, flow 

rate, and the pressure response function is given by  

)t(Fq)t(pp owfi =− ....................................................................................... (3.1) 

 However, the flow rate is seldom constant. For this case, the convolution or 

superposition theorem is used. The continuous form of superposition time for the 

pressure response function is given by  

∑
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The pressure drop can be calculated as  
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The superposition equation with pressure response function is given in Table 3-3 for 

different flow regimes. 
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straight line only for the correct flow regime that exists in this well.  
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TABLE 3-3––SUPERPOSITION EQUATION WITH PRESSURE RESPONSE FUNCTION FOR 
DIFFERENT FLOW REGIMES 
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Procedures for New Superposition Time Plots 

 To apply the pressure-response function for long-term production in oil wells we 

use Visual Basic to calculate the superposition time for each flow regime with the 

following procedures 

a) Plot flow rate vs. time. 

b) Assume pressure response function (radial, linear, bilinear, and PSS). 

c) Plot the pressure response function F(t) vs. time. 

d) Calculate the left-hand side for the equations in Table 3-3 for each flow 

regime that represents the y-axis value. 

e) Calculate the superposition time for each flow regime for the equations from 

Table 3-3 that represents the x-axis value. 

f) Construct plots for each flow regime (radial, linear, bilinear, and PSS). 
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g) Determine which flow regime best match the flow schedule. 

h) Determine the slope and intercept of the final pressure-response function. 

i) Determine permeability from slope and skin from intercept. 

j) Determine the OOIP from the PSS period. 

Results and Discussion 

 Simulation cases for constant and variable rates with different pressure-response 

functions illustrate the benefits of this method. 

Simulation Case 1: Variable Rate with Linear Flow  

 In Case 1, we use simulation results for linear flow. The simulation data are 

given in Table 3-4. The production schedule given in Fig. 3-1 shows constant-rate 

production for most times except for one period of low rate. Eq. 3.4 gives the linear-flow 

pressure-response function; the actual pressure-response function is shown in Fig. 3-2. 

 
eDxwD tp π=  ................................................................................................... (3.4) 
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 The results from the superposition calculation for different flow regimes are 

shown in Figs. 3-3 to 3-6. The low rate period affects the superposition time of all flow 

regimes except linear flow. The superposition time for linear flow still gives a straight 

line even with the low rate period as shown in Fig. 3-4. This mean that the well 

remained in linear flow even the flow rate was not constant. The other flow regimes do 

not give straight lines because the well never left linear flow. The slope from the linear 

flow superposition plot, Fig. 3.4, is 1.96. The product of cAk  is 53,555.73 md -ft2, 

which is the same as the simulation value. 



 22

 We can conclude that the right flow regimes will give a straight line under any 

flow schedule if the well remains in this regime. 

 

 
TABLE 3-4––SIMULATION DATA FOR CASE 1 

Initial pressure, pi 3000 psia 

Formation porosity 0.15 fraction 

Reservoir half-length 1070 ft 

Reservoir Width 467 ft 

Formation net pay thickness, h 361.99 ft 

Formation volume factor, Bo 1.472 Bbl/STB 

Viscosity, µo 0.72 cp 

Formation permeability, k 0.1 md 

Total compressibility, ct 6.01x10-6 psia-1 
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Fig. 3-1––Rate schedule for Simulation Case 1 shows period of low flow rate. 
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Fig. 3-2––Linear flow pressure response function for Simulation Case 1. 
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Fig. 3-3––Plot of ∆p/q vs. radial superposition time for Simulation Case 1. 
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Fig. 3-4––Plot of ∆p/q vs. linear superposition time for Simulation Case 1. 
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Fig. 3-5––Plot of ∆p/q vs. bilinear superposition time for Simulation Case 1. 
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Fig. 3-6––Plot of ∆p/q vs. Super-t of PSS flow for Simulation Case 1. 

 

Simulation Case 2: Constant-Rate, Linear and PSS Flow 

 In Case 2, we used the same simulation data for Case 1 but produced the well 

until PSS. The well produced at constant rate during all times so in this case there is no 

effect of rate change on the pressure-drop calculation. The pressure-response function 

for this well is linear flow in the transient period(1/2 slope) and PSS (unit slope) in later 

time as shown in Fig. 3-7. The pressure-response function representing a finite, closed 

reservoir is  
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Fig. 3-7––Simulation Case 2 exhibits linear flow at early time and PSS flow at later 

time. 

 

The results from superposition time for linear flow give a straight line for in the 

pressure response function as shown in Fig. 3-8. Also, the PSS period matches the later 

part as shown in Fig. 3-9. The radial and bilinear superposition does not give a straight 

line because the actual flow regime is linear and PSS as shown in Figs. 3-10 and 3-11. 
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Fig. 3-8––Plot of ∆p/q vs. linear superposition time for Simulation Case 2 shows a 

straight line for early linear flow. 
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Fig. 3-9––Plot of ∆p/q vs. Super-t for Simulation Case 2. 
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Fig. 3-10––Plot of ∆p/q vs. radial superposition time for Simulation Case 2. 
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Fig. 3-11––Plot of ∆p/q vs. bilinear superposition time for Simulation Case 2. 

 

Simulation Case 3: Variable-Rate, Linear and PSS Flow 

In Case 3, we used the same simulation data for Case 1, expect that the well 

produced at variable rates as shown in Fig. 3-12. The actual pressure response function 

is the same as in simulation Case 2 with linear and PSS flow in the late period. The 

linear superposition still gives a straight line even with different periods as shown in Fig. 

3-13, which proves that the rate schedule does not change the flow regime if the well is 

still in this period. The PSS superposition gives a straight line because the pressure 

response function has PSS flow in the later period as shown in Fig. 3-14. The radial and 

bilinear superposition time do not give straight lines as shown in Figs. 3-15 and 3-16, 

because the actual function does not have a radial or bilinear period. 
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 We can conclude that the actual flow regime will fit the right superposition 

function regardless the flow schedule. So if the well produces in linear flow only, the 

linear superposition time will give a straight line. 
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Fig. 3-12––Rate schedule for simulation Case 3. 
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Fig. 3-13––Plot of ∆p/q vs. linear superposition time for Simulation Case 3. 
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Fig. 3-14––Plot of ∆p/q vs. PSS superposition time for Simulation Case 3. 
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Fig. 3-15––Plot of ∆p/q vs. radial superposition time for Simulation Case 3. 
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Fig. 3-16––Plot of ∆p/q vs. bilinear superposition time for Simulation Case 3. 

 

Variable Rate and pwf Production 

 Superposition time accounts for the effects of rate and pwf changes as given in 

Table 3-1. We illustrate the effect of using the Super-t with variable rate and pwf to 

calculate the OOIP for the liquid case. 

Simulation Case 4: Variable Rate 

 The production data for Case 4 with variable rate production is shown in Fig. 3-

17. The cumulative production is equal to 1.55 billion bbl. Fig. 3-18 is a plot of 

o

wfi

q
pp ][ −

 vs. Super-t, which shows the following: 

1) All production periods have a transient flow period. 

2) All production periods fall along a straight line. 
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3) There is a unique straight line from Super-t because properties do not change 

 We can conclude that the Super-t takes into account the rate changes. Also, the 

value of OOIP from the slope of the Super-t plot is correct. 
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Fig. 3-17––Production rate for Simulation Case 4. 
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Fig. 3-18––Plot of ∆p/q vs. Super-t, gives a straight line for the PSS period in Simulation 
Case 4. 
 

Summary 

 The following specific conclusions can be drawn from our findings in this 

project:  

1. This method is effective in analyzing the performance of oil wells producing 

with variable rates. 

2. This method gives good results compared with previous methods for analyzing 

variable-rate wells. 

3. The pressure response-function helps in determining the actual flow regimes. 

4. The value of initial oil in place from this method is accurate 

5. Superposition takes into account the effect of rate and pwf change. 
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CHAPTER IV 

DETERMINING OGIP FOR WELLS IN PSEUDOSTEADY-STATE FLOW 

 

Tangent Slope Using Initial Properties 

 The superposition time (Super-t) function has been used as a tool to analyze the 

variable flow rate without knowing the average reservoir pressure. The Super-t given is 

by Eq. 4.1: 

 ∑
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− +−
∆
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− n

1i
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gn

gi
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q
q
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q
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The slope ( mPSS
~ ) from plotting 

g

wfi

q
pmpm )]()([ −

 vs. Super-t is used to determine the 

OGIP for constant rate from Eq. 4.2: 
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For constant pressure, the equation is  
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Note that initial properties are used in Eqs. 4.2 and 4.3. 

 This chapter addresses the shortcomings in using Super-t with initial properties to 

calculate the OGIP from Eqs. 4.2 and 4.3. It appears that, regardless of the flow regimes 

exhibited by the well reservoir system the reservoir properties change with pressure. If 

the depletion increases more than 10%, the Super-t plot become non linear, and 

estimated OGIP can have errors greater than 300%. The Super-t must be corrected for 

these changing reservoir and fluid properties. 

Tangent Slope Using Current Properties 

 The tangent slope method with current reservoir properties for determining OGIP 

in the PSS period takes into account the effect of pressure change on reservoir 
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properties. The complete derivation of tangent slope for constant rate and pwf are given 

in Appendix B and C. The final equation used to calculate OGIP with current properties 

is given as 

 )
m~
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(OGIP
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i
g 112
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For constant rate, and as 
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φ
= ...................................... (4.5) 

For constant pwf 

 The constant rate and pwf simulation cases illustrate the effect of using initial and 

current reservoir properties in determining OGIP. 

Simulation Case 5, Constant Rate 

 In Case 5, we use simulation results to illustrate the shortcoming in using the 

initial properties in Eqs. 4.2. The reservoir properties for the simulation Case 5 are given 

in Table 4-1, which represents a tight-gas well at high pressure. The constant-rate 

production data for this well are shown in Fig. 4-1. Fig. 4-2 shows a plot of ∆m(p)/qg vs. 

time, which exhibits non linearity during the PSS period. This non linearity indicates the 

change in reservoir properties as you can see in Fig. 4-3 which show )( tcµφ  increases 

as the average reservoir pressure decreases during depletion. 

 The point-wise calculation of OGIP from using Eq. 4.2 with initial properties is 

shown in Fig. 4-4, which gives a high value of OGIP (20 Bcf)  at later times compared 

to the simulated value of OGIP (8.70 Bcf). The error in OGIP value is 129%.  

 But when we use Eq. 4.4 to calculate the OGIP with current properties, we get 

the correct value of OGIP as shown in Fig. 4-4 with error of only1.8%.  

 We can conclude that the tangent slope with current reservoir properties gives an 

accurate value of OGIP independent of changes of properties change or depletion values. 
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TABLE 4-1––RESERVOIR AND FLUID DATA FOR SIMULATION CASE 5 
 Gas specific gravity (air = 1), γg 0.64  

 Initial temperature, T 335 oF 
 Initial pressure, pi 12,300 psia 
 Formation porosity, φ 0.1 fraction 
 Average water saturation, Sw 0.376 fraction 
 Formation net pay thickness, h 394.5 ft 

 Water compressibility at pi, cw 3.6x10-6 1/psia 

 Formation compressibility, cf 4.00x10-6 1/psia 
 Formation permeability, k 0.045 md 
 OGIP 8.7 Bcf 
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Fig. 4-1––Simulation result of Case 5. 
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Fig. 4-2––Plot of ∆m(p)/qg vs. time for constant rate. Note that this is not a straight line 

for PSS period (Simulation Case 5). 
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Fig. 4-3––Values of ( )tcµφ  for Simulation Case 5 increase as reservoir pressure 
decreases during depletion. 
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Fig. 4-4––Point-wise OGIP calculated vs. time with initial properties for simulation 
Case 5. 
 

Simulation Case 6, Constant pwf 

 In Case 6, we used simulation results from a tight gas formation, which produced 

at constant pwf. The production schedule for Simulation Case 6 is given in Fig. 4-5. A 

plot of log 
gq

1  vs. time Fig. 4-6 does not give a straight line, but shows the property 

changes with average reservoir pressure. Eq. 4.3 with initial reservoir properties does not 

give the correct value of OGIP as shown in Fig. 4-7. The error in OGIP value reaches up 

to 839% at later times. When we use Eq. 4.4 to calculate the OGIP with current 

properties, it gives the correct value of OGIP with error of only 1.8% as shown in Fig. 4-

7.  

 We can conclude that the tangent slope with current reservoir properties gives the 

more accurate value of OGIP as properties and depletion value change. 
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Fig. 4-5––Plot of production data for Simulation Case 6. 
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Fig. 4-6––Plot of 1/qg vs. time for Simulation Case 6, shows non-linearity due to change 

in properties.  
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Fig. 4-7––Point-wise OGIP calculated from time plot with initial and current properties 

for Simulation Case 6. 
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Normalized Pseudotime  

 The new normalized pseudotime provides a plotting function for smoothing the 

production data by taking into account the effect of changes in reservoir properties and 

average pressure. The derivation of normalized pseudotime equation is given in 

Appendix B. The new normalized pseudotime is given by 

 ∫=
t

t
itn dt

pcpp
ct

0 )()()(
1)(

µφ
φµ ..................................................................... (4.6) 

This integration can be evaluated numerically using the trapezoidal rule. 

 A plot of ∆m(p)/qg vs. normalized pseudotime for simulation result of Case 5 

gives a straight line as shown in Fig. 4-8. The slope from the normalized pseudotime 

plot used to calculate OGIP from Eq. 4.3 which gives 8.54 Bcf with error of 1.8% from 

the simulation value of OGIP of 8.7 Bcf.  

 Also, a plot of 
gq

1  vs. tn for simulation result of Case 6 gives straight line as 

shown in Fig. 4-9. The slope from tn plot used to calculated OGIP from Eq. 4.3, which 

the correct OGIP with error 1.80% from the simulation value of OGIP = 8.15 Bcf.  

 We can conclude that the normalized pseudotime gives the correct OGIP because 

it takes into account the effect of property changes with average reservoir pressure. 
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Fig. 4-8––Plot of ∆m(p)/qg vs. t and tn, showing that normalized pseudotime gives a 

straight line for the PSS period (Simulation Case 5). 
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Fig. 4-9––Plot of 
gq

1 vs. t and tn, showing that normalized pseudotime gives a straight 

line for the PSS period (Simulation Case 6). 
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Variable Rate and pwf : Superposition Time 

 The Super-t takes into account the effect of rate and pwf change as given in Eq. 

4.1. To illustrate the shortcoming of using Eq. 4.1 with initial properties to calculate the 

OGIP, we used a simulation case with variable rate. 

Simulation Case 7, Variable Rate 

 In this case, we use the same data for Case 5. The production data for Case 7 are 

with variable rate production shown in Fig. 4-10. The cumulative production is 4.73 Bcf 

with recovery factor of 54%. Fig. 4-11 shows a plot of ∆m(p)/qg vs. Super-t, which 

shows the following: 

1) All periods have a transient period. 

2) Periods 6 and 10 occur at same Super-t but do not fall in a straight line because of 

property changes.  

3) Property changes prevent a unique straight line on Super-t plot. 

 We can conclude that Super-t takes into account the rate change but it does not 

correct for properties changes. Also, there is no unique value of OGIP from Super-t plot. 

New Method: Normalized Pseudotime and Superposition 

 We combined the superposition effect with the effect of normalized pseudotime 

to cover the rate and properties change by replacing the real time with normalized 

pseudotime. By substituting Eq. 4.6 into Eq. 4.1, we have the new superposition 
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Fig. 4-10––Simulation Case 7 production rate. 
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Fig. 4-11––Plot of ∆m(p)/qg vs. Super-t, showing Super-t for Simulation Case 7. 

 

normalized pseudotime equation, 
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 The new superposition equation with normalized pseudotime corrects the error in 

Super-t and gives a straight line in the plot of ∆m(p)/qg vs. normalized pseudotime and 

superposition (Super-tn) instead of plotting Super-t. The slope PSSm~  of this plot can be 

used to calculate the OGIP from Eq. 4.2.  

 When we plot the simulation result of Case 7 by using Super-tn all periods fall in 

straight line as shown in Fig. 4-12. The slope from Fig. 4-12 gives OGIP equal to 8.54 

Bcf, which is the same value from the tangent slope with current properties. 

 We can conclude that the normalized pseudotime gives unique value for OGIP 

for any rate schedule, property changes and depletion value. 
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Procedures for New Normalized Pseudotime and Superposition  

 The procedures to use the new normalized pseudotime and superposition follow. 

1. Assume Value of OGIP. 

2. Calculate average reservoir pressure from material balance at each time step.  

3.  Calculate the fluid properties at each p . 

4. Calculate normalized pseudotime from Eq. 4.5 at each time step. 

5.  Calculate the normalized pseudotime and superposition from Eq. 4.7 at each time 

step.  

6. Calculate the OGIP from Eq. 4.2. 

7. Repeat steps 1-6 until the value of OGIP converges within (2%). 

We also include the change in porosity and water saturation with average 

reservoir pressure in calculating the total compressibility. The change in porosity as the 

pressure changes may be great especially in high-pressure gas reservoirs. 

In calculating the normalized pseudotime, we update the initial water saturation 

and total compressibility at current average pressure by using Eqs. 4.8 and 4.9: 

 )()()( ppcc
wiw

iwfeSpS −+= ................................................................................. (4.8) 

 ))(1()()( pScpSccpc wgwwft −++= ............................................................... (4.9) 

The change in water in all cases is higher than 10% from the original value. To 

use the normalized pseudotime and superposition, we follow the iteration procedures as 

discussed in the next section. 
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Fig. 4-12––Plot of ∆m(p)/qg vs. Super-tn for Simulation Case 7. 
 

Production Forecast with Initial Properties 

Once OGIP has been evaluated gas-rate forecasting is not difficult. We can use the 

minimum OGIP from the forecast if no reservoir boundaries were reached during 

production. If the reservoir boundary was detected, we should correct our forecast with a 

normalized time function. We can use a method that is based on solving the material 

balance equation for volumetric gas reservoirs with the productivity index equation. The 

average reservoir pressure, p , is estimated from material balance equation by using 

actual Gp: 
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We should to use the most updated data, which uses stabilized qg and pwf to estimate 

a productivity index: 

)]()([ wf

g
g pmpm

q
J

−
= …………………….……………………….…..….(4.11) 

Then, we select future time steps and update the cumulative gas at each time step. 

Later, we use the material-balance equation to determine a new p  to be used in the 

productivity-index equation to calculate qg. Forecasting calculations will be 

conservative, if boundary effects have not yet been observed. 

Production Forecast with Current Properties 

 The production forecast can be calculated by solving Eq. 4.1 as 
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By solving Eq. 4.12 for qg2, we have 
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Eq. 4.13 can be written as 
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 We can replace log (base 10) by natural log in Eq. 4.14 and write the final 

equation in general form: 
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 Eq. 4.15 is the similar to the exponential decline equation13 but Eq. 4.15 uses of 

current reservoir properties instead of initial properties. 

Summary 

 We have provided three new methods to calculate the correct value of OGIP for 

any change in pressure dependent properties and amount of depletion. The validity of 

these methods is confirmed by simulation cases for a single-layer reservoir; our future 
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work should extend these methods for commingled or multi layer reservoirs. The method 

does not include liquid load-up in calculating the bottomhole flowing pressure because 

we consider only single-phase gas flow. 

 From this work, we reached the following conclusions: 

1. The use of pseudotime and pseudopressure transformation is essential in 

analyzing gas-well performance. 

2. A new pseudotime presented here improves the accuracy of calculating OGIP. 

3. If the recovery factor is high, reservoir pressure will decrease and reservoir 

properties will change, so that all methods for calculating OGIP using initial 

properties will have error. 

4. The tangent slope method with current properties gives accurate OGIP under any 

change in reservoir pressure for constant-rate and constant pressure production. 

5. The new method combing pseudotime with superposition gives accurate OGIP 

for any change in average pressure. 
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CHAPTER V 

DETERMINING OGIP FOR WELLS IN PSEUDOSTEADY STATE WITH 

PERMEABILITY-DEPENDENT PRESSURE 

 

 In this chapter, we add the change of permeability with pressure to the 

calculation of OGIP in PSS for production at constant and variable rate and pressure.  

Tangent Slope Using Current Properties 

 The tangent slope for determining OGIP in the PSS period with current reservoir 

properties takes into account the effect of reservoir property changes with pressure. Eq. 

5.1 gives the modified equation for tangent slope for constant rate: 
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For constant pressure, 
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The permeability variation is calculated by using the relationship defined by Petro et 

al66: 

 ( )pp 
i
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Eq. 5.3 shows the exponential relationship that is used in this work for all simulation 

cases. The γ  value in Eq. 5.3 is calculated from experimental data. Without data to 

provide the correct value ofγ  a value of 0.0001 was used in our simulations to test Eqs. 

5.2 and 5.3 in calculating OGIP. 

Simulation Case 8, Constant Rate 

 The reservoir properties for Simulation Case 8 are given in Table 4-1, which 

represents a tight-gas well with high pressure. The production data for this well is shown 

in Fig. 5-1 with constant rate production. Fig. 5-2 shows a plot of ∆m(p)/qg vs. t, which 
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shows non linearity during the PSS period which indicates changes in reservoir 

properties.  

 The point-wise calculation of OGIP from Eq. 4.2 with initial properties (Fig. 5-3) 

gives a high value of OGIP compared to the simulation value (OGIP = 8.7 Bcf). The 

error in OGIP value is as large as 129%.  

 But when we use Eq. 5.1 to calculate the OGIP with current properties, it gives 

the correct value of OGIP as shown in Fig. 5-3 with error of only 1.8%.  

 We can conclude that the tangent slope with current reservoir properties gives the 

accurate value of OGIP for any properties change and depletion value. 
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Fig. 5-1––Simulation Case 8 production data. 
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Fig. 5-2––Plot of ∆m(p)/qg vs. time for Simulation Case 8. 
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Fig. 5-3––Point-wise OGIP calculated vs. time with initial properties for Simulation 

Case 8. 
 

Updated Normalized Pseudotime  

 The new normalized pseudotime provides a plotting function for analyzing the 

production data by taking into account the effect of reservoir property changes with 

average pressure. The derivation of the normalized pseudotime equation is given in 

Appendix B. The new normalized pseudotime with including permeability-dependent 

pressure is given by 

 ∫ µφ
φµ

=
t

t
i

t
n dt

)p(c)p()p(
)p(k)

k
c

(t~
0

................................................................... (5.4) 

This integration can be calculated using the trapezoidal rule. 
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Fig. 5-4––Plot of ∆m(p)/qg vs. time and nt
~  for Simulation Case 8. 
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A plot of ∆m(p)/qg vs. nt
~  for simulation result of Case 8 gives a straight line, (Fig. 5-4). 

The slope from the nt
~  plot used to calculate OGIP from Eq. 4.3 gives 8.54 Bcf with error 

of 1.8 % from the simulation value of OGIP = 8.7 Bcf.  

 We can conclude that the normalized pseudotime gives the correct OGIP because 

it takes into account the effect of property changes with average reservoir pressure. 

Variable Rate and pwf: Superposition Time 

 Superposition time takes into account the effect of rate and pwf change as given in 

Eq. 4.1. To illustrate the shortcoming of using Eq. 4.1 with initial properties to calculate 

OGIP, we used a simulation case with variable rate. 

Simulation Case 9, Variable Rate 

 In Case 9, we use the same data for Case 5 except permeability is function on 

pressure. The production data for Case 9 with variable rate production are shown in Fig. 

5-5. The cumulative production is equal to 4.73 Bcf with recovery factor of 54%. Fig. 5-

6 shows a plot of ∆m(p)/qg vs. Super-t, which shows the following: 

4) All production periods have transient flow period. 

5) Periods 6 and 9 occur at same Super-t but do not fall in a straight line because of 

property changes.  

6) Property changes prevent a unique straight line from Super-t.  

 We can conclude that the Super-t takes into account the rate change but it does 

not correct for property changes. Also, Super-t does not give a unique value of OGIP due 

to property changes. 

 



 66

0.0.E+00

5.0.E+05

1.0.E+06

1.5.E+06

2.0.E+06

2.5.E+06

3.0.E+06

3.5.E+06

4.0.E+06

4.5.E+06

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Time (day)

q g
 (S

cf
/d

)

6 10

1

72

3

4

5

8

9

 
Fig. 5-5––Simulation Case 9 production rate. 
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Fig. 5-6––Plot of ∆m(p)/qg vs. Super-t for Simulation Case 9. 
 

Updated Normalized Pseudotime and Superposition 

 We combined the superposition effect with the effect of normalized pseudotime 

to cover the rate and property changes by replacing the real time with normalized 

pseudotime. By substituting Eq. 5.4 into Eq. 4.1, we have the new superposition 

normalized pseudotime equation: 

 ∑
=

− +−
∆

=
− m

j
njnm

gm

gj
PSS

gm

wfmi b])tt(
q
q

[m~
q

)]p(m)p(m[

1
1 .......................................... (5.5) 

 The new Super-tn corrects the error in Super-t and gives a straight line plot of 

∆m(p)/qg vs. Super-tn. The slope PSSm~  of this plot can be used to calculate the OGIP 

from Eq. 4.2.  

 When we plot the simulation result of Case 9 by using Super-tn, all periods fall in 

a straight line as shown in Fig. 5-7. The slope from Fig. 5-7 gives OGIP equal to 8.16 
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Bcf, which is the same value of the tangent slope method with current properties. The 

average error percent is equal 9%, which is higher than the error without including 

pressure dependent permeability. 

 We can conclude that the Super-tn gives a unique value for OGIP under any rate 

schedule, property change, and depletion value including the effect of pressure 

dependent permeability. 
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Fig. 5-7––Plot of ∆m(p)/qg vs. Super-tn, for Simulation Case 9. 
 
 
Summary 

 From this work, we conclude that ignoring the pressure dependence of 

permeability will result in erroneous values of OGIP. We suspect that ignoring this 

pressure dependence is probably common and that accurate laboratory data are rare. 
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CHAPTER VI 

ANALYSIS OF RATE DEPENDENCE IN TRANSIENT PERIOD 

 OF LINEAR FLOW IN TIGHT GAS WELLS 

Reservoir Properties for Constant Rate and pwf Production 

 The reservoir properties for constant-rate and constant-pressure production in the 

transient period can be calculated from analytical solutions. The interpretation 

expressions described in Table 6-1 can be used to calculate the permeability-thickness 

product; the drainage area, A; the pore volume, Vp; and the OGIP for either constant-rate 

production or constant-pressure production. Additionally, for the case of linear flow with 

intercept at the origin, we can evaluate formation damage or the earlier-flow-regime 

effect, b. We need to know the slope, the intercept to the origin, if it exists, and values 

for other reservoir parameters. The calculations of Ac and b are very difficult, unless k is 

known independently. We do not need to know the value of k and Ac to estimate A.  

We can estimate a precise value of Vp without actually having good knowledge of 

permeability of the formation, k; porosity, φ; thickness, h; or drainage area, A. Similarly, 

the evaluation of OGIP is insensitive to the value of initial water saturation, Swi, used, if 

initial gas compressibility, cgi, dominates the initial total compressibility, cti  (or cti ≈ 

Sgicgi). We can estimate a precise value of OGIP without actually having good 

knowledge of k, h, A, Swi and φ. 
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The direct determination of Vp and OGIP without known φ, k, h and A is an 

advantage, since these properties are often not known in tight gas reservoirs. 

The estimates of A, Vp, and OGIP evaluated with the expressions in Table 6-1 for 

either constant-rate production or constant-pressure production would be considered 

minimum values, if all the history data are still on the straight line trend on the t plot 

(i.e. infinite-acting linear flow: no outer boundaries are reached). In this case, the latest 

production time is used instead of the end time of the straight line on the t plot, tesr. 

The boundary distance, ye, evaluated with the expressions for ye in Table 6-1 

would be considered the minimum value if all the history data are still on the straight-

line trend on the t plot. In this case, instead of tesr the latest production time gives the 

distance of investigation. These formulas require that k be known, K be known from an 

independent source because uncertainty in k results in uncertainty in the calculated value 

of ye. 

Modified Equations for Calculating Reservoir Properties 

Arévalo2-3 modified the constant-rate and pressure equations to match the actual 

value of OGIP in simulation models but did not mention the reason for the error in these 

equations. We investigated parameters that prevent simulation results from matching the 

analytical results. The modified equation for both constant rate and pressure is given in 

Table 6-2 with 22% error. In the next section we going present the effect of drawdown 

on the accuracy of the solution. 
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TABLE 6-1––CALCULATION OF RESERVOIR PROPERTIES FOR LINEAR FLOW 

REGIME FOR BOTH CONSTANT pwf PRODUCTION AND CONSTANT qg 

PRODUCTION 

Constant pwf production Constant qg production 
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TABLE 6-2––MODIFIED EQUATIONS FOR LINEAR FLOW REGIME IN 
HOMOGENEOUS MODEL FOR BOTH CONSTANT pwf PRODUCTION AND 

CONSTANT qg PRODUCTION 

Constant pwf production Constant qg production 
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Effect of Drawdown on Constant pwf  

We studied the effect of drawdown on the constant-pwf production in linear flow. 

We compared analytical solution with simulation results for different values of 

drawdown and found that the drawdown value affects the slope in all equations in Table 

6-1. The drawdown parameter is given by 

 
)p(m

)]p(m)p(m[
m

i

wfi
DR

−
= ............................................................................... (6.1) 

A plot of ∆m(p)/qg vs. t  gives a straight line with slope ( CPLm~ ). The slope 

gives the value of CAk . We simulated the effect of drawdown on the accuracy of slope 

and we found that the difference between the analytical slope and simulated slope 

increases as the drawdown increases. 

Simulation Case 10, Constant pwf 

 The effect of drawdown (mDR) on slope is verified by using reservoir simulation. 

The simulation data appear in Table 6-3. Fig. 6-1 compares the analytical solution and 

different drawdown values. As the drawdown value increased, the non linearity 

increased, which gave the wrong slope, which is used to calculate the product of CAk  

and OGIP. The error in OGIP from the slope can reach up to 22% compared to the actual 

value for the highest drawdown. The non linearity effect is the same for different initial 

reservoir pressures as shown in Fig. 6-2 and Fig. 6-3 for the same simulation data except 

for the initial pressure.  

We conclude that the initial pressure does not affect the non linearity, but the 

main factor is drawdown, thus proving that the linear model is rate dependent. The 

drawdown effect on the real-gas pseudopressure and p/z is shown in Fig. 6-4, which 

represents the non linearity problem with the higher drawdown value. The relation 

becomes increasingly non linear as the drawdown value increases which affect the slope 

of the plot of rate vs. t .  
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Correction for Non-Linearity Problem  

 We used the simulation results to correct the error in the slope. First, we 

calculated the ratio between the actual value for each drawdown and the ideal value from 

the simulation model. The correct equations can be written as 

 








φµ
=

CPit
tC m

T
)c(

.fAk 73081261 ......................................................................... (6.2) 

and 

 










µ
=

CPL

esr

igtg

gi
t m~

t
)Bc(
ST.

f
76200

OGIP .................................................................... (6.3) 

Where tf  is the correction factor that corrects the slope value without the production 

rate. 

 Fig. 6-5 shows the simulation result of the correction factor for different 

drawdown value using the least square method to find the best correlation between 

correction factor tf  and drawdown (mDR). This correlation is given by, 

 DRDRt m.m..f 085200857098950 2 −−= ......................................................... (6.4) 

The correction factor corrects the slope value for the rate-dependent problem and 

gives the correct value for CAk  and OGIP.  

 

TABLE 6-3––SIMULATION DATA 
gas specific gravity (air = 1), γg 0.717   

Initial temperature, T 290 oF 
Initial pressure, pi 8,800 psia 
Formation porosity, φ 0.15 fraction
Average water saturation, Sw 0.47 fraction
Formation net pay thickness, h 361.99 ft 

Water compressibility at pi, cw 4.1x10-6 1/psia 

Formation compressibility, cf 4.08x10-6 1/psia 
Reservoir Width 1070 ft 
Reservoir Length 467 ft 
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Fig. 6-1––Linear flow is "rate dependent" for extreme variations of constant pwf cases at 

pi = 8,800 psi. 
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Fig. 6-2––Linear flow is "rate dependent" for extreme variations of constant pwf cases at 

pi = 2,000 psi. 
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Fig. 6-3––Linear flow is "rate dependent" for extreme variations of constant pwf cases at 

pi = 13,800 psi. 
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Fig. 6-4––Plot of real gas pseudopressure m(p) vs. p/z becomes non-linear for extreme 

variation of drawdown value (mDR) cases at pi = 8,800 psi. 
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Fig. 6-5––The correction factor matches drawdown values for different reservoir 

conditions. 

Effect of Drawdown on Superposition Time Plot 

The superposition time accounts for variable rate production case. The 

superposition transfers the constant pwf to constant rate production, so the constant rate  
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solution used to analyze the linear flow plot. Eq. 6.5 represents the infinite-acting linear 

flow for variable rate production. 
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The slope value  used to calculate OGIP by determining the end point of transient 

period ( t ) on the plot as in Eq. 6.6. 
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Simulation result were used to show the effect of non linearity on constant-rate 

plot. Fig. 6-6 shows the effect of drawdown on superposition time. The error in the value 

of OGIP for each drawdown value can be up to 20% compared to the actual (simulation) 

value.  

Correction Factor for Superposition Time Plot 

 Fig. 6-7 shows the simulation result of the correction factor for different 

drawdown value using the least square method to find the best correlation between 

correction factor  and drawdown (mDR). This correlation is given by, ersupf

 ...................................................... (6.7) DRDRersup m.m..f 025801512098330 2 −−=

The correction factor corrects the slope value for the rate-dependent problem and 

gives the correct value for CAk  and OGIP.  
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Fig. 6-6––Effect of drawdown value on the slope of superposition time plot. 
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Fig. 6-7––The correction factor vs. drawdown values for different reservoir conditions. 

 

Effect of Non-Linearity on Radial Model 

 In this section, we will discuss the effect of the non linearity problem on the 

radial model for both constant rate and pressure production. Fig. 6-8 shows no effect of 

drawdown on the semi-log plot for different values of pwf production. Also, Fig. 6-9 

show no effect of drawdown on the semi-log plot for different value of constant rate 

production. So, we can conclude that radial model is not rate dependent for both constant 

rate and pressure cases. 
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Fig. 6-8––Plot of ∆m(p)/qg vs. time for constant-pressure radial model. 
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Fig. 6-9––Plot of ∆m(p)/qg vs. time for constant-rate radial model. 

Summary  

 From the work done in this study, the following conclusions can be reached. 

1. The drawdown value is the major factor on the non linearity of t  time plot. 

2. The drawdown effect can cause error in OGIP up to 22%. 

3. The drawdown value is the major factor on the non linearity of superposition 

time plot. 

4. The radial model is not rate dependent. 
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CHAPTER VII 

FIELD APPLICATIONS 

Introduction 

In the previous chapters, we introduced different methods to analyze the 

performance of wells producing with long-term production. In this chapter we introduce 

the application of those methods to several field cases for gas wells. We also present a 

computer program that incorporates some of the techniques presented in this 

dissertation. The procedure used different graphs and equations to identify flow regimes 

and estimate reservoir properties and OGIP. 

Description of Computer Program 

 Our computer program is written in Visual Basic for Excel with a user-friendly 

menu structure. Different reservoir models are built into the program: Radial, Linear, 

and PSS. The program consists of six different modules: 

Gas Properties and Pseudopressure Module 

 In gas properties and pressure module, we calculate the effect of gas impurities 

like (N2, CO2, and H2S) by using Dranchuk and Abou-Kassem67 correlation. The 

Sutton68 correlations is used to calculate the z-factor. Gas viscosity is calculated with the 

Lee et al correlation69. Then, the pseudopressure is calculated with the Al-Hussainy and 

Ramey7 integral.  

Bottomhole Flowing Pressure Module 

In the bottomhole flowing pressure module, pwf is calculated from wellhead 

flowing pressure by using Cullender and Smith’s method70 for single phase gas flow. 

Main Module 

In the main module, we calculate the normalized pseudotime, normalized 

pseudotime and superposition, superposition, and time for radial, linear, and PSS flow. 
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Decline Curve Module 

In the decline curve module, we calculate the decline-curve parameters by using 

new normalized pseudotime. 

Export Data 

In the export data module, can export the data file to text-file format. 

Help Module 

 The help module provides the help for using the program. 

Data Required for Analysis 

The program for analysis of gas wells requires production and PVT data. The 

production data must include flow rates and wellhead flowing pressure. The PVT data 

must include a data table containing corresponding values of pressures, gas deviation 

factors, viscosities, and fluid properties.  

Fig. 7-1 Shows a flow chart of the procedures used to calculate the correct value 

of OGIP from long-term production data. 
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1- Calculate the PVT table
2- Calculate pwf from pwf module
3- Calculate super-t
4- Calculate Super-tn

1- Input PVT data
2- Input production data,      
    time, qg, wellhead pressure

Assume value of 
OGIP

If OGIP from Super
tn = Assumed OGIP

Stop

YesNO

1- Print output
2- Calculate slope of Super-t and Super-tn 
    mandually
3- Substitue the slope into input data sheets to 
    calculate OGIP from super-t and Super-tn

 

Fig. 7-1––Flow chart of OGIP program for gas well. 
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Analysis of Gas Well 

In this section, we present analysis for 13 gas wells in the PSS and transient 

linear flow periods. Table 7-1 shows the OGIP calculated from the Super-t method by 

using the initial properties. We will compare this value of OGIP with our new method. 

The complete analyses for 13 tight gas wells are presented in Appendix E. 

 

TABLE 7-1––GENERAL INFORMATION OF CASE HISTORIES OF TIGHT GAS WELLS 

Number Well Type of tprod pi Gp  OGIP 
    flow       Super-t 
      (days) psi (Bcf) (Bcf) 
1 Boren 1 PSS 901  12,300 6.50 15.60 
2 HR-58 PSS 532  14,000 6.29 16.21 
3 HR-60 PSS 659  14,000 5.03 12.00 
4 HR-61 PSS 218  13,000 3.38 9.00 
5 HR-62 PSS 367  13,000 5.53 16.28 
6 HR-64 PSS 298  14,000 0.13 0.24 
7 HR-54 PSS 471  14,900 6.53 15.15 
8 HR-56 PSS 470  14,100 5.39 12.21 
9 CC-5 PSS 520  12,500 3.24 7.24 
10 CC-6 PSS 488  14,068 2.82 6.71 
11 CC-7 PSS 445  12,500 2.40 6.71 
12 CC-2 PSS 671  13,500 4.65 10.53 
13 WELL A Linear 16,060  5,463 13.52 40.29 

 

Analysis of Boren 1 Well 
Boren 1 is from a tight gas reservoir with high pressure in south Texas. Fig. 7-2 

shows the production history of Boren 1. Fig. 7-3 shows a log-log diagnostic plot of 

∆(m)p/qg vs. t for Boren 1. The diagnostic plots shows a half-slope for almost 100 days 

followed by a unit slope for more than 800 days. So this well shows boundary effects 

after 100 days due to small reservoir size. 

Production data are plotted against the Super-t and Super-tn on the same graph to 

illustrate the necessity of using normalized pseudotime as shown in Fig. 7-4. When 
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plotted against Super-tn the data exhibits a straight line with one slope. In this case the 

OGIP is calculated to be 8.14 Bcf, which is confirmed by the simulation model. 

However, when real time is used, the production data do not show a straight line; 

instead, it shows a curve with decreasing slope. The OGIP calculated using the Super-t 

was as high as 32.0 Bcf based where the slope were taken. 

The OGIP is calculated by using the slope from an early point in the PSS period. 

This value is used as the first trial to calculate the normalized pseudotime. This 

normalized pseudotime is then used in the superposition calculation to determine a new 

OGIP. The process is repeated until it converges as described in the above procedures to 

calculate the normalized pseudotime. Fig. 7-5 shows the result of OGIP from iteration 

procedures that give 7.97 Bcf with error of 2.2% compared with the actual value (8.15 

Bcf). 
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Fig. 7-2––Production history for Boren 1 well. 
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Fig. 7-3––Log-log diagnostic plot of ∆m(p)/qg vs. t for Boren 1 well shows half slopes 

and unit slope. 
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Fig. 7-4––Plot of ∆m(p)/qg vs. Super-t and Super-tn for Boren 1 well. 
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Fig. 7-5––Iteration procedure for calculating the correct OGIP by using normalized 

pseudotime method for Boren 1 well. 
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Analysis of Linear Flow Gas Wells 

 In this section, we provide the analysis of linear flow gas wells. These wells 

exhibit by linear flow for long time. Arévalo1-3 provided the analysis of these wells, but 

we will apply the non linearity correction factor for the previous analysis.  
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Fig. 7-6––Plot of qg & Gp vs. t for well A. Total production is 13.52 Bcf. 
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Analysis of Well A 

The well has produced for more than 44 years with no hydraulic fracture. It is the 

only well in this reservoir. Fig. 7-6 shows the gas rates on a monthly basis, reservoir and 

fluid properties are the only available data. The cumulative production after 44.14 years 

is 13.52 Bcf and the recovery factor is 40%. 

Diagnostic Plot for Well A 

Fig. 7-7 shows a log-log diagnostic plot of ∆(m)p/qg and qg vs. t for Well A. 

Similarly, Fig. 7-8 shows the log-log diagnostic plot of ∆(m)p/qg and qg vs. Super-t for 

this well. Both Figs. 7-7 and 7-8 Show linear flow for about 18.2 year and PSS flow 

period for the remaining production time. This is also confirmed by Fig. 7-9 a plot of Gp 

vs. Super-t, which shows a “half-slope” followed by zero slope for PSS. We can 

conclude that Well A produced with linear flow for 18.2 years and then boundary effects 

begin. 

Determining Reservoir Properties 

 In this section, we will use production data to determine reservoir properties, 

including the product of cAk  and OGIP. Two common methods are used to determine 

the reservoir properties from production data: superposition time and t  plots.  
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Fig. 7-7––Log-log diagnostic plot of ∆m(p)/qg vs. t for Well A.  
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Fig. 7-8––Log-log diagnostic plot of ∆m(p)/qg vs. tmb for Well A. 
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Fig. 7-9––Log-log diagnostic plot of Gp vs. Super-t for Well A. 

 

Constant pwf, t  Plot 

The first method we use to determine the product of cAk  and OGIP is the plot 

of ∆m(p)/qg vs. t . The slope of this plot is used to determine the product of cAk  and 

OGIP by using Eq. 7.5 for cAk  and Eq. 7.6 for OGIP.  
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Fig. 7-10 shows the plot of ∆m(p)/qg vs. t  for the actual data if also, and also, 

the analytical solution. The end of transient flow from Fig. 7-10 is tesr = 6,630 days, but 

the calculated time from analytical solution is tesr = 7,994.68 days. The value of the 

slope in the ∆m(p)/qg straight line was estimated to be 25x103 psia2-D1/2/Mscf-cp. The 

intercept to the origin was estimated as zero. The constant pwf case is used even though 

pressure may have changed somewhat over the years. Fig. 7-10 shows the difference 

between analytical and actual data, which called the non linearity problem because it 

shows the effect of the drawdown value. If we assume the pwf = 800 psia for all 

production, the average drawdown value for this well is 0.963. Compared with the 

analytical solution the error in slope is 26%. The calculated value of product cAk  = 

77,899 md1/2 ft2 and OGIP = 40.29 Bcf. The correct value of cAk  = 57,717 md1/2 ft2 

and the correct OGIP = 33.9 Bcf. The correction factor calculated with Eq. 7.7 is 0.828. 

Then, we apply the correction factor to Eqs. 7.5 and 7.6 to get the correct value of cAk  

= 64,499 md1/2 ft2 and the correct OGIP = 33.36 Bcf. The slope value after applying the 

correction factor  = 30,194. The difference in the value of CPLm~ cAk  compared with 

the analytical value arises because the pwf is not constant for all times but varies from 

500 to 1,500 psia; this means the correction factor is not 100% correct, but the OGIP is 

very close to the right answer.  
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Fig. 7-10––Plot of ∆m(p)/qg vs. t  of actual data and analytical solution for Well A 

shows the slope and intercept to the origin of the straight line for the outer boundary. 

 

Linear Flow, Superposition Time 

 In this section, we use superposition time because the flow rate and pwf are not 

constant for all times. The assumed function for the superposition is linear flow. Fig. 7-

11 show the ∆m(p)/qg vs. linear superposition for well A. The slope for the linear flow 

period is  = 16,744. The error in slope compared with the analytical slope is about 

22%.  

CPLm~

 The calculated value of cAk  = 74,022.81 md1/2 ft2 and the value of OGIP = 

27.08 Bcf by using the constant-rate Eqs. 7.10 and 7.11. We apply the correction factor, 
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Eq. 7.12 for correcting the error in slope, which gives the mCPL
~  = 20,463.52. The correct 

value of cAk  = 60,568 md1/2 ft2 by using the correct slope, but the OGIP does not give 

the right value even after we apply the correction. 
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Fig. 7-11––Plot of ∆m(p)/qg vs. Super-t0.5 of actual data and analytical solution for Well 

A. 

 

Comparison Between New Method and Decline Curve Method 

 In this section, we will present the comparison between our new method for 

calculating OGIP and the decline-curve method19 for Jeffress field. The analysis for 13 

wells from Jeffress field is shown in Table 7-2. The pseudotime method shows good 

agreement with the decline-curve method. 
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TABLE 7-2––COMPARISON BETWEEN PSEUDOTIME AND THE DECLINE CURVE FOR 
JEFFRESS FIELD 

  
Cum as of 
10/31/03 Fetkovich Fetkovich Fetkovich Super-tn 

Well Name Bcf EUR, Bcf GIP RF GIPx 
Adame 1 3.59 3.87 5.39 72% 5.88 
Adame 2 3.32 3.61 4.18 86% 4.67 
Boren 1 6.38 7.13 9.91 72% 10.36 
Boren 2 (W only) 9.16 10.50 14.93 70% 14.95 
Boren 3 5.72 6.69 8.50 79% 10.43 
Boyt 1 0.65 0.72 1.17 62% 1.13 
Castillo Deep 2 1.53 1.92 2.88 67% 2.23 
Coates B4 26.66 27.48 39.90 69% 54.30 
Coates E1 (W only) 10.92 11.00 14.89 74% 16.66 
Coates E2 (W only) 2.31 2.53 4.46 57% 4.11 
Coates F1 23.01 25.02 43.90 57% 41.20 
Coates F4 5.6 5.79 6.80 85% 10.20 
Coates F6 4.56 4.83 7.75 62% 8.00 
Sherwood 1 0 0.00 0.00 0% 0.00 

 

 

 

 

 

 

 

 

 

 

 

 



 101

Summary and Discussion  

In this chapter, we provide an analysis for wells in PSS and transient period by 

applying the new method of calculating the reservoir parameters. The result confirms our 

new equation in calculating the OGIP and reservoir parameters. Liquid load-up is not 

included in our calculation for calculating pwf value. The effect of multiple layers is not 

included in our calculation. The pwf is calculated by using the Cullender and Smith70 

method for dry-gas well. The summary of well analysis is shown in Table 7-3. 

 

TABLE 7-3––SUMMARY OF WELL ANALYSIS FOR PSS AND LINEAR FLOW 

Number Well Type of OGIP OGIP Error 
  flow Super-t Super-tn % 
      (Bcf) (Bcf)   
1 Boren 1 PSS 15.60 7.97 -95.7% 
2 HR-58 PSS 16.21 9.80 -65.4% 
3 HR-60 PSS 12.00 7.15 -67.8% 
4 HR-61 PSS 9.00 4.91 -83.3% 
5 HR-62 PSS 16.28 8.60 -89.3% 
6 HR-64 PSS 0.24 0.18 -37.1% 
7 HR-54 PSS 15.15 10.60 -42.9% 
8 HR-56 PSS 12.21 8.00 -52.6% 
9 CC-5 PSS 7.24 5.38 -34.6% 
10 CC-6 PSS 6.71 5.50 -22.0% 
11 CC-7 PSS 6.71 4.57 -46.8% 
12 CC-2 PSS 10.53 7.00 -50.4% 
13 WELL A Linear 40.29 33.36 -20.8% 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

 This work presents the results of a systematic study with regard to production 

analysis in tight gas-wells. From this work, the following conclusions have been 

reached. 

1 A new normalized pseudotime will improve the accuracy of calculating the 

OGIP. 

2 Superposition with the new normalized pseudotime gives the accurate OGIP at 

any change in rate and properties. 

3 We should take into account the change in porosity and initial water saturation 

with average pressure in calculating the OGIP. 

4 Normalized pseudotime and superposition gives good agreement compared with 

the decline-curve method. 

5 If pressure dependent permeability is ignored, erroneous values of permeability 

and skin factor will be calculated from well-test analysis of performance data. 

6 The pressure response function helps in determining the actual flow regimes in 

variable rate well without knowing the actual pressure. 

7 The drawdown value is the major factor on the non linearity of the transient 

period but radial model is not rate dependent. 

8 Although each rate change cause a departure from the correct straight line during 

transient period, the data falls on the correct straight line following the transient 

time after the rate change, when super-tn is used as the time variable. 
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Recommendations and Future Work 

As result of the findings of this dissertation and the discussion in Chapter VII, the 

following recommendations and future research work are made to improve the 

methodologies developed in estimating the reservoir properties, OGIP, and production 

forecasting trends. 

1. The inverse problem in the superposition pressure response function needs more 

research to determine the correct pressure function for actual production data. 

2. The new pseudotime needs more research in determining OGIP in multi-layer 

reservoirs. 

3. The absolute permeability changes dramatically in tight gas reservoirs with 

decreasing average reservoir pressure, so permeability should not be considered 

constant. 

4. The rate-dependent problem for linear flow needs more research for multi layer 

reservoirs and also for different flow regimes. 

5. Liquid load-up is not included in calculating bottomhole pressure for gas wells, 

so this needs to be included in the next calculation to correct the value of pwf. 

6. Pseudotime and superposition need more research on different flow regimes. 
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NOMENCLATURE 

 

Variables 

A = well drainage area, L2, [ft2, acres] 

Ac = cross-sectional area to flow defined in Table 4-2 of Chapter IV, L2 [ft2] or 

cross-sectional in a rectangular medium (Appendix A), (= hL), [in2, cm2] 

Bg = gas formation volume factor, L3/L3 [rcf/scf] 

CA = Dietz's shape factor, dimensionless 

cf = formation (rock) compressibility, Lt2/m,  [psia-1] 

cg = gas compressibility, Lt2/m, [psia-1] 

cgi = gas compressibility at initial reservoir pressure, Lt2/m, [psia-1] 

CO2 = carbon dioxide, mole fraction 

ct = total system compressibility, Lt2/m, [ psia-1], [= c fwiwoogg cScScS +++ ] 

cw = water compressibility, Lt2/m [psia-1] 

FR =
)S(

)SCC(p

wi

wiwf

−

+∆
−

1
1 , Ramagost factor 

fsuper = Superposition factor for superposition time plot 

Gp = cumulative gas production, L3, [Bcf] 

h = net reservoir thickness, (hnet), L, [ft] 

H2S = sulfur, [mole fraction] 

Jg = gas well productivity index, L4/t2/m, [Mscf-cp/D-psia] 

H2S = sulfur, [mole fraction] 

k = permeability of the reservoir, L2 , [md] 

L = distance to boundary for linear reservoirs, [ft] 

m(p) = real gas pseudo-pressure, m/Lt3, [psia2/cp] 

m( p )  = real gas pseudo-pressure at average reservoir pressure, m/Lt3,  [psia2/cp] 
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m(pi) = real gas pseudo-pressure at initial pressure, m/Lt3, [psia2/cp] 

m(pwf) = real gas pseudo-pressure at flowing bottomhole pressure, m/Lt3, [psia2/cp] 

m÷(p) = modified gas pseudo pressure considering k(p), md*psia2/cp 

dexpm~  = intercept to origin for constant pwf evaluated from the straight line on a plot of  

plot of [ ]gqpm /)(log ∆  vs. t , [psia2-D/Mscf-cp] 

CPLm~  = slope for constant pwf evaluated from the straight line on a plot of ∆m(p)/qg   

vs. t plot, [psia2-D1/2/Mscf-cp] 

CPLm~  = slope for constant pwf evaluated from the straight line on a plot of ∆m(p)/qg   

vs. t plot, [psia2-D1/2/Mscf-cp] 

CRLm~  = slope for constant rate evaluated from the straight line on a plot of ∆m(p)/qg   

vs. t plot, [psia2-D1/2/Mscf-cp] 

)p(m
)]p(m)p(m[

m
i

wfi
DR

−
= = Dimensionless drawdown parameters 

OGIP = original gas in place (G), L3 [Bcf] 

p  = average reservoir pressure, m/Lt2 , [psia] 

pi = initial reservoir pressure, m/Lt2, [psia] 

PSS = pseudo-steady-state flow 

pwf = flowing bottomhole pressure, (BHFP), m/Lt2 , [psia] 

ptf = flowing surface tubing pressure, (WHFP), m/Lt2, [psia] 

q = volumetric flow rate, L3/t, [cm3/sec] 

qD = dimensionless pressure in radial flow for constant pwf, [= ] )8097.0)/(ln(2 +Dt

qg = gas flow rate, L3/t , [Mscf/D] 

qn = flow rate of well at time step n 
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re = reservoir drainage radius, L, [ft] 

reD = dimensionless drainage radius, [= re/rwa] 

RV = volume of the reservoir, (FV), L3, [MMrcf] 

rw = wellbore radius, L, [ft]  

Sg = gas saturation, [fraction] 

Sw = water saturation, [fraction] 

T = reservoir temperature, T,  [oR] 

t = time, t, [days] 

t1 = end of the first straight line in a plot of ∆m(p)/qg vs. function of time 

t2 = end of the second straight line in a plot of ∆m(p)/qg vs. function of time 

tDAc = dimensionless time [= 0.00633kt/φµgctAc ] 

tDd = dimensionless decline time  [= 0.00633kt/φµgctL2 ] 

tDL = dimensionless time  [= 0.00633kt/φµgctL2 ] 

tDxe = dimensionless time  [= 0.00633kt/φµgctxe
2 ] 

tesr = end of the straight line on a square root of time plot 

tprod = production time, t, [days] 

t1-t0  = time period for q1  

t2-t1  = time period for q2 

V = bulk volume, L3, [rcf]  

Vp = pore volume of the reservoir, L3, [rcf] 

xe = distance from well to outer boundary, L, [ft] 

xf = fracture half-length, L, [ft] 

yD = dimensionless distance  [= cAy / ] 
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ye = distance from hydraulic fracture to outer boundary, L [ft] 

Sgi  = initial gas saturation, fraction 

Swi  = initial water saturation, fraction 

)p(Sw = water saturation at average pressure, fraction 

Super-t = superposition time =∑
=

−−
∆m

i
im

gm

gi )tt(
q
q

1
1 , day 

Super-tn = superposition normalized pseudotime  =∑
=

−−
∆m

i
ninm

gm

gi )tt(
q
q

1
1 , day 

t = producing time, t, days 
ta = Agarwal’s pseudotime, days 

at
~  = Normalized Palacio pseudotime 

mbt  = Material balance time 

tn = normalized pseudotime, days 

nt
~  = updated normalized pseudotime, days 

T  = reservoir temperature, T, oR 

zi  = initial gas deviation factor 

)p(ct  = total compressibility at average reservoir pressure 

Subscripts 

A = system A 

CPL = constant flowing bottomhole pressure in linear flow 

CP = constant flowing bottomhole pressure 

CR = constant rate 

CRL = constant gas rate in linear flow 

esr = actual time of the end of the straight line on the square root of time plot 

ehs = actual time of the end of the straight line in linear flow regime 
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f = fracture 

g = gas 

i = initial condition (usually refer to initial pressure) 

n = number of items  

 

Greek Symbols 

φ = porosity, [fraction] 

γg = gas specific gravity (air = 1) 

µg = gas viscosity, m/Lt, [cp] 

ρ = fluid density, [lbm/ft3, gm/cm3] (water = 1) 

)p(φ  = porosity at average reservoir pressure 

)p(µ  = viscosity at average reservoir pressure 

γ  = “gamma” permeability modulus 
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APPENDIX A 

DERIVATION OF SUPERPOSITION TIME FUNCTION FOR OIL RESERVOIR 

 

 The general equation used for describing the unsteady state radial flow of slightly 

compressible fluids in homogeneous porous media can be written as59 
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The point source solution of Eq. A.1 is: 
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The pressure drawdown in Eq. A.2 is for a well without damage or improvement. In case 

of skin effect Eq. A.2 becomes  
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Where 

 s = skin factor 

Rewriting Eq. A.3 in field units, the pressure drop becomes 
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Rewriting Eq. A.4 in term of slope and intercept 
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Rewriting Eq. A.7 after dividing both sides on q, then Eq. A.7 becomes 
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By plotting 
q

pp wi −
 vs. log(t), we can get straight line with slope m and intercept of b. 

The permeability and skin factor can be calculated from the slope and intercept 

respectively. 

Variable Rate Radial Flow 

The pressure drop for the multi rate (or variable rate) case production is 

calculated by using superposition method, the pressure drop for certain period of time tn 

is calculated as following 
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Eq. A.9 can be written in the form of slope and intercept: 
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By dividing Eq. A.10 by qn in both sides 
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Eq. A.11 can be written in term of summation of flow rate and time: 
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Eq. A.12 for radial flow. 
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Eq. A.12 can be written for linear, Bi-linear, and pseudo steady state as 

∑
=

− +−
∆

=
− n

j
jn

n

j

n

wi b])tt(
q
q

[m
q

pp
1

1 ...........................................................(A.13) 

Eq. A.13 for linear flow 
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Eq. A.14 for bilinear flow 
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Eq. A.15 for PSS flow 
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APPENDIX B 

DERIVATION OF TANGENT METHOD WITH CURRENT PROPERTIES FOR 

CONSTANT RATE PRODUCTION  

 
 The derivation of tangent method is based on the productivity index, which is 

constant during the pseudosteady-state period. Production rate during pseudosteady-state 

period is calculated by using productivity index equation.  

 )]()([ wfg pmpmJq −= ...........................................................................(B.1) 

The change in average reservoir pressure with time during PSS period can be represented 

by the following volumetric equation 
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 Differentiating Eq. B.1 with respect to t for constant rate, we have  

 
dt
pdm

dt
pdm wf )()(

= ............................................................................................(B.3) 

Where  
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We can now substitute Eq. B.4 into Eq. B.2, giving 
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We plot 
g

wfi

q
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 vs. time in pseudosteady-state period. The slope of this plot is  
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We can substitute Eq. B.3 into Eq. B.6, giving 
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We can substitute Eq. B.7 into Eq. B.5, we have 
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The OGIP can be calculated from the following 
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The change in pore volume due to the change in pressure is giving by the following 
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We can now substitute Eq. B.9 into Eq. B.10, we have 
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We can now substitute Eq. B.11 into Eq. B.8 and solve for OGIP, giving 
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The gas formation volume factor can be calculated as 
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Eq. B.12 can be written in another form for initial pressure and initial compressibility 

factor, gives 
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The change in pore volume can be calculated as 

 
)()( ppic

i
fep −−=φφ .......................................................................................(B.15) 



 122

By substituting Eq. B.15 into Eq. B.14, we have 
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Eq. B.16 gives the accurate OGIP at any value of average reservoir pressure. The OGIP 

can be calculated by using the initial properties of viscosity and compressibility as. 
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We can now solving Eqs. B.16 and B.17 for the value of the slope at each time step, 

giving 
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Eq. B.18 can be solved for the slope value, gives 
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The slope in pseudosteady-state is given by 
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In case of constant rate m(pi) is constant, then by differentiating Eq. B.20, we have  
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We can now substitute Eq. B.21 into Eq. B.19, giving 

 ( iPSS
t

itwf m
pcpp

c
dt

pdm ~
)()()(

)()(
µφ
µφ

=
− ) .............................................................(B.22) 

Eq. B.22 can be written as  
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Where the tn is called pseudotime 
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We can integrate Eq. B.24 to calculate the pseudotime (tn) 
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We can now calculate the pseudotime (tn) as 
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APPENDIX C 

RELATIONSHIP BETWEEN SUPERPOSITION TIME AND MATERIAL 

BALANCE TIME IN PSS 

 

 In this section, we show the superposition time and material balance time are 

equivalent for pseudosteady-state. This is true for constant reservoir properties. This is 

also true for variable properties with modified definition of material balance pseudo time 

and superposition pseudo time. 

Superposition Equation for Constant Properties 

 The superposition equation for the variable rate with constant reservoir properties 

was derived from constant rate solution for any flow regime. The superposition equation 

for variable rate in pseudosteady-state is given as 
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The superposition time for pseudosteady-state  
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Where 

 Super-t = superposition time in PSS 

Eq. C.2 can be written as 
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Eq. C.3 can be factorizing as  
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Grouping first and second term in Eq. C.4, we have 
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The summation of last term in Eq. C.5 will give 
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Substitute Eq. C.6 into Eq. C.5, we have  
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For j = 1 
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By using Eqs. C.6 and C.7 and grouping first and second term in Eq. C.5, we have 

∑∑
==

−− =+
n

j
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n

j
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11
11 ......................................................................(C.10) 

Substituting Eq. C.10 into Eq. C.7, we have 
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Eq. C.11 can be written as  

])tt(q[
q

tSuper
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j
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gn
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=
−− −=

1
1

1 ...................................................................(C.12) 

Material Balance Time for Constant Properties 

The material balance time approach proposed to analyze variable rate and 

pressure in pseudosteady-state. The material balance time equation is given by 

g

p
mb q

G
t = ..........................................................................................................(C.13) 

The cumulative production Gp can be calculated as 

∑
=

−−=
n

i
iiigp ttqG

1
1 )( .......................................................................................(C.14) 

Substituting Eq. C.14 into Eq. C.13, we have 
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∑
=

−−=
n

i
iiig

gn
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q
t

1
1 )(1 .................................................................................(C.15) 

Where 

 tmb = material balance time 

 

So, the above derivation shows that the superposition time and material balance 

time is exactly the same. So, we can use the cumulative production to calculate the time 

function in pseudosteady-state. 

Example 1 

In this example we applied Eqs. C12 and C.15 for constant reservoir properties 

with variable rate, the result shown in Table C.1 and as you can see the superposition 

time  and tmb are equal.  tSuper−

 
 

TABLE C-1––CALCULATION OF SUPERPOSITION TIME AND 

MATERIAL BALANCE TIME 

Time qg Gp tmb Super-t 
days Mscf/D Mscf days Days 

1 10 10 1.0 1.0 
2 30 40 1.333 1.333 
5 20 100 5.0 5.0 
6 60 160 2.667 2.667 
8 30 220 7.333 7.333 
10 5 230 46.0 46.00 

 

Superposition Equation for Variable Properties 

 The modified superposition equation is used when the reservoir properties 

change which give the linear equation. The modified superposition used pseudo time 

instead of regular time. The pseudo time equation is 

 ∫=
t

t
itn dt

pcpp
ct

0 )()()(
1)(

µφ
φµ ....................................................................(C.16) 
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By substituting Eq. C.16 into Eq. C.1, we have 

 ∑
=

− +−
∆

=
− m

j
njnm

gn

j
PSS

gm

wfi btt
q
q

m
q

pmpm

1
1 ])([~)]()([

...........................................(C.17) 

The modified superposition time or superposition pseudo time given by 

∑
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Where 

By using Eqs. C.3- C.9 Eq. C.18 can be written as 

])([1
1

1∑
=
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j
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tSuper .....................................................................(C.19) 

Material Balance Time for Variables Properties 

 The material balance pseudo time approach proposed can analyze variable rate 

and pressure in pseudosteady-state. The material balance pseudo time equation is given 

by 

g

ap
amb q

G
t = .........................................................................................................(C.20) 

Where 

 tnMC = material balance pseudo time 

 Gap = pseudo cumulative production 

 The pseudo cumulative production Gap can be calculated by using pseudo time 

instead of time as 

∑
=

−−=
n

i
aiaiigap )tt(qG

1
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Substituting Eq. 19 into Eq. 18, we have 

∑
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1 .............................................................................(C.22) 

 The superposition pseudo time and material balance pseudo time are equivalent 

for pseudosteady state period as shown in Eq. C.17 and Eq. C.20. 
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Example 2 

 In this example we applied Eqs. C.17 and C.20 for variable reservoir properties 

with variable rate in pseudosteady-state, the result shown in Table C.2 and as you can 

see in Table C.2 the superposition time and tnmb are equal.  tSuper−

 
 

TABLE C-2––CALCULATION OF SUPERPOSITION 
PSEUDOTIME AND MATERIAL BALANCE PSEUDOTIME 

Time tn qg Gpa tambt tsuper)PSS 
Days days MSCF/D Bcf day day 
0.01 0.50 5000.00 0.0025 0.50 0.50 
0.02 0.51 5000.00 0.0026 0.51 0.51 
0.04 0.53 5000.00 0.0026 0.53 0.53 
0.05 0.55 5000.00 0.0027 0.55 0.55 

300.80 265.43 2000.00 1.3253 662.66 662.66 
303.75 267.66 2000.00 1.3298 664.90 664.90 
304.75 268.42 2000.00 1.3313 665.66 665.66 
399.38 338.57 2000.00 1.4716 735.80 735.80 
400.00 339.02 2000.00 1.4725 736.25 736.25 
400.75 339.56 4000.00 1.4747 368.67 368.67 
401.65 340.22 4000.00 1.4773 369.32 369.32 
402.65 340.94 4000.00 1.4802 370.05 370.05 
600.81 472.48 1000.00 2.0049 2004.89 2004.89 
601.78 473.07 1000.00 2.0055 2005.48 2005.48 
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APPENDIX D 

DERIVATION OF TANGENT METHOD WITH CURRENT PROPERTIES FOR 

CONSTANT BOTTOMHOLE FLOWING PRESSURE PRODUCTION  

Tangent Slope with Current Properties 

 The derivation of tangent slope is based on the productivity index, which is 

constant during the PSS period. Production rate can be calculated by  

 )]()([ wfCPg pmpmJq −= ....................................................................(D.1) 

The change in average reservoir pressure with time during PSS period can be represented 

by the following volumetric equation 

 
pt

gg

Vc
Bq

dt
pd −

= ......................................................................................(D.2) 

Differentiating Eq. D.1 with respect to t, we have  

 
dt

pdmJ
dt

dq
CP

g )(
= .................................................................................(D.3) 

The 
dt
pd  can be calculated as 

 
dt

pd
z

p
dt

pdm
µ

2)(
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We can now substitute Eq. D.4 into Eq. D.3, giving 

dt
pd

z
pJ

dt
dq

CP
g

µ
2
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By substituting Eq. D.2 into Eq. D.5, we have 
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g Vc
B

z
pJ

dt
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q µ
21

−= .................................................................................(D.6) 

We plot log 
g

wfi

q
pmpm )]()([ −

 vs. time in pseudosteady-state period. The slope of this plot is 

giving by 
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dt
qd
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m gg
d 303.2
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Where 
=− )()( wfi pmpm  Constant 

 
By differentiate Eq. D.7, we have   
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dq
q

m g

g
d 303.2

1~
exp

−
= ........................................................................................(D.8) 

We can substitute Eq. D.8 into Eq. D.6, giving 
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We solve Eq. D.9 for the current pore volume  

dt

g
CPp mcz

Bp
JV

exp
~

1
303.2
2

µ
= , Mscf...................................................................(D.10) 

The change in pore volume due to the change in pressure is giving by the following 

 ))(exp( ppcVV ifpip −−= ...............................................................................(D.11) 

The OGIP can be calculated from the following 

 
gi

gipi

B
SV
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We can now substitute Eq. D.12 into Eq. D.11, we have 

 ))pp(c(Exp
S

BOGIP
V if

gi
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We can now substitute Eq. D.13 into Eq. D.9 and solve for OGIP, giving 

 ))pp(c(Exp
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(JOGIP if
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1
3032
2
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The gas formation volume factor can be calculated as 

 
p
zTBg 0282.0= ...............................................................................................(D.15) 

Eq. D.14 can be written in another form for initial pressure and initial compressibility 

factor as 
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Eq. D.17 gives the change in pore volume 

 
)ppi(c

i
fExp)p( −−φ=φ ................................................................................(D.17) 

By substituting Eq. D.17 into Eq. D.16, we have 

 )
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2
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µφ

φ
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Where 

 =φ porosity at average reservoir pressure 

 =µ viscosity at average reservoir pressure 

 =tc total compressibility at average reservoir pressure 

 Eq. D.18 used current properties, which give accurate value of OGIP at any value 

of average reservoir pressure. 
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APPENDIX E 

ANALYSIS OF TIGHT GAS WELLS BY USING NORMALIZED PSEUDOTIME 

AND SUPERPOSITION METHOD 

Well HR-58 

Well HR-58 is from tight gas reservoir with high pressure. The well has 

produced for 532 days. Fig. E-1 shows the production history of well HR-58. Fig. E-2 

shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic plots show half-

slope for almost 10 days followed by transition zone and unit slope for late period. So, 

this well shows the boundary effect after 10 days due to the high production rate and 

small reservoir size. 

Production data is plotted against the Super-t and Super-tn on the same graph to 

illustrate the necessity of using normalized pseudotime as shown in Fig. E-3. When 

plotted against Super-tn the data exhibits a straight line with one slope. In this case the 

OGIP is calculated to be 9.8 Bcf. 

However, when the real-time is used, the production data does not show a 

straight line; instead it shows a curve with reducing slope, i.e. increasing OGIP. The 

OGIP calculated from the Super-t was as high as 16.21 Bcf based where the slope were 

taken. The OGIP is calculated by using the slope from the early point of PSS period. 

This value is used as first trial to calculate the normalized pseudotime. This pseudo-time 

is then used in the superposition calculation to determine a new OGIP. The process is 

repeated until it converges as provided in the above procedures to calculate the 

normalized pseudotime. Fig. E-4 shows the result of OGIP from iteration procedures 

that give 9.8 Bcf 
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Fig. E-1––Shows production history for Well HR-58. 
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Fig. E-2––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-58 which shows half 

slopes, transition zone, and unit slope. 
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Fig. E-3––Shows comparison between Super-t and Super-tn for Well HR-58. 
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Fig. E–4––Shows the result from iteration procedure for calculating the correct OGIP by 

using normalized pseudotime method for Well HR-58. 

 

Well HR-60 

The third field example is for well HR-60, which produced for 659 days with 

cumulative production 5.03 Bcf. Fig. E-5 shows, the production history of well HR-60. 

Fig. E-6 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic plots show 

half-slope for almost 20 days followed by unit slope for late period. So, this well shows 

the boundary effect after 20 days due to the high production rate and small reservoir 

size. Also, There is a shut-in show a transient period for short time and then the well 

reach PSS period again.  

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 
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correct OGIP value as shown in Fig. E-7. When plotted against Super-tn the data exhibits 

a straight line with one slope. In this case the OGIP is calculated to be 7.15 Bcf. 

Fig. E-8 shows the unique answer of OGIP from Super-tn slope that gives value 

7.15 Bcf instead of 12 Bcf from Super-t slope after iteration for different value of OGIP. 
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Fig. E-5––Well HR-60 production history.  
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Fig. E-6––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-60 which shows half 

slopes and unit slope. 



 138

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

3.E+06

4.E+06

4.E+06

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
Super-t  & Super-t n  (day)

[m
(p

i) 
- m

(p
w

f )
]/q

g (
ps

ia
2 /c

p/
M

sc
f/D

)

Super-t

Super-tn

 

Fig. E-7––Shows comparison between Super-t and Super-tn for Well HR-60. 
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Fig. E-8––Shows the result from iteration procedure for calculating the correct OGIP by 

using normalized pseudotime method for Well HR-60. 

 

Well HR-61 

The fourth field example is for well HR-61, which produced for 218 days with 

cumulative production 3.38 Bcf. show the reservoir data. Fig. E-9 shows the production 

history of well HR-61. Fig. E-10 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. 

The diagnostic plots show half-slope for almost 6 days followed by unit slope for late 

period. There are many shut-in periods in the production history of this well, which 

show a transient period for short time and then followed by PSS period again. So, as we 

can see in Fig. E-10 there is many PSS periods with one slope but due to the effect of 

properties change these periods does not give straight line as we can see in Fig. E-11 of 

Super-t line.  
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Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-11. When plotted against Super-tn the data 

exhibits a straight line with one slope. Also, we can see many parallel lines for Super-tn 

in PSS period after we correct for properties changes. In this case the OGIP is calculated 

to be 4.91 Bcf. 

Fig. E-12 shows the unique answer of OGIP from Super-tn slope that gives value 

4.91 Bcf instead of 9.0 Bcf from Super-t slope after iteration for different value of OGIP. 
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Fig. E-9––Well HR-61 production history. 
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Fig. E-10––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-60 which shows half 

slopes and unit slope. 
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Fig. E-11––Shows comparison between Super-t and Super-tn for Well HR-61. 
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Fig. E–12––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well HR-61. 

 

Well HR-62 

The fifth field example is for well HR-62, which produced for 367 days with 

cumulative production 5.53 Bcf. Fig. E-13 shows, the production history of well HR-62. 

There are many shut-in periods in the production history of this well as shown in Fig. E-

14, which Show many periods of PSS. 

Fig. E-15 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 20 days followed transition period and then by unit 

slope for late period. There are many shut-in periods in the production history, which 

show a transient period for short time and then followed by PSS period again.  
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Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-16. When plotted against Super-tn the data 

exhibits a straight line with one slope. Also, we can see many parallel lines for Super-tn 

in PSS period after we correct for properties changes. In this case the OGIP is calculated 

to be 8.6 Bcf. 

Fig. E-17 shows the unique answer of OGIP from Super-tn slope that gives value 

8.6 Bcf instead of 16.28 Bcf from Super-t slope after iteration for different value of 

OGIP. The error in using Super-t slope in OGIP is equal 89.3%. 
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Fig. E-13––Well HR-62 production history. 
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Fig. E-14––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-62 which shows half 

slopes and unit slope. 
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Fig. E-15––Shows comparison between Super-t and Super-tn for Well HR-62. 
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Fig. E–16––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well HR-62. 

Well HR-64 

The six-field case is for well HR-64, which produced for 298 days with 

cumulative production 0.13 Bcf. Fig. E-17 shows, the production history of well HR-64. 

This well depleted in short time due to small size of the reservoir and liquid load up 

problem in late period.  

Fig. E-18 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 20 days followed transition period and then by unit 

slope for late period. There are many shut-in periods in the production history, which 

show a transient period for short time and then followed by PSS period again.  

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-19. When plotted against Super-tn the data 
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exhibits a straight line with one slope. Also, The Super-t line is not straight line due to 

great change in reservoir properties which is related to the small size of this reservoir. In 

this case the OGIP is calculated to be 0.175 Bcf. 

Fig. E-20 shows the unique answer of OGIP from Super-tn slope that gives value 

0.175 Bcf instead of 0.24 Bcf from Super-t slope after iteration for different value of 

OGIP. The error in using Super-t slope in OGIP is equal 37.14%. 
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Fig. E-17––Well HR-64 production history. 



 149

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1 10 100 1000

Time (day)

[m
(p

i) 
- m

(p
w

f )
]/q

g (
ps

ia
2 /c

p/
M

sc
f/D

)

Unit Slope PSS  Flow

1/2 Slope Linear Flow

 

Fig. E-18––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-64 which shows half 

slopes and unit slope. 
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Fig. E-19––Shows comparison between Super-t and Super-tn for Well HR-64. 
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Fig. E–20––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well HR-64. 

 

Well HR-54 

The six-field example is for well HR-54, which produced for 471 days with 

cumulative production 6.53 Bcf. show the reservoir data. Fig. E-21 shows the 

production history of well HR-54.  

Fig. E-22 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 105 days followed transition period and then by unit 

slope for late period.  

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-23.  



 152

Fig. E-24 shows the unique answer of OGIP from normalized pseudotime 

method that gives value 10.6 Bcf instead of 15.15 Bcf from superposition with real time. 

The error in OGIP value is 43%. 
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Fig. E-21––Well HR-54 production history. 
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Fig. E-22––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-54 which shows half 

slopes and unit slope. 
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Fig. E-23––Shows comparison between Super-t and Super-tn for Well HR-54. 
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Fig. E–24––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well HR-54. 

 

Well HR-56 

The seven-field example is for well HR-56, which produced for 470 days with 

cumulative production 5.39 Bcf. show the reservoir data. Fig. E-25 shows the 

production history of well HR-56. 

Fig. E-26 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 35 days followed transition period and then by unit 

slope for late period.  

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-27.  
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Fig. E-28 shows the unique answer of OGIP from normalized pseudotime 

method that gives value 8.0 Bcf instead of 12.21 Bcf from superposition with real time. 

The error in OGIP value is 52.63%. 
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Fig. E-25––Well HR-56 production history. 
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Fig. E-26––Log-log diagnostic plot of ∆m(p)/qg vs. t for well HR-56 which shows half 

slopes and unit slope. 
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Fig. E-27––Shows comparison between Super-t and Super-tn for Well HR-56. 
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Fig. E–28––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well HR-56. 

 

Well CC-5 

The eight-field example is for well CC-5, which produced for 520 days with 

cumulative production 3.24 Bcf. show the reservoir data. Fig. E-29 shows the 

production history of well CC-5. 

Fig. E-30 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 10 days followed two-unit slope period for late time. 

This is due to there is shut in period in the production and well reach PSS in short time 

as we can see in Fig. E-30 in unit slope period. 
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Fig. E-29––Well CC-5 production history. 
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Fig. E-30––Log-log diagnostic plot of ∆m(p)/qg vs. t for well CC-5 which shows 

transient period and two unit slope periods. 

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-31. Fig. E-32 shows the unique answer of OGIP 
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from normalized pseudotime method that gives value 5.38 Bcf instead of 6.24 Bcf from 

superposition with real time. 
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Fig. E-31––Shows comparison between Super-t and Super-tn for Well CC-5. 
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Fig. E–32––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well CC-5. 
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Well CC-6 

The nine-field example is for well CC-6, which produced for 488 days with cumulative 

production 2.82 Bcf. show the reservoir data. Fig. E-33 shows the production history of 

well CC-6. 

Fig. E-34 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 50 days followed transition zone, and two-unit slope 

period for late time. This is due to there is shut in period in the production and well reach 

PSS in short time as we can see in Fig. E-34 in unit slope period. 

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-35.  

Fig. E-36 shows the unique answer of OGIP from normalized pseudotime 

method that gives value 5.5 Bcf instead of 6.71 Bcf from superposition with real time. 

The error in OGIP from Super-t method is equal 22.0%. 
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Fig. E-33––Well CC-6 production history. 
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Fig. E-34––Log-log diagnostic plot of ∆m(p)/qg vs. t for well CC-6 which shows 

transient period and two unit slope periods. 
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Fig. E-35––Shows comparison between Super-t and Super-tn for Well CC-6. 
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Fig. E–36––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well CC-6. 

 

Well CC-7 

The ten-field example is for well CC-7, which produced for 488 days with cumulative 

production 2.82 Bcf. show the reservoir data. Fig. E-37 shows the production history of 

well CC-7. 

Fig. E-38 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 25 days followed transition zone, and four-unit slope 

period for late time. This is due to there is shut-in period in the production and the well 

reach PSS in short time as we can see in Fig. E-38 in unit slope period. So all unit slope 

period should give one slope but due to the properties change these period become non-

linear. 

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-39. The normalized pseudotime superposition 

correct for properties change and make all PSS lines parallel as you can see in Fig. E-39. 
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Fig. E-40 shows the unique answer of OGIP from normalized pseudotime 

method that gives value 4.75 Bcf instead of 6.71 Bcf from superposition with real time. 

0.0.E+00

5.0.E+03

1.0.E+04

1.5.E+04

2.0.E+04

2.5.E+04

0 50 100 150 200 250 300 350 400 450 500
Time (day)

qg
 (M

sc
f/d

) &
 p

w
f 

(p
si

)

pwf 

qg

 

Fig. E-37––Well CC-7 production history. 
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Fig. E-38––Log-log diagnostic plot of ∆m(p)/qg vs. t for well CC-7 which shows 

transient linear period and four unit slope PSS periods. 
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Fig. E-39––Shows comparison between Super-t and Super-tn for Well CC-7. 
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Fig. E–40––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well CC-7. 
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Well CC-2 

The eleven-field example is for well CC-2, which produced for 671 days with 

cumulative production 4.65 Bcf. show the reservoir data. Fig. E-41 shows the 

production history of well CC-2. 

Fig. E-42 shows a log-log diagnostic plot of ∆(m)p/qg vs. time. The diagnostic 

plots show half-slope for almost 28 days followed transition zone, and unit slope period 

for late time. This is due to there is shut-in period in the production and the well reach 

PSS in short time as we can see in Fig. E-42 in unit slope period. 

Production data is plotted against the superposition of both real-time and 

normalized pseudotime on the same graph after trial for different OGIP value to find the 

correct OGIP value as shown in Fig. E-43.  

The unique answer of OGIP from normalized pseudotime method that gives 

value 7.0 Bcf instead of 10.53 Bcf from superposition with real time. The error in OGIP 

from Super-t is equal to 50.4%. 
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Fig. E-41––Well CC-2 production history. 
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Fig. E-42––Log-log diagnostic plot of ∆m(p)/qg vs. t for well CC-2 which shows 

transient linear period and two unit slope PSS periods. 
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Fig. E-43––Shows comparison between Super-t and Super-tn for Well CC-2 
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Fig. E–44––Shows the result from iteration procedure for calculating the correct OGIP 

by using normalized pseudotime method for Well CC-2. 
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