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ABSTRACT 

 
EPIFAUNAL ASSEMBLAGES ON DEEP-WATER CORALS IN  

ROATAN, HONDURAS 
(August, 2012) 

 
 

Katherine Lavelle, B.S., State University of New York at Stony Brook 
 
 

Co-Chairs of Advisory Committee: Dr. Thomas Shirley and Dr. John W. Tunnell, Jr. 
 
 
 

Deep-water corals provide complex habitat structure for diverse assemblages of 

invertebrates and fishes. Similar to shallow coral reefs, oyster reefs, and seagrass beds, 

these complex biogenic structures serve many ecosystem functions: (a) as prey items; (b) 

sites for reproduction; (c) feeding stations, elevating suspension feeders above the 

benthos; and (d) refuges from predation. Because deep-sea corals provide some of the 

only three-dimensional habitats in the deep-sea, they may host distinct assemblages of 

epifauna. Non-destructive video surveys of deep-water coral assemblages were made to 

depths of 700 m at eight sites off Roatan, Honduras in May and December, 2011. 

Abundance, species richness, and distribution of epifauna were measured for 305 corals. 

We observed sixteen morphospecies of coral and twenty-six morphospecies of epifauna. 

Coral and epifaunal abundances were highest in the 335-449 m depth zone. Some 

epifauna had high fidelity for a single coral species or for a few species of similar 

morphological complexity. Other coral species had overlapping assemblages of habitat 

generalists. This is the first research on the biodiversity of deep-sea coral communities in 

Roatan, Honduras, and provides information on the assemblages, their depth distributions 

and ecological interactions.  
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Introduction 

 

Deep-water corals are biotic habitat structures often inhabited by diverse 

macrofaunal communities. Similar to shallow coral reefs and seagrass beds, deep-sea 

corals support more diverse assemblages of macrofauna and megafauna than bare 

substrate (Bergquist et al., 2003). These complex biotic structures serve many ecosystem 

functions: (a) prey (Harasewych and Sedberry, 2006; Krieger and Wing, 2002); (b) 

feeding stations above the benthos (Stone, 2006); (c) predation refuge; and (d) sites for 

reproduction (Baillon et al., 2012; Etnoyer and Warrenchuk, 2007). Deep-water corals 

provide some of the only biogenic habitat in the deep-sea and attract a high diversity of 

specialized and generalist fauna.  

Deep-sea corals have a cosmopolitan distribution but require cold temperatures, 

moderate current flow, and hard substrate. With few sources of primary productivity, 

deep-water communities are dependent upon inorganic and organic matter, and 

phytodetritus originating from the surface waters (Roberts et al., 2009). This material is 

transported by currents and lateral advection. The slope of the continental shelf can 

influence the rate of delivery and amount of nutrients to these remote habitats. Depth 

distribution of corals is sometimes reflected in the distribution of associated fauna 

(chapter 2). Many aspects of the physical environment can affect the depth distribution of 

deep-sea coral communities. 

The branched morphology of corals makes them ideal for capturing particulate 

matter from the water column. This in turn attracts a variety of epifaunal suspension 

feeders which use the coral structure to elevate themselves out of the benthic boundary 

layer, which is a better environment for deposit feeders. Mobile and sessile suspension 
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feeders live on coral to get closer to a food source and to move above benthic predators. 

Juvenile echinoderms and crustaceans hide in the lattice framework of many coral to 

avoid predators. Some species attach egg sacs to coral for the same reason. Hundreds of 

species of epifaunal invertebrates and vertebrates are associated with deep-water corals 

(Raes and Vanresusel, 2006; Buhl-Mortensen and Mortensen, 2005). 

All forms of symbiosis, including parasitism, have been reported for deep-sea 

corals. Some associations between coral and epifauna are species-specific symbioses 

while in others the coral provides a suitable habitat (Cho and Shank, 2010). Species-

specific association and species distributions can create differences in beta diversity 

between coral habitats. In mutualistic relationships between coral and epifauna, the coral 

may benefit from being cleared of sediment and suspended matter. Many obligate 

symbionts require the coral skeleton as habitat and the coral is unaffected by their 

presence. Assemblages of species with similar ecological requirements are often 

consistently found on the same coral species. In addition to utilizing coral as a habitat 

structure or symbiotic host, epifauna can co-occur for reproductive reasons. Specific 

communities are also associated with the various stages of coral (i.e., living, dead, 

rubble). Because of the difficulty of deep-sea research, knowledge of the species 

associations in deep-sea communities is limited.  

Many of the epifauna associated with coral are habitat generalists (Quattrini et al., 

2012). In Roatan, we found that bythitid fish, galatheid crabs, and brisingid seastars are 

among the most conspicuous habitat generalists recorded near coral. Bythitid fish may 

have sublethal predation on epifauna within coral colonies. Juvenile galatheid crabs are 

often observed within scleractinian coral framework but adults live on bare substrate and 
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various coral species. Brisingid seastars are deep-sea suspension-feeders recorded in all 

major ocean basins. As opportunistic suspension-feeders, brisingids probably compete 

with coral and epifauna for plankton and other suspended material. These large seastars 

have been observed on boulders, coral rubble and live coral. The co-occurrence of 

epifauna and corals can be a species-specific association or a function of species having 

the same resource requirements. 

Non-destructive video surveys were made in Roatan, Honduras, a relatively 

unexplored region of the Caribbean Sea, to document the biodiversity of benthic 

megafauna and coral. The primary purpose of my research was to compare diversity of 

epifaunal assemblages from different coral substrates, depth zones and sites. The results 

of this research are contained within Chapter 2. The distribution, abundance, and habitat 

selection of the brisingid seastar Novodinia antillensis (A. H. Clark, 1934) is analyzed in 

detail in Chapter 3. This research represents the first analysis of deep-sea biodiversity in 

Roatan, Honduras. 
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EPIFAUNAL ASSEMBLAGES ON DEEP-WATER CORALS IN ROATAN, 
HONDURAS 
 
Introduction 

 
Biogenic habitats support higher diversity macrofaunal communities than adjacent 

structurally simple environments (Bergquist et al., 2003). In the deep-sea, cold-water 

corals fill this role by providing complex habitat structure for diverse assemblages of 

crustaceans, fishes, echinoderms, and other cnidarians (Grassle et al., 1975; Krieger and 

Wing, 2002; Lessard-Pilon et al., 2010; McClain, 2007; O'Hara et al., 2011; Probert et 

al., 1997; Shank, 2010). Deep-sea corals function as biotic, three-dimensional structures 

which provide several important ecosystem functions: (a) food items for predators 

(Harasewych and Sedberry, 2006; Krieger and Wing, 2002; Mah and Foltz, 2011); (b) 

feeding stations, elevating suspension feeders above the benthic boundary layer (Krieger 

and Wing, 2002; Stone, 2006); (c) refuges from predation; and, (d) reproductive sites 

(Church and Buffington, 1966; Etnoyer and Warrenchuk, 2007). 

The distribution of many deep-sea corals is limited to areas of enhanced current 

flow, cold temperatures, and hard substrate (Roberts et al., 2009). Reef-building 

scleractinia, sea fans, and black corals require stable, hard substrate for larvae to settle 

and grow into large colonies. They are often found in higher abundances in areas with 

faster currents. Currents deliver oxygen, suspended inorganic matter, and detrital food 

particles to the benthos and are influenced by topography, bathymetry, and location 

(Gage, 2003). The relative contribution of each of these physical variables can affect 

faunal depth zonation (Messing et al., 1990). In addition to creating an optimal physical 

environment for deep-water corals, currents affect the distribution of the fauna associated 

with corals. Deep-sea fauna have both planktotrophic and lecithotrophic larva; dispersal 
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distance could in part be determined by currents and availability of settlement habitat. 

Currents and depth have pronounced effects on the biozonation of fauna on the 

continental shelf (Grassle et al., 1975; Rowe and Menzies, 1969; Wei et al., 2010). 

Deep-water corals are oases for suspension feeders of the deep-sea. Because there 

is limited primary productivity in the deep-sea, deep-water organisms, including coral, 

are dependent on the delivery of phytodetritus and other organic matter sedimenting from 

surface waters (McClain, 2010). Particle flux to the benthos is episodic and subject to 

scavenging by pelagic organisms. Parts of the continental shelf with a steep slope often 

receive greater inputs of phytodetritus via downslope processes. Gently sloping areas will 

be more dependent on the lateral transport and resuspension of sedimented material by 

currents (Klitgaard et al., 1996). Branched coral structures erect in the water column 

capture particulate matter sedimenting from the surface waters. Coral also provide a 

refuge from predators in the benthic boundary layer. Competition between suspension 

feeders for food increases higher in the water column because plankton and resuspended 

material is more abundant in the benthic boundary layer (Wishner, 1980). The tradeoff of 

an accessible food source for a predation refuge could be important in determining which 

epifauna utilize corals.  

 Epifaunal distribution is dependent on physical factors, the availability of coral 

substrate, and biotic interactions. Competitive exclusion over habitat or prey may result 

in allopatry of competing epifaunal species. In preliminary observations at the study site, 

two chirostyloid crab species were rarely observed on the same coral colony but both 

species occurred on a variety of coral species. Predators may also alter the composition of 

an assemblage. Barnacles, anemones, and small mollusks frequently occur on sections of 
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coral where coral polyps have been removed. This is likely an example of facilitation. 

These species cannot settle on a coral without another species first damaging the coral, 

probably through predation, and providing space for settlement. Community dynamics on 

biotic habitats are complex and vary between coral species, generating beta diversity.  

 Lophelia pertusa, a deep-water scleractinian with a cosmopolitan distribution, 

supports an abundance of habitat generalists (Lessard-Pilon et al., 2010; Quattrini et al., 

2012). Only a fraction of deep-water scleractinian species are true constructional, 

framework-forming coral (Roberts et al., 2009). Framework-forming scleractinians may 

support more diverse assemblages of megafauna than gorgonians because they have 

greater volume and surface area, providing more microhabitats (Metaxas and Davis, 

2005). Living L. pertusa grows on top of dead coral (often conspecifics) and is 

surrounded by rubble. These three microhabitats harbor distinct assemblages of smaller 

suspension feeders, detritivores and juvenile fauna (Roberts et al., 2009). Nematodes and 

other meiofauna may feed on the biofilm that grows on dead coral (Roberts et al., 2009). 

Higher diversity of invertebrates and distinct communities of meiofauna have been 

reported from dead coral and rubble (Frederiksen et al., 1992; Raes and Vanreusel, 2006). 

Rubble is a product of bioerosion by sponges and fungi and is very important to deep-

water reef development and persistence (Roberts et al., 2009). Dynamic, three-

dimensional habitats provided by corals are occupied by a variety of generalist and 

specialist fauna.  

A higher diversity of fauna and a different set of functional groups are found on 

deep-sea corals compared to on bare substrate (Cordes et al., 2008). Symbiotic 

relationships between corals and epifauna have been documented for several species of 
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fishes, gastropods, echinoderms, and crustaceans. Many of these species are suspension 

feeders but others are parasitic or corallivorous (Buhl-Mortensen and Mortensen, 2005; 

Krieger and Wing, 2002). The copepod, Gorgonophilus canadensis, is one of several 

parasites that specialize on octocorals (Buhl-Mortensen and Mortensen, 2004a). The 

polychaete Eunice norvegica is a non-obligate mutualist which cleans the host coral of 

sediment particles and strengthens the coral skeleton, but also steals food from polyps. 

Several ophiuroids have an obligatory symbiosis with deep-water corals at a species-

specific level (Emson and Woodley, 1987; Grange, 1991; Mosher and Watling, 2009; 

Stewart, 1998). These relationships could be mutualistic or commensalistic in that the 

coral benefits by being ‘cleaned’ and the ophiuroid gains a predation refuge and elevation 

into the water column. Juvenile golden king crabs, rockfish, and shrimp utilize a variety 

of coral species as a habitat or predation refuge in the Gulf of Alaska (Krieger and Wing, 

2002; Stone, 2006). The distribution of fauna on deep-water corals indicates that some 

species have highly specialized relationships while others are less restricted to specific 

substrates.  

The integrity of deep-water coral communities is threatened by anthropogenic 

activities. Mining for precious metals, manganese, and sulfide could create sediment 

plumes and damage the endemic species on seamounts and hydrothermal vents (McClain, 

2007; Roberts et al., 2009). Oil and gas exploration can disperse drilling muds and 

fragments across great distances on the seafloor (Roberts et al., 2009). The collapse of 

several fisheries on the continental shelf has led towards deeper species being targeted. 

Evidence of trawling and longline gear occurs in all oceans (Fosså et al., 2002; Probert et 

al., 1997; Stone, 2006). Trawl scars, displacement of coral, seafloor scouring, and coral 
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bycatch are some of the detrimental effects of bottom-trawling. In order to preserve these 

deep-sea communities, coral conservation must be considered in fisheries management 

plans.  

Deep-water corals are important as biogenic habitat for deep-sea megafauna. 

Megafauna-coral associations are determined by biological interactions, ecological 

requirements, and physical conditions. Knowledge of how these remote ecosystems 

function is improving with advances in ROV and submersible technology. Non-

destructive video surveys were made in Roatan, Honduras, an unexplored region of the 

Caribbean Sea, to gather data on species diversity, abundance, and community 

composition.  We aim to answer the following research questions. 

1. What coral and epifaunal species are present in Roatan, Honduras? 

2. How does the composition of epifaunal assemblages vary between coral 

species? 

3. Are epifaunal assemblages similar across depth zones and sites? 

4. What corals host the most diverse assemblages? 

5. Do epifauna show host-specificity? 

We expect that patterns in epifaunal assemblages on corals would be similar to what has 

been reported for the Gulf of Mexico and western Atlantic. These surveys provide 

baseline data which can be used in long-term monitoring programs for ecosystem health 

and coral conservation. 
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Material and Methods 

 

Study Site: Roatan, Honduras 
 

Isla Roatan is part of the Bay Islands archipelago in the southwestern Caribbean 

Sea. It is approximately 50 km north of mainland Honduras. The island is of volcanic 

origin and the continental slope is predominantly soft sediment and basalt and limestone 

boulders. The boulders are heterogeneous in size and distribution. The bottom 

topography has areas of steep walls, furrows, and low-slope, sediment-covered bottom. 

Roatan is on the southern edge of the Cayman Trough and surrounded by deep water. 

Approximately 20 km northeast of Roatan is the Bonacca Deep, a deep feature (5400 m) 

located at the base of the Cayman Trough escarpment (Banks and Richards, 1969; Pinet, 

1976). The Bay Islands themselves lie on top of the Bonacca Ridge (Banks and Richards, 

1969). The steep vertical relief surrounding the island permits rapid descent to bathyal 

depths. 

 

Submersible Idabel 
 

Video survey transects were completed using the Idabel submersible. Idabel is 

owned and operated out of Roatan, Honduras by Karl Stanley’s private company, Stanley 

Submarines. The submersible measures 3.9 x 2 x 2.1 meters. Idabel is equipped with 

redundant propulsion, manually operated emergency drop weights (350 lbs.), life support 

for three days, and a 76 cm diameter hemi-spherical viewport for passenger observation. 

The pilot stands with a 360° view through a series of nine 16 cm diameter portholes 

surrounding the conning tower. It is depth-rated to 1000 m and can carry two passengers 

in addition to the pilot. Two Sony HD Handycams (HDR-HC9) were used during each 

survey. One was mounted on the interior of the viewport mounted on a tripod affixed to 



11 
 

 
 

the base of the viewport and the other was in an external housing mounted near the bow 

of the submersible. Lasers mounted 10 cm apart at the base of the housing for the 

external Handycam were used as a size reference. Still photos were taken from inside 

Idabel with a Canon SLR (Rebel T2i) connected to an external flash. A Seabird Seacat v 

19 conductivity-temperature-depth-oxygen (CTD-O) profiler was mounted on the lower 

starboard side rail. Idabel is not equipped with a mechanical arm so a lightweight rod 

with a dip net was attached to the body in order to collect various invertebrates. The 

submersible operator had previously been successful with this technique.  

 

Survey Transects 

Idabel was towed offshore (~2 km) by a small boat to an approximate location 

and descended to a target maximum depth of 700 m. On dives nearer to shore, Idabel 

motored to and from its dock under its own power. Coordinates were recorded before the 

submersible descended. Video recording began at the seafloor and ended between 50-100 

m. Detailed maps of the seafloor were not available so all transects were in the general 

direction of the launching dock. Ten dives were made but two were excluded from 

analysis because they were outside of the target depth range. Six dives were made in May 

2011 and four dives were made in December 2011. All dives were on the northwestern 

end of Isla Roatan: Old Loafer’s, Anthony’s Key, Luna Beach, Half Moon Bay, 

Lawson’s Rock, Sueno del Mar, Sueno del Bahia, Gibson Bight (Figure 1). Sites were 

named for landmarks visible from the point of descent. Dives were made without 



12 
 

 
 

replicates. 

 

Figure 1. Map of survey sites in Roatan, Honduras. 

 

Every five minutes, depth (m), temperature (°C), and time were recorded along 

with a landmark from that timecode (e.g., boulder with crab species A) (Etnoyer et al., 

2011). Recording was continuous during transects in order to document observations 

which were not necessarily captured on the video monitor. These data logs were later 

used to assign depths to observed organisms and assemblages. During transects still 

images were taken of coral colonies, invertebrate epifauna, and any other interesting 

organisms happened upon. HD video footage was digitized using FinalCutPro 6.0.6. 

Frame grabs were made from digitized video to record habitat distribution, depth, 

abundance, and diversity of species. Few specimens were collected so species 

identifications were to a morphospecies level and made based on gross morphology and 

available ecological data.  All fauna included in analysis were larger than 2 cm and 
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assemblages were designated to include the host coral and all fauna on or within 1 m of 

the coral substrate.  

 

Data analysis  

Epifaunal assemblages were compared using a one-way incomplete blocking 

design ANOVA where coral substrate was the main effect and site and depth were the 

blocks (SAS 9.2). Differences in the following variables were examined with the GLM 

procedure: total number of species (S), total number of individuals (Tn), Simpson’s 

diversity index (λ = Σ Pi
2), and Hill’s diversity index (N2 = 1/ λ). The sampling design 

was not haphazard or random, but it was limited by the availability of design criteria (i.e., 

not all corals were found in all depth zones or sites). A major assumption to the model 

was that there were no interactive effects, because of the limitation of design criteria. 

There were very few instances of replication. Discontinuities in faunal distributions were 

used to create four depth zones for analysis (150-334, 335-449, 450-549, 550-700 m). 

 

Biodiversity measures 

Species data was pooled for each unique coral assemblage (n=305). The Primer 

application, DIVERSE, was used to make biodiversity measures on the assemblages on 

corals (Clarke and Gorley, 2001). Total species (S) is the total number of species in each 

unique assemblage. N is the total number of individuals. Margalef’s species richness (d) 

is calculated as d = (s-1)/logeN. Simpson’s diversity index emphasizes dominant species: 

1-λ = 1 – (Σ Pi
2). Hill’s diversity number N2 was also calculated (N2 = 1/ Σ Pi

2). Hill’s 
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N2 represents the number of very abundant species in a sample. We repeated all of these 

measurements after averaging by sample (n=305). 

 

Non-metric multidimensional scaling 

 Non-metric multidimensional scaling (MDS) was used because the assemblage 

data was non-normal. This technique was employed to compare assemblage composition 

between coral substrates, sites and depth zones. A square-root transformation was used to 

normalize the data because it is the least extreme. A Bray-Curtis similarity matrix, a 

measure of ecological distance, was then built from this transformed data. MDS 

ordination was run on the similarity matrix. MDS ordination represents samples in 2-

dimensional space based on rank-order distances calculated from Bray-Curtis 

coefficients. Points close together on the MDS have similar species composition; points 

farther apart represent samples with different species composition. With this ordination 

method the ranked differences in species are preserved. All steps were repeated after 

averaging by sample. These analyses were used to detect patterns in species zonation, 

assemblage composition, and any patterns of depth distribution. The ANOSIM procedure 

was used to determine if there were significant differences in assemblages between coral 

substrates, sites, and depth zones (9999 permutations). Pairwise tests with an R statistic 

greater than 0.5 and a significance level (p) less than 5% were considered significant. 

Pairwise tests failed when both substrates had only 1 sample. 
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Results 

Species abundance and association 

 

Sixteen morphospecies of coral and twenty-six morphospecies of epifauna were 

included in the analysis of epifaunal assemblages (Table 1 and 2). Many species were 

only identifiable to order or family level. Crustaceans and echinoderms had the most 

representatives, with six and fourteen species, respectively. Other groups included in 

analysis were the cnidarians, gastropods and fishes. Two distinct species of chirostyloid 

crabs (Superfamily: Chirostyloidea) were abundant, we suspect that the morphospecies 

referred to as chirostyloid sp. B is Eumunida picta (Smith, 1883). Crab sp. C is a 

decorator crab with a sponge on its carapace. Rochinia crassa (A. Milne-Edwards, 1879) 

is a distinct brachyuran crab found along the Atlantic Coast and in the Caribbean (Perry 

and Larsen, 2004). Gooseneck barnacles (Scalpellum sp.) were observed on the bare 

stalks of several coral species. 

Table 1. Absolute abundance of coral morphospecies at study sites (AKR= Anthony’s 
Key, GBB= Gibson Bight, HMB= Half Moon Bay, LBE= Luna Beach, LWR=  Lawson’s 
Rock, OLS= Old Loafer’s, SDM= Sueno del Mar, SDR= Sueno del Bahia). 
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Table 2. Absolute abundance of epifaunal species at study sites (AKR= Anthony’s Key, 
GBB= Gibson Bight, HMB= Half Moon Bay, LBE= Luna Beach, LWR=  Lawson’s 
Rock, OLS= Old Loafer’s, SDM= Sueno del Mar, SDR= Sueno del Bahia). 

 
 

Two species of Asteroschema sp. ophiuroid brittle stars were wrapped around 

coral colonies. Five morphospecies of comatulid crinoids (unstalked) were observed 

during survey transects. Two species of urchins and one brisingid seastar were also 

present. Cnidarians included the Venus-flytrap anemone Actinoscyphia sp., the colonial 

zoanthid Parazoanthus sp., and an actinarian anemone Actinaria sp. Several slit shells 

were observed, but only one, Bayerotrochus midas, was observed on coral. Three species 
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of fishes were observed amongst coral colonies, two from the family Bythitidae and one 

unknown species (fish sp. C).  

The sixteen coral morphospecies included in analysis represent the orders 

Alcyonacea, Antipatharia, and Scleractinia. We were able to identify species from the 

following families: Acanthogorgiidae, Antipathidae, Schizopathidae, Chrysogorgiidae, 

Corallidae, Dendrophyllidae, Isididae, Caryophyllidae, Oculinidae, Plexauridae and 

Primnoidae. The zoanthid, Parazoanthus sp., was considered an epibiont because it was 

observed growing on top of other corals. Sixty-six percent of coral substrates with 

epifaunal assemblages were observed between 335-449 m, and 22 percent were between 

550-700 m. The most abundant corals were Paramuricea sp. Y, Paramuricea sp. P, and 

Primnoidae sp. A (26.6%, 25.6%, and 8.9%, respectively). The rarest corals were 

Acanthogorgia sp., Enallopsamia sp., Madrepora sp., Isididae sp., and Chrysogorgiidae 

sp. 

 

Table 3. Coral species distribution by depth zone. 
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The most abundant epifaunal species were Asteroschema sp. A, chirostyloid 

juveniles, chirostyloid sp. A, and bythitid sp. B, respectively. The rarest species included 

crab sp. C, Asteroporpa annulata, comatulid sp. A, Bayerotrochus midas, and fish sp. C. 

 Many species had restricted distributions (Table 4). Asteroschema sp. A occurred 

only on two color morphs of a paramuriceid coral (76.2% on Paramuricea sp. Y, 23.8% 

on Paramuricea sp. P, Appendix 1). Chirostyloid juveniles were observed on Primnoidae 

sp. A and Lophelia pertusa (54.3% and 17.5%, respectively). Chirostyloid sp. A was 

predominantly found on Primnoidae sp. A corals and Paramuricea sp. Y (27.6% and 

20.1%, respectively). Bythitid sp. B was most often found associated with Paramuricea 

sp. Y, Primnoidae sp. A and Antipathes (30.7%, 17.5%, and 14.9%, respectively). Fifty 

percent of the Novodinia antillensis that were associated with corals were with 

Primnoidae sp. A and 20% were near Lophelia pertusa. The brittle star Ophiothrix sp. U 

was most often observed in the branches of Antipathes sp. and Primnoidae sp. A (33.7% 

and 32.6%, respectively). Comatulid sp. C was associated with Antipathes sp. and 

Paramuricea sp. Y (56.8% and 24.3%, respectively). Comatulid sp. Y was another 

abundant crinoid but occurred on various corals. All crinoids were abundant on sponges. 

Many of the epifauna species we observed were also found on bare substrate; however 

those individuals were not included in analysis because only the epifaunal assemblages 

on coral were being analyzed. 
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Table 4. Relative abundance of epifauna on coral substrates. 
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Site and depth distribution  

 
 Many species had a depth range exceeding 300 m: Asteroschema sp. A, bythitid 

sp. B, chirostyloid sp. A, Ophiothrix sp. U, chirostyloid sp. B, chirostyloid juveniles, 

comatulid sp. Y, and comatulid sp. O. Differences in depth zonation existed at all sites 

and most epifauna were observed in the 335-449 m and 550-700 m depth zones (64.8% 

and 22.8%, respectively; Figure 2). The sites with the most corals and epifauna were 

Luna Beach, Sueno del Bahia, and Lawson’s Rock. In general coral and fauna were 

distributed randomly across transects but dense assemblages of corals such as 

Paramuricea sp. Y and P and Dendrophyllia alternata were observed on the tops and 

sides of tall boulders. Salinity and temperature data from CTD casts were similar between 

dives and expeditions (Appendix 1 and 2). Salinity, temperature, and pH all decreased 

with depth. 

 

Figure 2. Absolute abundance of epifauna by depth zone. 
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Diversity trends 

Species richness (S) was highest in Lophelia pertusa (3.43), Primnoidae sp. A 

(3.11), Corallium sp. (2.67) and Antipathes sp. (2.83) (Table 5). Substrates which hosted 

the greatest number of individuals (N) were Lophelia pertusa (Appendix 3), Primnoidae 

sp. A (Appendix 4), Corallium sp. (Appendix 5), and Madrepora sp. Margalef’s species 

richness index (d) was highest for Plumapathes sp., Antipathes sp., Acanthogorgia sp., 

and Bathypathes sp. Simpson’s diversity values (1-λ) were highest in Lophelia pertusa 

(0.53), Primnoidae sp. A (0.52), and Antipathes sp. (0.51). Hill’s diversity number two 

(N2) was highest for Lophelia pertusa (3.01), Primnoidae sp. A (2.77), Antipathes sp. 

(2.64) and Corallium sp. (2.46).  

Table 5. Averaged biodiversity measures for coral morphospecies (N=total individuals, 
S=species richness, d=Margalef’s species richness, 1- λ = Simpson’s diversity, N2=Hill’s 
number 2).  
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One-way ANOVA  

 
Species richness differed between coral substrates and depth zones (p=0.0001, 

p=0.0472, Table 6). The total number of individuals also varied significantly between 

substrates. Species diversity (Simpson’s Index, Hill’s N2) also varied between substrate 

and depth. Hill’s diversity was also significantly different between coral substrates and 

depth zones. Significantly different sources were not detected using the Tukey post-hoc 

test. There were no localized regions of extremely high or low diversity. 

Table 6. Results from a one-way ANOVA (y = Substrate Site Depth). 

 

Non-metric multidimensional scaling 

Epifaunal assemblages did not vary among the sites (Figure 3, Appendix 7, global 

R=0.038, p=0.2), but did vary with depth. The assemblages occurring in the depth zone 

of 335-449 m had little overlap with the assemblages occurring from 550-700 m (Figure 

4, Appendix 8, global R=0.207, p=0.01). The assemblages found in the zone at 450-549 

m included species from both the deepest zone and the shallower zone. Some 

assemblages were affiliated with coral substrates (Figure 5). Primnoidae sp. A, 

Primnoidae sp. B, and Paramuricea sp. Y had the most distinct assemblages. Other coral 

substrates, e.g., Dendrophyllia alternata, did not have a distinct assemblage associated 

with it. Antipathes sp. coral had mixed assemblages with species also found in 

Dendrophyllia alternata, Primnoidae sp. A, Plumapathes sp., and Paramuricea sp. Y. 

Substrates had overlapping assemblages and some had very different assemblages 
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(ANOSIM; Appendix 9, global R=0.364, p=0.01). The following pairs of substrates had 

very different assemblages (R>0.7): Bathypathes sp. – Lophelia pertusa (R=0.797, 

p=0.01); Bathypathes sp. – Primnoidae sp. B (R=0.818, p=0.03); Chrysogogiidae sp. – 

Lophelia pertusa (R=0.792, p=0.8); Enallopsamia sp. – Paramuricea sp. Y (R=0.789, 

p=1.3); Enallopsamia sp. – Primnoidae sp. A (R=0.728, p=3.6); Lophelia pertusa – 

Paramuricea sp. Y (R=0.716, p=0.01); and Paramuricea sp. Y – Primnoidae sp. B 

(R=0.744, p=0.01). 

 
 
Figure 3. MDS plot of epifaunal assemblages by site (AKR= Anthony’s Key, GBB= 
Gibson Bight, HMB= Half Moon Bay, LBE= Luna Beach, LWR=  Lawson’s Rock, 
OLS= Old Loafer’s, SDM= Sueno del Mar, SDR= Sueno del Bahia). 
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Figure 4. MDS plot of epifaunal assemblages by depth zone (m). 

  

 

Figure 5. MDS plot of epifaunal assemblages by coral substrate. 
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Discussion 

Epifaunal assemblages on deep-water corals of Roatan, Honduras were highly 

diverse. Most epifaunal species were rare (defined as 1-11 individuals total) but several 

were abundant (Table 2). A number of corals without visible epifauna were excluded 

from analysis, including Parazoanthus sp., Madracis sp., Oculina sp., bamboo coral 

(Isididae), and several unidentified scleractinians and antipatharians. These corals 

probably were habitat to many small crustaceans, mollusks, polychaetes, and 

foraminifera. The proportional abundances and taxonomic composition of epifauna 

species varied between coral morphospecies. Recurring assemblages and patterns are 

reported for several coral morphospecies (Table 4).  

The differences in species diversity and richness between depth zones may be 

driven by a number of variables including local currents, bathymetry, or bottom 

topography combined with the effects of species interactions (e.g., interspecific 

competition for food or habitat). Side-scan sonar and bottom-mapping might allow 

determination of whether bathymetry and the distribution of boulders influenced the 

distribution of corals and epifauna. Water masses affect the disposition of sediments, the 

distribution of organic matter, and the location of the fauna dependent on that organic 

matter, including coral (Arantes et al., 2009; Rowe and Menzies, 1969). Additionally, 

currents affect larval recruitment and retention, generating bands of greater species 

abundance and richness such as those in the 335-449 and 550-700 m depth zones. Strong 

currents were not observed during our submersible surveys, so in Roatan currents may be 

less important than the angle of the continental slope and the rate of organic input in 

determining faunal distribution. However, the differences in current speed which 

influence faunal distribution might be subtle. The 450-549 m depth zone might be flat, 
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leaving fauna in this zone dependent on resuspension of benthic material. On the 

continental slope of North Carolina, epibenthic invertebrates had distinct depth 

distributions, particularly in the 200-1000 m range (Rowe and Menzies, 1969). High 

coral density was reported from 200-300 m in Alaska (Stone, 2006) and Norway (Fosså 

et al., 2002). Discontinuities in species distributions were marked by changes in sediment 

type and current direction and strength. Benthic sampling and oceanographic studies 

might confirm if these processes are related to species distribution at the study site.  

 Chirostyloid squat lobsters were some of the most abundant and widespread 

epifauna. Unlike Eumunida picta (conservatively labeled chirostyloid sp. B), chirostyloid 

sp. A was rarely seen except on a living coral. There were twice as many chirostyloid sp. 

A as B observed on corals, indicating that chirostyloid sp. A required a biotic three-

dimensional habitat. Chirostyloid sp. A was predominantly observed on Primnoidae sp. A 

amongst juvenile chirostyloids and on Paramuricea sp. Y with Asteroschema sp. A. Co-

occurrence of chirostyloid sp. A and Asteroschema sp. A suggests that these species must 

interact because they have the same resource requirements. Juvenile chirostyloids were 

another abundant group observed between coral branches and on the fringe of coral 

colonies. They had high fidelity to Primnoidae sp. A, but many more individuals likely 

were hidden amongst coral rubble, Lophelia pertusa, and Dendrophyllia alternata. Coral 

functions as an important habitat refuge for a number of invertebrates, including juvenile 

chirostyloids (Buhl-Mortensen and Mortensen, 2004b; Buhl-Mortensen and Mortensen, 

2005; Metaxas and Davis, 2005).  

Paramuricea sp. Y and Primnoidae sp. A colonies had the highest constancy of 

assemblage fidelity. This is mostly likely what drives the grouping of these coral species 
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(Figure 5). The ANOSIM test provides additional evidence that the assemblages on these 

corals were significantly different from each other (R=0.554, p=0.01). Absolute 

abundance of epifauna was highest on these coral species (Table 2 and 4). Asteroschema 

sp. A was exclusively observed on Paramuricea sp. color morphs (which might represent 

different species of Paramuricea). Individual Asteroschema were on either side of a 

colony with most arms wound around coral branches and the other arms sweeping the 

colony. Suspension-feeding epifauna such as this ophiuroid may be utilizing the same 

food source as its host coral. Many ophiuroids have commensal relationships with corals 

(Cho and Shank, 2010; Fujita and Ohta, 1988; Mosher and Watling, 2009). Some 

ophiuroids and coral are mutualistic; the coral benefits by being ‘cleaned’ and the 

ophiuroid gains a predation refuge and elevation into the water column (Grange, 1991; 

Stewart, 1998). Almost all Asteroschema sp. A had regenerating arm tips, suggesting that 

they rely on the coral as a refuge from predators. Alternately, the regenerating arm tips 

may be evidence of non-lethal agonistic interactions with the chirostyloid sp. A., bythitid 

sp. A, or more mobile predators. Non-lethal predation on an organism capable of 

regeneration indicates that this species may be a renewable food source (Brooks et al., 

2007). Paramuricea sp. colonies with ophiuroids rarely had evidence of predation or 

damage, indicating that the relationship was not detrimental to the host. Paramuriceids 

damaged from predation rarely had Asteroschema sp. A, but they did host urchins 

suspected to be corallivores. Urchins were observed on several species of coral and may 

have detrimental effects on their host (Table 4). Paramuricea sp. Y colonies had similar 

assemblages with high fidelity and low diversity.  
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 Primnoidae sp. A had taxonomically rich and abundant assemblages. These large 

sea-fans are upright but flexible in the water column and have layers of branches, 

providing ample space for epifauna. Unlike Paramuricea sp., these colonies were 

occupied by significantly larger individuals of chirostyloid sp. A and had the highest 

proportion of juvenile chirostyloids. Two large colonies hosted 21 and 31 chirostyloid 

individuals. Tall Primnoidae sp. A provide an optimum habitat for juvenile crustaceans 

avoiding benthic predators. Primnoidae sp. A was the primary coral habitat for Novodinia 

antillensis and the Venus flytrap anemone Actinoscyphia sp. Three comatulid crinoids 

were predominantly found on Antipathes sp. colonies (comatulid sp. C, O, and Y). 

Ophiothrix sp. U had equal preference for Primnoidae sp. A and Antipathes sp.  

 Coral species with the most diverse assemblages of epifauna were Lophelia 

pertusa, Primnoidae sp. A, and Antipathes sp. These corals also had high numbers of 

average individuals and high Hill’s N2 values (Table 6). There was overlap in 

assemblage composition between these three corals (Table 4, Figure 5). These species 

were among the largest and most structurally complex of the corals observed. Lophelia 

pertusa is a rugose scleractinian which can anastomose its branches and grow into a 

stable and intricate habitat (CSA International, 2007). Lophelia pertusa thickets have an 

outer layer of live coral growing over and around rubble, providing various microhabitats 

to hundreds of deep-sea fauna (Costello et al., 2005; Rogers, 1999). Live coral is more 

important habitat than rubble because there was not much rubble at the Roatan sites. 

Antipathes sp. also has a complex morphology; layers of thin branches and small crevices 

were occupied by galatheoids, ophiuroids, and comatulids. Physical samples would 

undoubtedly reveal many more cryptic epifauna within the coral branches. Lophelia 
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pertusa, Primnoidae sp. A, and Antipathes sp. supported diverse assemblages of fauna 

with similar habitat and feeding requirements. 

 Recurring epifaunal assemblages were observed on some but not all coral 

morphospecies. Coral structure alone cannot be the determinant because complex corals 

such as Dendrophyllia alternata, Antipatharia sp., and Plumapathes sp. had lower 

diversity. However, differences in diversity measures could be related to the non-invasive 

sampling design, which may have prevented observation of epifauna hidden within coral. 

Coral is an excellent refuge from predation for juveniles and yet only a small percentage 

of the 1246 individuals we observed were juveniles. Juvenile fauna must be hidden in 

corals, on alternative substrates, occur infrequently, or have rapid growth into the adult 

stage.  

Some epifaunal species were observed on rock or sand bottom, or among coral 

rubble (Bayerotrochus midas, Novodinia antillensis, Eumunida picta,). Bayerotrochus 

midas was observed on a damaged Chrysogorgiidae coral in preliminary dives. This 

species, like other deep-sea mollusks, is probably a mobile corallivore (Harasewych and 

Sedberry, 2006; Taviani et al., 2009). The majority of the Novodinia antillensis were 

observed on boulders but 22 % were at the base of Primnoidae sp. A (see chapter 3). This 

opportunistic suspension feeder selects its habitat based on food availability and currents 

(Emson and Young, 1994). The galatheid crab Eumunida picta has been reported on 

shipwrecks, living and dead Lophelia pertusa, bare sediment, and other coral species 

(Cordes et al., 2008; Kilgour and Shirley, 2008; Lessard-Pilon et al., 2010). This species 

lacked fidelity to specific coral species or substrates and can be considered a habitat 

generalist. 
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Additional assessments are necessary to understand what ecological interactions 

are most important in structuring epifaunal assemblages on deep-sea corals. Do epibionts 

compete for the best habitat or are they restricted to specific corals based on habitat 

availability or physical location? On some corals the majority of associated epifauna are 

suspension feeders using the coral for elevation into the water current (Buhl-Mortensen 

and Mortensen, 2005; Frederiksen et al., 1992). Epifauna may be deterred from or enticed 

to inhabit a coral based on the composition of the mucus. Lophelia pertusa will exude 

mucus to thicken the epitheca when polychaetes and foraminifera settle on its branches 

(Freiwald and Wilson, 1998). Other species may rely on the mucus as a food source. We 

observed few instances of predation on coral, but asteroids, nudibranchs and snails are 

known to feed on coral polyps (Krieger and Wing, 2002). Some epibionts of coral are 

categorized as commensalistic or parasitic (e.g., Epizoanthus sp. anemones ingest coral 

tissue) (Buhl-Mortensen and Mortensen, 2005). Gooseneck barnacles were rare at the 

study site and we suspect that this group can only settle on a coral through facilitation 

(e.g., polyps must be cleared by corallivores before the barnacles settle). Competition for 

resources including predation refuge, food, and reproduction grounds may also contribute 

to assemblage structure.  

 
Implications 

Deep-sea coral communities are threatened by many anthropogenic activities such 

as oil and gas exploration, pollution, mining, trawling, and ocean acidification. Trawling 

for commercially important species can inadvertently result in the destruction of their 

juvenile habitat (Stone, 2006). In addition to removing coral, sediment resuspension by 

trawling could have a negative effect on suspension-feeding communities in the deep-sea. 
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Mining for manganese and other metal nodules has grown as an industry with advances 

in technology and increases in the value of metals. Hydrothermal vents and seamounts 

have many endemic species and are being targeted for their sulfide deposits (McClain, 

2007; Roberts et al., 2009). Drilling for oil and gas disperses rock fragments, cuttings, 

and drilling muds and fluids, which have been found on corals four kilometers from the 

drilling site. The effects of drilling fluids on deep-water corals and megafauna are 

unknown (Roberts et al., 2009). Ocean acidification may affect calcium carbonate test 

formation in foraminifera and coccolithophores (Guinotte et al., 2006). These plankton 

are important in pelagic productivity and may influence the functioning of the coral 

communities which depend on them for nutrition (Johnson et al., 2007). Although 

salinity, currents, and temperature could also be influenced by ocean acidification, no 

experiments have been done to determine how these changes could affect deep-water 

corals (Guinotte et al., 2006).  

The epifauna associated with deep-water corals in Roatan, Honduras were 

taxonomically diverse and abundant. Some species of epifauna and coral were always 

observed together, signifying that there are species-specific relationships. Higher 

abundances of all species in specific depth zones may ultimately be determined by 

physiographic factors and hydrodynamics. This study provides important biodiversity 

information that can be used in baseline assessments. Our non-destructive sampling 

proved successful in collecting biodiversity data. Many of the coral morphospecies and 

invertebrate epifauna we observed have previously been reported from the Gulf of 

Mexico and other parts of the Caribbean (Cordes et al., 2008; Emson and Woodley, 1987; 
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Etnoyer, 2009; Felder et al., 2009; Hourigan et al., 2007; Lessard-Pilon et al., 2010; Lutz 

and Ginsburg, 2007; Messing et al., 2008; Rice and Miller, 1991)   

Some of the epifauna we observed may be represented by congeners or ecological 

equivalents in other ocean basins (Cho and Shank, 2010; Tissot et al., 2006). The 

information on range and distribution of deep-sea fauna is useful for studies on island 

biogeography, endemicity, evolution, and symbiosis. Deep-sea coral communities are 

unique in that they exist with a biotic substrate and depend on surface productivity for 

many resources. Future research should focus on species interactions in order to learn 

more about how these communities are structured. 
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ECOLOGY AND DISTRIBUTION OF A BRISINGID SEASTAR IN THE DEEP 
WATERS OF ROATAN, HONDURAS 
 
Introduction 
 

Asteroids of the order Brisingida are distinctive deep-sea megafauna, but their 

distribution, ecology, and life history are poorly understood. Most of the available 

information is from taxonomic studies and deep-sea benthic surveys. Brisingida is 

monophyletic and includes three families: Brisingidae, Freyellidae, and the recently 

constructed, Novodiniidae (Mah and Foltz, 2011). A taxonomic key including 

Novodiniidae is not yet available so we use the descriptions for brisingids outlined in 

Clark and Downey (1992).  

Brisingida includes more than 70 species and the two families Brisingidae and 

Freyellidae are separated by several morphological and ecological differences (Clark and 

Downey, 1992; Mah, 1998; Appeltans et al., 2012). Freyellids are generally found in 

deeper water and softer substrate than brisingids, which are found on hard substrate. Most 

freyellids cannot raise their arms above the disc, but some behavioral observations 

suggest a few species may be suspension feeding. Species in Brisingidae typically keep 

their arms extended into the water current. Direct observations and gut content analysis 

indicate that species in the order Brisingida use various feeding methods (Emson and 

Young, 1994). Because primary production in the deep-sea is limited, deep-sea organisms 

are dependent on sedimentation of production in surface waters (Duineveld et al., 2004; 

McClain, 2010). The morphology of brisingid seastars allows them to sieve the 

particulate matter sedimenting from the surface waters.  

Based on its morphological description and distributional range, we believe that 

the brisingid species we observed was Novodinia antillensis (A. H. Clark, 1934). N. 
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antillensis has 10-17 arms, a depth range of 366-2700 m, and has been reported from 

Puerto Rico, West Indies, Gulf of Mexico, Brazil (Campos Basin), Lau Basin and the 

Bahamas (Campos et al., 2009; Clark and Downey, 1992; Craddock, 2005; Emson and 

Young, 1994). We plan to collect specimens in the future to verify species identification. 

Although reports of brisingids date to 1880, little is known of their ecology, because of 

the difficulties of conducting experiments and making observations in the deep-sea. We 

observed brisingids in high abundances during preliminary submersible dives in Roatan, 

Honduras. This study is intended to provide new information on the habitat distribution, 

depth range and abundance of brisingids. 

 

Material and Methods  

 

Study Site: Roatan, Honduras 
 

Isla Roatan is part of the Bay Islands archipelago in the southwestern Caribbean 

Sea. It is approximately 50 km north of mainland Honduras. The island is of volcanic 

origin and the continental slope is predominantly soft sediment and basalt and limestone 

boulders. The boulders are heterogeneous in size and distribution. The bottom 

topography has areas of steep walls, furrows, and low-slope, sediment-covered bottom. 

Roatan is on the southern edge of the Cayman Trough and surrounded by deep water. 

Approximately 20 km northeast of Roatan is the Bonacca Deep, a deep feature (5400 m) 

located at the base of the Cayman Trough escarpment (Banks and Richards, 1969; Pinet, 

1976). The Bay Islands themselves lie on top of the Bonacca Ridge (Banks and Richards, 

1969). The strong vertical relief surrounding the island permits rapid descent to bathyal 

depths. 
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Submersible Idabel 
 

Video survey transects were completed using the Idabel submersible (Etnoyer et 

al., 2011). Idabel is owned and operated out of Roatan, Honduras by Karl Stanley’s 

private company, Stanley Submarines. The submersible measures 3.9 x 2 x 2.1 meters. 

Idabel is equipped with redundant propulsion, manually operated emergency drop 

weights (158 kg.), life support for 3 days, and a 76 cm diameter hemi-spherical viewport 

for passenger observation. The pilot stands with a 360° view through a series of 9-16 cm 

diameter portholes surrounding the conning tower. It is depth-rated to 1000 m and can 

carry two passengers in addition to the pilot. Two Sony HD Handycams (HDR-HC9) 

were used during each survey. One was mounted on the interior of the viewport and the 

other was in an external housing above the parallel lasers. Externally mounted lasers 10 

cm apart were used as a size reference. Still photos were taken from inside Idabel with a 

Canon SLR (EOS1) connected to an external flash. A Seabird Seacat v 19 conductivity-

temperature-depth-oxygen (CTD-O) profiler was mounted on the lower starboard side 

rail. 

 

Survey Transects 

Idabel was towed offshore (~2 km) to an approximate location and descended to a 

target maximum depth of 700 m. Coordinates were recorded before the submersible 

descended. Video recording began at the seafloor and ended between 50-100 m. Detailed 

maps of the seafloor were not available so all transects were in the general direction of 

the launching dock. Ten dives were made but two were excluded from analysis because 

they were outside of the target depth range (Figure 1.). Preliminary dives from August 
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2010 were excluded from analysis because they did not follow the same protocol. Six 

dives were made in May 2011 and four dives were made in December 2011. All dives 

were on the northwestern end of Isla Roatan: Anthony’s Key, Gibson Bight, Half Moon 

Bay, Lawson’s Rock, Luna Beach, Old Loafer’s, Sueno del Bahia, and Sueno del Mar. 

Sites were named for landmarks visible from the point of descent. Dives were made 

without replicates.  

Every five minutes depth (m), temperature (°C), and time was recorded along 

with a landmark from that timecode (e.g. boulder with crab species A) (Etnoyer et al., 

2011). Recording was continuous during transects in order to document observations 

which were not necessarily captured on the video monitor. These data logs were later 

used to assign depths to observed organisms and assemblages. During transects still 

images were taken of coral colonies, invertebrate epifauna, and any other interesting 

organisms happened upon. HD video footage was digitized using FinalCutPro 6.0.6. 

Frame grabs were made from digitized video to record habitat distribution, depth, 

abundance, and diversity of species. Discontinuities in faunal distributions were used to 

create four depth zones for analysis. Few specimens were collected so most species 

identifications were to a morphospecies level and made based on gross morphology and 

available ecological data. We considered all brisingids to be the same species because of 

their similar morphology but it is possible that more than one species was present. No 

brisingid seastars were collected during the DeepCAST II or III expeditions. 
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Figure 1. Map of survey sites in Roatan, Honduras. 

Results 

 
We observed a total of 229 brisingids from seven sites. Sueno del Mar, Anthony’s 

Key, and Half Moon Bay were the sites where N. antillensis was most abundant (Figure 

2). Novodinia antillensis was the largest sessile epifaunal species observed. Individuals 

were often observed in groups and each unique occurrence included all individuals within 

0.5 m of another. The average density for each unique occurrence was three individuals, 

but there were four occasions when there were more than 10 brisingids. N. antillensis 

were observed on boulders, sponges, coral rubble, and several morphospecies of deep-sea 

coral (Table 1.). We observed 25 unique coral morphospecies but brisingids were only 

associated with 8 coral species. Few coral specimens were collected; therefore all 

identifications of biotic substrates were based on observations of morphology. Sixty-two 

percent of N. antillensis were on boulder substrate and 17 percent were observed at the 
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base of primnoid sea fans. No brisingids were observed on bare sediment. Brisingids 

were rarely, if ever, in direct contact with other epifaunal species. 

Our sampling was limited by the availability of design criteria and the lack of 

replication, so a 1-way incomplete blocking design was used, where substrate was the 

main effect and site and depth were the blocks (SAS 9.2). Novodinia antillensis 

abundance was not significantly different between substrates, sites or depth zones (one-

way ANOVA, p>0.7828, p>0.2248, and p>0.0758, respectively). Although abundance 

was not significantly different between depth zones, 95 percent of N. antillensis were 

observed between 550-695 m, the maximum depth surveyed (Figure 2). 

 

 
 
Figure 6. Abundance of Novodinia antillensis by site and depth (AKR= Anthony’s Key, 
GBB= Gibson Bight, HMB= Half Moon Bay, LBE= Luna Beach, LWR= Lawson’s 
Rock, SDM= Sueno del Mar, SDR= Sueno del Bahia). 
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Table 7. Novodinia antillensis abundance on different substrates. 
Substrate (n) Total abundance  Mean STD 

boulder (50) 143 3 3.077 
coral rubble (1) 1 1  
sponge (2) 2 1 0 
Primnoidae (7) 40 6 4.716 
Primnoidae B (1) 7 7  
Lophelia pertusa (4) 16 4 3.162 
Enallopsamia sp. (1) 2 2 0 
Corallium sp. (2) 12 6 7.071 
Paramuricea sp. P (2) 2 1 0 
Paramuricea sp. Y (1) 1 1  
Unidentified coral b (1) 3 3 0 
 
 

Almost all brisingids were observed with their arms bent upwards with the tip 

curved in towards the disc. This basket-like orientation is similar to observations by 

Emson and Young (1994). An alternative posture was the brisingids keeping a few arms 

on the substrate and raising the rest into the water column. Based on relative size, we 

observed 11 juvenile brisingids. It was not possible to record average arm lengths for the 

majority of individuals because the lasers were not always in the frame. Average arm 

length for those we could measure was 25±5 cm (n=4). The angle of the camera and arm 

posture limited our ability to count the number of arms, but we were able to count the 

number of arms for 60 individuals (avg= 15, std= 2.5). Ten individuals were in the 

process of regenerating arms. Many of the arms were almost fully regenerated, but other 

individuals had numerous small segments extending from the disc (Figure 3). Most 

brisingids were regenerating a few arms at a time, but one individual was regenerating 13 

arms.  



48 
 

 
 

 
Figure 7. Novodinia antillensis on a boulder at Anthony’s Key, 591 m. 
 
Discussion 

 
 Novodinia antillensis was abundant and widespread across the survey sites. 

Brisingids occurred on boulders, corals, and sponges, consistent with previous 

observations (Emson and Young, 1994). Large aggregations of individuals were 

occasionally on boulder faces, but most frequently in pairs or as single individuals. In our 

study areas 95% of individuals were found below 550 m, suggesting a preference for 

deeper depths. The observed depth range is probably not a function of habitat distribution 

because the most common habitat (boulders) occurred in all depth zones. Boulders 

contribute to the complexity of ridges and furrows, making the habitat heterogeneous and 

accelerating flow. Enhanced flow transports oxygen, suspended inorganic matter, and 

detrital food particles downslope and to the benthos, which in turn attracts a diversity of 

epifaunal organisms (Frederiksen et al., 1992). Higher availability of benthopelagic 

plankton within 10 m of the bottom also contributes to this enriched benthic environment 

(Wishner, 1980). Regions with faster flow have higher biomass of macrobenthic 

suspension feeders (Flach and Thomsen, 1998).  
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An in-situ study on the brisingid Novodinia antillensis found that it is a 

suspension-feeder, specializing in macroscopic organisms (Emson and Young, 1994). 

The species captures benthopelagic and planktonic crustaceans from the water column by 

raising its arms into the water column and using pedicellariae to capture and tube feet to 

transfer items to the mouth. We observed species with the same posture in the field. This 

feeding method is highly efficient because there is more prey available above the 

sediment surface (Wishner, 1980). The high abundance of Novodinia antillensis indicates 

that this species has developed a successful method for exploiting its food source. 

Few individuals were in the process of regenerating arms, arms were either fully 

grown or in the early or latest stages of regeneration. Any arms that were regenerating 

were in the same stage of growth. This indicates that predators are consuming whole 

individuals, several arms during each feeding event, that regeneration of arms is rapid, or 

that predation is infrequent. No predation events were observed, but a variety of potential 

predators, including large crabs, lobsters, fish, seastars, and sea urchins, occurred 

commonly in the transects. Evidence of predation was abundant in another conspicuous 

macrofaunal species, the brittle star Asteroschema sp. In this large ophiuroid species, 

most arms of most individuals were in the process of regenerating the arm tips. 

Most Novodinia antillensis individuals were the same size, or at least there were 

no distinct size classes. This suggests that successful reproduction (larval recruitment) 

does not occur frequently. If reproduction does occur more often, then growth must be 

rapid, or early life history stages are cryptic or live in habitats different than the adults. 

Our observations of Novodinia antillensis are in agreement with the depth distribution 

from other reports. The distribution range of N. antillensis should be expanded to include 
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the western Caribbean Sea and the Cayman Trench. The sites where N. antillensis was 

observed were relatively close to shore. It would be useful to compare how bottom 

topography is related to brisingid abundance and input of suspended matter to sites 

further offshore. Although our surveys were conducted during different seasons, there 

was no evidence of seasonal differences. There were no significant differences in depth 

distribution, abundance or size of individuals between our two sampling expeditions. 

Brisingid seastars are conspicuous and abundant on the deep seafloor and yet little 

is known of their ecology. This paucity of knowledge applies to many deep-sea fauna 

which remain misunderstood because of the difficulty and limitations of deep-sea 

research. Although we have compiled information on the depth range and distribution of 

Novodinia antillensis, we can only speculate on what variables limit its range and 

substrate selection. This species was among the most abundant epifauna in Roatan and 

surely it has an important role in deep-sea community ecology. Future research should 

focus on studying aspects of the ecology of Novodinia antillensis, including variables 

affecting depth and latitudinal distributions, growth rates and regeneration, and 

reproductive biology.  
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Summary 

Deep-water corals in Roatan, Honduras have diverse epifaunal assemblages. 

Taxonomic composition and abundance of epifauna varied among coral species. Some 

coral morphospecies had consistently recurring assemblages, but many had assemblages 

of similar taxonomic composition. Some epifauna were predominantly abundant but most 

were rare. Epifauna had a range of habitat preferences; some were found only on specific 

corals and others were habitat generalists.   

Echinoderms and crustaceans were the taxa with the highest number of species 

and total abundance, respectively. The most abundant echinoderms were an unbranched 

basket star, Asteroschema sp. A, an ophiuroid, Ophiothrix sp. U, and the brisingid seastar, 

Novodinia antillensis. Adult and juvenile chirostyloid crabs were observed on many coral 

species and other habitat types. Paramuriceid, primnoid, and antipatharian corals were the 

most common coral groups. The density of epifauna was variable among and between 

coral morphospecies, but was not a function of the colony size. Epifauna and coral were 

most abundant in the 334-449 and 549-700 m depth zones. 

 Epifaunal diversity and assemblage constancy varied between coral species. 

Primnoidae sp. A and Paramuricea sp. Y had the highest absolute abundance of epifauna. 

Lophelia pertusa, Primnoidae sp. A, and Antipathes sp. had the most diverse assemblages 

of epifauna. Coral species with the highest number of individuals were Lophelia pertusa, 

Primnoidae sp. A, Corallium sp., and Madrepora sp., respectively. Similar epifaunal 

assemblages were observed on Lophelia pertusa, Antipathes sp., and Primnoidae sp. A. 

We attribute this to the corals being some of the largest and structurally complex from the 
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study site. An analysis of the infaunal assemblages might reveal different diversity 

patterns.  

 Assemblage fidelity was most prominent on Paramuricea sp. Y and Primnoidae 

sp. A colonies. Asteroschema sp. A was exclusively observed on Paramuricea sp. color 

morphs. Asteroschema sp. A and chirostyloid sp. A were often observed together on 

Paramuricea sp. Y, suggesting that these species use the same resources and possibly 

interact with each other. Juvenile chirostyloids were predominantly found within 

Primnoidae sp. A colonies. Bythitid fishes, crinoids, and the chirostyloid Eumunida picta 

were associated with numerous corals and are habitat generalists. These species may not 

have specific requirements for substrate or other resources. 

 The brisingid Novodinia antillensis was abundant and widespread across our 

study site. N. antillensis occurred on boulders, corals, and sponges. The majority was on 

boulders but they were also on eight different coral morphospecies. Occasionally large 

aggregations of individuals were near Primnoidae sp. A and B corals. Individuals were 

predominantly below 550 m. The distribution of these suspension feeders is probably 

influenced by currents and food availability. There were few instances of arm 

regeneration which indicates that this species may have few predators. Novodinia 

antillensis was a conspicuous and abundant megafaunal species in Roatan, Honduras. 

The distribution of Novodinia antillensis should be expanded to include the Western 

Caribbean Sea. 

 Biotic interactions, the physical environment, and resource availability are all 

important in structuring deep-sea coral communities. Water masses, currents, and 

topography affect the depth distribution of coral and epifauna. Megafauna probably 
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compete to occupy coral habitat in areas with optimal current flow and food availability. 

The concentration of coral and fauna in the 335-449 m depth zone could be driven by 

bathymetry and the rate of organic input. Interspecific competition for habitat and food is 

probably an important determinant for the co-occurrence of epifaunal species. Additional 

assessments are needed to understand what ecological interactions and physical 

parameters are most important in structuring epifaunal assemblages on deep-sea corals. 

Deep-sea corals are long-lived, habitat forming species which support diverse 

communities of sessile and mobile fauna. Anthropogenic activities that threaten deep-sea 

coral communities include trawling, long-line fishing, oil and gas exploration, the jewelry 

trade, and mining. All of these activities can remove and alter coral habitat, displacing 

associated communities. Seafloor scouring and coral bycatch are some of the more severe 

impacts caused by trawls (Probert et al., 1997). Resuspension of sediment from drilling 

and mining can smother coral habitat. Drill cuttings and oil have been observed on coral 

polyps. Ocean acidification could alter the aragonite saturation horizon, and thus the 

distribution of scleractinian corals. Local threats in Roatan include fishing activity and 

pollution. Trash and fishing gear were observed during several survey transects. The 

Roatan Marine Park should be extended to include habitat in the 700 m isobath based 

upon coral presence, vulnerability, and associated biodiversity.  

Future research on the deep-water corals of Roatan, Honduras should include 

specimen collection, genetic analysis, gut content analysis of epifauna, stable isotope 

research, sediment trap deployment, and bottom mapping with multibeam echosounders 

and side-scan sonar. Additional observations at the study site would contribute to our 

understanding of deep-sea community ecology and biodiversity. Deep-sea biodiversity 
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studies continue to provide fascinating information about how these remote ecosystems 

function. The information from this study can be used for baseline surveys in a 

previously unexplored region of the Caribbean Sea.  
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Appendix 1. Paramuricea sp. Y at Luna Beach, 338 m. 

 

Appendix 1. CTD cast at Anthony’s Key. 
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Appendix 3. CTD cast at Half Moon Bay. 

 

Appendix 4. Lophelia pertusa at Sueno del Bahia, 365 m. 
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Appendix 5. Primnoidae sp. A colony at Luna Beach, 549 m. 

 

Appendix 6. Corallium sp. at Anthony’s Key, 610 m. 
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Appendix 7. ANOSIM results for comparing assemblage composition between sites (top 
value is R statistic, bottom value is significance level as percent). 

 
 

Appendix 8. ANOSIM results for comparing assemblage composition between depth 
zones (top value is R statistic, bottom value is significance level as percent). 
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Appendix 9. ANOSIM results for comparing assemblage composition between coral substrate (top value is R statistic, bottom value is 
significance level as percent). 

 


